WO2024059968A1 - 电池单体、电池及用电装置 - Google Patents

电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2024059968A1
WO2024059968A1 PCT/CN2022/119614 CN2022119614W WO2024059968A1 WO 2024059968 A1 WO2024059968 A1 WO 2024059968A1 CN 2022119614 W CN2022119614 W CN 2022119614W WO 2024059968 A1 WO2024059968 A1 WO 2024059968A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
battery
pressure relief
wall
thickness
Prior art date
Application number
PCT/CN2022/119614
Other languages
English (en)
French (fr)
Inventor
柯剑煌
陈小波
李耀
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/119614 priority Critical patent/WO2024059968A1/zh
Publication of WO2024059968A1 publication Critical patent/WO2024059968A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cell, a battery and an electrical device.
  • lithium-ion and other batteries have the advantages of high energy density, high power density, multiple cycles, and long storage time, they have been widely used in electric vehicles.
  • the purpose of this application is to improve the safety of batteries during use.
  • a battery cell including: a casing having a first wall and an inner cavity; an electrode assembly disposed in the inner cavity; and an electrode terminal on the casing and connected to the electrode.
  • the assembly is electrically connected; and a first pressure relief component is provided on the first wall, the first pressure relief component has a first weak portion, the first weak portion is a thickness reduction portion, and is configured to meet the first preset condition in the housing case open.
  • the battery cell When thermal runaway occurs in the battery cell of this embodiment, due to the thinning of the first weak point, which reduces the strength, the battery cell can be reliably opened to smoothly discharge the discharged matter inside the case, thereby preventing the battery cell from being damaged due to untimely pressure relief. The shell bulges or even explodes, which can improve the safety of the battery cell.
  • the ratio of the thickness ⁇ of the first weak portion to the thickness a of the first wall satisfies the following relationship:
  • this embodiment designs the ratio of the thickness ⁇ of the first weak part to the thickness a of the first wall within an appropriate range.
  • the first weak part can be reliably opened to allow the internal discharge to be discharged smoothly, thereby preventing the battery cell from exploding due to untimely pressure relief; moreover, the first weak part can also cause the third weak part to be discharged smoothly.
  • a pressure relief component has certain opening conditions to avoid damage under normal use and vibration and impact conditions.
  • the value range of ⁇ /a in this embodiment can enable the first weak portion to be reliably opened to allow the internal discharge to be discharged smoothly when thermal runaway occurs in the battery cell, thereby avoiding explosion of the battery cell due to untimely pressure relief; moreover, the thickness of the first wall is moderate, which can meet the strength requirements of the battery cell shell and will not occupy too much space, so that the capacity can be increased under the condition of a certain volume of the battery cell.
  • the ratio of the volume V of the battery cell to the thickness a of the first wall satisfies the following relationship:
  • this embodiment designs the ratio of the volume V of the battery cell to the thickness a of the first wall within an appropriate range, not only It can improve the volume utilization inside the battery cell, ensure the capacity of the battery cell, and the first weak part will not crack under vibration and impact conditions, preventing electrolyte leakage.
  • the value range of V/a in this embodiment can not only make the volume utilization rate inside the battery cell higher, ensure the capacity of the battery cell, but also prevent the first weak part from cracking under vibration and impact conditions, preventing the occurrence of The phenomenon of electrolyte leakage.
  • the first pressure relief component is a separate component and is connected to the housing.
  • the first pressure relief component of this embodiment can be processed as an independent part.
  • the process difficulty is relatively low during processing. It can be processed into a structure with a relatively complex shape, and it is easy to ensure the processing accuracy of the first weak part, such as the thickness of the first weak part. ⁇ , so as to more accurately control the opening conditions of the first pressure relief component, so that when the battery cell undergoes thermal runaway, the first pressure relief component can be opened smoothly and will not be opened under normal operating conditions.
  • the first pressure relief component is integrally formed with the housing.
  • the first pressure relief component is integrally formed with the casing, which can eliminate the process of fixing the first pressure relief component to the casing through welding and other methods, thereby improving the production efficiency of the battery cells; moreover, it can also improve the production efficiency of the battery cells.
  • the connection strength of the first pressure relief component prevents the weld seam from partially falling off after long-term use of the battery cell and causing the first pressure relief component to be unreliably connected to the case, which can improve the reliability and service life of the battery cell.
  • the first pressure relief component includes a base body, a first groove is provided on the base body to form a reduced thickness portion, and the first weak portion is provided on the reduced thickness portion.
  • the first groove is pre-processed and the first weak part is formed based on the thickness reduction part, which can reduce the amount of material removal required to form the first weak part.
  • the second groove or the engraving can be reduced.
  • the depth of the mark can reduce the difficulty of processing, reduce the amount of deformation during processing, and easily ensure the processing accuracy of the thickness ⁇ of the first weak part.
  • the first weakened portion is formed by scoring, forming a closed extension path.
  • the score forms a closed extension path.
  • the score can be torn all around, and the first discharge port can be quickly opened to prevent the first discharge port from being blocked, so as to allow internal discharge.
  • the substances are quickly discharged, reducing the pressure within the battery cell and preventing the casing from bulging.
  • the shape enclosed by the score is rectangular, triangular, or oval.
  • This embodiment can set the first weak portion to a special shape according to the pressure relief requirement.
  • the first weak portion can be separated from the shell during pressure relief, and the area of the first exhaust port can be maximized to allow the exhaust inside the battery cell to be discharged quickly and timely.
  • these shapes are easy to process, which can reduce the production cost of the battery cell.
  • the first weak portion is formed by a score, and two ends of the score do not overlap.
  • the first weak part when the battery cell undergoes thermal runaway, after the score is torn, the first weak part is still connected to the case and will not be ejected with the discharge, which can reduce the high pressure caused by the uncontrollable position of the metal sheet flying out.
  • At least two first pressure relief components are provided on the housing.
  • the first pressure relief component can actually be designed according to the type of battery cell, the wall size of the housing where the first pressure relief component is provided, pressure relief performance and reliability requirements.
  • the quantity and shape make the setting of the first pressure relief component more flexible and can flexibly meet the needs of different battery cells.
  • the battery cell further includes an electrode terminal, and the electrode terminal and the first pressure relief component are provided on different walls of the housing.
  • This embodiment arranges the electrode terminal and the first pressure relief component on different walls of the shell, which reduces the difficulty of layout and is also conducive to arranging electrode terminals and first pressure relief components with larger areas according to needs, thereby better meeting the requirements of electrical performance and pressure relief.
  • a battery including the battery cell of the above embodiment.
  • the battery further includes a box assembly for accommodating the battery cells.
  • the box assembly includes a side wall, and the ratio of the thickness D of the side wall to the thickness a of the first wall satisfies the following relationship:
  • the ratio of the thickness D of the side wall to the thickness a of the first wall is designed within an appropriate range, which can not only ensure that the stiffness of the battery and battery cells meets the requirements, but also ensure that the box assembly and the shell are not damaged under vibration and impact conditions. It will crack and prevent the box components and shell from major deformation, improve the working reliability of the battery, and also reduce structural redundancy design and increase the battery capacity.
  • the value range of D/a in this embodiment can not only enable the battery and battery cells to meet the stiffness design requirements, prevent large deformation or cracking when subjected to vibration shock, but also reduce structural redundancy design and increase the capacity of the battery. It better balances the overall stiffness and capacity of the battery.
  • the battery further includes a box assembly for accommodating the battery cells, a second weak portion is provided on a second wall of the box assembly opposite to the first wall, and the second weak portion is configured to connect the battery cell to the battery cell.
  • a box assembly for accommodating the battery cells
  • a second weak portion is provided on a second wall of the box assembly opposite to the first wall
  • the second weak portion is configured to connect the battery cell to the battery cell.
  • a second weak portion is provided on the second wall of the box assembly opposite to the first wall, so that when thermal runaway occurs in the battery cell, the exhaust can smoothly enter the exhaust channel, and when the battery is operating normally Below, the second weak part can play a role in increasing the strength of the second wall to improve the overall stiffness of the box assembly.
  • the battery when the battery is installed in an electrical device such as a vehicle, it can reduce the vibration impact when the battery is installed on it. Small second wall deformation.
  • the box assembly includes a bottom wall and a support plate, an exhaust channel is formed between the support plate and the bottom wall, and the support plate serves as the second wall and is configured to support the battery cells.
  • This embodiment makes full use of the space between the support plate and the bottom wall of the box assembly to form an exhaust channel, which can realize a larger exhaust channel and allow the discharge of thermal runaway battery cells to enter the exhaust channel and reduce the pressure after it enters the exhaust channel.
  • the temperature drops instantly, which is conducive to the smooth flow of exhaust to the second pressure relief component; moreover, in addition to supporting the battery cells, the support plate can also form a channel for exhaust to enter the exhaust channel when thermal runaway occurs.
  • Second exhaust outlet is a channel for exhaust to enter the exhaust channel when thermal runaway occurs.
  • the box assembly includes a partition, and the partition is configured to divide the internal space of the box assembly into at least two accommodation chambers, and the battery cells are arranged in the accommodation chamber; the partition includes two spaced apart and Facing the side plate of the battery cell, the side plate serves as the second wall, and an exhaust channel is formed between the two side plates.
  • a cavity is provided in the partition to form an exhaust channel, thereby achieving weight reduction while fully utilizing the internal space of the structural component.
  • an electrical device including the battery and/or battery cell of the above embodiment, for providing electrical energy to the electrical device.
  • Figure 1 is a schematic structural diagram of some embodiments of the present application in which a battery is installed on a vehicle.
  • Figure 2 is an exploded view of the first embodiment of the battery of the present application.
  • Figure 3 is a cross-sectional view of the battery shown in Figure 2, where the cross-section is perpendicular to the extending direction of the separator.
  • Figure 4 is an enlarged view of point A in Figure 3.
  • Figure 5 is an exploded view of some embodiments of battery cells.
  • Figure 6 is a cross-sectional view of a second embodiment of the battery of the present application.
  • Figure 7 is a cross-sectional view of a third embodiment of the battery of the present application.
  • Figure 8 is a cross-sectional view of a fourth embodiment of the battery of the present application.
  • Figure 9 is an enlarged view of B in Figure 7 .
  • FIG. 10 is a cross-sectional view of a fifth embodiment of the battery of the present application.
  • Figure 11 is a front view of the first embodiment of the first pressure relief component in the battery cell of the present application.
  • FIG. 12 is a C-C cross-sectional view of the first pressure relief component shown in FIG. 10 .
  • Figure 13 is an enlarged view of D in Figure 11.
  • Figure 14 is a front view of the second embodiment of the first pressure relief component in the battery cell of the present application.
  • Figure 15 is a front view of the third embodiment of the first pressure relief component in the battery cell of the present application.
  • Figure 16 is a front view of the fourth embodiment of the first pressure relief component in the battery cell of the present application.
  • Figure 17 is a front view of the fifth embodiment of the first pressure relief component in the battery cell of the present application.
  • 18A, 18B and 18C are respectively front views of the sixth embodiment of the first pressure relief component in which the notches are U-shaped, V-shaped and W-shaped.
  • 19A, 19B and 19C are respectively a front view, an E-E cross-sectional view and an enlarged view at F of the seventh embodiment of the first pressure relief component in the battery cell of the present application.
  • 20A, 20B and 20C are respectively a front view, a G-G cross-sectional view and an H-H cross-sectional view of the eighth embodiment of the first pressure relief component in the battery cell of the present application.
  • FIG. 21 is a front view of a ninth embodiment of the first pressure relief component in a battery cell of the present application.
  • Figure 22 is an exploded view of another embodiment of a battery cell.
  • Electrode terminal 100. Battery cell; 10. Shell; 10A, inner cavity; 101. Main body; 102. Electrode assembly; 103. End cover assembly; 103', end cover body; 10', first wall; 1. First Pressure relief component; 11. Base body; 12. First groove; 12', thickness reduction part; 13. First weak part; 13A, second groove; 13B, score; 2. Electrode terminal;
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a removable connection.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least some embodiments of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of the present application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the electrode assembly is mainly formed by laminating or winding a first pole piece and a second pole piece with opposite polarities, and usually a separator is provided between the first pole piece and the second pole piece.
  • the parts of the first pole piece and the second pole piece that are coated with the coating layer constitute the main body of the electrode assembly, and the parts of the first pole piece and the second pole piece that are not coated with the coating layer respectively constitute the first tab and the second pole piece.
  • the first electrode sheet may be a positive electrode sheet, including a positive electrode current collector and a positive electrode coating layer provided on both sides of the positive electrode current collector.
  • the material of the positive electrode current collector may be, for example, aluminum, and the positive electrode coating layer may be, for example, Lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.; the second electrode piece can be a negative electrode piece, including a negative electrode current collector and negative electrode coating layers provided on both sides of the negative electrode current collector.
  • the material of the negative electrode current collector is such as It can be copper, and the negative electrode coating layer can be, for example, graphite or silicon.
  • the first pole tab and the second pole tab may be located together at one end of the main body part or respectively located at both ends of the main body part.
  • the pressure relief component refers to an element or component that is activated to relieve the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • This threshold design varies based on design requirements.
  • the threshold value may depend on one or more materials of the positive electrode plate, negative electrode plate, electrolyte and separator in the battery cell.
  • the pressure relief component may take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, etc., and may specifically adopt a pressure-sensitive or temperature-sensitive component or structure, that is, when the internal pressure or temperature of the battery cell reaches a predetermined threshold When the pressure relief component performs an action or the weak structure provided in the pressure relief component is destroyed, an opening or channel is formed for the internal pressure or temperature to be released.
  • the “activation” mentioned in this application means that the pressure relief component moves or is activated to a certain state, thereby allowing the internal pressure and temperature of the battery cell to be released.
  • the actions caused by the pressure relief component may include, but are not limited to: at least a portion of the pressure relief component ruptures, shatters, is torn or opens, etc.
  • the pressure relief component When the pressure relief component is actuated, the internal discharge of the battery cells will be discharged outward from the actuated part. In this way, the pressure and temperature of the battery cells can be released under controllable pressure or temperature, thereby avoiding potentially more serious accidents.
  • the emissions from battery cells mentioned here include but are not limited to: electrolyte, dissolved or split positive and negative electrode sheets, fragments of isolation membranes, high-temperature and high-pressure gases generated by reactions (such as CH4, CO, etc. flammable gases), flames, etc.
  • the battery cells are equipped with pressure relief components.
  • the internal pressure of the battery cell rises sharply, but due to the high strength of the weak part of the pressure relief component, it cannot be opened in time.
  • the pressure relief component When the strength of the weak part is low, the pressure relief component will open when the internal pressure of the battery cell does not reach the predetermined opening pressure of the pressure relief component, which will affect the operation of the battery cell under normal working conditions.
  • the strength of the pressure relief component is closely related to the thickness of the weak part.
  • the inventor wanted to design an appropriate parameter range for the pressure relief component based on the working mechanism of the pressure relief component through a large number of experiments, so that when the battery cell undergoes thermal runaway, the pressure relief component can function as scheduled.
  • the opening pressure allows smooth opening and ensures normal operation.
  • the battery cell includes a casing with a first wall and an inner cavity; an electrode assembly disposed in the inner cavity; and an electrode terminal located in the inner cavity. on the housing and electrically connected to the electrode assembly; and a first pressure relief component, disposed on the first wall, the first pressure relief component having a first weak portion, the first weak portion being a thickness-reduced portion, configured in the housing Open when the first preset condition is met.
  • the first weak part can be reliably opened to allow internal waste to be discharged smoothly, thus preventing the battery cell from being damaged due to pressure relief. In time, the shell may bulge or even explode, which can improve the safety of the battery cell.
  • the battery cells or batteries according to the embodiments of the present application can be used in electrical devices.
  • Electrical devices can be mobile phones, portable devices, laptops, battery cars, electric cars, ships, spacecraft, electric toys and power tools, etc.
  • spacecraft include airplanes, rockets, space shuttles, spaceships, etc.
  • electric toys Including fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • Power tools include metal cutting power tools, grinding power tools, assembly power tools and railway power tools.
  • the electric device can be a vehicle 300, such as a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.; or the electric device can also be a drone or a ship, etc.
  • the vehicle 300 may include an axle 301, wheels 302 connected to the axle 301, a motor 303, a controller 304 and a battery 200.
  • the motor 303 is used to drive the axle 301 to rotate, and the controller 304 is used to control the operation of the motor 303.
  • the battery 200 may be disposed at the bottom, head, or tail of the vehicle 300 to provide electrical energy for the operation of the motor 303 and other components in the vehicle.
  • the battery 200 includes a case assembly 20 and a battery cell 100 .
  • the battery 200 there may be one battery cell 100 or a plurality of battery cells 100. If there are multiple battery cells 100, the multiple battery cells 100 can be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery cells 100 are both connected in series and in parallel, and they can be multiple battery cells. 100 is first connected in series, parallel or mixed to form a battery module through the busbar 27, and then multiple battery modules are connected in series, parallel or mixed to form a whole, and is accommodated in the box assembly 20. It is also possible that all the battery cells 100 are directly connected in series, parallel or mixed together through the busbar 27 , and then the whole battery cells 100 are accommodated in the box assembly 20 .
  • the box assembly 20 can be a part of the battery 200, and the box assembly 20 can be detachably installed on the electrical device; or the box assembly 20 can also be a structural member in the electrical device for accommodating battery cells.
  • the space of the body 100 for example, when the battery cell 100 is used in the vehicle 300 , the box assembly 20 is a space formed by the vehicle frame for accommodating the battery cell 100 .
  • the box component 20 is hollow inside and is used to accommodate one or more battery cells 100.
  • the box component 20 may also have different shapes and sizes according to the shape, quantity, combination method and other requirements of the battery cells 100 accommodated.
  • the box assembly 20 may include: a receiving part 21, a first cover 22 and a second cover 23. Both opposite ends of the receiving part 21 have openings, and the first cover 22 and the second cover 23 are respectively used for To close the openings at both ends of the accommodating part 21 , for example, the first cover 22 and the second cover 23 can be detachably installed on the accommodating part 21 through fasteners 26 .
  • the receiving portion 21 has a rectangular tubular structure according to the arrangement of the plurality of battery cells 100 .
  • the receiving part 21 and the first cover 22 form an integrated structure as a box body.
  • the first cover 22 may be a bottom cover and have a bottom wall 221
  • the second cover 23 may be a top cover and have a top wall 231 .
  • the battery cell 100 includes: a case 10 , an electrode assembly 102 , an electrode terminal 2 and a first pressure relief component 1 .
  • the housing 1 has a first wall 10' and an inner cavity 10A
  • the electrode assembly 102 is provided in the inner cavity 102A
  • the electrode terminal 2 is provided on the housing 10 and is electrically connected to the electrode assembly 102
  • the first pressure relief component 1 Disposed on the first wall 10'
  • the first pressure relief component 1 has a first weak portion 13.
  • the first weak portion 13 is a thinned portion configured to open when the first preset condition is met in the housing 10. .
  • the housing 10 adopts a thin-walled hollow structure, and the interior is used to accommodate the electrode assembly.
  • the housing 10 can be in a rectangular, cylindrical, or prism shape.
  • the electrode assembly 102 includes an electrode body 102A, a first tab 102B and a second tab 102C with opposite polarities.
  • the housing 10 is provided with two electrode terminals 2 with opposite polarities.
  • the first tab 102B and the second tab 102C are respectively electrically connected to the electrode terminals 2 of the same polarity.
  • the electrode terminal 2 and the first pressure relief component 1 can be disposed on the same wall of the housing 10, for example, both are disposed on the end cover to facilitate processing; or they can be disposed on different walls, for example, on an adjacent wall or on an adjacent wall. Opposite walls.
  • the housing 10 includes a main body 101 and an end cap assembly 103 .
  • the main body 101 has an opening, and the end cap assembly 103 is used to seal the opening.
  • the end cap assembly 103 includes an end cap body 103', on which the two electrode terminals 2 and the first pressure relief component 1 are provided.
  • the two electrode terminals 2 are provided on the end cover body 103', and the first pressure relief component 1 can also be provided on the side wall of the main body 101 adjacent to the opening and/or opposite to the opening. on the side wall.
  • the housing 10 is simplified and shown as an integrated form, but in fact, the side walls of the housing 10 on which the electrode terminals 2 are installed are all end cover bodies 103'.
  • the first pressure relief component 1 has a first weak portion 13 .
  • the first pressure relief component 1 preferentially causes damage from the first weak portion 13 . It is destroyed and opened to form a first discharge port for communicating the inside of the casing 10 with the outside world, and for releasing the discharged matter in the battery cell 100 .
  • the first preset condition includes at least one of the following: the temperature inside the housing 10 exceeds the first preset temperature, and the pressure inside the housing 10 exceeds the first preset pressure.
  • the first preset pressure may be 0.9 MPa.
  • the actual value may fluctuate, and the design value of the first preset pressure of different battery cells 100 may also vary.
  • the first weak portion 13 may be a thickness-reduced portion, that is, the thickness of the first weak portion 13 is smaller than the thickness of the side wall of the housing 10 where the first weak portion 13 is provided, so as to reduce the structural strength by reducing the thickness.
  • the first pressure relief component 1 includes a base body 11.
  • a first weak portion 13 can be formed on the base body 11 by providing a second groove 13A.
  • the second groove 13A is provided on the inner surface and/or outer surface of the base body 11. Either surface can be used; or as shown in FIG. 11 , the first weak portion 13 can be formed by providing a score 13B on the base 11 , and the score 13B can be provided on both the inner surface and/or the outer surface of the base 11 .
  • the second groove 13A and the notch 13B can be formed by stamping, milling, laser etching, chemical etching, etc.
  • the battery cell 100 can be reliably opened to smoothly discharge the waste inside the casing 10 to prevent the battery cell 100 from being depressurized. Failure to do so in time may cause the casing 10 to bulge or even explode, which can improve the working safety of the battery cell 100 .
  • the ratio of the thickness ⁇ of the first weak portion 13 to the thickness a of the first wall 10' satisfies the following relationship:
  • the first pressure relief component 1 includes a base body 11.
  • a first weak portion 13 can be formed on the base body 11 by providing a second groove 13A.
  • the thickness ⁇ of the first weak portion 13 is equal to the thickness ⁇ of the first weak portion 13.
  • the thickness of the groove 13A, the area enclosed by the first weak portion 13 is the area of the second groove 13A; or as shown in Figure 11, the first weak portion 13 can be formed by providing a notch 13B on the base 11, and the first weak portion 13
  • the thickness ⁇ of the portion 13 is the thickness of the base 11 excluding the score 13B.
  • the area enclosed by the first weak portion 13 is the area surrounded by the score 13B. If the score 13B is not closed, connect the two ends of the score 13B. The area is calculated based on the shape enclosed by the connecting line and the notch 13B.
  • the unit of ⁇ is mm and the unit of a is mm.
  • the value range of ⁇ is 0.03mm ⁇ 0.4mm, and the value range of a is 0.5mm ⁇ 3mm.
  • the thickness ⁇ of the first weak part 13 when ⁇ /a is too large and exceeds the right limit value, the thickness ⁇ of the first weak part 13 must be smaller than the thickness of the first wall 10', and there is a maximum value to satisfy the remaining requirements between the first weak part 13 and the housing 10. The area is destroyed first, so ⁇ /a has a maximum value.
  • the thickness ⁇ of the first weak part 13 When ⁇ /a is too small and exceeds the left limit, the thickness ⁇ of the first weak part 13 has a minimum value to ensure the opening condition of the first weak part 13 and avoid damage under normal use conditions, so ⁇ /a has a minimum value.
  • Table 1 below uses multiple specific examples and comparative examples to illustrate the pressure relief situation when ⁇ /a has different design values and the state of the first pressure relief component 1 under vibration and impact.
  • the battery cell 100 can normally release pressure in the event of thermal runaway, and the first weak portion 13 will not crack normally in the event of vibration and impact.
  • Comparative Examples 1 to 3 exceed the lower limit of the design range. At this time, the thickness ⁇ of the first weak part 13 is smaller than the thickness a of the first wall 10', and the structural strength is low. Under normal vibration and impact conditions (refer to GB 38031-2020 or GB/T 31467.3) cracking occurs at the first weak part 13, that is, the strength is too low during normal use, resulting in insufficient reliability. Comparative examples 4 to 6 exceed the upper limit of the design range. At this time, the thickness ⁇ of the first weak part 13 is close to the thickness a of the first wall 10'.
  • the internal pressure will rise due to the excessive strength of the first weak part 13. High, causing the first weak portion 13 to fail to open normally, or the housing 10 to rupture and release pressure at locations other than the first weak portion 13 , such as the welding locations of the housing 10 or other defective locations.
  • the ratio of the thickness ⁇ of the first weak part 13 to the thickness a of the first wall 10 ′ has a significant impact on the safety performance of the battery cell 100 .
  • the thickness ⁇ of the first weak part 13 is compared with the thickness a of the first wall 10 ′.
  • the ratio of the thickness a of ' is designed within an appropriate range.
  • the value range of ⁇ /a in this embodiment can reliably open the first weak portion 13 to allow the internal waste to be discharged smoothly when the battery cell 100 undergoes thermal runaway, thereby preventing the battery cell 100 from being damaged due to untimely pressure relief. causing an explosion; moreover, the thickness of the first wall 10' is moderate, which can not only meet the strength requirements of the casing 10 of the battery cell 100, but also does not occupy too much space, and can be increased when the volume of the battery cell 100 is certain. capacity.
  • the ratio of the volume V of the battery cell 100 to the thickness a of the first wall 10' satisfies the following relationship:
  • the unit of V is cm 3 and the unit of a is cm.
  • Table 2 below uses multiple specific examples and comparative examples to illustrate the volume utilization inside the battery cell 100 and the state of the first pressure relief component 1 under vibration and impact when V/a has different design values.
  • the volume of the battery cell 100 is large and the thickness a of the first wall 10' is small.
  • the first wall 10' is too thin, resulting in insufficient structural strength of the battery cell 100. Under vibration and impact conditions, the shell 10 is damaged and the electrolyte leaks.
  • the ratio of the volume V of the battery cell 100 to the thickness a of the first wall 10' is designed within an appropriate range, which can not only improve the volume utilization inside the battery cell 100, but also ensure the capacity of the battery cell 100. , and the first weak portion 13 will not crack under vibration and impact conditions, which can prevent electrolyte leakage.
  • the volume utilization rate inside the battery cell 100 can reach more than 80%, the pressure resistance strength of the casing 10 can reach 2MPa, and the casing 10 can well meet the strength requirements.
  • the value range of V/a in this embodiment can not only make the volume utilization rate inside the battery cell 100 higher, ensure the capacity of the battery cell 100, but also prevent the first weak part 13 from cracking under vibration and impact conditions. It can prevent electrolyte leakage.
  • the first pressure relief component 1 is an independent component and is connected to the housing 10 .
  • the first pressure relief component 1 is a separately processed part, and is connected to the housing 10 after processing.
  • it can be connected to the housing 10 by welding, bonding or fixing with fasteners.
  • the first pressure relief component 1 can be designed into different shapes as needed. The following is an example of forming the first weak portion 13 through the notch 13B. When the battery cell 100 undergoes thermal runaway, the first pressure relief component 1 will Trace 13B was damaged.
  • the outer shape of the first pressure relief component 1 and the shape enclosed by the notch 13B are both oblong, and the notch 13B is closed.
  • the outer shape of the first pressure relief component 1 and the shape enclosed by the notch 13B are both rectangular, and the notch 13B is closed.
  • the outer shape of the first pressure relief component 1 is rectangular, the shape enclosed by the notch 13B is triangular, and the notch 13B is closed.
  • the first pressure relief component 1 has a rectangular shape, and the score 13B is provided with two sections. Each section of the score 13B forms a rectangle.
  • the rectangles formed by the two sections of the score 13B are arranged side by side, for example, along the length direction. Arranged side by side, no score 13B is provided on the sides of the two rectangles that are far away from each other.
  • the two first weak portions 13 open around the edge where the notch 13B is not provided, like a door structure.
  • the first pressure relief component 1 has a rectangular shape, and the notches 13B form a rectangle, and one side of the rectangle is not provided with a notch 13B, for example, the side without the notch 13B is a short side.
  • the first weak portion 13 opens around the side without the notch 13B like a door structure.
  • the first pressure relief component 1 has a rectangular shape, and the notches 13B form a U shape. There is no notch 13B between the two ends of the U-shaped structure.
  • the first weak portion 13 opens like a door structure around the edge where the notch 13B is not provided.
  • the first pressure relief component 1 has a rectangular shape, and the notches 13B form a V shape. There is no notch 13B between the two ends of the V-shaped structure.
  • the first weak portion 13 opens like a door structure around the edge where the notch 13B is not provided.
  • the first pressure relief component 1 has a rectangular shape, and the notches 13B form a W shape. There is no notch 13B between the two ends of the W-shaped structure.
  • the first weak portion 13 opens like a door structure around the edge where the notch 13B is not provided.
  • the first pressure relief component 1 of this embodiment can be processed as an independent part, and the process difficulty during processing is relatively low. It can be processed into a structure with a relatively complex shape, and it is easy to ensure the processing accuracy of the first weak portion 13, such as the first weak portion 13.
  • the thickness ⁇ of 13 can thus more accurately control the opening conditions of the first pressure relief component 1.
  • the first pressure relief component 1 can be opened smoothly and will not be opened under normal operating conditions.
  • the first pressure relief component 1 is integrally formed with the housing 10 .
  • such a structure can be directly processed to form the first weak portion 13 on the inner and/or outer wall of the housing 10.
  • the housing 10 is difficult to clamp and easy to deform, it can be directly processed on the wall of the housing 10.
  • Score 13B to form the first weak portion 13, for example, the score 13B can be processed by laser or cutting tool.
  • the shapes enclosed by the notches 13B are all oblong, and the notches 13B are closed.
  • the outer shape of the first pressure relief component 1 illustrated in the figure does not exist, but is only used to partially illustrate the first pressure relief component 1 .
  • the score 13B is provided with two sections, and each section of the score 13B is surrounded by a triangle. For example, it can be formed into a right-angled triangle. Two right-angled triangles can be combined into a rectangle. Two right-angled triangles can be formed diagonally.
  • the notches 13B on the sides can be shared, as shown in Figure 20B; or the notches 13B on the two hypotenuses of the right triangle can also be independent.
  • the opposite sides of the two triangles may not be provided with score 13B, for example, the opposite short sides may not be provided with score 13B.
  • the two first weak portions 13 open around the edge where the notch 13B is not provided, like a door structure. Compared with the rectangular first weak portion 13, this structure can improve the structural strength, reduce the amount of deformation under the same air pressure, and make the structure more reliable.
  • the first pressure relief component 1 and the case 10 are integrally formed, which can eliminate the process of fixing the first pressure relief component 1 to the case 10 through welding or other methods, thereby improving the production efficiency of the battery cell 100; and , it can also improve the connection strength of the first pressure relief component 1, prevent the weld seam from partially falling off after long-term use of the battery cell 100, causing the first pressure relief component 1 to not be reliably connected to the case 10, and improve the working efficiency of the battery cell 100. reliability and longevity.
  • the first pressure relief component 1 includes a base 11 , a first groove 12 is provided on the base 11 to form a thinned portion 12 ′, and a first weak portion 13 is provided. on the thickness-reduced portion 12'.
  • the first groove 12 can be provided on the inner or outer wall of the base 11 .
  • the shape of the first groove 12 can be consistent with the first weak portion 13 .
  • the base 11 removes the remaining thickness formed by the first groove 12 to form a thinned portion.
  • 12' as shown in Figure 13, the score 12B can be provided on the bottom of the first groove 12, and/or on the wall opposite to the bottom of the first groove 12 of the thinned portion 12', so as to A reduced thickness portion 12' is formed.
  • a second groove 13A may be provided on the wall of the groove bottom of the first groove 12 and/or the thickness-reduced portion 12′ opposite to the groove bottom of the first groove 12.
  • this structure is more suitable for use on an independent first pressure relief component 1, and facilitates the processing of more complex structures.
  • the first groove 12 is pre-processed and the first weak portion 13 is formed based on the thickness-reduced portion 12', which can reduce the amount of material removal required to form the first weak portion 13, for example, reducing the thickness of the first weak portion 13.
  • the depth of the second groove 13A or the notch 13B can reduce the difficulty of processing, reduce the amount of deformation during processing, and easily ensure the processing accuracy of the thickness ⁇ of the first weak portion 13 .
  • the first weak portion 13 is formed by a score 13B that forms a closed extension path.
  • the notches 13B surround an oval; as shown in Figure 14, the notches 13B form a rectangle; as shown in Figure 15, the notches 13B form a triangle.
  • the score 13B forms a closed extension path.
  • the score 13B can be torn all around and the first discharge port can be quickly opened to prevent the first discharge port from being blocked.
  • the internal discharge materials are quickly discharged, reducing the pressure within the battery cell 100 and preventing the casing 10 from bulging.
  • the shape enclosed by the score 13B is a rectangle, a triangle, or an oval.
  • the first weak part 13 can be set into a special shape according to the pressure relief requirements. When the pressure is released, the first weak part 13 can be separated from the housing 10, and the area of the first exhaust port can be increased as much as possible, so that the battery can The discharge inside the cell 100 is discharged quickly and timely; and these shapes are easy to process, which can reduce the production cost of the battery cell.
  • the first weak portion 13 is formed by a score 13B, and the two ends of the score 13B do not overlap, that is, the extension path of the score 13B is not closed.
  • the score 13B is provided with two sections. Each section of the score 13B is surrounded by a rectangle. The rectangles formed by the two sections of the score 13B are arranged side by side, for example, along the length direction. The sides of the two rectangles that are far away from each other are not Set notch 13B. When the battery cell 100 undergoes thermal runaway, the two first weak portions 13 open around the edge where the notch 13B is not provided, like a door structure.
  • the score 13B forms a rectangle, and one side of the rectangle is not provided with the score 13B.
  • the side without the score 13B is the short side.
  • the first weak portion 13 opens like a door structure around the edge where the notch 13B is not provided.
  • the score 13B forms a U shape, and no score 13B is provided between the two ends of the U-shaped structure.
  • the first weak portion 13 opens like a door structure around the edge where the notch 13B is not provided.
  • the notches 13B are arranged in a V shape, and no notches 13B are arranged between the two ends of the V-shaped structure.
  • the first weak portion 13 opens around the side without the notches 13B like a door structure.
  • the score 13B forms a W shape, and no score 13B is provided between the two ends of the W-shaped structure.
  • the first weak portion 13 opens like a door structure around the edge where the notch 13B is not provided.
  • the first weak portion 13 is still connected to the casing 10 and will not be ejected with the discharge, which can reduce the risk of the metal sheet flying out.
  • the risk of high-voltage ignition caused by the control and the risk of clogging of the second pressure relief component on the box assembly 20 are improved to improve the safety of the battery 200 operation.
  • At least two first pressure relief components 1 are provided on the housing 10 .
  • the performance and reliability of the first pressure relief component 1 of different structures and sizes will be different.
  • the wall size and size of the first pressure relief component 1 can be set according to the type of the battery cell 100 and the case 10 .
  • the pressure relief performance and reliability requirements set the number of first pressure relief components 1, for example, one or at least two.
  • the shapes and sizes of the multiple first pressure relief components 1 can be different or the same. , can be provided on the same wall of the housing 10 , or can be provided on different walls of the housing 10 .
  • three first pressure relief components 1 are provided on one wall of the housing 10 at intervals along a preset direction (such as the length direction of the wall), including a first sub-pressure relief component 131 , a second pressure relief component 131 , and a second pressure relief component 131 .
  • a preset direction such as the length direction of the wall
  • the extension paths of the notches 13B of the two outer sub-pressure relief pieces form a U-shape
  • the extension paths of the notches 13B of the middle sub-pressure relief piece form a V-shape.
  • first pressure relief components 1 are provided.
  • the first pressure relief component 1 can be designed according to the type of the battery cell 100 , the wall size of the housing 10 , pressure relief performance, and reliability requirements.
  • the number and shape of the pressure relief components 1 make the arrangement of the first pressure relief component 1 more flexible and can flexibly meet the needs of different battery cells 100 .
  • the battery cell 100 further includes an electrode terminal 2 , and the electrode terminal 2 and the first pressure relief component 1 are provided on different walls of the housing 10 .
  • the electrode terminal 2 and the first pressure relief component 1 are provided on opposite or adjacent walls of the housing 10 .
  • the electrode terminals 2 and the first pressure relief component 1 are provided on opposite walls of the housing 10 , and the two electrode terminals 2 are disposed toward the top wall 231 , and the first pressure relief component 1 is toward the bottom wall. 221 settings.
  • the electrode terminals 2 and the first pressure relief component 1 are disposed on adjacent walls of the housing 10 .
  • the two electrode terminals 2 are disposed toward the side walls 211
  • the first pressure relief component 1 is disposed toward the bottom wall 221 .
  • the electrode terminal 2 and the first pressure relief component 1 are provided on adjacent walls of the housing 10.
  • the two electrode terminals 2 are provided on opposite walls of the housing 10, and both face the side wall 211.
  • a pressure relief component 1 is provided toward the bottom wall 221 .
  • the box assembly 20 includes a partition 25 .
  • the partition 25 is configured to divide the internal space of the box assembly 20 into at least two accommodation cavities P.
  • the battery cells 100 are disposed in the accommodation cavities P.
  • the electrode terminals 2 and the first pressure relief component 1 are provided on adjacent walls of the housing 10 , and the two electrode terminals 2 are disposed toward the top wall 231 , and the first pressure relief component 1 is disposed toward the partition 25 .
  • the box assembly 20 includes a partition 25 configured to divide the internal space of the box assembly 20 into at least two accommodation cavities P in which the battery cells 100 are disposed.
  • the electrode terminals 2 and the first pressure relief component 1 are provided on opposite walls of the housing 10, and the two electrode terminals 2 are disposed toward the side wall 211, and the first pressure relief component 1 is disposed toward the partition plate 25.
  • the electrode terminal 2 and the first pressure relief component 1 are arranged on different walls of the housing 10, which reduces the layout difficulty and is also conducive to setting up the electrode terminal 2 and the first pressure relief component 1 with a larger area according to needs. In order to better meet the needs of electrical performance and pressure relief.
  • the electrode terminal 2 and the first pressure relief component 1 are provided on the same wall of the housing 10 .
  • the battery 200 further includes a box assembly 20 for accommodating the battery cell 100 , the box assembly 20 includes a side wall 211 , and the ratio of the thickness D of the side wall 211 to the thickness a of the first wall 10 ′ satisfies the following relationship:
  • the unit of D is mm and the unit of a is mm.
  • the outer frame of the battery 200 has a strong stiffness and can mainly bear the collision or extrusion force. Therefore, the battery cell 100 needs to bear less collision or extrusion force. Small, its stiffness requirement decreases, and the corresponding thickness a requirement of the first wall 10' also decreases.
  • the thickness a of the first wall 10' When D is at a maximum value, the thickness a of the first wall 10' has a minimum value to meet the stiffness requirements of the battery cell 100 and ensure that the battery cell 100 is under vibration and impact (refer to GB 38031-2020 or GB/T 31467.3 ) does not appear to be damaged, so D/a has a maximum value; when D is at a minimum value, the thickness a of the first wall 10' has a maximum value to meet the structural stiffness requirements of the battery 200 and at the same time reduce the impact on the capacity of the battery 200 , to prevent design redundancy, so D/a has a minimum value.
  • Table 3 below uses multiple specific examples and comparative examples to illustrate the state of the battery 200 under vibration shock when D/a has different design values.
  • the thickness D of the side wall 211 is larger than the thickness a of the first wall 10'.
  • the volume utilization rate inside the battery cell 100 is high, due to the first wall 10
  • the thickness a of ' is small, so that the structural strength of the battery cell 100 is insufficient, and the casing 10 may be damaged under vibration and impact conditions, resulting in electrolyte leakage.
  • the ratio of the thickness D of the side wall 211 to the thickness a of the first wall 10' is designed to be within an appropriate range, which can ensure that the stiffness of the battery 200 and the battery cell 100 meets the requirements.
  • the box assembly 20 and the casing 10 will not crack, and prevent the box assembly 20 and the casing 10 from being greatly deformed, thereby improving the working reliability of the battery 200, and also reducing structural redundancy design and increasing the capacity of the battery 200.
  • the value range of D/a in this embodiment can not only enable the battery 200 and the battery cell 100 to meet the stiffness design requirements, prevent large deformation or cracking when subjected to vibration shock, but also reduce structural redundancy design and improve the battery 200 capacity, which better balances the overall stiffness and capacity of the battery 200.
  • the battery 200 further includes a box assembly 20 for accommodating the battery cells 100 .
  • the box assembly 20 is on a second wall 20 ′ opposite to the first wall 10 ′.
  • a second weak portion 241 is provided, and the second weak portion 241 is configured to open when the discharge from the battery cell 100 meets the second preset condition, so that the discharge from the battery cell 100 enters the box assembly 20 Exhaust channel Q.
  • second weak portions 241 are provided on the second wall 20' at positions corresponding to the plurality of battery cells 100.
  • the second preset condition includes: the pressure of the discharge from the battery cell 100 exceeds the second preset pressure, and/or the temperature of the discharge from the battery cell 100 exceeds the second preset temperature.
  • the first weak portion 13 is destroyed, causing the first pressure relief component 1 to open, and the discharged matter inside the battery cell 100 is released outward.
  • the discharged discharged matter reaches the second preset
  • the second weak portion 241 is destroyed, and the discharged matter enters the exhaust channel Q in the box assembly 20 , and can finally be discharged out of the battery 200 from the second pressure relief component of the box assembly 20 .
  • the second wall 20&apos may be a partition 25, a support plate 24 or a bottom guard.
  • the second weak portion 241 can also be provided as a through hole.
  • a second weak portion 241 is provided on the second wall 20' of the box assembly 20 opposite to the first wall 10', so that when thermal runaway occurs in the battery cell 100, the exhaust can smoothly enter the exhaust channel Q. , and when the battery 200 is working normally, the second weak portion 241 can increase the strength of the second wall 20' to improve the overall rigidity of the box assembly 20, for example, when the battery 200 is installed in a vehicle, etc.
  • the electrical device can reduce the deformation of the second wall 20' when receiving vibration shock.
  • the box assembly 20 includes a bottom wall 221 and a support plate 24.
  • An exhaust channel Q is formed between the support plate 24 and the bottom wall 221, and the support plate 24 serves as the second wall. 20', configured to support the battery cell 100.
  • the box assembly 20 includes a receiving portion 21, a first cover 22 and a second cover 23.
  • the first cover 22 has a bottom wall 221, and the second cover 23 has a top wall.
  • the support plate 24 is provided between the accommodating part 21 and the first cover 22, and the plurality of battery cells 100 are provided on the support plate 24.
  • Two electrode terminals 2 are provided on the wall of the casing 10 of the battery cell 100 facing the top wall 231.
  • the first pressure relief component 1 is provided on the bottom wall 221 of the casing 10 facing the bottom wall 221.
  • the support plate 24 is provided with The plurality of second weak portions 241 are provided in one-to-one correspondence with the first pressure relief components 1 of the plurality of battery cells 100 .
  • the third groove 242 is provided on the surface of the support plate 24 facing the battery cell 100 to form a second weak portion 241 .
  • the first wall 10 ′ of the housing 10 is provided with an upper surface on the surface facing the support plate 24 .
  • the first groove 12 is provided to form a reduced thickness portion 12 ′, and a second groove 13A is provided at the bottom of the first groove 12 to form a first weak portion 13 .
  • the two electrode terminals 2 are both provided on the wall of the housing 10 facing the side wall 211; as shown in Figure 7, the two electrode terminals 2 are provided on the opposite walls of the housing 10. , and are all facing the side wall 211.
  • This embodiment makes full use of the space between the support plate 24 and the bottom wall 221 of the box assembly 20 to form the exhaust channel Q, which can realize a larger exhaust channel Q and allow the discharge of thermal runaway battery cells 100 to enter.
  • the pressure and temperature immediately decrease after the exhaust channel Q, which is conducive to the smooth flow of the exhaust to the second pressure relief component; moreover, the support plate 24 plays a supporting role in the battery cell 100, and can also prevent thermal runaway.
  • a second exhaust port is formed for exhaust gas to enter the exhaust passage Q.
  • the box assembly 20 includes a partition 25 configured to divide the internal space of the box assembly 20 into at least two accommodation cavities P.
  • the battery cells 100 is located in the accommodation cavity P;
  • the partition 25 includes two side plates 251 spaced apart and facing the battery unit 100.
  • the side plates 251 serve as the second wall 20', and an exhaust channel Q is formed between the two side plates 251.
  • each accommodation cavity P is provided with a battery module.
  • the battery module includes a plurality of battery cells 100 , and two electrode terminals 2 are provided on the wall of the housing 10 facing the top wall 231 .
  • the separator 25 is provided with two side plates 251 spaced apart along a vertical line facing the surface of the battery cell 100. The top and/or bottom ends of the two side plates 251 are connected through a connecting plate 252. The two side plates 251 and the connecting plate 252 The cavity enclosed between them forms an exhaust passage Q.
  • a plurality of second weak portions 241 are provided on the side plate 251, and the plurality of second weak portions 241 are provided in one-to-one correspondence with the first pressure relief components 1 of the plurality of battery cells 100 on the same side.
  • a second weak portion 241 is formed by providing a third groove 242 on the surface of the side plate 251 facing the battery cell 100 .
  • the first wall 10 ′ of the housing 10 is provided with an upper surface on the surface facing the side plate 251 .
  • the first groove 12 is provided to form a reduced thickness portion 12 ′, and a second groove 13A is provided at the bottom of the first groove 12 to form a first weak portion 13 .
  • both electrode terminals 2 are provided on the wall of the housing 10 facing the side wall 211 .
  • a cavity is provided in the partition 25 to form the exhaust channel Q, thereby achieving weight reduction while fully utilizing the internal space of the structural member.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请实施例提供一种电池单体、电池及用电装置,其中,电池单体(100)包括:壳体(10),具有第一壁(10')以及内腔(10A);电极组件(102),设置于所述内腔(10A)中;电极端子(2),设在所述壳体(10)上且与所述电极组件(102)电连接;和第一泄压部件(1),设置于第一壁(10'),第一泄压部件(1)具有第一薄弱部(13),第一薄弱部(13)为厚度减薄部,被配置为在壳体(10)内满足第一预设条件的情况下打开。

Description

电池单体、电池及用电装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池及用电装置。
背景技术
由于锂离子等电池具有能量密度高、功率密度高、循环使用次数多、存储时间长等优点,在电动汽车上面已普遍应用。
但是,提高电动汽车中电池在使用过程中的安全性,一直是业内的一个难题。
发明内容
本申请的目的在于提高电池在使用过程中的安全性。
根据本申请的第一方面,提供了一种电池单体,包括:壳体,具有第一壁以及内腔;电极组件,设置于内腔中;电极端子,是而在壳体上且与电极组件电连接;和第一泄压部件,设置于第一壁,第一泄压部件具有第一薄弱部,第一薄弱部为厚度减薄部,被配置为在壳体内满足第一预设条件的情况下打开。
该实施例的电池单体在发生热失控时,由于第一薄弱部处厚度减薄使得强度降低,能够可靠打开使壳体内部排出物顺利排出,以避免电池单体因泄压不及时而导致壳体鼓胀,甚至爆炸,可提高电池单体工作的安全性。
在一些实施例中,第一薄弱部的厚度δ与第一壁的厚度a之比满足如下关系:
Figure PCTCN2022119614-appb-000001
由于第一薄弱部的厚度δ与第一壁的厚度a对电池的安全性能有显著影响,因此该实施例将第一薄弱部的厚度δ与第一壁的厚度a之比设计在合适的范围内,在电池单体发生热失控时,可使第一薄弱部可靠打开使内部排出物顺利排出,以避免电池单体因泄压不及时而导致爆炸;而且,第一薄弱部也可使第一泄压部件具有一定的开启条件,避免在正常使用以及振动冲击工况下发生损坏。
在一些实施例中,
Figure PCTCN2022119614-appb-000002
该实施例中δ/a的取值范围既能够在电池单体发生热失控时,使第一薄弱部可靠打开使内部排出物顺利排出,以避免电池单体因泄压不及时而导致爆炸;而且,第一壁厚度适中,既可满足电池单体的壳体的强度要求,也不会占用过大的空间,可在电池单 体体积一定的而情况下提高容量。
在一些实施例中,电池单体的体积V与第一壁的厚度a之比满足如下关系:
Figure PCTCN2022119614-appb-000003
Figure PCTCN2022119614-appb-000004
由于电池单体的体积V与第一壁的厚度a对电池的安全性能有显著影响,该实施例将电池单体的体积V与第一壁的厚度a之比设计在合适的范围内,不仅能够提高电池单体内部的体积利用率,可保证电池单体的容量,而且在振动冲击工况下第一薄弱部不会开裂,可防止发生电解液泄露的现象。
在一些实施例中,
Figure PCTCN2022119614-appb-000005
该实施例中V/a的取值范围既能够使电池单体内部的体积利用率较高,保证电池单体的容量,而且在振动冲击工况下第一薄弱部不会开裂,可防止发生电解液泄露的现象。
在一些实施例中,第一泄压部件为独立部件且连接于壳体。
该实施例的第一泄压部件可作为独立零件加工,在加工时工艺难度较低,可加工为形状较为复杂的结构,而且易于保证第一薄弱部的加工精度,例如第一薄弱部的厚度δ,从而更准确地控制第一泄压部件的开启条件,在电池单体发生热失控时,使第一泄压部件顺利开启,且在正常工况下不开启。
在一些实施例中,第一泄压部件与壳体一体成型。
该实施例将第一泄压部件与壳体一体成型,可省去将第一泄压部件通过焊接等方式固定于壳体的工艺环节,提高电池单体的生产效率;而且,还能提高第一泄压部件的连接强度,防止电池单体长期使用后焊缝局部脱落导致第一泄压部件不能可靠地连接于壳体,可提高电池单体工作的可靠性和使用寿命。
在一些实施例中,第一泄压部件包括基体,基体上设有第一凹槽以形成厚度减薄部,第一薄弱部设在厚度减薄部上。
该实施例预先加工出第一凹槽,并在厚度减薄部的基础上加工形成第一薄弱部,可减小形成第一薄弱部的材料去除量,例如,减小第二凹槽或刻痕的深度,可降低加工难度,减小加工过程中的变形量,易于保证第一薄弱部的厚度δ的加工精度。
在一些实施例中,第一薄弱部通过刻痕形成,刻痕形成封闭的延伸路径。
该实施例将刻痕形成封闭的延伸路径,在电池单体发生热失控时,刻痕可以整周撕裂,能够迅速地打开第一排放口,防止阻挡第一排放口,以使内部的排出物迅速排出,降低电池单体内的压力,防止壳体发生鼓胀。
在一些实施例中,刻痕围成的形状呈矩形或三角形或长圆形。
该实施例能够根据泄压需求将第一薄弱部设置为特殊的形状,在泄压时第一薄弱部可脱离壳体,能够尽量增大第一排气口的面积,以使电池单体内部的排出物快速及时地排出;而且这些形状易于易于加工,可降低电池单体的生产成本。
在一些实施例中,第一薄弱部通过刻痕形成,刻痕的两端不重合。
该实施例在电池单体发生热失控时,刻痕在撕裂后,第一薄弱部仍连接在壳体上,不会随排出物喷出,可降低金属片飞出位置不可控导致的高压打火风险,以及箱体组件上的第二泄压部件堵塞的风险,提高电池工作的安全性。
在一些实施例中,壳体上设有至少两个第一泄压部件。
该实施例通过设置至少两个第一泄压部件,实际中可根据电池单体的种类、壳体设置第一泄压部件的壁面大小、泄压性能和可靠性需求设计第一泄压部件的数量和形状,使第一泄压部件的设置更加灵活,可灵活地满足不同电池单体的需求。
在一些实施例中,电池单体还包括电极端子,电极端子和第一泄压部件设在壳体不同的壁上。
该实施例将电极端子和第一泄压部件设在壳体不同的壁上,降低了布局难度,也有利于根据需求设置面积更大的电极端子和第一泄压部件,从而更好地满足电性能和泄压的需求。
根据本申请的第二方面,提供了一种电池,包括上述实施例的电池单体。
在一些实施例中,电池还包括用于容纳电池单体的箱体组件,箱体组件包括侧壁,侧壁的厚度D与第一壁的厚度a之比满足如下关系:
Figure PCTCN2022119614-appb-000006
该实施例将侧壁的厚度D与第一壁的厚度a之比设计在合适的范围内,既能够保证电池和电池单体的刚度满足要求,在振动冲击情况下箱体组件和壳体不会开裂,并防止箱体组件和壳体发生较大变形,提高电池的工作可靠性,而且还可减少结构冗余设计,提高电池的容量。
在一些实施例中,
Figure PCTCN2022119614-appb-000007
该实施例中D/a的取值范围既能使电池和电池单体满足刚度设计要求,防止在受到振动冲击时发生较大变形或开裂,还可减少结构冗余设计,提高电池的容量,较好地平衡了电池的整体刚度和容量。
在一些实施例中,电池还包括用于容纳电池单体的箱体组件,箱体组件与第一壁相对的第二壁上设有第二薄弱部,第二薄弱部被配置为在电池单体的排出物满足第二预设条件的情况下打开,以使电池单体的排出物进入箱体组件的排气通道。
该实施例在箱体组件与第一壁相对的第二壁上设置第二薄弱部,能够在电池单体 发生热失控,排出物可顺利地进入到排气通道,而且在电池正常工作的情况下,第二薄弱部可起到增加第二壁强度的作用,以提到箱体组件的整体刚度,例如,在电池安装于车辆等用电装置,在收到振动冲击的情况下,可减小第二壁的变形量。
在一些实施例中,箱体组件包括底壁和支撑板,支撑板与底壁之间形成排气通道,支撑板作为第二壁,被配置为支撑电池单体。
该实施例充分利用支撑板与箱体组件的底壁之间的空间形成排气通道,可实现空间较大的排气通道,可使电池单体热失控的排出物进入排气通道后压力和温度瞬间降低,且有利于使排出物顺利向第二泄压部件流动;而且,支撑板在起到对电池单体支撑作用的基础上,热失控时还能形成供排出物进入排气通道的第二排放口。
在一些实施例中,箱体组件包括隔板,隔板被配置为将箱体组件的内部空间分隔为至少两个容纳腔,电池单体设在容纳腔内;隔板包括两个间隔设置且朝向电池单体的侧板,侧板作为第二壁,两个侧板之间形成排气通道。
该实施例通过在隔板内设置空腔形成排气通道,在实现减重的同时可充分利用结构件的内部空间。
根据本申请的第三方面,提供了一种用电装置,包括上述实施例的电池和/或电池单体,用于为用电装置提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请将电池安装于车辆的一些实施例的结构示意图。
图2为本申请电池的第一实施例的分解图。
图3为图2所示电池的剖视图,其中剖切面垂直于隔板的延伸方向。
图4为图3中的A处放大图。
图5为电池单体的一些实施例的分解图。
图6为本申请电池的第二实施例的剖视图。
图7为本申请电池的第三实施例的剖视图。
图8为本申请电池的第四实施例的剖视图。
图9为图7的B处放大图。
图10为本申请电池的第五实施例的剖视图。
图11为本申请电池单体中第一泄压部件的第一实施例的主视图。
图12为图10所示第一泄压部件的C-C剖视图。
图13为图11中的D处放大图。
图14为本申请电池单体中第一泄压部件的第二实施例的主视图。
图15为本申请电池单体中第一泄压部件的第三实施例的主视图。
图16为本申请电池单体中第一泄压部件的第四实施例的主视图。
图17为本申请电池单体中第一泄压部件的第五实施例的主视图。
图18A、图18B和图18C分别第一泄压部件的第六实施例中刻痕呈U形、V形和W形的主视图。
图19A、图19B和图19C分别为本申请电池单体中第一泄压部件的第七实施例的主视图、E-E剖视图和F处放大图。
图20A、图20B和图20C分别为本申请电池单体中第一泄压部件的第八实施例的主视图、G-G剖视图和H-H剖视图。
图21为本申请电池单体中第一泄压部件的第九实施例的主视图。
图22为电池单体的另一些实施例的分解图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
100、电池单体;10、壳体;10A、内腔;101、主体部;102、电极组件;103、端盖组件;103’、端盖本体;10’、第一壁;1、第一泄压部件;11、基体;12、第一凹槽;12’、厚度减薄部;13、第一薄弱部;13A、第二凹槽;13B、刻痕;2、电极端子;
200、电池;20、箱体组件;21、容纳部;211、侧壁;22、第一盖体;221、底壁;23、第二盖体;231、顶壁;24、支撑板;241、第二薄弱部;242、第三凹槽;25、隔板;251、侧板;252、连接板;26、紧固件;27、汇流件;P、容纳腔;Q、排气通道;
300、车辆;301、车桥;302、车轮;303、马达;304、控制器。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理, “多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
本申请采用了“上”、“下”、“顶”、“底”、“前”、“后”、“内”和“外”等指示的方位或位置关系的描述,这仅是为了便于描述本申请,而不是指示或暗示所指的装置必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制。
此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一些实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
目前的电池单体通常包括壳体和容纳于壳体内的电极组件,并在壳体内填充电解质。电极组件主要由极性相反的第一极片和第二极片层叠或卷绕形成,并且通常在第一极片与第二极片之间设有隔膜。第一极片和第二极片涂覆有涂覆层的部分构成电极组件的主体部,第一极片和第二极片未涂覆涂覆层的部分各自构成第一极耳和第二极耳。在锂离子电池中,第一极片可以为正极片,包括正极集流体和设于正极集流体两侧的正极涂覆层,正极集流体的材料例如可以为铝,正极涂覆层例如可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等;第二极片可以为负极片,包括负极集流体和设于负极集流体两侧的负极涂覆层,负极集流体的材料例如可以为铜,负极涂覆层例如可以为石墨或硅等。第一极耳和第二极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池单体的充放电过程中,正极涂覆层和负极涂覆层与电解液发生反应,极耳连接电极端子以形 成电流回路。
泄压部件是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该阈值设计根据设计需求不同而不同。所述阈值可能取决于电池单体中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压部件可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体的内部压力或温度达到预定阈值时,泄压部件执行动作或者泄压部件中设有的薄弱结构被破坏,从而形成可供内部压力或温度泄放的开口或通道。
本申请中所提到的“致动”是指泄压部件产生动作或被激活至一定的状态,从而使得电池单体的内部压力及温度得以被泄放。泄压部件产生的动作可以包括但不限于:泄压部件中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压部件在致动时,电池单体的内部排出物会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压及泄温,从而避免潜在的更严重的事故发生。
其中,此处提到的来自电池单体的排出物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体(如CH4、CO等可燃气体)、火焰,等等。
目前的电池在使用过程中,会出现安全性较差的问题,发明人通过研究发现,电池安全性较差的主要原因在于,电池单体上设有泄压部件,当电池在发生热失控时,电池单体内部压力急剧升高,但是由于泄压部件薄弱部位的强度较高不能及时开启,在压力过高时可能出现爆炸,也可能使电池单体其它部位出现破损;或者在泄压部件的薄弱部位强度较低时,在电池单体内部压力未达到泄压部件预定的开启压力的情况下,泄压部件就打开,由此会影响电池单体在正常工况下工作。而泄压部件的强度又与薄弱部位的厚度密切相关。
在发现上述的问题之后,发明人欲基于泄压部件的工作机理,并通过大量的试验为泄压部件设计合适的参数范围,以使电池单体在发生热失控时泄压部件既能按照预定的开启压力顺利开启,又能保证正常工作。
基于此种改进思路,本申请实施例提出了一种改进的电池单体,电池单体包括壳体,具有第一壁以及内腔;电极组件,设置于内腔中;电极端子,是而在壳体上且与电极组件电连接;和第一泄压部件,设置于第一壁,第一泄压部件具有第一薄弱部,第一薄弱部为厚度减薄部,被配置为在壳体内满足第一预设条件的情况下打开。
此种电池单体在电池单体发生热失控时,由于第一薄弱部处厚度减薄使得强度降低,能够第一薄弱部可靠打开使内部排出物顺利排出,以避免电池单体因泄压不及时而 导致壳体鼓胀,甚至爆炸,可提高电池单体工作的安全性。
本申请实施例的电池单体或电池可用于用电装置。
用电装置可以是手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
如图1所示,用电装置可以是车辆300,例如新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;或者用电装置也可以是无人机或轮船等。具体地,车辆300可包括车桥301、连接于车桥301的车轮302、马达303、控制器304和电池200,马达303用于驱动车桥301转动,控制器304用于控制马达303工作,电池200可以设置在车辆300的底部、头部或尾部,用于为马达303以及车辆中其它部件的工作提供电能。
在一些实施例中,如图2和图3所示,电池200包括箱体组件20和电池单体100。在电池200中,电池单体100可以是一个,也可以是多个。若电池单体100为多个,多个电池单体100之间可串联或并联或混联,混联是指多个电池单体100中既有串联又有并联,可以是多个电池单体100通过汇流件27先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体组件20内。也可以是所有电池单体100之间通过汇流件27直接串联或并联或混联在一起,再将所有电池单体100构成的整体容纳于箱体组件20内。
其中,箱体组件20既可以是电池200的一部分,箱体组件20可拆卸地安装于用电装置;或者,箱体组件20也可以是用电装置中的结构件形成的用于容纳电池单体100的空间,例如,电池单体100用于车辆300时,箱体组件20为车架形成的用于容纳电池单体100的空间。
箱体组件20内部中空,用于容纳一个或多个电池单体100,根据所容纳电池单体100的形状、数量、组合方式以及其他要求,箱体组件20也可以具有不同形状的尺寸。例如,箱体组件20可包括:容纳部21、第一盖体22和第二盖体23,容纳部21相对的两端均具有开口,第一盖体22和第二盖体23分别用于封闭容纳部21的两端开口,例如,第一盖体22和第二盖体23均可通过紧固件26可拆卸地安装于容纳部21。图2中根据多个电池单体100的排列方式,容纳部21呈矩形筒状结构。
可选地,容纳部21和第一盖体22形成一体结构作为箱体。第一盖体22可以为底盖且具有底壁221,第二盖体23可以为顶盖且具有顶壁231。
在一些实施例中,如图3和图4所示,本申请的一些实施例中,电池单体100包括:壳体10、电极组件102、电极端子2和第一泄压部件1。其中,壳体1具有第一壁10’以及内腔10A,电极组件102设置于内腔102A中,电极端子2设在壳体10上且于电极组件102电连接;第一泄压部件1,设置于第一壁10’,第一泄压部件1具有第一薄弱部13,第一薄弱部13为厚度减薄部,被配置为在壳体10内满足第一预设条件的情况下打开。
其中,壳体10采用薄壁中空结构,内部用于容纳电极组件,壳体10可呈矩形、圆柱形或棱柱形等形状。电极组件102包括电极主体102A、极性相反的第一极耳102B和第二极耳102C。壳体10上设有两个极性相反的电极端子2,第一极耳102B和第二极耳102C分别与同极性的电极端子2电连接。
电极端子2与第一泄压部件1可设在壳体10相同的壁上,例如均设在端盖上,便于加工;或者也可设在不同的壁上,例如设置于相邻的壁或相对的壁。
如图5所示,壳体10包括主体部101和端盖组件103,主体部101具有开口,端盖组件103用于密封开口。端盖组件103包括端盖本体103’,两个电极端子2和第一泄压部件1均设在端盖本体103’上。可选地,如图22所示,两个电极端子2设在端盖本体103’上,第一泄压部件1也可设在主体部101与开口邻接的侧壁和/或与开口相对的侧壁上。在图6至图8、图10中,均将壳体10简化体现为一体形式,但实际上壳体10设置电极端子2的侧壁均为端盖本体103’。
第一泄压部件1具有第一薄弱部13,第一薄弱部13被配置在壳体10内满足第一预设条件的情况下,第一泄压部件1优先从第一薄弱部13发生被破坏并开启,以形成供壳体10内部与外界联通的第一排出口,供电池单体100内的排出物泄放。第一预设条件包括如下至少一种:壳体10内的温度超过第一预设温度,和壳体10内的压力超过第一预设压力。例如,对于方壳电池,第一预设压力可以为0.9MPa,实际值会存在波动,不同电池单体100的第一预设压力的设计值也会有所差异。
例如,第一薄弱部13可以为厚度减薄部,即第一薄弱部13的厚度小于壳体10设置第一薄弱部13的侧壁厚度,以通过减小厚度来降低结构强度。
如图4所示,第一泄压部件1包括基体11,基体11上可通过设置第二凹槽13A形成第一薄弱部13,第二凹槽13A设在基体11的内表面和/和外表面均可;或者如图11所示,基体11上可通过设置刻痕13B形成第一薄弱部13,刻痕13B设在基体11的内表面和/和外表面均可。第二凹槽13A和刻痕13B可采用冲压、铣、激光刻蚀、化学腐蚀等 方式形成。
该实施例的电池单体100在发生热失控时,由于第一薄弱部13处厚度减薄使得强度降低,能够可靠打开使壳体10内部排出物顺利排出,以避免电池单体100因泄压不及时而导致壳体10鼓胀,甚至爆炸,可提高电池单体100工作的安全性。
在一些实施例中,第一薄弱部13的厚度δ与第一壁10’的厚度a之比满足如下关系:
Figure PCTCN2022119614-appb-000008
其中,如图4所示,第一泄压部件1包括基体11,基体11上可通过设置第二凹槽13A形成第一薄弱部13,第一薄弱部13的厚度δ为基体11除去第二凹槽13A的厚度,第一薄弱部13围成的面积为第二凹槽13A的面积;或者如图11所示,基体11上可通过设置刻痕13B形成第一薄弱部13,第一薄弱部13的厚度δ为基体11除去刻痕13B的厚度,第一薄弱部13围成的面积为刻痕13B围成的面积,若刻痕13B不封闭,则将刻痕13B的两端连接,以连接线与刻痕13B共同围成的形状计算面积。
例如,δ的单位为mm,a的单位为mm。例如,δ的取值范围为0.03mm~0.4mm,a的取值范围为0.5mm~3mm。
其中,当δ/a过大超出右极限值时,第一薄弱部13的厚度δ必须小于第一壁10’的厚度,并存在最大值,以满足第一薄弱部13与壳体10的其余区域相比优先被破坏的需求,故δ/a存在最大值。当δ/a过小超出左极限时,第一薄弱部13的厚度δ存在最小值,以保证第一薄弱部13的开启条件,避免正常使用工况下损坏,故δ/a存在最小值。
下表1通过多个具体的实施例和对比例,以说明δ/a具有不同设计值时的泄压情况和第一泄压部件1在振动冲击下的状态。
Figure PCTCN2022119614-appb-000009
Figure PCTCN2022119614-appb-000010
在上表1中,实施例1~9中,
Figure PCTCN2022119614-appb-000011
电池单体100在热失控情况下能正常泄压,且在振动冲击情况下第一薄弱部13正常不会开裂。对比例1~3超过设计范围下限,此时第一薄弱部13厚度δ相对于第一壁10’的厚度a较小,结构强度较低,正常振动冲击工况下(参照GB 38031-2020 or GB/T 31467.3)发生第一薄弱部13位置开裂,即在正常用用过程中因强度过低导致可靠性不足。对比例4~6超过设计范围上限,此时第一薄弱部13厚度δ与第一壁10’的厚度a接近,电池单体100热失控时,内部压力上升会因为第一薄弱部13强度过高,导致第一薄弱部13无法正常开启,或者出现壳体10在第一薄弱部13以外的位置破裂泄压,例如壳体10的焊接位置或其余缺陷位置。
因此,第一薄弱部13的厚度δ与第一壁10’的厚度a之比对于电池单体100的安全性能具有显著影响,该实施例将第一薄弱部13的厚度δ与第一壁10’的厚度a之比设计在合适的范围内,在电池单体100发生热失控时,可使第一薄弱部13可靠打开使内部排出物顺利排出,以避免电池单体100因泄压不及时而导致爆炸;而且,第一薄弱部13也可使第一泄压部件1具有一定的开启条件,避免在正常使用以及振动冲击工况下发生损坏。
在一些实施例中,
Figure PCTCN2022119614-appb-000012
该实施例中δ/a的取值范围既能够在电池单体100发生热失控时,使第一薄弱部13可靠打开使内部排出物顺利排出,以避免电池单体100因泄压不及时而导致爆炸;而且,第一壁10’厚度适中,既可满足电池单体100的壳体10的强度要求,也不会占用过大的空间,可在电池单体100体积一定的而情况下提高容量。
在一些实施例中,电池单体100的体积V与第一壁10’的厚度a之比满足如下关系:
Figure PCTCN2022119614-appb-000013
其中,V的单位为cm 3,a的单位为cm。
当V/a过大超出右极限值时,即电池单体100的体积V处于极大值时,第一壁10’的厚度a存在最小值,以满足电池单体100的结构强度要求,故V/a存在最大值;当V/a过小超出左极限值时,即电池单体100的体积V处于极小值时,第一壁10’的厚度a存在最大值,以在满足电池单体100的结构强度要求的同时,减少第一壁10’的厚度a过大对电池单体100容量的影响。
下表2通过多个具体的实施例和对比例,以说明V/a具有不同设计值时的电池单体100内部的体积利用率和第一泄压部件1在振动冲击下的状态。
Figure PCTCN2022119614-appb-000014
在上表2中,实施例1~9中,2≤V/a≤3.33×10 4,电池单体100内部的体积利用率在75%以上,具有较高的体积利用率,可保证电池单体100的容量,且在振动冲击情况下第一薄弱部13正常不会开裂。对比例1~3超过设计范围下限,此时电池单体100的体积较小而第一壁10’的厚度a较大,虽然壳体10能够满足结构强度要求,但第一壁10’过厚影响电池单体100内部的体积利用率,进而影响电池单体100的容量设计。对比例4~6超过设计范围上限,此时电池单体100的体积较大而第一壁10’的厚度a较小,此时虽然电池单体100的体积利用率高,但第一壁10’过薄,导致电池单体100的结构强度不足,在振动冲击工况下发生壳体10破损使电解液泄漏。
该实施例将电池单体100的体积V与第一壁10’的厚度a之比设计在合适的范围内,不仅能够提高电池单体100内部的体积利用率,可保证电池单体100的容量,而且在振动冲击工况下第一薄弱部13不会开裂,可防止发生电解液泄漏的现象。
在一些实施例中,
Figure PCTCN2022119614-appb-000015
其中,在该取值范围内,电池单体100内部的体积利用率可达80%以上,壳体10的耐压强度可达2MPa,壳体10能够很好地满足强度要求。
该实施例中V/a的取值范围既能够使电池单体100内部的体积利用率较高,保证电池单体100的容量,而且在振动冲击工况下第一薄弱部13不会开裂,可防止发生电解液泄漏的现象。
在一些实施例中,如图11至图18C所示,第一泄压部件1为独立部件且连接于壳体10。
其中,第一泄压部件1为单独加工的零件,并在加工完成后于壳体10连接,例如,可通过焊接、粘接或紧固件固定等方式连接于壳体10。
第一泄压部件1可根据需要设计为不同的形状,下面以通过刻痕13B形成第一薄弱部13为例进行说明,在电池单体100发生热失控时,第一泄压部件1在刻痕13B处被破坏。
如图11至图13所示,第一泄压部件1的外形和刻痕13B围成的形状均呈长圆形,且刻痕13B封闭。
如图14所示,第一泄压部件1的外形和刻痕13B围成的形状均呈矩形,且刻痕13B封闭。
如图15所示,第一泄压部件1的外形呈矩形,刻痕13B围成的形状呈三角形,且刻痕13B封闭。
如图16所示,第一泄压部件1的外形呈矩形,刻痕13B设有两段,每段刻痕13B都围成矩形,两段刻痕13B形成的矩形并排设置,例如沿长度方向并排设置,两个矩形相互远离的边未设置刻痕13B。在电池单体100发生热失控时,两个第一薄弱部13像门结构一样绕着未设置刻痕13B的边打开。
如图17所示,第一泄压部件1的外形呈矩形,刻痕13B围成矩形,矩形的其中一个边未设置刻痕13B,例如未设置刻痕13B的边为短边。在电池单体100发生热失控时,第一薄弱部13像门结构一样绕着未设置刻痕13B的边打开。
如图18A所示,第一泄压部件1的外形呈矩形,刻痕13B围成U形,U形结构的两端之间未设置刻痕13B。在电池单体100发生热失控时,第一薄弱部13像门结构一样绕着未设置刻痕13B的边打开。
如图18B所示,第一泄压部件1的外形呈矩形,刻痕13B围成V形,V形结构的两端之间未设置刻痕13B。在电池单体100发生热失控时,第一薄弱部13像门结构一样绕着未设置刻痕13B的边打开。
如图18C所示,第一泄压部件1的外形呈矩形,刻痕13B围成W形,W形结构的两端之间未设置刻痕13B。在电池单体100发生热失控时,第一薄弱部13像门结构一 样绕着未设置刻痕13B的边打开。
该实施例的第一泄压部件1可作为独立零件加工,在加工时工艺难度较低,可加工为形状较为复杂的结构,而且易于保证第一薄弱部13的加工精度,例如第一薄弱部13的厚度δ,从而更准确地控制第一泄压部件1的开启条件,在电池单体100发生热失控时,使第一泄压部件1顺利开启,且在正常工况下不开启。
在一些实施例中,如图19A至图21,第一泄压部件1与壳体10一体成型。
其中,此种结构可在壳体10的内壁和/或外壁上直接加工形成第一薄弱部13,考虑到壳体10装夹难度较大且容易变形,可直接在壳体10的壁面上加工刻痕13B,以形成第一薄弱部13,例如,可通过激光或刀具加工刻痕13B。
如图19A至图19C所示,刻痕13B围成的形状均呈长圆形,且刻痕13B封闭,图中示意出的第一泄压部件1外形不存在,只是为了局部示意出第一泄压部件1。
如图20A至图20C所示,刻痕13B设有两段,每段刻痕13B都围成三角形,例如,可围成直角三角形,两个直角三角形可拼为一个矩形,两个直角三角形斜边的刻痕13B可共用,如图20B所示;或者两个直角三角形斜边的刻痕13B也可独立。两个三角形相对的边可不设置刻痕13B,例如,相对的短边不设置刻痕13B。在电池单体100发生热失控时,两个第一薄弱部13像门结构一样绕着未设置刻痕13B的边打开。此种结构与矩形的第一薄弱部13相比,能够提高结构强度,降低在相同气压下的变形量,使结构可靠性较高。
该实施例将第一泄压部件1与壳体10一体成型,可省去将第一泄压部件1通过焊接等方式固定于壳体10的工艺环节,提高电池单体100的生产效率;而且,还能提高第一泄压部件1的连接强度,防止电池单体100长期使用后焊缝局部脱落导致第一泄压部件1不能可靠地连接于壳体10,可提高电池单体100工作的可靠性和使用寿命。
在一些实施例中,如图11至图13所示,第一泄压部件1包括基体11,基体11上设有第一凹槽12以形成厚度减薄部12’,第一薄弱部13设在厚度减薄部12’上。
其中,第一凹槽12可设在基体11的内壁或外壁,第一凹槽12的形状可于第一薄弱部13一致,基体11去除第一凹槽12形成的剩余厚度形成厚度减薄部12’,如图13所示,刻痕12B可设在第一凹槽12的槽底,和/或设在厚度减薄部12’与第一凹槽12的槽底相对的壁上,以形成厚度减薄部12’。可选地,第一凹槽12的槽底和/或厚度减薄部12’与第一凹槽12的槽底相对的壁上可设置第二凹槽13A。
此种结构由于增加了第一凹槽12,更适合应用于独立的第一泄压部件1上,方便实现较为复杂结构的加工。
该实施例预先加工出第一凹槽12,并在厚度减薄部12’的基础上加工形成第一薄弱部13,可减小形成第一薄弱部13的材料去除量,例如,减小第二凹槽13A或刻痕13B的深度,可降低加工难度,减小加工过程中的变形量,易于保证第一薄弱部13的厚度δ的加工精度。
在一些实施例中,如图11至图15,图19A至18C,第一薄弱部13通过刻痕13B形成,刻痕13B形成封闭的延伸路径。
如图11至图13,图19A至19C,刻痕13B围成长圆形;如图14所示,刻痕13B围成矩形;如图15所示,刻痕13B围成三角形。
该实施例将刻痕13B形成封闭的延伸路径,在电池单体100发生热失控时,刻痕13B可以整周撕裂,能够迅速地打开第一排放口,防止阻挡第一排放口,以使内部的排出物迅速排出,降低电池单体100内的压力,防止壳体10发生鼓胀。
在一些实施例中,刻痕13B围成的形状呈矩形或三角形或长圆形。
该实施例能够根据泄压需求将第一薄弱部13设置为特殊的形状,在泄压时第一薄弱部13可脱离壳体10,能够尽量增大第一排气口的面积,以使电池单体100内部的排出物快速及时地排出;而且这些形状易于易于加工,可降低电池单体的生产成本。
在一些实施例中,如图16至图18C,图20A至图21,第一薄弱部13通过刻痕13B形成,刻痕13B的两端不重合,即刻痕13B的延伸路径不封闭。
如图16所示,刻痕13B设有两段,每段刻痕13B都围成矩形,两段刻痕13B形成的矩形并排设置,例如沿长度方向并排设置,两个矩形相互远离的边未设置刻痕13B。在电池单体100发生热失控时,两个第一薄弱部13像门结构一样绕着未设置刻痕13B的边打开。
如图17所示,刻痕13B围成矩形,矩形的其中一个边未设置刻痕13B,例如未设置刻痕13B的边为短边。在电池单体100发生热失控时,第一薄弱部13像门结构一样绕着未设置刻痕13B的边打开。
如图18A所示,刻痕13B围成U形,U形结构的两端之间未设置刻痕13B。在电池单体100发生热失控时,第一薄弱部13像门结构一样绕着未设置刻痕13B的边打开。
如图18B所示,刻痕13B围成V形,V形结构的两端之间未设置刻痕13B。在电池单体100发生热失控时,第一薄弱部13像门结构一样绕着未设置刻痕13B的边打开。
如图18C所示,刻痕13B围成W形,W形结构的两端之间未设置刻痕13B。在电池单体100发生热失控时,第一薄弱部13像门结构一样绕着未设置刻痕13B的边打开。
该实施例在电池单体100发生热失控时,刻痕13B在撕裂后,第一薄弱部13仍 连接在壳体10上,不会随排出物喷出,可降低金属片飞出位置不可控导致的高压打火风险,以及箱体组件20上的第二泄压部件堵塞的风险,提高电池200工作的安全性。
在一些实施例中,如图21所示,壳体10上设有至少两个第一泄压部件1。
其中,不同结构和尺寸的第一泄压部件1在性能和可靠性方面均会有所差异,实际中可根据电池单体100的种类、壳体10设置第一泄压部件1的壁面大小、泄压性能和可靠性需求设置第一泄压部件1的数量,例如,设置一个或至少两个,在设置多个时,多个第一泄压部件1的形状和尺寸可以不同,也可相同,可设在壳体10的同一壁上,也可设在壳体10的不同壁上。
例如,如图21所示,壳体10的其中一个壁上沿预设方向(例如该壁的长度方向)间隔设置三个第一泄压部件1,包括第一子泄压件131、第二子泄压件132和第三子泄压件133,外侧两个子泄压件各自的刻痕13B的延伸路径形成U形,中间子泄压件的刻痕13B的延伸路径形成V形。
该实施例通过设置至少两个第一泄压部件1,实际中可根据电池单体100的种类、壳体10设置第一泄压部件1的壁面大小、泄压性能和可靠性需求设计第一泄压部件1的数量和形状,使第一泄压部件1的设置更加灵活,可灵活地满足不同电池单体100的需求。
在一些实施例中,如图22所示,电池单体100还包括电极端子2,电极端子2和第一泄压部件1设在壳体10不同的壁上。
其中,电极端子2和第一泄压部件1设在壳体10相对或相邻的壁上。
如图3和图4所示,电极端子2和第一泄压部件1设在壳体10相对的壁上,且两个电极端子2朝向顶壁231设置,第一泄压部件1朝向底壁221设置。
如图6所示,电极端子2和第一泄压部件1设在壳体10相邻的壁上,两个电极端子2朝向侧壁211设置,第一泄压部件1朝向底壁221设置。
如图7所示,电极端子2和第一泄压部件1设在壳体10相邻的壁上,两个电极端子2设在壳体10相对的壁上,且均朝向侧壁211,第一泄压部件1朝向底壁221设置。
如图8和图9所示,箱体组件20包括隔板25,隔板25被配置为将箱体组件20的内部空间分隔为至少两个容纳腔P,电池单体100设在容纳腔P内。电极端子2和第一泄压部件1设在壳体10相邻的壁上,且两个电极端子2朝向顶壁231设置,第一泄压部件1朝向隔板25设置。
如图10所示,箱体组件20包括隔板25,隔板25被配置为将箱体组件20的内部空间分隔为至少两个容纳腔P,电池单体100设在容纳腔P内。电极端子2和第一泄压部件1设在壳体10相对的壁上,且两个电极端子2朝向侧壁211设置,第一泄压部件1朝 向隔板25设置。
该实施例将电极端子2和第一泄压部件1设在壳体10不同的壁上,降低了布局难度,也有利于根据需求设置面积更大的电极端子2和第一泄压部件1,从而更好地满足电性能和泄压的需求。可选地,电极端子2和第一泄压部件1设在壳体10的同一壁上。
在一些实施例中,如图2至图4所示,电池200还包括用于容纳电池单体100的箱体组件20,箱体组件20包括侧壁211,侧壁211的厚度D与第一壁10’的厚度a之比满足如下关系:
Figure PCTCN2022119614-appb-000016
其中,D的单位为mm,a的单位为mm。
当箱体组件20的侧壁211的厚度D增大时,电池200外边框具有较强的刚度可主要承担碰撞或挤压力,由此电池单体100所需承担的碰撞或挤压力较小,其刚度需求下降,对应的第一壁10’的厚度a需求也下降。当D处于极大值时,第一壁10’的厚度a存在最小值以满足电池单体100的自身刚度需求,确保电池单体100在振动冲击下(参照GB 38031-2020 or GB/T 31467.3)不出现损伤,故D/a存在最大值;当D处于极小值时,第一壁10’的厚度a存在最大值,以满足电池200的结构刚度要求,同时减少对电池200的容量影响,防止设计冗余,故D/a存在最小值。
下表3通过多个具体的实施例和对比例,以说明D/a具有不同设计值时的电池200在振动冲击下的状态。
Figure PCTCN2022119614-appb-000017
Figure PCTCN2022119614-appb-000018
在上表3中,实施例1~9中,3≤D/a≤1000,电池200在在振动冲击情况下箱体组件20和壳体10正常不会开裂。对比例1~3超过设计范围下限,此时侧壁211的厚度D相对于第一壁10’的厚度a较小,箱体组件20的容纳部21的结构强度较低,正常振动冲击工况下(参照GB 38031-2020 or GB/T 31467.3)箱体组件20因为强度不足而发生破损,即电池200在正常用用过程中因强度过低导致可靠性不足。对比例4~6超过设计范围上限,此时侧壁211的厚度D相对于第一壁10’的厚度a较大,虽然电池单体100内部的体积利用率较高,但是由于第一壁10’的厚度a较小,使电池单体100的结构强度不足,在振动冲击工况下发生壳体10破损导致电解液泄漏。
该实施例将侧壁211的厚度D与第一壁10’的厚度a之比之比设计在合适的范围内,既能够保证电池200和电池单体100的刚度满足要求,在振动冲击情况下箱体组件20和壳体10不会开裂,并防止箱体组件20和壳体10发生较大变形,提高电池200的工作可靠性,而且还可减少结构冗余设计,提高电池200的容量。
在一些实施例中,
Figure PCTCN2022119614-appb-000019
该实施例中D/a的取值范围既能使电池200和电池单体100满足刚度设计要求,防止在受到振动冲击时发生较大变形或开裂,还可减少结构冗余设计,提高电池200的容量,较好地平衡了电池200的整体刚度和容量。
在一些实施例中,如图2至图4所示,电池200还包括用于容纳电池单体100的箱体组件20,箱体组件20与第一壁10’相对的第二壁20’上设有第二薄弱部241,第二薄弱部241被配置为在电池单体100的排出物满足第二预设条件的情况下打开,以使电池单体100的排出物进入箱体组件20的排气通道Q。
其中,第二壁20’上与多个电池单体100对应的位置均设有第二薄弱部241。第二预设条件包括:电池单体100排出物的压力超过第二预设压力,和/或电池单体100排出物的温度超过第二预设温度。电池单体100发生热失控后,第一薄弱部13被破坏,使第一泄压部件1开启,电池单体100内部的排出物向外泄放,当泄放的排出物到达第二预设条件时,第二薄弱部241被破坏,排出物进入箱体组件20内的排气通道Q,最终可从箱体组件20的第二泄压部件排出电池200外。
例如,第二壁20’可以是隔板25、支撑板24或底护板上。可选地,第二薄弱部241处也可设置为通孔。
该实施例在箱体组件20与第一壁10’相对的第二壁20’上设置第二薄弱部241,能够在电池单体100发生热失控,排出物可顺利地进入到排气通道Q,而且在电池200正常 工作的情况下,第二薄弱部241可起到增加第二壁20’强度的作用,以提到箱体组件20的整体刚度,例如,在电池200安装于车辆等用电装置,在收到振动冲击的情况下,可减小第二壁20’的变形量。
在一些实施例中,如图2和图3所示,箱体组件20包括底壁221和支撑板24,支撑板24与底壁221之间形成排气通道Q,支撑板24作为第二壁20’,被配置为支撑电池单体100。
其中,如图2和图3所示,箱体组件20包括容纳部21、第一盖体22和第二盖体23,第一盖体22具有底壁221,第二盖体23具有顶壁231,支撑板24设在容纳部21与第一盖体22之间,多个电池单体100设在支撑板24上。电池单体100的壳体10朝向顶壁231的壁上设有两个电极端子2,壳体10朝向底壁221的底壁221上设有第一泄压部件1,支撑板24上设有多个第二薄弱部241,多个第二薄弱部241与多个电池单体100各自的第一泄压部件1一一对应地设置。
如图4所示,支撑板24朝向电池单体100的表面上通过设置第三凹槽242形成第二薄弱部241,壳体10的第一壁10’朝向支撑板24的表面上设有上设有第一凹槽12以形成厚度减薄部12’,第一凹槽12的槽底设有第二凹槽13A,以形成第一薄弱部13。
可选地,如图6所示,两个电极端子2均设在壳体10朝向侧壁211的壁上;如图7所示,两个电极端子2分别设在壳体10相对的壁上,且均朝向侧壁211。
该实施例充分利用支撑板24与箱体组件20的底壁221之间的空间形成排气通道Q,可实现空间较大的排气通道Q,可使电池单体100热失控的排出物进入排气通道Q后压力和温度瞬间降低,且有利于使排出物顺利向第二泄压部件流动;而且,支撑板24在起到对电池单体100支撑作用的基础上,热失控时还能形成供排出物进入排气通道Q的第二排放口。
在一些实施例中,如图8和图9所示,箱体组件20包括隔板25,隔板25被配置为将箱体组件20的内部空间分隔为至少两个容纳腔P,电池单体100设在容纳腔P内;隔板25包括两个间隔设置且朝向电池单体100的侧板251,侧板251作为第二壁20’,两个侧板251之间形成排气通道Q。
其中,如图8所示,每个容纳腔P内均设有一个电池模块,电池模块包括多个电池单体100,两个电极端子2均设在壳体10朝向顶壁231的壁上。隔板25沿朝向电池单体100的表面的垂线间隔设置两个侧板251,两个侧板251各自的顶部和/或底端通过连接板252连接,两个侧板251和连接板252之间围成的腔体形成排气通道Q。侧板251上设有多个第二薄弱部241,多个第二薄弱部241与同侧的多个电池单体100的第一泄压部件 1一一对应设置。
如图9所示,侧板251朝向电池单体100的表面上通过设置第三凹槽242形成第二薄弱部241,壳体10的第一壁10’朝向侧板251的表面上设有上设有第一凹槽12以形成厚度减薄部12’,第一凹槽12的槽底设有第二凹槽13A,以形成第一薄弱部13。在电池单体100发生热失控时,排出物进入隔板25内的排气通道Q后,可直接流动至第二泄压部件,或者也可先进入支撑板24与底壁221之间形成的排气通道,再流动至第二泄压部件,以更充分地实现降温降压。
可选地,如图10所示,两个电极端子2均设在壳体10朝向侧壁211的壁上。
该实施例通过在隔板25内设置空腔形成排气通道Q,在实现减重的同时可充分利用结构件的内部空间。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (20)

  1. 一种电池单体(100),包括:
    壳体(10),具有第一壁(10’)以及内腔(10A);
    电极组件(102),设置于所述内腔(10A)中;
    电极端子(2),设在所述壳体(10)上且与所述电极组件(102)电连接;和
    第一泄压部件(1),设置于所述第一壁(10’),所述第一泄压部件(1)具有第一薄弱部(13),所述第一薄弱部(13)为厚度减薄部,被配置为在所述壳体(10)内满足第一预设条件的情况下打开。
  2. 根据权利要求1所述的电池单体(100),其中,所述第一薄弱部(13)的厚度δ与所述第一壁(10’)的厚度a之比满足如下关系:
    Figure PCTCN2022119614-appb-100001
  3. 根据权利要求2所述的电池单体(100),其中,
    Figure PCTCN2022119614-appb-100002
  4. 根据权利要求1~3任一项所述的电池单体(100),其中所述电池单体(100)的体积V与所述第一壁(10’)的厚度a之比满足如下关系:
    Figure PCTCN2022119614-appb-100003
  5. 根据权利要求4所述的电池单体(100),其中,
    Figure PCTCN2022119614-appb-100004
  6. 根据权利要求1~5任一项所述的电池单体(100),其中,所述第一泄压部件(1)为独立部件且连接于所述壳体(10)。
  7. 根据权利要求1~5任一项所述的电池单体(100),其中,所述第一泄压部件(1)与所述壳体(10)一体成型。
  8. 根据权利要求1~7任一项所述的电池单体(100),其中,所述第一泄压部件(1)包括基体(11),所述基体(11)上设有第一凹槽(12)以形成厚度减薄部(12’),所述第一薄弱部(13)设在所述厚度减薄部(12’)上。
  9. 根据权利要求1~8任一项所述的电池单体(100),其中,所述第一薄弱部(13)通过刻痕(13B)形成,所述刻痕(13B)形成封闭的延伸路径。
  10. 根据权利要求9所述的电池单体(100),其中,所述刻痕(13B)围成的形状呈矩形或三角形或长圆形。
  11. 根据权利要求1~8任一项所述的电池单体(100),其中,所述第一薄弱部(13)通过刻痕(13B)形成,所述刻痕(13B)的两端不重合。
  12. 根据权利要求1~11任一项所述的电池单体(100),其中,所述壳体(10)上设有至少两个所述第一泄压部件(1)。
  13. 根据权利要求1~12任一项所述的电池单体(100),还包括电极端子(2),所述电极端子(2)和所述第一泄压部件(1)设在所述壳体(10)不同的壁上。
  14. 一种电池(200),包括权利要求1~13任一项所述的电池单体(100)。
  15. 根据权利要求14所述的电池(200),还包括用于容纳所述电池单体(100)的箱体组件(20),所述箱体组件(20)包括侧壁(211),所述侧壁(211)的厚度D与所述第一壁(10’)的厚度a之比满足如下关系:
    Figure PCTCN2022119614-appb-100005
  16. 根据权利要求15所述的电池(200),其中,
    Figure PCTCN2022119614-appb-100006
  17. 根据权利要求14~16任一项所述的电池(200),还包括用于容纳所述电池单体(100)的箱体组件(20),所述箱体组件(20)与所述第一壁(10’)相对的第二壁(20’)上设有第二薄弱部(241),所述第二薄弱部(241)被配置为在所述电池单体(100)的排出物满足第二预设条件的情况下打开,以使所述电池单体(100)的排出物进入所述箱体组件(20)的排气通道(Q)。
  18. 根据权利要求17所述的电池(200),其中,所述箱体组件(20)包括底壁(221)和支撑板(24),所述支撑板(24)与所述底壁(221)之间形成所述排气通道(Q),所述支撑板(24)作为所述第二壁(20’),所述支撑板(24)被配置为支撑所述电池单体(100)。
  19. 根据权利要求17所述的电池(200),其中,所述箱体组件(20)包括隔板(25),所述隔板(25)被配置为将所述箱体组件(20)的内部空间分隔为至少两个容纳腔(P),所述电池单体(100)设在所述容纳腔(P)内;所述隔板(25)包括两个间隔设置且朝向所述电池单体(100)的侧板(251),所述侧板(251)作为所述第二壁(20’),两个所述侧板(251)之间形成所述排气通道(Q)。
  20. 一种用电装置,包括权利要求1~13任一项所述的电池单体(100)和/或权利要求14~19任一项所述的电池(200),用于为所述用电装置提供电能。
PCT/CN2022/119614 2022-09-19 2022-09-19 电池单体、电池及用电装置 WO2024059968A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119614 WO2024059968A1 (zh) 2022-09-19 2022-09-19 电池单体、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119614 WO2024059968A1 (zh) 2022-09-19 2022-09-19 电池单体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024059968A1 true WO2024059968A1 (zh) 2024-03-28

Family

ID=90453536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119614 WO2024059968A1 (zh) 2022-09-19 2022-09-19 电池单体、电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024059968A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215989098U (zh) * 2021-07-21 2022-03-08 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN216055028U (zh) * 2021-11-01 2022-03-15 中航锂电科技有限公司 电池箱以及电池装置
WO2022082395A1 (zh) * 2020-10-19 2022-04-28 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN216903232U (zh) * 2022-01-26 2022-07-05 宁德时代新能源科技股份有限公司 泄压装置、电池单体、电池及用电设备
CN217182358U (zh) * 2022-03-14 2022-08-12 宁德时代新能源科技股份有限公司 壳体、电池单体、电池及用电设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022082395A1 (zh) * 2020-10-19 2022-04-28 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN215989098U (zh) * 2021-07-21 2022-03-08 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN216055028U (zh) * 2021-11-01 2022-03-15 中航锂电科技有限公司 电池箱以及电池装置
CN216903232U (zh) * 2022-01-26 2022-07-05 宁德时代新能源科技股份有限公司 泄压装置、电池单体、电池及用电设备
CN217182358U (zh) * 2022-03-14 2022-08-12 宁德时代新能源科技股份有限公司 壳体、电池单体、电池及用电设备

Similar Documents

Publication Publication Date Title
JP7422789B2 (ja) 電池、その関連装置、製造方法及び製造機器
JP7419533B2 (ja) 電池、その関連装置、製造方法及び製造機器
US20240079693A1 (en) End cover assembly, battery cell, battery, and electrical apparatus
WO2023098258A1 (zh) 电池单体、电池以及用电装置
CN213692271U (zh) 电池单体、电池及用电装置
US20230261312A1 (en) End cover assembly, battery cell, battery, and electrical apparatus
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022006897A1 (zh) 电池及其相关装置、制备方法和制备设备
EP3965219B1 (en) Pressure relief mechanism, battery box, battery cell, battery, preparation method and device
CN115472997B (zh) 电池端盖组件、储能装置以及用电设备
EP4092818B1 (en) Battery box body, battery, electric device, and method for preparing box body
WO2023134479A1 (zh) 电池和用电设备
US20220416360A1 (en) Battery cell, manufacturing method and manufacturing system therefor, battery and electric device
WO2024124688A1 (zh) 绝缘膜、电池单体、电池及用电装置
US20240204343A1 (en) Battery and electrical device
EP4087045A1 (en) Battery cell, battery, electronic apparatus, manufacturing method, and manufacturing device
WO2022205325A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法及设备
CN218513629U (zh) 电池单体、电池及用电装置
CN218569126U (zh) 电池单体、电池及用电装置
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
US11817601B2 (en) Battery, power consumption device, method and device for producing battery
WO2023159840A1 (zh) 电池单体、电池以及用电装置
WO2023130266A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置
WO2023133722A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2024059968A1 (zh) 电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958982

Country of ref document: EP

Kind code of ref document: A1