WO2024058117A1 - Resin material and resin composition - Google Patents

Resin material and resin composition Download PDF

Info

Publication number
WO2024058117A1
WO2024058117A1 PCT/JP2023/033033 JP2023033033W WO2024058117A1 WO 2024058117 A1 WO2024058117 A1 WO 2024058117A1 JP 2023033033 W JP2023033033 W JP 2023033033W WO 2024058117 A1 WO2024058117 A1 WO 2024058117A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
less
resin composition
resin
ester
Prior art date
Application number
PCT/JP2023/033033
Other languages
French (fr)
Japanese (ja)
Inventor
祐樹 宮本
秀一 近藤
晃一 斉藤
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2024058117A1 publication Critical patent/WO2024058117A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • C08G75/045Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present disclosure relates to resin materials and resin compositions.
  • Patent Document 1 discloses an image forming apparatus including a recording member having a resin layer made of a photo-softening composition.
  • Resin compositions exhibiting photosoftening properties are expected to be applied as adhesives and coating materials that provide easy peelability.
  • the molecular structure was designed to ensure photosoftening, but there was room for improvement in terms of heat resistance. It is presumed that a photosoftening composition that can withstand heating processes can expand the range of application processes for adhesives, coating materials, and the like.
  • An object of the present disclosure is to provide a resin material that provides a resin composition that has excellent heat resistance and exhibits photosoftening properties.
  • An object of the present disclosure is to provide a resin composition that exhibits excellent heat resistance and photosoftening properties.
  • the present disclosure provides the following [1] to [6].
  • [1] Contains a compound A having a (meth)acryloyl group, a compound B having two or more thiol groups, and a photoradical generator having a 5% weight loss temperature of 200°C or higher, wherein the compound A is , a resin material comprising a compound A-1 having three or more (meth)acryloyl groups, wherein at least one of the compound A and the compound B has a disulfide bond in the molecule.
  • the resin material according to [1] wherein the compound A further contains a compound A-2 having two (meth)acryloyl groups.
  • the radical generator is a compound that gives benzoyl radicals upon light irradiation, and the ratio of the number of moles of the benzoyl radical to the number of moles of the compound A-1 is 21/20 or more, [1] or The resin material according to [2].
  • [4] Contains a reaction product of a compound A having a (meth)acryloyl group and a compound B having two or more thiol groups, and a photoradical generator having a 5% weight loss temperature of 200°C or higher.
  • the radical generator is a compound that gives benzoyl radicals upon light irradiation, and the ratio of the number of moles of the benzoyl radical to the number of moles of the compound A-1 is 21/20 or more, [4] or The resin composition according to [5].
  • FIG. 1 is a graph showing the results of photoresponsive evaluation of storage modulus G' of a resin composition. It is a graph showing the photoresponsive evaluation results of tan ⁇ of the resin composition.
  • 3 is a photograph showing the appearance of a resin composition after light irradiation, in which (A) shows the results of Example 1, (B) shows the results of Example 2, and (C) shows the results of Example 3. It is a graph showing adhesive force measurement results. The results of storage modulus, loss modulus, and tan ⁇ at high temperatures of Example 3 and Comparative Example 1 are shown, (A) shows the results of Example 3, and (B) shows the results of Comparative Example 1.
  • process is used not only to refer to an independent process, but also to include any process that achieves the intended effect even if it cannot be clearly distinguished from other processes. It will be done.
  • a numerical range indicated using “ ⁇ ” indicates a range that includes the numerical values written before and after " ⁇ " as the minimum and maximum values, respectively.
  • each component in the resin material or resin composition means the total amount of the plurality of substances, unless otherwise specified, when there are multiple substances corresponding to each component.
  • the illustrated materials may be used alone or in combination of two or more.
  • the upper limit or lower limit of the numerical range of one step may be replaced with the upper limit or lower limit of the numerical range of another step.
  • the upper limit or lower limit of the numerical range may be replaced with the value shown in the Examples.
  • a or B may include either A or B, or may include both.
  • a "(meth)acryloyl group” is a methacryloyl group or an acryloyl group.
  • weight average molecular weight and “number average molecular weight” are polystyrene equivalent values determined by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
  • room temperature means 25 ⁇ 10°C.
  • photosoftening means the property of softening upon irradiation with light.
  • the softening property includes, for example, a decrease in elastic modulus and an increase in loss tangent (tan ⁇ ).
  • softened resin composition refers to a resin composition in which the elastic modulus has decreased, a loss tangent (tan ⁇ ) has increased, etc., based on the resin composition before light irradiation. means.
  • a resin composition exhibiting photosoftening property means a composition that gives a gel-like material or a liquid material by being softened by light irradiation.
  • the resin material according to the present embodiment contains a compound A having a (meth)acryloyl group, a compound B having two or more thiol groups, and a photoradical generator having a 5% weight loss temperature of 200°C or higher. do. At least one of Compound A and Compound B has a disulfide bond (-SS-) in the molecule.
  • Compound A includes compound A-1 having three or more (meth)acryloyl groups.
  • Compound A-1 is a compound having three or more groups in one molecule of one or more types selected from the group consisting of methacryloyl groups and acryloyl groups.
  • the upper limit of the number of (meth)acryloyl groups in compound A-1 may be, for example, 10 or less, 8 or less, 6 or less, or 4 or less per molecule.
  • Compound A-1 may be a compound having three (meth)acryloyl groups.
  • the molecular weight or weight average molecular weight of compound A-1 may be 150 or more, 500 or more, or 1000 or more, and may be 50000 or less, 10000 or less, or 2000 or less.
  • Compound A-1 is, for example, a compound having a trimethylolpropane skeleton and three or more (meth)acryloyl groups, or a compound having a pentaerythritol skeleton and three or more (meth)acryloyl groups. and a compound having an isocyanurate skeleton and three or more (meth)acryloyl groups.
  • Compound A-1 having a trimethylolpropane skeleton may be, for example, a compound represented by the following formula (a1).
  • R 1 represents a hydrogen atom or a methyl group
  • L 1 represents an alkylene group.
  • n1, n2 and n3 each independently represent an integer of 0 or 1 or more.
  • a plurality of R 1 's may be the same or different.
  • the number of carbon atoms in the alkylene group represented by L 1 may be 2 or more, 10 or less, 6 or less, or 3 or less.
  • the alkylene group represented by L 1 may be, for example, an ethylene group (-CH 2 -CH 2 -).
  • L 1 When there is a plurality of L 1 's, each may be the same or different.
  • the sum n1+n2+n3 of n1, n2, and n3 may be, for example, 0 or more, 6 or more, 27 or less, 20 or less, or 9.
  • Compound A may further contain compound A-2 having two (meth)acryloyl groups.
  • Compound A-2 is a compound having two of one or more groups selected from the group consisting of methacryloyl groups and acryloyl groups.
  • Compound A-2 further contains a linking group that links the two (meth)acryloyl groups.
  • the molecular weight or weight average molecular weight of compound A-2 may be 150 or more, 500 or more, or 1000 or more, and may be 50000 or less, 10000 or less, or 2000 or less.
  • Compound A-2 may be, for example, a compound represented by the following formula (a2).
  • R 2 represents a hydrogen atom or a methyl group.
  • L 2 represents an alkylene group.
  • a plurality of R 2 's may be the same or different.
  • the number of carbon atoms in the alkylene group represented by L 2 may be 2 or more, 10 or less, 6 or less, or 3 or less.
  • the alkylene group represented by L 2 may be, for example, an ethylene group (-CH 2 -CH 2 -).
  • m represents an integer of 1 or more.
  • m may be 2 or more or 3 or more.
  • the upper limit of m may be, for example, 10 or less, 8 or less, 6 or less, or 5 or less.
  • each of them may be the same or different.
  • the content of compound A may be 1% by mass or more, 3% by mass or more, or 5% by mass or more, based on the total amount of the resin material, It may be 99% by weight or less, 97% by weight or less, or 95% by weight or less.
  • the content of compound A-1 may be 1% by mass or more, 3% by mass or more, or 5% by mass or more, and 90% by mass or less, 50% by mass or less, or 15% by mass, based on the total amount of the resin material. % or less.
  • the content of compound A-2 may be 1% by mass or more, 3% by mass or more, or 5% by mass or more, and 99% by mass or less, 97% by mass or less, or 95% by mass, based on the total amount of the resin material. % or less.
  • the ratio of the number of moles of compound A-1 to the total number of moles of compound A is 0.05 or more, 0.1 or more, or 0.2 or more. It may be 0.5 or less, 0.4 or less, or 0.3 or less.
  • the ratio of the number of moles of compound A-1 to the total number of moles of compound A is 0.5 or less, the photosoftening property is further improved.
  • the ratio of the number of moles of Compound A-1 to the total number of moles of Compound A is 0.05 or more, thermoplasticity is further reduced and mechanical properties at high temperatures are further improved.
  • the number of disulfide bonds in compound A-1 or compound A-2 may be, for example, 1 to 1000 or 4 to 50.
  • Compound B is a compound having two or more thiol groups (-SH) in one molecule.
  • the upper limit of the number of thiol groups of compound B per molecule may be, for example, 10 or less, 8 or less, 6 or less, 4 or less, or 3 or less.
  • Compound B may be a compound having two thiol groups.
  • the number of disulfide bonds in compound B may be, for example, 1 to 1000 or 4 to 50.
  • the molecular weight or weight average molecular weight of compound B may be 100 or more, 1000 or more, or 3000 or more, and may be 50000 or less, 30000 or less, or 10000 or less.
  • Compound B has a linear molecular chain and a terminal group, and may be a compound (for example, a polymer or oligomer) having a disulfide bond in the molecular chain.
  • the terminal group in compound B may be a thiol group.
  • the molecular chain in compound B may contain a disulfide bond and a polyether chain, or may consist of a disulfide bond and a polyether chain.
  • Compound B may be, for example, a compound (compound (1)) represented by formula (1): HS-(A-S-S) p -A-SH.
  • A represents a polyether chain.
  • a plurality of A's may be the same or different.
  • p represents an integer of 1 or more.
  • p may be, for example, 1 or more, 4 or more, and 1000 or less.
  • Compound B may be a chain-extended compound of compound (1).
  • the polyether chain as A may be, for example, a polyoxyalkylene chain.
  • the polyether chain as A may be, for example, a group represented by -A 1 -O-A 2 -O-A 3 -.
  • a 1 to A 3 may each independently be an alkylene group, and may be an alkylene group having 1 to 2 carbon atoms (eg, methylene group, ethylene group).
  • Examples of the polyether chain as A include -CH 2 CH 2 -O-CH 2 -O-CH 2 CH 2 -.
  • Compound B Commercially available products of Compound B include, for example, Thiokol LP series (dithiol having a disulfide bond, manufactured by Toray Fine Chemical Co., Ltd.). Compound B may be used alone or in combination of two or more. Compound B can also be obtained by converting the reactive functional group of a starting compound having a reactive functional group and a disulfide bond at its terminal into a thiol group. Examples of the reactive functional group in the raw material compound include a carboxy group and a hydroxy group. Examples of the raw material compound having a reactive functional group and a disulfide bond at the terminal include 3,3'-dithiodipropionic acid, dithiodiethanol, and cystamine.
  • the content of compound B may be 1% by mass or more, 3% by mass or more, 5% by mass or more, 30% by mass or more, or 50% by mass or more, and 99% by mass or less, based on the total mass of the resin material. , 97% by mass or less, or 95% by mass or less.
  • the ratio of the number of moles of the thiol group in compound B to the number of moles of the (meth)acryloyl group in compound A may be, for example, 0.90 or more, or 0.95 or more, and 1.1 or less, or It may be 1.05 or less.
  • the ratio of the number of moles of thiol group in compound B to the number of moles of (meth)acryloyl group in compound A is within the above-mentioned range, the decrease in photosoftening property is further suppressed, and the resin composition is Deterioration in storage stability is also further suppressed.
  • a photo-radical generator is a component that generates radicals when irradiated with light.
  • the photoradical generator for example, a component used as a photopolymerization initiator can be used.
  • Photo-radical generators include hydrogen-extracting photo-radical polymerization initiators that generate radicals by extracting hydrogen from other molecules when irradiated with light, and intramolecular photo-radical polymerization initiators that generate two radicals by photo-cleaving itself upon irradiation with light. Examples include cleavable photoradical polymerization initiators.
  • the photo-radical generator may be an intramolecularly cleavable photo-radical polymerization initiator since it provides better photo-softening properties.
  • Examples of the hydrogen abstraction type photoradical generator include hexaarylbisimidazole (HABI) compounds, benzophenone compounds, thioxanthone compounds, fluorenone compounds, ⁇ -diketone compounds, and the like.
  • HABI hexaarylbisimidazole
  • Intramolecular cleavage type photoradical generators include benzyl ketal photoradical generators, ⁇ -aminoalkylphenone photoradical generators, ⁇ -hydroxyalkylphenone photoradical generators, and ⁇ -hydroxyacetophenone photoradical generators. , acylphosphine oxide photoradical generators, and the like.
  • the 5% weight loss temperature of the photoradical generator is 200°C or higher.
  • the 5% weight loss temperature is the temperature at which the mass of the sample decreases by 5% from the initial value in thermogravimetric analysis in which changes in the mass of the sample are measured while increasing the temperature.
  • the 5% weight loss temperature of the photoradical generator may be 210° C. or higher, 220° C. or higher, 230° C. or higher, 240° C. or higher, or 250° C. or higher, since the heat resistance of the resin composition is further improved.
  • the temperature may be 340°C or lower, 330°C or lower, 320°C or lower, 310°C or lower, or 300°C or lower.
  • Examples of the photoradical generator having a 5% weight loss temperature of 200°C or higher include 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one. (5% weight loss temperature: 204°C), 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl ⁇ -2-methyl-propan-1-one (5% weight loss temperature: 220°C), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 (5% weight loss temperature: 248°C), 2-dimethylamino-2 -(4-Methyl-benzyl)-1-(4-morpholin-4-yl-phenyl)-butan-1-one (5% weight loss temperature: 248°C), bis(2,4,6-trimethylbenzoyl) -phenylphosphine oxide (5% weight loss temperature: 241°C), 2,4,6-trimethylbenzoyl
  • the photo-radical generator is an ⁇ -aminoalkylphenone-based photo-radical generator from the viewpoint of further suppressing curing inhibition, further suppressing the decrease in storage modulus during curing, and solubility in resin components. and may be 2-(dimethylamino)-2-(4-methylbenzyl)-1-[4-morpholin-4-yl-phenyl)butan-1-one.
  • the photo-radical generator has even better photo-softening properties, so it may be a compound that generates two or more monoradicals per molecule of the photo-radical generator when irradiated with light, but does not generate diradicals.
  • Examples of such photoradical generators include 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-hydroxy-2-methyl-1-phenyl.
  • the photoradical generator may be a compound that provides benzoyl radicals upon irradiation with light.
  • a compound that provides benzoyl radicals upon irradiation with light is a compound that is cleaved by photoreaction to produce benzoyl radicals.
  • Examples of compounds that give benzoyl radicals when irradiated with light include 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-hydroxy-2-methyl-1- Phenyl-propan-1-one, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 1-[4-(2-hydroxyethoxy)-phenyl]-2- Hydroxy-2-methyl-1-propan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1,2-dimethylamino-2-(4-methyl-benzyl )-1-(4-morpholin-4-yl-phenyl)-butan-1-one, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and bis(2,4,6-trimethylbenzoyl)- Examples include phenylphosphine oxide.
  • the content of the photoradical generator may be 3% by mass or more, 5% by mass or more, or 10% by mass or more, and 30% by mass or less, 20% by mass or less, or 15% by mass, based on the total amount of the resin material. % or less.
  • the ratio of the number of moles of the photoradical generator to the number of moles of compound A-1 is 1 or more, 1.5 or more, 2 or more, 3 or more, 5 or more, 8 or more, 10 or more, since the photosoftening property is further improved. or more, 12 or more, 14 or more, or 16 or more.
  • the ratio of the number of moles of the photoradical generator to the number of moles of compound A-1 is, for example, 20 or less, 18 or less, 16 or less, 14 or less, 12 or less, 10 or less, 8 or less, 6 or less, 4 or less, or 2 It may be the following.
  • the ratio of the number of moles of the photoradical generator to the number of moles of compound B is 0.2 or more, 0.5 or more, 0.7 or more, 0.9 or more, or 1. It may be 1 or more.
  • the ratio of the number of moles of the photoradical generator to the number of moles of compound B may be 3.0 or less, 2.0 or less, or 1.5 or less.
  • the ratio of the number of moles of benzoyl radical to the number of moles of compound A-1 may be 21/20 or more, since the photosoftening property is further improved.
  • the ratio of the number of moles of benzoyl radical to the number of moles of compound A-1 may be 2 or more, 3 or more, or 4 or more, since the photosoftening property is further improved.
  • the ratio of the number of moles of benzoyl radical to the number of moles of compound A-1 may be, for example, 20 or less, 15 or less, 12 or less, 10 or less, 8 or less, 6 or less, 4 or less, or 2 or less.
  • the resin material may further contain a catalyst.
  • a catalyst By further including a catalyst, the reaction between compound A and compound B is further promoted.
  • the catalyst include amine compounds and phosphorus compounds.
  • the amine compound may be, for example, a tertiary amine compound or a secondary amine compound.
  • amine compounds include dicyandiamide, trimethylamine, triethylamine, tripropylamine, tributylamine, tri-n-octylamine, dimethylethylamine, dimethylpropylamine, dimethylbutylmian, dimethyl-n-octylamine, 1,4-diazabicyclo [2.2.2] Octane, 1,8-diazabicyclo[5.4.0]undec-7-ene, benzyldimethylamine, 4-methyl-N,N-dimethylbenzylamine, 2,4,6-tris (dimethylaminomethyl)phenol and 4-dimethylaminopyridine.
  • the catalyst is 1,8-diazabicyclo[5.4.0]undec-7-ene or a salt thereof, as it facilitates rapid curing at room temperature and makes it easier to control open time. It may be a phosphorus compound.
  • the content of the catalyst may be 0.02% by mass or more, 0.1% by mass or more, or 1% by mass or more, and 3% by mass or less, 2.5% by mass or less, based on the total amount of the resin material. Or it may be 2% by mass or less.
  • the resin material may further contain components (other components) that do not correspond to the compound A, the compound B, the photoradical generator, and the catalyst.
  • Other ingredients include, for example, tackifiers such as plasticizers and tackifiers, adhesion improvers such as antioxidants, leuco dyes, sensitizers, and coupling agents, polymerization inhibitors, light stabilizers, and quenchers.
  • Additives include foaming agents, fillers, chain transfer agents, thixotropy agents, flame retardants, mold release agents, surfactants, lubricants, antistatic agents, and the like. Known additives can be used as these additives.
  • the total amount of the other components is 0 to 95% by mass, 0.01 to 50% by mass, or 0.1 to 10% by mass based on the total amount of the resin material. It may be %.
  • the resin material may be used as a varnish made of a resin material diluted with a solvent.
  • the solvent include aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene, and p-cymene; aliphatic hydrocarbons such as hexane and heptane; cyclic alkanes such as methylcyclohexane; and tetrahydrofuran and 1,4-dioxane.
  • Cyclic ethers such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, ⁇ -butyrolactone; Examples include carbonic acid esters such as ethylene carbonate and propylene carbonate; amides such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone (NMP).
  • the solid content in the varnish that is, the total content other than the solvent in the varnish, is 10 to 95% by mass, or 15 to 70% by mass, or 20 to 50% by mass, based on the total mass of the varnish. It's good to be there.
  • the resin material can be prepared, for example, by a method that includes a step of mixing or kneading the above-mentioned components.
  • Mixing and kneading can be carried out using an appropriate combination of dispersing machines such as a conventional stirrer, a sieve machine, a three-roll mill, a ball mill, and a bead mill.
  • the resin composition according to the present embodiment contains a reaction product of Compound A and Compound B, and a photoradical generator whose 5% weight loss temperature is 200° C. or higher.
  • the resin composition according to this embodiment is a cured product of the resin material described above. Specific embodiments of Compound A, Compound B, and the photoradical generator are the same as those described for the resin material.
  • Examples of the method for obtaining the resin composition include the method of reacting the resin materials described above.
  • the reaction temperature of the resin material may be, for example, 0 to 200°C, 30 to 150°C, or 60 to 100°C.
  • the time for maintaining the above reaction temperature may be, for example, 0.1 to 168 hours, 72 hours or less, 24 hours or less, 12 hours or less, 6 hours or less, 4 hours or less, 3 hours or less, or 2 hours or less. It may be.
  • reaction product of Compound A and Compound B is formed by a Michael addition reaction between the (meth)acryloyl group in Compound A and the thiol group in Compound B.
  • R represents a hydrogen atom or a methyl group
  • * represents a bond.
  • Disulfide bonds may be present in the main chain and/or side chain of the reaction product. A disulfide bond may be present in the main chain of the reaction product since the photosoftening property is further improved.
  • reaction product of compound A and compound B may include a compound having a structure represented by the following formula (x1).
  • R 1 , L 1 , n1, n2 and n3 have the same meanings as in formula (a1), A and p have the same meanings as in formula (1), and * indicates a bond.
  • a plurality of R 1 , L 1 , A and p may be the same or different from each other.
  • the reaction product of compound A and compound B may include a compound having a structure represented by the following formula (x2).
  • R 2 , L 2 , and m have the same meanings as in formula (a2), A and p have the same meanings as in formula (1), and * indicates a bond.
  • a plurality of R 2 , A and p may be the same or different.
  • the number average molecular weight Mn of the resin composition may be 1000 or more, 2000 or more, 3000 or more, 5000 or more, 6000 or more, or 6500 or more, and may be 200000 or less, 100000 or less, or 50000 or less.
  • the weight average molecular weight Mw of the resin composition is 1,000 or more, 3,000 or more, 5,000 or more, 10,000 or more, 15,000 or more, 20,000 or more, 25,000 or more, 30,000 or more, or 40,000 or more, and 1,000,000 or less, 400,000 or less, or 100,000 or less.
  • the storage modulus G' of the resin composition may be 1 kPa or more, 10 kPa or more, or 100 kPa or more, and may be 100000 kPa or less, 10000 kPa or less, or 2000 kPa or less.
  • the storage modulus G' of the resin composition can be measured by the method described in the Examples below.
  • the 5% weight loss temperature T d5% of the resin composition may be 210°C or higher, 220°C or higher, 230°C or higher, 240°C or higher, or 250°C or higher, since the resin composition has better heat resistance. , 310°C or less, 300°C or less, 290°C or less, 280°C or less, or 270°C or less.
  • the 5% weight loss temperature T d5% of the resin composition can be measured by the method described in the Examples below.
  • the shear adhesive strength of the resin composition at 25°C may be 10 N/cm 2 or more, 20 N/cm 2 or more, or 50 N/cm 2 or more, and the shear adhesive strength of the resin composition at 100°C may be 10 N/cm 2 or more, or 50 N/cm 2 or more. cm 2 or more, or 20 N/cm 2 or more, and 50 N/cm 2 or less.
  • the shear adhesive strength of the resin composition can be measured by the method described in Examples below.
  • the resin composition has the property of being softened by light irradiation.
  • the light used for light irradiation may be, for example, light containing light with a wavelength of 365 nm or 405 nm. By irradiating with such light, the resin composition can be softened.
  • the exposure amount of light irradiation may be, for example, 1000 mJ/cm 2 or more. In this specification, the exposure amount means the product of illuminance (mW/cm 2 ) and irradiation time (seconds).
  • the light may be irradiated directly onto the object to be irradiated, or may be irradiated through glass or the like.
  • the light source used for light irradiation is not particularly limited, and includes, for example, an LED lamp, a mercury lamp (low pressure, high pressure, ultra-high pressure, etc.), a metal halide lamp, an excimer lamp, a xenon lamp, and the like.
  • the light source used for light irradiation may be an LED lamp, a mercury lamp, or a metal halide lamp.
  • the photoradical generator in the resin composition cleaves the disulfide bond (-SS-) in the reaction product of compound A and compound B.
  • crosslinking of the reaction product of Compound A and Compound B is reduced, or the molecular weight of the reaction product of Compound A and Compound B is lowered and softened. Since the resin composition is softened by light irradiation, it can also be called a photo-softening composition.
  • the number average molecular weight Mn of the resin composition (photosoftened product) after light irradiation may be 100,000 or less, 50,000 or less, 20,000 or less, 10,000 or less, 1,000 or more, 3,000 or more, 5,000 or more, or 5,500 or more. .
  • the weight average molecular weight Mw of the photosoftened material may be 300,000 or less, 150,000 or less, 60,000 or less, 60,000 or less, or 30,000 or less, 10,000 or more, or 15,000 or more It may be.
  • the Mn and Mw of the photosoftened product can be measured by the method described in the Examples below.
  • the storage modulus G' of the photosoftened material is usually lower than the storage modulus G' of the resin composition.
  • the storage modulus G' of the photosoftened material may be 8 kPa or less, 5 kPa or less, 3 kPa or less, or 1 kPa or less, and may be 0.001 kPa or more, or 0.005 kPa or more.
  • the loss modulus G'' of the photosoftened material is 0.10 kPa or more, 0.20 kPa or more, 0.30 kPa or more, 0.50 kPa or more, 0.70 kPa or more, 1.0 kPa or more, 3.0 kPa or more, or 5. It may be 0 kPa or more, 10 kPa or less, 5 kPa or less, 3 kPa or less, or 1 kPa or less.
  • the loss tangent tan ⁇ of the photosoftened material may be 1.0 or more, 1.2 or more, 1.5 or more, 1.8 or more, or 2.0 or more, and 45 or less, 35 or less, 25 or less, 15 or less. , 5 or less, or 1.5 or less.
  • the loss tangent tan ⁇ is expressed as the ratio of the loss modulus G'' to the storage modulus G' (G''/G').
  • the storage modulus G', loss modulus G'', and tan ⁇ of the photosoftened product can be measured by the method described in the Examples below.
  • the resin composition can be formed into various shapes.
  • a cured product formed into a film can be used as a film.
  • a cured product formed into a block can be used as a block.
  • the method of forming a membranous (film-like) or block-like cured product is not particularly limited, and any known method can be applied.
  • the resin materials and resin compositions can be used, for example, as adhesives, adhesives, coating materials, protective materials, and pick-up materials for parts and materials.
  • the adhesive can be used, for example, as an adhesive that can be peeled off without destroying the adherend after temporarily fixing the adherend to the base material.
  • Adhesives containing resin materials or resin compositions have excellent heat resistance, and therefore exhibit adhesive strength even at high temperatures of 100°C. Therefore, an adhesive containing a resin material or a resin composition can also be used as an adhesive that can withstand a high temperature process and then be peeled off by irradiation with light at room temperature.
  • the adhesive composition according to this embodiment contains compound A having a (meth)acryloyl group, compound B having two or more thiol groups, and a photoradical generator having a 5% weight loss temperature of 200°C or higher.
  • compound A includes compound A-1 having three or more (meth)acryloyl groups, and at least one of compound A and compound B has a disulfide bond in the molecule.
  • the specific aspects of compound A, compound B, the photoradical generator, and other components can be those described above.
  • the adhesive composition can form a cured product of the adhesive composition through the reaction of Compound A and Compound B, and can act as an adhesive layer for bonding two or more adherends.
  • the reaction conditions for Compound A and Compound B may be as described above.
  • the cured product of the adhesive composition has photosoftening properties. Therefore, the cured product of the adhesive composition can be separated from two or more adherends without destroying them by light irradiation. The softened material remaining on the adherend can be removed with a solvent if necessary.
  • the conditions for light irradiation may be the conditions described above.
  • the adherend may be, for example, a fine structure, a fragile adherend, or an adherend that is vulnerable to physical stress.
  • the fine structures include microchannels, fine wiring, and microbumps.
  • Examples of easily breakable adherends include ultra-thin wafers and glass.
  • Examples of adherends that are vulnerable to physical stress include soft tissues and cells.
  • the adhesive body of one embodiment includes a first adherend, a second adherend, and an adhesive layer that adheres the first adherend and the second adherend to each other.
  • the adhesive layer contains a cured adhesive composition.
  • the adhesive body can be manufactured by a method including a step of bonding a first adherend and a second adherend together via an adhesive composition.
  • the curing conditions may be the reaction conditions described above. Even after enduring a high temperature process, the bonded body can be separated by light irradiation.
  • a method for separating adherends includes a step of irradiating the adhesive layer of the adhesive body with light to separate the first adherend and the second adherend. Since the adhesive layer contains the cured product of the photocurable composition described above, by irradiating it with light, the cured product of the photocurable composition is melted and the adherends can be easily separated from each other. can do. The adherends can be separated by light irradiation even after enduring high temperature processes.
  • the type of light, light source, etc. when irradiating light may be the same as above.
  • the film obtained by peeling off the mold film was used as a specimen for various evaluations. The completion of the reaction was confirmed from the infrared absorption spectrum measurement results, and the reaction was considered complete when the integral value of the peak derived from the double bond of the acrylic group near 810 cm -1 decreased by 95% or more compared to the unpolymerized state. .
  • UV irradiation For UV irradiation, a UV irradiation device (manufactured by Panasonic Devices SUNX Co., Ltd., power supply: Aicure UJ30, 365 nm LED head: ANUJ6186, 405 nm LED head: ANUJ6189) was used. The irradiation conditions were measured using a luminometer UIT-250 (manufactured by Ushio Inc.) using receivers for 365 nm and 405 nm, respectively.
  • a luminometer UIT-250 manufactured by Ushio Inc.
  • the resin composition obtained by the method of "1-2. Preparation of resin composition and evaluation film” has an adhesive area of a circle with a diameter of 10 to 13 mm, and an adhesive layer thickness of 100 ⁇ .
  • a shear test piece was obtained by sandwiching it between two glass slides (S-1112; manufactured by Matsunami Glass Industries Co., Ltd.) or two polycarbonate plates so that the thickness was 20 ⁇ m, and allowing it to stand at room temperature for one week.
  • the shear adhesive strength of the obtained shear test piece was measured using Autograph AGS-X manufactured by Shimadzu Corporation in an environment of 25° C. and 100° C. at a tensile rate of 10 mm/min.
  • GPC measurement Molecular weight was measured by gel permeation chromatography (GPC) using Chromaster manufactured by Hi-Tech Science Co., Ltd., with a column of GL-A130-S, GL-A150-S, GL-A160-S and a detector of RI. The measurement was carried out at a temperature of 35°C. A THF (tetrahydrofuran) solution with a sample concentration of 1 wt% was prepared and used as a sample for GPC. Molecular weight conversion values were calculated using a calibration curve using standard polystyrene molecules. A film with a film thickness of 500 ⁇ 100 ⁇ m obtained by the method of “1-2.
  • Preparation of resin composition and evaluation film was sandwiched between two glass slides (S-1111; manufactured by Matsunami Glass Industries Co., Ltd.), and the wavelength A viscous liquid photomelted by irradiation with 365 nm or 405 nm LED light at an illuminance of 1000 mW/cm 2 for 120 seconds was used as a sample.
  • TG-DTA Thermogravimetric/differential thermal analysis
  • EXSTAR TG/DTA 7200 manufactured by SII Nano Technology Co., Ltd. was used.
  • the distance between crosslinking points (the amount of crosslinking and the crosslinking density) of the resin composition was investigated.
  • the blending amount in Tables 2 and 3 the blending amount of Omnirad-379 was fixed, and the distance between crosslinking points (crosslinking amount and crosslinking density) was adjusted by adjusting the blending amounts of diacrylate and triacrylate.
  • Table 2 shows the material molar ratio, distance between crosslinking points, and finger touch test results for each formulation.
  • Table 3 shows the weight ratio of each formulation.
  • the curing method was carried out with reference to previous reports on the reaction between thiol groups and acrylic groups.
  • a catalyst By blending 2 parts by weight of 2,4,6-trisdimethylaminomethylphenol (ADEKA Hardener EHC-30; manufactured by ADEKA Co., Ltd.) as a catalyst, the Michael addition reaction between the thiol group and the acrylic group was allowed to proceed at room temperature. .
  • the curing rate was calculated from the measurement results of the infrared absorption spectrum. Polymerization was considered complete when the integral value of the peak of the acrylic group near 810 cm ⁇ 1 in the measurement results of the infrared absorption spectrum decreased by 95% or more compared to the unpolymerized state.
  • the obtained resin composition exhibited low elasticity of 1 MPa or less because polysulfide containing polyether chains was used as a raw material.
  • the resin composition of the example Since the resin composition of the example has a crosslinked structure, it is expected to have an effect of improving heat-resistant creep property. Furthermore, since the resin compositions of Examples have a crosslinked structure, they are expected to have the effect of improving chemical resistance and heat aging resistance. Therefore, the resin composition of the example can be suitably used as an engineering plastic, for example.
  • the 5% weight loss temperature of the resin composition did not vary greatly depending on the distance between crosslinking points, suggesting that the radical generator and the structure of the resin were the controlling factors.
  • FIGS. 2 and 3 show the results of evaluating the photoresponsiveness of G' of the resin composition, and shows the results of repeated irradiation with LED light with a wavelength of 405 nm for 2 seconds at 500 mW/cm 2 every 10 seconds starting 10 seconds after the start of the measurement.
  • FIG. 2 shows the results of evaluating the photoresponsiveness of G' of the resin composition, and shows the results of repeated irradiation with LED light with a wavelength of 405 nm for 2 seconds at 500 mW/cm 2 every 10 seconds starting 10 seconds after the start of the measurement.
  • FIG. 3 shows the tan ⁇ photoresponsive evaluation results of the resin composition, and shows the results of repeated irradiation with LED light with a wavelength of 405 nm for 2 seconds at 500 mW/cm 2 every 10 seconds from 10 seconds after the start of measurement.
  • the resin compositions of Examples exhibited photosoftening properties.
  • FIG. 4 is a photograph showing the appearance of the resin composition after light irradiation, in which (A) shows the results of Example 1, (B) shows the results of Example 2, and (C) shows the results of Example 3.
  • Example 1 Regarding the resin composition of Example 1 in which the molar ratio of triacrylate to polysulfide was 66.7%, the tan ⁇ after irradiation with 30 J/cm 2 light was around 1, and the resin composition became gel-like.
  • the irradiation dose was 2,000 mJ/cm 2 or more, the tan ⁇ exceeded 2.0, indicating a liquid state, and the storage modulus was 10,000 Pa or less.
  • Example 1 The molar ratio in Example 1 is 66.7 moles of triacrylate to 120 moles of photoradical generator, and the number of bonds broken is estimated to be 60.0 moles with respect to 66.7 moles of crosslinking points.
  • No. 1 exhibits photosoftening properties, it is expected to have a composition that is difficult to liquefy.
  • the resin composition of Example 1 after being irradiated with light showed photosoftening properties, it remained in a gel-like state and was not liquefied.
  • the degree of photosoftening can be adjusted by, for example, the amount of crosslinking in the resin composition and the amount of photoradical generator blended.
  • Scheme 3 shows a reaction in which a benzoyl radical contributes to the cleavage of a disulfide bond, and a reaction in which a thiyl radical undergoes an exchange reaction with a disulfide in the molecule, resulting in cyclization.
  • the shear adhesive strength of the resin composition of Example 3 before light irradiation was 86 N/cm 2 at 25°C on a polycarbonate base material, and the resin composition exhibited adhesive strength comparable to general OCR (Optical Clear Resin) at 25°C. was confirmed.
  • the shear adhesive strength of the resin composition of Example 3 before light irradiation was 26 N/cm 2 even in a high temperature environment of 100°C. As described above, the resin composition of Example 3 exhibited adhesive strength without being softened by heating.
  • the shear adhesive strength of the resin composition of Example 3 after photosoftening was measured according to the following procedure.
  • a resin portion of a shear test piece prepared using the resin composition of Example 3 was irradiated with an LED lamp (illuminance: 1000 mW/cm 2 ) having a wavelength of 405 nm for 5 seconds.
  • the obtained resin composition of Example 3 after being irradiated with light shifted due to a slight force when it was installed and fixed in an autograph for measuring adhesive strength.
  • FIG. 6 shows the results of storage modulus, loss modulus, and tan ⁇ at high temperatures of Example 3 and Comparative Example 1, with (A) showing the results of Example 3 and (B) showing the results of Comparative Example 1.
  • A showing the results of Example 3
  • B showing the results of Comparative Example 1.
  • FIG. 7 shows the appearance of a shear test piece prepared using the resin composition of Example 3 after measuring adhesive strength, (a) shows the appearance of the shear test piece before measurement, and (b) shows the appearance of the shear test piece before measurement.
  • FIG. 3(c) shows the peeled state of an unirradiated sample
  • FIG. 3(c) shows the peeled state after light irradiation
  • FIG. 3(d) shows the appearance of the shear test piece shown in FIG.
  • the sample before photosoftening which had a polycarbonate plate with high adhesive strength as the adherend, had cohesive failure of the cured material remaining on both sides of the adherend, and the sample after photosoftening had liquid remaining on both sides of the adherend. was.
  • the liquid after photosoftening has high cleaning properties, and by washing with acetone flowing for several seconds, it was confirmed that residues were removed from the glass surface.
  • the resin materials and resin compositions of Examples can be applied to fine structures such as microchannels, fine wiring, microbumps, etc., fragile ultra-thin wafers, glass, extremely soft tissues, cells, etc. It is expected that this adhesive will be used as an easily removable adhesive that can be used to temporarily attach adherends that are vulnerable to physical stress to some kind of base material and then peel them off without damaging the adherend.
  • the resin composition of the example exhibits sufficient adhesive strength even at a high temperature of 100°C, so it can be used, for example, as a high-performance temporary adhesive that can withstand a high-temperature process and then be peeled off by light irradiation at room temperature. It is expected that it will be applied as a.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

The present disclosure relates to a resin material which contains a compound A that has a (meth)acryloyl group, a compound B that has two or more thiol groups, and photoradical generator that has a 5% weight loss temperature of 200°C or more, wherein: the compound A contains a compound A-1 that has three or more (meth)acryloyl groups; and at least one of the compound A and the compound B has a disulfide bond.

Description

樹脂材料及び樹脂組成物Resin materials and resin compositions
 本開示は、樹脂材料及び樹脂組成物に関する。 The present disclosure relates to resin materials and resin compositions.
 光照射によって軟化可能な光軟化性組成物は、様々な用途に用いられている。例えば、特許文献1には、光軟化性組成物からなる樹脂層を有する記録部材を備える画像形成装置が開示されている。 Photosoftening compositions that can be softened by light irradiation are used for various purposes. For example, Patent Document 1 discloses an image forming apparatus including a recording member having a resin layer made of a photo-softening composition.
特開平11-190883号公報Japanese Unexamined Patent Publication No. 11-190883
 光軟化性を示す樹脂組成物は、易剥離性を付与した接着剤及びコーティング材等としての応用が期待される。光軟化性の担保のために設計された分子構造では、耐熱性の点で改善の余地があった。加熱プロセスに耐え得る光軟化性組成物は、接着剤及びコーティング材等の適用プロセスの拡大を図ることができると推定される。 Resin compositions exhibiting photosoftening properties are expected to be applied as adhesives and coating materials that provide easy peelability. The molecular structure was designed to ensure photosoftening, but there was room for improvement in terms of heat resistance. It is presumed that a photosoftening composition that can withstand heating processes can expand the range of application processes for adhesives, coating materials, and the like.
 本開示は、耐熱性に優れるとともに光軟化性を示す樹脂組成物を与える樹脂材料を提供することを目的とする。本開示は、耐熱性に優れるとともに光軟化性を示す樹脂組成物を提供することを目的とする。 An object of the present disclosure is to provide a resin material that provides a resin composition that has excellent heat resistance and exhibits photosoftening properties. An object of the present disclosure is to provide a resin composition that exhibits excellent heat resistance and photosoftening properties.
 本開示は、いくつかの側面において、下記[1]~[6]を提供する。
[1] (メタ)アクリロイル基を有する化合物Aと、チオール基を2個以上有する化合物Bと、5%重量減少温度が200℃以上である光ラジカル発生剤と、を含有し、前記化合物Aが、(メタ)アクリロイル基を3個以上有する化合物A-1を含み、前記化合物A及び前記化合物Bの少なくとも一方が分子内にジスルフィド結合を有する、樹脂材料。
[2] 前記化合物Aが(メタ)アクリロイル基を2個有する化合物A-2を更に含む、[1]に記載の樹脂材料。
[3] 前記ラジカル発生剤が、光照射によってベンゾイルラジカルを与える化合物であり、前記化合物A-1のモル数に対する、前記ベンゾイルラジカルのモル数の比が21/20以上である、[1]又は[2]に記載の樹脂材料。
[4] (メタ)アクリロイル基を有する化合物A、及び、チオール基を2個以上有する化合物Bの反応生成物と、5%重量減少温度が200℃以上である光ラジカル発生剤と、を含有し、前記化合物Aが、(メタ)アクリロイル基を3個以上有する化合物A-1を含み、前記化合物A及び前記化合物Bの少なくとも一方が分子内にジスルフィド結合を有する、樹脂組成物。
[5] 前記化合物Aが(メタ)アクリロイル基を2個有する化合物A-2を更に含む、[4]に記載の樹脂組成物。
[6] 前記ラジカル発生剤が、光照射によってベンゾイルラジカルを与える化合物であり、前記化合物A-1のモル数に対する、前記ベンゾイルラジカルのモル数の比が21/20以上である、[4]又は[5]に記載の樹脂組成物。
In some aspects, the present disclosure provides the following [1] to [6].
[1] Contains a compound A having a (meth)acryloyl group, a compound B having two or more thiol groups, and a photoradical generator having a 5% weight loss temperature of 200°C or higher, wherein the compound A is , a resin material comprising a compound A-1 having three or more (meth)acryloyl groups, wherein at least one of the compound A and the compound B has a disulfide bond in the molecule.
[2] The resin material according to [1], wherein the compound A further contains a compound A-2 having two (meth)acryloyl groups.
[3] The radical generator is a compound that gives benzoyl radicals upon light irradiation, and the ratio of the number of moles of the benzoyl radical to the number of moles of the compound A-1 is 21/20 or more, [1] or The resin material according to [2].
[4] Contains a reaction product of a compound A having a (meth)acryloyl group and a compound B having two or more thiol groups, and a photoradical generator having a 5% weight loss temperature of 200°C or higher. A resin composition, wherein the compound A includes a compound A-1 having three or more (meth)acryloyl groups, and at least one of the compound A and the compound B has a disulfide bond in the molecule.
[5] The resin composition according to [4], wherein the compound A further contains a compound A-2 having two (meth)acryloyl groups.
[6] The radical generator is a compound that gives benzoyl radicals upon light irradiation, and the ratio of the number of moles of the benzoyl radical to the number of moles of the compound A-1 is 21/20 or more, [4] or The resin composition according to [5].
 本開示によれば、耐熱性に優れるとともに、光軟化性を示す樹脂組成物を与える樹脂材料を提供することができる。本開示によれば、耐熱性に優れるとともに、光軟化性を示す樹脂組成物を提供することができる。 According to the present disclosure, it is possible to provide a resin material that provides a resin composition that has excellent heat resistance and exhibits photosoftening properties. According to the present disclosure, it is possible to provide a resin composition that has excellent heat resistance and exhibits photosoftening properties.
接着力評価のために作製される試験片を示す図である。It is a figure showing the test piece produced for adhesion strength evaluation. 樹脂組成物の貯蔵弾性率G’の光応答性評価結果を示すグラフである。1 is a graph showing the results of photoresponsive evaluation of storage modulus G' of a resin composition. 樹脂組成物のtanδの光応答性評価結果を示すグラフである。It is a graph showing the photoresponsive evaluation results of tan δ of the resin composition. 光照射後の樹脂組成物の外観を示す写真であり、(A)は実施例1、(B)は実施例2、(C)は実施例3の結果を示す。3 is a photograph showing the appearance of a resin composition after light irradiation, in which (A) shows the results of Example 1, (B) shows the results of Example 2, and (C) shows the results of Example 3. 接着力測定結果を示すグラフである。It is a graph showing adhesive force measurement results. 実施例3及び比較例1の高温での貯蔵弾性率、損失弾性率及びtanδの結果を示し、(A)は実施例3、(B)は比較例1の結果を示す。The results of storage modulus, loss modulus, and tan δ at high temperatures of Example 3 and Comparative Example 1 are shown, (A) shows the results of Example 3, and (B) shows the results of Comparative Example 1. 接着力測定後のせん断試験片の外観を示す写真であり、(a)は測定前のせん断試験片の外観を示し、(b)は光未照射サンプルの剥離状態を示し、(c)は光照射後の剥離状態を示し、(d)は(c)で示すせん断試験片の洗浄後の外観を示す。It is a photograph showing the appearance of the shear test piece after adhesion strength measurement, (a) shows the appearance of the shear test piece before measurement, (b) shows the peeling state of the sample that has not been exposed to light, and (c) shows the peeling state of the sample that has not been exposed to light. The peeled state after irradiation is shown, and (d) shows the appearance of the shear test piece shown in (c) after cleaning.
 以下、本開示の実施形態について詳細に説明する。ただし、本開示は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiments.
 本明細書において、「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。 In this specification, the term "process" is used not only to refer to an independent process, but also to include any process that achieves the intended effect even if it cannot be clearly distinguished from other processes. It will be done. A numerical range indicated using "~" indicates a range that includes the numerical values written before and after "~" as the minimum and maximum values, respectively.
 本明細書において、樹脂材料中又は樹脂組成物中の各成分の含有量は、当該各成分に該当する物質が複数存在する場合、特に断らない限り、当該複数の物質の合計量を意味する。例示材料は特に断らない限り、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In this specification, the content of each component in the resin material or resin composition means the total amount of the plurality of substances, unless otherwise specified, when there are multiple substances corresponding to each component. Unless otherwise specified, the illustrated materials may be used alone or in combination of two or more.
 本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、AとBとのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書において、「(メタ)アクリロイル基」は、メタクリロイル基又はアクリロイル基である。本明細書において、「重量平均分子量」及び「数平均分子量」は、ゲルパーミエーションクロマトグラフィー法(GPC)で標準ポリスチレンによる検量線を用いたポリスチレン換算値である。本明細書において、「室温」は、25±10℃を意味する。 In the numerical ranges described step by step in this specification, the upper limit or lower limit of the numerical range of one step may be replaced with the upper limit or lower limit of the numerical range of another step. In the numerical ranges described in this specification, the upper limit or lower limit of the numerical range may be replaced with the value shown in the Examples. "A or B" may include either A or B, or may include both. In this specification, a "(meth)acryloyl group" is a methacryloyl group or an acryloyl group. In this specification, "weight average molecular weight" and "number average molecular weight" are polystyrene equivalent values determined by gel permeation chromatography (GPC) using a standard polystyrene calibration curve. As used herein, "room temperature" means 25±10°C.
 本明細書において、「光軟化性」は、光照射によって軟化する性質を意味する。軟化する性質には、例えば、弾性率が低下する、及び、損失正接(tanδ)が上昇する等が含まれる。本明細書において、「樹脂組成物の軟化物」は、光照射前の樹脂組成物を基準として、弾性率が低下した状態のもの、及び、損失正接(tanδ)が上昇した状態のもの等を意味する。光軟化性を示す樹脂組成物は、光照射によって軟化することでゲル状物又は液状物を与える組成物を意味する。 As used herein, "photosoftening" means the property of softening upon irradiation with light. The softening property includes, for example, a decrease in elastic modulus and an increase in loss tangent (tan δ). In this specification, "softened resin composition" refers to a resin composition in which the elastic modulus has decreased, a loss tangent (tan δ) has increased, etc., based on the resin composition before light irradiation. means. A resin composition exhibiting photosoftening property means a composition that gives a gel-like material or a liquid material by being softened by light irradiation.
 本実施形態に係る樹脂材料は、(メタ)アクリロイル基を有する化合物Aと、チオール基を2個以上有する化合物Bと、5%重量減少温度が200℃以上である光ラジカル発生剤と、を含有する。化合物A及び化合物Bの少なくとも一方は分子内にジスルフィド結合(-S-S-)を有する。 The resin material according to the present embodiment contains a compound A having a (meth)acryloyl group, a compound B having two or more thiol groups, and a photoradical generator having a 5% weight loss temperature of 200°C or higher. do. At least one of Compound A and Compound B has a disulfide bond (-SS-) in the molecule.
 化合物Aは、(メタ)アクリロイル基を3個以上有する化合物A-1を含む。化合物A-1は、メタクリロイル基及びアクリロイル基からなる群より選択される1種以上の基を1分子中に3個以上有する化合物である。化合物A-1の(メタ)アクリロイル基の数の上限は、1分子あたり、例えば、10以下、8以下、6以下、又は4以下であってよい。化合物A-1は、(メタ)アクリロイル基を3個有する化合物であってよい。 Compound A includes compound A-1 having three or more (meth)acryloyl groups. Compound A-1 is a compound having three or more groups in one molecule of one or more types selected from the group consisting of methacryloyl groups and acryloyl groups. The upper limit of the number of (meth)acryloyl groups in compound A-1 may be, for example, 10 or less, 8 or less, 6 or less, or 4 or less per molecule. Compound A-1 may be a compound having three (meth)acryloyl groups.
 化合物A-1の分子量又は重量平均分子量は、150以上、500以上、又は1000以上であってよく、50000以下、10000以下、又は2000以下であってよい。 The molecular weight or weight average molecular weight of compound A-1 may be 150 or more, 500 or more, or 1000 or more, and may be 50000 or less, 10000 or less, or 2000 or less.
 化合物A-1は、例えば、トリメチロールプロパン骨格を有し、かつ、(メタ)アクリロイル基を3個以上有する化合物、ペンタエリスリトール骨格を有し、かつ、(メタ)アクリロイル基を3個以上有する化合物、及び、イソシアヌレート骨格を有し、かつ、(メタ)アクリロイル基を3個以上有する化合物が挙げられる。 Compound A-1 is, for example, a compound having a trimethylolpropane skeleton and three or more (meth)acryloyl groups, or a compound having a pentaerythritol skeleton and three or more (meth)acryloyl groups. and a compound having an isocyanurate skeleton and three or more (meth)acryloyl groups.
 トリメチロールプロパン骨格を有する化合物A-1は、例えば、下記式(a1)で表される化合物であってよい。
Compound A-1 having a trimethylolpropane skeleton may be, for example, a compound represented by the following formula (a1).
 式(a1)中、Rは、水素原子又はメチル基を示し、Lはアルキレン基を示す。n1、n2及びn3は、それぞれ独立して、0又は1以上の整数を示す。複数存在するRはそれぞれ同一であっても異なっていてもよい。Lで表されるアルキレン基の炭素数は、2以上であってよく、10以下、6以下、又は3以下であってよい。Lで表されるアルキレン基は、例えば、エチレン基(-CH-CH-)であってよい。Lは複数存在する場合、それぞれ同一であっても異なっていてもよい。n1、n2及びn3の合計n1+n2+n3は、例えば、0以上、又は6以上であってよく、27以下、又は20以下であってよく、9であってよい。 In formula (a1), R 1 represents a hydrogen atom or a methyl group, and L 1 represents an alkylene group. n1, n2 and n3 each independently represent an integer of 0 or 1 or more. A plurality of R 1 's may be the same or different. The number of carbon atoms in the alkylene group represented by L 1 may be 2 or more, 10 or less, 6 or less, or 3 or less. The alkylene group represented by L 1 may be, for example, an ethylene group (-CH 2 -CH 2 -). When there is a plurality of L 1 's, each may be the same or different. The sum n1+n2+n3 of n1, n2, and n3 may be, for example, 0 or more, 6 or more, 27 or less, 20 or less, or 9.
 (メタ)アクリロイル基を3個有する化合物A-1の市販品としては、例えば、ファンクリルFA-133A(昭和電工マテリアルズ株式会社製)、FA-132A、FA-137A、FA-133M、FA-137M(いずれも昭和電工マテリアルズ株式会社製)、NKエステルA-TMPT、NKエステルA-TMPT-9EO、NKエステルAT-20E、NKエステルA-GLY-3E、NKエステルA-GLY-9E、NKエステルA-GLY-20E、NKエステルA-9300(いずれも新中村化学工業株式会社製)TMPTA、EBECRYL160S、OTA480(いずれもダイセル・オルニクス株式会社製)ビスコート#295、ビスコート#300(いずれも大阪有機化学工業株式会社)、EBECRYL4513、EBECRYL8465、EBECRYL9260、EBECRYL8701、KRM8667、及びKRM8296(いずれもダイセル・オルニクス株式会社製)が挙げられる。(メタ)アクリロイル基を4個以上有する化合物A-1の市販品としては、EBECRYL4265、EBECRYL4587、EBECRYL4666、EBECRYL8210、EBECRYL8606、EBECRYL1290、EBECRYL5129、EBECRYL8254、EBECRYL8301R、KRM8200、KRM8904、KRM8452、EBECRYL220(いずれもダイセル・オルニクス株式会社製)、NKエステルA-TMMT、NKエステルATM-35E、NKエステルAD-TMP、NKエステルA-DPH、NKエステルA-9550、NKエステルA-DPH-12E、及びNKエステルTPOA-50(いずれも新中村化学工業株式会社製)等が挙げられる。 Commercially available products of compound A-1 having three (meth)acryloyl groups include FANCRYL FA-133A (manufactured by Showa Denko Materials Co., Ltd.), FA-132A, FA-137A, FA-133M, FA- 137M (all manufactured by Showa Denko Materials Co., Ltd.), NK Ester A-TMPT, NK Ester A-TMPT-9EO, NK Ester AT-20E, NK Ester A-GLY-3E, NK Ester A-GLY-9E, NK Ester A-GLY-20E, NK Ester A-9300 (all manufactured by Shin-Nakamura Chemical Co., Ltd.) TMPTA, EBECRYL160S, OTA480 (all manufactured by Daicel Ornyx Co., Ltd.) Viscoat #295, Viscoat #300 (all manufactured by Osaka Organic Co., Ltd.) Chemical Industry Co., Ltd.), EBECRYL4513, EBECRYL8465, EBECRYL9260, EBECRYL8701, KRM8667, and KRM8296 (all manufactured by Daicel Ornyx Corporation). Commercially available compounds A-1 having four or more (meth)acryloyl groups include EBECRYL4265, EBECRYL4587, EBECRYL4666, EBECRYL8210, EBECRYL8606, EBECRYL1290, EBECRYL5129, EBECRYL8254, EBECRYL RYL8301R, KRM8200, KRM8904, KRM8452, EBECRYL220 (all Daicel Ornyx Co., Ltd.), NK Ester A-TMMT, NK Ester ATM-35E, NK Ester AD-TMP, NK Ester A-DPH, NK Ester A-9550, NK Ester A-DPH-12E, and NK Ester TPOA-50 (all manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), etc.
 化合物Aは、(メタ)アクリロイル基を2個有する化合物A-2を更に含んでいてよい。化合物A-2は、メタクリロイル基及びアクリロイル基からなる群より選択される1種以上の基を2個有する化合物である。化合物A-2は、2個の(メタ)アクリロイル基を連結する連結基を更に含む。 Compound A may further contain compound A-2 having two (meth)acryloyl groups. Compound A-2 is a compound having two of one or more groups selected from the group consisting of methacryloyl groups and acryloyl groups. Compound A-2 further contains a linking group that links the two (meth)acryloyl groups.
 化合物A-2の分子量又は重量平均分子量は、150以上、500以上、又は1000以上であってよく、50000以下、10000以下、又は2000以下であってよい。 The molecular weight or weight average molecular weight of compound A-2 may be 150 or more, 500 or more, or 1000 or more, and may be 50000 or less, 10000 or less, or 2000 or less.
 化合物A-2は、例えば、下記式(a2)で表される化合物であってよい。
Compound A-2 may be, for example, a compound represented by the following formula (a2).
 式(a2)中、Rは、水素原子又はメチル基を示す。Lはアルキレン基を示す。複数存在するRはそれぞれ同一であっても異なっていてもよい。Lで表されるアルキレン基の炭素数は、2以上であってよく、10以下、6以下、又は3以下であってよい。Lで表されるアルキレン基は、例えば、エチレン基(-CH-CH-)であってよい。mは、1以上の整数を示す。mは、2以上又は3以上であってよい。mの上限は、例えば、10以下、8以下、6以下、又は5以下であってよい。Lは複数存在する場合、それぞれ同一であっても異なっていてもよい。 In formula (a2), R 2 represents a hydrogen atom or a methyl group. L 2 represents an alkylene group. A plurality of R 2 's may be the same or different. The number of carbon atoms in the alkylene group represented by L 2 may be 2 or more, 10 or less, 6 or less, or 3 or less. The alkylene group represented by L 2 may be, for example, an ethylene group (-CH 2 -CH 2 -). m represents an integer of 1 or more. m may be 2 or more or 3 or more. The upper limit of m may be, for example, 10 or less, 8 or less, 6 or less, or 5 or less. When there is a plurality of L2 's, each of them may be the same or different.
 化合物A-2の市販品としては、例えば、ファンクリルFA-220(昭和電工マテリアルズ株式会社製)、NKエステルHD-N、NKエステルNOD-N、NKエステルDOD-N、NKエステルNPG、NKエステル701、NKエステル2G、NKエステル3G、NKエステル4G、NKエステル9G、NKエステル14G、NKエステル23G、NKエステル9PG、NKエステルDCP、NKエステルBPE-80N、NKエステルBPE-100、NKエステルBPE-200、NKエステルBPE-500、NKエステルBPE-900、NKエステルBPE-1300N、NKエステルA-HD-N、NKエステルA-NOD-N、NKエステルA-DOD-N、NKエステルA-NPG-N、NKエステル701A、NKエステルA-200、NKエステルA-400、NKエステルA-600、NKエステルA-1000、NKエステルAPG-200、NKエステルAPG-400、NKエステルAPG-700、NKエステルA-PTMG65、NKエステルA-DCP、NKエステルABE-300、NKエステルA-BPE-4、NKエステルA-BPE-10、NKエステルA-BPE-20(いずれも新中村化学工業株式会社製)、EBECRYL210、EBECRYL230、EBECRYL270、EBECRYL4858、EBECRYL8402、EBECRYL8804、EBECRYL8807、EBECRYL9270、EBECRYL8191、紫光TMUV-2000B、紫光TMUV-3000B、紫光TMUV-3200B、紫光TMUV-3300B、紫光TMUV-3310B、紫光TMUV-3500BA、紫光TMUV-3520EA、紫光TMUV-3700B、及び紫光TMUV-6640B(いずれも三菱ケミカル株式会社製)等が挙げられる。 Commercially available products of compound A-2 include, for example, Fancryl FA-220 (manufactured by Showa Denko Materials Co., Ltd.), NK Ester HD-N, NK Ester NOD-N, NK Ester DOD-N, NK Ester NPG, and NK Ester. Ester 701, NK Ester 2G, NK Ester 3G, NK Ester 4G, NK Ester 9G, NK Ester 14G, NK Ester 23G, NK Ester 9PG, NK Ester DCP, NK Ester BPE-80N, NK Ester BPE-100, NK Ester BPE -200, NK Ester BPE-500, NK Ester BPE-900, NK Ester BPE-1300N, NK Ester A-HD-N, NK Ester A-NOD-N, NK Ester A-DOD-N, NK Ester A-NPG -N, NK Ester 701A, NK Ester A-200, NK Ester A-400, NK Ester A-600, NK Ester A-1000, NK Ester APG-200, NK Ester APG-400, NK Ester APG-700, NK Ester A-PTMG65, NK Ester A-DCP, NK Ester ABE-300, NK Ester A-BPE-4, NK Ester A-BPE-10, NK Ester A-BPE-20 (all manufactured by Shin-Nakamura Chemical Co., Ltd.) ), EBECRYL210, EBECRYL230, EBECRYL270, EBECRYL4858, EBECRYL8402, EBECRYL8804, EBECRYL8807, EBECRYL9270, EBECRYL8191, Shiko TM UV-2000B, Shiko TM UV-3000B, Shiko TM UV-3200B, Shiko TM UV-3300B, Shiko TM UV - 3310B, Examples include Shiko TM UV-3500BA, Shiko TM UV-3520EA, Shiko TM UV-3700B, and Shiko TM UV-6640B (all manufactured by Mitsubishi Chemical Corporation).
 化合物Aの含有量(化合物A-1及び化合物A-2の合計含有量)は、樹脂材料の総量を基準として、1質量%以上、3質量%以上、又は5質量%以上であってよく、99質量%以下、97質量%以下、又は95質量%以下であってよい。 The content of compound A (total content of compound A-1 and compound A-2) may be 1% by mass or more, 3% by mass or more, or 5% by mass or more, based on the total amount of the resin material, It may be 99% by weight or less, 97% by weight or less, or 95% by weight or less.
 化合物A-1の含有量は、樹脂材料の総量を基準として、1質量%以上、3質量%以上、又は5質量%以上であってよく、90質量%以下、50質量%以下、又は15質量%以下であってよい。 The content of compound A-1 may be 1% by mass or more, 3% by mass or more, or 5% by mass or more, and 90% by mass or less, 50% by mass or less, or 15% by mass, based on the total amount of the resin material. % or less.
 化合物A-2の含有量は、樹脂材料の総量を基準として、1質量%以上、3質量%以上、又は5質量%以上であってよく、99質量%以下、97質量%以下、又は95質量%以下であってよい。 The content of compound A-2 may be 1% by mass or more, 3% by mass or more, or 5% by mass or more, and 99% by mass or less, 97% by mass or less, or 95% by mass, based on the total amount of the resin material. % or less.
 化合物Aの総モル数(化合物A-1及び化合物A-2の総モル数)に対する、化合物A-1のモル数の比は、0.05以上、0.1以上、又は0.2以上であってよく、0.5以下、0.4以下、又は0.3以下であってよい。化合物Aの総モル数に対する、化合物A-1のモル数の比が0.5以下であると光軟化性が更に向上する。化合物Aの総モル数に対する、化合物A-1のモル数の比が0.05以上であると熱可塑性がより低下し、高温での機械的特性に更に優れる。 The ratio of the number of moles of compound A-1 to the total number of moles of compound A (the total number of moles of compound A-1 and compound A-2) is 0.05 or more, 0.1 or more, or 0.2 or more. It may be 0.5 or less, 0.4 or less, or 0.3 or less. When the ratio of the number of moles of compound A-1 to the total number of moles of compound A is 0.5 or less, the photosoftening property is further improved. When the ratio of the number of moles of Compound A-1 to the total number of moles of Compound A is 0.05 or more, thermoplasticity is further reduced and mechanical properties at high temperatures are further improved.
 化合物Aが分子内にジスルフィド結合を有する場合、化合物A-1又は化合物A-2中のジスルフィド結合の数は、例えば、1~1000、又は4~50であってよい。 When compound A has a disulfide bond in the molecule, the number of disulfide bonds in compound A-1 or compound A-2 may be, for example, 1 to 1000 or 4 to 50.
 化合物Bは、1分子中にチオール基(-SH)を2個以上有する化合物である。1分子中あたりの化合物Bのチオール基の数の上限は、例えば、10以下、8以下、6以下、4以下又は3以下であってよい。化合物Bは、チオール基を2個有する化合物であってよい。 Compound B is a compound having two or more thiol groups (-SH) in one molecule. The upper limit of the number of thiol groups of compound B per molecule may be, for example, 10 or less, 8 or less, 6 or less, 4 or less, or 3 or less. Compound B may be a compound having two thiol groups.
 化合物Bが分子内にジスルフィド結合を有する場合、化合物B中のジスルフィド結合の数は、例えば、1~1000、又は4~50であってよい。 When compound B has a disulfide bond in the molecule, the number of disulfide bonds in compound B may be, for example, 1 to 1000 or 4 to 50.
 化合物Bの分子量又は重量平均分子量は、100以上、1000以上、又は3000以上であってよく、50000以下、30000以下、又は10000以下であってよい。 The molecular weight or weight average molecular weight of compound B may be 100 or more, 1000 or more, or 3000 or more, and may be 50000 or less, 30000 or less, or 10000 or less.
 化合物Bは、直鎖状の分子鎖と末端基とを有し、当該分子鎖中にジスルフィド結合を有する化合物(例えば、ポリマー又はオリゴマー)であってよい。この場合、化合物B中の末端基がチオール基であってよい。化合物Bがこのような化合物である場合、優れた光軟化性を有する硬化物をより一層形成しやすくなる。化合物B中の分子鎖は、ジスルフィド結合とポリエーテル鎖とを含んでいてよく、ジスルフィド結合とポリエーテル鎖とからなっていてよい。 Compound B has a linear molecular chain and a terminal group, and may be a compound (for example, a polymer or oligomer) having a disulfide bond in the molecular chain. In this case, the terminal group in compound B may be a thiol group. When Compound B is such a compound, it becomes even easier to form a cured product having excellent photosoftening properties. The molecular chain in compound B may contain a disulfide bond and a polyether chain, or may consist of a disulfide bond and a polyether chain.
 化合物Bは、例えば、式(1):HS-(A-S-S)-A-SHで表される化合物(化合物(1))であってよい。式中、Aは、ポリエーテル鎖を示す。複数存在するAは、互いに同一であっても異なっていてもよい。pは、1以上の整数を示す。pは、例えば、1以上、又は4以上であってよく、1000以下であってもよい。化合物Bは、化合物(1)を鎖延長した化合物であってもよい。 Compound B may be, for example, a compound (compound (1)) represented by formula (1): HS-(A-S-S) p -A-SH. In the formula, A represents a polyether chain. A plurality of A's may be the same or different. p represents an integer of 1 or more. p may be, for example, 1 or more, 4 or more, and 1000 or less. Compound B may be a chain-extended compound of compound (1).
 Aとしてのポリエーテル鎖は、例えば、ポリオキシアルキレン鎖であってよい。Aとしてのポリエーテル鎖は、例えば、-A-O-A-O-A-で表される基であってよい。A~Aは、それぞれ独立に、アルキレン基であってよく、炭素数1~2のアルキレン基(例えば、メチレン基、エチレン基)であってよい。Aとしてのポリエーテル鎖としては、例えば、-CHCH-O-CH-O-CHCH-等が挙げられる。 The polyether chain as A may be, for example, a polyoxyalkylene chain. The polyether chain as A may be, for example, a group represented by -A 1 -O-A 2 -O-A 3 -. A 1 to A 3 may each independently be an alkylene group, and may be an alkylene group having 1 to 2 carbon atoms (eg, methylene group, ethylene group). Examples of the polyether chain as A include -CH 2 CH 2 -O-CH 2 -O-CH 2 CH 2 -.
 化合物Bの市販品としては、例えば、チオコールLPシリーズ(ジスルフィド結合を有するジチオール、東レ・ファインケミカル株式会社製)が挙げられる。化合物Bは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。化合物Bは、末端に反応性官能基と、ジスルフィド結合とを有する原料化合物の反応性官能基をチオール基に変換することによって得ることもできる。原料化合物中の反応性官能基としては、カルボキシ基、ヒドロキシ基等が挙げられる。末端に反応性官能基と、ジスルフィド結合とを有する原料化合物としては、3,3’-ジチオジプロピオン酸、ジチオジエタノール、シスタミン等が挙げられる。 Commercially available products of Compound B include, for example, Thiokol LP series (dithiol having a disulfide bond, manufactured by Toray Fine Chemical Co., Ltd.). Compound B may be used alone or in combination of two or more. Compound B can also be obtained by converting the reactive functional group of a starting compound having a reactive functional group and a disulfide bond at its terminal into a thiol group. Examples of the reactive functional group in the raw material compound include a carboxy group and a hydroxy group. Examples of the raw material compound having a reactive functional group and a disulfide bond at the terminal include 3,3'-dithiodipropionic acid, dithiodiethanol, and cystamine.
 化合物Bの含有量は、樹脂材料の全質量を基準として、1質量%以上、3質量%以上、5質量%以上、30質量%以上、又は50質量%以上であってよく、99質量%以下、97質量%以下又は95質量%以下であってよい。 The content of compound B may be 1% by mass or more, 3% by mass or more, 5% by mass or more, 30% by mass or more, or 50% by mass or more, and 99% by mass or less, based on the total mass of the resin material. , 97% by mass or less, or 95% by mass or less.
 化合物A中の(メタ)アクリロイル基のモル数に対する、化合物B中のチオール基のモル数の比は、例えば、0.90以上、又は0.95以上であってよく、1.1以下、又は1.05以下であってよい。化合物A中の(メタ)アクリロイル基のモル数に対する、化合物B中のチオール基のモル数の比が上述した範囲内にあると、光軟化性の低下が更に抑制されるとともに、樹脂組成物の保管安定性の低下も更に抑制される。 The ratio of the number of moles of the thiol group in compound B to the number of moles of the (meth)acryloyl group in compound A may be, for example, 0.90 or more, or 0.95 or more, and 1.1 or less, or It may be 1.05 or less. When the ratio of the number of moles of thiol group in compound B to the number of moles of (meth)acryloyl group in compound A is within the above-mentioned range, the decrease in photosoftening property is further suppressed, and the resin composition is Deterioration in storage stability is also further suppressed.
 光ラジカル発生剤は、光照射によって、ラジカルを発生する成分である。光ラジカル発生剤は、例えば、光重合開始剤として用いられる成分を使用することができる。光ラジカル発生剤としては、光照射によって他の分子から水素を引き抜いてラジカルを生成する水素引き抜き型光ラジカル重合開始剤、光照射によってその物自体が光開裂して2つのラジカルを生成する分子内開裂型光ラジカル重合開始剤等が挙げられる。光ラジカル発生剤は、光軟化性がより優れたものとなることから、分子内開裂型光ラジカル重合開始剤であってよい。 A photo-radical generator is a component that generates radicals when irradiated with light. As the photoradical generator, for example, a component used as a photopolymerization initiator can be used. Photo-radical generators include hydrogen-extracting photo-radical polymerization initiators that generate radicals by extracting hydrogen from other molecules when irradiated with light, and intramolecular photo-radical polymerization initiators that generate two radicals by photo-cleaving itself upon irradiation with light. Examples include cleavable photoradical polymerization initiators. The photo-radical generator may be an intramolecularly cleavable photo-radical polymerization initiator since it provides better photo-softening properties.
 水素引き抜き型光ラジカル発生剤としては、例えば、ヘキサアリールビスイミダゾール(HABI)化合物、ベンゾフェノン化合物、チオキサントン化合物、フルオレノン化合物、α-ジケトン化合物等が挙げられる。 Examples of the hydrogen abstraction type photoradical generator include hexaarylbisimidazole (HABI) compounds, benzophenone compounds, thioxanthone compounds, fluorenone compounds, α-diketone compounds, and the like.
 分子内開裂型光ラジカル発生剤としては、ベンジルケタール系光ラジカル発生剤、α-アミノアルキルフェノン系光ラジカル発生剤、α-ヒドロキシアルキルフェノン系光ラジカル発生剤、α-ヒドロキシアセトフェノン系光ラジカル発生剤、アシルホスフィンオキシド系光ラジカル発生剤等が挙げられる。 Intramolecular cleavage type photoradical generators include benzyl ketal photoradical generators, α-aminoalkylphenone photoradical generators, α-hydroxyalkylphenone photoradical generators, and α-hydroxyacetophenone photoradical generators. , acylphosphine oxide photoradical generators, and the like.
 光ラジカル発生剤の5%重量減少温度は、200℃以上である。5%重量減少温度は、昇温しながら試料の質量変化を測定する熱重量分析において、試料の質量が初期から5%減少した時点の温度である。光ラジカル発生剤の5%重量減少温度は、樹脂組成物の耐熱性が更に向上することから、210℃以上、220℃以上、230℃以上、240℃以上、又は250℃以上であってよく、340℃以下、330℃以下、320℃以下、310℃以下、又は300℃以下であってよい。 The 5% weight loss temperature of the photoradical generator is 200°C or higher. The 5% weight loss temperature is the temperature at which the mass of the sample decreases by 5% from the initial value in thermogravimetric analysis in which changes in the mass of the sample are measured while increasing the temperature. The 5% weight loss temperature of the photoradical generator may be 210° C. or higher, 220° C. or higher, 230° C. or higher, 240° C. or higher, or 250° C. or higher, since the heat resistance of the resin composition is further improved. The temperature may be 340°C or lower, 330°C or lower, 320°C or lower, 310°C or lower, or 300°C or lower.
 5%重量減少温度が200℃以上である光ラジカル発生剤としては、例えば、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(5%重量減少温度:204℃)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン(5%重量減少温度:220℃)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(5%重量減少温度:248℃)、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モリフォリン-4-イル-フェニル)-ブタン-1-オン(5%重量減少温度:248℃)、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(5%重量減少温度:241℃)、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(5%重量減少温度:253℃)、及びそれらの重合物が挙げられる。 Examples of the photoradical generator having a 5% weight loss temperature of 200°C or higher include 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one. (5% weight loss temperature: 204°C), 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl}-2-methyl-propan-1-one (5% weight loss temperature: 220°C), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 (5% weight loss temperature: 248°C), 2-dimethylamino-2 -(4-Methyl-benzyl)-1-(4-morpholin-4-yl-phenyl)-butan-1-one (5% weight loss temperature: 248°C), bis(2,4,6-trimethylbenzoyl) -phenylphosphine oxide (5% weight loss temperature: 241°C), 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (5% weight loss temperature: 253°C), and polymers thereof.
 光ラジカル発生剤は、硬化阻害が更に抑制される観点、硬化時の貯蔵弾性率の低下が更に抑制される観点、樹脂成分に対する溶解性の観点等から、α-アミノアルキルフェノン系光ラジカル発生剤であってよく、2-(ジメチルアミノ)-2-(4-メチルベンジル)-1-[4-モルホリン-4-イル-フェニル)ブタン-1-オンであってよい。 The photo-radical generator is an α-aminoalkylphenone-based photo-radical generator from the viewpoint of further suppressing curing inhibition, further suppressing the decrease in storage modulus during curing, and solubility in resin components. and may be 2-(dimethylamino)-2-(4-methylbenzyl)-1-[4-morpholin-4-yl-phenyl)butan-1-one.
 光ラジカル発生剤は、光軟化性が更に優れたものとなることから、光照射によって、光ラジカル発生剤1分子あたり2分子以上のモノラジカルを生じ、ジラジカルを生じない化合物であってよい。このような光ラジカル発生剤としては、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1- プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モリフォリン-4-イル-フェニル)-ブタン-1-オン、及び2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイドが挙げられる。 The photo-radical generator has even better photo-softening properties, so it may be a compound that generates two or more monoradicals per molecule of the photo-radical generator when irradiated with light, but does not generate diradicals. Examples of such photoradical generators include 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-hydroxy-2-methyl-1-phenyl. -Propan-1-one, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy -2-Methyl-1-propan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, 2-dimethylamino-2-(4-methyl-benzyl) -1-(4-morpholin-4-yl-phenyl)-butan-1-one, and 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
 光ラジカル発生剤は、光照射によってベンゾイルラジカルを与える化合物であってよい。光照射によってベンゾイルラジカルを与える化合物とは、光反応によって開裂してベンゾイルラジカルを生じる化合物である。光照射によってベンゾイルラジカルを与える化合物としては、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モリフォリン-4-イル-フェニル)-ブタン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、及びビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドが挙げられる。 The photoradical generator may be a compound that provides benzoyl radicals upon irradiation with light. A compound that provides benzoyl radicals upon irradiation with light is a compound that is cleaved by photoreaction to produce benzoyl radicals. Examples of compounds that give benzoyl radicals when irradiated with light include 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-hydroxy-2-methyl-1- Phenyl-propan-1-one, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 1-[4-(2-hydroxyethoxy)-phenyl]-2- Hydroxy-2-methyl-1-propan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1,2-dimethylamino-2-(4-methyl-benzyl )-1-(4-morpholin-4-yl-phenyl)-butan-1-one, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and bis(2,4,6-trimethylbenzoyl)- Examples include phenylphosphine oxide.
 光ラジカル発生剤の含有量は、樹脂材料の総量を基準として、3質量%以上、5質量%以上、又は10質量%以上であってよく、30質量%以下、20質量%以下、又は15質量%以下であってよい。 The content of the photoradical generator may be 3% by mass or more, 5% by mass or more, or 10% by mass or more, and 30% by mass or less, 20% by mass or less, or 15% by mass, based on the total amount of the resin material. % or less.
 化合物A-1のモル数に対する光ラジカル発生剤のモル数の比は、光軟化性がより向上することから、1以上、1.5以上、2以上、3以上、5以上、8以上、10以上、12以上、14以上、又は16以上であってよい。化合物A-1のモル数に対する光ラジカル発生剤のモル数の比は、例えば、20以下、18以下、16以下、14以下、12以下、10以下、8以下、6以下、4以下、又は2以下であってよい。 The ratio of the number of moles of the photoradical generator to the number of moles of compound A-1 is 1 or more, 1.5 or more, 2 or more, 3 or more, 5 or more, 8 or more, 10 or more, since the photosoftening property is further improved. or more, 12 or more, 14 or more, or 16 or more. The ratio of the number of moles of the photoradical generator to the number of moles of compound A-1 is, for example, 20 or less, 18 or less, 16 or less, 14 or less, 12 or less, 10 or less, 8 or less, 6 or less, 4 or less, or 2 It may be the following.
 化合物Bのモル数に対する光ラジカル発生剤のモル数の比は、光軟化性がより向上することから、0.2以上、0.5以上、0.7以上、0.9以上、又は1.1以上であってよい。化合物Bのモル数に対する光ラジカル発生剤のモル数の比は、3.0以下、2.0以下、又は1.5以下であってよい。 The ratio of the number of moles of the photoradical generator to the number of moles of compound B is 0.2 or more, 0.5 or more, 0.7 or more, 0.9 or more, or 1. It may be 1 or more. The ratio of the number of moles of the photoradical generator to the number of moles of compound B may be 3.0 or less, 2.0 or less, or 1.5 or less.
 化合物A-1のモル数に対する、ベンゾイルラジカルのモル数の比は、光軟化性がより向上することから、21/20以上であってよい。化合物A-1のモル数に対する、ベンゾイルラジカルのモル数の比は、光軟化性がより向上することから、2以上、3以上、又は4以上であってよい。化合物A-1のモル数に対する、ベンゾイルラジカルのモル数の比は、例えば、20以下、15以下、12以下、10以下、8以下、6以下、4以下、又は2以下であってよい。 The ratio of the number of moles of benzoyl radical to the number of moles of compound A-1 may be 21/20 or more, since the photosoftening property is further improved. The ratio of the number of moles of benzoyl radical to the number of moles of compound A-1 may be 2 or more, 3 or more, or 4 or more, since the photosoftening property is further improved. The ratio of the number of moles of benzoyl radical to the number of moles of compound A-1 may be, for example, 20 or less, 15 or less, 12 or less, 10 or less, 8 or less, 6 or less, 4 or less, or 2 or less.
 樹脂材料は、触媒を更に含んでいてもよい。触媒を更に含むことによって、化合物Aと、化合物Bとの反応が更に促進される。触媒としては、アミン化合物及びリン化合物等が挙げられる。 The resin material may further contain a catalyst. By further including a catalyst, the reaction between compound A and compound B is further promoted. Examples of the catalyst include amine compounds and phosphorus compounds.
 アミン化合物は、例えば、三級アミン化合物、又は、二級アミン化合物であってよい。アミン化合物としては、例えば、ジシアンジアミド、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリ-n-オクチルアミン、ジメチルエチルアミン、ジメチルプロピルアミン、ジメチルブチルミアン、ジメチル-n-オクチルアミン、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、ベンジルジメチルアミン、4-メチル-N,N-ジメチルベンジルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、及び4-ジメチルアミノピリジンが挙げられる。 The amine compound may be, for example, a tertiary amine compound or a secondary amine compound. Examples of amine compounds include dicyandiamide, trimethylamine, triethylamine, tripropylamine, tributylamine, tri-n-octylamine, dimethylethylamine, dimethylpropylamine, dimethylbutylmian, dimethyl-n-octylamine, 1,4-diazabicyclo [2.2.2] Octane, 1,8-diazabicyclo[5.4.0]undec-7-ene, benzyldimethylamine, 4-methyl-N,N-dimethylbenzylamine, 2,4,6-tris (dimethylaminomethyl)phenol and 4-dimethylaminopyridine.
 触媒は、室温での速硬化がより容易になること、オープンタイムの調節がより容易になること等から、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、又はその塩、リン化合物であってよい。 The catalyst is 1,8-diazabicyclo[5.4.0]undec-7-ene or a salt thereof, as it facilitates rapid curing at room temperature and makes it easier to control open time. It may be a phosphorus compound.
 触媒の含有量は、樹脂材料の総量を基準として、0.02質量%以上、0.1質量%以上、又は1質量%以上であってよく、3質量%以下、2.5質量%以下、又は2質量%以下であってよい。 The content of the catalyst may be 0.02% by mass or more, 0.1% by mass or more, or 1% by mass or more, and 3% by mass or less, 2.5% by mass or less, based on the total amount of the resin material. Or it may be 2% by mass or less.
 樹脂材料は、化合物A、化合物B、光ラジカル発生剤及び触媒に該当しない成分(その他の成分)をさらに含有していてもよい。その他の成分としては、例えば、可塑剤、タッキファイヤなどの粘着性付与剤、酸化防止剤、ロイコ染料、増感剤、カップリング剤等の密着性向上剤、重合禁止剤、光安定剤、消泡剤、フィラー、連鎖移動剤、チキソトロピー付与剤、難燃剤、離型剤、界面活性剤、滑剤、帯電防止剤などの添加剤が挙げられる。これらの添加剤は、公知のものを使用することができる。樹脂材料がその他の成分を含有する場合、その他の成分の含有量の総量は、樹脂材料の総量を基準として、0~95質量%、0.01~50質量%、又は0.1~10質量%であってよい。 The resin material may further contain components (other components) that do not correspond to the compound A, the compound B, the photoradical generator, and the catalyst. Other ingredients include, for example, tackifiers such as plasticizers and tackifiers, adhesion improvers such as antioxidants, leuco dyes, sensitizers, and coupling agents, polymerization inhibitors, light stabilizers, and quenchers. Additives include foaming agents, fillers, chain transfer agents, thixotropy agents, flame retardants, mold release agents, surfactants, lubricants, antistatic agents, and the like. Known additives can be used as these additives. When the resin material contains other components, the total amount of the other components is 0 to 95% by mass, 0.01 to 50% by mass, or 0.1 to 10% by mass based on the total amount of the resin material. It may be %.
 樹脂材料は、溶剤で希釈された樹脂材料のワニスとして用いてもよい。溶剤としては、例えば、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素;ヘキサン、ヘプタン等の脂肪族炭化水素;メチルシクロヘキサン等の環状アルカン;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン(NMP)等のアミドなどが挙げられる。ワニス中の固形分の含有量、つまり、ワニス中の溶剤以外の合計含有量は、ワニスの全質量を基準として、10~95質量%、又は15~70質量%、又は20~50質量%であってよい。 The resin material may be used as a varnish made of a resin material diluted with a solvent. Examples of the solvent include aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene, and p-cymene; aliphatic hydrocarbons such as hexane and heptane; cyclic alkanes such as methylcyclohexane; and tetrahydrofuran and 1,4-dioxane. Cyclic ethers; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, γ-butyrolactone; Examples include carbonic acid esters such as ethylene carbonate and propylene carbonate; amides such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone (NMP). The solid content in the varnish, that is, the total content other than the solvent in the varnish, is 10 to 95% by mass, or 15 to 70% by mass, or 20 to 50% by mass, based on the total mass of the varnish. It's good to be there.
 樹脂材料は、例えば、上述した各成分を混合又は混練する工程を備える方法によって調製することができる。混合及び混練は、通常の撹拌機、らいかい機、三本ロール、ボールミル、ビーズミル等の分散機を適宜、組み合わせて行うことができる。 The resin material can be prepared, for example, by a method that includes a step of mixing or kneading the above-mentioned components. Mixing and kneading can be carried out using an appropriate combination of dispersing machines such as a conventional stirrer, a sieve machine, a three-roll mill, a ball mill, and a bead mill.
 本実施形態に係る樹脂組成物は、化合物A及び化合物Bの反応生成物と、5%重量減少温度が200℃以上である光ラジカル発生剤と、を含有する。本実施形態に係る樹脂組成物は、上述した樹脂材料の硬化物である。化合物A、化合物B及び光ラジカル発生剤の具体的態様は、樹脂材料で述べた態様と同様である。 The resin composition according to the present embodiment contains a reaction product of Compound A and Compound B, and a photoradical generator whose 5% weight loss temperature is 200° C. or higher. The resin composition according to this embodiment is a cured product of the resin material described above. Specific embodiments of Compound A, Compound B, and the photoradical generator are the same as those described for the resin material.
 樹脂組成物を得る方法としては、例えば、上述した樹脂材料を反応させる方法が挙げられる。樹脂材料の反応温度は、例えば、0~200℃であってよく、30~150℃又は60~100℃であってもよい。上記反応温度に保持する時間は、例えば、0.1~168時間であってよく、72時間以下、24時間以下、12時間以下、6時間以下、4時間以下、3時間以下、又は2時間以下であってもよい。 Examples of the method for obtaining the resin composition include the method of reacting the resin materials described above. The reaction temperature of the resin material may be, for example, 0 to 200°C, 30 to 150°C, or 60 to 100°C. The time for maintaining the above reaction temperature may be, for example, 0.1 to 168 hours, 72 hours or less, 24 hours or less, 12 hours or less, 6 hours or less, 4 hours or less, 3 hours or less, or 2 hours or less. It may be.
 化合物A及び化合物Bの反応生成物は、より具体的には、化合物A中の(メタ)アクリロイル基と、化合物B中のチオール基とのMichael付加反応によって形成される。 More specifically, the reaction product of Compound A and Compound B is formed by a Michael addition reaction between the (meth)acryloyl group in Compound A and the thiol group in Compound B.
 化合物A及び化合物Bの反応生成物は、式(I):*-C(=O)-CHR-CH-S-*で表される構造と、ジスルフィド結合と、を有する。式(I)中、Rは水素原子又はメチル基を示し、*は結合手を示す。ジスルフィド結合は、反応生成物の主鎖及び/又は側鎖中に存在していてもよい。光軟化性が更に向上することから、ジスルフィド結合は、反応生成物の主鎖中に存在していてもよい。 The reaction product of compound A and compound B has a structure represented by formula (I): *-C(=O)-CHR-CH 2 -S-* and a disulfide bond. In formula (I), R represents a hydrogen atom or a methyl group, and * represents a bond. Disulfide bonds may be present in the main chain and/or side chain of the reaction product. A disulfide bond may be present in the main chain of the reaction product since the photosoftening property is further improved.
 化合物A及び化合物Bの反応生成物は、下記式(x1)で表される構造を含む化合物を含んでいてよい。
The reaction product of compound A and compound B may include a compound having a structure represented by the following formula (x1).
 式(x1)中、R、L、n1、n2及びn3は式(a1)と同義であり、A及びpは式(1)と同義であり、*は結合手を示す。式(x1)中において複数存在するR、L、A及びpはそれぞれ互いに同一であっても異なっていてもよい。 In formula (x1), R 1 , L 1 , n1, n2 and n3 have the same meanings as in formula (a1), A and p have the same meanings as in formula (1), and * indicates a bond. In formula (x1), a plurality of R 1 , L 1 , A and p may be the same or different from each other.
 化合物A及び化合物Bの反応生成物は、下記式(x2)で表される構造を含む化合物を含んでいてよい。
The reaction product of compound A and compound B may include a compound having a structure represented by the following formula (x2).
 式(x2)中、R、L、mは式(a2)と同義であり、A及びpは式(1)と同義であり、*は結合手を示す。式(x2)中において複数存在するR、A及びpは、互いに同一であっても異なっていてもよい。 In formula (x2), R 2 , L 2 , and m have the same meanings as in formula (a2), A and p have the same meanings as in formula (1), and * indicates a bond. In formula (x2), a plurality of R 2 , A and p may be the same or different.
 樹脂組成物の数平均分子量Mnは、1000以上、2000以上、3000以上、5000以上、6000以上、又は6500以上であってよく、200000以下、100000以下、又は、50000以下であってよい。 The number average molecular weight Mn of the resin composition may be 1000 or more, 2000 or more, 3000 or more, 5000 or more, 6000 or more, or 6500 or more, and may be 200000 or less, 100000 or less, or 50000 or less.
 樹脂組成物の重量平均分子量Mwは、1,000以上、3,000以上、5,000以上、10,000以上、15,000以上、20,000以上、25,000以上、30,000以上、又は40,000以上であってよく、1000,000以下、400,000以下、又は100,000以下であってよい。 The weight average molecular weight Mw of the resin composition is 1,000 or more, 3,000 or more, 5,000 or more, 10,000 or more, 15,000 or more, 20,000 or more, 25,000 or more, 30,000 or more, or 40,000 or more, and 1,000,000 or less, 400,000 or less, or 100,000 or less.
 樹脂組成物の貯蔵弾性率G’は、1kPa以上、10kPa以上、又は、100kPa以上であってよく、100000kPa以下、10000kPa以下、又は、2000kPa以下であってよい。 The storage modulus G' of the resin composition may be 1 kPa or more, 10 kPa or more, or 100 kPa or more, and may be 100000 kPa or less, 10000 kPa or less, or 2000 kPa or less.
 樹脂組成物の貯蔵弾性率G’は、後述する実施例に記載の方法によって測定することができる。 The storage modulus G' of the resin composition can be measured by the method described in the Examples below.
 樹脂組成物の5%重量減少温度Td5%は、樹脂組成物の耐熱性に更に優れることから、210℃以上、220℃以上、230℃以上、240℃以上、又は250℃以上であってよく、310℃以下、300℃以下、290℃以下、280℃以下、又は270℃以下であってよい。樹脂組成物の5%重量減少温度Td5%は、後述する実施例に記載の方法によって測定することができる。 The 5% weight loss temperature T d5% of the resin composition may be 210°C or higher, 220°C or higher, 230°C or higher, 240°C or higher, or 250°C or higher, since the resin composition has better heat resistance. , 310°C or less, 300°C or less, 290°C or less, 280°C or less, or 270°C or less. The 5% weight loss temperature T d5% of the resin composition can be measured by the method described in the Examples below.
 樹脂組成物の25℃におけるせん断接着力は、10N/cm以上、20N/cm以上、又は、50N/cm以上であってよく、樹脂組成物の100℃におけるせん断接着力は、10N/cm以上、又は、20N/cm以上であってよく、50N/cm以下であってよい。樹脂組成物のせん断接着力は、後述する実施例に記載の方法によって測定することができる。 The shear adhesive strength of the resin composition at 25°C may be 10 N/cm 2 or more, 20 N/cm 2 or more, or 50 N/cm 2 or more, and the shear adhesive strength of the resin composition at 100°C may be 10 N/cm 2 or more, or 50 N/cm 2 or more. cm 2 or more, or 20 N/cm 2 or more, and 50 N/cm 2 or less. The shear adhesive strength of the resin composition can be measured by the method described in Examples below.
 樹脂組成物は、光照射によって軟化する性質を有している。光照射する際の光は、例えば、波長365nm又は波長405nmの光を含む光であってよい。このような光を照射することによって、樹脂組成物を軟化させることができる。光照射の露光量は、例えば、1000mJ/cm以上であってよい。本明細書において、露光量は、照度(mW/cm)と照射時間(秒)との積を意味する。光の照射は、照射する対象に対して直接行ってもよく、ガラス等を介して行ってもよい。光照射に用いられる光源は、特に限定されず、例えば、LEDランプ、水銀ランプ(低圧、高圧、超高圧等)、メタルハライドランプ、エキシマランプ、キセノンランプ等が挙げられる。これらの中でも、光照射に用いられる光源は、LEDランプ、水銀ランプ、又はメタルハライドランプであってよい。 The resin composition has the property of being softened by light irradiation. The light used for light irradiation may be, for example, light containing light with a wavelength of 365 nm or 405 nm. By irradiating with such light, the resin composition can be softened. The exposure amount of light irradiation may be, for example, 1000 mJ/cm 2 or more. In this specification, the exposure amount means the product of illuminance (mW/cm 2 ) and irradiation time (seconds). The light may be irradiated directly onto the object to be irradiated, or may be irradiated through glass or the like. The light source used for light irradiation is not particularly limited, and includes, for example, an LED lamp, a mercury lamp (low pressure, high pressure, ultra-high pressure, etc.), a metal halide lamp, an excimer lamp, a xenon lamp, and the like. Among these, the light source used for light irradiation may be an LED lamp, a mercury lamp, or a metal halide lamp.
 樹脂組成物に対して光照射することにより、樹脂組成物中の光ラジカル発生剤が、化合物A及び化合物Bの反応生成物中のジスルフィド結合(-S-S-)を開裂させる。これによって、化合物A及び化合物Bの反応生成物の架橋が減少して、又は、化合物A及び化合物Bの反応生成物が低分子量化して、軟化する。樹脂組成物は、光照射によって軟化することから、光軟化性組成物ということもできる。 By irradiating the resin composition with light, the photoradical generator in the resin composition cleaves the disulfide bond (-SS-) in the reaction product of compound A and compound B. As a result, crosslinking of the reaction product of Compound A and Compound B is reduced, or the molecular weight of the reaction product of Compound A and Compound B is lowered and softened. Since the resin composition is softened by light irradiation, it can also be called a photo-softening composition.
 光照射後の樹脂組成物(光軟化物)の数平均分子量Mnは、100000以下、50000以下、20000以下、10000以下であってよく、1000以上、3000以上、5000以上又は5500以上であってよい。 The number average molecular weight Mn of the resin composition (photosoftened product) after light irradiation may be 100,000 or less, 50,000 or less, 20,000 or less, 10,000 or less, 1,000 or more, 3,000 or more, 5,000 or more, or 5,500 or more. .
 光軟化物の重量平均分子量Mwは、300,000以下、150,000以下、60,000以下、60,000以下、又は30,000以下であってよく、10,000以上、又は15,000以上であってよい。 The weight average molecular weight Mw of the photosoftened material may be 300,000 or less, 150,000 or less, 60,000 or less, 60,000 or less, or 30,000 or less, 10,000 or more, or 15,000 or more It may be.
 光軟化物のMn及びMwは、後述する実施例に記載の方法によって測定することができる。 The Mn and Mw of the photosoftened product can be measured by the method described in the Examples below.
 光軟化物の貯蔵弾性率G’は、通常、樹脂組成物の貯蔵弾性率G’よりも低い。光軟化物の貯蔵弾性率G’は、8kPa以下、5kPa以下、3kPa以下、又は1kPa以下であってよく、0.001kPa以上、又は0.005kPa以上であってよい。 The storage modulus G' of the photosoftened material is usually lower than the storage modulus G' of the resin composition. The storage modulus G' of the photosoftened material may be 8 kPa or less, 5 kPa or less, 3 kPa or less, or 1 kPa or less, and may be 0.001 kPa or more, or 0.005 kPa or more.
 光軟化物の損失弾性率G’’は、0.10kPa以上、0.20kPa以上、0.30kPa以上、0.50kPa以上、0.70kPa以上、1.0kPa以上、3.0kPa以上、又は5.0kPa以上であってよく、10kPa以下、5kPa以下、3kPa以下、又は1kPa以下であってよい。 The loss modulus G'' of the photosoftened material is 0.10 kPa or more, 0.20 kPa or more, 0.30 kPa or more, 0.50 kPa or more, 0.70 kPa or more, 1.0 kPa or more, 3.0 kPa or more, or 5. It may be 0 kPa or more, 10 kPa or less, 5 kPa or less, 3 kPa or less, or 1 kPa or less.
 光軟化物の損失正接tanδは、1.0以上、1.2以上、1.5以上、1.8以上、又は2.0以上であってよく、45以下、35以下、25以下、15以下、5以下、又は1.5以下であってよい。損失正接tanδは、貯蔵弾性率G’に対する損失弾性率G’’の比(G’’/G’)で表される。 The loss tangent tan δ of the photosoftened material may be 1.0 or more, 1.2 or more, 1.5 or more, 1.8 or more, or 2.0 or more, and 45 or less, 35 or less, 25 or less, 15 or less. , 5 or less, or 1.5 or less. The loss tangent tan δ is expressed as the ratio of the loss modulus G'' to the storage modulus G' (G''/G').
 光軟化物の貯蔵弾性率G’、損失弾性率G’’及びtanδは、後述する実施例に記載の方法によって測定することができる。 The storage modulus G', loss modulus G'', and tan δ of the photosoftened product can be measured by the method described in the Examples below.
 樹脂組成物は、種々の形状に形成することができる。例えば、膜状(フィルム状)に形成された硬化物は、フィルムとして用いることができる。ブロック状に形成された硬化物は、ブロックとして用いることができる。膜状(フィルム状)又はブロック状の硬化物を形成する方法は、特に制限されず、公知の方法を適用することができる。 The resin composition can be formed into various shapes. For example, a cured product formed into a film can be used as a film. A cured product formed into a block can be used as a block. The method of forming a membranous (film-like) or block-like cured product is not particularly limited, and any known method can be applied.
 樹脂材料及び樹脂組成物は、例えば、接着剤、粘着剤、コーティング材、保護材、部品及び材料のピックアップ材の用途に用いることができる。接着剤は、例えば、被着体を基材に仮止めしたのち、被着体を破壊することなく剥離可能な接着剤として用いることができる。樹脂材料又は樹脂組成物を含む接着剤は、耐熱性に優れるため、100℃の高温下でも接着力を発現する。よって、樹脂材料又は樹脂組成物を含む接着剤は、高温プロセスを耐えた後に室温で光照射することで剥離することができる接着剤として用いることもできる。 The resin materials and resin compositions can be used, for example, as adhesives, adhesives, coating materials, protective materials, and pick-up materials for parts and materials. The adhesive can be used, for example, as an adhesive that can be peeled off without destroying the adherend after temporarily fixing the adherend to the base material. Adhesives containing resin materials or resin compositions have excellent heat resistance, and therefore exhibit adhesive strength even at high temperatures of 100°C. Therefore, an adhesive containing a resin material or a resin composition can also be used as an adhesive that can withstand a high temperature process and then be peeled off by irradiation with light at room temperature.
 本実施形態に係る接着剤組成物は、(メタ)アクリロイル基を有する化合物Aと、チオール基を2個以上有する化合物Bと、5%重量減少温度が200℃以上である光ラジカル発生剤と、を含有する。当該接着剤組成物において、化合物Aは、(メタ)アクリロイル基を3個以上有する化合物A-1を含み、化合物A及び化合物Bの少なくとも一方が分子内にジスルフィド結合を有する。当該接着剤組成物において、化合物A、化合物B及び光ラジカル発生剤並びにその他の成分等の具体的態様は、上述した態様を適用することができる。 The adhesive composition according to this embodiment contains compound A having a (meth)acryloyl group, compound B having two or more thiol groups, and a photoradical generator having a 5% weight loss temperature of 200°C or higher. In this adhesive composition, compound A includes compound A-1 having three or more (meth)acryloyl groups, and at least one of compound A and compound B has a disulfide bond in the molecule. In this adhesive composition, the specific aspects of compound A, compound B, the photoradical generator, and other components can be those described above.
 接着剤組成物は、化合物A及び化合物Bの反応によって、接着剤組成物の硬化物を形成でき、2以上の被着体を接着する接着剤層として作用し得る。化合物A及び化合物Bの反応条件は上述したとおりであってよい。 The adhesive composition can form a cured product of the adhesive composition through the reaction of Compound A and Compound B, and can act as an adhesive layer for bonding two or more adherends. The reaction conditions for Compound A and Compound B may be as described above.
 接着剤組成物の硬化物は、光軟化性を有している。そのため、接着剤組成物の硬化物は、光照射によって2以上の被着体を破壊することなく、分離することが可能である。被着体に残存する軟化物は必要に応じて溶剤によって除去することができる。光照射の条件は上述した条件であってよい。 The cured product of the adhesive composition has photosoftening properties. Therefore, the cured product of the adhesive composition can be separated from two or more adherends without destroying them by light irradiation. The softened material remaining on the adherend can be removed with a solvent if necessary. The conditions for light irradiation may be the conditions described above.
 被着体は、例えば、微細な構造物、割れやすい被着体、又は物理的な応力に脆弱な被着体であってよい。微細な構造物としては、マイクロ流路、微細配線及びマイクロバンプ等が挙げられる。割れやすい被着体としては、超薄膜ウェハ、及びガラス等が挙げられる。物理的な応力に脆弱な被着体としては、軟質な組織及び細胞等が挙げられる。 The adherend may be, for example, a fine structure, a fragile adherend, or an adherend that is vulnerable to physical stress. Examples of the fine structures include microchannels, fine wiring, and microbumps. Examples of easily breakable adherends include ultra-thin wafers and glass. Examples of adherends that are vulnerable to physical stress include soft tissues and cells.
 一実施形態の接着体は、第1の被着体と、第2の被着体と、第1の被着体及び第2の被着体を互いに接着する接着剤層と、を備える。接着剤層は、接着剤組成物の硬化物を含有する。接着体は、接着剤組成物を介して、第1の被着体と第2の被着体とを貼り合わせる工程を備える方法によって製造することができる。硬化条件は、上述した反応条件であってよい。接着体は、高温プロセスを耐えた後であっても、光照射による分離が可能である。 The adhesive body of one embodiment includes a first adherend, a second adherend, and an adhesive layer that adheres the first adherend and the second adherend to each other. The adhesive layer contains a cured adhesive composition. The adhesive body can be manufactured by a method including a step of bonding a first adherend and a second adherend together via an adhesive composition. The curing conditions may be the reaction conditions described above. Even after enduring a high temperature process, the bonded body can be separated by light irradiation.
 一実施形態の被着体の分離方法は、接着体の接着剤層に対して光を照射して、第1の被着体と第2の被着体とを分離する工程を備える。接着剤層は、上記に記載の光硬化性組成物の硬化物を含有することから、光を照射することによって、光硬化性組成物の硬化物を融解させて容易に被着体同士を分離することができる。被着体は、高温プロセスを耐えた後であっても、光照射によって分離することができる。 A method for separating adherends according to one embodiment includes a step of irradiating the adhesive layer of the adhesive body with light to separate the first adherend and the second adherend. Since the adhesive layer contains the cured product of the photocurable composition described above, by irradiating it with light, the cured product of the photocurable composition is melted and the adherends can be easily separated from each other. can do. The adherends can be separated by light irradiation even after enduring high temperature processes.
 被着体の分離方法において、光を照射するときの光の種類、光源等は、上記と同様であってよい。 In the method for separating adherends, the type of light, light source, etc. when irradiating light may be the same as above.
 以下、実施例により本開示を具体的に説明するが、本開示はこれらの実施例に限定されるものではない。 Hereinafter, the present disclosure will be specifically explained with reference to Examples, but the present disclosure is not limited to these Examples.
1-1.供試材料
 合成に用いた材料は、購入した材料をそのまま用いた。
 チオール基を2個以上有する化合物として、チオコールLP-55(東レファインケミカル株式会社製、SH%=1.8%)を用いた。(メタ)アクリロイル基を2個有する化合物として、ポリエチレングリコールジアクリレート(ファンクリルFA-220;昭和電工マテリアルズ株式会社製)を用いた。(メタ)アクリロイル基を3個以上有する化合物として、トリメチロールプロパントリアクリレート(ファンクリルFA-133;昭和電工マテリアルズ株式会社製)を用いた。硬化触媒として2,4,6-トリスジメチルアミノメチルフェノール(アデカハードナーEHC-30;株式会社ADEKA製)を用いた。光ラジカル発生剤として、2-(ジメチルアミノ)-2-(4-メチルベンジル)-1-[4-モルホリン-4-イル-フェニル)ブタン-1-オン(Omnirad-379EG;IGM Resins B.V.社製、5%重量減少温度:248℃)を用いた。
1-1. Test Materials The materials used in the synthesis were the purchased materials as they were.
Thiokol LP-55 (manufactured by Toray Fine Chemical Co., Ltd., SH%=1.8%) was used as a compound having two or more thiol groups. Polyethylene glycol diacrylate (Fancryl FA-220; manufactured by Showa Denko Materials Co., Ltd.) was used as a compound having two (meth)acryloyl groups. As a compound having three or more (meth)acryloyl groups, trimethylolpropane triacrylate (Fancryl FA-133; manufactured by Showa Denko Materials Co., Ltd.) was used. 2,4,6-trisdimethylaminomethylphenol (ADEKA Hardener EHC-30; manufactured by ADEKA Corporation) was used as a curing catalyst. As a photoradical generator, 2-(dimethylamino)-2-(4-methylbenzyl)-1-[4-morpholin-4-yl-phenyl)butan-1-one (Omnirad-379EG; IGM Resins B.V. (manufactured by Co., Ltd., 5% weight loss temperature: 248°C) was used.
1-2.樹脂組成物と評価用フィルムの作製
 材料は100mLプラスチック軟膏つぼに配合し、95℃で1時間加熱した後、自公転攪拌機(あわとり練太郎ARE-310;シンキー社製)を用いて回転数2000rpmで3分攪拌して配合完了とした。2枚の離型PET(フィルムバイナDB-50(藤森工業株式会社製))の離型面の間に目的の膜厚のスペーサーと共に得られた組成物を挟み、室温で1週間硬化した後に離型フィルムを剥離して得られたフィルムを各種評価の被検体として用いた。反応終了は赤外吸収スペクトル測定結果から確認し、810cm-1付近のアクリル基の二重結合に由来するピークの積分値が未重合時と比較して95%以上減少したときを反応完了とした。
1-2. Preparation of resin composition and film for evaluation The materials were mixed in a 100 mL plastic ointment pot, heated at 95°C for 1 hour, and then stirred at a rotation speed of 2000 rpm using a rotational revolution stirrer (Awatori Rentaro ARE-310; manufactured by Shinky Co., Ltd.). The mixture was stirred for 3 minutes to complete the blending. The resulting composition along with a spacer of the desired film thickness was sandwiched between the release surfaces of two pieces of release PET (Film Biner DB-50 (manufactured by Fujimori Industries Co., Ltd.)), and after curing at room temperature for one week, the composition was released. The film obtained by peeling off the mold film was used as a specimen for various evaluations. The completion of the reaction was confirmed from the infrared absorption spectrum measurement results, and the reaction was considered complete when the integral value of the peak derived from the double bond of the acrylic group near 810 cm -1 decreased by 95% or more compared to the unpolymerized state. .
1-3.光照射
 UV照射にはUV照射装置(パナソニックデバイスSUNX株式会社製、電源:AicureUJ30、365nm LEDヘッド:ANUJ6186、405nm LEDヘッド:ANUJ6189)を用いた。照射条件は照度計UIT-250(ウシオ電機株式会社製)で365nm用、405nm用の受光器をそれぞれ用いて測定した。
1-3. Light Irradiation For UV irradiation, a UV irradiation device (manufactured by Panasonic Devices SUNX Co., Ltd., power supply: Aicure UJ30, 365 nm LED head: ANUJ6186, 405 nm LED head: ANUJ6189) was used. The irradiation conditions were measured using a luminometer UIT-250 (manufactured by Ushio Inc.) using receivers for 365 nm and 405 nm, respectively.
1-4.機械的特性評価
 粘弾性測定装置(TA Instruments社製、商品名:DHR-2)のオプションとして顕微鏡観察用ガラスステージ、8mmディスポローターを用い、ガラスステージ底面から「1-3.光照射」に記載のUV照射装置で評価サンプルに対して光照射することで、光照射に対する粘弾性の変化を評価した。ステージとローターのギャップは500±200μm、周波数は1Hz、変位1%で測定を行った。測定には「1-2.樹脂組成物と評価用フィルムの作製」の方法で得られた膜厚500±200μmフィルムを直径8mmの円柱状に打ち抜いたものを用いた。粘弾性の温度依存性は顕微鏡観察用ガラスステージをペルチェプレートに交換して測定した。
1-4. Mechanical property evaluation A glass stage for microscopic observation and an 8mm disposable rotor were used as options for the viscoelasticity measuring device (manufactured by TA Instruments, product name: DHR-2), as described in "1-3. Light irradiation" from the bottom of the glass stage. By irradiating the evaluation sample with light using a UV irradiation device, changes in viscoelasticity in response to light irradiation were evaluated. Measurements were performed with a gap between the stage and rotor of 500±200 μm, a frequency of 1 Hz, and a displacement of 1%. For the measurement, a 500±200 μm thick film obtained by the method of “1-2. Preparation of resin composition and evaluation film” was punched out into a cylindrical shape with a diameter of 8 mm. The temperature dependence of viscoelasticity was measured by replacing the glass stage for microscope observation with a Peltier plate.
1-5.接着力評価
 「1-2.樹脂組成物と評価用フィルムの作製」の方法で得られた樹脂組成物を図1に示すように、直径10~13mmの円の接着面積、接着層厚100±20μmとなるように2枚のスライドガラス(S-1112;松浪硝子工業株式会社製)、又は2枚のポリカーボネート板の間に挟み、室温一週間静置することでせん断試験片を得た。
1-5. Adhesive force evaluation As shown in Figure 1, the resin composition obtained by the method of "1-2. Preparation of resin composition and evaluation film" has an adhesive area of a circle with a diameter of 10 to 13 mm, and an adhesive layer thickness of 100±. A shear test piece was obtained by sandwiching it between two glass slides (S-1112; manufactured by Matsunami Glass Industries Co., Ltd.) or two polycarbonate plates so that the thickness was 20 μm, and allowing it to stand at room temperature for one week.
 硬化完了は赤外吸収スペクトル測定で確認し、810cm-1付近のアクリル基のピークの積分値が未反応時と比較して95%以上減少した状態で硬化完了とした。 Completion of curing was confirmed by infrared absorption spectroscopy, and curing was determined to be complete when the integral value of the peak of the acrylic group near 810 cm −1 decreased by 95% or more compared to the unreacted state.
 得られたせん断試験片を、株式会社島津製作所製オートグラフAGS-Xを用いて、25℃、100℃環境下で引張速度10mm/minでせん断接着強さを測定した。 The shear adhesive strength of the obtained shear test piece was measured using Autograph AGS-X manufactured by Shimadzu Corporation in an environment of 25° C. and 100° C. at a tensile rate of 10 mm/min.
1-6.GPC測定
 分子量の測定は、ゲルパーミションクロマトグラフィー(GPC)により株式会社ハイテクサイエンス社製Chromasterを使用し、カラムにGL-A130-S、GL-A150-S、GL-A160-S、検出器にRIを用い、温度35℃で測定を行った。試料濃度1wt%のTHF(テトラヒドロフラン)溶液を調製し、GPC用試料とした。標準ポリスチレン分子を用いた検量線により、分子量換算値を算出した。「1-2.樹脂組成物と評価用フィルムの作製」の方法で得られた膜厚500±100μmのフィルムを2枚のスライドガラス(S-1111;松浪硝子工業株式会社製)に挟み、波長365nm又は405nmのLED光を照度1000mW/cmで120秒間照射することで光融解した粘性液体をサンプルとして用いた。
1-6. GPC measurement Molecular weight was measured by gel permeation chromatography (GPC) using Chromaster manufactured by Hi-Tech Science Co., Ltd., with a column of GL-A130-S, GL-A150-S, GL-A160-S and a detector of RI. The measurement was carried out at a temperature of 35°C. A THF (tetrahydrofuran) solution with a sample concentration of 1 wt% was prepared and used as a sample for GPC. Molecular weight conversion values were calculated using a calibration curve using standard polystyrene molecules. A film with a film thickness of 500 ± 100 μm obtained by the method of “1-2. Preparation of resin composition and evaluation film” was sandwiched between two glass slides (S-1111; manufactured by Matsunami Glass Industries Co., Ltd.), and the wavelength A viscous liquid photomelted by irradiation with 365 nm or 405 nm LED light at an illuminance of 1000 mW/cm 2 for 120 seconds was used as a sample.
1-7.熱重量・示差熱分析(TG-DTA)
 熱重量・示差熱分析はSII・ナノテクノロジー株式会社製EXSTAR TG/DTA 7200を用いた。「1-2.樹脂組成物と評価用フィルムの作製」の方法で得られたフィルムサンプル約10mgをサンプルパンに採取し、窒素ガスを流量300ML/minで流しながら、室温から約300℃まで10℃/minで昇温し、5%重量減少温度を確認した。
1-7. Thermogravimetric/differential thermal analysis (TG-DTA)
For thermogravimetric/differential thermal analysis, EXSTAR TG/DTA 7200 manufactured by SII Nano Technology Co., Ltd. was used. Approximately 10 mg of the film sample obtained by the method of "1-2. Preparation of resin composition and evaluation film" was collected in a sample pan, and heated from room temperature to approximately 300°C for 10 minutes while flowing nitrogen gas at a flow rate of 300 ML/min. The temperature was raised at a rate of °C/min, and a 5% weight loss temperature was confirmed.
2-1.樹脂組成物の特性
 ジスルフィド結合を鎖中に有する末端2官能チオール(分子量約3700)であるポリスルフィドと、ポリエチレングリコールジアクリレートとのMichael付加により、直鎖状の樹脂組成物を合成した。これを比較例1の樹脂組成物とした。比較例1の樹脂組成物の組成のジアクリレートの一部をポリエチレングリコールトリアクリレートで置換することで架橋部位を付与した。これにより得られた樹脂組成物を実施例1~4とした。原材料のチオール基(メルカプト基)とアクリル基はモル比が1:1となるように配合した。
2-1. Characteristics of Resin Composition A linear resin composition was synthesized by Michael addition of polysulfide, which is a terminal difunctional thiol (molecular weight approximately 3700) having a disulfide bond in the chain, and polyethylene glycol diacrylate. This was used as the resin composition of Comparative Example 1. A crosslinking site was provided by substituting a part of the diacrylate in the composition of the resin composition of Comparative Example 1 with polyethylene glycol triacrylate. The resin compositions thus obtained were designated as Examples 1 to 4. The raw materials, thiol group (mercapto group) and acrylic group, were blended in a molar ratio of 1:1.
 樹脂組成物中の(1)架橋点間距離(架橋量、及び架橋密度)と、(2)Omnirad-379EGの配合量が、光分解に伴う機械的特性の変化にどのように影響するのかを検討した。 We investigated how (1) the distance between crosslinking points (amount of crosslinking and crosslinking density) and (2) the amount of Omnirad-379EG in the resin composition affect changes in mechanical properties due to photodecomposition. investigated.
 まず、樹脂組成物の架橋点間距離(架橋量、及び架橋密度)について検討を行った。表2、3の配合量に従い、Omnirad-379の配合量を固定し、ジアクリレートとトリアクリレートの配合量を調整することで架橋点間距離(架橋量、及び架橋密度)を調整した。表2は、各配合の材料モル比率と架橋点間距離及び指触試験結果を示す。表3は、各配合の配合重量比率を示す。 First, the distance between crosslinking points (the amount of crosslinking and the crosslinking density) of the resin composition was investigated. According to the blending amounts in Tables 2 and 3, the blending amount of Omnirad-379 was fixed, and the distance between crosslinking points (crosslinking amount and crosslinking density) was adjusted by adjusting the blending amounts of diacrylate and triacrylate. Table 2 shows the material molar ratio, distance between crosslinking points, and finger touch test results for each formulation. Table 3 shows the weight ratio of each formulation.
 硬化方法はチオール基とアクリル基の反応についての既報を参考にして実施した。触媒として2,4,6-トリスジメチルアミノメチルフェノール(アデカハードナーEHC-30;株式会社ADEKA製)を2重量部配合することで、チオール基とアクリル基とのMichael付加反応を室温で進行させた。硬化率は赤外吸収スペクトルの測定結果から算出した。赤外吸収スペクトルの測定結果における810cm-1付近のアクリル基のピークの積分値が未重合時と比較して95%以上減少した状態で重合完了とした。架橋点間距離Mcは、架橋部位としては3官能モノマーを用いたため、トリアクリレートの一分子そのものを架橋点とみなし、光ラジカル発生剤等の可塑性分の影響は除外して算出した。得られた樹脂組成物の機械的特性と光軟化性について評価した結果を表4に示す。
The curing method was carried out with reference to previous reports on the reaction between thiol groups and acrylic groups. By blending 2 parts by weight of 2,4,6-trisdimethylaminomethylphenol (ADEKA Hardener EHC-30; manufactured by ADEKA Co., Ltd.) as a catalyst, the Michael addition reaction between the thiol group and the acrylic group was allowed to proceed at room temperature. . The curing rate was calculated from the measurement results of the infrared absorption spectrum. Polymerization was considered complete when the integral value of the peak of the acrylic group near 810 cm −1 in the measurement results of the infrared absorption spectrum decreased by 95% or more compared to the unpolymerized state. Since a trifunctional monomer was used as a crosslinking site, the distance between crosslinking points Mc was calculated by considering one molecule of triacrylate itself as a crosslinking point and excluding the influence of plasticity such as a photoradical generator. Table 4 shows the results of evaluating the mechanical properties and photosoftening properties of the obtained resin composition.
 得られた樹脂組成物はポリエーテル鎖を含むポリスルフィドを原料として用いたため1MPa以下の低弾性を示した。 The obtained resin composition exhibited low elasticity of 1 MPa or less because polysulfide containing polyether chains was used as a raw material.
 表2~4に示すとおり、トリアクリレートのモル比及び重量比率(架橋点間距離の短縮、及び架橋密度の上昇)が高くなるにつれて、貯蔵弾性率の上昇、並びにtanδ及びタックの低下が認められた。 As shown in Tables 2 to 4, as the molar ratio and weight ratio of triacrylate (shortening the distance between crosslinking points and increasing crosslinking density) increases, an increase in storage modulus and a decrease in tan δ and tack are observed. Ta.
 実施例1~4及び比較例1の樹脂組成物からなるフィルムを積層したときのフィルム同士の癒着性、いわゆるタック性の有無を確認した。その結果、ポリスルフィドに対するトリアクリレートの配合量がモル比で33.3%以上、架橋点間距離が約8000g/mol以下の樹脂組成物からなるフィルムではタックが消失した。 When films made of the resin compositions of Examples 1 to 4 and Comparative Example 1 were laminated, the presence or absence of adhesion between the films, so-called tackiness, was checked. As a result, tack disappeared in a film made of a resin composition in which the molar ratio of triacrylate to polysulfide was 33.3% or more and the distance between crosslinking points was about 8000 g/mol or less.
 実施例の樹脂組成物では、架橋構造を有することから耐熱クリープ性向上効果が期待される。また、実施例の樹脂組成物では、架橋構造を有することから耐薬品性及び耐熱老化性向上効果が期待される。そのため、実施例の樹脂組成物は、例えば、エンジニアリングプラスチックとして好適に利用可能である。樹脂組成物の5%重量減少温度は、架橋点間距離の違いで大きな変動はなく、ラジカル発生剤及び樹脂の構造が支配因子であることが示唆された。 Since the resin composition of the example has a crosslinked structure, it is expected to have an effect of improving heat-resistant creep property. Furthermore, since the resin compositions of Examples have a crosslinked structure, they are expected to have the effect of improving chemical resistance and heat aging resistance. Therefore, the resin composition of the example can be suitably used as an engineering plastic, for example. The 5% weight loss temperature of the resin composition did not vary greatly depending on the distance between crosslinking points, suggesting that the radical generator and the structure of the resin were the controlling factors.
 次に、実施例1~4及び比較例1の樹脂組成物の光軟化性について評価した。実施例1~4及び比較例1それぞれの樹脂組成物に10秒毎に波長405nmのLED光を500mW/cmで2秒照射して粘弾性を測定した結果を図2及び図3に示す。図2は、樹脂組成物のG’の光応答性評価結果を示し、測定開始10秒後から10秒毎に波長405nmのLED光を500mW/cmで2秒繰り返し照射した結果を示す。図3は、樹脂組成物のtanδの光応答性評価結果を示し、測定開始10秒後から10秒毎に波長405nmのLED光を500mW/cmで2秒繰り返し照射した結果を示す。実施例の樹脂組成物は、光軟化性を示した。図4は、光照射後の樹脂組成物の外観を示す写真であり、(A)は実施例1、(B)は実施例2、(C)は実施例3の結果を示す。ポリスルフィドに対するトリアクリレートのモル比率が66.7%である実施例1の樹脂組成物に関しては、30J/cm光照射後のtanδは1前後を示し、ゲル状となった。ポリスルフィドに対するトリアクリレートのモル比率が13.3%以下である実施例3及び実施例4の樹脂組成物は特に光軟化性に優れていた。実施例3及び実施例4の樹脂組成物では、照射量が2000mJ/cm以上でtanδが2.0を超え液状を示すような数値となり、貯蔵弾性率は10000Pa以下となった。 Next, the photosoftening properties of the resin compositions of Examples 1 to 4 and Comparative Example 1 were evaluated. The resin compositions of Examples 1 to 4 and Comparative Example 1 were irradiated with LED light with a wavelength of 405 nm for 2 seconds at 500 mW/cm 2 every 10 seconds, and the viscoelasticity was measured. The results are shown in FIGS. 2 and 3. FIG. 2 shows the results of evaluating the photoresponsiveness of G' of the resin composition, and shows the results of repeated irradiation with LED light with a wavelength of 405 nm for 2 seconds at 500 mW/cm 2 every 10 seconds starting 10 seconds after the start of the measurement. FIG. 3 shows the tan δ photoresponsive evaluation results of the resin composition, and shows the results of repeated irradiation with LED light with a wavelength of 405 nm for 2 seconds at 500 mW/cm 2 every 10 seconds from 10 seconds after the start of measurement. The resin compositions of Examples exhibited photosoftening properties. FIG. 4 is a photograph showing the appearance of the resin composition after light irradiation, in which (A) shows the results of Example 1, (B) shows the results of Example 2, and (C) shows the results of Example 3. Regarding the resin composition of Example 1 in which the molar ratio of triacrylate to polysulfide was 66.7%, the tan δ after irradiation with 30 J/cm 2 light was around 1, and the resin composition became gel-like. The resin compositions of Examples 3 and 4, in which the molar ratio of triacrylate to polysulfide was 13.3% or less, were particularly excellent in photosoftening properties. In the resin compositions of Examples 3 and 4, when the irradiation dose was 2,000 mJ/cm 2 or more, the tan δ exceeded 2.0, indicating a liquid state, and the storage modulus was 10,000 Pa or less.
 光軟化後の樹脂組成物のGPC測定を行ったところ、光軟化後の樹脂組成物の数平均分子量と光ラジカル発生剤の配合量との間には負の相関が確認された。一方で、光軟化後の樹脂組成物の重量平均分子量及び光軟化後の樹脂組成物の粘度と、トリアクリレートの配合量(架橋量)と、の間には正の相関が確認された。 When the resin composition after photosoftening was subjected to GPC measurement, a negative correlation was confirmed between the number average molecular weight of the resin composition after photosoftening and the amount of the photoradical generator compounded. On the other hand, a positive correlation was confirmed between the weight average molecular weight of the photosoftened resin composition and the viscosity of the photosoftened resin composition, and the amount of triacrylate (crosslinking amount).
 Omnirad-379EGから発生するラジカルのうちベンゾイルラジカルがジスルフィド結合の切断に寄与すると推定されるため、Omnirad-379EG2モルでジスルフィド結合1モルが切断されると考えられる。つまり、光軟化にともなって樹脂組成物中に新たに発生する分子鎖末端のモル数は光ラジカル発生剤のモル数と等量である。分子鎖末端数は数平均分子量と反比例するため、光軟化後の樹脂組成物の数平均分子量と光ラジカル発生剤の配合量との間には負の相関が確認されたものと考える。 It is estimated that among the radicals generated from Omnirad-379EG, benzoyl radicals contribute to the cleavage of disulfide bonds, so it is thought that 2 moles of Omnirad-379EG cleaves 1 mole of disulfide bonds. In other words, the number of moles of molecular chain terminals newly generated in the resin composition due to photosoftening is equivalent to the number of moles of the photoradical generator. Since the number of molecular chain terminals is inversely proportional to the number average molecular weight, it is considered that a negative correlation was confirmed between the number average molecular weight of the resin composition after photosoftening and the amount of the photoradical generator compounded.
 樹脂組成物が軟化する現象を網目構造の破壊と捉える場合、光軟化性樹脂組成物は全ての架橋が切断されることで初めて液化するものと思われる。つまり、光軟化によって液化するには、少なくとも切断される結合の数は架橋点を上回る必要があると予想される。光ラジカル発生剤とトリアクリレートとのモル比率が2:1の配合では切断点=架橋点となるため、当該配合が光軟化によって液化するか否かの境界線上の配合であると考えられる。実施例1のモル比率はトリアクリレート66.7に対して光ラジカル発生剤120であり、架橋点66.7モルに対して切断される結合数は60.0モルと推定されるため、実施例1は光軟化性を示すものの、液化しにくい組成であることが予想される。事実、光照射後の実施例1の樹脂組成物は光軟化性を示すものの、ゲル状物に留まり、液化していなかった。実施例1以外の樹脂組成物では架橋点の数以上の結合が十分に切断されたため、光軟化による液化が観察された。光軟化性の程度を例えば樹脂組成物の架橋量及び光ラジカル発生剤の配合量によって調整できることが示唆された。 If the phenomenon of softening of a resin composition is regarded as destruction of the network structure, it is thought that a photo-softening resin composition liquefies only after all crosslinks are severed. In other words, in order to liquefy by photosoftening, it is expected that at least the number of bonds to be broken must exceed the number of crosslinking points. When the molar ratio of the photoradical generator and the triacrylate is 2:1, the cutting point equals the crosslinking point, so it is considered that the formulation is on the borderline of whether or not it liquefies due to photosoftening. The molar ratio in Example 1 is 66.7 moles of triacrylate to 120 moles of photoradical generator, and the number of bonds broken is estimated to be 60.0 moles with respect to 66.7 moles of crosslinking points. Although No. 1 exhibits photosoftening properties, it is expected to have a composition that is difficult to liquefy. In fact, although the resin composition of Example 1 after being irradiated with light showed photosoftening properties, it remained in a gel-like state and was not liquefied. In the resin compositions other than Example 1, since bonds exceeding the number of crosslinking points were sufficiently severed, liquefaction due to photosoftening was observed. It has been suggested that the degree of photosoftening can be adjusted by, for example, the amount of crosslinking in the resin composition and the amount of photoradical generator blended.
 樹脂組成物の光軟化の想定反応式をScheme 3に示す。Scheme 3は、ベンゾイルラジカルがジスルフィド結合の切断に寄与する反応及びチイルラジカルが分子内のジスルフィドと交換反応することで環化する反応を示す。
Scheme 3:
An assumed reaction formula for photosoftening of the resin composition is shown in Scheme 3. Scheme 3 shows a reaction in which a benzoyl radical contributes to the cleavage of a disulfide bond, and a reaction in which a thiyl radical undergoes an exchange reaction with a disulfide in the molecule, resulting in cyclization.
Scheme 3:
2-2.光軟化による接着剤としての特性
 「2-1.樹脂組成物の特性」で得られた樹脂組成物のうち、ポリスルフィドに対するトリアクリレートのモル比率を13.3%とした実施例3の樹脂組成物について接着剤としての特性を評価した。接着力測定結果を表5と図5に示す。
2-2. Characteristics as an adhesive due to photosoftening Among the resin compositions obtained in “2-1. Characteristics of resin composition”, the resin composition of Example 3 in which the molar ratio of triacrylate to polysulfide was 13.3% The properties of the adhesive as an adhesive were evaluated. The adhesive force measurement results are shown in Table 5 and FIG.
 実施例3の樹脂組成物における光照射前のせん断接着力はポリカーボネート基材で25℃において86N/cmであり、25℃において一般的なOCR(Optical Clear Resin)程度の接着力を発現することが確認された。実施例3の樹脂組成物における光照射前のせん断接着力は100℃の高温環境下においても26N/cmであった。以上のとおり、実施例3の樹脂組成物は、加熱で軟化することなく接着力を発現した。光軟化後の実施例3の樹脂組成物のせん断接着力は次の手順で測定した。まず、実施例3の樹脂組成物を使用して作製したせん断試験片の樹脂部分に405nmの波長のLEDランプ(照度1000mW/cm)を5秒間照射した。得られた光照射後の実施例3の樹脂組成物は、接着力測定を行うためにオートグラフに設置及び固定したときの僅かな力でズレが発生した。光照射後の実施例3の樹脂組成物におけるせん断接着力の測定値にはピークが無くノイズ以下の値で計測不可能であった。すなわち、光照射後の実施例3の樹脂組成物においてせん断接着力と、基材に加わる応力は限りなくゼロに近かったと言える。 The shear adhesive strength of the resin composition of Example 3 before light irradiation was 86 N/cm 2 at 25°C on a polycarbonate base material, and the resin composition exhibited adhesive strength comparable to general OCR (Optical Clear Resin) at 25°C. was confirmed. The shear adhesive strength of the resin composition of Example 3 before light irradiation was 26 N/cm 2 even in a high temperature environment of 100°C. As described above, the resin composition of Example 3 exhibited adhesive strength without being softened by heating. The shear adhesive strength of the resin composition of Example 3 after photosoftening was measured according to the following procedure. First, a resin portion of a shear test piece prepared using the resin composition of Example 3 was irradiated with an LED lamp (illuminance: 1000 mW/cm 2 ) having a wavelength of 405 nm for 5 seconds. The obtained resin composition of Example 3 after being irradiated with light shifted due to a slight force when it was installed and fixed in an autograph for measuring adhesive strength. There was no peak in the measured value of the shear adhesive force of the resin composition of Example 3 after irradiation with light, and the value was below noise and could not be measured. That is, it can be said that in the resin composition of Example 3 after light irradiation, the shear adhesive force and the stress applied to the base material were extremely close to zero.
 図6は、実施例3及び比較例1の高温での貯蔵弾性率、損失弾性率及びtanδの結果であり、(A)は実施例3、(B)は比較例1の結果を示す。光照射前において、実施例3の樹脂組成物では高温側でも貯蔵弾性率の低下が確認されなかった。比較例1の樹脂組成物では、高温側で貯蔵弾性率が低下し、熱による軟化が確認された。 FIG. 6 shows the results of storage modulus, loss modulus, and tan δ at high temperatures of Example 3 and Comparative Example 1, with (A) showing the results of Example 3 and (B) showing the results of Comparative Example 1. Before light irradiation, no decrease in storage modulus was observed in the resin composition of Example 3 even on the high temperature side. In the resin composition of Comparative Example 1, the storage modulus decreased on the high temperature side, and softening due to heat was confirmed.
 図7は、実施例3の樹脂組成物を用いて作製された接着力測定後のせん断試験片の外観を示し、(a)は測定前のせん断試験片の外観を示し、(b)は光未照射サンプルの剥離状態を示し、(c)は光照射後の剥離状態を示し、(d)は(c)で示すせん断試験片の洗浄後の外観を示す。接着力の高かったポリカーボネート板を被着体とした光軟化前のサンプルは、被着体両面に硬化物が凝集破壊して残っており、光軟化後のサンプルは被着体両面に液体が残っていた。光軟化後の液体は洗浄性も高く、アセトンを数秒間流して洗浄することで、ガラス表面からの残渣の除去が確認できた。 Figure 7 shows the appearance of a shear test piece prepared using the resin composition of Example 3 after measuring adhesive strength, (a) shows the appearance of the shear test piece before measurement, and (b) shows the appearance of the shear test piece before measurement. FIG. 3(c) shows the peeled state of an unirradiated sample, FIG. 3(c) shows the peeled state after light irradiation, and FIG. 3(d) shows the appearance of the shear test piece shown in FIG. The sample before photosoftening, which had a polycarbonate plate with high adhesive strength as the adherend, had cohesive failure of the cured material remaining on both sides of the adherend, and the sample after photosoftening had liquid remaining on both sides of the adherend. was. The liquid after photosoftening has high cleaning properties, and by washing with acetone flowing for several seconds, it was confirmed that residues were removed from the glass surface.
 以上の結果から、実施例の樹脂材料及び樹脂組成物はマイクロ流路、微細配線及びマイクロバンプ等のような微細な構造物、割れやすい超薄膜ウェハ、ガラス、著しく軟質な組織及び細胞等の物理的な応力に脆弱な被着体を何らかの基材に仮止めしたのち、被着体を破壊することなく剥離することができる易剥離可能な接着剤としての展開が期待される。実施例の樹脂組成物は、100℃の高温下でも十分な接着力を発現することから、例えば、高温プロセスを耐えた後に室温で光照射することで剥離可能となる高性能な仮止め接着剤としての応用が期待される。

 
From the above results, the resin materials and resin compositions of Examples can be applied to fine structures such as microchannels, fine wiring, microbumps, etc., fragile ultra-thin wafers, glass, extremely soft tissues, cells, etc. It is expected that this adhesive will be used as an easily removable adhesive that can be used to temporarily attach adherends that are vulnerable to physical stress to some kind of base material and then peel them off without damaging the adherend. The resin composition of the example exhibits sufficient adhesive strength even at a high temperature of 100°C, so it can be used, for example, as a high-performance temporary adhesive that can withstand a high-temperature process and then be peeled off by light irradiation at room temperature. It is expected that it will be applied as a.

Claims (6)

  1.  (メタ)アクリロイル基を有する化合物Aと、
     チオール基を2個以上有する化合物Bと、
     5%重量減少温度が200℃以上である光ラジカル発生剤と、を含有し、
     前記化合物Aが、(メタ)アクリロイル基を3個以上有する化合物A-1を含み、
     前記化合物A及び前記化合物Bの少なくとも一方が分子内にジスルフィド結合を有する、樹脂材料。
    A compound A having a (meth)acryloyl group,
    Compound B having two or more thiol groups,
    A photoradical generator having a 5% weight loss temperature of 200°C or higher,
    The compound A includes a compound A-1 having three or more (meth)acryloyl groups,
    A resin material in which at least one of the compound A and the compound B has a disulfide bond in the molecule.
  2.  前記化合物Aが(メタ)アクリロイル基を2個有する化合物A-2を更に含む、請求項1に記載の樹脂材料。 The resin material according to claim 1, wherein the compound A further contains a compound A-2 having two (meth)acryloyl groups.
  3.  前記ラジカル発生剤が、光照射によってベンゾイルラジカルを与える化合物であり、
     前記化合物A-1のモル数に対する、前記ベンゾイルラジカルのモル数の比が21/20以上である、請求項1又は2に記載の樹脂材料。
    The radical generator is a compound that gives benzoyl radicals when irradiated with light,
    The resin material according to claim 1 or 2, wherein the ratio of the number of moles of the benzoyl radical to the number of moles of the compound A-1 is 21/20 or more.
  4.  (メタ)アクリロイル基を有する化合物A、及び、チオール基を2個以上有する化合物Bの反応生成物と、
     5%重量減少温度が200℃以上である光ラジカル発生剤と、を含有し、
     前記化合物Aが、(メタ)アクリロイル基を3個以上有する化合物A-1を含み、
     前記化合物A及び前記化合物Bの少なくとも一方が分子内にジスルフィド結合を有する、樹脂組成物。
    A reaction product of a compound A having a (meth)acryloyl group and a compound B having two or more thiol groups,
    A photoradical generator having a 5% weight loss temperature of 200°C or higher,
    The compound A includes a compound A-1 having three or more (meth)acryloyl groups,
    A resin composition in which at least one of the compound A and the compound B has a disulfide bond in the molecule.
  5.  前記化合物Aが(メタ)アクリロイル基を2個有する化合物A-2を更に含む、請求項4に記載の樹脂組成物。 The resin composition according to claim 4, wherein the compound A further contains a compound A-2 having two (meth)acryloyl groups.
  6.  前記ラジカル発生剤が、光照射によってベンゾイルラジカルを与える化合物であり、
     前記化合物A-1のモル数に対する、前記ベンゾイルラジカルのモル数の比が21/20以上である、請求項4に記載の樹脂組成物。

     
    the radical generator is a compound that gives a benzoyl radical upon irradiation with light,
    The resin composition according to claim 4, wherein the ratio of the number of moles of the benzoyl radical to the number of moles of the compound A-1 is 21/20 or more.

PCT/JP2023/033033 2022-09-12 2023-09-11 Resin material and resin composition WO2024058117A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-144369 2022-09-12
JP2022144369 2022-09-12

Publications (1)

Publication Number Publication Date
WO2024058117A1 true WO2024058117A1 (en) 2024-03-21

Family

ID=90275065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033033 WO2024058117A1 (en) 2022-09-12 2023-09-11 Resin material and resin composition

Country Status (1)

Country Link
WO (1) WO2024058117A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770895A (en) * 1980-10-21 1982-05-01 Shin Etsu Chem Co Ltd Silicon-modified polysulfide compound
JPH1121352A (en) * 1997-07-03 1999-01-26 Toray Ind Inc Curable composition
WO2020100491A1 (en) * 2018-11-12 2020-05-22 リンテック株式会社 Workpiece processing sheet
WO2020209268A1 (en) * 2019-04-11 2020-10-15 日立化成株式会社 Optically softening resin composition, method for producing softened product of optically softening resin composition, curable resin composition and cured product of same, and patterned film and method for producing same
US20210189069A1 (en) * 2019-12-19 2021-06-24 Prc-Desoto International, Inc. Low nucleation temperature polythioether prepolymers and uses thereof
WO2022153397A1 (en) * 2021-01-13 2022-07-21 昭和電工マテリアルズ株式会社 Composition, light-meltable composition, and compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770895A (en) * 1980-10-21 1982-05-01 Shin Etsu Chem Co Ltd Silicon-modified polysulfide compound
JPH1121352A (en) * 1997-07-03 1999-01-26 Toray Ind Inc Curable composition
WO2020100491A1 (en) * 2018-11-12 2020-05-22 リンテック株式会社 Workpiece processing sheet
WO2020209268A1 (en) * 2019-04-11 2020-10-15 日立化成株式会社 Optically softening resin composition, method for producing softened product of optically softening resin composition, curable resin composition and cured product of same, and patterned film and method for producing same
US20210189069A1 (en) * 2019-12-19 2021-06-24 Prc-Desoto International, Inc. Low nucleation temperature polythioether prepolymers and uses thereof
WO2022153397A1 (en) * 2021-01-13 2022-07-21 昭和電工マテリアルズ株式会社 Composition, light-meltable composition, and compound

Similar Documents

Publication Publication Date Title
JP5073400B2 (en) Curable resin composition with excellent heat stability
TW201120123A (en) (meth)acrylic resin composition
CN113906090A (en) Photosoftening resin composition, method for producing softened product of photosoftening resin composition, curable resin composition and cured product thereof, and pattern film and method for producing same
JP2009127023A (en) Photocurable composition for production of photocurable pressure-sensitive adhesive and photocurable pressure-sensitive adhesive sheet
TW201905138A (en) Printable curable mixture and cured composition
JP7225530B2 (en) Solvent-free resin composition
TW202222917A (en) Photocurable composition, cured product of same, photofusible resin composition and adhesive set
JPWO2019073978A1 (en) Adhesive method and photocurable pressure-sensitive adhesive composition
US8034849B2 (en) Adhesive composition and adhesive sheet
WO2024058117A1 (en) Resin material and resin composition
WO2022153397A1 (en) Composition, light-meltable composition, and compound
JP2023104983A (en) Temporary fixing material, and method for manufacturing electronic component
JPWO2019073980A1 (en) Photocurable pressure-sensitive adhesive composition and bonding method
JPWO2019073979A1 (en) Photocurable pressure-sensitive adhesive composition and bonding method
US20020107349A1 (en) Radical-curable adhesive compositions, reaction products of which demonstrate superior resistance to thermal degradation
JP5418783B2 (en) Photocurable adhesive composition
WO2024058129A1 (en) Resin material and resin composition
WO2024019159A1 (en) Adhesive sheet and optical layered product
WO2024106390A1 (en) Adhesive sheet
WO2024106388A1 (en) Adhesive sheet
WO2024058127A1 (en) Resin member, reel body, package body, and resin material
WO2024106386A1 (en) Adhesive sheet
WO2024106389A1 (en) Adhesive sheet
WO2024106385A1 (en) Adhesive sheet
WO2016136982A1 (en) (meth)acrylic polymer composition and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865470

Country of ref document: EP

Kind code of ref document: A1