WO2024058073A1 - Terminal device, method, and integrated circuit - Google Patents

Terminal device, method, and integrated circuit Download PDF

Info

Publication number
WO2024058073A1
WO2024058073A1 PCT/JP2023/032888 JP2023032888W WO2024058073A1 WO 2024058073 A1 WO2024058073 A1 WO 2024058073A1 JP 2023032888 W JP2023032888 W JP 2023032888W WO 2024058073 A1 WO2024058073 A1 WO 2024058073A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrc
terminal device
information
layer
setting
Prior art date
Application number
PCT/JP2023/032888
Other languages
French (fr)
Japanese (ja)
Inventor
恭輔 井上
昇平 山田
秀和 坪井
拓真 河野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2024058073A1 publication Critical patent/WO2024058073A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling

Definitions

  • the present invention relates to a terminal device, a method, and an integrated circuit.
  • the 3rd Generation Partnership Project (3GPP) which is a standardization project for cellular mobile communication systems, is conducting technical studies and standardization for cellular mobile communication systems, including wireless access, core networks, services, etc. There is.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • RAT Radio Access Technology
  • 3GPP 3GPP is still conducting technical studies and standardization for E-UTRA expansion technology.
  • E-UTRA is also referred to as Long Term Evolution (LTE: registered trademark), and the extended technology is also referred to as LTE-Advanced (LTE-A) and LTE-Advanced Pro (LTE-A Pro).
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-Advanced Pro
  • NR New Radio, or NR Radio access
  • 5G 5th Generation
  • a serving cell change technology that allows a terminal device to move from the coverage area of one cell to the coverage area of another cell.
  • This serving cell change is triggered by layer 3 (also referred to as RRC) measurements, and synchronized reconfiguration for serving cell change is triggered by RRC signaling.
  • layer 1 or layer 2 signaling has the advantage of low delay and low overhead. Therefore, studies have begun on techniques for changing serving cells triggered by layer 1 or layer 2 signaling (layer 1/layer 2 mobility enhancement techniques).
  • One aspect of the present invention has been made in view of the above circumstances, and one of the objects is to provide a terminal device, a base station device, a communication method, and an integrated circuit that can efficiently control communication. .
  • one embodiment of the present invention takes the following measures. That is, one aspect of the present invention is a terminal device that communicates with a base station device, which includes a receiving unit that receives a first setting indicating information about one or more candidate cells from the base station device, and an RRC processing unit. and, the RRC processing unit determines whether or not it is set to provide the terminal device with information on whether or not a measurement gap of a target frequency band of NR is provided, and provides the terminal device with the If it is determined that provision of necessity information is set, the RRC processing unit includes, in the first setting, a second setting for reporting whether or not a measurement gap is necessary in NR.
  • the RRC processing unit includes a measurement gap in NR in the signaling indicating completion of the first setting. If it is determined that the terminal device is not set to provide the necessity information, including the third information indicating whether it is necessary, or if the second information is included in the first setting, If it is determined that the setting is not included, the RRC processing unit does not include the third information in the signaling indicating completion of the first setting.
  • one aspect of the present invention is a terminal device that communicates with a base station device, and includes an RRC processing unit, and the RRC processing unit is configured to transmit a signal from a lower layer (layer 1/layer 2) to a serving cell to a candidate cell.
  • the RRC processing unit determines whether the terminal device is set to be provided with information on the necessity of measurement gaps for the target frequency band of NR, and the terminal device is provided with the necessity information on the measurement gap of the NR target frequency band. If the RRC processing unit determines that the serving cell change is set to be provided, after the serving cell change, the RRC processing unit adds a third measurement gap indicating whether or not a measurement gap is required in the NR to the signaling indicating completion of the serving cell change. If it is determined that the provision of the necessity information to the terminal device is not set, including the information of The third information is not included.
  • Another aspect of the present invention is a method of a terminal device communicating with a base station device, wherein an RRC entity of the terminal device receives a first setting indicating information about one or more candidate cells from the base station device. a step in which the RRC entity determines whether or not it is configured to provide measurement gap information for a target frequency band of NR to the terminal device; , if the RRC entity determines that it is configured to provide the necessity information, the RRC entity configures a second configuration that causes the first configuration to report whether or not a measurement gap is required in the NR.
  • the RRC entity includes a measurement in NR in signaling indicating completion for the first configuration; including a step of including third information indicating whether or not a gap is necessary; and if it is determined that the terminal device is not set to provide the necessity information, or in the first setting; If it is determined that the second configuration is not included, the RRC entity does not include the third information in signaling indicating completion of the first configuration.
  • Another aspect of the present invention is a method for a terminal device to communicate with a base station device, wherein an RRC entity of the terminal device receives an instruction from a lower layer (layer 1/layer 2) to change a serving cell to a candidate cell.
  • a step of determining whether provision of necessity information of a measurement gap of a target frequency band of NR is set to the terminal device, and providing the necessity information to the terminal device; If the RRC entity determines that a measurement gap is required in the NR after the serving cell change, the RRC entity includes third information indicating whether a measurement gap is required in the NR in signaling indicating completion for the serving cell change.
  • the RRC entity determines that provision of the necessity information to the terminal device is not configured, the RRC entity includes the provision of the necessity information to the terminal device in the signaling indicating completion of the serving cell change after the serving cell change. and a step of not including the information of No. 3.
  • Another aspect of the present invention is an integrated circuit implemented in a terminal device that communicates with a base station device, wherein an RRC entity of the terminal device indicates information about one or more candidate cells from the base station device. a function of receiving a first configuration, and a function of determining whether the RRC entity is configured to provide the terminal device with information on whether or not a measurement gap of a target frequency band of NR is required; When determining that the terminal device is configured to provide the necessity information, the RRC entity causes the first configuration to report whether or not a measurement gap is required in NR. and a function for determining whether or not the second configuration is included in the first configuration, and when it is determined that the second configuration is included in the first configuration, the RRC entity sends signaling indicating completion of the first configuration.
  • the RRC entity performs a function of not including the third information in signaling indicating completion of the first configuration.
  • one aspect of the present invention is an integrated circuit implemented in a terminal device that communicates with a base station device, wherein an RRC entity of the terminal device transmits information from a lower layer (layer 1/layer 2) to a serving cell to a candidate cell.
  • a function is provided to determine whether the terminal device is set to provide measurement gap information for the target frequency band of NR, If the RRC entity determines that providing information is configured, after the serving cell change, the RRC entity may include a measurement gap in the NR indicating whether a measurement gap is required in the signaling indicating completion for the serving cell change.
  • the RRC entity determines that the function of including the information in step 3 and providing the necessity information to the terminal device is not set, after the serving cell change, the RRC entity sends signaling indicating completion of the serving cell change. and a function of not including the third information.
  • a terminal device, a method, and an integrated circuit can realize efficient communication control processing.
  • FIG. 1 is a schematic diagram of a communication system according to the present embodiment.
  • FIG. 2 is a diagram illustrating an example of the E-UTRA protocol configuration according to the present embodiment.
  • FIG. 3 is a diagram illustrating an example of the NR protocol configuration according to the present embodiment.
  • FIG. 3 is a diagram illustrating an example of a flow of procedures for various settings in RRC according to the present embodiment.
  • FIG. 2 is a block diagram showing the configuration of a terminal device in this embodiment.
  • FIG. 2 is a block diagram showing the configuration of a base station device in this embodiment.
  • An example of ASN.1 description included in the serving cell common settings in this embodiment.
  • An example of an ASN.1 description included in a message regarding reconfiguration of an RRC connection in NR and an RRC reconfiguration completion message in the present embodiment An example of processing of the terminal device in this embodiment.
  • LTE and LTE-A, LTE-A Pro
  • NR may be defined as different radio access technologies (RAT).
  • RAT radio access technologies
  • LTE may be defined as a technology included in LTE.
  • LTE may be defined as a technology included in NR.
  • LTE which can be connected to NR using Multi-Radio Dual Connectivity (MR-DC)
  • MR-DC Multi-Radio Dual Connectivity
  • LTE that uses 5GC in the core network Core Network: CN
  • CN Core Network
  • conventional LTE may be LTE that does not implement the technology standardized after Release 15 in 3GPP.
  • This embodiment may be applied to NR, LTE and other RATs.
  • E-UTRA in this embodiment may be replaced with the term LTE
  • LTE may be replaced with the term E-UTRA.
  • each node and entity and the processing in each node and entity will be explained when the radio access technology is E-UTRA or NR. However, this embodiment is applicable to other radio access technologies. May be used. The names of each node and entity in this embodiment may be different names.
  • FIG. 1 is a schematic diagram of a communication system according to this embodiment. Note that the functions of each node, radio access technology, core network, interface, etc. explained using FIG. 1 are some functions closely related to this embodiment, and may have other functions.
  • E-UTRA100 may be a radio access technology. Further, the E-UTRA 100 may be an air interface between the UE 122 and the eNB 102. The air interface between UE 122 and eNB 102 may be referred to as a Uu interface.
  • the eNB (E-UTRAN Node B) 102 may be a base station device of the E-UTRA 100.
  • the eNB 102 may have the E-UTRA protocol described below.
  • the E-UTRA protocol may be composed of an E-UTRA User Plane (UP) protocol, which will be described later, and an E-UTRA Control Plane (CP) protocol, which will be described later.
  • the eNB 102 may terminate the E-UTRA user plane (UP) protocol and the E-UTRA control plane (CP) protocol for the UE 122.
  • a radio access network composed of eNBs may be called E-UTRAN.
  • the EPC (Evolved Packet Core) 104 may be a core network.
  • Interface 112 is an interface between eNB 102 and EPC 104, and may be called an S1 interface.
  • the interface 112 may include a control plane interface through which control signals pass, and/or a user plane interface through which user data passes.
  • the control plane interface of interface 112 may terminate at a Mobility Management Entity (MME: not shown) within EPC 104 .
  • MME Mobility Management Entity
  • S-GW serving gateway
  • the control plane interface of interface 112 may be referred to as the S1-MME interface.
  • the user plane interface of interface 112 may be referred to as the S1-U interface.
  • one or more eNBs 102 may be connected to the EPC 104 via the interface 112.
  • An interface may exist between multiple eNBs 102 connected to the EPC 104 (not shown).
  • the interface between the plurality of eNBs 102 connected to the EPC 104 may be referred to as an X2 interface.
  • NR106 may be a radio access technology.
  • NR106 may also be an air interface between UE122 and gNB108.
  • the air interface between UE 122 and gNB 108 may be referred to as a Uu interface.
  • gNB (g Node B) 108 may be a base station device of NR106.
  • gNB 108 may have the NR protocol described below.
  • the NR protocol may include an NR user plane (UP) protocol, which will be described later, and an NR control plane (CP) protocol, which will be described later.
  • the gNB 108 may terminate the NR User Plane (UP) protocol and the NR Control Plane (CP) protocol for the UE 122.
  • UP NR user plane
  • CP NR control plane
  • 5GC110 may be a core network.
  • Interface 116 is an interface between gNB 108 and 5GC 110, and may be called an NG interface.
  • the interface 116 may include a control plane interface through which control signals pass and/or a user plane interface through which user data passes.
  • the control plane interface of interface 116 may terminate in an Access and Mobility Management Function (AMF: not shown) within 5GC 110.
  • AMF Access and Mobility Management Function
  • the user plane interface of interface 116 may terminate at a User Plane Function (UPF: not shown) within 5GC 110.
  • the control plane interface of interface 116 may be referred to as an NG-C interface.
  • the user plane interface of interface 116 may be referred to as an NG-U interface.
  • one or more gNBs 108 may be connected to the 5GC 110 via the interface 116.
  • An interface may exist between multiple gNBs 108 connected to 5GC 110 (not shown).
  • the interface between multiple gNBs 108 connected to 5GC 110 may be called an Xn interface.
  • eNB102 may have the ability to connect to 5GC110.
  • the eNB 102 that has the function of connecting to the 5GC 110 may be called an ng-eNB.
  • Interface 114 is an interface between eNB 102 and 5GC 110, and may be called an NG interface.
  • the interface 114 may include a control plane interface through which control signals pass and/or a user plane interface through which user data passes.
  • the control plane interface of interface 114 may terminate at an AMF within 5GC 110.
  • the user plane interface of interface 114 may terminate at a UPF within 5GC 110.
  • the control plane interface of interface 114 may be referred to as an NG-C interface.
  • the user plane interface of interface 114 may be referred to as an NG-U interface.
  • a radio access network composed of ng-eNBs or gNBs may be referred to as NG-RAN.
  • NG-RAN, E-UTRAN, etc. may also be simply referred to as networks.
  • the network may include eNB, ng-eNB, gNB, and the like.
  • one or more eNB102 may be connected to 5GC110 via interface 114.
  • An interface may exist between multiple eNB102 connected to 5GC110 (not shown).
  • the interface between multiple eNB102 connected to 5GC110 may be called an Xn interface.
  • an eNB102 connected to 5GC110 and a gNB108 connected to 5GC110 may be connected by interface 120.
  • the interface 120 between an eNB102 connected to 5GC110 and a gNB108 connected to 5GC110 may be called an Xn interface.
  • gNB108 may have the function of connecting to EPC104.
  • gNB 108 having the function of connecting to EPC 104 may be called en-gNB.
  • Interface 118 is an interface between gNB 108 and EPC 104, and may be called an S1 interface.
  • Interface 118 may include a user plane interface through which user data passes.
  • the user plane interface of interface 118 may terminate at an S-GW (not shown) within EPC 104.
  • the user plane interface of interface 118 may be referred to as the S1-U interface.
  • the eNB 102 connected to the EPC 104 and the gNB 108 connected to the EPC 104 may be connected through an interface 120.
  • the interface 120 between the eNB 102 that connects to the EPC 104 and the gNB 108 that connects to the EPC 104 may be called an X2 interface.
  • the interface 124 is an interface between the EPC 104 and the 5GC 110, and may be an interface that passes only CP, only UP, or both CP and UP. Furthermore, some or all of the interfaces 114, 116, 118, 120, 124, etc. may not exist depending on the communication system provided by the communication carrier or the like.
  • the UE 122 may be a terminal device that can receive system information and paging messages transmitted from the eNB 102 and/or gNB 108. Further, the UE 122 may be a terminal device that can be wirelessly connected to the eNB 102 and/or the gNB 108. Further, the UE 122 may be a terminal device that can simultaneously perform a wireless connection with the eNB 102 and a wireless connection with the gNB 108. UE 122 may have an E-UTRA protocol and/or an NR protocol. Note that the wireless connection may be a Radio Resource Control (RRC) connection.
  • RRC Radio Resource Control
  • UE122 may also be a terminal device capable of connecting to EPC104 and/or 5GC110 via eNB102 and/or gNB108.
  • EPC104 When the core network to which eNB102 and/or gNB108, with which UE122 communicates, is connected is EPC104, each Data Radio Bearer (DRB: Data Radio Bearer) described below established between UE122 and eNB102 and/or gNB108 may further be uniquely linked to each EPS (Evolved Packet System) bearer passing through EPC104.
  • EPS bearer may be identified by an EPS bearer identifier (Identity, or ID).
  • ID EPS bearer identifier
  • the same QoS may be guaranteed for data such as IP packets and Ethernet (registered trademark) frames passing through the same EPS bearer.
  • each DRB established between UE122 and eNB102 and/or gNB108 is further established within 5GC110. It may be linked to one of the PDU (Packet Data Unit) sessions. There may be one or more QoS flows in each PDU session. Each DRB may be mapped to one or more QoS flows, or may not be mapped to any QoS flows.
  • Each PDU session may be identified by a PDU session identifier (Identity, or ID). Further, each QoS flow may be identified by a QoS flow identifier (Identity or ID). Furthermore, the same QoS may be guaranteed for data such as IP packets and Ethernet frames passing through the same QoS flow.
  • the EPC 104 There may be no PDU sessions and/or QoS flows in the EPC 104. Also, 5GC110 does not need to have an EPS bearer. When the UE 122 is connected to the EPC 104, the UE 122 has information on the EPS bearer, but may not have information on the PDU session and/or QoS flow. Further, when the UE 122 is connected to the 5GC 110, the UE 122 has information on the PDU session and/or QoS flow, but does not need to have information on the EPS bearer.
  • the eNB 102 and/or gNB 108 will also be simply referred to as a base station device, and the UE 122 will also be simply referred to as a terminal device or UE.
  • FIG. 2 is a diagram of an example of the E-UTRA protocol architecture according to the present embodiment.
  • FIG. 3 is a diagram of an example of the NR protocol configuration according to the present embodiment. Note that the functions of each protocol explained using FIG. 2 and/or FIG. 3 are some functions closely related to this embodiment, and may have other functions.
  • the uplink (UL) may be a link from a terminal device to a base station device.
  • the downlink (DL) may be a link from a base station device to a terminal device.
  • FIG. 2(A) is a diagram of the E-UTRA user plane (UP) protocol stack.
  • the E-UTRA UP protocol may be a protocol between the UE 122 and the eNB 102. That is, the E-UTRA UP protocol may be a protocol that terminates at the eNB 102 on the network side.
  • the E-UTRA user plane protocol stack consists of a wireless physical layer (PHY) 200, a medium access control layer (MAC) 200, and a medium access control layer (MAC).
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • Figure 3(A) is a diagram of the NR user plane (UP) protocol stack.
  • the NRUP protocol may be a protocol between the UE 122 and the gNB 108. That is, the NR UP protocol may be a protocol that terminates at the gNB 108 on the network side.
  • the NR user plane protocol stack includes a radio physical layer PHY300, a medium access control layer MAC302, a radio link control layer RLC304, a packet data convergence protocol layer PDCP306, and It may be configured from SDAP (Service Data Adaptation Protocol) 310, which is a service data adaptation protocol layer.
  • SDAP Service Data Adaptation Protocol
  • FIG. 2(B) is a diagram of the E-UTRA control plane (CP) protocol configuration.
  • RRC Radio Resource Control
  • NAS Non Access Stratum
  • NAS 210 which is the non-AS (Access Stratum) layer
  • NAS 210 may be a protocol that terminates at MME on the network side.
  • Figure 3(B) is a diagram of the NR control plane (CP) protocol configuration.
  • RRC 308 which is a radio resource control layer
  • RRC308 may be a protocol that terminates at gNB108 on the network side.
  • the NAS 312, which is a non-AS layer may be a protocol between the UE 122 and the AMF. That is, the NAS 312 may be a protocol that terminates with AMF on the network side.
  • the AS (Access Stratum) layer may be a layer that terminates between the UE 122 and the eNB 102 and/or gNB 108. That is, the AS layer is a layer that includes some or all of PHY200, MAC202, RLC204, PDCP206, and RRC208, and/or a layer that includes some or all of PHY300, MAC302, RLC304, PDCP306, SDAP310, and RRC308. It's fine.
  • the following does not distinguish between the E-UTRA protocol and the NR protocol, and uses PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), and RRC (RRC layer).
  • NAS NAS layer
  • PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), and NAS (NAS layer) are the PHY (PHY layer) of the E-UTRA protocol.
  • the SDAP (SDAP layer) may be the SDAP (SDAP layer) of the NR protocol.
  • PHY200, MAC202, RLC204, PDCP206, and RRC208 are respectively defined as PHY for E-UTRA or PHY for LTE, MAC for E-UTRA, or It is also called MAC for LTE, RLC for E-UTRA or RLC for LTE, PDCP for E-UTRA or PDCP for LTE, and RRC for E-UTRA or RRC for LTE.
  • PHY200, MAC202, RLC204, PDCP206, and RRC208 are respectively E-UTRA PHY or LTE PHY, E-UTRA MAC or LTE MAC, E-UTRA RLC or LTE RLC, E-UTRA PDCP or LTE PDCP, and E-UTRA It may also be written as RRC or LTE RRC.
  • PHY300, MAC302, RLC304, PDCP306, and RRC308 are called PHY for NR, MAC for NR, RLC for NR, RLC for NR, and RRC for NR, respectively. There are some things.
  • PHY300, MAC302, RLC304, PDCP306, and RRC308 are sometimes written as NR PHY, NR MAC, NR RLC, NR PDCP, NR RRC, etc., respectively.
  • Entities in the AS layer of E-UTRA and/or NR will be explained.
  • An entity that has some or all of the functions of the MAC layer may be called a MAC entity.
  • An entity that has some or all of the functions of the RLC layer may be called an RLC entity.
  • An entity that has some or all of the functions of the PDCP layer may be called a PDCP entity.
  • An entity that has some or all of the functions of the SDAP layer may be called an SDAP entity.
  • An entity that has some or all of the functions of the RRC layer may be called an RRC entity.
  • the MAC entity, RLC entity, PDCP entity, SDAP entity, and RRC entity may be replaced with MAC, RLC, PDCP, SDAP, and RRC, respectively.
  • MAC PDU Protocol Data Unit
  • RLC Network Data Unit
  • RLC Physical Location
  • SDAP Secure Protocol
  • data provided from the upper layer to MAC, RLC, PDCP, and SDAP, and/or data provided from MAC, RLC, PDCP, and SDAP to the upper layer are MAC SDU (Service Data Unit) and RLC SDU, respectively.
  • MAC SDU Service Data Unit
  • RLC SDU Service Data Unit
  • PDCP SDU Secure Data Unit
  • SDAP SDU Secure Data Unit
  • a segmented RLC SDU may be referred to as an RLC SDU segment.
  • the base station device and the terminal device exchange (transmit and receive) signals in a higher layer.
  • the base station device and the terminal device may transmit and receive RRC messages (also referred to as RRC messages, RRC information, and RRC signaling) in a radio resource control (RRC) layer.
  • RRC radio resource control
  • the base station device and the terminal device may transmit and receive MAC control elements in the MAC (Medium Access Control) layer.
  • the RRC layer of the terminal device acquires system information broadcast from the base station device.
  • the RRC message, system information, and/or MAC control element is also referred to as a higher layer signal (higher layer signal) or a higher layer parameter (higher layer parameter).
  • upper layer refers to the upper layer seen from the PHY layer, so it refers to one or more of the MAC layer, RRC layer, RLC layer, PDCP layer, NAS (Non Access Stratum) layer, etc. Good too.
  • the upper layer may mean one or more of the RRC layer, RLC layer, PDCP layer, NAS layer, and the like.
  • A is given (provided) by the upper layer” and “A is given (provided) by the upper layer” mean the upper layers of the terminal device (mainly the RRC layer and MAC layer).
  • A is received from the base station device, and the received A is given (provided) from an upper layer of the terminal device to the physical layer of the terminal device.
  • being “provided with upper layer parameters” means that the upper layer parameter included in the received upper layer signal is received from the base station device, and the upper layer parameter included in the received upper layer signal is transmitted from the upper layer of the terminal device to the terminal device.
  • Setting upper layer parameters to a terminal device may mean that upper layer parameters are given (provided) to the terminal device.
  • setting upper layer parameters in a terminal device may mean that the terminal device receives an upper layer signal from a base station device and sets the received upper layer parameters in the upper layer.
  • setting upper layer parameters to the terminal device may include setting default parameters given in advance to the upper layer of the terminal device.
  • the expression "submit" a message from the RRC entity of the terminal device to a lower layer may be used.
  • "submitting a message to a lower layer” from an RRC entity may mean submitting a message to a PDCP layer.
  • "submitting a message from the RRC layer to a lower layer” means that RRC messages are sent using SRBs (SRB0, SRB1, SRB2, SRB3, etc.), so It may also mean submitting to the corresponding PDCP entity.
  • the lower layer may refer to one or more of a PHY layer, a MAC layer, an RLC layer, a PDCP layer, and the like.
  • the PHY of the terminal device may have a function of receiving data transmitted from the PHY of the base station device via a downlink (DL) physical channel.
  • the PHY of the terminal device may have a function of transmitting data to the PHY of the base station device via an uplink (UL) physical channel.
  • the PHY may be connected to the upper MAC via a transport channel.
  • the PHY may pass data to the MAC via a transport channel.
  • the PHY may also be provided with data from the MAC via a transport channel.
  • RNTI Radio Network Temporary Identifier
  • the physical channels used for wireless communication between the terminal device and the base station device may include the following physical channels.
  • PBCH Physical Broadcast CHannel
  • PDCCH Physical Downlink Control CHannel
  • PDSCH Physical Downlink Shared CHannel
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • PBCH may be used to broadcast system information required by terminal devices.
  • the PBCH may be used to broadcast a time index (SSB-Index) within the period of a synchronization signal block (SSB).
  • SSB-Index time index within the period of a synchronization signal block
  • the PDCCH may be used to transmit (or carry) downlink control information (DCI) in downlink wireless communication (wireless communication from a base station device to a terminal device).
  • DCI downlink control information
  • one or more DCIs (which may also be referred to as DCI formats) may be defined for transmission of downlink control information. That is, a field for downlink control information may be defined as DCI and mapped to information bits.
  • PDCCH may be transmitted on PDCCH candidates.
  • a terminal device may monitor a set of PDCCH candidates in a serving cell. Monitoring a set of PDCCH candidates may mean attempting to decode a PDCCH according to a certain DCI format. Furthermore, the terminal device may use CORESET (Control Resource Set) to monitor the set of PDCCH candidates.
  • the DCI format may be used for PUSCH scheduling in the serving cell. PUSCH may be used for transmitting user data, transmitting an RRC message, which will be described later, and the like.
  • the PUCCH may be used to transmit uplink control information (UCI) in uplink wireless communication (wireless communication from a terminal device to a base station device).
  • the uplink control information may include channel state information (CSI) used to indicate the state of a downlink channel.
  • the uplink control information may also include a scheduling request (SR) used to request UL-SCH (Uplink Shared CHannel) resources.
  • SR scheduling request
  • the uplink control information may include HARQ-ACK (Hybrid Automatic Repeat reQuest ACKnowledgement).
  • the PDSCH may be used to transmit downlink data (DL-SCH: Downlink Shared CHannel) from the MAC layer. Further, in the case of the downlink, the PDSCH may be used to transmit system information (SI), random access response (RAR), and the like.
  • SI system information
  • RAR random access response
  • PUSCH may be used to transmit HARQ-ACK and/or CSI along with uplink data (UL-SCH: Uplink Shared CHannel) or uplink data from the MAC layer. Further, PUSCH may be used to transmit only CSI or only HARQ-ACK and CSI. That is, PUSCH may be used to transmit only UCI. Additionally, the PDSCH or PUSCH may be used to transmit RRC signaling (also referred to as RRC message) and MAC CE.
  • RRC signaling also referred to as RRC message
  • the RRC signaling transmitted from the base station device may be common signaling to multiple terminal devices within the cell. Further, the RRC signaling transmitted from the base station device may be dedicated signaling (also referred to as dedicated signaling) for a certain terminal device. That is, terminal device-specific (UE-specific) information may be transmitted to a certain terminal device using dedicated signaling. Further, PUSCH may be used to transmit UE Capability in the uplink.
  • PRACH may be used to transmit a random access preamble.
  • PRACH is used to indicate initial connection establishment procedures, handover procedures, connection re-establishment procedures, synchronization (timing adjustment) for uplink transmission, and requests for UL-SCH resources. You can.
  • MAC may be called a MAC sublayer.
  • the MAC may have a function of mapping various logical channels to corresponding transport channels.
  • a logical channel may be identified by a logical channel identifier (Logical Channel Identity or Logical Channel ID).
  • Logical channels may be divided into control channels for transmitting control information and traffic channels for transmitting user information, depending on the type of information to be transmitted. Further, logical channels may be divided into uplink logical channels and downlink logical channels.
  • the MAC may have a function of multiplexing MAC SDUs belonging to one or more different logical channels and providing the same to the PHY.
  • the MAC may also have a function of demultiplexing the MAC PDUs provided from the PHY and providing them to the upper layer via the logical channel to which each MAC SDU belongs.
  • the MAC may also have a function of performing error correction through HARQ (Hybrid Automatic Repeat reQuest).
  • HARQ Hybrid Automatic Repeat reQuest
  • the MAC may also have the ability to report scheduling information.
  • the MAC may have a function of performing priority processing between terminal devices using dynamic scheduling. Further, the MAC may have a function of performing priority processing between logical channels within one terminal device.
  • the MAC may have a function to prioritize resources that overlap within one terminal device.
  • E-UTRA MAC may have the function of identifying Multimedia Broadcast Multicast Services (MBMS).
  • MBMS Multimedia Broadcast Multicast Services
  • the NR MAC may also have a function of identifying multicast/broadcast service (MBS).
  • MBS multicast/broadcast service
  • the MAC may have the ability to select the transport format.
  • MAC is a power head that has the function of performing discontinuous reception (DRX) and/or discontinuous transmission (DTX), the function of executing random access (RA) procedure, and the function of notifying information on transmittable power. It may have a room report (Power Headroom Report: PHR) function, a buffer status report (Buffer Status Report: BSR) function that notifies information on the amount of data in the transmission buffer, etc.
  • NR MAC may have a Bandwidth Adaptation (BA) function.
  • BA Bandwidth Adaptation
  • the MAC PDU format used in E-UTRA MAC and the MAC PDU format used in NR MAC may be different.
  • the MAC PDU may also include a MAC control element (MAC control element: MAC CE), which is an element for controlling the MAC.
  • MAC control element MAC CE
  • the BCCH (Broadcast Control Channel) may be a downlink logical channel for broadcasting control information such as system information (SI).
  • SI system information
  • PCCH Packet Control Channel
  • PCCH Packet Control Channel
  • CCCH Common Control Channel
  • CCCH may be a logical channel for transmitting control information between a terminal device and a base station device.
  • CCCH may be used when the terminal device does not have an RRC connection. Further, CCCH may be used between a base station device and multiple terminal devices.
  • DCCH Dedicated Control Channel
  • the dedicated control information may be control information dedicated to each terminal device.
  • DCCH may be used when the terminal device has an RRC connection.
  • DTCH (Dedicated Traffic Channel) may be a logical channel for transmitting user data on a one-to-one (point-to-point) basis between a terminal device and a base station device.
  • DTCH may be a logical channel for transmitting dedicated user data.
  • the dedicated user data may be user data dedicated to each terminal device.
  • DTCH may exist on both uplink and downlink.
  • CCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
  • UL-SCH Uplink Shared Channel
  • the DCCH may be mapped to a UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
  • UL-SCH Uplink Shared Channel
  • DTCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
  • UL-SCH Uplink Shared Channel
  • the BCCH may be mapped to a BCH (Broadcast Channel), which is a downlink transport channel, and/or a DL-SCH (Downlink Shared Channel).
  • BCH Broadcast Channel
  • DL-SCH Downlink Shared Channel
  • the PCCH may be mapped to a PCH (Paging Channel), which is a downlink transport channel.
  • PCH Packet Control Channel
  • CCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • the DCCH may be mapped to a DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
  • DL-SCH Downlink Shared Channel
  • DTCH may be mapped to the downlink transport channel, DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • RLC may be referred to as an RLC sublayer.
  • the E-UTRA RLC may have a function of segmenting and/or concatenating data provided from the upper layer PDCP and providing it to the lower layer.
  • the E-UTRA RLC may have a function of reassembling and re-ordering data provided from lower layers and providing the data to upper layers.
  • NR RLC may have a function of adding a sequence number independent of the sequence number added by PDCP to data provided from the upper layer PDCP.
  • NR RLC may have a function of segmenting data provided from PDCP and providing it to lower layers.
  • the NR RLC may have a function of reassembling data provided from lower layers and providing the data to upper layers.
  • RLC may also have a data retransmission function and/or a retransmission request function (Automatic Repeat reQuest: ARQ). Additionally, RLC may have a function of performing error correction using ARQ. Control information indicating data that needs to be retransmitted, which is sent from the RLC receiving side to the transmitting side in order to perform ARQ, can be called a status report. Also, the status report transmission instruction sent from the RLC transmitting side to the receiving side can be referred to as a poll. The RLC may also have a function to detect data duplication. RLC may also have a data discard function. RLC may have three modes: transparent mode (TM), unacknowledged mode (UM), and acknowledged mode (AM).
  • TM transparent mode
  • UM unacknowledged mode
  • AM acknowledged mode
  • the TM does not divide data received from the upper layer and does not need to add an RLC header.
  • a TM RLC entity is a uni-directional entity and may be configured as a transmitting TM RLC entity or as a receiving TM RLC entity.
  • data received from the upper layer is divided and/or combined, RLC headers are added, etc., but there is no need to control data retransmission.
  • a UM RLC entity may be a unidirectional entity or a bi-directional entity. If the UM RLC entity is a unidirectional entity, the UM RLC entity may be configured as a transmitting UM RLC entity or as a receiving UMRLC entity.
  • the UM RRC entity may be configured as a UM RLC entity consisting of a transmitting side and a receiving side.
  • the AM RLC entity is a bidirectional entity and may be configured as an AM RLC consisting of a transmitting side and a receiving side.
  • data provided to a lower layer by a TM and/or data provided from a lower layer may be referred to as a TMD PDU.
  • data provided to lower layers in UM and/or data provided from lower layers may be referred to as UMD PDU.
  • data provided to lower layers in AM or data provided from lower layers may be referred to as AMD PDU.
  • the RLC PDU format used in E-UTRA RLC and the RLC PDU format used in NR RLC may be different.
  • the RLC PDU may include a data RLC PDU and a control RLC PDU.
  • the RLC PDU for data may be called RLC DATA PDU (RLC Data PDU, RLC data PDU).
  • the control RLC PDU may be referred to as RLC CONTROL PDU (RLC Control PDU, RLC control PDU, RLC control PDU).
  • PDCP may be called a PDCP sublayer.
  • PDCP may have a function to perform sequence number maintenance.
  • PDCP may have a header compression/decompression function for efficiently transmitting user data such as IP packets and Ethernet frames over a wireless section.
  • the protocol used to compress and decompress the header of IP packets can be called the ROHC (Robust Header Compression) protocol.
  • the protocol used for compressing and decompressing Ethernet frame headers may be referred to as the EHC (Ethernet (registered trademark) Header Compression) protocol.
  • EHC Errnet (registered trademark) Header Compression
  • PDCP may have data encryption/decryption functions.
  • PDCP may have data integrity protection/integrity verification functions.
  • PDCP may also have a re-ordering function.
  • PDCP may also have a PDCP SDU retransmission function.
  • PDCP may have a function of discarding data using a discard timer.
  • PDCP may have a multiplexing (Duplication) function.
  • PDCP may have a function of discarding data that has been received repeatedly.
  • the PDCP entity is a bidirectional entity and may include a transmitting PDCP entity and a receiving PDCP entity.
  • the PDCP PDU format used in E-UTRA PDCP and the PDCP PDU format used in NR PDCP may be different.
  • the PDCP PDU may include a data PDCP PDU and a control PDCP PDU.
  • the data PDCP PDU may be called a PDCP DATA PDU (PDCP Data PDU).
  • the control PDCP PDU may be called a PDCP CONTROL PDU (PDCP Control PDU, PDCP control PDU, PDCP control PDU).
  • SDAP is a service data adaptation protocol layer.
  • SDAP maps the downlink QoS flow sent from 5GC110 to the terminal device via the base station device and the data radio bearer (DRB), and/or the mapping from the terminal device to the terminal device via the base station device. It may have a function to map uplink QoS flows sent to 5GC110 and DRB.
  • SDAP may also have a function of storing mapping rule information.
  • SDAP may also have a function of marking a QoS flow identifier (QoS Flow ID: QFI).
  • QFI QoS flow ID
  • the SDAP PDU may include a data SDAP PDU and a control SDAP PDU.
  • SDAP PDU for data may be called SDAP DATA PDU (SDAP Data PDU, SDAP data PDU).
  • control SDAP PDU may be called an SDAP CONTROL PDU (SDAP Control PDU, SDAP control PDU, SDAP control PDU). Note that one SDAP entity of the terminal device may exist for a PDU session.
  • RRC may have a broadcast function.
  • the RRC may have a paging function from the EPC 104 and/or 5GC 110.
  • the RRC may have a paging function from the eNB 102 that connects to the gNB 108 or 5GC 110.
  • RRC may also have RRC connection management functionality.
  • RRC may also have radio bearer control functionality.
  • the RRC may also have a cell group control function.
  • the RRC may also have mobility control functionality.
  • the RRC may also have terminal device measurement reporting and terminal device measurement reporting control functions.
  • RRC may also have QoS management functionality.
  • RRC may also have radio link failure detection and recovery functionality.
  • RRC uses RRC messages to perform broadcasting, paging, RRC connection management, radio bearer control, cell group control, mobility control, terminal device measurement reporting and terminal device measurement reporting control, QoS management, radio link failure detection and recovery, etc. You may do so. Note that the RRC messages and parameters used in E-UTRA RRC may be different from the RRC messages and parameters used in NR RRC.
  • the RRC message may be sent using the BCCH of a logical channel, the PCCH of a logical channel, the CCCH of a logical channel, or the DCCH of a logical channel. May be sent. Furthermore, the RRC message sent using the DCCH may be referred to as dedicated RRC signaling or RRC signaling.
  • the RRC message sent using the BCCH may include, for example, a master information block (MIB), each type of system information block (SIB), and other RRC messages may be included.
  • RRC messages sent using the PCCH may include, for example, paging messages or other RRC messages.
  • RRC messages sent in the uplink (UL) direction using CCCH include, for example, RRC Setup Request message, RRC Resume Request message, RRC Reestablishment Request message, It may include an RRC system information request message (RRC System Info Request), etc. Further, for example, an RRC Connection Request message, an RRC Connection Resume Request message, an RRC Connection Reestablishment Request message, and the like may be included. Other RRC messages may also be included.
  • RRC messages sent in the downlink (DL) direction using CCCH include, for example, RRC Connection Reject message, RRC Connection Setup message, RRC Connection Reestablishment message, It may include an RRC Connection Reestablishment Reject message, etc. Further, for example, an RRC rejection message (RRC Reject), an RRC Setup message (RRC Setup), etc. may be included. Other RRC messages may also be included.
  • RRC signaling sent in the uplink (UL) direction using DCCH includes, for example, measurement report messages, RRC Connection Reconfiguration Complete messages, and RRC Connection Setup Complete messages. ), an RRC Connection Reestablishment Complete message, a Security Mode Complete message, a UE Capability Information message, and the like. Also, for example, measurement report message (Measurement Report), RRC Reconfiguration Complete message, RRC Setup Complete message, RRC Reestablishment Complete message, RRC Resume Complete message. ), a security mode complete message (Security Mode Complete), a UE capability information message (UE Capability Information), etc. may be included. Other RRC signaling may also be included.
  • RRC signaling sent in the downlink (DL) direction using DCCH includes, for example, RRC Connection Reconfiguration message, RRC Connection Release message, Security Mode Command message, It may include a UE Capability Inquiry message, etc. Also, for example, RRC Reconfiguration message, RRC Resume message, RRC Release message, RRC Reestablishment message, Security Mode Command message, UE capability inquiry message. (UE Capability Inquiry) etc. may be included. Other RRC signaling may also be included.
  • the NAS may have an authentication function.
  • the NAS may also have the ability to perform mobility management.
  • the NAS may also have security control functions.
  • the UE 122 connecting to the EPC or 5GC may be in the RRC_CONNECTED state when the RRC connection has been established.
  • the state in which the RRC connection is established may include a state in which the UE 122 holds some or all of the UE context described below.
  • the state in which the RRC connection is established may include a state in which the UE 122 can transmit and/or receive unicast data.
  • the UE 122 when the RRC connection is suspended, the UE 122 may be in the RRC_INACTIVE state. Further, the UE 122 may enter the RRC_INACTIVE state when the UE 122 is connected to the 5GC and the RRC connection is suspended.
  • the UE 122 may be in the RRC_IDLE state.
  • the E-UTRAN may start suspending the RRC connection.
  • the UE 122 may transition to the RRC_IDLE state while retaining the UE's AS context and an identifier (resumeIdentity) used for resuming.
  • the layer above the RRC layer of the UE 122 (for example, the NAS layer) is configured such that the UE 122 maintains the UE's AS context, the E-UTRAN permits the return of the RRC connection, and the UE 122 leaves the RRC_IDLE state.
  • recovery of the suspended RRC connection may be initiated.
  • the definition of pause may be different between the UE 122 connecting to the EPC 104 and the UE 122 connecting to the 5GC 110. Also, when the UE122 is connected to the EPC (when the UE122 is inactive in the RRC_IDLE state) and when the UE122 is connected to the 5GC (when the UE122 is inactive in the RRC_INACTIVE state), the UE122 All or part of the procedure for returning from hibernation may be different.
  • RRC_CONNECTED state may be respectively called connected state (connected mode), inactive state (inactive mode), and idle state (idle mode), and RRC connected state (RRC connected mode). , RRC inactive mode, and RRC idle mode.
  • the AS context of the UE held by the UE122 includes the current RRC settings, the current security context, the PDCP state including the ROHC (RObust Header Compression) state, and the C-RNTI (Cell Radio) used in the PCell of the connection source (Source).
  • the information may include all or part of the Network Temporary Identifier, cell identifier (cellIdentity), and physical cell identifier of the connection source PCell.
  • the UE AS context held by any or all of eNB 102 and gNB 108 may include the same information as the UE AS context held by UE 122, or the information contained in the UE AS context held by UE 122. may contain information different from that.
  • the security context includes the encryption key at the AS level, the NH (Next Hop parameter), the NCC (Next Hop Chaining Counter parameter) used to derive the next hop access key, the identifier of the selected AS-level encryption algorithm, and replay protection.
  • the information may include all or part of the counter used for
  • the serving cell In a terminal device in an RRC connected state in which CA and/or DC, which will be described later, are not configured, the serving cell may be configured from one primary cell (PCell).
  • multiple serving cells include one or more special cells (Special Cell: SpCell) and one or more all secondary cells. It may mean a set of cells (set of cells) consisting of cells (Secondary Cell: SCell).
  • the SpCell may support PUCCH transmission and contention-based Random Access (CBRA), and the SpCell may be activated at all times.
  • CBRA contention-based Random Access
  • the PCell may be a cell used in an RRC connection establishment procedure when a terminal device in an RRC idle state transitions to an RRC connected state. Further, the PCell may be a cell used in an RRC connection re-establishment procedure in which a terminal device re-establishes an RRC connection. Further, the PCell may be a cell used in a random access procedure during handover. The PSCell may be a cell used in a random access procedure when adding a secondary node, which will be described later. Further, SpCell may be a cell used for purposes other than those described above.
  • the serving cell group configured for the terminal device is composed of an SpCell and one or more SCells, it may be considered that carrier aggregation (CA) is configured for the terminal device.
  • CA carrier aggregation
  • a cell that provides additional radio resources to SpCell for a terminal device in which CA is configured may mean SCell.
  • TAG timing advance group
  • the TAG including SpCell of the MAC entity may mean a primary timing advance group (PTAG).
  • TAGs other than the above-mentioned PTAG may mean secondary timing advance group (STAG). Note that one or more TAGs may be configured for each cell group, which will be described later.
  • a cell group that is set from a base station device to a terminal device will be explained.
  • a cell group may be composed of one SpCell.
  • a cell group may be composed of one SpCell and one or more SCells. That is, a cell group may be composed of one SpCell and optionally one or more SCells. Further, a cell group may be expressed as a set of cells.
  • Dual Connectivity means that a first base station device (first node) and a second base station device (second node) perform data communication by using the radio resources of the cell groups they respectively configure. It can be technology.
  • a cell group may be added to the terminal device from the base station device.
  • the first base station device may add a second base station device.
  • the first base station device may be called a master node (Master Node: MN).
  • MN master node
  • MCG master cell group
  • the second base station device may be referred to as a secondary node (SN).
  • a cell group configured by a secondary node may be referred to as a secondary cell group (SCG).
  • the master node and the secondary node may be configured within the same base station device.
  • a cell group configured in a terminal device may be referred to as an MCG.
  • the SpCell set in the terminal device may be a PCell.
  • an NR without a DC configured may be called an NR standalone.
  • Multi-Radio Dual Connectivity may be a technology that performs DC using E-UTRA for MCG and NR for SCG. Further, MR-DC may be a technique for performing DC using NR for MCG and E-UTRA for SCG. Further, MR-DC may be a technology that performs DC using NR on both MCG and SCG. MR-DC may be a technology included in DC. As an example of MR-DC that uses E-UTRA for MCG and NR for SCG, there may be EN-DC (E-UTRA-NR Dual Connectivity) that uses EPC for the core network, and NGEN-DC that uses 5GC for the core network. DC (NG-RAN E-UTRA-NR Dual Connectivity) is fine.
  • NR-DC that uses NR for MCG and E-UTRA for SCG
  • NE-DC NR-E-UTRA Dual Connectivity
  • NR-DC NR-NR Dual Connectivity
  • one MAC entity may exist for each cell group.
  • a DC or MR-DC when configured in a terminal device, there may be one MAC entity for MCG and one MAC entity for SCG.
  • a MAC entity for MCG in a terminal device may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.).
  • the MAC entity for the SCG in the terminal device may be created by the terminal device when the SCG is configured in the terminal device.
  • the MAC entity for each cell group of the terminal device may be configured by the terminal device receiving RRC signaling from the base station device.
  • SpCell When a MAC entity is associated with an MCG, SpCell may refer to PCell.
  • SpCell may mean a primary SCG cell (Primary SCG Cell: PSCell). Also, if the MAC entity is not associated with a cell group, SpCell may mean PCell. PCell, PSCell, and SCell are serving cells.
  • the MAC entity for MCG may be an E-UTRA MAC entity
  • the MAC entity for SCG may be an NR MAC entity.
  • the MAC entity for MCG may be an NR MAC entity
  • the MAC entity for SCG may be an E-UTRA MAC entity.
  • both the MAC entities for MCG and SCG may be NR MAC entities. Note that the existence of one MAC entity for each cell group can be translated into the existence of one MAC entity for each SpCell. Furthermore, one MAC entity for each cell group may be translated as one MAC entity for each SpCell.
  • a wireless connection may be established by establishing a radio bearer (RB) between the terminal device and the base station device.
  • the radio bearer used for CP may be called a signaling radio bearer (SRB).
  • the radio bearer used for UP may be called a data radio bearer (DRB).
  • Each radio bearer may be assigned a radio bearer identity (ID).
  • the radio bearer identifier for SRB may be called an SRB identity (SRB ID).
  • the radio bearer identifier for DRB may be called a DRB identity (DRB ID).
  • SRB0 to SRB2 may be defined as SRBs of E-UTRA, and SRBs other than these may be defined.
  • SRB0 to SRB3 may be defined as SRBs of NR, and SRBs other than these may be defined.
  • SRB0 may be an SRB for an RRC message that is transmitted and/or received using the CCCH of the logical channel.
  • SRB1 may be an SRB for RRC signaling and for NAS signaling before the establishment of SRB2.
  • RRC signaling transmitted and/or received using SRB1 may include piggybacked NAS signaling.
  • the logical channel DCCH may be used for all RRC signaling and NAS signaling transmitted and/or received using SRB1.
  • SRB2 may be an SRB for NAS signaling and for RRC signaling including logged measurement information.
  • the logical channel DCCH may be used for all RRC signaling and NAS signaling transmitted and/or received using SRB2.
  • SRB2 may have a lower priority than SRB1.
  • SRB3 may be an SRB for transmitting and/or receiving specific RRC signaling when EN-DC, NGEN-DC, NR-DC, etc. are configured in the terminal device.
  • the logical channel DCCH may be used for all RRC signaling and NAS signaling transmitted and/or received using SRB3. Further, other SRBs may be prepared for other uses.
  • DRB may be a radio bearer for user data.
  • the logical channel DTCH may be used for RRC signaling that is transmitted and/or received using the DRB.
  • Radio bearers may include RLC bearers.
  • An RLC bearer may consist of one or two RLC entities and a logical channel. When there are two RLC entities in an RLC bearer, the RLC entities may be a TM RLC entity and/or a transmitting RLC entity and a receiving RLC entity in an RLC entity in unidirectional UM mode.
  • SRB0 may consist of one RLC bearer.
  • the RLC bearer of SRB0 may consist of a TM RLC entity and a logical channel. SRB0 may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.).
  • One SRB1 may be established and/or configured in the terminal device by RRC signaling received from the base station device when the terminal device transitions from the RRC idle state to the RRC connected state.
  • SRB1 may consist of one PDCP entity and one or more RLC bearers.
  • the SRB1 RLC bearer may consist of an AM RLC entity and a logical channel.
  • One SRB2 may be established and/or configured in a terminal device in an RRC connected state with AS security activated by RRC signaling received from the base station device.
  • SRB2 may consist of one PDCP entity and one or more RLC bearers.
  • the SRB2 RLC bearer may consist of an AM RLC entity and a logical channel.
  • the PDCP on the base station device side of SRB1 and SRB2 may be placed in the master node.
  • SRB3 when a secondary node in EN-DC, NGEN-DC, or NR-DC is added or changed, a terminal device in an RRC connection state with AS security activated connects to the base station. One may be established and/or configured in the terminal device by RRC signaling received from the device.
  • SRB3 may be a direct SRB between the terminal device and the secondary node.
  • SRB3 may consist of one PDCP entity and one or more RLC bearers.
  • the SRB3 RLC bearer may consist of an AM RLC entity and a logical channel.
  • PDCP on the base station device side of SRB3 may be placed in a secondary node.
  • One or more DRBs may be established and/or configured in a terminal device in an RRC connected state with AS security activated by RRC signaling that the terminal device receives from the base station device.
  • a DRB may consist of one PDCP entity and one or more RLC bearers.
  • a DRB RLC bearer may consist of an AM or UM RLC entity and a logical channel.
  • the radio bearer in which PDCP is placed in the master node may be referred to as an MN terminated bearer.
  • a radio bearer in which PDCP is placed in a secondary node may be referred to as an SN terminated bearer.
  • a radio bearer in which the RLC bearer exists only in the MCG may be referred to as an MCG bearer.
  • a radio bearer in which the RLC bearer exists only in the SCG may be referred to as an SCG bearer.
  • a radio bearer in which the RLC bearer exists in both the MCG and the SCG may be referred to as a split bearer.
  • the bearer types of SRB1 and SRB2 established/and/or configured in the terminal device may be MN-terminated MCG bearer and/or MN-terminated split bearer.
  • the bearer type of SRB3 established/and/or configured in the terminal device may be an SN termination SCG bearer.
  • the bearer type of the DRB established/and/or configured in the terminal device may be any one of all bearer types.
  • the RLC entity to be established and/or configured may be E-UTRA RLC.
  • the RLC entity to be established and/or configured for an RLC bearer established and/or configured in a cell group configured with NR may be NR RLC.
  • EN-DC is configured in the terminal device
  • the PDCP entity established and/or configured for the MN terminating MCG bearer may be either E-UTRA PDCP or NR PDCP.
  • the PDCP established and/or configured may be NR PDCP.
  • the PDCP entity established and/or configured for the radio bearer in all bearer types may be NR PDCP.
  • a DRB established and/or configured in a terminal device may be linked to one PDU session.
  • One SDAP entity may be established and/or configured for one PDU session at the terminal device.
  • Establishment and/or configuration of the SDAP entity, PDCP entity, RLC entity, and logical channel in the terminal device may be established and/or configured by RRC signaling that the terminal device receives from the base station device.
  • a network configuration in which the master node is eNB102 and EPC104 is the core network may be called E-UTRA/EPC.
  • a network configuration in which the master node is eNB102 and 5GC110 is the core network may be called E-UTRA/5GC.
  • a network configuration in which the master node is gNB108 and 5GC110 is the core network may be called NR or NR/5GC.
  • the above-mentioned master node may refer to a base station device that communicates with a terminal device.
  • Handover may be a process in which the UE 122 in the RRC connected state changes the serving cell from the source SpCell to the target SpCell.
  • Handover may be part of mobility control performed by RRC.
  • Handover may be performed when UE 122 receives RRC signaling from eNB 102 and/or gNB 108 instructing handover.
  • RRC signaling that instructs handover may be a message regarding reconfiguration of an RRC connection that includes a parameter that instructs handover (for example, an information element named MobilityControlInfo or an information element named ReconfigurationWithSync).
  • a parameter that instructs handover for example, an information element named MobilityControlInfo or an information element named ReconfigurationWithSync.
  • MobilityControlInfo may be referred to as a mobility control setting information element, mobility control setting, or mobility control information.
  • RRC signaling instructing handover may be a message (eg, MobilityFromEUTRACommand or MobilityFromNRCommand) indicating movement to a cell of another RAT.
  • Handover can also be referred to as reconfiguration with sync.
  • Reconfiguration with synchronization may be triggered by RRC, or by DCI or MAC control elements.
  • the conditions under which the UE 122 can perform handover include some or all of the following: when AS security is activated, when SRB2 is established, and when at least one DRB is established. good.
  • the above-mentioned handover may be rephrased as layer 3 handover or the like.
  • FIG. 4 is a diagram showing an example of a flow of procedures for various settings in RRC according to the present embodiment.
  • FIG. 4 is an example of a flow when RRC signaling is sent from the base station device (eNB 102 and/or gNB 108) to the terminal device (UE 122).
  • the base station device creates an RRC message (step S400).
  • the RRC message may be created in the base station device so that the base station device can distribute system information (SI) and paging messages. Further, the creation of the RRC message in the base station device may be performed so that the base station device can transmit RRC signaling to cause a specific terminal device to perform processing.
  • the processing to be performed on a specific terminal device may include, for example, processing related to security, reconfiguration of an RRC connection, handover to a different RAT, suspension of an RRC connection, release of an RRC connection, and the like.
  • Resetting an RRC connection involves processing such as radio bearer control (establishment, change, release, etc.), cell group control (establishment, addition, change, release, etc.), measurement setting, handover, security key update, etc. May be included.
  • the creation of an RRC message in the base station device may be performed in response to RRC signaling transmitted from the terminal device.
  • the response to RRC signaling transmitted from the terminal device may include, for example, a response to an RRC setup request, a response to an RRC reconnection request, a response to an RRC restart request, and the like.
  • the RRC message includes information (parameters) for various information notifications and settings. These parameters may be called fields and/or information elements, and may be described using a description method called ASN.1 (Abstract Syntax Notation One).
  • the base station device then transmits the created RRC signaling to the terminal device (step S402).
  • the terminal device performs processing such as setting, if necessary, according to the above-mentioned received RRC signaling (step S404).
  • the terminal device that has performed the processing may transmit RRC signaling for response to the base station device (not shown).
  • RRC signaling is not limited to the above example and may be used for other purposes.
  • RRC on the master node side is used to transfer RRC signaling for settings on the SCG side (cell group settings, radio bearer settings, measurement settings, etc.) to and from the terminal device. good.
  • NR RRC signaling may be included in the form of a container in E-UTRA RRC signaling transmitted and received between eNB 102 and UE 122.
  • E-UTRA RRC signaling may be included in the form of a container in the NR RRC signaling transmitted and received between the gNB 108 and the UE 122.
  • RRC signaling for SCG side configuration may be transmitted and received between the master node and the secondary nodes.
  • NR RRC signaling may be included in E-UTRA RRC signaling transmitted from eNB 102 to UE 122, and NR RRC signaling transmitted from gNB 108 to UE 122.
  • the signaling may include RRC signaling for E-UTRA.
  • FIG. 7 is an example of an ASN.1 description representing fields and/or information elements related to cell group configuration included in a message related to reconfiguration of an RRC connection in NR in FIG. 4.
  • FIG. 8 is an example of an ASN.1 description representing fields and/or information elements related to cell group configuration included in a message related to reconfiguration of an RRC connection in E-UTRA in FIG. 4.
  • ⁇ omitted> and ⁇ omitted> are not part of the notation of ASN.1, and indicate that other information is omitted. shows.
  • the example of ASN.1 does not correctly follow the ASN.1 notation method.
  • the example ASN.1 represents an example of the RRC signaling parameters in this embodiment, and other names and other representations may be used.
  • the parameters described in ASN.1 are sometimes referred to as information elements, without distinguishing them into fields, information elements, etc.
  • fields, information elements, etc. described in ASN.1 and included in RRC signaling may be translated into information or parameters.
  • the message regarding RRC connection reconfiguration may be an RRC reconfiguration message in NR or an RRC connection reconfiguration message in E-UTRA.
  • the information element named CellGroupConfig may be an information element used for setting, changing, releasing, etc. a cell group of MCG or SCG in NR.
  • the information element named CellGroupConfig may be referred to as a cell group configuration information element or cell group configuration.
  • An information element named SpCellConfig included in an information element named CellGroupConfig may be an information element used for configuring a special cell (SpCell).
  • the information element named SpCellConfig may be rephrased as SpCell configuration information element or SpCell configuration.
  • An information element named SCellConfig included in an information element named CellGroupConfig may be an information element used to configure a secondary cell (SCell).
  • the information element named SCellConfig may be rephrased as SCell configuration information element or SCell configuration.
  • the information element named ReconfigurationWithSync included in the information element named SpCellConfig may be the above-mentioned reconfiguration with synchronization information element or reconfiguration with synchronization.
  • the information element named ReconfigurationWithSync may include a new UE identifier named newUE-Identity.
  • the information element named spCellConfigCommon included in the information element named ReconfigurationWithSync may be an information element indicating common settings configured in SpCell.
  • the information element named spCellConfigCommon can be rephrased as SpCell common settings.
  • An information element named sCellConfigCommon included in an information element named SCellConfig may be an information element indicating common settings configured in SCell.
  • the information element named sCellConfigCommon can be rephrased as SCell common settings.
  • FIG. 9 is an example of an information element named ServingCellConfigCommon included in the SpCell configuration or SCell configuration in FIG. 7, that is, an example of an ASN.1 description representing a field and/or information element related to the serving cell common configuration.
  • the information element named DownlinkConfigCommon included in the information element named ServingCellConfigCommon may be an information element indicating common settings configured in the downlink.
  • the information element named DownlinkConfigCommon may be rephrased as downlink common settings.
  • the information element named BWP-DownlinkCommon included in the information element named DownlinkConfigCommon may be an information element indicating common settings configured in the downlink BWP.
  • the information element named BWP-DownlinkCommon may be rephrased as downlink BWP common settings.
  • the information element named PDCCH-ConfigCommon included in the information element named BWP-DownlinkCommon may be an information element indicating common settings configured on the PDCCH.
  • the information element named PDCCH-ConfigCommon may be rephrased as PDCCH common settings.
  • the information element named PDCCH-ConfigCommon may include an information element named commonSearchSpaceList, an information element named searchSpaceSIB1, an information element named searchSpaceOtherSystemInformation, and/or an information element named pagingSearchSpace.
  • the information element named commonSearchSpaceList may refer to a list of common search spaces (CSS).
  • searchSpaceSIB1 may be information on a search space for receiving system information (SIB1).
  • searchSpaceOtherSystemInformation may include information on a search space for receiving system information (SIB2 and later).
  • pagingSearchSpace may be information on a search space for receiving paging messages.
  • the measurement gap is a period during which it can be considered that uplink transmission from the terminal device to the base station device and downlink transmission from the base station device to the terminal device are not scheduled.
  • a terminal device with a measurement gap set may perform measurements during the measurement gap period.
  • the measurement gap may be rephrased as a measurement gap or the like.
  • FIG. 10 is an example of an ASN.1 description representing fields and/or information elements related to measurement gap settings included in a message related to RRC connection reconfiguration in NR and an RRC reconfiguration completion message in FIG. 4. be.
  • the information element named NeedForGapsConfigNR may be an information element including settings related to reporting of measurement gap requirement information in NR.
  • the information element named NeedForGapsConfigNR may be rephrased as an information element of a setting that causes NR to report whether or not a measurement gap is required, or a setting that causes NR to report whether or not a measurement gap is required.
  • the information element named NeedForGapsInfoNR in Figure 10 indicates that if NR-DC or NE-DC is not configured, the measurement gap is required for the terminal device to perform SSB-based measurement on the target frequency band of NR. It may be an information element indicating whether or not it is necessary.
  • the information element named NeedForGapsInfoNR may be rephrased as an information element indicating whether a measurement gap is required in NR, or information indicating whether a measurement gap is necessary in NR.
  • the information element named requestedTargetBandFilterNR included in the information element named NeedForGapsConfigNR is an information element indicating the target NR frequency band for which the terminal device needs to report gap requirement information. good.
  • NeedForGapsInfoNR may be an information element that indicates whether or not a measurement gap is necessary for NR intra-frequency measurement.
  • the information element named intraFreq-needForGap includes the information element named servCellId, which indicates the identifier of the serving cell on which the measurement is performed, and the information element named intraFreq-needForGap, and the information element named intraFreq-needForGap, which indicates the identifier of the serving cell where the measurement is performed, and the information element named intraFreq-needForGap. It may include, for example, an information element named gapIndicationIntra indicating whether a measurement gap is required to perform the based intra-frequency measurements.
  • the information element named gapIndicationIntra indicates that a measurement gap is required when none of the one or more BWPs configured in the terminal device contains the SSB frequency domain resource associated with the initial DL BWP. may indicate the value "gap” indicating that no measurement gap is required to perform measurements of the SSB associated with the initial DL BWP for all BWPs configured on the terminal device. May indicate a value of "no-gap”.
  • the information element named interFreq-needForGap which is included in the information element named NeedForGapsInfoNR, may be an information element that indicates whether or not a measurement gap is necessary for NR inter-frequency measurement.
  • the information element named interFreq-needForGap is similar to the information element named bandNR which indicates the target frequency band of the NR in which the measurement is performed, or if NR-DC or NE-DC is not configured, the terminal equipment
  • a value named gapIndication that indicates whether a measurement gap is required to perform SSB-based measurements on the NR's target frequency band (the NR's target frequency band indicated by the information element named bandNR). It may include information elements, etc.
  • the information element named gapIndication may indicate a value of "gap” indicating that a measurement gap is required, or a value of "no-gap" indicating that a measurement gap is not required.
  • the RRC reconfiguration procedure may be a procedure for reconfiguring parameters, information elements, etc. set in RRC. Further, the purpose of the RRC reconfiguration procedure may be some or all of the following (A) to (F).
  • A) Modifying an RRC connection B) Performing a reconfiguration with synchronization
  • E Adding, modifying, and/or releasing conditional handover (CHO) settings
  • F Conditional PSCell changes Adding, modifying, and/or releasing settings for (conditional PSCell change: CPC) or conditional PSCell addition (CPA)
  • the base station device may initiate an RRC reconfiguration procedure for the terminal device in the RRC_CONNECTED state.
  • the base station apparatus may apply some or all of the following (A) to (F) to the RRC reconfiguration procedure.
  • the base station device starts an RRC reconfiguration procedure for the terminal device may be paraphrased as "the base station device transmits a message regarding reconfiguring the RRC connection to the terminal device", etc. .
  • A Establishment of radio bearers other than SRB1
  • B Addition of SCG and one or more SCells
  • C Reconfiguration with synchronization included in SCG cell group configuration
  • D Synchronization included in MCG cell group configuration
  • Conditional reconfiguration E
  • Conditional reconfiguration for conditional PSCell change F
  • a synchronized reconfiguration with security key update included in a message regarding RRC connection reconfiguration may include some or all of (A) to (E) below, which is triggered by an explicit layer 2 indicator. may be included.
  • (A) Random access to PCell and/or PSCell (B) MAC reset (C) Security update (D) Re-establishment of RLC (E) Re-establishment of PDCP
  • a synchronized reconfiguration without security key update included in a message regarding RRC connection reconfiguration is triggered by an explicit layer 2 indicator, and some or all of (A) to (D) below are triggered by an explicit layer 2 indicator.
  • (A) Random access to PCell and/or PSCell (B) MAC reset (C) RLC re-establishment (D) PDCP data recovery
  • the layer 2 indicators described above may include, for example, layer 2 signaling such as MAC, RLC, and PDCP.
  • the terminal device When the terminal device receives a message regarding RRC connection reconfiguration or executes conditional reconfiguration (CHO, CPA, or CPC), the terminal device performs some or all of the following (A) to (H). You may (perform). (Processing RRP) (A) If the message regarding RRC connection reconfiguration is applied by performing a conditional reconfiguration when performing cell selection while timer T311 is running, which starts at the beginning of the RRC reestablishment procedure, then Remove all entries from the entry list. (B) If the message regarding RRC connection reconfiguration includes MCG cell group configuration, perform cell group configuration for the received MCG cell group configuration, and the cell group configuration is reconfigured with synchronization. If SpCell settings with information elements are included, perform reconfiguration with synchronization.
  • RRC connection reconfiguration includes cell group configuration for the SCG, perform cell group configuration for the SCG, and said cell group configuration includes SpCell configuration with synchronized reconfiguration information element; If included, perform reconfiguration with synchronization.
  • D If the message regarding RRC connection reconfiguration includes conditional reconfiguration, perform conditional reconfiguration.
  • E If the message regarding the reconfiguration of an RRC connection includes a setting that causes the NR to report whether a measurement gap is required, and the setting that causes the NR to report whether a measurement gap is required is set up If it is set to , it is considered that it is set to provide information on whether or not a measurement gap is required for the target frequency band of NR.
  • (G) Set the contents of the RRC reconfiguration completion message according to (G-1) to (G-3) below.
  • (G-3) If the message regarding the reconfiguration of the RRC connection contains a setting that causes the NR to report whether a measurement gap is required, or if there is no information indicating whether a measurement gap is required in the NR. , if there has been a change since the last time the terminal device reported, include information indicating whether a measurement gap is required in the NR in the RRC reconfiguration completion message, and from (G-3-1) below ( G-3-3), set the contents of information indicating whether a measurement gap is necessary in NR.
  • (G-3-1) Include an information element named intraFreq-needForGap in the information indicating whether a measurement gap is required in the NR, and include information on the necessity or necessity of an intra-frequency measurement gap for the serving cell of each NR.
  • the information element named requestedTargetBandFilterNR is set, the name interFreq-needForGap is assigned to each NR frequency band supported by the terminal device, which is also included in the information element named requestedTargetBandFilterNR. includes an entry in the information element of , and sets gap necessity information for the frequency band.
  • the information element named requestedTargetBandFilterNR is not configured, include an entry in the information element named interFreq-needForGap with a corresponding entry for each NR frequency band supported by the terminal device. Set gap necessity information.
  • the terminal device may perform some or all of (A) to (E) below in order to execute reconfiguration with synchronization.
  • "Performing reconfiguration with synchronization” may be rephrased as “performing reconfiguration with synchronization” or "triggering reconfiguration with synchronization”.
  • (Processing RWS) (A) If timer T310 for the corresponding SpCell is running, stop it. (B) If timer T312 for the corresponding SpCell is running, stop it. (C) Reset the MAC entity of the corresponding cell group. (D) Apply the value of the new UE identifier (newUE-Identity) included in the reconfiguration information element with synchronization as the C-RNTI for the corresponding cell group.
  • Conditional reconfiguration may refer to conditional handover, conditional PSCell addition, and/or conditional PSCell change.
  • the network sets one or more target candidate cells for conditional reconfiguration for the terminal device.
  • the terminal device evaluates the state of the configured candidate cell.
  • the terminal device performs the evaluation and applies conditional reconfiguration information elements associated with candidate cells that satisfy the execution conditions.
  • the terminal device may maintain a list of entries (VarConditionalReconfig), which will be described later, for conditional reconfiguration.
  • the terminal device Based on receiving the information regarding conditional reconfiguration, the terminal device deletes a target candidate cell for conditional reconfiguration if the information regarding conditional reconfiguration includes an entry deletion list (condReconfigToRemoveList). If the information regarding the conditional reconfiguration includes an addition/modification list of entries (condReconfigToAddModList), the conditional reconfiguration target candidate cell may be added or modified.
  • the operation of deleting the conditional reconfiguration target candidate cell means that if the entry identifier (condReconfigId) included in the entry deletion list is included in the list of entries held by the terminal device, the terminal device
  • the method may be to delete an entry corresponding to the identifier of the entry from a list of entries held by the terminal device.
  • the list of entries held by the terminal device is also simply referred to as an entry list. That is, the "entry list” in the following description refers to a list of entries held by the terminal device, unless otherwise specified.
  • the entry list may also be a variable named VarConditionalReconfig.
  • the entry identifier is also simply referred to as an entry identifier.
  • the operation of adding or modifying a target candidate cell for conditional reconfiguration means that when each entry identifier included in the entry addition/modification list exists in an entry in the entry list, the terminal device performs the following process (A). ) and/or (B).
  • the terminal device may add a new entry corresponding to the entry identifier not included in the entry list to the entry list.
  • the entry deletion list may be a list related to the settings of one or more candidate SpCells to be deleted.
  • the addition/modification list of entries may be a list regarding the settings of one or more candidate SpCells to be added and modified for CHO, CPC, and CPA.
  • Each entry included in the addition/modification list of entries includes an entry identifier and may additionally include execution conditions and/or conditional reconfiguration information elements.
  • Each entry may be associated with one candidate SpCell of one or more candidate SpCells.
  • the entry identifier is an identifier used to identify each entry of CHO, CPA, and CPC.
  • the entry list may include one or more entries. Each entry may include one entry identifier, one or more execution conditions, and one conditional reconfiguration information element.
  • the terminal device may hold an empty list.
  • the execution condition may be a condition that needs to be met to trigger execution of the conditional reconfiguration.
  • the conditional reconfiguration information element may be a message related to RRC connection reconfiguration that is applied when the execution condition is satisfied.
  • the message regarding resetting the RRC connection may be a message used to connect to a candidate SpCell.
  • the terminal device may evaluate the execution conditions of the entries included in the entry list held by the terminal device. If the entry list held by the terminal device is empty or if the terminal device does not hold an entry list, it is not necessary to evaluate the execution condition.
  • Executing conditional reconfiguration means that when one or more execution conditions are met, the conditional reconfiguration information element included in the same entry as the one or more execution conditions is applied, and conditional reconfiguration is performed. It may be to perform an RRC reconfiguration procedure based on the configuration information element.
  • the terminal device selects one cell from among the multiple candidate cells that meet the execution conditions, and executes the conditional replay associated with the selected candidate cell.
  • Configuration information elements may be applied.
  • the MAC entity of the terminal device may implement some or all of (A) to (O) below.
  • the resetting of the MAC entity may be referred to as a MAC reset.
  • the process in which the MAC entity of the terminal device performs some of the following (A) to (O) may be called a partial MAC reset, or the process of partially resetting the MAC entity. It can be rephrased as "Partially resetting the MAC entity" may be rephrased as "instructing the MAC entity to perform a partial reset.”
  • (Processing MR) (A) Initialize the parameter Bj set for each logical channel to 0.
  • the multiple Transmit/Receive Point (also referred to as multi-TRP or mTRP) operation is explained.
  • a serving cell receives terminal equipment from multiple TRPs (Transmit/Receive Points) to provide better coverage, reliability, and/or data rate for PDSCH, PDCCH, PUSCH, and PUCCH. Good to be able to schedule.
  • TRPs Transmit/Receive Points
  • the two operation modes may be single-DCI and multi-DCI. Control of uplink and downlink operations for both modes may be performed at the PHY and MAC layers with settings configured by the RRC layer.
  • single-DCI mode a terminal device may be scheduled for both TRPs by the same DCI.
  • multi-DCI mode a terminal device may be scheduled for each TRP by an independent DCI.
  • Each TRP of mTRPs may be specified by TRP information.
  • the TRP information may be information for identifying one TRP among one or more TRPs.
  • the TRP information may be an index for identifying one TRP.
  • one TRP may be determined based on TRP information.
  • the TRP information may be information for identifying one or more TRPs.
  • TRP information may be used to select one TRP.
  • the TRP information may be a CORESET pool index.
  • One CORESET pool index and one CORESET resource set identifier may be associated with one CORESET.
  • the terminal device may transmit the PUSCH with the corresponding TRP based on the CORESET resource set identifier.
  • TRP information may be associated with an index of a CORESET resource pool.
  • a first CORESET pool index may be associated with a first TRP
  • a second CORESET pool index may be associated with a second TRP.
  • TRP information may be associated with a TCI state pool (or a TCI state pool index).
  • a first TCI state pool (or pool index) may be associated with a first TRP
  • a second TCI state pool (or pool index) may be associated with a second TRP.
  • the two modes of operation may be PDCCH repetition and single frequency network (SFN) based PDCCH transmission.
  • the terminal device may receive each of the PDCCH transmissions carrying the same DCI from each TRP.
  • PDCCH repetition mode the terminal device may receive two PDCCH transmissions carrying the same DCI from two linked search spaces, each associated with a different CORESET.
  • SFN-based PDCCH transmission mode a terminal device can receive two PDCCH transmissions carrying the same DCI from a single search space/CORESET with different TCI states.
  • the terminal equipment is associated with different spatial relations corresponding to the two TRPs by the indication by the configured uplink grant provided by the single DCI or RRC signaling.
  • PUSCH transmission of the same content may be performed in the same beam direction.
  • one or more TCI states in multi-DCI PDSCH transmission may be associated with a different PCI SSB than the serving cell's Physical Cell Identity (PCI). Further, at most one TCI state associated with a PCI different from the serving cell may be activated at a time.
  • PCI Physical Cell Identity
  • the aggregation unit may be a logical node that hosts the RRC layer, SDAP layer, and PDCP layer of the base station device.
  • the distributed unit may be a logical node that hosts the RLC layer, MAC layer, and PHY layer of the base station device.
  • An aggregation unit may control the operation of one or more distributed units.
  • one distribution unit may support one or more cells, and one cell may be supported by only one distribution unit. That is, one distributed unit may be associated with one or more cells.
  • Layer 1/Layer 2 mobility refers to a base station device that allows a terminal device to specify one or more serving cells through a DCI or MAC control element that allows the terminal device to identify one or more cells to which the serving cell is to be targeted (changed to). It may be a procedure for instructing changes to the process. Additionally or alternatively, Layer 1/Layer 2 mobility refers to a DCI or MAC control element received by a terminal device from a base station device that causes the terminal device to identify one or more target cells of the serving cell. It may refer to the procedure of changing the serving cell to one or more indicated cells.
  • the DCI that causes the terminal device to specify one or more cells as the target of the serving cell may be a DCI that indicates one or more cells as the target of the serving cell of the terminal device that the base station device changes.
  • a MAC control element that causes a terminal device to specify one or more cells as the target of the serving cell is a MAC control element that indicates one or more cells as the target of the serving cell of the terminal device that the base station device changes. It's fine.
  • the DCI and MAC control elements that cause the terminal device to identify one or more cells as a target of the serving cell may include other information indicating a change in the serving cell.
  • the base station device causes the terminal device to identify one or more target cells of the serving cell based on one or more measurement reports received from the terminal device.
  • the terminal device may be instructed to change one or more serving cells through the DCI or MAC control element.
  • Layer 1/Layer 2 mobility refers to "Layer 1/Layer 2 based inter-cell mobility (L1/L2 based inter-cell mobility)" and “Layer 1/Layer 2 inter-cell mobility (L1/L2 inter-cell mobility)”.
  • ⁇ DCI that causes the terminal device to identify one or more target cells of the serving cell'' is ⁇ DCI that instructs the terminal device to change the serving cell to one or more target cells'' and ⁇ DCI that causes the terminal device to identify one or more target cells of the serving cell.
  • ⁇ DCI for changing the serving cell etc.
  • MAC control element that allows the terminal device to identify one or more target cells of the serving cell can be translated as "DCI for changing the serving cell to one or more target cells.” It may be rephrased as "MAC control element that instructs a change” or "MAC control element that changes one or more serving cells of a terminal device.” Further, DCI may be translated into layer 1 signaling, etc., and MAC control element may be translated into layer 2 signaling, etc.
  • Layer 1 may be a PHY layer
  • layer 2 may be one of a MAC layer, an RLC layer, a PDCP layer, and an SDAP layer. Further, the above-mentioned measurements may be performed by layer 1 and/or layer 3, that is, the RRC layer.
  • one or more cell candidates for the serving cell target of the terminal device that the base station device changes may be called a candidate cell (candidate cell), or a candidate target cell (candidate target cell). ) and other names.
  • a candidate cell In Layer 1/Layer 2 mobility, one or more candidate cells are configured in a terminal device by a base station device before the terminal device changes one or more serving cells to target one or more cells. It's fine.
  • a candidate cell may be an SpCell or an SCell.
  • a group (set of cells) of one or more cell candidates for the serving cell target of the terminal device that the base station device changes is called a candidate cell group (CCG).
  • CCG candidate cell group
  • a CCG may be a group of some or all cells included in the MCG or SCG.
  • one or more CCGs are configured on a terminal device by a base station device before the terminal device changes one or more serving cells to target one or more cells. good.
  • a candidate target may be the above-mentioned candidate cell or the above-mentioned CCG.
  • candidate targets may include both candidate cells and CCGs as described above.
  • the target cell or cells are one or more candidate cells configured on the terminal device and/or one or more CCGs configured on the terminal device. may be one or more cells identified by a DCI or MAC control element that causes the terminal equipment to identify one or more cells as a target of the serving cell.
  • settings indicating information on one or more candidate cells and/or one or more CCGs that the base station device provides to the terminal device can be configured between Layer 1/Layer 2 cells. It can also be called mobility candidate target configuration (L1/L2 inter-cell mobility candidate target configuration), and can also be referred to as candidate target configuration, candidate target configuration, candidate cell configuration, CCG configuration, etc. You can call me. Additionally or alternatively, in Layer 1/Layer 2 mobility, Layer 1/Layer 2 inter-cell mobility candidate target setting refers to information on one or more candidate targets that the base station device provides to the terminal device. It may refer to the settings shown.
  • the Layer 1/Layer 2 intercell mobility candidate targeting configuration may include the configuration of one or more candidate targets, and measurements and/or measurements applied to the one or more candidate targets. Alternatively, it may include radio bearer settings.
  • the base station device may prepare one or more candidate cells and provide the terminal device with a layer 1/layer 2 inter-cell mobility candidate target configuration including the configuration of the candidate cell. .
  • the terminal device may start measuring the candidate cell and reporting it to the base station device.
  • the base station device prepares one or more CCGs, and provides a Layer 1/Layer 2 inter-cell mobility candidate target that includes the configuration of the CCG in the terminal device. You may provide settings.
  • the terminal device receives the Layer 1/Layer 2 inter-cell mobility candidate target setting, it may start measuring each candidate cell of the CCG and reporting it to the base station device.
  • the base station device notifies the terminal device of information indicating which candidate cell or which CCG it is using DCI to change one or more serving cells of the terminal device. Accordingly, the terminal device may change one or more serving cells.
  • the base station device transmits information indicating which candidate cell or which CCG to the terminal device in a MAC control element that changes one or more serving cells of the terminal device.
  • a terminal device may change one or more serving cells by notifying the device.
  • the mobility scenarios (A) to (C) below may be supported, or other mobility scenarios may be supported.
  • the mobility scenario (A) below may be a scenario in which only the PCell is changed, and in a terminal device where CA is configured, the mobility scenario (A) below may be a scenario where only the PCell is changed.
  • the mobility scenario may be a scenario in which a PCell and one or more SCells are changed.
  • PCell change B) Intra-DU mobility and intra-CU-inter-DU mobility (C) Inter-cell beam management
  • the following principles (A) and/or (B) may be applied.
  • the base station apparatus prepares layer 1/layer 2 inter-cell mobility candidate target settings so that dynamic switching can be performed without requiring full configuration.
  • the user plane communicates continuously without resetting as much as possible to avoid data loss and additional delays for data recovery.
  • Layer 1/Layer 2 inter-cell mobility candidate target settings are notified in advance by RRC signaling (A) to (C) below or other control information (RRC signaling, etc.).
  • the terminal device configures the Layer 1/Layer 2 inter-cell mobility candidate targeting by using a DCI or MAC control element that directs a change of serving cell from Layer 1 or Layer 2 to the target cell or cells. It may be stored until received.
  • the layer 1/layer 2 inter-cell mobility candidate target setting may be common for the intra-distributed unit mobility and the intra-aggregated unit inter-distributed unit mobility, and the layer 1/layer 2 inter-cell mobility candidate target setting may be the same. The parts may be different.
  • the Layer 1/Layer 2 inter-cell mobility candidate target setting may include part or all of system information (searchSpaceSIB1, searchSpaceOtherSystemInformation, etc.), paging messages (pagingSearchSpace, etc.), and common search spaces (commonSearchSpaceList, etc.). . Furthermore, in layer 1/layer 2 mobility, security key updates do not need to be performed.
  • searchSpaceSIB1, searchSpaceOtherSystemInformation, etc. paging messages
  • common search spaces commonSearchSpaceList, etc.
  • security key updates do not need to be performed.
  • A Messages regarding RRC connection reconfiguration for each candidate target
  • B Cell group configuration for each candidate target
  • C SpCell configuration and/or SCell configuration for each candidate target
  • Handover interruption time (HO interruption time) for Layer 1/Layer 2 mobility refers to the time when the terminal equipment uses DCI or MAC It may be the time from receiving a control element to performing the first downlink/uplink transmission/reception on the beam of the target cell or cells. Further, the handover interruption time for layer 1/layer 2 mobility may include time for processing some or all of (A) to (F) below. Note that "handover interruption time for layer 1/layer 2 mobility” may be rephrased as "delay for layer 1/layer 2 mobility” or the like.
  • A UE reconfiguration
  • B Measurement at layer 1 and/or RRC
  • D Downlink synchronization
  • E Uplink synchronization
  • E TRS (Temporary RS) tracking
  • F CSI-RS measurement
  • FIG. 5 is a block diagram showing the configuration of the terminal device (UE 122) in this embodiment. Note that in order to avoid complicating the explanation, FIG. 5 shows only the main components closely related to this embodiment.
  • the UE 122 shown in FIG. 5 includes a receiving unit 500 that receives control information (DCI, RRC signaling, etc.) from a base station, a processing unit 502 that performs processing according to parameters included in the received control information, and a It consists of a transmitter 504 that transmits information (UCI, RRC signaling, etc.).
  • the above-mentioned base station device may be eNB102 or gNB108.
  • the processing unit 502 may include some or all of the functions of various layers (eg, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processing section 502 includes some or all of the physical layer processing section, MAC layer processing section, RLC layer processing section, PDCP layer processing section, SDAP processing section, RRC layer processing section, and NAS layer processing section. It's fine.
  • FIG. 6 is a block diagram showing the configuration of the base station device in this embodiment. Note that in order to avoid complicating the explanation, FIG. 6 shows only the main components closely related to this embodiment.
  • the above-mentioned base station device may be eNB102 or gNB108.
  • the base station device shown in FIG. a processing unit 602 that causes the processing unit 502 of the UE 122 to perform processing, and a reception unit 604 that receives control information (UCI, RRC signaling, etc.) from the UE 122.
  • the processing unit 602 may include some or all of the functions of various layers (eg, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processing section 602 includes some or all of the physical layer processing section, MAC layer processing section, RLC layer processing section, PDCP layer processing section, SDAP processing section, RRC layer processing section, and NAS layer processing section. It's fine.
  • FIG. 11 is a diagram showing an example of the processing of the terminal device in this embodiment.
  • the RRC 308 of the processing unit 502 of the UE 122 which has received the candidate target settings from the transmission unit 600 of the gNB 108, determines the conditions (step S1100) and operates based on the determination (step S1102).
  • the RRC 308 of the processing unit 502 of the UE 122 may determine whether any or any combination of the following (a) to (c) is satisfied.
  • the candidate target settings include a setting to report whether or not a measurement gap is required in the NR set in setup.
  • the previously received RRC signaling includes a setting to report whether or not a measurement gap is required in the NR set in setup.
  • the RRC signaling including the setting of the candidate target includes a setting to report whether or not a measurement gap is required in the NR set in setup.
  • the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that the condition (a) is satisfied, the RRC 308 is set to provide the UE 122 with information on whether or not a measurement gap of the target frequency band of NR is required. If it is determined that the above condition (a) is not satisfied, it is not configured to provide the UE 122 with information on whether or not a measurement gap for the target frequency band of NR is required. You can judge that. If the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that the condition (b) is satisfied, the RRC 308 is set to provide the UE 122 with information on whether or not a measurement gap of the target frequency band of NR is required.
  • the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that the condition (c) is satisfied, the RRC 308 is set to provide the UE 122 with information on whether or not a measurement gap of the target frequency band of NR is required. If it is determined that the above condition (c) is not satisfied, it is not configured to provide the UE 122 with information on whether or not a measurement gap for the target frequency band of NR is required. You can judge that.
  • each candidate target set in the candidate target settings is applied. It may be determined that the UE 122 is set to be provided with information on whether or not a measurement gap of the target frequency band of NR is required.
  • the frequency bands of the NR targets may include frequency bands for intra-frequency measurements on each candidate target set in the candidate target settings, and may include frequency bands for intra-frequency measurements on each candidate target set in the candidate target settings. may include frequency bands for inter-frequency measurements.
  • the RRC signaling described in condition (b) above may be a message regarding resetting an RRC connection, or may be other RRC signaling such as an RRC restart message.
  • the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that it is set to provide the UE 122 with information on whether or not the measurement gap of the target frequency band of NR is required, the RRC 308 performs the following (d) to ( It may be determined whether any or any combination of f) is satisfied.
  • the candidate target settings include a setting to report whether or not a measurement gap is required in NR.
  • the information indicating whether a measurement gap is required in NR has been changed compared to the last time the UE 122 reported it.
  • Other conditions include a setting to report whether or not a measurement gap is required in NR.
  • step S1102 the RRC 308 of the processing unit 502 determines the candidate target according to the above processing (NFG).
  • Information indicating whether a measurement gap is required in NR may be included in the signaling indicating completion of the configuration.
  • the RRC 308 performs a measurement in the NR in step S1102.
  • Signaling indicating completion of setting the candidate target, including information indicating whether a gap is required may be submitted to lower layers (PHY 300, MAC 302, etc.) via SRB1.
  • step S1100 If the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that it is not set to provide the UE 122 with information on whether or not the measurement gap of the target frequency band of NR is required, or (d) of the above condition If it is determined that none of the conditions from (f) to good. In addition to or in place of that, if the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that it is not set to provide the UE 122 with information on whether or not the measurement gap of the target frequency band of NR is required. , or if it is determined that none of the conditions (d) to (f) are satisfied, in step S1102, signaling indicating completion of setting the candidate target is sent to the lower layer (PHY300, MAC302, etc.) via SRB1. etc.).
  • the signaling indicating the completion of setting the candidate target may be an RRC reconfiguration completion message, or may be other signaling.
  • the information indicating whether measurement gaps are required in the NR includes intra-frequency measurement gaps for some or all of the candidate targets set in the candidate target settings. Necessity information may be set. In addition to or in place of that, the information indicating whether or not a measurement gap is required in the NR includes the information of the UE 122 when some or all of the candidate targets set in the candidate target settings are applied. Gap necessity information may be set for each supported NR frequency band.
  • Gap necessity information may be set for each NR frequency band supported by the NR. Additionally or alternatively, the support of the UE 122 when each candidate target configured in the candidate target configuration is applied, for example, if an information element named requestedTargetBandFilterNR is not configured in the candidate target configuration. Corresponding gap necessity information for each NR frequency band may be set. In addition, whether or not the condition (e) is satisfied may be determined at the time when each candidate target set in the candidate target settings is applied to the UE 122.
  • the RRC 308 of the processing unit 502 of the UE 122 determines that the condition (e) is satisfied in some of the candidate targets set in the candidate target setting
  • the RRC 308 determines that the condition (e) is satisfied in step S1102. may include information indicating whether a measurement gap is required in NR only for candidate targets for which May contain information.
  • "each candidate target set in the candidate target setting has been applied” means "the UE 122 has applied one or more cells included in each candidate target set in the candidate target setting". This may be rephrased as "set as a serving cell.”
  • the RRC 308 of the processing unit 502 of the UE 122 which has been instructed to change the serving cell to one or more target cells from the lower layer (layer 1 or layer 2), judges the conditions (step S1100) and (Step S1102).
  • step S1100 the RRC 308 of the processing unit 502 of the UE 122 determines whether it is set to provide information on whether or not a measurement gap of the target frequency band of NR is provided, and determines whether the measurement gap of the target frequency band of NR is provided. If it is determined that provision of necessity information is set, in step S1102, according to the above-mentioned process (NFG), after the serving cell change, the NR is set to provide signaling indicating completion of the serving cell change. Information indicating whether a measurement gap is required may be included.
  • NVG above-mentioned process
  • step S1100 if the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that it is set to provide information on the necessity of measurement gaps for the target frequency band of NR, the RRC 308 of the processing unit 502 of the UE 122 performs step S1102. , signaling indicating completion of the serving cell change, including information indicating whether a measurement gap is required in the NR, may be submitted to the lower layer (PHY 300, MAC 302, etc.) via SRB1.
  • step S1102 the RRC 308 of the processing unit 502 changes the serving cell. After , information indicating whether a measurement gap is required in NR may not be included in the signaling indicating completion of the serving cell change. In addition to or in place of that, if the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that it is not set to provide information on the necessity of measurement gaps for the target frequency band of NR, the RRC 308 of the processing unit 502 of the UE 122 performs step S1102.
  • the frequency bands of the NR target may include frequency bands for intra-frequency measurements on one or more cells of the target and for inter-frequency measurements on one or more cells of the target. frequency bands.
  • the signaling indicating completion of the serving cell change may be an RRC reconfiguration completion message, or may be other signaling.
  • the information indicating whether a measurement gap is required in the NR includes information on whether or not an intra-frequency measurement gap is required for the target one or more cells. It's fine.
  • the information indicating whether a measurement gap is required in the NR includes information regarding the necessity of a gap for each NR frequency band supported by the UE 122 after the serving cell change. may be set. For example, if an information element named requestedTargetBandFilterNR is set in the candidate target settings, the information element for each NR frequency band supported by the UE 122 after the serving cell change is also included in the information element named requestedTargetBandFilterNR. Information on whether or not a gap is necessary may be set.
  • a corresponding NR frequency band for each supported NR frequency band of the UE 122 after the serving cell change may be set.
  • the setting to report whether or not a measurement gap is necessary in NR is the RRC signaling shown in (A) to (D) below in the candidate target setting, or other control information (RRC signaling). etc.) may be included.
  • RRC signaling shown in (A) to (D) below in the candidate target setting, or other control information (RRC signaling). etc.
  • Figures 12, 13, and 14 are ASN.1 descriptions representing fields and/or information elements related to candidate target configuration, respectively, as indicated by the signaling described in (A), (B), and (C) above. This is an example.
  • the configuration of candidate targets may be represented by an information element named Candidates-L1L2-Config.
  • the information element named Candidates-L1L2Id may be an information element indicating the identifier of each candidate target set in the candidate target setting.
  • the information element named candidates-L1L2-CellsConfig contains the configuration of one or more candidate cells included in each candidate target identified by said identifier. May be an information element.
  • FIG. 12 the configuration of candidate targets may be represented by an information element named Candidates-L1L2-Config.
  • the information element named Candidates-L1L2Id may be an information element indicating the identifier of each candidate target set in the candidate target setting.
  • the information element named candidates-L1L2-CellsConfig contains the configuration of one or more candidate cells included in each candidate target identified by said
  • the information element named sCell-L1L2-ToAddModList may be an addition/modification list with only SCell as an entry among the candidate cells included in the candidate target settings. Additionally or alternatively, in FIG. 14, the information element named spCell-L1L2-ToAddModList is an additional modification list with only SpCell as an entry among each candidate cell included in the candidate target setting. good.
  • the number of candidate targets set in the candidate target setting may be one or more.
  • the target cell or cells indicated by lower layers in the serving cell change may be one or more candidate cells and/or one or more CCGs.
  • configuring a candidate target may include configuring one or more candidate cells and/or configuring one or more CCGs.
  • the cell group settings described in (B) above may include SpCell settings and/or SCell settings, and the CCG settings instructed from the lower layer when changing the serving cell are applied to the cell group of the lower layer. May be applied to
  • the RRC layer can submit to the lower layer information on whether or not a measurement gap is required for one or more target cells instructed by the lower layer when setting a candidate target or changing a serving cell.
  • the UE in Layer 1/Layer 2 mobility, the UE can efficiently perform measurements.
  • the radio bearer in the above description may be a DRB, an SRB, or a DRB and an SRB, unless otherwise specified.
  • the serving cell change in the above description may be a layer 1/layer 2 serving cell change, unless otherwise specified.
  • condition "A” and the condition “B” are contradictory conditions, the condition “B” may be expressed as an “other” condition of the condition "A”. good.
  • the program that runs on the device related to this embodiment may be a program that controls a Central Processing Unit (CPU) or the like to make the computer function so as to realize the functions of this embodiment.
  • Programs or information handled by programs are temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD), and are stored as needed.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • the program for realizing this control function may be realized by recording it on a computer-readable recording medium and causing the computer system to read and execute the program recorded on this recording medium.
  • the "computer system” herein refers to a computer system built into the device, and includes hardware such as an operating system and peripheral devices.
  • the "computer-readable recording medium” may be any of semiconductor recording media, optical recording media, magnetic recording media, and the like.
  • a "computer-readable recording medium” refers to a medium that dynamically stores a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In that case, it may also include something that retains a program for a certain period of time, such as a volatile memory inside a computer system that is a server or client. Further, the above-mentioned program may be one for realizing a part of the above-mentioned functions, or may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system. .
  • each functional block or feature of the device used in the embodiments described above may be implemented or executed in an electrical circuit, typically an integrated circuit or multiple integrated circuits.
  • An electrical circuit designed to perform the functions described herein may be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof.
  • a general purpose processor may be a microprocessor, or in the alternative, the processor may be a conventional processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each of the circuits described above may be configured with a digital circuit or an analog circuit. Further, if an integrated circuit technology that replaces the current integrated circuit emerges due to advances in semiconductor technology, it is also possible to use an integrated circuit based on this technology.
  • this embodiment is not limited to the above-described embodiment.
  • the present embodiment is not limited to this, and can be applied to stationary or non-movable electronic equipment installed indoors or outdoors, such as AV equipment, kitchen equipment, etc. It can be applied to terminal devices or communication devices such as cleaning/washing equipment, air conditioning equipment, office equipment, vending machines, and other household equipment.
  • One embodiment of the present invention is used in, for example, a communication system, a communication device (e.g., a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (e.g., a communication chip), a program, or the like. be able to.
  • a communication device e.g., a mobile phone device, a base station device, a wireless LAN device, or a sensor device
  • an integrated circuit e.g., a communication chip
  • a program e.g., a program, or the like.
  • E-UTRA 102eNB 104EPC 106NR 108 gNB 110 5GC 112, 114, 116, 118, 120, 124 interface 122 U.E. 200, 300 PHY 202, 302 MAC 204, 304 RLC 206, 306 PDCP 208, 308 RRC 310 SDAP 210, 312 NAS 500, 604 Receiving section 502, 602 processing section 504, 600 transmitter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal device communicates with a base station device. The terminal device comprises: a reception unit that receives, from the base station device, a first configuration indicating information about one or a plurality of candidate cells; and an RRC processing unit. The RRC processing unit determines whether the terminal device is configured to provide information regarding whether a measurement gap for a target frequency band of NR is required. If it is determined that the terminal device is configured to provide the requirement information, the RRC processing unit determines whether the first configuration includes a second configuration for reporting whether a measurement gap is required in NR. If it is determined that the first configuration includes the second configuration, the RRC processing unit includes, in signaling indicating completion with respect to the first configuration, third information indicating whether a measurement gap is required in NR. If it is determined that the terminal device is not configured to provide the requirement information, or if it is determined that the first configuration does not include the second configuration, the RRC processing unit does not include the third information in the signaling indicating completion with respect to the first configuration. 

Description

端末装置、方法、および、集積回路Terminal device, method, and integrated circuit
 本発明は、端末装置、方法、および、集積回路に関する。
 本願は、2022年9月15日に日本に出願された特願2022-146782号について優先権を主張し、その内容をここに援用する。
The present invention relates to a terminal device, a method, and an integrated circuit.
This application claims priority to Japanese Patent Application No. 2022-146782 filed in Japan on September 15, 2022, the contents of which are incorporated herein.
 セルラ移動通信システムの標準化プロジェクトである、第3世代パートナーシッププロジェクト(3rd Generation Partnership Project:3GPP)において、無線アクセス、コア網、サービス等を含む、セルラ移動通信システムの技術検討及び規格策定が行われている。 The 3rd Generation Partnership Project (3GPP), which is a standardization project for cellular mobile communication systems, is conducting technical studies and standardization for cellular mobile communication systems, including wireless access, core networks, services, etc. There is.
 例えば、E-UTRA(Evolved Universal Terrestrial Radio Access)は、3GPPにおいて、第3.9世代および第4世代向けセルラ移動通信システム向け無線アクセス技術(Radio Access Technology:RAT)として、技術検討及び規格策定が開始された。現在も3GPPにおいて、E-UTRAの拡張技術の技術検討及び規格策定が行われている。なお、E-UTRAは、Long Term Evolution(LTE:登録商標)とも称し、拡張技術をLTE-Advanced(LTE-A)、LTE-Advanced Pro(LTE-A Pro)と称する事もある。 For example, E-UTRA (Evolved Universal Terrestrial Radio Access) is a radio access technology (Radio Access Technology: RAT) for 3.9th and 4th generation cellular mobile communication systems that has been studied and developed as a standard in 3GPP. Ta. Currently, 3GPP is still conducting technical studies and standardization for E-UTRA expansion technology. Note that E-UTRA is also referred to as Long Term Evolution (LTE: registered trademark), and the extended technology is also referred to as LTE-Advanced (LTE-A) and LTE-Advanced Pro (LTE-A Pro).
 また、NR(New Radio、またはNR Radio access)は、3GPPにおいて、第5世代(5th Generation:5G)向けセルラ移動通信システム向け無線アクセス技術(Radio Access Technology:RAT)として、技術検討及び規格策定が開始された。現在も3GPPにおいて、NRの拡張技術の技術検討及び規格策定が行われている。 In addition, NR (New Radio, or NR Radio access) is being studied and standardized as a radio access technology (RAT) for 5th Generation (5G) cellular mobile communication systems in 3GPP. started. Currently, 3GPP is still conducting technical studies and standardization for NR expansion technology.
 NRの拡張技術として、端末装置があるセルのカバレッジエリアから別のセルのカバレッジエリアへ移動するためのサービングセル変更技術がある。このサービングセル変更は、レイヤ3(RRCとも称する)のメジャメント(measurement)によってトリガされ、サービングセル変更のための同期付再設定は、RRCシグナリングによってトリガされる。RRCシグナリングに比べて、レイヤ1またはレイヤ2のシグナリングは、低遅延かつオーバーヘッドが少ないという利点を持つ。そのため、レイヤ1またはレイヤ2のシグナリングによってトリガされるサービングセル変更技術(レイヤ1/レイヤ2モビリティ最適化(L1/L2 mobility enhancement)技術)の検討が開始された。 As an extended technology for NR, there is a serving cell change technology that allows a terminal device to move from the coverage area of one cell to the coverage area of another cell. This serving cell change is triggered by layer 3 (also referred to as RRC) measurements, and synchronized reconfiguration for serving cell change is triggered by RRC signaling. Compared to RRC signaling, layer 1 or layer 2 signaling has the advantage of low delay and low overhead. Therefore, studies have begun on techniques for changing serving cells triggered by layer 1 or layer 2 signaling (layer 1/layer 2 mobility enhancement techniques).
 レイヤ1/レイヤ2モビリティ最適化技術におけるメジャメントの詳細は、上述の検討事項の一つとなっている。しかしながら、非特許文献7に記載されているメジャメントの仕様がレイヤ1/レイヤ2モビリティ最適化技術においてどのように反映されるかについては不明瞭のままである。 The details of measurements in Layer 1/Layer 2 mobility optimization technology are one of the considerations mentioned above. However, it remains unclear how the measurement specifications described in Non-Patent Document 7 are reflected in layer 1/layer 2 mobility optimization technology.
 本発明の一態様は、上記した事情に鑑みてなされたもので、通信制御を効率的に行うことができる端末装置、基地局装置、通信方法、集積回路を提供することを目的の一つとする。 One aspect of the present invention has been made in view of the above circumstances, and one of the objects is to provide a terminal device, a base station device, a communication method, and an integrated circuit that can efficiently control communication. .
 上記の目的を達成するために、本発明の一態様は、以下のような手段を講じた。すなわち本発明の一態様は、基地局装置と通信する端末装置であって、前記基地局装置より一つまたは複数の候補セルの情報を示す第1の設定を受信する受信部と、RRC処理部と、を備え、前記RRC処理部は、前記端末装置に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されているか否かを判断し、前記端末装置に、前記要否情報を提供することが設定されていると判断した場合、前記RRC処理部は、前記第1の設定に、NRにおいてメジャメントギャップが必要であるか否かを報告させる第2の設定が含まれるか否かを判断し、前記第1の設定に前記第2の設定が含まれると判断した場合、前記RRC処理部は、前記第1の設定に対する完了を示すシグナリングに、NRにおいてメジャメントギャップが必要であるか否かを示す第3の情報を含め、前記端末装置に、前記要否情報を提供することが設定されていないと判断した場合、または、前記第1の設定に前記第2の設定が含まれないと判断した場合、前記RRC処理部は、前記第1の設定に対する完了を示すシグナリングに、前記第3の情報を含めない。 In order to achieve the above object, one embodiment of the present invention takes the following measures. That is, one aspect of the present invention is a terminal device that communicates with a base station device, which includes a receiving unit that receives a first setting indicating information about one or more candidate cells from the base station device, and an RRC processing unit. and, the RRC processing unit determines whether or not it is set to provide the terminal device with information on whether or not a measurement gap of a target frequency band of NR is provided, and provides the terminal device with the If it is determined that provision of necessity information is set, the RRC processing unit includes, in the first setting, a second setting for reporting whether or not a measurement gap is necessary in NR. If it is determined that the second setting is included in the first setting, the RRC processing unit includes a measurement gap in NR in the signaling indicating completion of the first setting. If it is determined that the terminal device is not set to provide the necessity information, including the third information indicating whether it is necessary, or if the second information is included in the first setting, If it is determined that the setting is not included, the RRC processing unit does not include the third information in the signaling indicating completion of the first setting.
 また本発明の一態様は、基地局装置と通信する端末装置であって、RRC処理部と、を備え、前記RRC処理部は、下位レイヤ(レイヤ1/レイヤ2)から、候補セルへのサービングセル変更を指示された場合、前記端末装置に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されているか否かを判断し、前記端末装置に、前記要否情報を提供することが設定されていると判断した場合、前記RRC処理部は、前記サービングセル変更の後に、前記サービングセル変更に対する完了を示すシグナリングに、NRにおいてメジャメントギャップが必要であるか否かを示す第3の情報を含め、前記端末装置に、前記要否情報を提供することが設定されていないと判断した場合、前記RRC処理部は、前記サービングセル変更の後に、前記サービングセル変更に対する完了を示すシグナリングに、前記第3の情報を含めない。 Further, one aspect of the present invention is a terminal device that communicates with a base station device, and includes an RRC processing unit, and the RRC processing unit is configured to transmit a signal from a lower layer (layer 1/layer 2) to a serving cell to a candidate cell. When a change is instructed, it is determined whether the terminal device is set to be provided with information on the necessity of measurement gaps for the target frequency band of NR, and the terminal device is provided with the necessity information on the measurement gap of the NR target frequency band. If the RRC processing unit determines that the serving cell change is set to be provided, after the serving cell change, the RRC processing unit adds a third measurement gap indicating whether or not a measurement gap is required in the NR to the signaling indicating completion of the serving cell change. If it is determined that the provision of the necessity information to the terminal device is not set, including the information of The third information is not included.
 また本発明の一態様は、基地局装置と通信する端末装置の方法であって、前記端末装置のRRCエンティティが、前記基地局装置より一つまたは複数の候補セルの情報を示す第1の設定を受信するステップと、前記RRCエンティティが、前記端末装置に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されているか否かを判断するステップと、前記端末装置に、前記要否情報を提供することが設定されていると判断した場合、前記RRCエンティティが、前記第1の設定に、NRにおいてメジャメントギャップが必要であるか否かを報告させる第2の設定が含まれるか否かを判断するステップと、前記第1の設定に前記第2の設定が含まれると判断した場合、前記RRCエンティティが、前記第1の設定に対する完了を示すシグナリングに、NRにおいてメジャメントギャップが必要であるか否かを示す第3の情報を含めるステップと、前記端末装置に、前記要否情報を提供することが設定されていないと判断した場合、または、前記第1の設定に前記第2の設定が含まれないと判断した場合、前記RRCエンティティが、前記第1の設定に対する完了を示すシグナリングに、前記第3の情報を含めないステップと、を含む。 Another aspect of the present invention is a method of a terminal device communicating with a base station device, wherein an RRC entity of the terminal device receives a first setting indicating information about one or more candidate cells from the base station device. a step in which the RRC entity determines whether or not it is configured to provide measurement gap information for a target frequency band of NR to the terminal device; , if the RRC entity determines that it is configured to provide the necessity information, the RRC entity configures a second configuration that causes the first configuration to report whether or not a measurement gap is required in the NR. a step of determining whether the second configuration is included in the first configuration; and if it is determined that the second configuration is included in the first configuration, the RRC entity includes a measurement in NR in signaling indicating completion for the first configuration; including a step of including third information indicating whether or not a gap is necessary; and if it is determined that the terminal device is not set to provide the necessity information, or in the first setting; If it is determined that the second configuration is not included, the RRC entity does not include the third information in signaling indicating completion of the first configuration.
 また本発明の一態様は、基地局装置と通信する端末装置の方法であって、前記端末装置のRRCエンティティが、下位レイヤ(レイヤ1/レイヤ2)から、候補セルへのサービングセル変更を指示された場合、前記端末装置に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されているか否かを判断するステップと、前記端末装置に、前記要否情報を提供することが設定されていると判断した場合、前記RRCエンティティが、前記サービングセル変更の後に、前記サービングセル変更に対する完了を示すシグナリングに、NRにおいてメジャメントギャップが必要であるか否かを示す第3の情報を含めるステップと、前記端末装置に、前記要否情報を提供することが設定されていないと判断した場合、前記RRCエンティティが、前記サービングセル変更の後に、前記サービングセル変更に対する完了を示すシグナリングに、前記第3の情報を含めないステップと、を含む。 Another aspect of the present invention is a method for a terminal device to communicate with a base station device, wherein an RRC entity of the terminal device receives an instruction from a lower layer (layer 1/layer 2) to change a serving cell to a candidate cell. a step of determining whether provision of necessity information of a measurement gap of a target frequency band of NR is set to the terminal device, and providing the necessity information to the terminal device; If the RRC entity determines that a measurement gap is required in the NR after the serving cell change, the RRC entity includes third information indicating whether a measurement gap is required in the NR in signaling indicating completion for the serving cell change. If the RRC entity determines that provision of the necessity information to the terminal device is not configured, the RRC entity includes the provision of the necessity information to the terminal device in the signaling indicating completion of the serving cell change after the serving cell change. and a step of not including the information of No. 3.
 また本発明の一態様は、基地局装置と通信する端末装置に実装される集積回路であって、前記端末装置のRRCエンティティが、前記基地局装置より一つまたは複数の候補セルの情報を示す第1の設定を受信する機能と、前記RRCエンティティが、前記端末装置に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されているか否かを判断する機能と、前記端末装置に、前記要否情報を提供することが設定されていると判断した場合、前記RRCエンティティが、前記第1の設定に、NRにおいてメジャメントギャップが必要であるか否かを報告させる第2の設定が含まれるか否かを判断する機能と、前記第1の設定に前記第2の設定が含まれると判断した場合、前記RRCエンティティが、前記第1の設定に対する完了を示すシグナリングに、NRにおいてメジャメントギャップが必要であるか否かを示す第3の情報を含める機能と、前記端末装置に、前記要否情報を提供することが設定されていないと判断した場合、または、前記第1の設定に前記第2の設定が含まれないと判断した場合、前記RRCエンティティが、前記第1の設定に対する完了を示すシグナリングに、前記第3の情報を含めない機能と、を発揮させる。 Another aspect of the present invention is an integrated circuit implemented in a terminal device that communicates with a base station device, wherein an RRC entity of the terminal device indicates information about one or more candidate cells from the base station device. a function of receiving a first configuration, and a function of determining whether the RRC entity is configured to provide the terminal device with information on whether or not a measurement gap of a target frequency band of NR is required; When determining that the terminal device is configured to provide the necessity information, the RRC entity causes the first configuration to report whether or not a measurement gap is required in NR. and a function for determining whether or not the second configuration is included in the first configuration, and when it is determined that the second configuration is included in the first configuration, the RRC entity sends signaling indicating completion of the first configuration. , if it is determined that the function to include the third information indicating whether or not a measurement gap is necessary in the NR and the provision of the necessity information to the terminal device is not set, or If it is determined that the second configuration is not included in the first configuration, the RRC entity performs a function of not including the third information in signaling indicating completion of the first configuration.
 また本発明の一態様は、基地局装置と通信する端末装置に実装される集積回路であって、前記端末装置のRRCエンティティが、下位レイヤ(レイヤ1/レイヤ2)から、候補セルへのサービングセル変更を指示された場合、前記端末装置に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されているか否かを判断する機能と、前記端末装置に、前記要否情報を提供することが設定されていると判断した場合、前記RRCエンティティが、前記サービングセル変更の後に、前記サービングセル変更に対する完了を示すシグナリングに、NRにおいてメジャメントギャップが必要であるか否かを示す第3の情報を含める機能と、前記端末装置に、前記要否情報を提供することが設定されていないと判断した場合、前記RRCエンティティが、前記サービングセル変更の後に、前記サービングセル変更に対する完了を示すシグナリングに、前記第3の情報を含めない機能と、を発揮させる。 Further, one aspect of the present invention is an integrated circuit implemented in a terminal device that communicates with a base station device, wherein an RRC entity of the terminal device transmits information from a lower layer (layer 1/layer 2) to a serving cell to a candidate cell. When a change is instructed, a function is provided to determine whether the terminal device is set to provide measurement gap information for the target frequency band of NR, If the RRC entity determines that providing information is configured, after the serving cell change, the RRC entity may include a measurement gap in the NR indicating whether a measurement gap is required in the signaling indicating completion for the serving cell change. If the RRC entity determines that the function of including the information in step 3 and providing the necessity information to the terminal device is not set, after the serving cell change, the RRC entity sends signaling indicating completion of the serving cell change. and a function of not including the third information.
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 Note that these comprehensive or specific aspects may be realized by a system, an apparatus, a method, an integrated circuit, a computer program, or a recording medium. It may be realized by any combination of the following.
 本発明の一態様によれば、端末装置、方法、および集積回路は、効率的な通信制御処理を実現することができる。 According to one aspect of the present invention, a terminal device, a method, and an integrated circuit can realize efficient communication control processing.
本実施形態に係る通信システムの概略図。FIG. 1 is a schematic diagram of a communication system according to the present embodiment. 本実施形態に係るE-UTRAプロトコル構成の一例の図。FIG. 2 is a diagram illustrating an example of the E-UTRA protocol configuration according to the present embodiment. 本実施形態に係るNRプロトコル構成の一例の図。FIG. 3 is a diagram illustrating an example of the NR protocol configuration according to the present embodiment. 本実施形態に係るRRCにおける、各種設定のための手順のフローの一例を示す図。FIG. 3 is a diagram illustrating an example of a flow of procedures for various settings in RRC according to the present embodiment. 本実施形態における端末装置の構成を示すブロック図。FIG. 2 is a block diagram showing the configuration of a terminal device in this embodiment. 本実施形態における基地局装置の構成を示すブロック図。FIG. 2 is a block diagram showing the configuration of a base station device in this embodiment. 本実施形態におけるNRでのRRCコネクションの再設定に関するメッセージに含まれるASN.1記述の一例。An example of an ASN.1 description included in a message regarding resetting an RRC connection in NR in this embodiment. 本実施形態におけるE-UTRAでのRRCコネクションの再設定に関するメッセージに含まれるASN.1記述の一例。An example of an ASN.1 description included in a message regarding resetting an RRC connection in E-UTRA in this embodiment. 本実施形態におけるサービングセル共通設定に含まれるASN.1記述の一例。An example of ASN.1 description included in the serving cell common settings in this embodiment. 本実施形態におけるNRでのRRCコネクションの再設定に関するメッセージ、およびRRC再設定完了メッセージに含まれるASN.1記述の一例。An example of an ASN.1 description included in a message regarding reconfiguration of an RRC connection in NR and an RRC reconfiguration completion message in the present embodiment. 本実施形態における端末装置の処理の一例。An example of processing of the terminal device in this embodiment. 本実施形態における候補ターゲットの設定のASN.1記述の一例。An example of ASN.1 description of candidate target settings in this embodiment. 本実施形態における候補ターゲットの設定のASN.1記述の一例。An example of ASN.1 description of candidate target settings in this embodiment. 本実施形態における候補ターゲットの設定のASN.1記述の一例。An example of ASN.1 description of candidate target settings in this embodiment.
 以下、本実施形態について、図面を参照して詳細に説明する。 Hereinafter, this embodiment will be described in detail with reference to the drawings.
 LTE(およびLTE-A、LTE-A Pro)とNRは、異なる無線アクセス技術(Radio Access Technology:RAT)として定義されてよい。またNRは、LTEに含まれる技術として定義されてもよい。またLTEは、NRに含まれる技術として定義されてもよい。また、NRとMulti-Radio Dual Connectivity(MR-DC)で接続可能なLTEは、従来のLTEと区別されてよい。また、コア網(コアネットワーク、Core Network:CN)に5GCを用いるLTEは、コア網にEPCを用いる従来のLTEと区別されてよい。なお従来のLTEとは、3GPPにおけるリリース15以降に規格化された技術を実装していないLTEの事であってよい。本実施形態はNR、LTEおよび他のRATに適用されてよい。以下の説明では、LTEおよびNRに関連する用語を用いて説明するが、本実施形態は他の用語を用いる他の技術において適用されてもよい。また本実施形態でのE-UTRAという用語は、LTEという用語に置き換えられてよいし、LTEという用語はE-UTRAという用語に置き換えられてよい。 LTE (and LTE-A, LTE-A Pro) and NR may be defined as different radio access technologies (RAT). Further, NR may be defined as a technology included in LTE. Furthermore, LTE may be defined as a technology included in NR. Furthermore, LTE, which can be connected to NR using Multi-Radio Dual Connectivity (MR-DC), may be distinguished from conventional LTE. Furthermore, LTE that uses 5GC in the core network (Core Network: CN) may be distinguished from conventional LTE that uses EPC in the core network. Note that conventional LTE may be LTE that does not implement the technology standardized after Release 15 in 3GPP. This embodiment may be applied to NR, LTE and other RATs. Although the following description uses terms related to LTE and NR, the present embodiment may be applied to other technologies using other terms. Further, the term E-UTRA in this embodiment may be replaced with the term LTE, and the term LTE may be replaced with the term E-UTRA.
 なお、本実施形態において、無線アクセス技術がE-UTRA又はNRである場合の各ノードやエンティティの名称、及び各ノードやエンティティにおける処理等について説明するが、本実施形態は他の無線アクセス技術に用いられてよい。本実施形態における各ノードやエンティティの名称は、別の名称であってよい。 In addition, in this embodiment, the names of each node and entity and the processing in each node and entity will be explained when the radio access technology is E-UTRA or NR. However, this embodiment is applicable to other radio access technologies. May be used. The names of each node and entity in this embodiment may be different names.
 図1は本実施形態に係る通信システムの概略図である。なお図1を用いて説明する各ノード、無線アクセス技術、コア網、インタフェース等の機能は、本実施形態に密接に関わる一部の機能であり、他の機能を持ってよい。 FIG. 1 is a schematic diagram of a communication system according to this embodiment. Note that the functions of each node, radio access technology, core network, interface, etc. explained using FIG. 1 are some functions closely related to this embodiment, and may have other functions.
 E-UTRA100は無線アクセス技術であってよい。またE-UTRA100は、UE122とeNB102との間のエアインタフェース(air interface)であってよい。UE122とeNB102との間のエアインタフェースをUuインタフェースと呼んでよい。eNB(E-UTRAN Node B)102は、E-UTRA100の基地局装置であってよい。eNB102は、後述のE-UTRAプロトコルを持ってよい。E-UTRAプロトコルは、後述のE-UTRAユーザプレーン(User Plane:UP)プロトコル、及び後述のE-UTRA制御プレーン(Control Plane:CP)プロトコルから構成されてもよい。eNB102は、UE122に対し、E-UTRAユーザプレーン(User Plane:UP)プロトコル、及びE-UTRA制御プレーン(Control Plane:CP)プロトコルを終端してよい。eNBで構成される無線アクセスネットワークをE-UTRANと呼んでもよい。 E-UTRA100 may be a radio access technology. Further, the E-UTRA 100 may be an air interface between the UE 122 and the eNB 102. The air interface between UE 122 and eNB 102 may be referred to as a Uu interface. The eNB (E-UTRAN Node B) 102 may be a base station device of the E-UTRA 100. The eNB 102 may have the E-UTRA protocol described below. The E-UTRA protocol may be composed of an E-UTRA User Plane (UP) protocol, which will be described later, and an E-UTRA Control Plane (CP) protocol, which will be described later. The eNB 102 may terminate the E-UTRA user plane (UP) protocol and the E-UTRA control plane (CP) protocol for the UE 122. A radio access network composed of eNBs may be called E-UTRAN.
 EPC(Evolved Packet Core)104は、コア網であってよい。インタフェース112はeNB102とEPC104の間のインタフェース(interface)であり、S1インタフェースと呼ばれてよい。インタフェース112には、制御信号が通る制御プレーンインタフェース、及び/又は(and/or)ユーザデータが通るユーザプレーンインタフェースが存在してよい。インタフェース112の制御プレーンインタフェースはEPC104内のMobility Management Entity(MME:不図示)で終端してよい。インタフェース112のユーザプレーンインタフェースはEPC104内のサービングゲートウェイ(S-GW:不図示)で終端してよい。インタフェース112の制御プレーンインタフェースをS1-MMEインタフェースと呼んでよい。インタフェース112のユーザプレーンインタフェースをS1-Uインタフェースと呼んでよい。 The EPC (Evolved Packet Core) 104 may be a core network. Interface 112 is an interface between eNB 102 and EPC 104, and may be called an S1 interface. The interface 112 may include a control plane interface through which control signals pass, and/or a user plane interface through which user data passes. The control plane interface of interface 112 may terminate at a Mobility Management Entity (MME: not shown) within EPC 104 . The user plane interface of interface 112 may terminate at a serving gateway (S-GW: not shown) within EPC 104 . The control plane interface of interface 112 may be referred to as the S1-MME interface. The user plane interface of interface 112 may be referred to as the S1-U interface.
 なお、1つ又は複数のeNB102がEPC104にインタフェース112を介して接続されてよい。EPC104に接続する複数のeNB102の間に、インタフェースが存在してよい(不図示)。EPC104に接続する複数のeNB102間のインタフェースを、X2インタフェースと呼んでよい。 Note that one or more eNBs 102 may be connected to the EPC 104 via the interface 112. An interface may exist between multiple eNBs 102 connected to the EPC 104 (not shown). The interface between the plurality of eNBs 102 connected to the EPC 104 may be referred to as an X2 interface.
 NR106は無線アクセス技術であってよい。またNR106は、UE122とgNB108との間のエアインタフェース(air interface)であってよい。UE122とgNB108との間のエアインタフェースをUuインタフェースと呼んでよい。gNB(g Node B)108は、NR106の基地局装置であってよい。gNB108は、後述のNRプロトコルを持ってよい。NRプロトコルは、後述のNRユーザプレーン(User Plane:UP)プロトコル、及び後述のNR制御プレーン(Control Plane:CP)プロトコルから構成されてよい。gNB108は、UE122に対し、NRユーザプレーン(User Plane:UP)プロトコル、及びNR制御プレーン(Control Plane:CP)プロトコルを終端してよい。 NR106 may be a radio access technology. NR106 may also be an air interface between UE122 and gNB108. The air interface between UE 122 and gNB 108 may be referred to as a Uu interface. gNB (g Node B) 108 may be a base station device of NR106. gNB 108 may have the NR protocol described below. The NR protocol may include an NR user plane (UP) protocol, which will be described later, and an NR control plane (CP) protocol, which will be described later. The gNB 108 may terminate the NR User Plane (UP) protocol and the NR Control Plane (CP) protocol for the UE 122.
 5GC110は、コア網であってよい。インタフェース116はgNB108と5GC110の間のインタフェース(interface)であり、NGインタフェースと呼ばれてよい。インタフェース116には、制御信号が通る制御プレーンインタフェース、及び/又はユーザデータが通るユーザプレーンインタフェースが存在してよい。インタフェース116の制御プレーンインタフェースは5GC110内のAccess and mobility Management Function(AMF:不図示)で終端してよい。インタフェース116のユーザプレーンインタフェースは5GC110内のUser Plane Function(UPF:不図示)で終端してよい。インタフェース116の制御プレーンインタフェースをNG-Cインタフェースと呼んでよい。インタフェース116のユーザプレーンインタフェースをNG-Uインタフェースと呼んでよい。 5GC110 may be a core network. Interface 116 is an interface between gNB 108 and 5GC 110, and may be called an NG interface. The interface 116 may include a control plane interface through which control signals pass and/or a user plane interface through which user data passes. The control plane interface of interface 116 may terminate in an Access and Mobility Management Function (AMF: not shown) within 5GC 110. The user plane interface of interface 116 may terminate at a User Plane Function (UPF: not shown) within 5GC 110. The control plane interface of interface 116 may be referred to as an NG-C interface. The user plane interface of interface 116 may be referred to as an NG-U interface.
 なお、1つ又は複数のgNB108が5GC110にインタフェース116を介して接続されてよい。5GC110に接続する複数のgNB108の間に、インタフェースが存在してよい(不図示)。5GC110に接続する複数のgNB108間のインタフェースをXnインタフェースと呼んでよい。 Note that one or more gNBs 108 may be connected to the 5GC 110 via the interface 116. An interface may exist between multiple gNBs 108 connected to 5GC 110 (not shown). The interface between multiple gNBs 108 connected to 5GC 110 may be called an Xn interface.
 eNB102は5GC110に接続する機能を持ってよい。5GC110に接続する機能をもつeNB102を、ng-eNBと呼んでよい。インタフェース114はeNB102と5GC110の間のインタフェースで、NGインタフェースと呼ばれてよい。インタフェース114には、制御信号が通る制御プレーンインタフェース、及び/又はユーザデータが通るユーザプレーンインタフェースが存在してよい。インタフェース114の制御プレーンインタフェースは5GC110内のAMFで終端してよい。インタフェース114のユーザプレーンインタフェースは5GC110内のUPFで終端してよい。インタフェース114の制御プレーンインタフェースをNG-Cインタフェースと呼んでよい。インタフェース114のユーザプレーンインタフェースをNG-Uインタフェースと呼んでよい。ng-eNBまたはgNBで構成される無線アクセスネットワークをNG-RANと称してもよい。NG-RAN、E-UTRANなどを単にネットワークと称してもよい。また、ネットワークには、eNB、ng-eNBおよびgNBなどが含まれてよい。 eNB102 may have the ability to connect to 5GC110. The eNB 102 that has the function of connecting to the 5GC 110 may be called an ng-eNB. Interface 114 is an interface between eNB 102 and 5GC 110, and may be called an NG interface. The interface 114 may include a control plane interface through which control signals pass and/or a user plane interface through which user data passes. The control plane interface of interface 114 may terminate at an AMF within 5GC 110. The user plane interface of interface 114 may terminate at a UPF within 5GC 110. The control plane interface of interface 114 may be referred to as an NG-C interface. The user plane interface of interface 114 may be referred to as an NG-U interface. A radio access network composed of ng-eNBs or gNBs may be referred to as NG-RAN. NG-RAN, E-UTRAN, etc. may also be simply referred to as networks. Further, the network may include eNB, ng-eNB, gNB, and the like.
 なお、1つ又は複数のeNB102が5GC110にインタフェース114を介して接続されてよい。5GC110に接続する複数のeNB102の間に、インタフェースが存在してよい(不図示)。5GC110に接続する複数のeNB102の間のインタフェースを、Xnインタフェースと呼んでよい。また5GC110に接続するeNB102と、5GC110に接続するgNB108は、インタフェース120で接続されてよい。5GC110に接続するeNB102と、5GC110に接続するgNB108の間のインタフェース120は、Xnインタフェースと呼ばれてよい。 Note that one or more eNB102 may be connected to 5GC110 via interface 114. An interface may exist between multiple eNB102 connected to 5GC110 (not shown). The interface between multiple eNB102 connected to 5GC110 may be called an Xn interface. Furthermore, an eNB102 connected to 5GC110 and a gNB108 connected to 5GC110 may be connected by interface 120. The interface 120 between an eNB102 connected to 5GC110 and a gNB108 connected to 5GC110 may be called an Xn interface.
 gNB108はEPC104に接続する機能を持ってよい。EPC104に接続する機能をもつgNB108を、en-gNBと呼んでよい。インタフェース118はgNB108とEPC104の間のインタフェースで、S1インタフェースと呼ばれてよい。インタフェース118には、ユーザデータが通るユーザプレーンインタフェースが存在してよい。インタフェース118のユーザプレーンインタフェースはEPC104内のS-GW(不図示)で終端してよい。インタフェース118のユーザプレーンインタフェースをS1-Uインタフェースと呼んでよい。またEPC104に接続するeNB102と、EPC104に接続するgNB108は、インタフェース120で接続されてよい。EPC104に接続するeNB102と、EPC104に接続するgNB108の間のインタフェース120はX2インタフェースと呼ばれてよい。 gNB108 may have the function of connecting to EPC104. gNB 108 having the function of connecting to EPC 104 may be called en-gNB. Interface 118 is an interface between gNB 108 and EPC 104, and may be called an S1 interface. Interface 118 may include a user plane interface through which user data passes. The user plane interface of interface 118 may terminate at an S-GW (not shown) within EPC 104. The user plane interface of interface 118 may be referred to as the S1-U interface. Further, the eNB 102 connected to the EPC 104 and the gNB 108 connected to the EPC 104 may be connected through an interface 120. The interface 120 between the eNB 102 that connects to the EPC 104 and the gNB 108 that connects to the EPC 104 may be called an X2 interface.
 インタフェース124はEPC104と5GC110間のインタフェースであり、CPのみ、又はUPのみ、又はCP及びUP両方を通すインタフェースであってよい。また、インタフェース114、インタフェース116、インタフェース118、インタフェース120、及びインタフェース124等のうちの一部又は全てのインタフェースは、通信事業者等が提供する通信システムに応じて存在しない場合があってよい。 The interface 124 is an interface between the EPC 104 and the 5GC 110, and may be an interface that passes only CP, only UP, or both CP and UP. Furthermore, some or all of the interfaces 114, 116, 118, 120, 124, etc. may not exist depending on the communication system provided by the communication carrier or the like.
 UE122はeNB102、及び/又はgNB108から送信されるシステム情報や、ページングメッセージを受信する事が可能な端末装置であってよい。またUE122は、eNB102、及び/又はgNB108との無線接続が可能な端末装置であってよい。またUE122は、eNB102との無線接続、及びgNB108と無線接続を同時に行う事が可能な端末装置であってよい。UE122はE-UTRAプロトコル、及び/又はNRプロトコルを持ってよい。なお、無線接続とは、Radio Resource Control(RRC)接続であってよい。 The UE 122 may be a terminal device that can receive system information and paging messages transmitted from the eNB 102 and/or gNB 108. Further, the UE 122 may be a terminal device that can be wirelessly connected to the eNB 102 and/or the gNB 108. Further, the UE 122 may be a terminal device that can simultaneously perform a wireless connection with the eNB 102 and a wireless connection with the gNB 108. UE 122 may have an E-UTRA protocol and/or an NR protocol. Note that the wireless connection may be a Radio Resource Control (RRC) connection.
 またUE122は、eNB102及び/又はgNB108を介して、EPC104、及び/又は5GC110との接続が可能な端末装置であってよい。UE122が通信を行うeNB102、及び/又はgNB108の接続先コア網がEPC104である場合、UE122と、eNB102、及び/又はgNB108との間に確立された後述の各データ無線ベアラ(DRB:Data Radio Bearer)は、更にEPC104内を経由する各EPS(Evolved Packet System)ベアラと一意に紐づけられてよい。各EPSベアラは、EPSベアラ識別子(Identity、またはID)で識別されてよい。また同一のEPSベアラを通るIPパケットや、イーサネット(登録商標)フレーム等のデータには同一のQoSが保証されてよい。 UE122 may also be a terminal device capable of connecting to EPC104 and/or 5GC110 via eNB102 and/or gNB108. When the core network to which eNB102 and/or gNB108, with which UE122 communicates, is connected is EPC104, each Data Radio Bearer (DRB: Data Radio Bearer) described below established between UE122 and eNB102 and/or gNB108 may further be uniquely linked to each EPS (Evolved Packet System) bearer passing through EPC104. Each EPS bearer may be identified by an EPS bearer identifier (Identity, or ID). Furthermore, the same QoS may be guaranteed for data such as IP packets and Ethernet (registered trademark) frames passing through the same EPS bearer.
 また、UE122が通信を行うeNB102、及び/又はgNB108の接続先コア網が5GC110である場合、UE122と、eNB102、及び/又はgNB108との間に確立された各DRBは、更に5GC110内に確立されるPDU(Packet Data Unit)セッションの一つに紐づけられてよい。各PDUセッションには、一つ又は複数のQoSフローが存在してよい。各DRBは、一つ又は複数のQoSフローと対応付け(map)されてよいし、どのQoSフローと対応づけられなくてよい。各PDUセッションは、PDUセッション識別子(Identity、またはID)で識別されてよい。また各QoSフローは、QoSフロー識別子(Identity、またはID)で識別されてよい。また同一のQoSフローを通るIPパケットや、イーサネットフレーム等のデータに同一のQoSが保証されてよい。 Furthermore, if the core network connected to eNB102 and/or gNB108 with which UE122 communicates is 5GC110, each DRB established between UE122 and eNB102 and/or gNB108 is further established within 5GC110. It may be linked to one of the PDU (Packet Data Unit) sessions. There may be one or more QoS flows in each PDU session. Each DRB may be mapped to one or more QoS flows, or may not be mapped to any QoS flows. Each PDU session may be identified by a PDU session identifier (Identity, or ID). Further, each QoS flow may be identified by a QoS flow identifier (Identity or ID). Furthermore, the same QoS may be guaranteed for data such as IP packets and Ethernet frames passing through the same QoS flow.
 EPC104には、PDUセッション及び/又はQoSフローは存在しなくてよい。また5GC110にはEPSベアラは存在しなくてよい。UE122がEPC104と接続している際、UE122はEPSベアラの情報を持つが、PDUセッション及び/又はQoSフローの内の情報は持たなくてよい。またUE122が5GC110と接続している際、UE122はPDUセッション及び/又はQoSフローの内の情報を持つが、EPSベアラの情報は持たなくてよい。 There may be no PDU sessions and/or QoS flows in the EPC 104. Also, 5GC110 does not need to have an EPS bearer. When the UE 122 is connected to the EPC 104, the UE 122 has information on the EPS bearer, but may not have information on the PDU session and/or QoS flow. Further, when the UE 122 is connected to the 5GC 110, the UE 122 has information on the PDU session and/or QoS flow, but does not need to have information on the EPS bearer.
 なお、以下の説明において、eNB102および/またはgNB108を単に基地局装置とも称し、UE122を単に端末装置又はUEとも称する。 Note that in the following description, the eNB 102 and/or gNB 108 will also be simply referred to as a base station device, and the UE 122 will also be simply referred to as a terminal device or UE.
 図2は本実施形態に係るE-UTRAプロトコル構成(protocol architecture)の一例の図である。また図3は本実施形態に係るNRプロトコル構成の一例の図である。なお図2及び/又は図3を用いて説明する各プロトコルの機能は、本実施形態に密接に関わる一部の機能であり、他の機能を持っていてよい。なお、本実施形態において、上りリンク(uplink:UL)とは端末装置から基地局装置へのリンクであってよい。また本実施形態において、下りリンク(downlink:DL)とは基地局装置から端末装置へのリンクであってよい。 FIG. 2 is a diagram of an example of the E-UTRA protocol architecture according to the present embodiment. Further, FIG. 3 is a diagram of an example of the NR protocol configuration according to the present embodiment. Note that the functions of each protocol explained using FIG. 2 and/or FIG. 3 are some functions closely related to this embodiment, and may have other functions. Note that in this embodiment, the uplink (UL) may be a link from a terminal device to a base station device. Furthermore, in this embodiment, the downlink (DL) may be a link from a base station device to a terminal device.
 図2(A)はE-UTRAユーザプレーン(UP)プロトコルスタックの図である。図2(A)に示す通り、E-UTRA UPプロトコルは、UE122とeNB102の間のプロトコルであってよい。即ちE-UTRA UPプロトコルは、ネットワーク側ではeNB102で終端するプロトコルであってよい。図2(A)に示す通り、E-UTRAユーザプレーンプロトコルスタックは、無線物理層(無線物理レイヤ)であるPHY(Physical layer)200、媒体アクセス制御層(媒体アクセス制御レイヤ)であるMAC(Medium Access Control)202、無線リンク制御層(無線リンク制御レイヤ)であるRLC(Radio Link Control)204、及びパケットデータ収束プロトコル層(パケットデータ収束プロトコルレイヤ)であるPDCP(Packet Data Convergence Protocol)206から構成されてよい。 Figure 2(A) is a diagram of the E-UTRA user plane (UP) protocol stack. As shown in FIG. 2(A), the E-UTRA UP protocol may be a protocol between the UE 122 and the eNB 102. That is, the E-UTRA UP protocol may be a protocol that terminates at the eNB 102 on the network side. As shown in Figure 2(A), the E-UTRA user plane protocol stack consists of a wireless physical layer (PHY) 200, a medium access control layer (MAC) 200, and a medium access control layer (MAC). RLC (Radio Link Control) 204, which is a radio link control layer, and PDCP (Packet Data Convergence Protocol) 206, which is a packet data convergence protocol layer. It's okay to be.
 図3(A)はNRユーザプレーン(UP)プロトコルスタックの図である。図3(A)に示す通り、NRUPプロトコルは、UE122とgNB108の間のプロトコルであってよい。即ちNR UPプロトコルは、ネットワーク側ではgNB108で終端するプロトコルであってよい。図3(A)に示す通り、NRユーザプレーンプロトコルスタックは、無線物理層であるPHY300、媒体アクセス制御層であるMAC302、無線リンク制御層であるRLC304、パケットデータ収束プロトコル層である、PDCP306、及びサービスデータ適応プロトコル層(サービスデータ適応プロトコルレイヤ)であるSDAP(Service Data Adaptation Protocol)310であるから構成されてよい。 Figure 3(A) is a diagram of the NR user plane (UP) protocol stack. As shown in FIG. 3(A), the NRUP protocol may be a protocol between the UE 122 and the gNB 108. That is, the NR UP protocol may be a protocol that terminates at the gNB 108 on the network side. As shown in Figure 3(A), the NR user plane protocol stack includes a radio physical layer PHY300, a medium access control layer MAC302, a radio link control layer RLC304, a packet data convergence protocol layer PDCP306, and It may be configured from SDAP (Service Data Adaptation Protocol) 310, which is a service data adaptation protocol layer.
 図2(B)はE-UTRA制御プレーン(CP)プロトコル構成の図である。図2(B)に示す通り、E-UTRA CPプロトコルにおいて、無線リソース制御層(無線リソース制御レイヤ)であるRRC(Radio Resource Control)208は、UE122とeNB102の間のプロトコルであってよい。即ちRRC208は、ネットワーク側ではeNB102で終端するプロトコルであってよい。またE-UTRA CPプロトコルにおいて、非AS(Access Stratum)層(非ASレイヤ)であるNAS(Non Access Stratum)210は、UE122とMMEとの間のプロトコルであってよい。即ちNAS210は、ネットワーク側ではMMEで終端するプロトコルであってよい。 Figure 2(B) is a diagram of the E-UTRA control plane (CP) protocol configuration. As shown in Figure 2(B), in the E-UTRA CP protocol, RRC (Radio Resource Control) 208, which is the radio resource control layer, may be a protocol between UE 122 and eNB 102. In other words, RRC 208 may be a protocol that terminates at eNB 102 on the network side. Also, in the E-UTRA CP protocol, NAS (Non Access Stratum) 210, which is the non-AS (Access Stratum) layer, may be a protocol between UE 122 and MME. In other words, NAS 210 may be a protocol that terminates at MME on the network side.
 図3(B)はNR制御プレーン(CP)プロトコル構成の図である。図3(B)に示す通り、NR CPプロトコルにおいて、無線リソース制御層であるRRC308は、UE122とgNB108の間のプロトコルであってよい。即ちRRC308は、ネットワーク側ではgNB108で終端するプロトコルであってよい。またNR CPプロトコルにおいて、非AS層であるNAS312は、UE122とAMFとの間のプロトコルであってよい。即ちNAS312は、ネットワーク側ではAMFで終端するプロトコルであってよい。 Figure 3(B) is a diagram of the NR control plane (CP) protocol configuration. As shown in FIG. 3(B), in the NR CP protocol, RRC 308, which is a radio resource control layer, may be a protocol between UE 122 and gNB 108. That is, RRC308 may be a protocol that terminates at gNB108 on the network side. Further, in the NR CP protocol, the NAS 312, which is a non-AS layer, may be a protocol between the UE 122 and the AMF. That is, the NAS 312 may be a protocol that terminates with AMF on the network side.
 なおAS(Access Stratum)層とは、UE122とeNB102及び/又はgNB108との間で終端する層であってよい。即ちAS層とは、PHY200、MAC202、RLC204、PDCP206、及びRRC208の一部又は全てを含む層、及び/又はPHY300、MAC302、RLC304、PDCP306、SDAP310、及びRRC308の一部又は全てを含む層であってよい。 Note that the AS (Access Stratum) layer may be a layer that terminates between the UE 122 and the eNB 102 and/or gNB 108. That is, the AS layer is a layer that includes some or all of PHY200, MAC202, RLC204, PDCP206, and RRC208, and/or a layer that includes some or all of PHY300, MAC302, RLC304, PDCP306, SDAP310, and RRC308. It's fine.
 なお本実施形態において、以下E-UTRAのプロトコルとNRのプロトコルを区別せず、PHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)と言う用語を用いる場合がある。この場合、PHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)は其々E-UTRAプロトコルのPHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)であってよいし、NRプロトコルの、PHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)であってよい。またSDAP(SDAP層)は、NRプロトコルのSDAP(SDAP層)であってよい。 In this embodiment, the following does not distinguish between the E-UTRA protocol and the NR protocol, and uses PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), and RRC (RRC layer). , the term NAS (NAS layer) is sometimes used. In this case, PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), and NAS (NAS layer) are the PHY (PHY layer) of the E-UTRA protocol. ), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), NAS (NAS layer). layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), and NAS (NAS layer). Further, the SDAP (SDAP layer) may be the SDAP (SDAP layer) of the NR protocol.
 また本実施形態において、以下E-UTRAのプロトコルとNRのプロトコルを区別する場合、PHY200、MAC202、RLC204、PDCP206、及びRRC208を、それぞれE-UTRA用PHY又はLTE用PHY、E-UTRA用MAC又はLTE用MAC、E-UTRA用RLC又はLTE用RLC、E-UTRA用PDCP又はLTE用PDCP、及びE-UTRA用RRC又はLTE用RRCと呼ぶ事もある。またPHY200、MAC202、RLC204、PDCP206、及びRRC208を、それぞれE-UTRA PHY又はLTE PHY、E-UTRA MAC又はLTE MAC、E-UTRA RLC又はLTE RLC、E-UTRA PDCP又はLTE PDCP、及びE-UTRA RRC又はLTE RRCなどと記述する場合もある。また、E-UTRAのプロトコルとNRのプロトコルを区別する場合、PHY300、MAC302、RLC304、PDCP306、RRC308を、それぞれNR用PHY、NR用MAC、NR用RLC、NR用RLC、及びNR用RRCと呼ぶ事もある。またPHY300、MAC302、RLC304、PDCP306、及びRRC308を、それぞれNR PHY、NR MAC、NR RLC、NR PDCP、NR RRCなどと記述する場合もある。 In this embodiment, when distinguishing between the E-UTRA protocol and the NR protocol, PHY200, MAC202, RLC204, PDCP206, and RRC208 are respectively defined as PHY for E-UTRA or PHY for LTE, MAC for E-UTRA, or It is also called MAC for LTE, RLC for E-UTRA or RLC for LTE, PDCP for E-UTRA or PDCP for LTE, and RRC for E-UTRA or RRC for LTE. In addition, PHY200, MAC202, RLC204, PDCP206, and RRC208 are respectively E-UTRA PHY or LTE PHY, E-UTRA MAC or LTE MAC, E-UTRA RLC or LTE RLC, E-UTRA PDCP or LTE PDCP, and E-UTRA It may also be written as RRC or LTE RRC. Also, when distinguishing between the E-UTRA protocol and the NR protocol, PHY300, MAC302, RLC304, PDCP306, and RRC308 are called PHY for NR, MAC for NR, RLC for NR, RLC for NR, and RRC for NR, respectively. There are some things. In addition, PHY300, MAC302, RLC304, PDCP306, and RRC308 are sometimes written as NR PHY, NR MAC, NR RLC, NR PDCP, NR RRC, etc., respectively.
 E-UTRA及び/又はNRのAS層におけるエンティティ(entity)について説明する。MAC層の機能の一部又は全てを持つエンティティの事をMACエンティティと呼んでよい。RLC層の機能の一部又は全てを持つエンティティの事をRLCエンティティと呼んでよい。PDCP層の機能の一部又は全てを持つエンティティの事をPDCPエンティティと呼んでよい。SDAP層の機能の一部又は全てを持つエンティティの事をSDAPエンティティと呼んでよい。RRC層の機能の一部又は全てを持つエンティティの事をRRCエンティティと呼んでよい。MACエンティティ、RLCエンティティ、PDCPエンティティ、SDAPエンティティ、RRCエンティティを、其々MAC、RLC、PDCP、SDAP、RRCと言い換えてよい。 Entities in the AS layer of E-UTRA and/or NR will be explained. An entity that has some or all of the functions of the MAC layer may be called a MAC entity. An entity that has some or all of the functions of the RLC layer may be called an RLC entity. An entity that has some or all of the functions of the PDCP layer may be called a PDCP entity. An entity that has some or all of the functions of the SDAP layer may be called an SDAP entity. An entity that has some or all of the functions of the RRC layer may be called an RRC entity. The MAC entity, RLC entity, PDCP entity, SDAP entity, and RRC entity may be replaced with MAC, RLC, PDCP, SDAP, and RRC, respectively.
 なお、MAC、RLC、PDCP、SDAPから下位層に提供されるデータ、及び/又はMAC、RLC、PDCP、SDAPに下位層から提供されるデータの事を、それぞれMAC PDU(Protocol Data Unit)、RLC PDU、PDCP PDU、SDAP PDUと呼んでよい。また、MAC、RLC、PDCP、SDAPに上位層から提供されるデータ、及び/又はMAC、RLC、PDCP、SDAPから上位層に提供するデータの事を、それぞれMAC SDU(Service Data Unit)、RLC SDU、PDCP SDU、SDAP SDUと呼んでよい。また、セグメントされたRLC SDUの事をRLC SDUセグメントと呼んでよい。 Note that data provided from MAC, RLC, PDCP, and SDAP to lower layers and/or data provided from lower layers to MAC, RLC, PDCP, and SDAP are referred to as MAC PDU (Protocol Data Unit) and RLC, respectively. It can be called PDU, PDCP PDU, SDAP PDU. In addition, data provided from the upper layer to MAC, RLC, PDCP, and SDAP, and/or data provided from MAC, RLC, PDCP, and SDAP to the upper layer are MAC SDU (Service Data Unit) and RLC SDU, respectively. , PDCP SDU, SDAP SDU. Furthermore, a segmented RLC SDU may be referred to as an RLC SDU segment.
 ここで、基地局装置と端末装置は、上位層(上位レイヤ:higher layer)において信号をやり取り(送受信)する。例えば、基地局装置と端末装置は、無線リソース制御(RRC:Radio Resource Control)層において、RRCメッセージ(RRC message、RRC information、RRC signallingとも称される)を送受信してもよい。また、基地局装置と端末装置は、MAC(Medium Access Control)層において、MACコントロールエレメントを送受信してもよい。また、端末装置のRRC層は、基地局装置から報知されるシステム情報を取得する。ここで、RRCメッセージ、システム情報、および/または、MACコントロールエレメントは、上位層の信号(上位レイヤ信号:higher layer signaling)または上位層のパラメータ(上位レイヤパラメータ:higher layer parameter)とも称される。端末装置が受信した上位レイヤ信号に含まれるパラメータのそれぞれが上位レイヤパラメータと称されてもよい。PHY層の処理において上位層は、PHY層から見た上位層を意味するため、MAC層、RRC層、RLC層、PDCP層、NAS(Non Access Stratum)層などの1つまたは複数を意味してもよい。例えば、MAC層の処理において上位層とは、RRC層、RLC層、PDCP層、NAS層などの1つまたは複数を意味してもよい。以下、“Aは、上位層で与えられる(提供される)”や“Aは、上位層によって与えられる(提供される)”の意味は、端末装置の上位層(主にRRC層やMAC層など)が、基地局装置からAを受信し、その受信したAが端末装置の上位層から端末装置の物理層に与えられる(提供される)ことを意味してもよい。例えば、端末装置において「上位レイヤパラメータを提供される」とは、基地局装置から上位レイヤ信号を受信し、受信した上位レイヤ信号に含まれる上位レイヤパラメータが端末装置の上位層から端末装置の物理層に提供されることを意味してもよい。端末装置に上位レイヤパラメータが設定されることは端末装置に対して上位レイヤパラメータが与えられる(提供される)ことを意味してもよい。例えば、端末装置に上位レイヤパラメータが設定されることは、端末装置が基地局装置から上位レイヤ信号を受信し、受信した上位レイヤパラメータを上位層で設定することを意味してもよい。ただし、端末装置に上位レイヤパラメータが設定されることには、端末装置の上位層に予め与えられているデフォルトパラメータが設定されることを含んでもよい。端末装置から基地局装置にRRCメッセージを送信することを説明する際に、端末装置のRRCエンティティから下位層(下位レイヤ:lower layer)にメッセージを提出(submit)するという表現を使用する場合がある。端末装置において、RRCエンティティから「下位層にメッセージを提出する」とは、PDCP層にメッセージを提出することを意味してもよい。端末装置において、RRC層から「下位層にメッセージを提出(submit)する」とは、RRCのメッセージは、SRB (SRB0, SRB1, SRB2, SRB3など)を使って送信されるため、それぞれのSRBに対応したPDCPエンティティに提出することを意味してもよい。端末装置のRRCエンティティが下位層から指摘(indication)を受ける際、その下位層は、PHY層、MAC層、RLC層、PDCP層、などの1つまたは複数を意味してもよい。 Here, the base station device and the terminal device exchange (transmit and receive) signals in a higher layer. For example, the base station device and the terminal device may transmit and receive RRC messages (also referred to as RRC messages, RRC information, and RRC signaling) in a radio resource control (RRC) layer. Further, the base station device and the terminal device may transmit and receive MAC control elements in the MAC (Medium Access Control) layer. Furthermore, the RRC layer of the terminal device acquires system information broadcast from the base station device. Here, the RRC message, system information, and/or MAC control element is also referred to as a higher layer signal (higher layer signal) or a higher layer parameter (higher layer parameter). Each of the parameters included in the upper layer signal received by the terminal device may be referred to as an upper layer parameter. In PHY layer processing, upper layer refers to the upper layer seen from the PHY layer, so it refers to one or more of the MAC layer, RRC layer, RLC layer, PDCP layer, NAS (Non Access Stratum) layer, etc. Good too. For example, in the processing of the MAC layer, the upper layer may mean one or more of the RRC layer, RLC layer, PDCP layer, NAS layer, and the like. Hereinafter, "A is given (provided) by the upper layer" and "A is given (provided) by the upper layer" mean the upper layers of the terminal device (mainly the RRC layer and MAC layer). etc.) may mean that A is received from the base station device, and the received A is given (provided) from an upper layer of the terminal device to the physical layer of the terminal device. For example, in a terminal device, being “provided with upper layer parameters” means that the upper layer parameter included in the received upper layer signal is received from the base station device, and the upper layer parameter included in the received upper layer signal is transmitted from the upper layer of the terminal device to the terminal device. It may also mean provided in layers. Setting upper layer parameters to a terminal device may mean that upper layer parameters are given (provided) to the terminal device. For example, setting upper layer parameters in a terminal device may mean that the terminal device receives an upper layer signal from a base station device and sets the received upper layer parameters in the upper layer. However, setting upper layer parameters to the terminal device may include setting default parameters given in advance to the upper layer of the terminal device. When explaining sending an RRC message from a terminal device to a base station device, the expression "submit" a message from the RRC entity of the terminal device to a lower layer may be used. . In a terminal device, "submitting a message to a lower layer" from an RRC entity may mean submitting a message to a PDCP layer. In a terminal device, "submitting a message from the RRC layer to a lower layer" means that RRC messages are sent using SRBs (SRB0, SRB1, SRB2, SRB3, etc.), so It may also mean submitting to the corresponding PDCP entity. When the RRC entity of the terminal device receives an indication from a lower layer, the lower layer may refer to one or more of a PHY layer, a MAC layer, an RLC layer, a PDCP layer, and the like.
 PHYの機能の一例について説明する。端末装置のPHYは基地局装置のPHYから、下りリンク(Downlink:DL)物理チャネル(Physical Channel)を介して伝送されたデータを受信する機能を有してよい。端末装置のPHYは基地局装置のPHYに対し、上りリンク(Uplink:UL)物理チャネルを介してデータを送信する機能を有してよい。PHYは上位のMACと、トランスポートチャネル(Transport Channel)で接続されてよい。PHYはトランスポートチャネルを介してMACにデータを受け渡してよい。またPHYはトランスポートチャネルを介してMACからデータを提供されてよい。PHYにおいて、様々な制御情報を識別するために、RNTI(Radio Network Temporary Identifier)が用いられてよい。 An example of the PHY function will be explained. The PHY of the terminal device may have a function of receiving data transmitted from the PHY of the base station device via a downlink (DL) physical channel. The PHY of the terminal device may have a function of transmitting data to the PHY of the base station device via an uplink (UL) physical channel. The PHY may be connected to the upper MAC via a transport channel. The PHY may pass data to the MAC via a transport channel. The PHY may also be provided with data from the MAC via a transport channel. In the PHY, RNTI (Radio Network Temporary Identifier) may be used to identify various control information.
 ここで、物理チャネルについて説明する。端末装置と基地局装置との無線通信に用いられる物理チャネルには、以下の物理チャネルが含まれてよい。 Here, the physical channel will be explained. The physical channels used for wireless communication between the terminal device and the base station device may include the following physical channels.
  PBCH(物理報知チャネル:Physical Broadcast CHannel)
  PDCCH(物理下りリンク制御チャネル:Physical Downlink Control CHannel)
  PDSCH(物理下りリンク共用チャネル:Physical Downlink Shared CHannel)
  PUCCH(物理上りリンク制御チャネル:Physical Uplink Control CHannel)
  PUSCH(物理上りリンク共用チャネル:Physical Uplink Shared CHannel)
  PRACH(物理ランダムアクセスチャネル:Physical Random Access CHannel)
PBCH (Physical Broadcast CHannel)
PDCCH (Physical Downlink Control CHannel)
PDSCH (Physical Downlink Shared CHannel)
PUCCH (Physical Uplink Control CHannel)
PUSCH (Physical Uplink Shared CHannel)
PRACH (Physical Random Access CHannel)
 PBCHは、端末装置が必要とするシステム情報を報知するために用いられてよい。 PBCH may be used to broadcast system information required by terminal devices.
 また、NRにおいて、PBCHは、同期信号のブロック(Synchronization Signal Block:SSB)の周期内の時間インデックス(SSB-Index)を報知するために用いられてよい。 Furthermore, in NR, the PBCH may be used to broadcast a time index (SSB-Index) within the period of a synchronization signal block (SSB).
 PDCCHは、下りリンクの無線通信(基地局装置から端末装置への無線通信)において、下りリンク制御情報(Downlink Control Information:DCI)を送信する(または運ぶ)ために用いられてよい。ここで、下りリンク制御情報の送信に対して、一つまたは複数のDCI(DCIフォーマットと称してもよい)が定義されてよい。すなわち、下りリンク制御情報に対するフィールドがDCIとして定義され、情報ビットへマップされてよい。PDCCHは、PDCCH候補(candidate)において送信されてよい。端末装置は、サービングセルにおいてPDCCH候補のセットをモニタしてよい。PDCCH候補のセットをモニタするとは、あるDCIフォーマットに応じてPDCCHのデコードを試みることを意味してよい。また、端末装置は、CORESET(Control Resource Set)を、PDCCH候補のセットをモニタするために用いてよい。DCIフォーマットは、サービングセルにおけるPUSCHのスケジューリングのために用いられてもよい。PUSCHは、ユーザデータの送信や、後述するRRCメッセージの送信などのために使われてよい。 The PDCCH may be used to transmit (or carry) downlink control information (DCI) in downlink wireless communication (wireless communication from a base station device to a terminal device). Here, one or more DCIs (which may also be referred to as DCI formats) may be defined for transmission of downlink control information. That is, a field for downlink control information may be defined as DCI and mapped to information bits. PDCCH may be transmitted on PDCCH candidates. A terminal device may monitor a set of PDCCH candidates in a serving cell. Monitoring a set of PDCCH candidates may mean attempting to decode a PDCCH according to a certain DCI format. Furthermore, the terminal device may use CORESET (Control Resource Set) to monitor the set of PDCCH candidates. The DCI format may be used for PUSCH scheduling in the serving cell. PUSCH may be used for transmitting user data, transmitting an RRC message, which will be described later, and the like.
 PUCCHは、上りリンクの無線通信(端末装置から基地局装置への無線通信)において、上りリンク制御情報(Uplink Control Information:UCI)を送信するために用いられてよい。ここで、上りリンク制御情報には、下りリンクのチャネルの状態を示すために用いられるチャネル状態情報(CSI:Channel State Information)が含まれてもよい。また、上りリンク制御情報には、UL-SCH(UL-SCH:Uplink Shared CHannel)リソースを要求するために用いられるスケジューリング要求(SR:Scheduling Request)が含まれてもよい。また、上りリンク制御情報には、HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement)が含まれてもよい。 The PUCCH may be used to transmit uplink control information (UCI) in uplink wireless communication (wireless communication from a terminal device to a base station device). Here, the uplink control information may include channel state information (CSI) used to indicate the state of a downlink channel. The uplink control information may also include a scheduling request (SR) used to request UL-SCH (Uplink Shared CHannel) resources. Further, the uplink control information may include HARQ-ACK (Hybrid Automatic Repeat reQuest ACKnowledgement).
 PDSCHは、MAC層からの下りリンクデータ(DL-SCH:Downlink Shared CHannel)の送信に用いられてよい。またPDSCHは、下りリンクの場合にはシステム情報(SI:System Information)やランダムアクセス応答(RAR:Random Access Response)などの送信に用いられてよい。 The PDSCH may be used to transmit downlink data (DL-SCH: Downlink Shared CHannel) from the MAC layer. Further, in the case of the downlink, the PDSCH may be used to transmit system information (SI), random access response (RAR), and the like.
 PUSCHは、MAC層からの上りリンクデータ(UL-SCH:Uplink Shared CHannel)または上りリンクデータと共にHARQ-ACKおよび/またはCSIを送信するために用いられてもよい。またPUSCHは、CSIのみ、または、HARQ-ACKおよびCSIのみを送信するために用いられてもよい。すなわちPUSCHは、UCIのみを送信するために用いられてもよい。また、PDSCHまたはPUSCHは、RRCシグナリング(RRCメッセージとも称する)、およびMAC CEを送信するために用いられてもよい。ここで、PDSCHにおいて、基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通のシグナリングであってもよい。また、基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、端末装置固有(UEスペシフィック)の情報は、ある端末装置に対して専用のシグナリングを用いて送信されてもよい。また、PUSCHは、上りリンクにおいてUEの能力(UE Capability)の送信に用いられてもよい。 PUSCH may be used to transmit HARQ-ACK and/or CSI along with uplink data (UL-SCH: Uplink Shared CHannel) or uplink data from the MAC layer. Further, PUSCH may be used to transmit only CSI or only HARQ-ACK and CSI. That is, PUSCH may be used to transmit only UCI. Additionally, the PDSCH or PUSCH may be used to transmit RRC signaling (also referred to as RRC message) and MAC CE. Here, in the PDSCH, the RRC signaling transmitted from the base station device may be common signaling to multiple terminal devices within the cell. Further, the RRC signaling transmitted from the base station device may be dedicated signaling (also referred to as dedicated signaling) for a certain terminal device. That is, terminal device-specific (UE-specific) information may be transmitted to a certain terminal device using dedicated signaling. Further, PUSCH may be used to transmit UE Capability in the uplink.
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられてもよい。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、上りリンク送信に対する同期(タイミング調整)、およびUL-SCHリソースの要求を示すために用いられてもよい。 PRACH may be used to transmit a random access preamble. PRACH is used to indicate initial connection establishment procedures, handover procedures, connection re-establishment procedures, synchronization (timing adjustment) for uplink transmission, and requests for UL-SCH resources. You can.
 MACの機能の一例について説明する。MACは、MAC副層(サブレイヤ)と呼ばれてよい。MACは、多様な論理チャネル(ロジカルチャネル:Logical Channel)を、対応するトランスポートチャネルに対してマッピングを行う機能を持ってよい。論理チャネルは、論理チャネル識別子(Logical Channel Identity、又はLogical Channel ID)によって識別されてよい。MACは上位のRLCと、論理チャネル(ロジカルチャネル)で接続されてよい。論理チャネルは、伝送される情報の種類によって、制御情報を伝送する制御チャネルと、ユーザ情報を伝送するトラフィックチャネルに分けられてよい。また論理チャネルは、上りリンク論理チャネルと、下りリンク論理チャネルに分けられてよい。MACは、一つ又は複数の異なる論理チャネルに所属するMAC SDUを多重化(multiplexing)して、PHYに提供する機能を持ってよい。またMACは、PHYから提供されたMAC PDUを逆多重化(demultiplexing)し、各MAC SDUが所属する論理チャネルを介して上位レイヤに提供する機能を持ってよい。またMACは、HARQ(Hybrid Automatic Repeat reQuest)を通して誤り訂正を行う機能を持ってよい。またMACは、スケジューリング情報(scheduling information)をレポートする機能を持ってよい。MACは、動的スケジューリングを用いて、端末装置間の優先処理を行う機能を持ってよい。またMACは、一つの端末装置内の論理チャネル間の優先処理を行う機能を持ってよい。MACは、一つの端末装置内でオーバーラップしたリソースの優先処理を行う機能を持ってよい。E-UTRA MACはMultimedia Broadcast Multicast Services(MBMS)を識別する機能を持ってよい。またNR MACは、マルチキャスト/ブロードキャストサービス(Multicast Broadcast Service:MBS)を識別する機能を持ってよい。MACは、トランスポートフォーマットを選択する機能を持ってよい。MACは、間欠受信(DRX:Discontinuous Reception)及び/又は間欠送信(DTX:Discontinuous Transmission)を行う機能、ランダムアクセス(RandomAccess:RA)手順を実行する機能、送信可能電力の情報を通知する、パワーヘッドルームレポート(Power Headroom Report:PHR)機能、送信バッファのデータ量情報を通知する、バッファステイタスレポート(Buffer Status Report:BSR)機能、などを持ってよい。NR MACは帯域適応(Bandwidth Adaptation:BA)機能を持ってよい。またE-UTRA MACで用いられるMAC PDUフォーマットとNR MACで用いられるMAC PDUフォーマットは異なってよい。またMAC PDUには、MACにおいて制御を行うための要素である、MAC制御要素(MACコントロールエレメント:MAC CE)が含まれてよい。 An example of the MAC function will be explained. MAC may be called a MAC sublayer. The MAC may have a function of mapping various logical channels to corresponding transport channels. A logical channel may be identified by a logical channel identifier (Logical Channel Identity or Logical Channel ID). The MAC may be connected to the upper RLC through a logical channel. Logical channels may be divided into control channels for transmitting control information and traffic channels for transmitting user information, depending on the type of information to be transmitted. Further, logical channels may be divided into uplink logical channels and downlink logical channels. The MAC may have a function of multiplexing MAC SDUs belonging to one or more different logical channels and providing the same to the PHY. The MAC may also have a function of demultiplexing the MAC PDUs provided from the PHY and providing them to the upper layer via the logical channel to which each MAC SDU belongs. The MAC may also have a function of performing error correction through HARQ (Hybrid Automatic Repeat reQuest). The MAC may also have the ability to report scheduling information. The MAC may have a function of performing priority processing between terminal devices using dynamic scheduling. Further, the MAC may have a function of performing priority processing between logical channels within one terminal device. The MAC may have a function to prioritize resources that overlap within one terminal device. E-UTRA MAC may have the function of identifying Multimedia Broadcast Multicast Services (MBMS). The NR MAC may also have a function of identifying multicast/broadcast service (MBS). The MAC may have the ability to select the transport format. MAC is a power head that has the function of performing discontinuous reception (DRX) and/or discontinuous transmission (DTX), the function of executing random access (RA) procedure, and the function of notifying information on transmittable power. It may have a room report (Power Headroom Report: PHR) function, a buffer status report (Buffer Status Report: BSR) function that notifies information on the amount of data in the transmission buffer, etc. NR MAC may have a Bandwidth Adaptation (BA) function. Also, the MAC PDU format used in E-UTRA MAC and the MAC PDU format used in NR MAC may be different. The MAC PDU may also include a MAC control element (MAC control element: MAC CE), which is an element for controlling the MAC.
 E-UTRA及び/又はNRで用いられる、上りリンク(UL:Uplink)、及び/又は下りリンク(DL:Downlink)用論理チャネルについて説明する。 The logical channels for uplink (UL) and/or downlink (DL) used in E-UTRA and/or NR will be explained.
 BCCH(Broadcast Control Channel)は、システム情報(SI:System Information)等の、制御情報を報知(broadcast)するための下りリンク論理チャネルであってよい。 The BCCH (Broadcast Control Channel) may be a downlink logical channel for broadcasting control information such as system information (SI).
 PCCH(Paging Control Channel)は、ページング(Paging)メッセージを運ぶための下りリンク論理チャネルであってよい。 PCCH (Paging Control Channel) may be a downlink logical channel for carrying paging messages.
 CCCH(Common Control Channel)は、端末装置と基地局装置との間で制御情報を送信するための論理チャネルであってよい。CCCHは、端末装置が、RRC接続を有しない場合に用いられてよい。またCCCHは基地局装置と複数の端末装置との間で使われてよい。 CCCH (Common Control Channel) may be a logical channel for transmitting control information between a terminal device and a base station device. CCCH may be used when the terminal device does not have an RRC connection. Further, CCCH may be used between a base station device and multiple terminal devices.
 DCCH(Dedicated Control Channel)は、端末装置と基地局装置との間で、1対1(point-to-point)の双方向(bi-directional)で、専用制御情報を送信するための論理チャネルであってよい。専用制御情報とは、各端末装置専用の制御情報であってよい。DCCHは、端末装置が、RRC接続を有する場合に用いられてよい。 DCCH (Dedicated Control Channel) is a logical channel for transmitting dedicated control information in a point-to-point bidirectional manner between a terminal device and a base station device. It's good to be there. The dedicated control information may be control information dedicated to each terminal device. DCCH may be used when the terminal device has an RRC connection.
 DTCH(Dedicated Traffic Channel)は、端末装置と基地局装置との間で、1対1(point-to-point)で、ユーザデータを送信するための論理チャネルであってよい。DTCHは専用ユーザデータを送信するための論理チャネルであってよい。専用ユーザデータとは、各端末装置専用のユーザデータであってよい。DTCHは上りリンク、下りリンク両方に存在してよい。 DTCH (Dedicated Traffic Channel) may be a logical channel for transmitting user data on a one-to-one (point-to-point) basis between a terminal device and a base station device. DTCH may be a logical channel for transmitting dedicated user data. The dedicated user data may be user data dedicated to each terminal device. DTCH may exist on both uplink and downlink.
 E-UTRA及び/又はNRにおける上りリンクの、論理チャネルとトランスポートチャネルのマッピングについて説明する。 The mapping of uplink logical channels and transport channels in E-UTRA and/or NR will be explained.
 CCCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされてよい。 CCCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
 DCCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされてよい。 The DCCH may be mapped to a UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
 DTCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされてよい。 DTCH may be mapped to UL-SCH (Uplink Shared Channel), which is an uplink transport channel.
 E-UTRA及び/又はNRにおける下りリンクの、論理チャネルとトランスポートチャネルのマッピングについて説明する。 The mapping of downlink logical channels and transport channels in E-UTRA and/or NR will be explained.
 BCCHは、下りリンクトランスポートチャネルであるBCH(Broadcast Channel)、及び/又はDL-SCH(Downlink Shared Channel)にマップされてよい。 The BCCH may be mapped to a BCH (Broadcast Channel), which is a downlink transport channel, and/or a DL-SCH (Downlink Shared Channel).
 PCCHは、下りリンクトランスポートチャネルであるPCH(Paging Channel)にマップされてよい。 The PCCH may be mapped to a PCH (Paging Channel), which is a downlink transport channel.
 CCCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされてよい。 CCCH may be mapped to DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 DCCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされてよい。 The DCCH may be mapped to a DL-SCH (Downlink Shared Channel), which is a downlink transport channel.
 DTCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされてよい。 DTCH may be mapped to the downlink transport channel, DL-SCH (Downlink Shared Channel).
 RLCの機能の一例について説明する。RLCは、RLC副層(サブレイヤ)と呼ばれてよい。E-UTRA RLCは、上位レイヤのPDCPから提供されたデータを、分割(Segmentation)及び/又は結合(Concatenation)し、下位層(下位レイヤ)に提供する機能を持ってよい。E-UTRA RLCは、下位レイヤから提供されたデータに対し、再組立て(reassembly)及びリオーダリング(re-ordering)を行い、上位レイヤに提供する機能を持ってよい。NR RLCは、上位レイヤのPDCPから提供されたデータに、PDCPで付加されたシーケンス番号とは独立したシーケンス番号を付加する機能を持ってよい。またNR RLCは、PDCPから提供されたデータを分割(Segmentation)し、下位レイヤに提供する機能を持ってよい。またNR RLCは、下位レイヤから提供されたデータに対し、再組立て(reassembly)を行い、上位レイヤに提供する機能を持ってよい。またRLCは、データの再送機能及び/又は再送要求機能(Automatic Repeat reQuest:ARQ)を持ってよい。またRLCは、ARQによりエラー訂正を行う機能を持ってよい。ARQを行うために、RLCの受信側から送信側に送られる、再送が必要なデータを示す制御情報を、ステータスレポートと言ってよい。またRLCの送信側から受信側に送られる、ステータスレポート送信指示の事をポール(poll)と言ってよい。またRLCは、データ重複の検出を行う機能を持ってよい。またRLCはデータ破棄の機能を持ってよい。RLCには、トランスパレントモード(TM:Transparent Mode)、非応答モード(UM:Unacknowledged Mode)、応答モード(AM:Acknowledged Mode)の3つのモードがあってよい。TMでは上位層から受信したデータの分割は行わず、RLCヘッダの付加は行わなくてよい。TM RLCエンティティは単方向(uni-directional)のエンティティであって、送信(transmitting)TM RLCエンティティとして、又は受信(receiving)TM RLCエンティティとして設定されてよい。UMでは上位層から受信したデータの分割及び/又は結合、RLCヘッダの付加等は行うが、データの再送制御は行わなくてよい。UM RLCエンティティは単方向のエンティティであってもよいし双方向(bi-directional)のエンティティであってもよい。UM RLCエンティティが単方向のエンティティである場合、UM RLCエンティティは送信UM RLCエンティティとして、又は受信UMRLCエンティティとして設定されてよい。UM RLCエンティティが双方向のエンティティである場合、UM RRCエンティティは送信(transmitting)サイド及び受信(receiving)サイドから構成されるUM RLCエンティティとして設定されてよい。AMでは上位層から受信したデータの分割及び/又は結合、RLCヘッダの付加、データの再送制御等を行ってよい。AM RLCエンティティは双方向のエンティティであって、送信(transmitting)サイド及び受信(receiving)サイドから構成されるAM RLCとして設定されてよい。なお、TMで下位層に提供するデータ、及び/又は下位層から提供されるデータの事をTMD PDUと呼んでよい。またUMで下位層に提供するデータ、及び/又は下位層から提供されるデータの事をUMD PDUと呼んでよい。またAMで下位層に提供するデータ、又は下位層から提供されるデータの事をAMD PDUと呼んでよい。E-UTRA RLCで用いられるRLC PDUフォーマットとNR RLCで用いられるRLC PDUフォーマットは異なってよい。またRLC PDUには、データ用RLC PDUと制御用RLC PDUがあってよい。データ用RLC PDUを、RLC DATA PDU(RLC Data PDU、RLCデータPDU)と呼んでよい。また制御用RLC PDUを、RLC CONTROL PDU(RLC Control PDU、RLCコントロールPDU、RLC制御PDU)と呼んでよい。 An example of the RLC function will be explained. RLC may be referred to as an RLC sublayer. The E-UTRA RLC may have a function of segmenting and/or concatenating data provided from the upper layer PDCP and providing it to the lower layer. The E-UTRA RLC may have a function of reassembling and re-ordering data provided from lower layers and providing the data to upper layers. NR RLC may have a function of adding a sequence number independent of the sequence number added by PDCP to data provided from the upper layer PDCP. Furthermore, NR RLC may have a function of segmenting data provided from PDCP and providing it to lower layers. Further, the NR RLC may have a function of reassembling data provided from lower layers and providing the data to upper layers. RLC may also have a data retransmission function and/or a retransmission request function (Automatic Repeat reQuest: ARQ). Additionally, RLC may have a function of performing error correction using ARQ. Control information indicating data that needs to be retransmitted, which is sent from the RLC receiving side to the transmitting side in order to perform ARQ, can be called a status report. Also, the status report transmission instruction sent from the RLC transmitting side to the receiving side can be referred to as a poll. The RLC may also have a function to detect data duplication. RLC may also have a data discard function. RLC may have three modes: transparent mode (TM), unacknowledged mode (UM), and acknowledged mode (AM). The TM does not divide data received from the upper layer and does not need to add an RLC header. A TM RLC entity is a uni-directional entity and may be configured as a transmitting TM RLC entity or as a receiving TM RLC entity. In UM, data received from the upper layer is divided and/or combined, RLC headers are added, etc., but there is no need to control data retransmission. A UM RLC entity may be a unidirectional entity or a bi-directional entity. If the UM RLC entity is a unidirectional entity, the UM RLC entity may be configured as a transmitting UM RLC entity or as a receiving UMRLC entity. If the UM RLC entity is a bidirectional entity, the UM RRC entity may be configured as a UM RLC entity consisting of a transmitting side and a receiving side. In AM, division and/or combination of data received from the upper layer, addition of an RLC header, data retransmission control, etc. may be performed. The AM RLC entity is a bidirectional entity and may be configured as an AM RLC consisting of a transmitting side and a receiving side. Note that data provided to a lower layer by a TM and/or data provided from a lower layer may be referred to as a TMD PDU. Furthermore, data provided to lower layers in UM and/or data provided from lower layers may be referred to as UMD PDU. Additionally, data provided to lower layers in AM or data provided from lower layers may be referred to as AMD PDU. The RLC PDU format used in E-UTRA RLC and the RLC PDU format used in NR RLC may be different. Further, the RLC PDU may include a data RLC PDU and a control RLC PDU. The RLC PDU for data may be called RLC DATA PDU (RLC Data PDU, RLC data PDU). Further, the control RLC PDU may be referred to as RLC CONTROL PDU (RLC Control PDU, RLC control PDU, RLC control PDU).
 PDCPの機能の一例について説明する。PDCPは、PDCP副層(サブレイヤ)と呼ばれてよい。PDCPは、シーケンス番号のメンテナンスを行う機能を持ってよい。またPDCPは、IPパケット(IP Packet)や、イーサネットフレーム等のユーザデータを無線区間で効率的に伝送するための、ヘッダ圧縮・解凍機能を持ってもよい。IPパケットのヘッダ圧縮・解凍に用いられるプロトコルをROHC(Robust Header Compression)プロトコルと呼んでよい。またイーサネットフレームヘッダ圧縮・解凍に用いられるプロトコルをEHC(Ethernet(登録商標)Header Compression)プロトコルと呼んでよい。また、PDCPは、データの暗号化・復号化の機能を持ってもよい。また、PDCPは、データの完全性保護・完全性検証の機能を持ってもよい。またPDCPは、リオーダリング(re-ordering)の機能を持ってよい。またPDCPは、PDCP SDUの再送機能を持ってよい。またPDCPは、破棄タイマー(discard timer)を用いたデータ破棄を行う機能を持ってよい。またPDCPは、多重化(Duplication)機能を持ってよい。またPDCPは、重複受信したデータを破棄する機能を持ってよい。PDCPエンティティは双方向のエンティティであって、送信(transmitting)PDCPエンティティ、及び受信(receiving)PDCPエンティティから構成されてよい。またE-UTRA PDCPで用いられるPDCP PDUフォーマットとNR PDCPで用いられるPDCP PDUフォーマットは異なってよい。またPDCP PDUには、データ用PDCP PDUと制御用PDCP PDUがあってよい。データ用PDCP PDUを、PDCP DATA PDU(PDCP Data PDU、PDCPデータPDU)と呼んでよい。また制御用PDCP PDUを、PDCP CONTROL PDU(PDCP Control PDU、PDCPコントロールPDU、PDCP制御PDU)と呼んでよい。 An example of the PDCP function will be explained. PDCP may be called a PDCP sublayer. PDCP may have a function to perform sequence number maintenance. Furthermore, PDCP may have a header compression/decompression function for efficiently transmitting user data such as IP packets and Ethernet frames over a wireless section. The protocol used to compress and decompress the header of IP packets can be called the ROHC (Robust Header Compression) protocol. Furthermore, the protocol used for compressing and decompressing Ethernet frame headers may be referred to as the EHC (Ethernet (registered trademark) Header Compression) protocol. Furthermore, PDCP may have data encryption/decryption functions. Furthermore, PDCP may have data integrity protection/integrity verification functions. PDCP may also have a re-ordering function. PDCP may also have a PDCP SDU retransmission function. Furthermore, PDCP may have a function of discarding data using a discard timer. Furthermore, PDCP may have a multiplexing (Duplication) function. Furthermore, PDCP may have a function of discarding data that has been received repeatedly. The PDCP entity is a bidirectional entity and may include a transmitting PDCP entity and a receiving PDCP entity. Also, the PDCP PDU format used in E-UTRA PDCP and the PDCP PDU format used in NR PDCP may be different. Further, the PDCP PDU may include a data PDCP PDU and a control PDCP PDU. The data PDCP PDU may be called a PDCP DATA PDU (PDCP Data PDU). Further, the control PDCP PDU may be called a PDCP CONTROL PDU (PDCP Control PDU, PDCP control PDU, PDCP control PDU).
 SDAPの機能の一例について説明する。SDAPは、サービスデータ適応プロトコル層(サービスデータ適応プロトコルレイヤ)である。SDAPは、5GC110から基地局装置を介して端末装置に送られるダウンリンクのQoSフローとデータ無線ベアラ(DRB)との対応付け(マッピング:mapping)、及び/又は端末装置から基地局装置を介して5GC110に送られるアップリンクのQoSフローと、DRBとのマッピングを行う機能を持ってよい。またSDAPはマッピングルール情報を格納する機能を持ってよい。またSDAPはQoSフロー識別子(QoS Flow ID:QFI)のマーキングを行う機能を持ってよい。なお、SDAP PDUには、データ用SDAP PDUと制御用SDAP PDUがあってよい。データ用SDAP PDUをSDAP DATA PDU(SDAP Data PDU、SDAPデータPDU)と呼んでよい。また制御用SDAP PDUをSDAP CONTROL PDU(SDAP Control PDU、SDAPコントロールPDU、SDAP制御PDU)と呼んでよい。なお端末装置のSDAPエンティティは、PDUセッションに対して一つ存在してよい。 An example of SDAP functionality will be explained. SDAP is a service data adaptation protocol layer. SDAP maps the downlink QoS flow sent from 5GC110 to the terminal device via the base station device and the data radio bearer (DRB), and/or the mapping from the terminal device to the terminal device via the base station device. It may have a function to map uplink QoS flows sent to 5GC110 and DRB. SDAP may also have a function of storing mapping rule information. SDAP may also have a function of marking a QoS flow identifier (QoS Flow ID: QFI). Note that the SDAP PDU may include a data SDAP PDU and a control SDAP PDU. SDAP PDU for data may be called SDAP DATA PDU (SDAP Data PDU, SDAP data PDU). Furthermore, the control SDAP PDU may be called an SDAP CONTROL PDU (SDAP Control PDU, SDAP control PDU, SDAP control PDU). Note that one SDAP entity of the terminal device may exist for a PDU session.
 RRCの機能の一例について説明する。RRCは、報知(ブロードキャスト:broadcast)機能を持ってよい。RRCは、EPC104及び/又は5GC110からの呼び出し(ページング:Paging)機能を持ってよい。RRCは、gNB108又は5GC110に接続するeNB102からの呼び出し(ページング:Paging)機能を持ってよい。またRRCは、RRC接続管理機能を持ってよい。またRRCは、無線ベアラ制御機能を持ってよい。またRRCは、セルグループ制御機能を持ってよい。またRRCは、モビリティ(mobility)制御機能を持ってよい。またRRCは端末装置測定レポーティング及び端末装置測定レポーティング制御機能を持ってよい。またRRCは、QoS管理機能を持ってよい。またRRCは、無線リンク失敗の検出及び復旧の機能を持ってよい。RRCは、RRCメッセージを用いて、報知、ページング、RRC接続管理、無線ベアラ制御、セルグループ制御、モビリティ制御、端末装置測定レポーティング及び端末装置測定レポーティング制御、QoS管理、無線リンク失敗の検出及び復旧等を行ってよい。なお、E-UTRA RRCで用いられるRRCメッセージやパラメータは、NR RRCで用いられるRRCメッセージやパラメータと異なってよい。 An example of the RRC function will be explained. RRC may have a broadcast function. The RRC may have a paging function from the EPC 104 and/or 5GC 110. The RRC may have a paging function from the eNB 102 that connects to the gNB 108 or 5GC 110. RRC may also have RRC connection management functionality. RRC may also have radio bearer control functionality. The RRC may also have a cell group control function. The RRC may also have mobility control functionality. The RRC may also have terminal device measurement reporting and terminal device measurement reporting control functions. RRC may also have QoS management functionality. RRC may also have radio link failure detection and recovery functionality. RRC uses RRC messages to perform broadcasting, paging, RRC connection management, radio bearer control, cell group control, mobility control, terminal device measurement reporting and terminal device measurement reporting control, QoS management, radio link failure detection and recovery, etc. You may do so. Note that the RRC messages and parameters used in E-UTRA RRC may be different from the RRC messages and parameters used in NR RRC.
 RRCメッセージは、論理チャネルのBCCHを用いて送られてよいし、論理チャネルのPCCHを用いて送られてよいし、論理チャネルのCCCHを用いて送られてよいし、論理チャネルのDCCHを用いて送られてよい。また、DCCHを用いて送られるRRCメッセージの事を、専用RRCシグナリング(Dedicated RRC signaling)、又はRRCシグナリングと言い換えてよい。 The RRC message may be sent using the BCCH of a logical channel, the PCCH of a logical channel, the CCCH of a logical channel, or the DCCH of a logical channel. May be sent. Furthermore, the RRC message sent using the DCCH may be referred to as dedicated RRC signaling or RRC signaling.
 BCCHを用いて送られるRRCメッセージには、例えばマスター情報ブロック(Master Information Block:MIB)が含まれてよいし、各タイプのシステム情報ブロック(System Information Block:SIB)が含まれてよいし、他のRRCメッセージが含まれてよい。PCCHを用いて送られるRRCメッセージには、例えばページングメッセージが含まれてよいし、他のRRCメッセージが含まれてよい。 The RRC message sent using the BCCH may include, for example, a master information block (MIB), each type of system information block (SIB), and other RRC messages may be included. RRC messages sent using the PCCH may include, for example, paging messages or other RRC messages.
 CCCHを用いてアップリンク(UL)方向に送られるRRCメッセージには、例えばRRCセットアップ要求メッセージ(RRC Setup Request)、RRC再開要求メッセージ(RRC Resume Request)、RRC再確立要求メッセージ(RRC Reestablishment Request)、RRCシステム情報要求メッセージ(RRC System Info Request)などが含まれてよい。また例えばRRCコネクション要求メッセージ(RRC Connection Request)、RRCコネクション再開要求メッセージ(RRC Connection Resume Request)、RRCコネクション再確立要求メッセージ(RRC Connection Reestablishment Request)などが含まれてよい。また他のRRCメッセージが含まれてよい。 RRC messages sent in the uplink (UL) direction using CCCH include, for example, RRC Setup Request message, RRC Resume Request message, RRC Reestablishment Request message, It may include an RRC system information request message (RRC System Info Request), etc. Further, for example, an RRC Connection Request message, an RRC Connection Resume Request message, an RRC Connection Reestablishment Request message, and the like may be included. Other RRC messages may also be included.
 CCCHを用いてダウンリンク(DL)方向に送られるRRCメッセージには、例えばRRCコネクション拒絶メッセージ(RRC Connection Reject)、RRCコネクションセットアップメッセージ(RRC Connection Setup)、RRCコネクション再確立メッセージ(RRC Connection Reestablishment)、RRCコネクション再確立拒絶メッセージ(RRC Connection Reestablishment Reject)などが含まれてよい。また例えばRRC拒絶メッセージ(RRC Reject)、RRCセットアップメッセージ(RRC Setup)などが含まれてよい。また他のRRCメッセージが含まれてよい。 RRC messages sent in the downlink (DL) direction using CCCH include, for example, RRC Connection Reject message, RRC Connection Setup message, RRC Connection Reestablishment message, It may include an RRC Connection Reestablishment Reject message, etc. Further, for example, an RRC rejection message (RRC Reject), an RRC Setup message (RRC Setup), etc. may be included. Other RRC messages may also be included.
 DCCHを用いてアップリンク(UL)方向に送られるRRCシグナリングには、例えば測定報告メッセージ(Measurement Report)、RRCコネクション再設定完了メッセージ(RRC Connection Reconfiguration Complete)、RRCコネクションセットアップ完了メッセージ(RRC Connection Setup Complete)、RRCコネクション再確立完了メッセージ(RRC Connection Reestablishment Complete)、セキュリティモード完了メッセージ(Security Mode Complete)、UE能力情報メッセージ(UE Capability Information)などが含まれてよい。また例えば測定報告メッセージ(Measurement Report)、RRC再設定完了メッセージ(RRC Reconfiguration Complete)、RRCセットアップ完了メッセージ(RRC Setup Complete)、RRC再確立完了メッセージ(RRC Reestablishment Complete)、RRC再開完了メッセージ(RRC Resume Complete)、セキュリティモード完了メッセージ(Security Mode Complete)、UE能力情報メッセージ(UE Capability Information)などが含まれてよい。また他のRRCシグナリングが含まれてよい。 RRC signaling sent in the uplink (UL) direction using DCCH includes, for example, measurement report messages, RRC Connection Reconfiguration Complete messages, and RRC Connection Setup Complete messages. ), an RRC Connection Reestablishment Complete message, a Security Mode Complete message, a UE Capability Information message, and the like. Also, for example, measurement report message (Measurement Report), RRC Reconfiguration Complete message, RRC Setup Complete message, RRC Reestablishment Complete message, RRC Resume Complete message. ), a security mode complete message (Security Mode Complete), a UE capability information message (UE Capability Information), etc. may be included. Other RRC signaling may also be included.
 DCCHを用いてダウンリンク(DL)方向に送られるRRCシグナリングには、例えばRRCコネクション再設定メッセージ(RRC Connection Reconfiguration)、RRCコネクション解放メッセージ(RRC Connection Release)、セキュリティモードコマンドメッセージ(Security Mode Command)、UE能力照会メッセージ(UE Capability Enquiry)などが含まれてよい。また例えばRRC再設定メッセージ(RRC Reconfiguration)、RRC再開メッセージ(RRC Resume)、RRC解放メッセージ(RRC Release)、RRC再確立メッセージ(RRC Reestablishment)、セキュリティモードコマンドメッセージ(Security Mode Command)、UE能力照会メッセージ(UE Capability Enquiry)などが含まれてよい。また他のRRCシグナリングが含まれてよい。 RRC signaling sent in the downlink (DL) direction using DCCH includes, for example, RRC Connection Reconfiguration message, RRC Connection Release message, Security Mode Command message, It may include a UE Capability Inquiry message, etc. Also, for example, RRC Reconfiguration message, RRC Resume message, RRC Release message, RRC Reestablishment message, Security Mode Command message, UE capability inquiry message. (UE Capability Inquiry) etc. may be included. Other RRC signaling may also be included.
 NASの機能の一例について説明する。NASは、認証機能を持ってよい。またNASは、モビリティ(mobility)管理を行う機能を持ってよい。またNASは、セキュリティ制御の機能を持ってよい。 An example of a NAS function will be explained. The NAS may have an authentication function. The NAS may also have the ability to perform mobility management. The NAS may also have security control functions.
 前述のPHY、MAC、RLC、PDCP、SDAP、RRC、NASの機能は一例であり、各機能の一部あるいは全てが実装されなくてもよい。また、各層(各レイヤ)の機能の一部あるいは全部が他の層(レイヤ)に含まれてもよい。 The functions of PHY, MAC, RLC, PDCP, SDAP, RRC, and NAS described above are just examples, and some or all of the functions do not have to be implemented. Furthermore, part or all of the functions of each layer may be included in another layer.
 次にLTE及びNRにおけるUE122の状態遷移について説明する。EPC、又は5GCに接続するUE122は、RRC接続が確立されている(RRC connection has been established)とき、UE122はRRC_CONNECTED状態であってよい。RRC接続が確立されている状態とは、UE122が、後述のUEコンテキストの一部又は全てを保持している状態を含んでよい。またRRC接続が確立されている状態とは、UE122がユニキャストデータを送信、及び/又は受信できる状態を含んでよい。またUE122は、RRC接続が休止(サスペンド:suspend)しているとき、UE122はRRC_INACTIVE状態であってよい。また、UE122がRRC_INACTIVE状態になるのは、UE122が5GCに接続している場合で、RRC接続が休止しているときであってよい。UE122が、RRC_CONNECTED状態でも、RRC_INACTIVE状態でも無いとき、UE122はRRC_IDLE状態であってよい。 Next, the state transition of the UE 122 in LTE and NR will be explained. The UE 122 connecting to the EPC or 5GC may be in the RRC_CONNECTED state when the RRC connection has been established. The state in which the RRC connection is established may include a state in which the UE 122 holds some or all of the UE context described below. Furthermore, the state in which the RRC connection is established may include a state in which the UE 122 can transmit and/or receive unicast data. Furthermore, when the RRC connection is suspended, the UE 122 may be in the RRC_INACTIVE state. Further, the UE 122 may enter the RRC_INACTIVE state when the UE 122 is connected to the 5GC and the RRC connection is suspended. When the UE 122 is neither in the RRC_CONNECTED state nor in the RRC_INACTIVE state, the UE 122 may be in the RRC_IDLE state.
 なお、UE122がEPCに接続している場合、RRC_INACTIVE状態を持たないが、E-UTRANによってRRCコネクションの休止が開始されてもよい。UE122がEPCに接続している場合、RRCコネクションが休止されるとき、UE122はUEのASコンテキストと復帰(リジューム:resume)に用いる識別子(resumeIdentity)を保持してRRC_IDLE状態に遷移してよい。UE122のRRCレイヤの上位レイヤ(例えばNASレイヤ)は、UE122がUEのASコンテキストを保持しており、かつE-UTRANによってRRCコネクションの復帰が許可(Permit)されており、かつUE122がRRC_IDLE状態からRRC_CONNECTED状態に遷移する必要があるとき、休止されたRRCコネクションの復帰を開始してもよい。 Note that when the UE 122 is connected to the EPC, it does not have the RRC_INACTIVE state, but the E-UTRAN may start suspending the RRC connection. When the UE 122 is connected to the EPC and the RRC connection is suspended, the UE 122 may transition to the RRC_IDLE state while retaining the UE's AS context and an identifier (resumeIdentity) used for resuming. The layer above the RRC layer of the UE 122 (for example, the NAS layer) is configured such that the UE 122 maintains the UE's AS context, the E-UTRAN permits the return of the RRC connection, and the UE 122 leaves the RRC_IDLE state. When it is necessary to transition to the RRC_CONNECTED state, recovery of the suspended RRC connection may be initiated.
 EPC104に接続するUE122と、5GC110に接続するUE122とで、休止の定義が異なってよい。また、UE122がEPCに接続している場合(UE122がRRC_IDLE状態で休止している場合)と、UE122が5GCに接続している場合(UE122がRRC_INACTIVE状態で休止している場合)とで、UE122が休止から復帰する手順のすべてあるいは一部が異なってよい。 The definition of pause may be different between the UE 122 connecting to the EPC 104 and the UE 122 connecting to the 5GC 110. Also, when the UE122 is connected to the EPC (when the UE122 is inactive in the RRC_IDLE state) and when the UE122 is connected to the 5GC (when the UE122 is inactive in the RRC_INACTIVE state), the UE122 All or part of the procedure for returning from hibernation may be different.
 なお、RRC_CONNECTED状態、RRC_INACTIVE状態、RRC_IDLE状態の事をそれぞれ、接続状態(connected mode)、不活性状態(inactive mode)、アイドル状態(idle mode)と呼んでよいし、RRC接続状態(RRC connected mode)、RRC不活性状態(RRC inactive mode)、RRCアイドル状態(RRC idle mode)と呼んでよい。 Note that the RRC_CONNECTED state, RRC_INACTIVE state, and RRC_IDLE state may be respectively called connected state (connected mode), inactive state (inactive mode), and idle state (idle mode), and RRC connected state (RRC connected mode). , RRC inactive mode, and RRC idle mode.
 UE122が保持するUEのASコンテキストは、現在のRRC設定、現在のセキュリティコンテキスト、ROHC(RObust Header Compression)状態を含むPDCP状態、接続元(Source)のPCellで使われていたC-RNTI(Cell Radio Network Temporary Identifier)、セル識別子(cellIdentity)、接続元のPCellの物理セル識別子、のすべてあるいは一部を含む情報であってよい。なお、eNB102およびgNB108の内のいずれかまたは全ての保持するUEのASコンテキストは、UE122が保持するUEのASコンテキストと同じ情報を含んでもよいし、UE122が保持するUEのASコンテキストに含まれる情報とは異なる情報が含まれてもよい。 The AS context of the UE held by the UE122 includes the current RRC settings, the current security context, the PDCP state including the ROHC (RObust Header Compression) state, and the C-RNTI (Cell Radio) used in the PCell of the connection source (Source). The information may include all or part of the Network Temporary Identifier, cell identifier (cellIdentity), and physical cell identifier of the connection source PCell. Note that the UE AS context held by any or all of eNB 102 and gNB 108 may include the same information as the UE AS context held by UE 122, or the information contained in the UE AS context held by UE 122. may contain information different from that.
 セキュリティコンテキストとは、ASレベルにおける暗号鍵、NH(Next Hop parameter)、次ホップのアクセス鍵導出に用いられるNCC(Next Hop Chaining Counter parameter)、選択されたASレベルの暗号化アルゴリズムの識別子、リプレイ保護のために用いられるカウンター、のすべてあるいは一部を含む情報であってよい。 The security context includes the encryption key at the AS level, the NH (Next Hop parameter), the NCC (Next Hop Chaining Counter parameter) used to derive the next hop access key, the identifier of the selected AS-level encryption algorithm, and replay protection. The information may include all or part of the counter used for
 次にサービングセル(Serving Cell)について説明する。後述するCAおよび/またはDCが設定されていないRRC接続状態の端末装置において、サービングセルは、1つのプライマリセル(Primary Cell:PCell)から構成されてよい。また、後述するCAおよび/またはDCが設定されているRRC接続状態の端末装置において、複数のサービングセルは、1つ又は複数のスペシャルセル(Special Cell:SpCell)と、1つ又は複数のすべてのセカンダリセル(Secondary Cell:SCell)から構成される複数のセルの集合(set of cell(s))を意味してよい。SpCellはPUCCH送信およびコンテンション基準ランダムアクセス(contention-based Random Access:CBRA)をサポートしてよいし、またSpCellは常に活性化されてよい。PCellはRRCアイドル状態の端末装置がRRC接続状態に遷移する際の、RRC接続確立手順に用いられるセルであってよい。またPCellは、端末装置がRRC接続の再確立を行う、RRC接続再確立手順に用いられるセルであってよい。またPCellは、ハンドオーバの際のランダムアクセス手順に用いられるセルであってよい。PSCellは、後述するセカンダリノード追加の際に、ランダムアクセス手順に用いられるセルであってよい。またSpCellは、上述の用途以外の用途に用いられるセルであってよい。 Next, the serving cell will be explained. In a terminal device in an RRC connected state in which CA and/or DC, which will be described later, are not configured, the serving cell may be configured from one primary cell (PCell). In addition, in a terminal device in an RRC connected state in which CA and/or DC, which will be described later, are configured, multiple serving cells include one or more special cells (Special Cell: SpCell) and one or more all secondary cells. It may mean a set of cells (set of cells) consisting of cells (Secondary Cell: SCell). The SpCell may support PUCCH transmission and contention-based Random Access (CBRA), and the SpCell may be activated at all times. The PCell may be a cell used in an RRC connection establishment procedure when a terminal device in an RRC idle state transitions to an RRC connected state. Further, the PCell may be a cell used in an RRC connection re-establishment procedure in which a terminal device re-establishes an RRC connection. Further, the PCell may be a cell used in a random access procedure during handover. The PSCell may be a cell used in a random access procedure when adding a secondary node, which will be described later. Further, SpCell may be a cell used for purposes other than those described above.
 端末装置に対して設定されたサービングセルのグループが、SpCell及び1つ以上のSCellから構成されることは、端末装置に対してキャリアアグリゲーション(carrier aggregation:CA)が設定されているとみなされてよい。また、CAが設定されている端末装置に対して、SpCellに対して追加の無線リソースを提供しているセルはSCellを意味してよい。 If the serving cell group configured for the terminal device is composed of an SpCell and one or more SCells, it may be considered that carrier aggregation (CA) is configured for the terminal device. . Furthermore, a cell that provides additional radio resources to SpCell for a terminal device in which CA is configured may mean SCell.
 RRCによって設定されているサービングセルのグループで、その中の上りリンクが設定されているセルに対し同じタイミング参照セル(timing reference cell)および同じタイミングアドバンスの値を使用しているサービングセルのグループの事をタイミングアドバンスグループ(Timing Advance Group:TAG)と呼んでよい。またMACエンティティのSpCellを含むTAGはプライマリタイミングアドバンスグループ(Primary Timing Advance Group:PTAG)を意味してよい。また上記PTAG以外のTAGはセカンダリタイミングアドバンスグループ(Secondary Timing Advance Group:STAG)を意味してよい。なお1つ又は複数の前記TAGは、後述するセルグループ毎に構成されてよい。 A group of serving cells configured by RRC that uses the same timing reference cell and the same timing advance value for the cells in which the uplink is configured. It can be called a timing advance group (TAG). Further, the TAG including SpCell of the MAC entity may mean a primary timing advance group (PTAG). Further, TAGs other than the above-mentioned PTAG may mean secondary timing advance group (STAG). Note that one or more TAGs may be configured for each cell group, which will be described later.
 端末装置に対し基地局装置から設定される、セルグループ(Cell Group)について説明する。セルグループは、1つのSpCellで構成されてよい。またセルグループは、1つのSpCellと、1つ又は複数のSCellから構成されてよい。即ちセルグループは、1つのSpCellと、必要に応じて(optionally)1つ又は複数のSCellから構成されてよい。またセルグループは、セルの集合(set of cell(s))と表現されてよい。 A cell group that is set from a base station device to a terminal device will be explained. A cell group may be composed of one SpCell. Further, a cell group may be composed of one SpCell and one or more SCells. That is, a cell group may be composed of one SpCell and optionally one or more SCells. Further, a cell group may be expressed as a set of cells.
 Dual Connectivity(DC)とは、第1の基地局装置(第1のノード)と第2の基地局装置(第2のノード)がそれぞれ構成するセルグループの無線リソースを利用してデータ通信を行う技術であってよい。DCや、後述するMR-DCが行われる場合、端末装置に対し基地局装置からセルグループの追加が行われてよい。DCを行うために、第1の基地局装置が第2の基地局装置を追加してよい。第1の基地局装置の事をマスターノード(Master Node:MN)と呼んでよい。またマスターノードが構成するセルグループをマスターセルグループ(Master Cell Group:MCG)と呼んでよい。第2の基地局装置の事をセカンダリノード(Secondary Node:SN)と呼んでよい。またセカンダリノードが構成するセルグループをセカンダリセルグループ(Secondary Cell Group:SCG)と呼んでよい。なお、マスターノードとセカンダリノードは同じ基地局装置内に構成されていてよい。 Dual Connectivity (DC) means that a first base station device (first node) and a second base station device (second node) perform data communication by using the radio resources of the cell groups they respectively configure. It can be technology. When DC or MR-DC, which will be described later, is performed, a cell group may be added to the terminal device from the base station device. In order to perform DC, the first base station device may add a second base station device. The first base station device may be called a master node (Master Node: MN). Further, a cell group constituted by a master node may be referred to as a master cell group (MCG). The second base station device may be referred to as a secondary node (SN). Further, a cell group configured by a secondary node may be referred to as a secondary cell group (SCG). Note that the master node and the secondary node may be configured within the same base station device.
 また、DCが設定されていない場合において、端末装置に設定されるセルグループの事をMCGと呼んでよい。また、DCが設定されていない場合において、端末装置に設定されるSpCellはPCellであってよい。また、DCが設定されていないNRを、NRスタンドアロンと呼んでよい。 Furthermore, when a DC is not configured, a cell group configured in a terminal device may be referred to as an MCG. Furthermore, when a DC is not set, the SpCell set in the terminal device may be a PCell. Furthermore, an NR without a DC configured may be called an NR standalone.
 なお、Multi-Radio Dual Connectivity(MR-DC)とは、MCGにE-UTRA、SCGにNRを用いたDCを行う技術であってよい。またMR-DCとは、MCGにNR、SCGにE-UTRAを用いたDCを行う技術であってよい。またMR-DCとは、MCG及びSCGの両方に、NRを用いたDCを行う技術であってよい。MR-DCはDCに含まれる技術であってよい。MCGにE-UTRA、SCGにNRを用いるMR-DCの例として、コア網にEPCを用いるEN-DC(E-UTRA-NR Dual Connectivity)があってよいし、コア網に5GCを用いるNGEN-DC(NG-RAN E-UTRA-NR Dual Connectivity)があってよい。またMCGにNR、SCGにE-UTRAを用いるMR-DCの例として、コア網に5GCを用いるNE-DC(NR-E-UTRA Dual Connectivity)があってよい。またMCG及びSCGの両方にNRを用いるMR-DCの例として、コア網に5GCを用いるNR-DC(NR-NR Dual Connectivity)があってよい。 Note that Multi-Radio Dual Connectivity (MR-DC) may be a technology that performs DC using E-UTRA for MCG and NR for SCG. Further, MR-DC may be a technique for performing DC using NR for MCG and E-UTRA for SCG. Further, MR-DC may be a technology that performs DC using NR on both MCG and SCG. MR-DC may be a technology included in DC. As an example of MR-DC that uses E-UTRA for MCG and NR for SCG, there may be EN-DC (E-UTRA-NR Dual Connectivity) that uses EPC for the core network, and NGEN-DC that uses 5GC for the core network. DC (NG-RAN E-UTRA-NR Dual Connectivity) is fine. Also, as an example of an MR-DC that uses NR for MCG and E-UTRA for SCG, there may be NE-DC (NR-E-UTRA Dual Connectivity) that uses 5GC for the core network. Further, as an example of MR-DC that uses NR for both MCG and SCG, there may be NR-DC (NR-NR Dual Connectivity) that uses 5GC for the core network.
 なお端末装置において、MACエンティティは各セルグループに対して1つ存在してよい。例えば端末装置にDC又はMR-DCが設定される場合において、MCGに対する1つのMACエンティティ、及びSCGに対する1つのMACエンティティが存在してよい。端末装置におけるMCGに対するMACエンティティは、全ての状態(RRCアイドル状態、RRC接続状態、及びRRC不活性状態など)の端末装置において、常に確立されていてよい。また端末装置におけるSCGに対するMACエンティティは、端末装置にSCGが設定される際、端末装置によってクリエイト(create)されてよい。また端末装置の各セルグループに対するMACエンティティは、端末装置が基地局装置からRRCシグナリングを受け取る事により設定が行われてよい。MACエンティティがMCGに関連付けられている場合、SpCellはPCellを意味してよい。またMACエンティティがSCGに関連付けられている場合、SpCellはプライマリSCGセル(Primary SCG Cell:PSCell)を意味してよい。またMACエンティティがセルグループに関連付けられていない場合、SpCellはPCellを意味してよい。PCell、PSCellおよびSCellはサービングセルである。EN-DC、及びNGEN-DCにおいて、MCGに対するMACエンティティはE-UTRA MACエンティティであってよいし、SCGに対するMACエンティティはNR MACエンティティであってよい。また、NE-DCにおいて、MCGに対するMACエンティティはNR MACエンティティであってよいし、SCGに対するMACエンティティはE-UTRA MACエンティティであってよい。またNR-DCにおいて、MCG及びSCGに対するMACエンティティは共にNR MACエンティティであってよい。なお、MACエンティティが各セルグループに対して1つ存在する事を、MACエンティティは各SpCellに対して1つ存在すると言い換えてよい。また、各セルグループに対する1つのMACエンティティを、各SpCellに対する1つのMACエンティティと言い換えてよい。 Note that in the terminal device, one MAC entity may exist for each cell group. For example, when a DC or MR-DC is configured in a terminal device, there may be one MAC entity for MCG and one MAC entity for SCG. A MAC entity for MCG in a terminal device may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.). Further, the MAC entity for the SCG in the terminal device may be created by the terminal device when the SCG is configured in the terminal device. Further, the MAC entity for each cell group of the terminal device may be configured by the terminal device receiving RRC signaling from the base station device. When a MAC entity is associated with an MCG, SpCell may refer to PCell. Furthermore, when the MAC entity is associated with an SCG, SpCell may mean a primary SCG cell (Primary SCG Cell: PSCell). Also, if the MAC entity is not associated with a cell group, SpCell may mean PCell. PCell, PSCell, and SCell are serving cells. In EN-DC and NGEN-DC, the MAC entity for MCG may be an E-UTRA MAC entity, and the MAC entity for SCG may be an NR MAC entity. Further, in the NE-DC, the MAC entity for MCG may be an NR MAC entity, and the MAC entity for SCG may be an E-UTRA MAC entity. Further, in NR-DC, both the MAC entities for MCG and SCG may be NR MAC entities. Note that the existence of one MAC entity for each cell group can be translated into the existence of one MAC entity for each SpCell. Furthermore, one MAC entity for each cell group may be translated as one MAC entity for each SpCell.
 無線ベアラについて説明する。端末装置が基地局装置と通信する場合、端末装置と、基地局装置との間に無線ベアラ(RB:Radio Bearer)を確立する事により、無線接続を行ってよい。CPに用いられる無線ベアラは、シグナリング無線ベアラ(SRB:Signaling Radio Bearer)と呼ばれてよい。またUPに用いられる無線ベアラは、データ無線ベアラ(DRB:Data Radio Bearer)と呼ばれてよい。各無線ベアラには、無線ベアラ識別子(Identity:ID)が割り当てられてよい。SRB用無線ベアラ識別子は、SRB識別子(SRB Identity、またはSRB ID)と呼ばれてよい。DRB用無線ベアラ識別子は、DRB識別子(DRB Identity、またはDRB ID)と呼ばれてよい。E-UTRAのSRBにはSRB0からSRB2が定義されてよいし、これ以外のSRBが定義されてよい。NRのSRBにはSRB0からSRB3が定義されてよいし、これ以外のSRBが定義されてよい。SRB0は、論理チャネルのCCCHを用いて送信、及び/又は受信が行われる、RRCメッセージのためのSRBであってよい。SRB1は、RRCシグナリングのため、及びSRB2の確立前のNASシグナリングのためのSRBであってよい。SRB1を用いて送信、及び/又は受信が行われるRRCシグナリングには、ピギーバックされたNASシグナリングが含まれてよい。SRB1を用いて送信、及び/又は受信される全てのRRCシグナリングやNASシグナリングには、論理チャネルのDCCHが用いられてよい。SRB2は、NASシグナリングのため、及び記録測定情報(loggedmeasurement information)を含むRRCシグナリングのためのSRBであってよい。SRB2を用いて送信、及び/又は受信される全てのRRCシグナリングやNASシグナリングには、論理チャネルのDCCHが用いられてよい。また、SRB2はSRB1よりも低い優先度であってよい。SRB3は、端末装置に、EN-DC、NGEN-DC、NR-DCなどが設定されているときの特定のRRCシグナリングを送信、及び/又は受信するためのSRBであってよい。SRB3を用いて送信、及び/又は受信される全てのRRCシグナリングやNASシグナリングには、論理チャネルのDCCHが用いられてよい。また、その他の用途のために他のSRBが用意されてもよい。DRBは、ユーザデータのための無線ベアラであってよい。DRBを用いて送信、及び/又は受信が行われるRRCシグナリングには、論理チャネルのDTCHが用いられてもよい。 Let's explain the radio bearer. When a terminal device communicates with a base station device, a wireless connection may be established by establishing a radio bearer (RB) between the terminal device and the base station device. The radio bearer used for CP may be called a signaling radio bearer (SRB). Furthermore, the radio bearer used for UP may be called a data radio bearer (DRB). Each radio bearer may be assigned a radio bearer identity (ID). The radio bearer identifier for SRB may be called an SRB identity (SRB ID). The radio bearer identifier for DRB may be called a DRB identity (DRB ID). SRB0 to SRB2 may be defined as SRBs of E-UTRA, and SRBs other than these may be defined. SRB0 to SRB3 may be defined as SRBs of NR, and SRBs other than these may be defined. SRB0 may be an SRB for an RRC message that is transmitted and/or received using the CCCH of the logical channel. SRB1 may be an SRB for RRC signaling and for NAS signaling before the establishment of SRB2. RRC signaling transmitted and/or received using SRB1 may include piggybacked NAS signaling. The logical channel DCCH may be used for all RRC signaling and NAS signaling transmitted and/or received using SRB1. SRB2 may be an SRB for NAS signaling and for RRC signaling including logged measurement information. The logical channel DCCH may be used for all RRC signaling and NAS signaling transmitted and/or received using SRB2. Further, SRB2 may have a lower priority than SRB1. SRB3 may be an SRB for transmitting and/or receiving specific RRC signaling when EN-DC, NGEN-DC, NR-DC, etc. are configured in the terminal device. The logical channel DCCH may be used for all RRC signaling and NAS signaling transmitted and/or received using SRB3. Further, other SRBs may be prepared for other uses. DRB may be a radio bearer for user data. The logical channel DTCH may be used for RRC signaling that is transmitted and/or received using the DRB.
 端末装置における無線ベアラについて説明する。無線ベアラにはRLCベアラが含まれてよい。RLCベアラは1つ又は2つのRLCエンティティと論理チャネルで構成されてよい。RLCベアラにRLCエンティティが2つ存在する場合のRLCエンティティはTM RLCエンティティ、及び/又は単方向UMモードのRLCエンティティにおける、送信RLCエンティティ及び受信RLCエンティティであってよい。SRB0は1つのRLCベアラから構成されてよい。SRB0のRLCベアラはTMのRLCエンティティ、及び論理チャネルから構成されてよい。SRB0は全ての状態(RRCアイドル状態、RRC接続状態、及びRRC不活性状態など)の端末装置において、常に確立されていてよい。SRB1は端末装置がRRCアイドル状態からRRC接続状態に遷移する際、基地局装置から受信するRRCシグナリングにより、端末装置に1つ確立及び/又は設定されてよい。SRB1は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されてよい。SRB1のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されてよい。SRB2はASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCシグナリングにより、端末装置に1つ確立及び/又は設定されてよい。SRB2は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されてよい。SRB2のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されてよい。なお、SRB1及びSRB2の基地局装置側のPDCPはマスターノードに置かれてよい。SRB3はEN-DC、又はNGEN-DC、又はNR-DCにおけるセカンダリノードが追加される際、又はセカンダリノードが変更される際に、ASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCシグナリングにより、端末装置に1つ確立及び/又は設定されてよい。SRB3は端末装置とセカンダリノードとの間のダイレクトSRBであってよい。SRB3は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されてよい。SRB3のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されてよい。SRB3の基地局装置側のPDCPはセカンダリノードに置かれてよい。DRBはASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCシグナリングにより、端末装置に1つ又は複数確立及び/又は設定されてよい。DRBは1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されてよい。DRBのRLCベアラはAM又はUMのRLCエンティティ、及び論理チャネルから構成されてよい。 The radio bearer in the terminal device will be explained. Radio bearers may include RLC bearers. An RLC bearer may consist of one or two RLC entities and a logical channel. When there are two RLC entities in an RLC bearer, the RLC entities may be a TM RLC entity and/or a transmitting RLC entity and a receiving RLC entity in an RLC entity in unidirectional UM mode. SRB0 may consist of one RLC bearer. The RLC bearer of SRB0 may consist of a TM RLC entity and a logical channel. SRB0 may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.). One SRB1 may be established and/or configured in the terminal device by RRC signaling received from the base station device when the terminal device transitions from the RRC idle state to the RRC connected state. SRB1 may consist of one PDCP entity and one or more RLC bearers. The SRB1 RLC bearer may consist of an AM RLC entity and a logical channel. One SRB2 may be established and/or configured in a terminal device in an RRC connected state with AS security activated by RRC signaling received from the base station device. SRB2 may consist of one PDCP entity and one or more RLC bearers. The SRB2 RLC bearer may consist of an AM RLC entity and a logical channel. Note that the PDCP on the base station device side of SRB1 and SRB2 may be placed in the master node. In SRB3, when a secondary node in EN-DC, NGEN-DC, or NR-DC is added or changed, a terminal device in an RRC connection state with AS security activated connects to the base station. One may be established and/or configured in the terminal device by RRC signaling received from the device. SRB3 may be a direct SRB between the terminal device and the secondary node. SRB3 may consist of one PDCP entity and one or more RLC bearers. The SRB3 RLC bearer may consist of an AM RLC entity and a logical channel. PDCP on the base station device side of SRB3 may be placed in a secondary node. One or more DRBs may be established and/or configured in a terminal device in an RRC connected state with AS security activated by RRC signaling that the terminal device receives from the base station device. A DRB may consist of one PDCP entity and one or more RLC bearers. A DRB RLC bearer may consist of an AM or UM RLC entity and a logical channel.
 なお、MR-DCにおいて、マスターノードにPDCPが置かれる無線ベアラの事を、MN終端(ターミネティド:terminated)ベアラと呼んでよい。また、MR-DCにおいて、セカンダリノードにPDCPが置かれる無線ベアラの事を、SN終端(ターミネティド:terminated)ベアラと呼んでよい。なお、MR-DCにおいて、RLCベアラがMCGにのみ存在する無線ベアラの事を、MCGベアラ(MCG bearer)と呼んでよい。また、MR-DCにおいて、RLCベアラがSCGにのみ存在する無線ベアラの事を、SCGベアラ(SCG bearer)と呼んでよい。またDCにおいて、RLCベアラがMCG及びSCG両方に存在する無線ベアラの事を、スプリットベアラ(split bearer)と呼んでよい。 Note that in MR-DC, the radio bearer in which PDCP is placed in the master node may be referred to as an MN terminated bearer. Furthermore, in MR-DC, a radio bearer in which PDCP is placed in a secondary node may be referred to as an SN terminated bearer. Note that in MR-DC, a radio bearer in which the RLC bearer exists only in the MCG may be referred to as an MCG bearer. Furthermore, in MR-DC, a radio bearer in which the RLC bearer exists only in the SCG may be referred to as an SCG bearer. Furthermore, in the DC, a radio bearer in which the RLC bearer exists in both the MCG and the SCG may be referred to as a split bearer.
 端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるSRB1及びSRB2のベアラタイプは、MN終端MCGベアラ及び/又はMN終端スプリットベアラであってよい。また端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるSRB3のベアラタイプは、SN終端SCGベアラであってよい。また端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるDRBのベアラタイプは、全てのベアラタイプのうちの何れかであってよい。 When MR-DC is configured in the terminal device, the bearer types of SRB1 and SRB2 established/and/or configured in the terminal device may be MN-terminated MCG bearer and/or MN-terminated split bearer. Further, when MR-DC is configured in the terminal device, the bearer type of SRB3 established/and/or configured in the terminal device may be an SN termination SCG bearer. Further, when MR-DC is configured in the terminal device, the bearer type of the DRB established/and/or configured in the terminal device may be any one of all bearer types.
 E-UTRAで構成されるセルグループに確立及び/又は設定されるRLCベアラに対し、確立及び/又は設定されるRLCエンティティは、E-UTRA RLCであってよい。またNRで構成されるセルグループに確立及び/又は設定されるRLCベアラに対し、確立及び/又は設定されるRLCエンティティは、NR RLCであってよい。端末装置にEN-DCが設定される場合、MN終端MCGベアラに対し確立及び/又は設定されるPDCPエンティティは、E-UTRA PDCP又はNR PDCPの何れかであってよい。また端末装置にEN-DCが設定される場合、その他のベアラタイプの無線ベアラ、即ちMN終端スプリットベアラ、MN終端SCGベアラ、SN終端MCGベアラ、SN終端スプリットベアラ、及びSN終端SCGベアラ、に対して確立及び/又は設定されるPDCPは、NR PDCPであってよい。また端末装置にNGEN-DC、又はNE-DC、又はNR-DCが設定される場合、全てのベアラタイプにおける無線ベアラに対して確立及び/又は設定されるPDCPエンティティは、NR PDCPであってよい。 For an RLC bearer to be established and/or configured in a cell group configured with E-UTRA, the RLC entity to be established and/or configured may be E-UTRA RLC. Furthermore, the RLC entity to be established and/or configured for an RLC bearer established and/or configured in a cell group configured with NR may be NR RLC. When EN-DC is configured in the terminal device, the PDCP entity established and/or configured for the MN terminating MCG bearer may be either E-UTRA PDCP or NR PDCP. In addition, when EN-DC is configured in the terminal device, other bearer types of radio bearers, namely MN-terminated split bearer, MN-terminated SCG bearer, SN-terminated MCG bearer, SN-terminated split bearer, and SN-terminated SCG bearer, are The PDCP established and/or configured may be NR PDCP. Additionally, if NGEN-DC, NE-DC, or NR-DC is configured in the terminal device, the PDCP entity established and/or configured for the radio bearer in all bearer types may be NR PDCP. .
 なおNRにおいて、端末装置に確立及び/又は設定されるDRBは1つのPDUセッションに紐づけられてよい。端末装置において1つのPDUセッションに対し、1つのSDAPエンティティが確立及び/又は設定されてよい。端末装置に確立及び/又は設定SDAPエンティティ、PDCPエンティティ、RLCエンティティ、及び論理チャネルは、端末装置が基地局装置から受信するRRCシグナリングにより確立及び/又は設定されてよい。 Note that in NR, a DRB established and/or configured in a terminal device may be linked to one PDU session. One SDAP entity may be established and/or configured for one PDU session at the terminal device. Establishment and/or configuration of the SDAP entity, PDCP entity, RLC entity, and logical channel in the terminal device may be established and/or configured by RRC signaling that the terminal device receives from the base station device.
 なお、MR-DCが設定されるか否かに関わらず、マスターノードがeNB102であり、EPC104をコア網とするネットワーク構成を、E-UTRA/EPCと呼んでよい。またマスターノードがeNB102であり、5GC110をコア網とするネットワーク構成を、E-UTRA/5GCと呼んでよい。またマスターノードがgNB108で5GC110をコア網とするネットワーク構成をNR、又はNR/5GCと呼んでよい。MR-DCが設定されない場合において、上述のマスターノードとは、端末装置と通信を行う基地局装置の事を指してよい。 Note that regardless of whether MR-DC is configured, a network configuration in which the master node is eNB102 and EPC104 is the core network may be called E-UTRA/EPC. A network configuration in which the master node is eNB102 and 5GC110 is the core network may be called E-UTRA/5GC. A network configuration in which the master node is gNB108 and 5GC110 is the core network may be called NR or NR/5GC. When MR-DC is not configured, the above-mentioned master node may refer to a base station device that communicates with a terminal device.
 次にLTE及びNRにおけるハンドオーバについて説明する。ハンドオーバとは、RRC接続状態のUE122がサービングセルをソースSpCellからターゲットSpCellへ変更する処理であってよい。ハンドオーバは、RRCが行うモビリティ制御の一部であってよい。ハンドオーバは、UE122がeNB102、及び/又はgNB108より、ハンドオーバを指示するRRCシグナリングを受信した時に行われてよい。ハンドオーバを指示するRRCシグナリングとは、ハンドオーバを指示するパラメータ(例えばMobilityControlInfoという名称の情報要素、又はReconfigurationWithSyncという名称の情報要素)を含むRRCコネクションの再設定に関するメッセージの事であってよい。なお上述のMobilityControlInfoという名称の情報要素の事を、モビリティ制御設定情報要素、又はモビリティ制御設定、又はモビリティ制御情報と言い換えてよい。なお上述のReconfigurationWithSyncという名称の情報要素の事を同期付再設定情報要素、又は同期付再設定と言い換えてよい。またハンドオーバを指示するRRCシグナリングとは、他のRATのセルへの移動を示すメッセージ(例えばMobilityFromEUTRACommand、又はMobilityFromNRCommand)の事であってよい。またハンドオーバの事を同期付再設定(reconfiguration with sync)と言い換えてよい。同期付再設定は、RRCによってトリガされてよいし、DCIまたはMACコントロールエレメントによってトリガされてよい。またUE122がハンドオーバを行う事ができる条件に、ASセキュリティが活性化されている時、SRB2が確立されている時、少なくとも一つのDRBが確立している事のうちの一部又は全てを含んでよい。上述のハンドオーバは、レイヤ3ハンドオーバ等と言い換えられてよい。 Next, handover in LTE and NR will be explained. Handover may be a process in which the UE 122 in the RRC connected state changes the serving cell from the source SpCell to the target SpCell. Handover may be part of mobility control performed by RRC. Handover may be performed when UE 122 receives RRC signaling from eNB 102 and/or gNB 108 instructing handover. RRC signaling that instructs handover may be a message regarding reconfiguration of an RRC connection that includes a parameter that instructs handover (for example, an information element named MobilityControlInfo or an information element named ReconfigurationWithSync). Note that the above-mentioned information element named MobilityControlInfo may be referred to as a mobility control setting information element, mobility control setting, or mobility control information. Note that the above-mentioned information element named ReconfigurationWithSync may be referred to as a reconfiguration with synchronization information element or a reconfiguration with synchronization. Furthermore, RRC signaling instructing handover may be a message (eg, MobilityFromEUTRACommand or MobilityFromNRCommand) indicating movement to a cell of another RAT. Handover can also be referred to as reconfiguration with sync. Reconfiguration with synchronization may be triggered by RRC, or by DCI or MAC control elements. In addition, the conditions under which the UE 122 can perform handover include some or all of the following: when AS security is activated, when SRB2 is established, and when at least one DRB is established. good. The above-mentioned handover may be rephrased as layer 3 handover or the like.
 端末装置と基地局装置との間で送受信される、RRCシグナリングのフローについて説明する。図4は、本実施形態に係るRRCにおける、各種設定のための手順(procedure)のフローの一例を示す図である。図4は、基地局装置(eNB102、及び/又はgNB108)から端末装置(UE122)にRRCシグナリングが送られる場合のフローの一例である。 The flow of RRC signaling transmitted and received between the terminal device and the base station device will be explained. FIG. 4 is a diagram showing an example of a flow of procedures for various settings in RRC according to the present embodiment. FIG. 4 is an example of a flow when RRC signaling is sent from the base station device (eNB 102 and/or gNB 108) to the terminal device (UE 122).
 図4において、基地局装置はRRCメッセージを作成する(ステップS400)。基地局装置におけるRRCメッセージの作成は、基地局装置がシステム情報(SI:System Information)やページングメッセージを配信するために行われてよい。また基地局装置におけるRRCメッセージの作成は、基地局装置が特定の端末装置に対して処理を行わせるRRCシグナリングを送信するために行われてよい。特定の端末装置に対して行わせる処理は、例えばセキュリティに関する設定、RRCコネクションの再設定、異なるRATへのハンドオーバ、RRCコネクションの休止、RRCコネクションの解放などの処理を含んでよい。RRCコネクションの再設定には、例えば無線ベアラの制御(確立、変更、解放など)、セルグループの制御(確立、追加、変更、解放など)、メジャメント設定、ハンドオーバ、セキュリティ鍵更新、などの処理が含まれてよい。また基地局装置におけるRRCメッセージの作成は、端末装置から送信されたRRCシグナリングへの応答のために行われてよい。端末装置から送信されたRRCシグナリングへの応答は、例えばRRCセットアップ要求への応答、RRC再接続要求への応答、RRC再開要求への応答などを含んでよい。RRCメッセージには各種情報通知や設定のための情報(パラメータ)が含まれる。これらのパラメータは、フィールド及び/又は情報要素と呼ばれてよいし、ASN.1(Abstract Syntax Notation One)という記述方式を用いて記述されてよい。 In FIG. 4, the base station device creates an RRC message (step S400). The RRC message may be created in the base station device so that the base station device can distribute system information (SI) and paging messages. Further, the creation of the RRC message in the base station device may be performed so that the base station device can transmit RRC signaling to cause a specific terminal device to perform processing. The processing to be performed on a specific terminal device may include, for example, processing related to security, reconfiguration of an RRC connection, handover to a different RAT, suspension of an RRC connection, release of an RRC connection, and the like. Resetting an RRC connection involves processing such as radio bearer control (establishment, change, release, etc.), cell group control (establishment, addition, change, release, etc.), measurement setting, handover, security key update, etc. May be included. Further, the creation of an RRC message in the base station device may be performed in response to RRC signaling transmitted from the terminal device. The response to RRC signaling transmitted from the terminal device may include, for example, a response to an RRC setup request, a response to an RRC reconnection request, a response to an RRC restart request, and the like. The RRC message includes information (parameters) for various information notifications and settings. These parameters may be called fields and/or information elements, and may be described using a description method called ASN.1 (Abstract Syntax Notation One).
 図4において、次に基地局装置は、作成したRRCシグナリングを端末装置に送信する(ステップS402)。次に端末装置は受信した上述のRRCシグナリングに従って、設定などの処理が必要な場合には処理を行う(ステップS404)。処理を行った端末装置は、基地局装置に対し、応答のためのRRCシグナリングを送信してよい(不図示)。 In FIG. 4, the base station device then transmits the created RRC signaling to the terminal device (step S402). Next, the terminal device performs processing such as setting, if necessary, according to the above-mentioned received RRC signaling (step S404). The terminal device that has performed the processing may transmit RRC signaling for response to the base station device (not shown).
 RRCシグナリングは、上述の例に限らず、他の目的に使われてよい。 RRC signaling is not limited to the above example and may be used for other purposes.
 なおMR-DCにおいて、SCG側の設定(セルグループ設定、無線ベアラ設定、測定設定など)のためのRRCシグナリングを、端末装置との間で転送するのに、マスターノード側のRRCが用いられてよい。例えばEN-DC、又はNGEN-DCにおいて、eNB102とUE122との間で送受信されるE-UTRAのRRCシグナリングに、NRのRRCシグナリングがコンテナの形で含まれてよい。またNE-DCにおいて、gNB108とUE122との間で送受信されるNRのRRCシグナリングに、E-UTRAのRRCシグナリングがコンテナの形で含まれてよい。SCG側の設定のためのRRCシグナリングは、マスターノードとセカンダリノードの間で送受信されてよい。 Note that in MR-DC, RRC on the master node side is used to transfer RRC signaling for settings on the SCG side (cell group settings, radio bearer settings, measurement settings, etc.) to and from the terminal device. good. For example, in EN-DC or NGEN-DC, NR RRC signaling may be included in the form of a container in E-UTRA RRC signaling transmitted and received between eNB 102 and UE 122. Further, in the NE-DC, E-UTRA RRC signaling may be included in the form of a container in the NR RRC signaling transmitted and received between the gNB 108 and the UE 122. RRC signaling for SCG side configuration may be transmitted and received between the master node and the secondary nodes.
 なお、MR-DCを利用する場合に限らず、eNB102からUE122に送信されるE-UTRA用RRCシグナリングに、NR用RRCシグナリングが含まれていてよいし、gNB108からUE122に送信されるNR用RRCシグナリングに、E-UTRA用RRCシグナリングが含まれていてよい。 Note that, not only when using MR-DC, NR RRC signaling may be included in E-UTRA RRC signaling transmitted from eNB 102 to UE 122, and NR RRC signaling transmitted from gNB 108 to UE 122. The signaling may include RRC signaling for E-UTRA.
 RRCコネクションの再設定に関するメッセージに含まれる、パラメータの一例を説明する。図7は、図4において、NRでのRRCコネクションの再設定に関するメッセージに含まれる、セルグループ設定に関するフィールド、及び/又は情報要素を表すASN.1記述の一例である。また図8は、図4において、E-UTRAでのRRCコネクションの再設定に関するメッセージに含まれる、セルグループ設定に関するフィールド、及び/又は情報要素を表すASN.1記述の一例である。図7、図8に限らず、本実施形態におけるASN.1の例で、<略>及び<中略>とは、ASN.1の表記の一部ではなく、他の情報を省略している事を示す。なお<略>又は<中略>という記載の無い所でも、情報要素が省略されていてよい。なお本実施形態においてASN.1の例はASN.1表記方法に正しく従ったものではない。本実施形態においてASN.1の例は、本実施形態におけるRRCシグナリングのパラメータの一例を表記したものであり、他の名称や他の表記が用いられてよい。またASN.1の例は、説明が煩雑になることを避けるために、本実施形態と密接に関連する主な情報に関する例のみを示す。なお、ASN.1で記述されるパラメータを、フィールド、情報要素等に区別せず、全て情報要素と言う場合がある。また本実施形態において、RRCシグナリングに含まれる、ASN.1で記述されるフィールド、情報要素等は、情報と言い換えられてよいし、パラメータと言い換えられてよい。なおRRCコネクションの再設定に関するメッセージとは、NRにおけるRRC再設定メッセージであってよいし、E-UTRAにおけるRRCコネクション再設定メッセージであってよい。 An example of parameters included in a message regarding resetting an RRC connection will be explained. FIG. 7 is an example of an ASN.1 description representing fields and/or information elements related to cell group configuration included in a message related to reconfiguration of an RRC connection in NR in FIG. 4. Further, FIG. 8 is an example of an ASN.1 description representing fields and/or information elements related to cell group configuration included in a message related to reconfiguration of an RRC connection in E-UTRA in FIG. 4. Not limited to FIGS. 7 and 8, in the examples of ASN.1 in this embodiment, <omitted> and <omitted> are not part of the notation of ASN.1, and indicate that other information is omitted. shows. Note that information elements may be omitted even in places where there is no description of <omitted> or <omitted>. Note that in this embodiment, the example of ASN.1 does not correctly follow the ASN.1 notation method. In this embodiment, the example ASN.1 represents an example of the RRC signaling parameters in this embodiment, and other names and other representations may be used. Further, in the example of ASN.1, in order to avoid complicating the explanation, only an example related to main information closely related to this embodiment will be shown. Note that the parameters described in ASN.1 are sometimes referred to as information elements, without distinguishing them into fields, information elements, etc. Further, in this embodiment, fields, information elements, etc. described in ASN.1 and included in RRC signaling may be translated into information or parameters. Note that the message regarding RRC connection reconfiguration may be an RRC reconfiguration message in NR or an RRC connection reconfiguration message in E-UTRA.
 図7においてCellGroupConfigという名称の情報要素は、NRでのMCG又はSCGのセルグループの設定、変更、解放等に使われる情報要素であってよい。CellGroupConfigという名称の情報要素を、セルグループ設定情報要素、又はセルグループ設定と言い換えてよい。CellGroupConfigという名称の情報要素に含まれる、SpCellConfigという名称の情報要素は、特別なセル(SpCell)の設定に使われる情報要素であってよい。SpCellConfigという名称の情報要素を、SpCell設定情報要素、又はSpCell設定と言い換えてよい。CellGroupConfigという名称の情報要素に含まれる、SCellConfigという名称の情報要素は、セカンダリセル(SCell)の設定に使われる情報要素であってよい。SCellConfigという名称の情報要素を、SCell設定情報要素、又はSCell設定と言い換えてよい。SpCellConfigという名称の情報要素に含まれる、ReconfigurationWithSyncという名称の情報要素は、上述の同期付再設定情報要素、又は同期付再設定であってよい。ReconfigurationWithSyncという名称の情報要素には、newUE-Identityという名称の新しいUE識別子が含まれてよい。ReconfigurationWithSyncという名称の情報要素に含まれる、spCellConfigCommonという名称の情報要素は、SpCellで設定される共通の設定を示す情報要素であってよい。spCellConfigCommonという名称の情報要素を、SpCell共通設定と言い換えてよい。SCellConfigという名称の情報要素に含まれる、sCellConfigCommonという名称の情報要素は、SCellで設定される共通の設定を示す情報要素であってよい。sCellConfigCommonという名称の情報要素を、SCell共通設定と言い換えてよい。 In FIG. 7, the information element named CellGroupConfig may be an information element used for setting, changing, releasing, etc. a cell group of MCG or SCG in NR. The information element named CellGroupConfig may be referred to as a cell group configuration information element or cell group configuration. An information element named SpCellConfig included in an information element named CellGroupConfig may be an information element used for configuring a special cell (SpCell). The information element named SpCellConfig may be rephrased as SpCell configuration information element or SpCell configuration. An information element named SCellConfig included in an information element named CellGroupConfig may be an information element used to configure a secondary cell (SCell). The information element named SCellConfig may be rephrased as SCell configuration information element or SCell configuration. The information element named ReconfigurationWithSync included in the information element named SpCellConfig may be the above-mentioned reconfiguration with synchronization information element or reconfiguration with synchronization. The information element named ReconfigurationWithSync may include a new UE identifier named newUE-Identity. The information element named spCellConfigCommon included in the information element named ReconfigurationWithSync may be an information element indicating common settings configured in SpCell. The information element named spCellConfigCommon can be rephrased as SpCell common settings. An information element named sCellConfigCommon included in an information element named SCellConfig may be an information element indicating common settings configured in SCell. The information element named sCellConfigCommon can be rephrased as SCell common settings.
 図9は、図7において、SpCell設定、又はSCell設定に含まれる、ServingCellConfigCommonという名称の情報要素、つまり、サービングセル共通設定に関するフィールド、及び/又は情報要素を表すASN.1記述の一例である。ServingCellConfigCommonという名称の情報要素に含まれる、DownlinkConfigCommonという名称の情報要素は、下りリンクで設定される共通の設定を示す情報要素であってよい。DownlinkConfigCommonという名称の情報要素を、下りリンク共通設定と言い換えてよい。DownlinkConfigCommonという名称の情報要素に含まれる、BWP-DownlinkCommonという名称の情報要素は、下りリンクのBWPで設定される共通の設定を示す情報要素であってよい。BWP-DownlinkCommonという名称の情報要素を、下りリンクBWP共通設定と言い換えてよい。BWP-DownlinkCommonという名称の情報要素に含まれる、PDCCH-ConfigCommonという名称の情報要素は、PDCCHで設定される共通の設定を示す情報要素であってよい。PDCCH-ConfigCommonという名称の情報要素を、PDCCH共通設定と言い換えてよい。PDCCH-ConfigCommonという名称の情報要素には、commonSearchSpaceListという名称の情報要素、searchSpaceSIB1という名称の情報要素、searchSpaceOtherSystemInformationという名称の情報要素、及び/又はpagingSearchSpaceという名称の情報要素が含まれてよい。commonSearchSpaceListという名称の情報要素は、共通サーチスペース(Common Search Space:CSS)のリストのことであってよい。また、searchSpaceSIB1という名称の情報要素は、システム情報(SIB1)を受信するためのサーチスペースの情報のことであってよい。また、searchSpaceOtherSystemInformationには、システム情報(SIB2以降)を受信するためのサーチスペースの情報が含まれてよい。また、pagingSearchSpaceという名称の情報要素は、ページングメッセージを受信するためのサーチスペースの情報のことであってよい。 FIG. 9 is an example of an information element named ServingCellConfigCommon included in the SpCell configuration or SCell configuration in FIG. 7, that is, an example of an ASN.1 description representing a field and/or information element related to the serving cell common configuration. The information element named DownlinkConfigCommon included in the information element named ServingCellConfigCommon may be an information element indicating common settings configured in the downlink. The information element named DownlinkConfigCommon may be rephrased as downlink common settings. The information element named BWP-DownlinkCommon included in the information element named DownlinkConfigCommon may be an information element indicating common settings configured in the downlink BWP. The information element named BWP-DownlinkCommon may be rephrased as downlink BWP common settings. The information element named PDCCH-ConfigCommon included in the information element named BWP-DownlinkCommon may be an information element indicating common settings configured on the PDCCH. The information element named PDCCH-ConfigCommon may be rephrased as PDCCH common settings. The information element named PDCCH-ConfigCommon may include an information element named commonSearchSpaceList, an information element named searchSpaceSIB1, an information element named searchSpaceOtherSystemInformation, and/or an information element named pagingSearchSpace. The information element named commonSearchSpaceList may refer to a list of common search spaces (CSS). Further, the information element named searchSpaceSIB1 may be information on a search space for receiving system information (SIB1). Furthermore, searchSpaceOtherSystemInformation may include information on a search space for receiving system information (SIB2 and later). Further, the information element named pagingSearchSpace may be information on a search space for receiving paging messages.
 メジャメントギャップ(measurement gap)について説明する。メジャメントギャップとは、端末装置から基地局装置への上りリンク送信および基地局装置から端末装置への下りリンク送信がスケジュールされないとみなしてよい期間である。メジャメントギャップが設定された端末装置、メジャメントギャップの期間にメジャメント(measurement)を実行してよい。また、メジャメントギャップは、測定ギャップ等と言い換えられてよい。  Explain the measurement gap. The measurement gap is a period during which it can be considered that uplink transmission from the terminal device to the base station device and downlink transmission from the base station device to the terminal device are not scheduled. A terminal device with a measurement gap set may perform measurements during the measurement gap period. Moreover, the measurement gap may be rephrased as a measurement gap or the like.
 図10は、図4において、NRでのRRCコネクションの再設定に関するメッセージ、およびRRC再設定完了メッセージに含まれる、メジャメントギャップの設定に関するフィールド、及び/又は情報要素を表すASN.1記述の一例である。図10においてNeedForGapsConfigNRという名称の情報要素は、NRにおけるメジャメントギャップの要否情報(measurement gap requirement information)の報告に関連する設定を含む情報要素であってよい。NeedForGapsConfigNRという名称の情報要素を、NRにおいてメジャメントギャップが必要であるか否かを報告させる設定の情報要素、又はNRにおいてメジャメントギャップが必要であるか否かを報告させる設定と言い換えてよい。また、図10においてNeedForGapsInfoNRという名称の情報要素は、NR-DC又はNE-DCが設定されていない場合、端末装置がNRのターゲットの周波数バンド上においてSSBベースのメジャメントを実行するためにメジャメントギャップが必要であるか否かを示す情報要素であってよい。NeedForGapsInfoNRという名称の情報要素を、NRにおいてメジャメントギャップが必要であるか否かを示す情報要素、又はNRにおいてメジャメントギャップが必要であるか否かを示す情報と言い換えてよい。NeedForGapsConfigNRという名称の情報要素に含まれる、requestedTargetBandFilterNRという名称の情報要素は、ギャップの要否情報(gap requirement information)を端末装置が報告する必要のあるターゲットのNRの周波数バンドを示す情報要素であってよい。「ギャップの要否情報」は、「ギャップが必要であるか否かを示す情報」、「メジャメントギャップの要否情報」、又は「メジャメントギャップが必要であるか否かを示す情報」等と言い換えられてよい。NeedForGapsInfoNRという名称の情報要素に含まれる、intraFreq-needForGapという名称の情報要素は、NR周波数内メジャメント(NR intra-frequency measurement)のためのメジャメントギャップの要否情報を示す情報要素であってよい。intraFreq-needForGapという名称の情報要素は、メジャメントが実行されるサービングセルの識別子を示すservCellIdという名称の情報要素や、端末装置が関連のサービングセル(servCellIdという名称の情報要素で示されたサービングセル)上においてSSBベースの周波数内メジャメントを実行するためにメジャメントギャップが必要であるか否かを示すgapIndicationIntraという名称の情報要素等を含んでよい。gapIndicationIntraという名称の情報要素は、端末装置に設定されている一つまたは複数のBWPのうちいずれもinitial DL BWPに関連付けられたSSBの周波数領域リソースを含まない場合に、メジャメントギャップが必要であることを示す「gap」という値を示してよいし、端末装置に設定されている全てのBWPに対してinitial DL BWPに関連付けられたSSBのメジャメントを実行するために、メジャメントギャップが必要でないことを示す「no-gap」という値を示してよい。NeedForGapsInfoNRという名称の情報要素に含まれる、interFreq-needForGapという名称の情報要素は、NR周波数間メジャメント(NR inter-frequency measurement)のためのメジャメントギャップの要否情報を示す情報要素であってよい。interFreq-needForGapという名称の情報要素は、メジャメントが実行されるNRのターゲットの周波数バンドを示すbandNRという名称の情報要素や、NR-DC又はNE-DCが設定されていない場合、端末装置が関連のNRのターゲットの周波数バンド(bandNRという名称の情報要素で示されたNRのターゲットの周波数バンド)上においてSSBベースのメジャメントを実行するためにメジャメントギャップが必要であるか否かを示すgapIndicationという名称の情報要素等を含んでよい。gapIndicationという名称の情報要素は、メジャメントギャップが必要であることを示す「gap」という値、又はメジャメントギャップが必要でないことを示す「no-gap」という値を示してよい。 FIG. 10 is an example of an ASN.1 description representing fields and/or information elements related to measurement gap settings included in a message related to RRC connection reconfiguration in NR and an RRC reconfiguration completion message in FIG. 4. be. In FIG. 10, the information element named NeedForGapsConfigNR may be an information element including settings related to reporting of measurement gap requirement information in NR. The information element named NeedForGapsConfigNR may be rephrased as an information element of a setting that causes NR to report whether or not a measurement gap is required, or a setting that causes NR to report whether or not a measurement gap is required. In addition, the information element named NeedForGapsInfoNR in Figure 10 indicates that if NR-DC or NE-DC is not configured, the measurement gap is required for the terminal device to perform SSB-based measurement on the target frequency band of NR. It may be an information element indicating whether or not it is necessary. The information element named NeedForGapsInfoNR may be rephrased as an information element indicating whether a measurement gap is required in NR, or information indicating whether a measurement gap is necessary in NR. The information element named requestedTargetBandFilterNR included in the information element named NeedForGapsConfigNR is an information element indicating the target NR frequency band for which the terminal device needs to report gap requirement information. good. "Gap necessity information" can be translated as "information indicating whether a gap is necessary", "measurement gap necessity information", or "information indicating whether a measurement gap is necessary", etc. It's okay to be rejected. An information element named intraFreq-needForGap included in an information element named NeedForGapsInfoNR may be an information element that indicates whether or not a measurement gap is necessary for NR intra-frequency measurement. The information element named intraFreq-needForGap includes the information element named servCellId, which indicates the identifier of the serving cell on which the measurement is performed, and the information element named intraFreq-needForGap, and the information element named intraFreq-needForGap, which indicates the identifier of the serving cell where the measurement is performed, and the information element named intraFreq-needForGap. It may include, for example, an information element named gapIndicationIntra indicating whether a measurement gap is required to perform the based intra-frequency measurements. The information element named gapIndicationIntra indicates that a measurement gap is required when none of the one or more BWPs configured in the terminal device contains the SSB frequency domain resource associated with the initial DL BWP. may indicate the value "gap" indicating that no measurement gap is required to perform measurements of the SSB associated with the initial DL BWP for all BWPs configured on the terminal device. May indicate a value of "no-gap". The information element named interFreq-needForGap, which is included in the information element named NeedForGapsInfoNR, may be an information element that indicates whether or not a measurement gap is necessary for NR inter-frequency measurement. The information element named interFreq-needForGap is similar to the information element named bandNR which indicates the target frequency band of the NR in which the measurement is performed, or if NR-DC or NE-DC is not configured, the terminal equipment A value named gapIndication that indicates whether a measurement gap is required to perform SSB-based measurements on the NR's target frequency band (the NR's target frequency band indicated by the information element named bandNR). It may include information elements, etc. The information element named gapIndication may indicate a value of "gap" indicating that a measurement gap is required, or a value of "no-gap" indicating that a measurement gap is not required.
 RRC再設定手順について説明する。RRC再設定手順とは、RRCで設定されているパラメータや情報要素等を再設定(reconfiguration)するための手順(procedure)のことであってよい。また、RRC再設定手順の目的は、下記(A)から(F)の一部または全部であってよい。
  (A)RRC接続(RRCコネクション)を修正すること
  (B)同期付再設定を実施すること
  (C)メジャメント(measurement)を設定、修正、および/または、解放すること
  (D)一つまたは複数のSCellおよびセルグループを追加、修正、および/または、解放すること
  (E)条件付ハンドオーバ(conditional handover:CHO)の設定を追加、修正、および/または、解放すること
  (F)条件付PSCell変更(conditional PSCell change:CPC)または条件付PSCell追加(conditional PSCell addition:CPA)の設定を追加、修正、および/または、解放すること
The RRC reconfiguration procedure will be explained. The RRC reconfiguration procedure may be a procedure for reconfiguring parameters, information elements, etc. set in RRC. Further, the purpose of the RRC reconfiguration procedure may be some or all of the following (A) to (F).
(A) Modifying an RRC connection (B) Performing a reconfiguration with synchronization (C) Setting, modifying, and/or releasing a measurement (D) One or more Adding, modifying, and/or releasing SCells and cell groups (E) Adding, modifying, and/or releasing conditional handover (CHO) settings (F) Conditional PSCell changes Adding, modifying, and/or releasing settings for (conditional PSCell change: CPC) or conditional PSCell addition (CPA)
 基地局装置(ネットワーク:Network)は、RRC_CONNECTED状態の端末装置に対してRRC再設定手順を開始(initiate)してよい。このとき、基地局装置は、前記RRC再設定手順に下記(A)から(F)の一部または全部を適用してよい。なお、「基地局装置が端末装置に対してRRC再設定手順を開始する」とは、「基地局装置が端末装置に対してRRCコネクションの再設定に関するメッセージを送信する」等と言い換えられてよい。
  (A)SRB1以外の無線ベアラの確立
  (B)SCGおよび一つまたは複数のSCellの追加
  (C)SCGのセルグループ設定に含まれる同期付再設定
  (D)MCGのセルグループ設定に含まれる同期付再設定
  (E)条件付PSCell変更のための条件付再設定(conditionalReconfiguration)
  (F)条件付ハンドオーバまたは条件付PSCell追加のための条件付再設定(conditionalReconfiguration)
The base station device (network) may initiate an RRC reconfiguration procedure for the terminal device in the RRC_CONNECTED state. At this time, the base station apparatus may apply some or all of the following (A) to (F) to the RRC reconfiguration procedure. Note that "the base station device starts an RRC reconfiguration procedure for the terminal device" may be paraphrased as "the base station device transmits a message regarding reconfiguring the RRC connection to the terminal device", etc. .
(A) Establishment of radio bearers other than SRB1 (B) Addition of SCG and one or more SCells (C) Reconfiguration with synchronization included in SCG cell group configuration (D) Synchronization included in MCG cell group configuration Conditional reconfiguration (E) Conditional reconfiguration for conditional PSCell change
(F) Conditional reconfiguration for conditional handover or conditional PSCell addition
 RRCコネクションの再設定に関するメッセージに含まれる、セキュリティ鍵更新を伴う同期付再設定は、明示的なレイヤ2指標(L2 indicator)によってトリガされる下記(A)から(E)の一部または全部を含んでよい。
  (A)PCellおよび/またはPSCellへのランダムアクセス
  (B)MACリセット
  (C)セキュリティの更新
  (D)RLCの再確立
  (E)PDCPの再確立
A synchronized reconfiguration with security key update included in a message regarding RRC connection reconfiguration may include some or all of (A) to (E) below, which is triggered by an explicit layer 2 indicator. may be included.
(A) Random access to PCell and/or PSCell (B) MAC reset (C) Security update (D) Re-establishment of RLC (E) Re-establishment of PDCP
 RRCコネクションの再設定に関するメッセージに含まれる、セキュリティ鍵更新を伴わない同期付再設定は、明示的なレイヤ2指標(L2 indicator)によってトリガされる下記(A)から(D)の一部または全部を含んでよい。
  (A)PCellおよび/またはPSCellへのランダムアクセス
  (B)MACリセット
  (C)RLCの再確立
  (D)PDCPのデータ回復
A synchronized reconfiguration without security key update included in a message regarding RRC connection reconfiguration is triggered by an explicit layer 2 indicator, and some or all of (A) to (D) below are triggered by an explicit layer 2 indicator. may include.
(A) Random access to PCell and/or PSCell (B) MAC reset (C) RLC re-establishment (D) PDCP data recovery
 なお上述のレイヤ2指標には、例えばMAC、RLC、PDCP等のレイヤ2によるシグナリングが含まれてよい。 Note that the layer 2 indicators described above may include, for example, layer 2 signaling such as MAC, RLC, and PDCP.
 端末装置は、RRCコネクションの再設定に関するメッセージを受信したときに、または、条件付再設定(CHO、CPA、またはCPC)の実行時に、下記(A)から(H)の一部または全部を実施(perform)してよい。
 (処理RRP)
  (A)もしRRCコネクションの再設定に関するメッセージが、RRC再確立手順の開始時にスタートするタイマーT311が走っている間のセル選択の実施時における条件付再設定の実行によって適用されるなら、後述のエントリリストの全てのエントリを除去(remove)する。
  (B)もしRRCコネクションの再設定に関するメッセージがMCGのセルグループ設定を含んでいたら、受信されたMCGのセルグループ設定のためのセルグループの設定を実施し、前記セルグループ設定が同期付再設定情報要素を伴うSpCell設定を含む場合は、同期付再設定を実施する。
  (C)もしRRCコネクションの再設定に関するメッセージがSCGのセルグループ設定を含んでいたら、SCGのためのセルグループの設定を実施し、前記セルグループ設定が同期付再設定情報要素を伴うSpCell設定を含む場合は、同期付再設定を実施する。
  (D)もしRRCコネクションの再設定に関するメッセージが条件付再設定(conditionalReconfiguration)を含んでいたら、条件付再設定を実施する。
  (E)もしRRCコネクションの再設定に関するメッセージがNRにおいてメジャメントギャップが必要であるか否かを報告させる設定を含んでおり、前記NRにおいてメジャメントギャップが必要であるか否かを報告させる設定がsetupにセットされていたら、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていると考慮(consider)する。
  (F)もしRRCコネクションの再設定に関するメッセージがNRにおいてメジャメントギャップが必要であるか否かを報告させる設定を含んでおり、前記NRにおいてメジャメントギャップが必要であるか否かを報告させる設定がsetupにセットされていなかったら、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていないと考慮(consider)する。
  (G)下記(G-1)から(G-3)に従って、RRC再設定完了メッセージの内容(contents)をセットする。
  (H)新しい設定を用いた送信のため、SRB1を介して下位レイヤ(PHY、MAC等)にRRC再設定完了メッセージを提出(submit)する。
When the terminal device receives a message regarding RRC connection reconfiguration or executes conditional reconfiguration (CHO, CPA, or CPC), the terminal device performs some or all of the following (A) to (H). You may (perform).
(Processing RRP)
(A) If the message regarding RRC connection reconfiguration is applied by performing a conditional reconfiguration when performing cell selection while timer T311 is running, which starts at the beginning of the RRC reestablishment procedure, then Remove all entries from the entry list.
(B) If the message regarding RRC connection reconfiguration includes MCG cell group configuration, perform cell group configuration for the received MCG cell group configuration, and the cell group configuration is reconfigured with synchronization. If SpCell settings with information elements are included, perform reconfiguration with synchronization.
(C) If the message regarding RRC connection reconfiguration includes cell group configuration for the SCG, perform cell group configuration for the SCG, and said cell group configuration includes SpCell configuration with synchronized reconfiguration information element; If included, perform reconfiguration with synchronization.
(D) If the message regarding RRC connection reconfiguration includes conditional reconfiguration, perform conditional reconfiguration.
(E) If the message regarding the reconfiguration of an RRC connection includes a setting that causes the NR to report whether a measurement gap is required, and the setting that causes the NR to report whether a measurement gap is required is set up If it is set to , it is considered that it is set to provide information on whether or not a measurement gap is required for the target frequency band of NR.
(F) If the message regarding RRC connection reconfiguration includes a setting to report whether a measurement gap is required in the NR, and the setting to report whether a measurement gap is required in the NR is set up If it is not set to , it is considered that it is not set to provide information on whether or not the measurement gap of the target frequency band of NR is required.
(G) Set the contents of the RRC reconfiguration completion message according to (G-1) to (G-3) below.
(H) Submit an RRC reconfiguration completion message to lower layers (PHY, MAC, etc.) via SRB1 for transmission using the new configuration.
 (処理NFG)
   (G-1)もしRRCコネクションの再設定に関するメッセージがSRB1を介して受信されたが、mrdc-SecondaryCellGroupという名称のMR-DCにおけるSCGの設定(不図示)、E-UTRAにおけるRRCコネクション再設定メッセージ(RRCConnectionReconfiguration)、又はE-UTRAにおけるRRCコネクション再開メッセージ(RRCConnectionResume)に含まれていなかったら、下記(G-2)の処理を実施する。
   (G-2)もし端末装置に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていたら、下記(G-3)の処理を実施する。
   (G-3)もしRRCコネクションの再設定に関するメッセージがNRにおいてメジャメントギャップが必要であるか否かを報告させる設定を含んでいる、又はNRにおいてメジャメントギャップが必要であるか否かを示す情報が、最後に端末装置が報告した時と比べて変更されていたら、RRC再設定完了メッセージにNRにおいてメジャメントギャップが必要であるか否かを示す情報を含め、下記(G-3-1)から(G-3-3)に従って、NRにおいてメジャメントギャップが必要であるか否かを示す情報の内容(contents)をセットする。
    (G-3-1)NRにおいてメジャメントギャップが必要であるか否かを示す情報にintraFreq-needForGapという名称の情報要素を含め、各NRのサービングセルのための周波数内メジャメントのギャップの要否情報をセットする。
    (G-3-2)もしrequestedTargetBandFilterNRという名称の情報要素が設定されていたら、requestedTargetBandFilterNRという名称の情報要素にも含まれる、端末装置のサポートする各NRの周波数バンドに対して、interFreq-needForGapという名称の情報要素内にエントリを含め、前記周波数バンドのためのギャップの要否情報をセットする。
    (G-3-3)もしrequestedTargetBandFilterNRという名称の情報要素が設定されていなかったら、interFreq-needForGapという名称の情報要素内にエントリを含め、端末装置のサポートする各NRの周波数バンドのための対応するギャップの要否情報をセットする。
(Processing NFG)
(G-1) If a message regarding RRC connection reconfiguration is received via SRB1, an SCG configuration in MR-DC named mrdc-SecondaryCellGroup (not shown), an RRC connection reconfiguration message in E-UTRA (RRCConnectionReconfiguration) or in the RRC Connection Resume message (RRCConnectionResume) in E-UTRA, perform the following process (G-2).
(G-2) If the terminal device is set to be provided with information on whether or not a measurement gap for the target frequency band of NR is provided, the following process (G-3) is performed.
(G-3) If the message regarding the reconfiguration of the RRC connection contains a setting that causes the NR to report whether a measurement gap is required, or if there is no information indicating whether a measurement gap is required in the NR. , if there has been a change since the last time the terminal device reported, include information indicating whether a measurement gap is required in the NR in the RRC reconfiguration completion message, and from (G-3-1) below ( G-3-3), set the contents of information indicating whether a measurement gap is necessary in NR.
(G-3-1) Include an information element named intraFreq-needForGap in the information indicating whether a measurement gap is required in the NR, and include information on the necessity or necessity of an intra-frequency measurement gap for the serving cell of each NR. set.
(G-3-2) If the information element named requestedTargetBandFilterNR is set, the name interFreq-needForGap is assigned to each NR frequency band supported by the terminal device, which is also included in the information element named requestedTargetBandFilterNR. includes an entry in the information element of , and sets gap necessity information for the frequency band.
(G-3-3) If the information element named requestedTargetBandFilterNR is not configured, include an entry in the information element named interFreq-needForGap with a corresponding entry for each NR frequency band supported by the terminal device. Set gap necessity information.
 端末装置は、同期付再設定を実行(execute)するために、下記(A)から(E)の一部または全部を実施(perform)してよい。「同期付再設定を実行する」は、「同期付再設定を実施する」または「同期付再設定をトリガする」等と言い換えられてよい。
 (処理RWS)
  (A)対応するSpCellのためのタイマーT310が走っているならば停止する。
  (B)対応するSpCellのためのタイマーT312が走っているならば停止する。
  (C)対応するセルグループのMACエンティティをリセットする。
  (D)同期付再設定情報要素に含まれる新しいUE識別子(newUE-Identity)の値を、対応するセルグループのためのC-RNTIとして適用する。
  (E)受信されたSpCell共通設定に従って下位レイヤ(PHY等)を設定する。
The terminal device may perform some or all of (A) to (E) below in order to execute reconfiguration with synchronization. "Performing reconfiguration with synchronization" may be rephrased as "performing reconfiguration with synchronization" or "triggering reconfiguration with synchronization".
(Processing RWS)
(A) If timer T310 for the corresponding SpCell is running, stop it.
(B) If timer T312 for the corresponding SpCell is running, stop it.
(C) Reset the MAC entity of the corresponding cell group.
(D) Apply the value of the new UE identifier (newUE-Identity) included in the reconfiguration information element with synchronization as the C-RNTI for the corresponding cell group.
(E) Configure lower layers (PHY, etc.) according to the received SpCell common settings.
 次に条件付再設定について説明する。条件付再設定とは、条件付ハンドオーバ、条件付PSCell追加、および/または条件付PSCell変更のことであってもよい。ネットワークは、端末装置に対して条件付再設定のターゲット候補セルを一つまたは複数設定する。端末装置は、設定された前記候補セルの状態を評価する。端末装置は、前記評価を行い、実行条件を満たした候補セルに関連する条件付再設定情報要素を適用する。また、端末装置は、条件付再設定のために、後述するエントリのリスト(VarConditionalReconfig)を保持してよい。 Next, conditional resetting will be explained. Conditional reconfiguration may refer to conditional handover, conditional PSCell addition, and/or conditional PSCell change. The network sets one or more target candidate cells for conditional reconfiguration for the terminal device. The terminal device evaluates the state of the configured candidate cell. The terminal device performs the evaluation and applies conditional reconfiguration information elements associated with candidate cells that satisfy the execution conditions. Furthermore, the terminal device may maintain a list of entries (VarConditionalReconfig), which will be described later, for conditional reconfiguration.
 端末装置は、条件付再設定に関する情報を受け取ったことに基づいて、前記条件付再設定に関する情報に、エントリの削除リスト(condReconfigToRemoveList)が含まれる場合、条件付再設定のターゲット候補セルを消去する動作を行ってよく、また前記条件付再設定に関する情報に、エントリの追加修正リスト(condReconfigToAddModList)が含まれる場合、条件付再設定のターゲット候補セルを追加または修正する動作を行ってよい。 Based on receiving the information regarding conditional reconfiguration, the terminal device deletes a target candidate cell for conditional reconfiguration if the information regarding conditional reconfiguration includes an entry deletion list (condReconfigToRemoveList). If the information regarding the conditional reconfiguration includes an addition/modification list of entries (condReconfigToAddModList), the conditional reconfiguration target candidate cell may be added or modified.
 前記条件付再設定のターゲット候補セルを消去する動作とは、前記エントリの削除リストに含まれる、エントリの識別子(condReconfigId)が、端末装置が保持しているエントリのリストに含まれる場合、端末装置は、前記端末装置が保持しているエントリのリストから前記エントリの識別子に対応するエントリを消去することであってよい。なお、以下の説明において、端末装置が保持しているエントリのリストのことを単にエントリリストとも称する。すなわち、以下の説明における「エントリリスト」は、特に明示しない限り、端末装置が保持しているエントリのリストのことを指す。また、エントリリストは、VarConditionalReconfigという名称の変数であってもよい。また、エントリの識別子のことを単にエントリ識別子とも称する。 The operation of deleting the conditional reconfiguration target candidate cell means that if the entry identifier (condReconfigId) included in the entry deletion list is included in the list of entries held by the terminal device, the terminal device The method may be to delete an entry corresponding to the identifier of the entry from a list of entries held by the terminal device. Note that in the following description, the list of entries held by the terminal device is also simply referred to as an entry list. That is, the "entry list" in the following description refers to a list of entries held by the terminal device, unless otherwise specified. The entry list may also be a variable named VarConditionalReconfig. Further, the entry identifier is also simply referred to as an entry identifier.
 前記条件付再設定のターゲット候補セルを追加または修正する動作とは、エントリの追加修正リストに含まれる各エントリ識別子が、エントリリストのエントリに存在する場合に、端末装置が、以下の処理(A)及び、または(B)を行うことであってよい。
  (A)エントリの追加修正リストに含まれるエントリに、実行条件(condExecutionCond)が含まれる場合、このエントリのエントリ識別子と合致する、エントリリストのエントリの実行条件を、そのエントリの追加修正リストに含まれる実行条件で置き換える。
  (B)エントリの追加修正リストに含まれるエントリに、条件付再設定情報要素(condRRCReconfig)が含まれる場合、このエントリのエントリ識別子と合致する、エントリリストの条件付再設定情報要素を、そのエントリの追加修正リストに含まれる条件付再設定情報要素で置き換える。
The operation of adding or modifying a target candidate cell for conditional reconfiguration means that when each entry identifier included in the entry addition/modification list exists in an entry in the entry list, the terminal device performs the following process (A). ) and/or (B).
(A) If an entry included in the addition/modification list of an entry includes an execution condition (condExecutionCond), the execution condition of the entry in the entry list that matches the entry identifier of this entry is included in the list of addition/modification of that entry. Replace with the execution condition.
(B) If an entry included in the entry addition/modification list includes a conditional reconfiguration information element (condRRCReconfig), the conditional reconfiguration information element in the entry list that matches the entry identifier of this entry is added to that entry. Replace with the conditional reconfiguration information element included in the additional modification list.
 また、エントリの追加修正リストに含まれるエントリ識別子が、エントリリストに含まれない場合、端末装置は、エントリリストに含まれないエントリ識別子に対応する新しいエントリをエントリリストに追加してもよい。 Furthermore, if the entry identifier included in the entry addition/modification list is not included in the entry list, the terminal device may add a new entry corresponding to the entry identifier not included in the entry list to the entry list.
 なお、エントリの削除リストとは、削除される一つまたは複数の候補SpCellの設定に関するリストであってよい。エントリの追加修正リストとは、CHO、CPC及びCPAのために追加および修正される一つまたは複数の候補SpCellの設定に関するリストであってよい。エントリの追加修正リストに含まれる各エントリはエントリ識別子を含み、それに加えて、実行条件および、または条件付再設定情報要素を含んでよい。各エントリは一つまたは複数の候補SpCellのうちの一つの候補SpCellに関連付けられてよい。エントリ識別子とは、CHO、CPA及びCPCの各エントリの識別に使用される識別子である。エントリリストは、一つまたは複数のエントリを含んでよい。各エントリは、一つのエントリ識別子、一つまたは複数の実行条件、および一つの条件付再設定情報要素を含んでよい。端末装置が保持しているエントリリストがエントリを含まない場合、端末装置は空のリストを保持してもよい。実行条件とは、条件付再設定の実行をトリガするために満たす必要のある条件であってよい。条件付再設定情報要素とは、前記実行条件が満たされた際に適用されるRRCコネクションの再設定に関するメッセージであってよい。前記RRCコネクションの再設定に関するメッセージは、候補SpCellに接続するために用いられるメッセージであってよい。 Note that the entry deletion list may be a list related to the settings of one or more candidate SpCells to be deleted. The addition/modification list of entries may be a list regarding the settings of one or more candidate SpCells to be added and modified for CHO, CPC, and CPA. Each entry included in the addition/modification list of entries includes an entry identifier and may additionally include execution conditions and/or conditional reconfiguration information elements. Each entry may be associated with one candidate SpCell of one or more candidate SpCells. The entry identifier is an identifier used to identify each entry of CHO, CPA, and CPC. The entry list may include one or more entries. Each entry may include one entry identifier, one or more execution conditions, and one conditional reconfiguration information element. If the entry list held by the terminal device does not include any entries, the terminal device may hold an empty list. The execution condition may be a condition that needs to be met to trigger execution of the conditional reconfiguration. The conditional reconfiguration information element may be a message related to RRC connection reconfiguration that is applied when the execution condition is satisfied. The message regarding resetting the RRC connection may be a message used to connect to a candidate SpCell.
 端末装置は、端末装置が保持しているエントリリストに含まれるエントリの実行条件を評価してよい。端末装置が保持しているエントリリストが空である場合または、エントリリストを保持していない場合、実行条件の評価を行わなくてよい。 The terminal device may evaluate the execution conditions of the entries included in the entry list held by the terminal device. If the entry list held by the terminal device is empty or if the terminal device does not hold an entry list, it is not necessary to evaluate the execution condition.
 条件付再設定を実行するとは、一つまたは複数の実行条件が満たされた場合、前記一つまたは複数の実行条件と同じエントリに含まれる、条件付再設定情報要素を適用し、条件付再設定情報要素に基づくRRC再設定手順を実行することであってよい。 Executing conditional reconfiguration means that when one or more execution conditions are met, the conditional reconfiguration information element included in the same entry as the one or more execution conditions is applied, and conditional reconfiguration is performed. It may be to perform an RRC reconfiguration procedure based on the configuration information element.
 実行条件を満たした複数の候補セルが存在する場合は、端末装置は、前記実行条件を満たした複数の候補セルの中から一つのセルを選択し、選択した候補セルに関連付けられた条件付再設定情報要素を適用してよい。 If there are multiple candidate cells that meet the execution conditions, the terminal device selects one cell from among the multiple candidate cells that meet the execution conditions, and executes the conditional replay associated with the selected candidate cell. Configuration information elements may be applied.
 端末装置のMACエンティティは、上位レイヤ(RRC等)からMACエンティティのリセット(reset of the MAC entity)を要求された場合、下記(A)から(O)の一部または全部を実施してよい。前記MACエンティティのリセットは、MACリセット(MAC reset)と言い換えられてよい。また、端末装置のMACエンティティが下記(A)から(O)の一部を実施する処理を、部分的MACリセット(partial MAC reset)と言い換えられてよいし、部分的にMACエンティティをリセットする処理と言い換えられてよい。「部分的にMACエンティティをリセットする」は、「MACエンティティに部分的リセット(partial reset)を実施するよう指示(instruct)する」等と言い換えられてよい。
 (処理MR)
  (A)論理チャネル毎に設定されているパラメータBjを0に初期化(initialize)する。
  (B)すべてのタイマーが走っているならば停止する。
  (C)すべての上りリンクHARQプロセスのNew Data Indicator(NDI)の値を0にセットする。
  (D)もしあれば進行中のランダムアクセス手順を停止する。
  (E)もしあれば明示的にシグナリングされた(explicitly signalled)、4ステップおよび2ステップのRAタイプのコンテンションフリーランダムアクセス(contention-free Random Access:CFRA)のリソースを破棄する。
  (F)Msg3のバッファをフラッシュする。
  (G)MSGAのバッファをフラッシュする。
  (H)もしあれば、トリガされたSR手順をキャンセルする。
  (I)もしあれば、トリガされたBSR手順をキャンセルする。
  (J)もしあれば、トリガされたPHR手順をキャンセルする。
  (K)もしあれば、トリガされたコンフィギュアード上りリンクグラントの確証(confirmation)をキャンセルする。
  (L)すべての下りリンクHARQプロセスのソフトバッファをフラッシュする。
  (M)各下りリンクHARQプロセスにおいて、あるトランスポートブロック(TB)のための次に受信される(next received)送信を、初めての(very first)送信であると考慮(consider)する。
  (N)もしあればテンポラリC-RNTI(Temporary C-RNTI)をリリース(release)する。
  (O)すべてのBFI_COUNTERをリセット(reset)する。
When the MAC entity of the terminal device is requested to reset of the MAC entity from an upper layer (such as RRC), the MAC entity of the terminal device may implement some or all of (A) to (O) below. The resetting of the MAC entity may be referred to as a MAC reset. Furthermore, the process in which the MAC entity of the terminal device performs some of the following (A) to (O) may be called a partial MAC reset, or the process of partially resetting the MAC entity. It can be rephrased as "Partially resetting the MAC entity" may be rephrased as "instructing the MAC entity to perform a partial reset."
(Processing MR)
(A) Initialize the parameter Bj set for each logical channel to 0.
(B) If all timers are running, stop them.
(C) Set the New Data Indicator (NDI) value of all uplink HARQ processes to 0.
(D) Stop any ongoing random access procedures, if any.
(E) Discard explicitly signaled 4-step and 2-step RA type contention-free random access (CFRA) resources, if any.
(F) Flush Msg3's buffer.
(G) Flush the MSGA buffer.
(H) Cancel the triggered SR procedure, if any.
(I) Cancel the triggered BSR procedure, if any.
(J) Cancel the triggered PHR procedure, if any.
(K) Cancel the triggered configured uplink grant confirmation, if any.
(L) Flush the soft buffers of all downlink HARQ processes.
(M) In each downlink HARQ process, consider the next received transmission for a certain transport block (TB) to be the very first transmission.
(N) Release Temporary C-RNTI, if any.
(O)Reset all BFI_COUNTERs.
 複数送信/受信点(multiple Transmit/Receive Point:multi-TRPまたはmTRPとも称する)オペレーションについて説明する。 The multiple Transmit/Receive Point (also referred to as multi-TRP or mTRP) operation is explained.
 mTRPオペレーションにおいて、サービングセルは、PDSCH、PDCCH、PUSCH、およびPUCCHのための、より良いカバレッジ、信頼性、および/またはデータレートを提供するために、複数のTRP(Transmit/Receive Point)から端末装置をスケジュールすることができてよい。 In mTRP operation, a serving cell receives terminal equipment from multiple TRPs (Transmit/Receive Points) to provide better coverage, reliability, and/or data rate for PDSCH, PDCCH, PUSCH, and PUCCH. Good to be able to schedule.
 mTRPのPDSCH送信のスケジュールのために、二つの異なるオペレーションモードがあってよい。二つのオペレーションモードは、single-DCIとmulti-DCIであってよい。両方のモードに対する上りリンクと下りリンクオペレーションの制御は、RRC層によって設定される設定を用いて、PHY層とMAC層で行われてよい。single-DCIモードでは、端末装置に対して、同じDCIによって両方のTRP対するスケジュールがなされてよい。multi-DCIモードでは、端末装置に対して、独立したDCIによってそれぞれのTRPに対するスケジュールがなされてよい。 There may be two different operation modes for the mTRP PDSCH transmission schedule. The two operation modes may be single-DCI and multi-DCI. Control of uplink and downlink operations for both modes may be performed at the PHY and MAC layers with settings configured by the RRC layer. In single-DCI mode, a terminal device may be scheduled for both TRPs by the same DCI. In multi-DCI mode, a terminal device may be scheduled for each TRP by an independent DCI.
 mTRPの各TRPは、TRP情報によって特定されてもよい。例えば、TRP情報は、一つまたは複数のTRPのうち一つのTRPを特定するための情報であってもよい。例えば、TRP情報は、一つのTRPを特定するためのインデックスであってもよい。例えば、TRP情報に基づいて、一つのTRPが決定されてもよい。例えば、TRP情報は、一つまたは複数のTRPを特定するための情報であってもよい。TRP情報は、一つのTRPを選択するために用いられてもよい。TRP情報は、CORESETプールインデックスであってもよい。一つのCORESETに、一つのCORESETプールインデックスと一つのCORESETリソースセット識別子とが関連付けられてよい。端末装置は、CORESETリソースセット識別子に基づいて対応するTRPでPUSCHを送信してもよい。TRP情報は、CORESETリソースプールのインデックスに関連付けられてもよい。例えば、第一のCORESETプールインデックスは、第一のTRPに関連付けられてもよく、第二のCORESETプールインデックスは、第二のTRPに関連付けられてもよい。TRP情報は、TCI状態のプール(またはTCI状態のプールインデックス)に関連付けられてもよい。例えば、第一のTCI状態プール(またはプールインデックス)は、第一のTRPに関連付けられてもよく、第二のTCI状態プール(またはプールインデックス)は、第二のTRPに関連付けられてもよい。 Each TRP of mTRPs may be specified by TRP information. For example, the TRP information may be information for identifying one TRP among one or more TRPs. For example, the TRP information may be an index for identifying one TRP. For example, one TRP may be determined based on TRP information. For example, the TRP information may be information for identifying one or more TRPs. TRP information may be used to select one TRP. The TRP information may be a CORESET pool index. One CORESET pool index and one CORESET resource set identifier may be associated with one CORESET. The terminal device may transmit the PUSCH with the corresponding TRP based on the CORESET resource set identifier. TRP information may be associated with an index of a CORESET resource pool. For example, a first CORESET pool index may be associated with a first TRP, and a second CORESET pool index may be associated with a second TRP. TRP information may be associated with a TCI state pool (or a TCI state pool index). For example, a first TCI state pool (or pool index) may be associated with a first TRP, and a second TCI state pool (or pool index) may be associated with a second TRP.
 mTRPのPDCCH送信のスケジュールのために、二つの異なるオペレーションモードがあってよい。二つのオペレーションモードは、PDCCH繰り返しと、単一周波数ネットワーク(single frequency network:SFN)ベースのPDCCH送信であってよい。両方のモードにおいて、端末装置は、各TRPから同じDCIを運ぶPDCCH送信のそれぞれを受信することができる。PDCCH繰り返しモードにおいて、端末装置は、それぞれ異なるCORESETに対応付けられた二つのリンクされたサーチスペースから同じDCIを運ぶ二つのPDCCH送信を受信することができる。SFNベースのPDCCH送信モードにおいて、端末装置は、異なるTCI状態(TCI state)を用いて、単一のサーチスペース/CORESETから、同じDCIを運ぶ二つのPDCCH送信を受信することができる。 There may be two different operation modes for the mTRP PDCCH transmission schedule. The two modes of operation may be PDCCH repetition and single frequency network (SFN) based PDCCH transmission. In both modes, the terminal device may receive each of the PDCCH transmissions carrying the same DCI from each TRP. In PDCCH repetition mode, the terminal device may receive two PDCCH transmissions carrying the same DCI from two linked search spaces, each associated with a different CORESET. In SFN-based PDCCH transmission mode, a terminal device can receive two PDCCH transmissions carrying the same DCI from a single search space/CORESET with different TCI states.
 mTRP PUSCH繰り返しにおいて、単一のDCI、またはRRCシグナリングによって提供されたコンフィギュアード上りリンクグラントによるインディケーションによって、端末装置は、二つのTRPに対応する、異なる空間的関係(spatial relation)に関連付けられたビーム方向に同じコンテンツのPUSCH送信を実行(perform)してよい。 In the mTRP PUSCH repetition, the terminal equipment is associated with different spatial relations corresponding to the two TRPs by the indication by the configured uplink grant provided by the single DCI or RRC signaling. PUSCH transmission of the same content may be performed in the same beam direction.
 セル間(inter-cell)のmTRPオペレーションにおいて、multi-DCI PDSCH送信における一つまたは複数のTCI状態が、サービングセルの物理セル識別子(Physical Cell Identity:PCI)とは異なるPCIのSSBに関連付けられてよい。また、一度に活性化される、サービングセルとは異なるPCIに関連付けられたTCI状態は最大一つであってよい。 In inter-cell mTRP operations, one or more TCI states in multi-DCI PDSCH transmission may be associated with a different PCI SSB than the serving cell's Physical Cell Identity (PCI). . Further, at most one TCI state associated with a PCI different from the serving cell may be activated at a time.
 次に集約ユニット(Central Unit:CU)および分散ユニット(Distributed Unit:DU)について説明する。集約ユニットとは、基地局装置のRRC層、SDAP層およびPDCP層をホストする(hosting)論理ノードのことであってよい。また、分散ユニットとは、基地局装置のRLC層、MAC層およびPHY層をホストする論理ノードのことであってよい。集約ユニットは、一つまたは複数の分散ユニットの操作(operation)を制御してよい。また、一つの分散ユニットは、一つまたは複数のセルをサポートしてよいし、一つのセルは、ただ一つの分散ユニットのみによってサポートされてよい。つまり、一つの分散ユニットは、一つまたは複数のセルによって対応付けされてよい。 Next, the central unit (CU) and distributed unit (DU) will be explained. The aggregation unit may be a logical node that hosts the RRC layer, SDAP layer, and PDCP layer of the base station device. Furthermore, the distributed unit may be a logical node that hosts the RLC layer, MAC layer, and PHY layer of the base station device. An aggregation unit may control the operation of one or more distributed units. Also, one distribution unit may support one or more cells, and one cell may be supported by only one distribution unit. That is, one distributed unit may be associated with one or more cells.
 次に、本実施形態におけるレイヤ1/レイヤ2モビリティ(L1/L2 mobility)について説明する。レイヤ1/レイヤ2モビリティとは、基地局装置が、端末装置にサービングセルのターゲット(変更先)の一つまたは複数のセルを特定させるDCIまたはMACコントロールエレメントを通じて、端末装置に一つまたは複数のサービングセルの変更を指示する手順(procedure)のことであってよい。それに加えてまたはそれに代えて、レイヤ1/レイヤ2モビリティとは、端末装置が、基地局装置より受信した、端末装置にサービングセルのターゲットの一つまたは複数のセルを特定させるDCIまたはMACコントロールエレメントで示される一つまたは複数のセルへ、サービングセルを変更する手順のことであってよい。端末装置にサービングセルのターゲットの一つまたは複数のセルを特定させるDCIとは、基地局装置が変更する端末装置のサービングセルのターゲットの一つまたは複数のセルを示すDCIのことであってよい。同様に、端末装置にサービングセルのターゲットの一つまたは複数のセルを特定させるMACコントロールエレメントとは、基地局装置が変更する端末装置のサービングセルのターゲットの一つまたは複数のセルを示すMACコントロールエレメントのことであってよい。端末装置にサービングセルのターゲットの一つまたは複数のセルを特定させるDCIおよびMACコントロールエレメントは、サービングセルの変更を示すその他の情報を含んでよい。レイヤ1/レイヤ2モビリティにおいて、基地局装置は、端末装置から受信した一つまたは複数のメジャメントのレポート(measurement report)に基づいて、端末装置にサービングセルのターゲットの一つまたは複数のセルを特定させるDCIまたはMACコントロールエレメントを通じて、端末装置に一つまたは複数のサービングセルの変更を指示してもよい。なお、「レイヤ1/レイヤ2モビリティ」は、「レイヤ1/レイヤ2ベースのセル間モビリティ(L1/L2 based inter-cell mobility)」、「レイヤ1/レイヤ2セル間モビリティ(L1/L2 inter-cell mobility)」、「レイヤ1/レイヤ2サービングセル変更処理」、「レイヤ1/レイヤ2サービングセル変更」または「レイヤ1/レイヤ2ハンドオーバ」等と言い換えられてよい。「端末装置にサービングセルのターゲットの一つまたは複数のセルを特定させるDCI」は、「ターゲットの一つまたは複数のセルへのサービングセルの変更を指示するDCI」や「端末装置の一つまたは複数のサービングセルを変更するDCI」等と言い換えられてよいし、「端末装置にサービングセルのターゲットの一つまたは複数のセルを特定させるMACコントロールエレメント」は、「ターゲットの一つまたは複数のセルへのサービングセルの変更を指示するMACコントロールエレメント」や「端末装置の一つまたは複数のサービングセルを変更するMACコントロールエレメント」等と言い換えられてよい。また、DCIは、レイヤ1シグナリング等と言い換えられてよいし、MACコントロールエレメントは、レイヤ2シグナリング等と言い換えられてよい。レイヤ1はPHY層のことであってよいし、レイヤ2はMAC層、RLC層、PDCP層、SDAP層のうちの一つであってよい。また、上述のメジャメントは、レイヤ1、および/または、レイヤ3つまりRRC層によって行われてよい。 Next, layer 1/layer 2 mobility (L1/L2 mobility) in this embodiment will be explained. Layer 1/Layer 2 mobility refers to a base station device that allows a terminal device to specify one or more serving cells through a DCI or MAC control element that allows the terminal device to identify one or more cells to which the serving cell is to be targeted (changed to). It may be a procedure for instructing changes to the process. Additionally or alternatively, Layer 1/Layer 2 mobility refers to a DCI or MAC control element received by a terminal device from a base station device that causes the terminal device to identify one or more target cells of the serving cell. It may refer to the procedure of changing the serving cell to one or more indicated cells. The DCI that causes the terminal device to specify one or more cells as the target of the serving cell may be a DCI that indicates one or more cells as the target of the serving cell of the terminal device that the base station device changes. Similarly, a MAC control element that causes a terminal device to specify one or more cells as the target of the serving cell is a MAC control element that indicates one or more cells as the target of the serving cell of the terminal device that the base station device changes. It's fine. The DCI and MAC control elements that cause the terminal device to identify one or more cells as a target of the serving cell may include other information indicating a change in the serving cell. In layer 1/layer 2 mobility, the base station device causes the terminal device to identify one or more target cells of the serving cell based on one or more measurement reports received from the terminal device. The terminal device may be instructed to change one or more serving cells through the DCI or MAC control element. Note that "Layer 1/Layer 2 mobility" refers to "Layer 1/Layer 2 based inter-cell mobility (L1/L2 based inter-cell mobility)" and "Layer 1/Layer 2 inter-cell mobility (L1/L2 inter-cell mobility)". cell mobility)," "layer 1/layer 2 serving cell change processing," "layer 1/layer 2 serving cell change," or "layer 1/layer 2 handover." ``DCI that causes the terminal device to identify one or more target cells of the serving cell'' is ``DCI that instructs the terminal device to change the serving cell to one or more target cells'' and ``DCI that causes the terminal device to identify one or more target cells of the serving cell.'' "DCI for changing the serving cell," etc., and "MAC control element that allows the terminal device to identify one or more target cells of the serving cell" can be translated as "DCI for changing the serving cell to one or more target cells." It may be rephrased as "MAC control element that instructs a change" or "MAC control element that changes one or more serving cells of a terminal device." Further, DCI may be translated into layer 1 signaling, etc., and MAC control element may be translated into layer 2 signaling, etc. Layer 1 may be a PHY layer, and layer 2 may be one of a MAC layer, an RLC layer, a PDCP layer, and an SDAP layer. Further, the above-mentioned measurements may be performed by layer 1 and/or layer 3, that is, the RRC layer.
 レイヤ1/レイヤ2モビリティにおいて、基地局装置が変更する端末装置のサービングセルのターゲットの一つまたは複数のセルの候補を、候補セル(candidate cell)と呼んでよいし、候補ターゲットセル(candidate target cell)等とその他の名称で呼んでよい。レイヤ1/レイヤ2モビリティにおいて、候補セルは、端末装置が一つまたは複数のサービングセルをターゲットの一つまたは複数のセルへ変更する前に、基地局装置によって前記端末装置に一つまたは複数設定されてよい。レイヤ1/レイヤ2モビリティにおいて、候補セルは、SpCellであってよいし、SCellであってもよい。レイヤ1/レイヤ2モビリティにおいて、基地局装置が変更する端末装置のサービングセルのターゲットの一つまたは複数のセルの候補によるグループ(セルの集合)を、候補セルグループ(Candidate Cell Group:CCG)と呼んでよいし、候補セルセット(candidate cell set)やコンフィギュアードセルセット(configured cell set)等とその他の名称で呼んでよい。レイヤ1/レイヤ2モビリティにおいて、CCGは、MCGまたはSCGに含まれる一部または全部のセルによるグループであってよい。レイヤ1/レイヤ2モビリティにおいて、CCGは、端末装置が一つまたは複数のサービングセルをターゲットの一つまたは複数のセルへ変更する前に、基地局装置によって前記端末装置に一つまたは複数設定されてよい。レイヤ1/レイヤ2モビリティにおいて、候補ターゲット(candidate target)とは、上述の候補セルのことであってよいし、上述のCCGのことであってよい。それに加えてまたはそれに代えて、レイヤ1/レイヤ2モビリティにおいて、候補ターゲットは、上述の候補セルおよびCCGの両方を含んでよい。レイヤ1/レイヤ2モビリティにおいて、ターゲットの一つまたは複数のセルは、端末装置に設定される一つまたは複数の候補セル、および/または、端末装置に設定される一つまたは複数のCCGの中から、端末装置にサービングセルのターゲットの一つまたは複数のセルを特定させるDCIまたはMACコントロールエレメントによって特定される一つまたは複数のセルであってよい。 In layer 1/layer 2 mobility, one or more cell candidates for the serving cell target of the terminal device that the base station device changes may be called a candidate cell (candidate cell), or a candidate target cell (candidate target cell). ) and other names. In Layer 1/Layer 2 mobility, one or more candidate cells are configured in a terminal device by a base station device before the terminal device changes one or more serving cells to target one or more cells. It's fine. In layer 1/layer 2 mobility, a candidate cell may be an SpCell or an SCell. In layer 1/layer 2 mobility, a group (set of cells) of one or more cell candidates for the serving cell target of the terminal device that the base station device changes is called a candidate cell group (CCG). or may be called by other names such as candidate cell set or configured cell set. In layer 1/layer 2 mobility, a CCG may be a group of some or all cells included in the MCG or SCG. In Layer 1/Layer 2 mobility, one or more CCGs are configured on a terminal device by a base station device before the terminal device changes one or more serving cells to target one or more cells. good. In layer 1/layer 2 mobility, a candidate target may be the above-mentioned candidate cell or the above-mentioned CCG. Additionally or alternatively, in Layer 1/Layer 2 mobility, candidate targets may include both candidate cells and CCGs as described above. In Layer 1/Layer 2 mobility, the target cell or cells are one or more candidate cells configured on the terminal device and/or one or more CCGs configured on the terminal device. may be one or more cells identified by a DCI or MAC control element that causes the terminal equipment to identify one or more cells as a target of the serving cell.
 レイヤ1/レイヤ2モビリティにおいて、基地局装置が端末装置に提供する、一つまたは複数の候補セル、および/または、一つまたは複数のCCGの情報を示す設定を、レイヤ1/レイヤ2セル間モビリティ候補ターゲット設定(L1/L2 inter-cell mobility candidate target configuration)と呼んでよいし、候補ターゲット設定(candidate target configuration)や候補ターゲットの設定、候補セルの設定、CCGの設定等とその他の名称で呼んでよい。それに加えてまたはそれに代えて、レイヤ1/レイヤ2モビリティにおいて、レイヤ1/レイヤ2セル間モビリティ候補ターゲット設定とは、基地局装置が端末装置に提供する、一つまたは複数の候補ターゲットの情報を示す設定のことであってよい。レイヤ1/レイヤ2モビリティにおいて、レイヤ1/レイヤ2セル間モビリティ候補ターゲット設定は、一つまたは複数の候補ターゲットの設定を含んでよいし、一つまたは複数の候補ターゲットに適用されるメジャメントおよび/または無線ベアラの設定を含んでもよい。レイヤ1/レイヤ2モビリティにおいて、基地局装置は、一つまたは複数の候補セルを用意し、端末装置に前記候補セルの設定を含むレイヤ1/レイヤ2セル間モビリティ候補ターゲット設定を提供してよい。このとき、端末装置は、前記レイヤ1/レイヤ2セル間モビリティ候補ターゲット設定を受信した際に、前記基地局装置に対して、前記候補セルのメジャメントおよびそのレポートを開始してよい。それに加えてまたはそれに代えて、レイヤ1/レイヤ2モビリティにおいて、基地局装置は、一つまたは複数のCCGを用意し、端末装置に前記CCGの設定を含むレイヤ1/レイヤ2セル間モビリティ候補ターゲット設定を提供してよい。このとき、端末装置は、前記レイヤ1/レイヤ2セル間モビリティ候補ターゲット設定を受信した際に、前記基地局装置に対して、前記CCGの各候補セルのメジャメントおよびそのレポートを開始してよい。例えば、レイヤ1/レイヤ2モビリティにおいて、基地局装置が、端末装置の一つまたは複数のサービングセルを変更するDCIで、いずれの候補セルか、またはいずれのCCGかを示す情報を端末装置に通知することによって、端末装置が、一つまたは複数のサービングセルを変更してよい。また、例えば、レイヤ1/レイヤ2モビリティにおいて、基地局装置が、端末装置の一つまたは複数のサービングセルを変更するMACコントロールエレメントで、いずれの候補セルか、またはいずれのCCGかを示す情報を端末装置に通知することによって、端末装置が、一つまたは複数のサービングセルを変更してよい。 In Layer 1/Layer 2 mobility, settings indicating information on one or more candidate cells and/or one or more CCGs that the base station device provides to the terminal device can be configured between Layer 1/Layer 2 cells. It can also be called mobility candidate target configuration (L1/L2 inter-cell mobility candidate target configuration), and can also be referred to as candidate target configuration, candidate target configuration, candidate cell configuration, CCG configuration, etc. You can call me. Additionally or alternatively, in Layer 1/Layer 2 mobility, Layer 1/Layer 2 inter-cell mobility candidate target setting refers to information on one or more candidate targets that the base station device provides to the terminal device. It may refer to the settings shown. In Layer 1/Layer 2 mobility, the Layer 1/Layer 2 intercell mobility candidate targeting configuration may include the configuration of one or more candidate targets, and measurements and/or measurements applied to the one or more candidate targets. Alternatively, it may include radio bearer settings. In layer 1/layer 2 mobility, the base station device may prepare one or more candidate cells and provide the terminal device with a layer 1/layer 2 inter-cell mobility candidate target configuration including the configuration of the candidate cell. . At this time, upon receiving the Layer 1/Layer 2 inter-cell mobility candidate target setting, the terminal device may start measuring the candidate cell and reporting it to the base station device. In addition to or in place of that, in Layer 1/Layer 2 mobility, the base station device prepares one or more CCGs, and provides a Layer 1/Layer 2 inter-cell mobility candidate target that includes the configuration of the CCG in the terminal device. You may provide settings. At this time, when the terminal device receives the Layer 1/Layer 2 inter-cell mobility candidate target setting, it may start measuring each candidate cell of the CCG and reporting it to the base station device. For example, in Layer 1/Layer 2 mobility, the base station device notifies the terminal device of information indicating which candidate cell or which CCG it is using DCI to change one or more serving cells of the terminal device. Accordingly, the terminal device may change one or more serving cells. Also, for example, in layer 1/layer 2 mobility, the base station device transmits information indicating which candidate cell or which CCG to the terminal device in a MAC control element that changes one or more serving cells of the terminal device. A terminal device may change one or more serving cells by notifying the device.
 レイヤ1/レイヤ2モビリティにおいて、下記(A)から(C)の一部または全部のモビリティのシナリオがサポートされてよいし、その他のモビリティのシナリオがサポートされてもよい。また、CAが設定されていない端末装置において、下記(A)のモビリティのシナリオは、PCellのみが変更されるというシナリオであってよいし、CAが設定されている端末装置において、下記(A)のモビリティのシナリオは、PCell、および、一つまたは複数のSCellが変更されるというシナリオであってよい。
  (A)PCell変更
  (B)分散ユニット内(intra-DU)モビリティおよび集約ユニット内分散ユニット間(intra-CU-inter-DU)モビリティ
  (C)セル間ビーム制御(inter-cell beam management)
In layer 1/layer 2 mobility, some or all of the mobility scenarios (A) to (C) below may be supported, or other mobility scenarios may be supported. In addition, in a terminal device where CA is not configured, the mobility scenario (A) below may be a scenario in which only the PCell is changed, and in a terminal device where CA is configured, the mobility scenario (A) below may be a scenario where only the PCell is changed. The mobility scenario may be a scenario in which a PCell and one or more SCells are changed.
(A) PCell change (B) Intra-DU mobility and intra-CU-inter-DU mobility (C) Inter-cell beam management
 レイヤ1/レイヤ2モビリティにおいて、下記(A)および/または(B)の原理(principle)が適用されてよい。
  (A)基地局装置が、フル設定(full configuration)を必要とせずに動的切り替え(dynamic switching)ができるようにレイヤ1/レイヤ2セル間モビリティ候補ターゲット設定を用意する。
  (B)ユーザプレーンが、データ損失およびデータ回復のための追加遅延を回避するため出来るだけリセットせずに連続的に通信する。
In layer 1/layer 2 mobility, the following principles (A) and/or (B) may be applied.
(A) The base station apparatus prepares layer 1/layer 2 inter-cell mobility candidate target settings so that dynamic switching can be performed without requiring full configuration.
(B) The user plane communicates continuously without resetting as much as possible to avoid data loss and additional delays for data recovery.
 レイヤ1/レイヤ2モビリティにおいて、レイヤ1/レイヤ2セル間モビリティ候補ターゲット設定は、下記(A)から(C)のRRCシグナリング、または、その他の制御情報(RRCシグナリング等)によって事前に通知されてよいし、端末装置は、前記レイヤ1/レイヤ2セル間モビリティ候補ターゲット設定を、レイヤ1またはレイヤ2から、ターゲットの一つまたは複数のセルへのサービングセルの変更を指示するDCIまたはMACコントロールエレメントを受信するまで保持(store)してよい。また、分散ユニット内モビリティと集約ユニット内分散ユニット間モビリティで、前記レイヤ1/レイヤ2セル間モビリティ候補ターゲット設定が共通であってよいし、前記レイヤ1/レイヤ2セル間モビリティ候補ターゲット設定の一部が異なってよい。なお、前記レイヤ1/レイヤ2セル間モビリティ候補ターゲット設定には、システム情報(searchSpaceSIB1、searchSpaceOtherSystemInformation等)、ページングメッセージ(pagingSearchSpace等)、共通サーチスペース(commonSearchSpaceList等)の一部または全部が含まれてよい。また、レイヤ1/レイヤ2モビリティにおいて、セキュリティ鍵更新が行われなくてよい。
  (A)各候補ターゲットのためのRRCコネクションの再設定に関するメッセージ
  (B)各候補ターゲットのためのセルグループ設定
  (C)各候補ターゲットのためのSpCell設定および/またはSCell設定
In Layer 1/Layer 2 mobility, Layer 1/Layer 2 inter-cell mobility candidate target settings are notified in advance by RRC signaling (A) to (C) below or other control information (RRC signaling, etc.). Optionally, the terminal device configures the Layer 1/Layer 2 inter-cell mobility candidate targeting by using a DCI or MAC control element that directs a change of serving cell from Layer 1 or Layer 2 to the target cell or cells. It may be stored until received. Further, the layer 1/layer 2 inter-cell mobility candidate target setting may be common for the intra-distributed unit mobility and the intra-aggregated unit inter-distributed unit mobility, and the layer 1/layer 2 inter-cell mobility candidate target setting may be the same. The parts may be different. Note that the Layer 1/Layer 2 inter-cell mobility candidate target setting may include part or all of system information (searchSpaceSIB1, searchSpaceOtherSystemInformation, etc.), paging messages (pagingSearchSpace, etc.), and common search spaces (commonSearchSpaceList, etc.). . Furthermore, in layer 1/layer 2 mobility, security key updates do not need to be performed.
(A) Messages regarding RRC connection reconfiguration for each candidate target (B) Cell group configuration for each candidate target (C) SpCell configuration and/or SCell configuration for each candidate target
 レイヤ1/レイヤ2モビリティのためのハンドオーバ中断時間(HO interruption time)とは、端末装置が、レイヤ1またはレイヤ2から、ターゲットの一つまたは複数のセルへのサービングセルの変更を指示するDCIまたはMACコントロールエレメントを受信してから、前記ターゲットの一つまたは複数のセルのビームにおいて最初に下りリンク/上りリンクの送受信を実行するまでの時間のことであってよい。また、レイヤ1/レイヤ2モビリティのためのハンドオーバ中断時間は、下記(A)から(F)の一部または全部を処理する時間を含んでよい。なお、「レイヤ1/レイヤ2モビリティのためのハンドオーバ中断時間」は、「レイヤ1/レイヤ2モビリティのための遅延」等と言い換えられてよい。
  (A)UEの再設定
  (B)レイヤ1および/またはRRCにおけるメジャメント(measurement)
  (C)下りリンクの同期
  (D)上りリンクの同期
  (E)TRS(Temporary RS)トラッキング
  (F)CSI-RSメジャメント(measurement)
Handover interruption time (HO interruption time) for Layer 1/Layer 2 mobility refers to the time when the terminal equipment uses DCI or MAC It may be the time from receiving a control element to performing the first downlink/uplink transmission/reception on the beam of the target cell or cells. Further, the handover interruption time for layer 1/layer 2 mobility may include time for processing some or all of (A) to (F) below. Note that "handover interruption time for layer 1/layer 2 mobility" may be rephrased as "delay for layer 1/layer 2 mobility" or the like.
(A) UE reconfiguration (B) Measurement at layer 1 and/or RRC
(C) Downlink synchronization (D) Uplink synchronization (E) TRS (Temporary RS) tracking (F) CSI-RS measurement
 以上の説明をベースとして、様々な本実施形態を説明する。なお、以下の説明で省略される各処理については上記で説明した各処理が適用されてよい。 Based on the above description, various embodiments will be described. Note that each process explained above may be applied to each process omitted in the following description.
 図5は本実施形態における端末装置(UE122)の構成を示すブロック図である。なお、説明が煩雑になることを避けるために、図5では、本実施形態と密接に関連する主な構成部のみを示す。 FIG. 5 is a block diagram showing the configuration of the terminal device (UE 122) in this embodiment. Note that in order to avoid complicating the explanation, FIG. 5 shows only the main components closely related to this embodiment.
 図5に示すUE122は、基地局装置より制御情報(DCI、RRCシグナリング等)を受信する受信部500、及び受信した制御情報に含まれるパラメータに従って処理を行う処理部502、および基地局装置に制御情報(UCI、RRCシグナリング等)を送信する送信部504、から成る。上述の基地局装置とは、eNB102であってよいし、gNB108であってよい。また、処理部502には様々な層(例えば、物理層、MAC層、RLC層、PDCP層、SDAP層、RRC層、およびNAS層)の機能の一部または全部が含まれてよい。すなわち、処理部502には、物理層処理部、MAC層処理部、RLC層処理部、PDCP層処理部、SDAP処理部、RRC層処理部、およびNAS層処理部の一部または全てが含まれてよい。 The UE 122 shown in FIG. 5 includes a receiving unit 500 that receives control information (DCI, RRC signaling, etc.) from a base station, a processing unit 502 that performs processing according to parameters included in the received control information, and a It consists of a transmitter 504 that transmits information (UCI, RRC signaling, etc.). The above-mentioned base station device may be eNB102 or gNB108. Further, the processing unit 502 may include some or all of the functions of various layers (eg, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processing section 502 includes some or all of the physical layer processing section, MAC layer processing section, RLC layer processing section, PDCP layer processing section, SDAP processing section, RRC layer processing section, and NAS layer processing section. It's fine.
 図6は本実施形態における基地局装置の構成を示すブロック図である。なお、説明が煩雑になることを避けるために、図6では、本実施形態と密接に関連する主な構成部のみを示す。上述の基地局装置とは、eNB102であってよいし、gNB108であってよい。 FIG. 6 is a block diagram showing the configuration of the base station device in this embodiment. Note that in order to avoid complicating the explanation, FIG. 6 shows only the main components closely related to this embodiment. The above-mentioned base station device may be eNB102 or gNB108.
 図6に示す基地局装置は、UE122へ制御情報(DCI、RRCシグナリング等)を送信する送信部600、及び制御情報(DCI、パラメータを含むRRCシグナリング等)を作成し、UE122に送信する事により、UE122の処理部502に処理を行わせる処理部602、およびUE122から制御情報(UCI、RRCシグナリング等)を受信する受信部604から成る。また、処理部602には様々な層(例えば、物理層、MAC層、RLC層、PDCP層、SDAP層、RRC層、およびNAS層)の機能の一部または全部が含まれてよい。すなわち、処理部602には、物理層処理部、MAC層処理部、RLC層処理部、PDCP層処理部、SDAP処理部、RRC層処理部、およびNAS層処理部の一部または全部が含まれてよい。 The base station device shown in FIG. , a processing unit 602 that causes the processing unit 502 of the UE 122 to perform processing, and a reception unit 604 that receives control information (UCI, RRC signaling, etc.) from the UE 122. Further, the processing unit 602 may include some or all of the functions of various layers (eg, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processing section 602 includes some or all of the physical layer processing section, MAC layer processing section, RLC layer processing section, PDCP layer processing section, SDAP processing section, RRC layer processing section, and NAS layer processing section. It's fine.
 図11を用いて本実施形態における、端末装置の処理の一例を説明する。 An example of the processing of the terminal device in this embodiment will be explained using FIG. 11.
 図11は本実施形態における、端末装置の処理の一例を示す図である。gNB108の送信部600より候補ターゲットの設定を受信したUE122の処理部502のRRC308は、条件の判断を行い(ステップS1100)、前記判断に基づいて動作する(ステップS1102)。 FIG. 11 is a diagram showing an example of the processing of the terminal device in this embodiment. The RRC 308 of the processing unit 502 of the UE 122, which has received the candidate target settings from the transmission unit 600 of the gNB 108, determines the conditions (step S1100) and operates based on the determination (step S1102).
 UE122の処理部502のRRC308は、ステップS1100において、以下の(a)から(c)のうち、いずれか、またはいずれかの組み合わせが満たされたか否かを判断してよい。
  (a)前記候補ターゲットの設定に、setupにセットされているNRにおいてメジャメントギャップが必要であるか否かを報告させる設定が含まれる。
  (b)以前に受信したRRCシグナリングに、setupにセットされているNRにおいてメジャメントギャップが必要であるか否かを報告させる設定が含まれる。
  (c)前記候補ターゲットの設定を含むRRCシグナリングに、setupにセットされているNRにおいてメジャメントギャップが必要であるか否かを報告させる設定が含まれる。
In step S1100, the RRC 308 of the processing unit 502 of the UE 122 may determine whether any or any combination of the following (a) to (c) is satisfied.
(a) The candidate target settings include a setting to report whether or not a measurement gap is required in the NR set in setup.
(b) The previously received RRC signaling includes a setting to report whether or not a measurement gap is required in the NR set in setup.
(c) The RRC signaling including the setting of the candidate target includes a setting to report whether or not a measurement gap is required in the NR set in setup.
 UE122の処理部502のRRC308は、ステップS1100において、前記条件の(a)が満たされたと判断した場合、UE122に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていると判断してよいし、前記条件の(a)が満たされていないと判断した場合、UE122に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていないと判断してよい。UE122の処理部502のRRC308は、ステップS1100において、前記条件の(b)が満たされたと判断した場合、UE122に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていると判断してよいし、前記条件の(b)が満たされていないと判断した場合、UE122に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていないと判断してよい。UE122の処理部502のRRC308は、ステップS1100において、前記条件の(c)が満たされたと判断した場合、UE122に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていると判断してよいし、前記条件の(c)が満たされていないと判断した場合、UE122に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていないと判断してよい。例えば、UE122の処理部502のRRC308は、ステップS1100において、前記条件の(a)または(c)が満たされたと判断した場合、前記候補ターゲットの設定で設定される各候補ターゲットが適用された場合のUE122に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていると判断してよい。前記NRのターゲットの周波数バンドは、前記候補ターゲットの設定で設定される各候補ターゲット上の周波数内メジャメントのための周波数バンドを含んでよいし、前記候補ターゲットの設定で設定される各候補ターゲット上の周波数間メジャメントのための周波数バンドを含んでよい。なお、前記条件の(b)に記載のRRCシグナリングは、RRCコネクションの再設定に関するメッセージであってよいし、RRC再開メッセージ等その他のRRCシグナリングであってもよい。 If the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that the condition (a) is satisfied, the RRC 308 is set to provide the UE 122 with information on whether or not a measurement gap of the target frequency band of NR is required. If it is determined that the above condition (a) is not satisfied, it is not configured to provide the UE 122 with information on whether or not a measurement gap for the target frequency band of NR is required. You can judge that. If the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that the condition (b) is satisfied, the RRC 308 is set to provide the UE 122 with information on whether or not a measurement gap of the target frequency band of NR is required. If it is determined that the above condition (b) is not satisfied, it is not configured to provide the UE 122 with information on whether or not a measurement gap for the target frequency band of NR is required. You can judge that. If the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that the condition (c) is satisfied, the RRC 308 is set to provide the UE 122 with information on whether or not a measurement gap of the target frequency band of NR is required. If it is determined that the above condition (c) is not satisfied, it is not configured to provide the UE 122 with information on whether or not a measurement gap for the target frequency band of NR is required. You can judge that. For example, if the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that condition (a) or (c) is satisfied, if each candidate target set in the candidate target settings is applied. It may be determined that the UE 122 is set to be provided with information on whether or not a measurement gap of the target frequency band of NR is required. The frequency bands of the NR targets may include frequency bands for intra-frequency measurements on each candidate target set in the candidate target settings, and may include frequency bands for intra-frequency measurements on each candidate target set in the candidate target settings. may include frequency bands for inter-frequency measurements. Note that the RRC signaling described in condition (b) above may be a message regarding resetting an RRC connection, or may be other RRC signaling such as an RRC restart message.
 UE122の処理部502のRRC308は、ステップS1100において、UE122に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていると判断した場合、以下の(d)から(f)のうち、いずれか、またはいずれかの組み合わせが満たされたか否かを判断してよい。
  (d)前記候補ターゲットの設定に、NRにおいてメジャメントギャップが必要であるか否かを報告させる設定が含まれる。
  (e)NRにおいてメジャメントギャップが必要であるか否かを示す情報が、最後にUE122が報告した時と比べて変更されている。
  (f)その他の条件
If the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that it is set to provide the UE 122 with information on whether or not the measurement gap of the target frequency band of NR is required, the RRC 308 performs the following (d) to ( It may be determined whether any or any combination of f) is satisfied.
(d) The candidate target settings include a setting to report whether or not a measurement gap is required in NR.
(e) The information indicating whether a measurement gap is required in NR has been changed compared to the last time the UE 122 reported it.
(f) Other conditions
 UE122の処理部502のRRC308は、ステップS1100において、前記条件の(d)から(f)のいずれかが満たされたと判断した場合、ステップS1102において、上述の処理(NFG)に従って、前記候補ターゲットの設定に対する完了を示すシグナリングに、NRにおいてメジャメントギャップが必要であるか否かを示す情報を含めてよい。それに加えてまたはそれに代えて、UE122の処理部502のRRC308は、ステップS1100において、前記条件の(d)から(f)のいずれかが満たされたと判断した場合、ステップS1102において、前記NRにおいてメジャメントギャップが必要であるか否かを示す情報を含む、前記候補ターゲットの設定に対する完了を示すシグナリングを、SRB1を介して下位レイヤ(PHY300、MAC302等)に提出してよい。 If the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that any of the conditions (d) to (f) is satisfied, in step S1102, the RRC 308 of the processing unit 502 determines the candidate target according to the above processing (NFG). Information indicating whether a measurement gap is required in NR may be included in the signaling indicating completion of the configuration. In addition to or in place of that, if the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that any of the conditions (d) to (f) is satisfied, the RRC 308 performs a measurement in the NR in step S1102. Signaling indicating completion of setting the candidate target, including information indicating whether a gap is required, may be submitted to lower layers (PHY 300, MAC 302, etc.) via SRB1.
 UE122の処理部502のRRC308は、ステップS1100において、UE122に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていないと判断した場合、又は前記条件の(d)から(f)のいずれも満たされていないと判断した場合、ステップS1102において、前記候補ターゲットの設定に対する完了を示すシグナリングに、NRにおいてメジャメントギャップが必要であるか否かを示す情報を含めなくてよい。それに加えてまたはそれに代えて、UE122の処理部502のRRC308は、ステップS1100において、UE122に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていないと判断した場合、又は前記条件の(d)から(f)のいずれも満たされていないと判断した場合、ステップS1102において、前記候補ターゲットの設定に対する完了を示すシグナリングを、SRB1を介して下位レイヤ(PHY300、MAC302等)に提出しなくてよい。 If the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that it is not set to provide the UE 122 with information on whether or not the measurement gap of the target frequency band of NR is required, or (d) of the above condition If it is determined that none of the conditions from (f) to good. In addition to or in place of that, if the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that it is not set to provide the UE 122 with information on whether or not the measurement gap of the target frequency band of NR is required. , or if it is determined that none of the conditions (d) to (f) are satisfied, in step S1102, signaling indicating completion of setting the candidate target is sent to the lower layer (PHY300, MAC302, etc.) via SRB1. etc.).
 なお、前記候補ターゲットの設定に対する完了を示すシグナリングは、RRC再設定完了メッセージであってよいし、その他のシグナリングであってもよい。それに加えてまたはそれに代えて、前記NRにおいてメジャメントギャップが必要であるか否かを示す情報には、前記候補ターゲットの設定で設定される一部または全部の候補ターゲットのための周波数内メジャメントのギャップの要否情報がセットされてよい。それに加えてまたはそれに代えて、前記NRにおいてメジャメントギャップが必要であるか否かを示す情報には、前記候補ターゲットの設定で設定される一部または全部の候補ターゲットが適用された場合のUE122のサポートする各NRの周波数バンドのためのギャップの要否情報がセットされてよい。例えば、前記候補ターゲットの設定にrequestedTargetBandFilterNRという名称の情報要素が設定されていたら、requestedTargetBandFilterNRという名称の情報要素にも含まれる、前記候補ターゲットの設定で設定される各候補ターゲットが適用された場合のUE122のサポートする各NRの周波数バンドのためのギャップの要否情報がセットされてよい。それに加えてまたはそれに代えて、例えば、前記候補ターゲットの設定にrequestedTargetBandFilterNRという名称の情報要素が設定されていなかったら、前記候補ターゲットの設定で設定される各候補ターゲットが適用された場合のUE122のサポートする各NRの周波数バンドのための対応するギャップの要否情報がセットされてよい。また、それに加えて、前記条件の(e)が満たされたか否かについては、前記候補ターゲットの設定で設定される各候補ターゲットがUE122に適用された時点で判断されてよい。例えば、UE122の処理部502のRRC308は、前記候補ターゲットの設定で設定される候補ターゲットの一部において前記条件の(e)が満たされたと判断した場合、ステップS1102において、前記条件の(e)が満たされた候補ターゲットに対してのみNRにおいてメジャメントギャップが必要であるか否かを示す情報を含めてよいし、全ての候補ターゲットに対してNRにおいてメジャメントギャップが必要であるか否かを示す情報を含めてもよい。上記説明において、「候補ターゲットの設定で設定される各候補ターゲットが適用された」こととは、「UE122が、候補ターゲットの設定で設定される各候補ターゲットに含まれる一つまたは複数のセルをサービングセルとして設定した」こと等と言い換えられてよい。 Note that the signaling indicating the completion of setting the candidate target may be an RRC reconfiguration completion message, or may be other signaling. Additionally or alternatively, the information indicating whether measurement gaps are required in the NR includes intra-frequency measurement gaps for some or all of the candidate targets set in the candidate target settings. Necessity information may be set. In addition to or in place of that, the information indicating whether or not a measurement gap is required in the NR includes the information of the UE 122 when some or all of the candidate targets set in the candidate target settings are applied. Gap necessity information may be set for each supported NR frequency band. For example, if an information element named requestedTargetBandFilterNR is set in the candidate target settings, the UE 122 when each candidate target set in the candidate target settings is applied, which is also included in the information element named requestedTargetBandFilterNR. Gap necessity information may be set for each NR frequency band supported by the NR. Additionally or alternatively, the support of the UE 122 when each candidate target configured in the candidate target configuration is applied, for example, if an information element named requestedTargetBandFilterNR is not configured in the candidate target configuration. Corresponding gap necessity information for each NR frequency band may be set. In addition, whether or not the condition (e) is satisfied may be determined at the time when each candidate target set in the candidate target settings is applied to the UE 122. For example, if the RRC 308 of the processing unit 502 of the UE 122 determines that the condition (e) is satisfied in some of the candidate targets set in the candidate target setting, the RRC 308 determines that the condition (e) is satisfied in step S1102. may include information indicating whether a measurement gap is required in NR only for candidate targets for which May contain information. In the above explanation, "each candidate target set in the candidate target setting has been applied" means "the UE 122 has applied one or more cells included in each candidate target set in the candidate target setting". This may be rephrased as "set as a serving cell."
 また、図11を用いて本実施形態における、端末装置の処理の、別の一例を説明する。下位レイヤ(レイヤ1またはレイヤ2)から、ターゲットの一つまたは複数のセルへのサービングセルの変更を指示されたUE122の処理部502のRRC308は、条件の判断を行い(ステップS1100)、前記判断に基づいて動作する(ステップS1102)。 Another example of the processing of the terminal device in this embodiment will be explained using FIG. 11. The RRC 308 of the processing unit 502 of the UE 122, which has been instructed to change the serving cell to one or more target cells from the lower layer (layer 1 or layer 2), judges the conditions (step S1100) and (Step S1102).
 UE122の処理部502のRRC308は、ステップS1100において、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されているか否かを判断し、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていると判断した場合、ステップS1102において、上述の処理(NFG)に従って、前記サービングセルの変更の後に、前記サービングセルの変更に対する完了を示すシグナリングに、NRにおいてメジャメントギャップが必要であるか否かを示す情報を含めてよい。それに加えてまたはそれに代えて、UE122の処理部502のRRC308は、ステップS1100において、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていると判断した場合、ステップS1102において、前記NRにおいてメジャメントギャップが必要であるか否かを示す情報を含む、前記サービングセルの変更に対する完了を示すシグナリングを、SRB1を介して前記下位レイヤ(PHY300、MAC302等)に提出してよい。また、UE122の処理部502のRRC308は、ステップS1100において、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていないと判断した場合、ステップS1102において、前記サービングセルの変更の後に、前記サービングセルの変更に対する完了を示すシグナリングに、NRにおいてメジャメントギャップが必要であるか否かを示す情報を含めなくてよい。それに加えてまたはそれに代えて、UE122の処理部502のRRC308は、ステップS1100において、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されていないと判断した場合、ステップS1102において、前記サービングセルの変更に対する完了を示すシグナリングを、SRB1を介して前記下位レイヤ(PHY300、MAC302等)に提出しなくてよい。前記NRのターゲットの周波数バンドは、前記ターゲットの一つまたは複数のセル上の周波数内メジャメントのための周波数バンドを含んでよいし、前記ターゲットの一つまたは複数のセル上の周波数間メジャメントのための周波数バンドを含んでよい。なお、前記サービングセルの変更に対する完了を示すシグナリングは、RRC再設定完了メッセージであってよいし、その他のシグナリングであってもよい。それに加えてまたはそれに代えて、前記NRにおいてメジャメントギャップが必要であるか否かを示す情報には、前記ターゲットの一つまたは複数のセルのための周波数内メジャメントのギャップの要否情報がセットされてよい。それに加えてまたはそれに代えて、前記NRにおいてメジャメントギャップが必要であるか否かを示す情報には、前記サービングセルの変更の後のUE122のサポートする各NRの周波数バンドのためのギャップの要否情報がセットされてよい。例えば、前記候補ターゲットの設定にrequestedTargetBandFilterNRという名称の情報要素が設定されていたら、requestedTargetBandFilterNRという名称の情報要素にも含まれる、前記サービングセルの変更の後のUE122のサポートする各NRの周波数バンドのためのギャップの要否情報がセットされてよい。それに加えてまたはそれに代えて、例えば、前記候補ターゲットの設定にrequestedTargetBandFilterNRという名称の情報要素が設定されていなかったら、前記サービングセルの変更の後のUE122のサポートする各NRの周波数バンドのための対応するギャップの要否情報がセットされてよい。 In step S1100, the RRC 308 of the processing unit 502 of the UE 122 determines whether it is set to provide information on whether or not a measurement gap of the target frequency band of NR is provided, and determines whether the measurement gap of the target frequency band of NR is provided. If it is determined that provision of necessity information is set, in step S1102, according to the above-mentioned process (NFG), after the serving cell change, the NR is set to provide signaling indicating completion of the serving cell change. Information indicating whether a measurement gap is required may be included. In addition to or in place of that, if the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that it is set to provide information on the necessity of measurement gaps for the target frequency band of NR, the RRC 308 of the processing unit 502 of the UE 122 performs step S1102. , signaling indicating completion of the serving cell change, including information indicating whether a measurement gap is required in the NR, may be submitted to the lower layer (PHY 300, MAC 302, etc.) via SRB1. Further, if the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that provision of information on the necessity of measurement gap of the target frequency band of NR is not set, in step S1102, the RRC 308 of the processing unit 502 changes the serving cell. After , information indicating whether a measurement gap is required in NR may not be included in the signaling indicating completion of the serving cell change. In addition to or in place of that, if the RRC 308 of the processing unit 502 of the UE 122 determines in step S1100 that it is not set to provide information on the necessity of measurement gaps for the target frequency band of NR, the RRC 308 of the processing unit 502 of the UE 122 performs step S1102. In this case, there is no need to submit signaling indicating completion of the serving cell change to the lower layer (PHY 300, MAC 302, etc.) via SRB1. The frequency bands of the NR target may include frequency bands for intra-frequency measurements on one or more cells of the target and for inter-frequency measurements on one or more cells of the target. frequency bands. Note that the signaling indicating completion of the serving cell change may be an RRC reconfiguration completion message, or may be other signaling. Additionally or alternatively, the information indicating whether a measurement gap is required in the NR includes information on whether or not an intra-frequency measurement gap is required for the target one or more cells. It's fine. In addition to or in place of that, the information indicating whether a measurement gap is required in the NR includes information regarding the necessity of a gap for each NR frequency band supported by the UE 122 after the serving cell change. may be set. For example, if an information element named requestedTargetBandFilterNR is set in the candidate target settings, the information element for each NR frequency band supported by the UE 122 after the serving cell change is also included in the information element named requestedTargetBandFilterNR. Information on whether or not a gap is necessary may be set. Additionally or alternatively, for example, if an information element named requestedTargetBandFilterNR is not configured in the candidate target configuration, a corresponding NR frequency band for each supported NR frequency band of the UE 122 after the serving cell change. Information on whether or not a gap is necessary may be set.
 各実施例は互いに組み合わされてもよい。また、各実施例において、NRにおいてメジャメントギャップが必要であるか否かを報告させる設定は、候補ターゲットの設定の下記(A)から(D)のRRCシグナリング、または、その他の制御情報(RRCシグナリング等)に含まれてよい。
  (A)各候補ターゲットのためのRRCコネクションの再設定に関するメッセージ
  (B)各候補ターゲットのためのセルグループ設定
  (C)各候補ターゲットのためのSpCell設定および/またはSCell設定
  (D)各候補ターゲットのための条件付再設定
Each embodiment may be combined with each other. In addition, in each embodiment, the setting to report whether or not a measurement gap is necessary in NR is the RRC signaling shown in (A) to (D) below in the candidate target setting, or other control information (RRC signaling). etc.) may be included.
(A) Messages regarding RRC connection reconfiguration for each candidate target (B) Cell group configuration for each candidate target (C) SpCell configuration and/or SCell configuration for each candidate target (D) Each candidate target Conditional reconfiguration for
 図12、図13、図14は、それぞれ上記の(A)、(B)、(C)に記載のシグナリングで示される、候補ターゲットの設定に関するフィールド、及び/又は情報要素を表すASN.1記述の一例である。図12、図13、図14において、候補ターゲットの設定は、Candidates-L1L2-Configという名称の情報要素で表されてよい。図12、図13において、Candidates-L1L2Idという名称の情報要素は、前記候補ターゲットの設定で設定される各候補ターゲットの識別子を示す情報要素であってよい。それに加えてまたはそれに代えて、図12、図13において、candidates-L1L2-CellsConfigという名称の情報要素は、前記識別子で識別される各候補ターゲットに含まれる一つまたは複数の候補セルの設定を含む情報要素であってよい。図14において、sCell-L1L2-ToAddModListという名称の情報要素は、前記候補ターゲットの設定に含まれる各候補セルの内、SCellのみをエントリとした追加修正リストであってよい。それに加えてまたはそれに代えて、図14において、spCell-L1L2-ToAddModListという名称の情報要素は、前記候補ターゲットの設定に含まれる各候補セルの内、SpCellのみをエントリとした追加修正リストであってよい。 Figures 12, 13, and 14 are ASN.1 descriptions representing fields and/or information elements related to candidate target configuration, respectively, as indicated by the signaling described in (A), (B), and (C) above. This is an example. In FIGS. 12, 13, and 14, the configuration of candidate targets may be represented by an information element named Candidates-L1L2-Config. In FIGS. 12 and 13, the information element named Candidates-L1L2Id may be an information element indicating the identifier of each candidate target set in the candidate target setting. Additionally or alternatively, in FIGS. 12 and 13, the information element named candidates-L1L2-CellsConfig contains the configuration of one or more candidate cells included in each candidate target identified by said identifier. May be an information element. In FIG. 14, the information element named sCell-L1L2-ToAddModList may be an addition/modification list with only SCell as an entry among the candidate cells included in the candidate target settings. Additionally or alternatively, in FIG. 14, the information element named spCell-L1L2-ToAddModList is an additional modification list with only SpCell as an entry among each candidate cell included in the candidate target setting. good.
 各実施例において、候補ターゲットの設定で設定される候補ターゲットは、一つまたは複数であってよい。それに加えてまたはそれに代えて、サービングセル変更で下位レイヤから指示されるターゲットの一つまたは複数のセルは、一つまたは複数の候補セル、および/または、一つまたは複数のCCGであってよい。それに加えてまたはそれに代えて、候補ターゲットの設定は、一つまたは複数の候補セルの設定、および/または、一つまたは複数のCCGの設定を含んでよい。また、上記の(B)に記載のセルグループ設定には、SpCell設定および/またはSCell設定が含まれてよいし、サービングセル変更で下位レイヤから指示されたCCGの設定を、前記下位レイヤのセルグループに適用してよい。 In each embodiment, the number of candidate targets set in the candidate target setting may be one or more. Additionally or alternatively, the target cell or cells indicated by lower layers in the serving cell change may be one or more candidate cells and/or one or more CCGs. Additionally or alternatively, configuring a candidate target may include configuring one or more candidate cells and/or configuring one or more CCGs. In addition, the cell group settings described in (B) above may include SpCell settings and/or SCell settings, and the CCG settings instructed from the lower layer when changing the serving cell are applied to the cell group of the lower layer. May be applied to
 上記各実施例によって、RRCレイヤが、候補ターゲットの設定、またはサービングセル変更で下位レイヤから指示されるターゲットの一つまたは複数のセルのためのメジャメントギャップの要否情報を下位レイヤに提出することで、レイヤ1/レイヤ2モビリティにおいて、UEは、効率よくメジャメントを実施することが出来る。 According to each of the above embodiments, the RRC layer can submit to the lower layer information on whether or not a measurement gap is required for one or more target cells instructed by the lower layer when setting a candidate target or changing a serving cell. , in Layer 1/Layer 2 mobility, the UE can efficiently perform measurements.
 上記説明における無線ベアラとは、特に明記しない限り、DRBであってよいし、SRBであってよいし、DRB及びSRBであってよい。 The radio bearer in the above description may be a DRB, an SRB, or a DRB and an SRB, unless otherwise specified.
 また上記説明において、「ユーザプレーン」、「ユーザプレーンプロトコル」、「ユーザプレーンインターフェース」等の表現は、互いに換言されてもよい。 Furthermore, in the above description, expressions such as "user plane", "user plane protocol", "user plane interface", etc. may be used interchangeably.
 また上記説明において、「ターゲットの一つまたは複数のセルへのサービングセルの変更を指示するDCIまたはMACコントロールエレメントを受信する」を「ターゲットの一つまたは複数のセルへのサービングセルの変更を指示される」と言い換えてよい。 Also, in the above explanation, "receiving a DCI or MAC control element instructing a change of serving cell to one or more target cells" is replaced with "receiving a DCI or MAC control element instructing a change of serving cell to one or more target cells." ” can be rephrased as “
 また上記説明において、「候補ターゲット」、「候補セル」、「CCG」等の表現は、互いに換言されてもよい。 Furthermore, in the above description, expressions such as "candidate target", "candidate cell", "CCG", etc. may be used interchangeably.
 また上記説明におけるサービングセル変更とは、特に明記しない限り、レイヤ1/レイヤ2サービングセル変更であってよい。 Furthermore, the serving cell change in the above description may be a layer 1/layer 2 serving cell change, unless otherwise specified.
 また上記説明において、「通知される」、「指摘を受ける」等の表現は、互いに換言されてもよい。 Furthermore, in the above description, expressions such as "to be notified" and "to be pointed out" may be used interchangeably.
 また上記説明において、「紐づける」、「対応付ける」、「関連付ける」等の表現は、互いに換言されてもよい。 Furthermore, in the above description, expressions such as "link," "correspond," and "associate" may be used interchangeably.
 また上記説明において、「含まれる」、「含まれている」、「含まれていた」等の表現は、互いに換言されてもよい。 Furthermore, in the above description, expressions such as "included", "included", "included", etc. may be used interchangeably.
 また上記説明において、「前記~」を「上述の~」と言い換えてよい。 Furthermore, in the above description, "the above ~" may be replaced with "the above ~".
 また上記説明において、「~と確定した」、「~が設定されている」、「~が含まれる」等の表現は、互いに換言されてもよい。 Furthermore, in the above description, expressions such as "determined as ~", "~ is set", and "~ is included" may be used interchangeably.
 また上記説明における各処理の例、又は各処理のフローの例において、ステップの一部または全ては実行されなくてもよい。また上記説明における各処理の例、又は各処理のフローの例において、ステップの順番は異なってもよい。また上記説明における各処理の例、又は各処理のフローの例において、各ステップ内の一部または全ての処理は実行されなくてもよい。また上記説明における各処理の例、又は各処理のフローの例において、各ステップ内の処理の順番は異なってもよい。また上記説明において「Aである事に基づいてBを行う」は、「Bを行う」と言い換えられてもよい。即ち「Bを行う」事は「Aである事」と独立して実行されてもよい。 Further, in the examples of each process or the example of the flow of each process in the above description, some or all of the steps may not be executed. Further, in the example of each process or the example of the flow of each process in the above description, the order of steps may be different. Further, in the example of each process or the example of the flow of each process in the above description, some or all of the processes in each step may not be executed. Further, in the example of each process or the example of the flow of each process in the above description, the order of the processes within each step may be different. Furthermore, in the above description, "doing B based on A" may be rephrased as "doing B." That is, "doing B" may be performed independently of "doing A".
 なお、上記説明において、「AをBと言い換えてよい」は、AをBと言い換えることに加え、BをAと言い換える意味も含んでよい。また上記説明において、「CはDであってよい」と「CはEであってよい」とが記載されている場合には、「DはEであってよい」事を含んでもよい。また上記説明において、「FはGであってよい」と「GはHであってよい」とが記載されている場合には、「FはHであってよい」事を含んでもよい。 Note that in the above description, "A may be replaced with B" may include the meaning of replacing A with B, as well as replacing B with A. Furthermore, in the above description, when "C may be D" and "C may be E" are stated, "D may be E" may also be included. Furthermore, in the above description, when "F may be G" and "G may be H" are stated, "F may be H" may also be included.
 また上記説明において、「A」という条件と、「B」という条件が、相反する条件の場合には、「B」という条件は、「A」という条件の「その他」の条件として表現されてもよい。 In addition, in the above explanation, if the condition "A" and the condition "B" are contradictory conditions, the condition "B" may be expressed as an "other" condition of the condition "A". good.
 本実施形態に関わる装置で動作するプログラムは、本実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであってもよい。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)などの揮発性メモリに読み込まれ、あるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。 The program that runs on the device related to this embodiment may be a program that controls a Central Processing Unit (CPU) or the like to make the computer function so as to realize the functions of this embodiment. Programs or information handled by programs are temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD), and are stored as needed. The data is read, modified, and written by the CPU accordingly.
 なお、上述した実施形態における装置の一部、をコンピュータで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムは、コンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現されてもよい。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであってもよい。 Note that a part of the apparatus in the embodiment described above may be realized by a computer. In that case, the program for realizing this control function may be realized by recording it on a computer-readable recording medium and causing the computer system to read and execute the program recorded on this recording medium. . The "computer system" herein refers to a computer system built into the device, and includes hardware such as an operating system and peripheral devices. Furthermore, the "computer-readable recording medium" may be any of semiconductor recording media, optical recording media, magnetic recording media, and the like.
 さらに「コンピュータが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュ-タシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュ-タシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。 Furthermore, a "computer-readable recording medium" refers to a medium that dynamically stores a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In that case, it may also include something that retains a program for a certain period of time, such as a volatile memory inside a computer system that is a server or client. Further, the above-mentioned program may be one for realizing a part of the above-mentioned functions, or may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system. .
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、代わりにプロセッサは従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであってもよい。汎用用途プロセッサ、または前述した各回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Additionally, each functional block or feature of the device used in the embodiments described above may be implemented or executed in an electrical circuit, typically an integrated circuit or multiple integrated circuits. An electrical circuit designed to perform the functions described herein may be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof. A general purpose processor may be a microprocessor, or in the alternative, the processor may be a conventional processor, controller, microcontroller, or state machine. The general-purpose processor or each of the circuits described above may be configured with a digital circuit or an analog circuit. Further, if an integrated circuit technology that replaces the current integrated circuit emerges due to advances in semiconductor technology, it is also possible to use an integrated circuit based on this technology.
 なお、本実施形態は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本実施形態は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。 Note that this embodiment is not limited to the above-described embodiment. Although an example of the device has been described in the embodiment, the present embodiment is not limited to this, and can be applied to stationary or non-movable electronic equipment installed indoors or outdoors, such as AV equipment, kitchen equipment, etc. It can be applied to terminal devices or communication devices such as cleaning/washing equipment, air conditioning equipment, office equipment, vending machines, and other household equipment.
 以上、この実施形態に関して、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この実施形態の要旨を逸脱しない範囲の設計変更等も含まれる。また、本実施形態は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本実施形態の技術的範囲に含まれる。また、上記実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 Although this embodiment has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and may include design changes without departing from the gist of this embodiment. Further, this embodiment can be modified in various ways within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments also fall within the technical scope of this embodiment. include. Also included are configurations in which the elements described in the above embodiments are replaced with each other and have similar effects.
 本発明の一態様は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。 One embodiment of the present invention is used in, for example, a communication system, a communication device (e.g., a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (e.g., a communication chip), a program, or the like. be able to.
100 E-UTRA
102 eNB
104 EPC
106 NR
108 gNB
110 5GC
112、114、116、118、120、124 インタフェース
122 UE
200、300 PHY
202、302 MAC
204、304 RLC
206、306 PDCP
208、308 RRC
310 SDAP
210、312 NAS
500、604 受信部
502、602 処理部
504、600 送信部
100 E-UTRA
102eNB
104EPC
106NR
108 gNB
110 5GC
112, 114, 116, 118, 120, 124 interface
122 U.E.
200, 300 PHY
202, 302 MAC
204, 304 RLC
206, 306 PDCP
208, 308 RRC
310 SDAP
210, 312 NAS
500, 604 Receiving section
502, 602 processing section
504, 600 transmitter

Claims (3)

  1.  基地局装置と通信する端末装置であって、
     前記基地局装置より一つまたは複数の候補セルの情報を示す第1の設定を受信する受信部と、
     RRC処理部と、
     を備え、
     前記RRC処理部は、
     前記端末装置に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されているか否かを判断し、
     前記端末装置に、前記要否情報を提供することが設定されていると判断した場合、
     前記RRC処理部は、
     前記第1の設定に、NRにおいてメジャメントギャップが必要であるか否かを報告させる第2の設定が含まれるか否かを判断し、
     前記第1の設定に前記第2の設定が含まれると判断した場合、
     前記RRC処理部は、
     前記第1の設定に対する完了を示すシグナリングに、
     NRにおいてメジャメントギャップが必要であるか否かを示す第3の情報を含め、
     前記端末装置に、前記要否情報を提供することが設定されていないと判断した場合、または、
     前記第1の設定に前記第2の設定が含まれないと判断した場合、
     前記RRC処理部は、
     前記第1の設定に対する完了を示すシグナリングに、
     前記第3の情報を含めない、
     端末装置。
    A terminal device that communicates with a base station device,
    a receiving unit that receives a first setting indicating information about one or more candidate cells from the base station device;
    RRC processing section,
    Equipped with
    The RRC processing unit is
    Determining whether the terminal device is set to be provided with information on whether or not a measurement gap of a target frequency band of NR is provided;
    If it is determined that the terminal device is set to provide the necessity information,
    The RRC processing unit is
    determining whether the first setting includes a second setting for reporting whether a measurement gap is necessary in NR;
    If it is determined that the second setting is included in the first setting,
    The RRC processing unit is
    Signaling indicating completion of the first setting,
    including third information indicating whether a measurement gap is required in the NR;
    If it is determined that the terminal device is not set to provide the necessity information, or
    If it is determined that the second setting is not included in the first setting,
    The RRC processing unit is
    Signaling indicating completion of the first setting,
    not including the third information;
    Terminal device.
  2.  基地局装置と通信する端末装置の方法であって、
     前記端末装置のRRCエンティティが、
     前記基地局装置より一つまたは複数の候補セルの情報を示す第1の設定を受信するステップと、
     前記RRCエンティティが、
     前記端末装置に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されているか否かを判断するステップと、
     前記端末装置に、前記要否情報を提供することが設定されていると判断した場合、
     前記RRCエンティティが、
     前記第1の設定に、NRにおいてメジャメントギャップが必要であるか否かを報告させる第2の設定が含まれるか否かを判断するステップと、
     前記第1の設定に前記第2の設定が含まれると判断した場合、
     前記RRCエンティティが、
     前記第1の設定に対する完了を示すシグナリングに、
     NRにおいてメジャメントギャップが必要であるか否かを示す第3の情報を含めるステップと、
     前記端末装置に、前記要否情報を提供することが設定されていないと判断した場合、または、
     前記第1の設定に前記第2の設定が含まれないと判断した場合、
     前記RRCエンティティが、
     前記第1の設定に対する完了を示すシグナリングに、
     前記第3の情報を含めないステップと、
     を含む方法。
    A method for a terminal device to communicate with a base station device, the method comprising:
    The RRC entity of the terminal device,
    receiving a first configuration indicating information on one or more candidate cells from the base station device;
    The RRC entity is
    determining whether or not the terminal device is set to be provided with information on whether or not a measurement gap of a target frequency band of NR is provided;
    If it is determined that the terminal device is set to provide the necessity information,
    The RRC entity is
    determining whether the first setting includes a second setting for reporting whether a measurement gap is required in NR;
    If it is determined that the second setting is included in the first setting,
    The RRC entity is
    Signaling indicating completion of the first setting,
    including third information indicating whether a measurement gap is required in the NR;
    If it is determined that the terminal device is not set to provide the necessity information, or
    If it is determined that the second setting is not included in the first setting,
    The RRC entity is
    Signaling indicating completion of the first setting,
    not including the third information;
    method including.
  3.  基地局装置と通信する端末装置に実装される集積回路であって、
     前記端末装置のRRCエンティティが、
     前記基地局装置より一つまたは複数の候補セルの情報を示す第1の設定を受信する機能と、
     前記RRCエンティティが、
     前記端末装置に、NRのターゲットの周波数バンドのメジャメントギャップの要否情報を提供することが設定されているか否かを判断する機能と、
     前記端末装置に、前記要否情報を提供することが設定されていると判断した場合、
     前記RRCエンティティが、
     前記第1の設定に、NRにおいてメジャメントギャップが必要であるか否かを報告させる第2の設定が含まれるか否かを判断する機能と、
     前記第1の設定に前記第2の設定が含まれると判断した場合、
     前記RRCエンティティが、
     前記第1の設定に対する完了を示すシグナリングに、
     NRにおいてメジャメントギャップが必要であるか否かを示す第3の情報を含める機能と、
     前記端末装置に、前記要否情報を提供することが設定されていないと判断した場合、または、
     前記第1の設定に前記第2の設定が含まれないと判断した場合、
     前記RRCエンティティが、
     前記第1の設定に対する完了を示すシグナリングに、
     前記第3の情報を含めない機能と、
     を発揮させる集積回路。
    An integrated circuit implemented in a terminal device that communicates with a base station device,
    The RRC entity of the terminal device,
    a function of receiving a first configuration indicating information on one or more candidate cells from the base station device;
    The RRC entity is
    a function of determining whether the terminal device is set to be provided with information on whether or not a measurement gap of a target frequency band of NR is provided;
    If it is determined that the terminal device is set to provide the necessity information,
    The RRC entity is
    a function of determining whether the first setting includes a second setting for reporting whether a measurement gap is necessary in NR;
    If it is determined that the second setting is included in the first setting,
    The RRC entity is
    Signaling indicating completion of the first setting,
    a function of including third information indicating whether a measurement gap is necessary in NR;
    If it is determined that the terminal device is not set to provide the necessity information, or
    If it is determined that the second setting is not included in the first setting,
    The RRC entity is
    Signaling indicating completion of the first setting,
    a function of not including the third information;
    Integrated circuits that bring out the best in you.
PCT/JP2023/032888 2022-09-15 2023-09-08 Terminal device, method, and integrated circuit WO2024058073A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022146782 2022-09-15
JP2022-146782 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024058073A1 true WO2024058073A1 (en) 2024-03-21

Family

ID=90274850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032888 WO2024058073A1 (en) 2022-09-15 2023-09-08 Terminal device, method, and integrated circuit

Country Status (1)

Country Link
WO (1) WO2024058073A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022150136A1 (en) * 2021-01-07 2022-07-14 Intel Corporation Ue capability support for multiple concurrent and independent measurement gap configurations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022150136A1 (en) * 2021-01-07 2022-07-14 Intel Corporation Ue capability support for multiple concurrent and independent measurement gap configurations

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Configuration of candidate target cells for L1/L2 based inter-cell mobility", 3GPP DRAFT; R2-2208199, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20220817 - 20220829, 10 August 2022 (2022-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052261510 *
MEDIATEK INC.: "Introduction of NeedForGap capability for NR measurement", 3GPP DRAFT; R2-2006354, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. eMeeting; 20200601, 15 June 2020 (2020-06-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051898321 *

Similar Documents

Publication Publication Date Title
US20200389886A1 (en) Method and apparatus for supporting rach-less mobility with pre-allocated beams in wireless communication system
WO2022210285A1 (en) Terminal device, method, and integrated circuit
WO2024058073A1 (en) Terminal device, method, and integrated circuit
JP2024024131A (en) Terminal device, base station device, method, and integrated circuit
WO2024057978A1 (en) Terminal device, method, and integrated circuit
WO2024029478A1 (en) Terminal device, method, and integrated circuit
JP2023169449A (en) Terminal device, base station device, method, and integrated circuit
WO2024096097A1 (en) Terminal device, method, and integrated circuit
US20230246906A1 (en) Terminal apparatus, base station apparatus, and method
US20230247533A1 (en) Terminal apparatus, method, and integrated circuit
WO2024070447A1 (en) Terminal device, method, and integrated circuit
WO2024070379A1 (en) Terminal device, method, and integrated circuit
WO2024009884A1 (en) Terminal device, method, and integrated circuit
WO2024005069A1 (en) Terminal device, method, and integrated circuit
WO2024005010A1 (en) Terminal device, method, and integrated circuit
WO2023189798A1 (en) Terminal device, base station device, and method
WO2023204307A1 (en) Terminal device, method, and integrated circuit
WO2023243571A1 (en) Terminal device, method, and integrated circuit
WO2023238820A1 (en) Terminal device, method, and integrated circuit
WO2023189963A1 (en) Terminal device, method, and integrated circuit
WO2023132370A1 (en) Terminal device, method, and integrated circuit
WO2023136231A1 (en) Terminal device, method, and integrated circuit
WO2023063342A1 (en) Terminal device, base station device, and method
WO2023042752A1 (en) Terminal device, base station device, and method
WO2023042747A1 (en) Terminal device, base station device, and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865428

Country of ref document: EP

Kind code of ref document: A1