WO2024096097A1 - Terminal device, method, and integrated circuit - Google Patents

Terminal device, method, and integrated circuit Download PDF

Info

Publication number
WO2024096097A1
WO2024096097A1 PCT/JP2023/039601 JP2023039601W WO2024096097A1 WO 2024096097 A1 WO2024096097 A1 WO 2024096097A1 JP 2023039601 W JP2023039601 W JP 2023039601W WO 2024096097 A1 WO2024096097 A1 WO 2024096097A1
Authority
WO
WIPO (PCT)
Prior art keywords
mac
rrc
terminal device
scell
layer
Prior art date
Application number
PCT/JP2023/039601
Other languages
French (fr)
Japanese (ja)
Inventor
恭輔 井上
昇平 山田
秀和 坪井
拓真 河野
太一 三宅
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2024096097A1 publication Critical patent/WO2024096097A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/26Reselection being triggered by specific parameters by agreed or negotiated communication parameters
    • H04W36/28Reselection being triggered by specific parameters by agreed or negotiated communication parameters involving a plurality of connections, e.g. multi-call or multi-bearer connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling

Definitions

  • the present invention relates to a terminal device, a method, and an integrated circuit.
  • 3GPP registered trademark
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • RAT Radio Access Technology
  • 3GPP is currently conducting technical discussions and standardization of E-UTRA extension technologies.
  • E-UTRA is also known as Long Term Evolution (LTE: registered trademark), and the extension technology is sometimes referred to as LTE-Advanced (LTE-A) and LTE-Advanced Pro (LTE-A Pro).
  • NR New Radio, or NR Radio access
  • RAT Radio Access Technology
  • 3GPP TS 38.300 v16.4.0 "NR; NR and NG-RAN Overall description; Stage 2" pp10-134 3GPP TS 36.300 v16.4.0, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2" pp19-362 3GPP TS 38.331 v16.3.1, “NR; Radio Resource Control (RRC); Protocol specifications” pp21-881 3GPP TS 36.331 v16.3.0, “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specifications” pp25-1015 3GPP TS 37.340 v16.4.0, “Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Multi-Connectivity; Stage 2" pp7-77 3GPP TS 38.321 v16.3.0, “NR; Medium Access Control (MAC) protocol specification” pp8-
  • NR As an extension technology of NR, there is a serving cell change technology that allows a terminal device to move from the coverage area of one cell to the coverage area of another cell.
  • This serving cell change is triggered by layer 3 (also called RRC) measurements, and synchronized reconfiguration for the serving cell change is triggered by RRC signaling.
  • layer 1 or layer 2 signaling has the advantage of low latency and low overhead. For this reason, studies have begun on a serving cell change technology triggered by layer 1 or layer 2 signaling (Layer 1/Layer 2 mobility optimization (L1/L2 mobility enhancement) technology).
  • One aspect of the present invention was made in consideration of the above circumstances, and one of its objectives is to provide a terminal device, a base station device, a communication method, and an integrated circuit that can efficiently control communications.
  • one aspect of the present invention takes the following measures. That is, one aspect of the present invention is a terminal device that communicates with a base station device, and includes a receiver that receives from the base station device a first MAC CE indicating an identifier that identifies one or more candidate target configurations including a target SCell, an RRC processor, and a MAC processor, and based on the MAC processor's reception of the first MAC CE, the RRC processor applies the candidate target configuration identified by the first MAC CE to the RRC configuration of the terminal device, and the MAC processor determines whether the applied candidate target configuration includes information indicating that the target SCell is to be activated, and activates or deactivates the target SCell based on the determination.
  • Another aspect of the present invention is a method for a terminal device to communicate with a base station device, comprising the steps of: a MAC entity of the terminal device receiving from the base station device a first MAC CE indicating an identifier identifying one or more candidate target configurations including a target SCell; an RRC entity of the terminal device applying the candidate target configuration identified by the first MAC CE to an RRC configuration of the terminal device based on the MAC entity receiving the first MAC CE; a MAC entity determining whether the applied candidate target configuration includes information indicating that the target SCell is to be activated; and activating or deactivating the target SCell based on the determination.
  • Another aspect of the present invention is an integrated circuit implemented in a terminal device that communicates with a base station device, the integrated circuit having the following functions: a MAC entity of the terminal device receives from the base station device a first MAC CE indicating an identifier that identifies one or more candidate target configurations including a target SCell; an RRC entity of the terminal device applies the candidate target configuration identified by the first MAC CE to the RRC configuration of the terminal device based on the MAC entity receiving the first MAC CE; the MAC entity determines whether the applied candidate target configuration includes information indicating that the target SCell is to be activated; and activates or deactivates the target SCell based on the determination.
  • a terminal device, method, and integrated circuit can realize efficient communication control processing.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of an E-UTRA protocol configuration according to the present embodiment.
  • FIG. 1 is a diagram showing an example of an NR protocol configuration according to the present embodiment.
  • FIG. 2 is a diagram showing an example of a procedure flow for various settings in the RRC according to the present embodiment.
  • FIG. 2 is a block diagram showing the configuration of a terminal device according to the embodiment.
  • FIG. 2 is a block diagram showing the configuration of a base station device according to the present embodiment.
  • An example of an ASN.1 description included in a message regarding reconfiguration of an RRC connection in NR in this embodiment. 13 is an example of an ASN.1 description representing a field and/or an information element related to a ServingCellConfigCommon information element in this embodiment.
  • 5 is an example of processing of a terminal device in the present embodiment.
  • LTE and LTE-A, LTE-A Pro
  • NR may be defined as different radio access technologies (Radio Access Technologies: RATs).
  • NR may be defined as a technology included in LTE.
  • LTE may be defined as a technology included in NR.
  • LTE that can be connected to NR via Multi-Radio Dual Connectivity (MR-DC) may be distinguished from conventional LTE.
  • MR-DC Multi-Radio Dual Connectivity
  • LTE that uses 5GC in the core network Core Network: CN
  • Conventional LTE may refer to LTE that does not implement technologies standardized after Release 15 in 3GPP. This embodiment may be applied to NR, LTE, and other RATs.
  • E-UTRA may be replaced with the term LTE
  • LTE may be replaced with the term E-UTRA
  • each node and entity and the processing in each node and entity when the radio access technology is E-UTRA or NR are described, but this embodiment may be used for other radio access technologies.
  • the names of each node and entity in this embodiment may be different names.
  • FIG. 1 is a schematic diagram of a communication system according to this embodiment. Note that the functions of each node, radio access technology, core network, interface, etc. described using FIG. 1 are only some of the functions closely related to this embodiment, and the system may have other functions.
  • E-UTRA 100 may be a radio access technology.
  • E-UTRA 100 may also be an air interface between UE 122 and eNB 102.
  • the air interface between UE 122 and eNB 102 may be referred to as a Uu interface.
  • eNB (E-UTRAN Node B) 102 may be a base station device.
  • eNB 102 may have an E-UTRA protocol, which will be described later.
  • the E-UTRA protocol may be composed of an E-UTRA User Plane (UP) protocol, which will be described later, and an E-UTRA Control Plane (CP) protocol, which will be described later.
  • eNB 102 may terminate the E-UTRA User Plane (UP) protocol and the E-UTRA Control Plane (CP) protocol for UE 122.
  • a radio access network composed of eNBs may be referred to as E-UTRAN.
  • EPC (Evolved Packet Core) 104 may be a core network.
  • Interface 112 is an interface between eNB 102 and EPC 104, and may be referred to as an S1 interface.
  • Interface 112 may include a control plane interface through which control signals pass, and/or a user plane interface through which user data passes.
  • the control plane interface of interface 112 may terminate at a Mobility Management Entity (MME: not shown) in EPC 104.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the control plane interface of interface 112 may be referred to as an S1-MME interface.
  • the user plane interface of interface 112 may be referred to as an S1-U interface.
  • one or more eNBs 102 may be connected to the EPC 104 via an interface 112.
  • An interface may exist between the multiple eNBs 102 connected to the EPC 104 (not shown).
  • the interface between the multiple eNBs 102 connected to the EPC 104 may be referred to as an X2 interface.
  • NR106 may be a radio access technology.
  • NR106 may also be an air interface between UE122 and gNB108.
  • the air interface between UE122 and gNB108 may be referred to as a Uu interface.
  • gNB (g Node B) 108 may be a base station device.
  • gNB108 may have the NR protocol described below.
  • the NR protocol may be composed of the NR user plane (User Plane: UP) protocol described below and the NR control plane (Control Plane: CP) protocol described below.
  • gNB108 may terminate the NR user plane (User Plane: UP) protocol and the NR control plane (Control Plane: CP) protocol for UE122.
  • 5GC110 may be a core network.
  • Interface 116 is an interface between gNB108 and 5GC110, and may be referred to as an NG interface.
  • Interface 116 may have a control plane interface through which control signals pass, and/or a user plane interface through which user data passes.
  • the control plane interface of interface 116 may terminate at an Access and Mobility Management Function (AMF: not shown) in 5GC110.
  • AMF Access and Mobility Management Function
  • the user plane interface of interface 116 may terminate at a User Plane Function (UPF: not shown) in 5GC110.
  • the control plane interface of interface 116 may be referred to as an NG-C interface.
  • the user plane interface of interface 116 may be referred to as an NG-U interface.
  • one or more gNB108 may be connected to 5GC110 via interface 116.
  • An interface may exist between multiple gNB108 connected to 5GC110 (not shown).
  • the interface between multiple gNB108 connected to 5GC110 may be referred to as an Xn interface.
  • eNB102 may have a function to connect to 5GC110.
  • eNB102 with a function to connect to 5GC110 may be called ng-eNB.
  • Interface 114 is an interface between eNB102 and 5GC110, and may be called an NG interface.
  • Interface 114 may have a control plane interface through which control signals pass, and/or a user plane interface through which user data passes.
  • the control plane interface of interface 114 may terminate at the AMF in 5GC110.
  • the user plane interface of interface 114 may terminate at the UPF in 5GC110.
  • the control plane interface of interface 114 may be called an NG-C interface.
  • the user plane interface of interface 114 may be called an NG-U interface.
  • a radio access network composed of ng-eNB or gNB may be called NG-RAN.
  • NG-RAN, E-UTRAN, etc. may simply be called a network.
  • the network may include eNB, ng-eNB, gNB, etc.
  • one or more eNB102 may be connected to 5GC110 via interface 114.
  • An interface may exist between multiple eNB102 connected to 5GC110 (not shown).
  • the interface between multiple eNB102 connected to 5GC110 may be called an Xn interface.
  • an eNB102 connected to 5GC110 and a gNB108 connected to 5GC110 may be connected by interface 120.
  • the interface 120 between an eNB102 connected to 5GC110 and a gNB108 connected to 5GC110 may be called an Xn interface.
  • the gNB108 may have the function of connecting to the EPC104.
  • the gNB108 with the function of connecting to the EPC104 may be called an en-gNB.
  • the interface 118 is an interface between the gNB108 and the EPC104, and may be called an S1 interface.
  • the interface 118 may have a user plane interface through which user data passes.
  • the user plane interface of the interface 118 may terminate at an S-GW (not shown) in the EPC104.
  • the user plane interface of the interface 118 may be called an S1-U interface.
  • the eNB102 connecting to the EPC104 and the gNB108 connecting to the EPC104 may be connected by an interface 120.
  • the interface 120 between the eNB102 connecting to the EPC104 and the gNB108 connecting to the EPC104 may be called an X2 interface.
  • Interface 124 is an interface between EPC 104 and 5GC 110, and may be an interface that passes only CP, only UP, or both CP and UP. In addition, some or all of interfaces such as interface 114, interface 116, interface 118, interface 120, and interface 124 may not exist depending on the communication system provided by the communication carrier, etc.
  • UE122 may be a terminal device capable of receiving system information and paging messages transmitted from eNB102 and/or gNB108. UE122 may also be a terminal device capable of wireless connection with eNB102 and/or gNB108. UE122 may also be a terminal device capable of wireless connection with eNB102 and wireless connection with gNB108 simultaneously. UE122 may have the E-UTRA protocol and/or the NR protocol. The wireless connection may be a Radio Resource Control (RRC) connection.
  • RRC Radio Resource Control
  • UE122 may also be a terminal device capable of connecting to EPC104 and/or 5GC110 via eNB102 and/or gNB108.
  • EPC104 When the core network to which eNB102 and/or gNB108, with which UE122 communicates, is connected is EPC104, each Data Radio Bearer (DRB: Data Radio Bearer) described below established between UE122 and eNB102 and/or gNB108 may further be uniquely linked to each EPS (Evolved Packet System) bearer passing through EPC104.
  • EPS bearer may be identified by an EPS bearer identifier (Identity, or ID).
  • ID EPS bearer identifier
  • the same QoS may be guaranteed for data such as IP packets and Ethernet (registered trademark) frames passing through the same EPS bearer.
  • each DRB established between UE122 and eNB102 and/or gNB108 may be further linked to one of the PDU (Packet Data Unit) sessions established within 5GC110.
  • PDU Packet Data Unit
  • One or more QoS flows may exist in each PDU session.
  • Each DRB may be mapped to one or more QoS flows, or may not be mapped to any QoS flow.
  • Each PDU session may be identified by a PDU session identifier (Identity, or ID).
  • each QoS flow may be identified by a QoS flow identifier (Identity, or ID).
  • the same QoS may be guaranteed to data such as IP packets and Ethernet frames passing through the same QoS flow.
  • PDU sessions and/or QoS flows may not exist in EPC104.
  • EPS bearers may not exist in 5GC110.
  • UE122 When UE122 is connected to EPC104, UE122 has information on EPS bearers, but does not have information on PDU sessions and/or QoS flows. Also, when UE122 is connected to 5GC110, UE122 has information on PDU sessions and/or QoS flows, but does not have information on EPS bearers.
  • eNB102 and/or gNB108 will also be referred to simply as base station devices, and UE122 will also be referred to simply as terminal device or UE.
  • FIG. 2 is a diagram showing an example of an E-UTRA protocol architecture according to this embodiment.
  • FIG. 3 is a diagram showing an example of an NR protocol architecture according to this embodiment. Note that the functions of each protocol described using FIG. 2 and/or FIG. 3 are only some of the functions closely related to this embodiment, and other functions may also be included.
  • the uplink (UL) may be a link from a terminal device to a base station device.
  • the downlink (DL) may be a link from a base station device to a terminal device.
  • FIG. 2(A) is a diagram of the E-UTRA user plane (UP) protocol stack.
  • the E-UTRA UP protocol may be a protocol between the UE 122 and the eNB 102. That is, the E-UTRA UP protocol may be a protocol that terminates at the eNB 102 on the network side.
  • the E-UTRA user plane protocol stack may be composed of PHY (Physical layer) 200, which is the radio physical layer, MAC (Medium Access Control) 202, which is the medium access control layer, RLC (Radio Link Control) 204, which is the radio link control layer, and PDCP (Packet Data Convergence Protocol) 206, which is the packet data convergence protocol layer.
  • PHY Physical layer
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • Figure 3(A) is a diagram of the NR user plane (UP) protocol stack.
  • the NRUP protocol may be a protocol between the UE 122 and the gNB 108. That is, the NR UP protocol may be a protocol that terminates at the gNB 108 on the network side.
  • the NR user plane protocol stack may be composed of PHY 300, which is a radio physical layer, MAC 302, which is a medium access control layer, RLC 304, which is a radio link control layer, PDCP 306, which is a packet data convergence protocol layer, and SDAP (Service Data Adaptation Protocol) 310, which is a service data adaptation protocol layer.
  • PHY 300 which is a radio physical layer
  • MAC 302 which is a medium access control layer
  • RLC 304 which is a radio link control layer
  • PDCP 306 which is a packet data convergence protocol layer
  • SDAP Service Data Adaptation Protocol
  • FIG. 2(B) is a diagram of the E-UTRA control plane (CP) protocol configuration.
  • RRC Radio Resource Control
  • NAS Non Access Stratum
  • NAS 210 which is the non-AS (Access Stratum) layer
  • NAS 210 may be a protocol that terminates at MME on the network side.
  • Figure 3(B) is a diagram of the NR control plane (CP) protocol configuration.
  • RRC308 which is a radio resource control layer
  • RRC308 may be a protocol that terminates at gNB108 on the network side.
  • NAS312 which is a non-AS layer
  • NAS312 may be a protocol that terminates at AMF on the network side.
  • the AS (Access Stratum) layer may be a layer that terminates between the UE 122 and the eNB 102 and/or the gNB 108.
  • the AS layer may be a layer that includes some or all of the PHY 200, the MAC 202, the RLC 204, the PDCP 206, and the RRC 208, and/or a layer that includes some or all of the PHY 300, the MAC 302, the RLC 304, the PDCP 306, the SDAP 310, and the RRC 308.
  • PHY PHY layer
  • MAC MAC layer
  • RLC RLC layer
  • PDCP PDCP layer
  • RRC RRC layer
  • NAS NAS layer
  • PHY PHY layer
  • MAC MAC layer
  • RLC RLC layer
  • PDCP PDCP layer
  • RRC RRC layer
  • NAS NAS layer
  • PHY PHY layer
  • MAC MAC layer
  • RLC RLC layer
  • PDCP layer PDCP layer
  • RRC RRC layer
  • NAS NAS layer
  • the SDAP SDAP layer
  • SDAP layer may also be the SDAP (SDAP layer) of the NR protocol.
  • E-UTRA PHY200, MAC202, RLC204, PDCP206, and RRC208 may be referred to as E-UTRA PHY or LTE PHY, E-UTRA MAC or LTE MAC, E-UTRA RLC or LTE RLC, E-UTRA PDCP or LTE PDCP, and E-UTRA RRC or LTE RRC, respectively.
  • PHY200, MAC202, RLC204, PDCP206, and RRC208 may be referred to as E-UTRA PHY or LTE PHY, E-UTRA MAC or LTE MAC, E-UTRA RLC or LTE RLC, E-UTRA PDCP or LTE PDCP, and E-UTRA RRC or LTE RRC, respectively.
  • PHY300, MAC302, RLC304, PDCP306, and RRC308 may be referred to as NR PHY, NR MAC, NR RLC, NR RLC, and NR RRC, respectively.
  • PHY300, MAC302, RLC304, PDCP306, and RRC308 may also be referred to as NR PHY, NR MAC, NR RLC, NR PDCP, and NR RRC, respectively.
  • An entity having some or all of the functions of the MAC layer may be called a MAC entity.
  • An entity having some or all of the functions of the RLC layer may be called an RLC entity.
  • An entity having some or all of the functions of the PDCP layer may be called a PDCP entity.
  • An entity having some or all of the functions of the SDAP layer may be called an SDAP entity.
  • An entity having some or all of the functions of the RRC layer may be called an RRC entity.
  • the MAC entity, RLC entity, PDCP entity, SDAP entity, and RRC entity may be referred to as MAC, RLC, PDCP, SDAP, and RRC, respectively.
  • MAC PDU Protocol Data Unit
  • RLC PDU Packet Data Unit
  • PDCP PDU Packet Data Unit
  • SDAP PDU Serial Data Unit
  • RLC SDU Service Data Unit
  • RLC SDU Remote Location Control
  • PDCP SDU Packet Data Unit
  • SDAP SDU Segmented RLC SDU
  • the base station device and the terminal device exchange (transmit and receive) signals at a higher layer.
  • the base station device and the terminal device may transmit and receive RRC messages (also referred to as RRC messages, RRC information, or RRC signaling) at the Radio Resource Control (RRC) layer.
  • RRC Radio Resource Control
  • the base station device and the terminal device may also transmit and receive MAC control elements at the MAC (Medium Access Control) layer.
  • the RRC layer of the terminal device acquires system information reported from the base station device.
  • the RRC messages, system information, and/or MAC control elements are also referred to as higher layer signals (higher layer signaling) or higher layer parameters (higher layer parameters).
  • Each of the parameters included in the higher layer signals received by the terminal device may be referred to as a higher layer parameter.
  • the upper layer means the upper layer seen from the PHY layer, and may mean one or more of the MAC layer, RRC layer, RLC layer, PDCP layer, NAS (Non Access Stratum) layer, etc.
  • the upper layer may mean one or more of the RRC layer, RLC layer, PDCP layer, NAS layer, etc.
  • “A is given (provided) by the upper layer” or “A is given (provided) by the upper layer” may mean that the upper layer (mainly the RRC layer or MAC layer, etc.) of the terminal device receives A from the base station device, and the received A is given (provided) from the upper layer of the terminal device to the physical layer of the terminal device.
  • upper layer parameters are provided may mean that an upper layer signal is received from the base station device, and the upper layer parameters included in the received upper layer signal are provided from the upper layer of the terminal device to the physical layer of the terminal device.
  • Setting upper layer parameters in the terminal device may mean that the upper layer parameters are given (provided) to the terminal device.
  • setting upper layer parameters in a terminal device may mean that the terminal device receives an upper layer signal from a base station device and sets the received upper layer parameters in the upper layer.
  • setting upper layer parameters in a terminal device may include setting default parameters that are given in advance to the upper layer of the terminal device.
  • the expression "submitting a message from the RRC entity of the terminal device to a lower layer” may be used.
  • "submitting a message to a lower layer” from the RRC entity may mean submitting a message to the PDCP layer.
  • "submitting a message to a lower layer” from the RRC layer may mean submitting an RRC message to a PDCP entity corresponding to each SRB, since RRC messages are transmitted using SRBs (SRB0, SRB1, SRB2, SRB3, etc.).
  • the lower layer may mean one or more of the PHY layer, MAC layer, RLC layer, PDCP layer, etc.
  • the PHY of the terminal device may have a function of receiving data transmitted from the PHY of the base station device via a downlink (DL) physical channel.
  • the PHY of the terminal device may have a function of transmitting data to the PHY of the base station device via an uplink (UL) physical channel.
  • the PHY may be connected to an upper MAC via a transport channel.
  • the PHY may pass data to the MAC via the transport channel.
  • the PHY may also be provided with data from the MAC via the transport channel.
  • a Radio Network Temporary Identifier RNTI
  • RNTI Radio Network Temporary Identifier
  • the physical channels used for wireless communication between a terminal device and a base station device may include the following physical channels:
  • PBCH Physical Broadcast CHannel
  • PDCCH Physical Downlink Control CHannel
  • PDSCH Physical Downlink Shared CHannel
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • the PBCH may be used to notify the terminal device of system information required.
  • the PBCH may be used to report the time index (SSB-Index) within the period of a synchronization signal block (SSB).
  • SSB-Index time index within the period of a synchronization signal block
  • the PDCCH may be used to transmit (or carry) downlink control information (DCI) in downlink wireless communication (wireless communication from a base station device to a terminal device).
  • DCI downlink control information
  • one or more DCIs (which may be referred to as DCI formats) may be defined for the transmission of the downlink control information. That is, a field for the downlink control information may be defined as a DCI and mapped to information bits.
  • the PDCCH may be transmitted in PDCCH candidates.
  • the terminal device may monitor a set of PDCCH candidates in the serving cell. Monitoring the set of PDCCH candidates may mean attempting to decode the PDCCH according to a certain DCI format.
  • the terminal device may use a CORESET (Control Resource Set) to monitor the set of PDCCH candidates.
  • the DCI format may be used for scheduling the PUSCH in the serving cell.
  • the PUSCH may be used for transmitting user data, transmitting RRC messages described later, and the like.
  • the PUCCH may be used to transmit uplink control information (UCI) in uplink wireless communication (wireless communication from a terminal device to a base station device).
  • the uplink control information may include channel state information (CSI: Channel State Information) used to indicate the state of the downlink channel.
  • CSI Channel State Information
  • the uplink control information may also include a scheduling request (SR: Scheduling Request) used to request UL-SCH (UL-SCH: Uplink Shared CHannel) resources.
  • SR Scheduling Request
  • UL-SCH Uplink Shared CHannel
  • the uplink control information may also include a hybrid automatic repeat reQuest ACKnowledgement (HARQ-ACK).
  • HARQ-ACK hybrid automatic repeat reQuest ACKnowledgement
  • the PDSCH may be used to transmit downlink data (DL-SCH: Downlink Shared CHannel) from the MAC layer.
  • DL-SCH Downlink Shared CHannel
  • the PDSCH may also be used to transmit system information (SI: System Information) and random access response (RAR: Random Access Response).
  • SI System Information
  • RAR Random Access Response
  • the PUSCH may be used to transmit uplink data from the MAC layer (UL-SCH: Uplink Shared CHannel) or HARQ-ACK and/or CSI together with uplink data.
  • the PUSCH may also be used to transmit only CSI, or only HARQ-ACK and CSI. That is, the PUSCH may be used to transmit only UCI.
  • the PDSCH or PUSCH may also be used to transmit RRC signaling (also referred to as an RRC message) and MAC CE.
  • the RRC signaling transmitted from the base station device may be common signaling for multiple terminal devices within a cell.
  • the RRC signaling transmitted from the base station device may also be dedicated signaling (also referred to as dedicated signaling) for a certain terminal device. That is, terminal device-specific (UE-specific) information may be transmitted using dedicated signaling for a certain terminal device.
  • the PUSCH may also be used to transmit UE capabilities in the uplink.
  • the PRACH may be used to transmit a random access preamble.
  • the PRACH may also be used for initial connection establishment procedures, handover procedures, connection re-establishment procedures, synchronization (timing adjustment) for uplink transmissions, and to indicate requests for UL-SCH resources.
  • the MAC may be called a MAC sublayer.
  • the MAC may have the function of mapping various logical channels to corresponding transport channels.
  • the logical channels may be identified by a logical channel identifier (Logical Channel Identity or Logical Channel ID).
  • the MAC may be connected to the higher-level RLC via a logical channel.
  • the logical channels may be divided into a control channel that transmits control information and a traffic channel that transmits user information.
  • the logical channels may also be divided into an uplink logical channel and a downlink logical channel.
  • the MAC may have the function of multiplexing MAC SDUs belonging to one or more different logical channels and providing them to the PHY.
  • the MAC may also have the function of demultiplexing the MAC PDUs provided by the PHY and providing them to the higher layer via the logical channel to which each MAC SDU belongs.
  • the MAC may also have the ability to perform error correction through HARQ (Hybrid Automatic Repeat reQuest).
  • HARQ Hybrid Automatic Repeat reQuest
  • the MAC may also have the ability to report scheduling information.
  • the MAC may have the ability to perform priority processing between terminal devices using dynamic scheduling.
  • the MAC may also have the ability to perform priority processing between logical channels within a single terminal device.
  • the MAC may have the ability to perform priority processing of overlapping resources within a single terminal device.
  • the E-UTRA MAC may have the ability to identify Multimedia Broadcast Multicast Services (MBMS).
  • MBMS Multimedia Broadcast Multicast Services
  • the NR MAC may have the ability to identify Multicast/broadcast services (MBS).
  • the MAC may have the ability to select a transport format.
  • the MAC may have functions such as discontinuous reception (DRX) and/or discontinuous transmission (DTX), a function to execute random access (RA) procedures, a power headroom report (PHR) function to notify information on the transmittable power, a buffer status report (BSR) function to notify information on the amount of data in the transmit buffer, etc.
  • the NR MAC may have a bandwidth adaptation (BA) function.
  • the MAC PDU format used in the E-UTRA MAC may differ from the MAC PDU format used in the NR MAC.
  • the MAC PDU may also include a MAC control element (MAC CE), which is an element for performing control in the MAC.
  • MAC CE MAC control element
  • This section explains the uplink (UL) and/or downlink (DL) logical channels used in E-UTRA and/or NR.
  • the BCCH (Broadcast Control Channel) may be a downlink logical channel for broadcasting control information such as system information (SI).
  • SI system information
  • PCCH Packet Control Channel
  • PCCH Packet Control Channel
  • the Common Control Channel may be a logical channel for transmitting control information between a terminal device and a base station device.
  • the CCCH may be used when the terminal device does not have an RRC connection.
  • the CCCH may also be used between a base station device and multiple terminal devices.
  • DCCH (Dedicated Control Channel) may be a logical channel for transmitting dedicated control information in a point-to-point bidirectional manner between a terminal device and a base station device.
  • the dedicated control information may be control information dedicated to each terminal device.
  • DCCH may be used when the terminal device has an RRC connection.
  • DTCH (Dedicated Traffic Channel) may be a logical channel for transmitting user data point-to-point between a terminal device and a base station device.
  • DTCH may be a logical channel for transmitting dedicated user data.
  • Dedicated user data may be user data dedicated to each terminal device.
  • DTCH may exist in both the uplink and downlink.
  • This section describes the mapping of logical channels and transport channels for the uplink in E-UTRA and/or NR.
  • the CCCH may be mapped to the uplink transport channel, UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the DCCH may be mapped to the uplink transport channel, UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the DTCH may be mapped to the uplink transport channel, UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • This section describes the mapping of logical channels and transport channels for the downlink in E-UTRA and/or NR.
  • the BCCH may be mapped to the downlink transport channels BCH (Broadcast Channel) and/or DL-SCH (Downlink Shared Channel).
  • BCH Broadcast Channel
  • DL-SCH Downlink Shared Channel
  • the PCCH may be mapped to the PCH (Paging Channel), which is a downlink transport channel.
  • PCH Packet Control Channel
  • the CCCH may be mapped to the downlink transport channel, DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the DCCH may be mapped to the downlink transport channel, DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • DTCH may be mapped to the downlink transport channel, DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • RLC may be called an RLC sublayer.
  • E-UTRA RLC may have the function of segmenting and/or concatenating data provided from the upper layer PDCP and providing it to the lower layer.
  • E-UTRA RLC may have the function of reassembling and reordering data provided from the lower layer and providing it to the upper layer.
  • NR RLC may have the function of adding a sequence number independent of the sequence number added by PDCP to data provided from the upper layer PDCP.
  • NR RLC may also have the function of segmenting data provided from PDCP and providing it to the lower layer.
  • NR RLC may also have the function of reassembling data provided from the lower layer and providing it to the upper layer.
  • RLC may also have the function of retransmitting data and/or requesting retransmission (Automatic Repeat reQuest: ARQ). RLC may also have the function of performing error correction using ARQ.
  • the control information sent from the receiving side of RLC to the transmitting side to perform ARQ, indicating the data that needs to be retransmitted, may be called a status report.
  • the instruction to send a status report sent from the transmitting side of RLC to the receiving side may be called a poll.
  • RLC may also have the function of detecting data duplication.
  • RLC may also have the function of discarding data. RLC may have three modes: Transparent Mode (TM), Unacknowledged Mode (UM), and Acknowledged Mode (AM).
  • the TM RLC entity is a uni-directional entity and may be configured as a transmitting TM RLC entity or a receiving TM RLC entity.
  • data received from a higher layer may be segmented and/or combined, an RLC header may be added, etc., but data retransmission control is not required.
  • the UM RLC entity may be a unidirectional entity or a bi-directional entity. If the UM RLC entity is a unidirectional entity, it may be configured as a transmitting UM RLC entity or as a receiving UMRLC entity.
  • the UM RRC entity may be configured as a UM RLC entity consisting of a transmitting side and a receiving side.
  • AM data received from a higher layer may be segmented and/or combined, an RLC header may be added, data retransmission control is required, etc.
  • the AM RLC entity is a bi-directional entity and may be configured as an AM RLC consisting of a transmitting side and a receiving side.
  • TMD PDU data provided to a lower layer in TM and/or data provided from a lower layer
  • data provided to a lower layer in UM and/or data provided from a lower layer may be referred to as a UMD PDU.
  • RLC PDU data provided to a lower layer in AM and/or data provided from a lower layer may be referred to as an AMD PDU.
  • the RLC PDU format used in E-UTRA RLC may be different from the RLC PDU format used in NR RLC.
  • RLC PDUs may include RLC PDUs for data and RLC PDUs for control.
  • the RLC PDUs for data may be referred to as RLC DATA PDU (RLC Data PDU, RLC Data PDU).
  • RLC PDUs for control may be referred to as RLC CONTROL PDU (RLC Control PDU, RLC Control PDU, RLC Control PDU).
  • PDCP may be called a PDCP sublayer.
  • PDCP may have a function for maintaining sequence numbers.
  • PDCP may also have a header compression/decompression function for efficiently transmitting user data such as IP packets and Ethernet frames over wireless sections.
  • the protocol used for IP packet header compression/decompression may be called the ROHC (Robust Header Compression) protocol.
  • the protocol used for Ethernet frame header compression/decompression may be called the EHC (Ethernet (registered trademark) Header Compression) protocol.
  • PDCP may also have a data encryption/decryption function.
  • PDCP may also have a data integrity protection/integrity verification function.
  • PDCP may also have a re-ordering function.
  • PDCP may also have a PDCP SDU retransmission function.
  • PDCP may also have a data discard function using a discard timer.
  • PDCP may also have a duplication function.
  • PDCP may also have the function of discarding duplicated data received.
  • the PDCP entity is a bidirectional entity and may consist of a transmitting PDCP entity and a receiving PDCP entity.
  • the PDCP PDU format used in E-UTRA PDCP may differ from the PDCP PDU format used in NR PDCP.
  • PDCP PDUs may include data PDCP PDUs and control PDCP PDUs.
  • the data PDCP PDU may be called PDCP DATA PDU (PDCP Data PDU, PDCP Data PDU).
  • the control PDCP PDU may be called PDCP CONTROL PDU (PDCP Control PDU, PDCP Control PDU, PDCP Control PDU).
  • SDAP is a service data adaptation protocol layer.
  • SDAP may have a function of mapping the downlink QoS flow sent from 5GC110 to the terminal device via the base station device with a data radio bearer (DRB), and/or mapping the uplink QoS flow sent from the terminal device to 5GC110 via the base station device with a DRB.
  • SDAP may also have a function of storing mapping rule information.
  • SDAP may also have a function of marking the QoS flow identifier (QoS Flow ID: QFI).
  • QFI QoS Flow ID
  • RRC may have a broadcast function.
  • RRC may have a paging function from EPC104 and/or 5GC110.
  • RRC may have a paging function from eNB102 connected to gNB108 or 5GC110.
  • RRC may also have an RRC connection management function.
  • RRC may also have a radio bearer control function.
  • RRC may also have a cell group control function.
  • RRC may also have a mobility control function.
  • RRC may also have terminal device measurement reporting and terminal device measurement reporting control functions.
  • RRC may also have a QoS management function.
  • RRC may also have a radio link failure detection and recovery function.
  • RRC may use RRC messages to perform notification, paging, RRC connection management, radio bearer control, cell group control, mobility control, terminal device measurement reporting and terminal device measurement reporting control, QoS management, detection and recovery of radio link failures, etc. Note that the RRC messages and parameters used in E-UTRA RRC may differ from the RRC messages and parameters used in NR RRC.
  • the RRC message may be sent using the logical channel BCCH, the logical channel PCCH, the logical channel CCCH, or the logical channel DCCH.
  • RRC messages sent using the DCCH may also be referred to as Dedicated RRC signaling, or RRC signaling.
  • RRC messages sent using the BCCH may include, for example, a Master Information Block (MIB), various types of System Information Blocks (SIBs), and other RRC messages.
  • RRC messages sent using the PCCH may include, for example, paging messages, and other RRC messages.
  • RRC messages sent in the uplink (UL) direction using the CCCH may include, for example, an RRC setup request message (RRC Setup Request), an RRC resume request message (RRC Resume Request), an RRC reestablishment request message (RRC Reestablishment Request), an RRC system information request message (RRC System Info Request), etc. They may also include, for example, an RRC connection request message (RRC Connection Request), an RRC connection resume request message (RRC Connection Resume Request), an RRC connection reestablishment request message (RRC Connection Reestablishment Request), etc. They may also include other RRC messages.
  • RRC messages sent in the downlink (DL) direction using the CCCH may include, for example, an RRC connection reject message (RRC Connection Reject), an RRC connection setup message (RRC Connection Setup), an RRC connection reestablishment message (RRC Connection Reestablishment Reject), an RRC connection reestablishment rejection message (RRC Connection Reestablishment Reject), etc. They may also include, for example, an RRC reject message (RRC Reject), an RRC setup message (RRC Setup), etc. They may also include other RRC messages.
  • RRC signalling sent in the uplink (UL) direction using the DCCH may include, for example, a measurement report message (Measurement Report), an RRC connection reconfiguration complete message (RRC Connection Reconfiguration Complete), an RRC connection setup complete message (RRC Connection Setup Complete), an RRC connection reestablishment complete message (RRC Connection Reestablishment Complete), a security mode complete message (Security Mode Complete), and a UE capability information message (UE Capability Information).
  • Measurement Report Measurement Report
  • RRC Connection Reconfiguration Complete RRC connection reconfiguration Complete
  • RRC Connection Setup Complete RRC connection setup complete message
  • RRC Connection reestablishment complete RRC Connection Reestablishment Complete
  • a security mode complete message Security Mode Complete
  • UE Capability Information UE Capability Information
  • It may also include, for example, a measurement report message (Measurement Report), an RRC reconfiguration complete message (RRC Reconfiguration Complete), an RRC setup complete message (RRC Setup Complete), an RRC reestablishment complete message (RRC Resumé Complete), a security mode complete message (Security Mode Complete), a UE capability information message (UE Capability Information), etc. It may also include other RRC signaling.
  • the RRC signaling sent in the downlink (DL) direction using the DCCH may include, for example, an RRC connection reconfiguration message (RRC Connection Reconfiguration), an RRC connection release message (RRC Connection Release), a security mode command message (Security Mode Command), a UE capability enquiry message (UE Capability Enquiry), etc. It may also include, for example, an RRC reconfiguration message (RRC Reconfiguration), an RRC resume message (RRC Resume), an RRC release message (RRC Release), an RRC reestablishment message (RRC Reestablishment), a security mode command message (Security Mode Command), a UE capability enquiry message (UE Capability Enquiry), etc. It may also include other RRC signaling.
  • the NAS may have an authentication function.
  • the NAS may also have a mobility management function.
  • the NAS may also have a security control function.
  • UE122 When UE122 connected to EPC or 5GC has an RRC connection established, UE122 may be in the RRC_CONNECTED state.
  • the state in which the RRC connection is established may include a state in which UE122 holds some or all of the UE context described below.
  • the state in which the RRC connection is established may also include a state in which UE122 can transmit and/or receive unicast data.
  • UE122 When the RRC connection is suspended, UE122 may be in the RRC_INACTIVE state.
  • UE122 may be in the RRC_INACTIVE state when UE122 is connected to 5GC and the RRC connection is suspended.
  • UE122 When UE122 is neither in the RRC_CONNECTED state nor in the RRC_INACTIVE state, UE122 may be in the RRC_IDLE state.
  • UE 122 when UE 122 is connected to the EPC, it does not have the RRC_INACTIVE state, but E-UTRAN may initiate suspension of the RRC connection.
  • UE 122 When UE 122 is connected to the EPC, UE 122 may transition to the RRC_IDLE state when the RRC connection is suspended, retaining the UE AS context and an identifier (resumeIdentity) used for resumption.
  • a layer above the RRC layer of UE 122 e.g., the NAS layer
  • dormancy may be different for UE 122 connected to EPC 104 and UE 122 connected to 5GC 110.
  • all or part of the procedure for UE 122 to return from dormancy may be different when UE 122 is connected to EPC (when UE 122 is dormant in RRC_IDLE state) and when UE 122 is connected to 5GC (when UE 122 is dormant in RRC_INACTIVE state).
  • the RRC_CONNECTED state, RRC_INACTIVE state, and RRC_IDLE state may be referred to as the connected state (connected mode), the inactive state (inactive mode), and the idle state (idle mode), respectively, or as the RRC connected state (RRC connected mode), the RRC inactive state (RRC inactive mode), and the RRC idle state (RRC idle mode).
  • the UE AS context held by UE122 may be information including all or part of the following: the current RRC settings, the current security context, the PDCP state including the ROHC (RObust Header Compression) state, the C-RNTI (Cell Radio Network Temporary Identifier) used in the source PCell, the cell identifier, and the physical cell identifier of the source PCell.
  • the UE AS context held by any or all of eNB102 and gNB108 may include the same information as the UE AS context held by UE122, or may include information different from the information included in the UE AS context held by UE122.
  • the security context may be information that includes all or part of the following: an encryption key at the AS level, a Next Hop parameter (NH), a Next Hop Chaining Counter parameter (NCC) used to derive the next hop access key, an identifier for the selected AS level encryption algorithm, and a counter used for replay protection.
  • NH Next Hop parameter
  • NCC Next Hop Chaining Counter parameter
  • the serving cell In a terminal device in an RRC connected state in which CA and/or DC, which will be described later, are not set, the serving cell may be composed of one primary cell (PCell).
  • the multiple serving cells In a terminal device in an RRC connected state in which CA and/or DC, which will be described later, are set, the multiple serving cells may refer to a set of multiple cells (set of cell(s)) composed of one or more special cells (SpCells) and one or more all secondary cells (SCells).
  • the SpCell may support PUCCH transmission and contention-based random access (CBRA), and the SpCell may be always activated.
  • the PCell may be a cell used in the RRC connection establishment procedure when a terminal device in an RRC idle state transitions to an RRC connected state.
  • the PCell may also be a cell used in the RRC connection re-establishment procedure in which the terminal device re-establishes the RRC connection.
  • the PCell may be a cell used in a random access procedure during handover.
  • the PSCell may be a cell used in a random access procedure when adding a secondary node, which will be described later.
  • the SpCell may be a cell used for purposes other than those mentioned above.
  • CA carrier aggregation
  • a group of serving cells configured by RRC that uses the same timing reference cell and the same timing advance value for the cells in which the uplink is configured may be called a Timing Advance Group (TAG).
  • a TAG including the SpCell of a MAC entity may mean a Primary Timing Advance Group (PTAG).
  • PTAG Primary Timing Advance Group
  • a TAG other than the above PTAG may mean a Secondary Timing Advance Group (STAG).
  • One or more of the TAGs may be configured for each cell group, as described below.
  • a cell group which is set by a base station device for a terminal device.
  • a cell group may be composed of one SpCell.
  • a cell group may also be composed of one SpCell and one or more SCells.
  • a cell group may be composed of one SpCell and, optionally, one or more SCells.
  • a cell group may also be expressed as a set of cells (set of cell(s)).
  • Dual Connectivity may be a technology for performing data communication using radio resources of cell groups respectively configured by a first base station device (first node) and a second base station device (second node).
  • first base station device first node
  • second base station device second node
  • a cell group may be added from the base station device to the terminal device.
  • the first base station device may add a second base station device.
  • the first base station device may be called a master node (MN).
  • MCG master cell group
  • MCG master cell group
  • the second base station device may be called a secondary node (SN).
  • the cell group configured by the secondary node may be called a secondary cell group (SCG).
  • the master node and the secondary node may be configured within the same base station device.
  • the cell group configured in the terminal device may be called MCG.
  • the SpCell configured in the terminal device may be a PCell.
  • NR in which DC is not configured may be called NR standalone.
  • Multi-Radio Dual Connectivity may be a technology that performs DC using E-UTRA for MCG and NR for SCG.
  • MR-DC may be a technology that performs DC using NR for MCG and E-UTRA for SCG.
  • MR-DC may be a technology that performs DC using NR for both MCG and SCG.
  • MR-DC may be a technology included in DC.
  • An example of MR-DC that uses E-UTRA for MCG and NR for SCG may be EN-DC (E-UTRA-NR Dual Connectivity) that uses EPC in the core network, or NGEN-DC (NG-RAN E-UTRA-NR Dual Connectivity) that uses 5GC in the core network.
  • MR-DC that uses NR for MCG and E-UTRA for SCG
  • NE-DC NR-E-UTRA Dual Connectivity
  • NR-DC NR-NR Dual Connectivity
  • 5GC 5GC for the core network
  • one MAC entity may exist for each cell group.
  • one MAC entity for the MCG and one MAC entity for the SCG may exist.
  • the MAC entity for the MCG in the terminal device may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.).
  • the MAC entity for the SCG in the terminal device may be created by the terminal device when the SCG is configured in the terminal device.
  • the MAC entity for each cell group in the terminal device may be configured by the terminal device receiving RRC signaling from the base station device.
  • the SpCell may mean the PCell.
  • the SpCell may mean the primary SCG cell (PSCell).
  • the SpCell may mean the PCell.
  • the PCell, PSCell, and SCell are serving cells.
  • the MAC entity for the MCG may be an E-UTRA MAC entity
  • the MAC entity for the SCG may be an NR MAC entity.
  • the MAC entity for the MCG may be an NR MAC entity
  • the MAC entity for the SCG may be an E-UTRA MAC entity.
  • the MAC entities for both the MCG and SCG may be NR MAC entities. Note that the existence of one MAC entity for each cell group may be rephrased as the existence of one MAC entity for each SpCell. Also, one MAC entity for each cell group may be rephrased as one MAC entity for each SpCell.
  • radio bearers When a terminal device communicates with a base station device, a wireless connection may be established by establishing a radio bearer (RB: Radio Bearer) between the terminal device and the base station device.
  • the radio bearer used for CP may be called a signaling radio bearer (SRB: Signaling Radio Bearer).
  • the radio bearer used for UP may be called a data radio bearer (DRB: Data Radio Bearer).
  • Each radio bearer may be assigned a radio bearer identifier (Identity: ID).
  • the radio bearer identifier for an SRB may be called an SRB identifier (SRB Identity, or SRB ID).
  • the radio bearer identifier for a DRB may be called a DRB identifier (DRB Identity, or DRB ID).
  • SRB0 to SRB2 may be defined as SRBs for E-UTRA, and other SRBs may also be defined.
  • NR SRBs may be defined as SRB0 to SRB3, or other SRBs may be defined.
  • SRB0 may be an SRB for RRC messages, which are transmitted and/or received using the logical channel CCCH.
  • SRB1 may be an SRB for RRC signaling and for NAS signaling before the establishment of SRB2.
  • the RRC signaling transmitted and/or received using SRB1 may include piggybacked NAS signaling.
  • the logical channel DCCH may be used for all RRC and NAS signaling transmitted and/or received using SRB1.
  • SRB2 may be an SRB for NAS signaling and for RRC signaling including logged measurement information.
  • the logical channel DCCH may be used for all RRC and NAS signaling transmitted and/or received using SRB2.
  • SRB2 may also be of lower priority than SRB1.
  • SRB3 may be an SRB for transmitting and/or receiving specific RRC signaling when EN-DC, NGEN-DC, NR-DC, etc. are configured in the terminal device.
  • the logical channel DCCH may be used for all RRC signaling and NAS signaling transmitted and/or received using SRB3. Other SRBs may also be provided for other uses.
  • the DRB may be a radio bearer for user data.
  • the logical channel DTCH may be used for RRC signaling transmitted and/or received using the DRB.
  • the radio bearer in the terminal device is described below.
  • the radio bearer may include an RLC bearer.
  • the RLC bearer may be composed of one or two RLC entities and logical channels. When there are two RLC entities in the RLC bearer, the RLC entities may be a TM RLC entity and/or a transmitting RLC entity and a receiving RLC entity in a unidirectional UM mode RLC entity.
  • SRB0 may be composed of one RLC bearer.
  • the RLC bearer of SRB0 may be composed of a TM RLC entity and a logical channel. SRB0 may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.).
  • SRB1 may be established and/or configured in the terminal device by RRC signaling received from the base station device when the terminal device transitions from the RRC idle state to the RRC connected state.
  • SRB1 may be composed of one PDCP entity and one or more RLC bearers.
  • the RLC bearer of SRB1 may be composed of an RLC entity of AM and a logical channel.
  • the RLC bearer of SRB2 may be established and/or configured in the terminal device by the RRC signaling received from the base station device by the terminal device in the RRC connected state with AS security activated.
  • the SRB2 may be composed of one PDCP entity and one or more RLC bearers.
  • the RLC bearer of SRB2 may be composed of an RLC entity of AM and a logical channel.
  • the PDCP on the base station device side of SRB1 and SRB2 may be placed in the master node.
  • the SRB3 may be established and/or configured in the terminal device by the RRC signaling received from the base station device by the terminal device in the RRC connected state with AS security activated when a secondary node is added or when a secondary node is changed in EN-DC, NGEN-DC, or NR-DC.
  • the SRB3 may be a direct SRB between the terminal device and the secondary node.
  • the SRB3 may be composed of one PDCP entity and one or more RLC bearers.
  • the RLC bearer of SRB3 may be composed of an AM RLC entity and a logical channel.
  • the PDCP on the base station side of SRB3 may be placed in a secondary node.
  • One or more DRBs may be established and/or configured in the terminal device by RRC signaling received from the base station device by the terminal device in an RRC connected state with AS security activated.
  • the DRB may be composed of one PDCP entity and one or more RLC bearers.
  • the RLC bearer of the DRB may be composed of an AM or UM RLC entity and a logical channel.
  • a radio bearer in which a PDCP is placed in the master node may be called an MN terminated bearer.
  • a radio bearer in which a PDCP is placed in a secondary node may be called an SN terminated bearer.
  • a radio bearer in which an RLC bearer exists only in an MCG may be called an MCG bearer.
  • a radio bearer in which an RLC bearer exists only in an SCG may be called an SCG bearer.
  • a radio bearer in which an RLC bearer exists in both an MCG and an SCG may be called a split bearer.
  • the bearer type of SRB1 and SRB2 established and/or configured in the terminal device may be MN terminated MCG bearer and/or MN terminated split bearer.
  • the bearer type of SRB3 established and/or configured in the terminal device may be SN terminated SCG bearer.
  • the bearer type of DRB established and/or configured in the terminal device may be any of all bearer types.
  • the RLC entity established and/or configured may be an E-UTRA RLC.
  • the RLC entity established and/or configured may be an NR RLC.
  • the PDCP entity established and/or configured for an MN terminated MCG bearer may be either an E-UTRA PDCP or an NR PDCP.
  • the PDCP entity established and/or configured for radio bearers of other bearer types i.e., MN terminated split bearers, MN terminated SCG bearers, SN terminated MCG bearers, SN terminated split bearers, and SN terminated SCG bearers
  • MN terminated split bearers MN terminated split bearers
  • SCG bearers MN terminated SCG bearers
  • SN terminated MCG bearers SN terminated split bearers
  • SN terminated split bearers i.e., MN terminated split bearers, MN terminated SCG bearers, SN terminated MCG bearers, SN terminated split bearers, and SN terminated SCG bearers
  • NR PDCP an NGEN-DC, NE-DC, or NR-DC
  • a DRB established and/or configured in a terminal device may be associated with one PDU session.
  • One SDAP entity may be established and/or configured for one PDU session in the terminal device.
  • the SDAP entity, PDCP entity, RLC entity, and logical channels established and/or configured in the terminal device may be established and/or configured by RRC signaling received by the terminal device from the base station device.
  • a network configuration in which the master node is eNB102 and EPC104 is the core network may be called E-UTRA/EPC.
  • a network configuration in which the master node is eNB102 and 5GC110 is the core network may be called E-UTRA/5GC.
  • a network configuration in which the master node is gNB108 and 5GC110 is the core network may be called NR or NR/5GC.
  • the above-mentioned master node may refer to a base station device that communicates with a terminal device.
  • Figure 4 is a diagram showing an example of the flow of procedures for various settings in the RRC according to this embodiment.
  • Figure 4 shows an example of the flow when RRC signaling is sent from a base station device (eNB102 and/or gNB108) to a terminal device (UE122).
  • eNB102 and/or gNB108 base station device
  • UE122 terminal device
  • the base station device creates an RRC message (step S400).
  • the base station device may create an RRC message in order to deliver system information (SI) or a paging message.
  • the base station device may create an RRC message in order to transmit RRC signaling for a specific terminal device to perform a process.
  • the process for a specific terminal device may include, for example, security settings, RRC connection reconfiguration, handover to a different RAT, RRC connection suspension, and RRC connection release.
  • the RRC connection reconfiguration may include, for example, radio bearer control (establishment, modification, release, etc.), cell group control (establishment, addition, modification, release, etc.), measurement settings, handover, security key update, and other processes.
  • the base station device may create an RRC message in order to respond to RRC signaling transmitted from a terminal device.
  • Responses to RRC signaling sent from a terminal device may include, for example, a response to an RRC setup request, a response to an RRC reconnection request, a response to an RRC resume request, etc.
  • RRC messages include information (parameters) for various information notifications and settings. These parameters may be called fields and/or information elements, and may be described using a description method called ASN.1 (Abstract Syntax Notation One).
  • the base station device then transmits the created RRC signaling to the terminal device (step S402).
  • the terminal device then performs processing such as setting according to the received RRC signaling described above if necessary (step S404). After performing the processing, the terminal device may transmit RRC signaling in response to the base station device (not shown).
  • RRC signaling may be used for other purposes, not limited to the above examples.
  • the RRC on the master node side may be used to transfer RRC signaling for SCG side configuration (cell group configuration, radio bearer configuration, measurement configuration, etc.) between the terminal device.
  • RRC signaling for SCG side configuration may be transmitted and received between the master node and secondary node.
  • the RRC signaling for E-UTRA transmitted from the eNB102 to the UE122 may include the RRC signaling for NR
  • the RRC signaling for NR transmitted from the gNB108 to the UE122 may include the RRC signaling for E-UTRA.
  • Handover may be a process in which a terminal device in an RRC connected state changes the serving cell from a source SpCell to a target SpCell. Handover may be part of mobility control performed by RRC. In the terminal device, handover may be performed based on RRC signaling instructing a handover received from a base station device.
  • the RRC signaling instructing a handover may be a message regarding reconfiguration of an RRC connection including an information element (e.g., a MobilityControlInfo information element, or a ReconfigurationWithSync information element) including a parameter instructing a handover.
  • the MobilityControlInfo information element may be referred to as a mobility control setting information element, mobility control setting, or mobility control information.
  • the ReconfigurationWithSync information element may be referred to as a reconfiguration with synchronization information element.
  • the RRC signaling indicating the handover may be a message indicating a movement to a cell of another RAT (e.g., MobilityFromEUTRACommand or MobilityFromNRCommand).
  • the handover may be triggered by the RRC. Additionally or alternatively, the handover may be triggered by a DCI or a MAC Control Element (MAC CE).
  • the conditions under which the terminal device can perform a handover may include some or all of the following conditions: AS security is activated, an SRB2 is established, and at least one DRB is established.
  • FIG. 7 is an example of an ASN.1 description representing a field and/or information element included in a message regarding reconfiguration of an RRC connection in NR in FIG. 4.
  • ⁇ omitted> indicates that other information is omitted, not a part of the ASN.1 notation. Note that even in places without the notation ⁇ omitted>, the information element may be omitted.
  • the ASN.1 example represents an example of a parameter of RRC signaling in this embodiment, and other names and notations may be used.
  • the parameters described in ASN.1 may not be distinguished between fields, information elements, etc., and may all be expressed as information elements.
  • the fields and/or information elements described in ASN.1 included in RRC signaling may be referred to as information, and in addition to or instead of that, may be referred to as parameters.
  • the message regarding reconfiguration of the RRC connection may be an RRC reconfiguration message in NR.
  • the message regarding reconfiguration of the RRC connection may be an RRC connection reconfiguration message in E-UTRA.
  • a message regarding reconfiguration of an RRC connection may include an information element (CellGroupConfig information element) used for setting, changing, releasing, etc., a cell group of an NR MCG or SCG.
  • a message regarding reconfiguration of an RRC connection may independently include a CellGroupConfig information element for setting an MCG and a CellGroupConfig information element for setting an SCG.
  • the CellGroupConfig information element may be referred to as a cell group setting information element or a cell group setting.
  • the CellGroupConfig information element may include a cellGroupId information element as identifier information for identifying this cell group.
  • the CellGroupConfig information element may include an RLC-BearerConfig information element as information used to configure the RLC entity.
  • the CellGroupConfig information element may include a MAC-CellGroupConfig information element as information used to configure MAC parameters in that cell group.
  • the CellGroupConfig information element may include a PhysicalCellGroupConfig information element as information used to configure PHY (L1) parameters specific to that cell group.
  • the CellGroupConfig information element may include an SpCellConfig information element as information used to set parameters for the SpCell of the cell group.
  • the SpCellConfig information element may be referred to as an SpCell configuration information element or an SpCell configuration.
  • the CellGroupConfig information element may include a SCellConfig information element for each SCell as information used to configure parameters for one or more SCells in the cell group.
  • the SCellConfig information element may be referred to as a SCell configuration information element or a SCell configuration.
  • the MAC-CellGroupConfig information element may include a TAG-Config information element as information used to configure parameters related to the TAG.
  • the TAG-Config information element may include one or more TAG identifiers (TAG-Id) configured in the terminal device and the value of the time adjustment timer corresponding to the TAG identifiers.
  • TAG-Id TAG identifiers
  • the SpCellConfig information element may include a ServingCellConfig information element as information used to configure terminal device specific (UE specific) parameters related to the SpCell.
  • the SCellConfig information element may include this ServingCellConfig information element as information used to configure terminal device specific (UE specific) parameters related to the SCell.
  • the CellGroupConfig information element may include a ServingCellConfig information element for each serving cell to configure terminal device specific parameters related to the SpCell and each SCell.
  • Each ServingCellConfig information element may include a TAG identifier (TAG-Id) indicating which TAG in the cell group the serving cell belongs to.
  • TAG-Id TAG identifier
  • the ServingCellConfig information element may include not only terminal device specific parameters but also cell specific parameters.
  • Each ServingCellConfig information element may include an initialDownlinkBWP indicating a BWP-DownlinkDedicated information element as a terminal device specific setting for the initial downlink BWP.
  • the BWP-DownlinkDedicated information element is also referred to as a downlink BWP dedicated setting.
  • each ServingCellConfig information element may include some or all of the first active downlink BWP identifier (firstActiveDownlinkBWP-Id), the BWP inactivity timer (bwp-InactivityTimer), and the identifier of the default downlink BWP (defaultDownlinkBWP-Id).
  • the ServingCellConfig information element for configuring terminal device-specific parameters for each SCell may include a DormantBWP-Config information element as a dormant BWP configuration for the SCell.
  • the DormantBWP-Config information element is also referred to as a dormant BWP configuration.
  • the DormantBWP-Config information element may include a dormant BWP identifier (dormantBWP-Id).
  • the SCellConfig information element may include an RRC parameter (sCellState) indicating whether the SCell is activated or not when the SCell is configured.
  • the sCellState is also referred to as the SCell state configuration. For example, if the SCellConfig information element includes sCellState, or if the sCellState included in the SCellConfig information element is set to activated, the MAC entity of the terminal device may activate the SCell, and in addition or instead, the RRC layer of the terminal device may configure a lower layer (such as a MAC entity) to consider that the SCell is activated.
  • the MAC entity of the terminal device may deactivate the SCell, and in addition or instead, the RRC layer of the terminal device may configure a lower layer (such as a MAC entity) to consider that the SCell is deactivated.
  • the ServingCellConfig information element for configuring terminal device specific parameters for each SCell for which PUCCH is not configured may include a SCell inactivity timer.
  • Each ServingCellConfig information element may include an UplinkConfig information element as an uplink configuration.
  • the UplinkConfig information element is also referred to as an uplink configuration.
  • the UplinkConfig information element may include an initialUplinkBWP indicating a BWP-UplinkDedicated information element as a terminal device specific configuration for an initial uplink BWP.
  • the BWP-UplinkDedicated information element is also referred to as an uplink BWP dedicated configuration.
  • the UplinkConfig information element may include a first active uplink BWP identifier (firstActiveUplinkBWP-Id).
  • the SpCellConfig information element may include a ReconfigurationWithSync information element as information including parameters necessary for processing synchronous reconfiguration from the source SpCell to the target SpCell.
  • the ReconfigurationWithSync information element may be the synchronous reconfiguration information element described above. If the SpCellConfig information element of the MCG includes a ReconfigurationWithSync information element, the synchronous reconfiguration processing to the target SpCell may be a handover. If the SpCellConfig information element of the SCG includes a ReconfigurationWithSync information element, the synchronous reconfiguration processing to the target SpCell may be a PSCell addition or a PSCell change.
  • the ReconfigurationWithSync information element and the SCellConfig information element may include a ServingCellConfigCommon information element as information used to configure cell-specific parameters of the serving cell.
  • the ServingCellConfigCommon information element may include parameters that are typically obtained from the SSB, MIB, or one or more SIBs of the cell when the terminal device accesses the cell from the idle state.
  • the ReconfigurationWithSync information element may include, for example, information on the value of the C-RNTI used in the cell group of the target SpCell.
  • the ReconfigurationWithSync information element may include, for example, information required to execute a non-contention random access procedure in the target SpCell.
  • FIG 8 shows an example of an ASN.1 description representing fields and/or information elements related to the ServingCellConfigCommon information element contained in the SCellConfig information element and the ReconfigurationWithSync information element in the SpCellConfig information element in Figure 7.
  • the ServingCellConfigCommon information element may include the physical cell identifier (physCellId) of the cell.
  • the ServingCellConfigCommon information element may include a DownlinkConfigCommon information element as information that provides cell-specific (cell-common) downlink parameters.
  • the DownlinkConfigCommon information element is also referred to as downlink common configuration.
  • the ServingCellConfigCommon information element may include an UplinkConfigCommon information element as information that provides cell-specific (cell-common) uplink parameters.
  • the UplinkConfigCommon information element is also referred to as uplink common configuration.
  • the ServingCellConfigCommon information element may contain the value of N_ ⁇ TA,offset ⁇ that applies to all uplink transmissions in that cell.
  • the DownlinkConfigCommon information element may include a FrequencyInfoDL information element as basic information regarding the downlink carrier and transmission on the downlink carrier.
  • the FrequencyInfoDL information element may include frequency information of the SSB.
  • the DownlinkConfigCommon information element may include initialDownlinkBWP, which indicates the BWP-DownlinkCommon information element as the initial downlink BWP setting for that cell. Additionally or alternatively, the DownlinkConfigCommon information element may include initialDownlinkBWP-RedCap, which indicates the BWP-DownlinkCommon information element to be used by one or more performance-limited terminals (RedCap UEs) instead of initialDownlinkBWP.
  • the BWP-DownlinkCommon information element is also referred to as the downlink BWP common setting.
  • the BWP-DownlinkCommon information element may include a BWP information element as information for setting generic parameters of the BWP.
  • the BWP-DownlinkCommon information element may include a PDCCH-ConfigCommon information element as information for setting cell-specific parameters for the PDCCH of this BWP.
  • the PDCCH-ConfigCommon information element is also referred to as a PDCCH common configuration.
  • the BWP-DownlinkCommon information element may include a PDSCH-ConfigCommon information element as information for setting cell-specific parameters for the PDSCH of this BWP.
  • the PDSCH-ConfigCommon information element is also referred to as the PDSCH common configuration.
  • the PDCCH-ConfigCommon information element may include a SearchSpaceZero information element as information for setting parameters of the common search space (CSS) #0. This SearchSpaceZero information element may be included in the PDCCH-ConfigCommon information element only if the BWP is an initial downlink BWP.
  • SCS common search space
  • the PDCCH-ConfigCommon information element may include a ControlResourceSetZero information element as information for setting parameters of the common CORESET#0 used in one or more common search spaces and one or more UE-specific search spaces.
  • This ControlResourceSetZero information element may be included in the PDCCH-ConfigCommon information element only if the BWP is an initial downlink BWP.
  • the PDCCH-ConfigCommon information element may include a ControlResourceSet information element as information for setting additional common CORESET parameters.
  • the PDCCH-ConfigCommon information element may include a list (commonSearchSpaceList) of information elements (SearchSpace information elements) that indicate the configuration of one or more additional CSSs.
  • the PDCCH-ConfigCommon information element may include information (searchSpaceSIB1) indicating which CSS in the commonSearchSpaceList the search space setting for the system information (SIB1) is.
  • the PDCCH-ConfigCommon information element may include information (searchSpaceOtherSystemInformation) indicating which CSS in the commonSearchSpaceList the search space setting for system information (SIB2 and later) is.
  • searchSpaceOtherSystemInformation information indicating which CSS in the commonSearchSpaceList the search space setting for system information (SIB2 and later) is.
  • the PDCCH-ConfigCommon information element may include information (pagingSearchSpace) indicating which CSS in the commonSearchSpaceList is used to set the search space for paging messages.
  • pagingSearchSpace information indicating which CSS in the commonSearchSpaceList is used to set the search space for paging messages.
  • the UplinkConfigCommon information element may include a FrequencyInfoUL information element for configuring the absolute uplink frequency and multiple subcarrier specific virtual carriers.
  • the FrequencyInfoUL information element may include information indicating the maximum transmit power.
  • the UplinkConfigCommon information element may include initialUplinkBWP, which indicates the BWP-UplinkCommon information element as the initial uplink BWP setting for that cell. Additionally or alternatively, the UplinkConfigCommon information element may include initialUplinkBWP-RedCap, which indicates the BWP-UplinkCommon information element to be used by one or more performance-limited terminals (RedCap UEs) instead of initialUplinkBWP.
  • the BWP-UplinkCommon information element is also referred to as the uplink BWP common setting.
  • the BWP-UplinkCommon information element may include a BWP information element as information for setting generic parameters of the BWP.
  • the BWP-UplinkCommon information element may include a PUCCH-ConfigCommon information element as information for setting cell-specific parameters for the PUCCH of this BWP.
  • the PUCCH-ConfigCommon information element is also referred to as PUCCH common configuration.
  • the BWP-UplinkCommon information element may include a PUSCH-ConfigCommon information element as information for setting cell-specific parameters for the PUSCH of this BWP.
  • the PUSCH-ConfigCommon information element is also referred to as a PUSCH common configuration.
  • the BWP-UplinkCommon information element may include a RACH-ConfigCommon information element as information for setting cell-specific random access parameters.
  • the RACH-ConfigCommon information element is also referred to as RACH common configuration.
  • each of the above information elements may include other information in addition to the information described above.
  • the RRC reconfiguration procedure may be a procedure for a terminal device to modify an RRC connection based on a message related to reconfiguration of the RRC connection.
  • the purpose of the RRC reconfiguration procedure may be some or all of the following (A) to (F).
  • A Establishing, modifying and/or releasing radio bearers;
  • B Performing synchronized reconfiguration;
  • C Setting up, modifying and/or releasing measurements;
  • D Adding, modifying and/or releasing SCells and cell groups;
  • E Adding, modifying and/or releasing conditional handover (CHO) configuration;
  • F Adding, modifying and/or releasing conditional PSCell change (CPC) or conditional PSCell addition (CPA) configuration.
  • the base station device may initiate an RRC reconfiguration procedure for a terminal device in the RRC_CONNECTED state.
  • the base station device initiates an RRC reconfiguration procedure for a terminal device may be rephrased as "the base station device sends a message regarding the reconfiguration of the RRC connection to the terminal device.”
  • the terminal device When the terminal device receives a message regarding reconfiguration of an RRC connection or when performing a conditional reconfiguration (CHO, CPA, or CPC), it may perform some or all of the following processes RRP (A) to (D). (Processing RRP) (A) If the message regarding the RRC connection reconfiguration includes a cell group configuration of the MCG, perform cell group configuration using the cell group configuration. In addition, if the cell group configuration includes an SpCell configuration including a synchronized reconfiguration information element, perform synchronized reconfiguration.
  • the terminal device may perform some or all of the following processes RWS (A) to (E). "Executing synchronous reconfiguration” may be rephrased as “implementing synchronous reconfiguration” or "triggering synchronous reconfiguration.” (Processing RWS) (A) If the frequencyInfoDL information element is included in the synchronization-assisted reconfiguration information element, it is determined that the target SpCell is a cell that is located at the SSB frequency indicated in the frequencyInfoDL information element and is indicated by the physical cell identifier included in the synchronization-assisted reconfiguration information element.
  • the target SpCell is a cell that is located at the same SSB frequency as the source SpCell and is indicated by the physical cell identifier included in the synchronization-assisted reconfiguration information element.
  • B Initiate downlink synchronization to the target SpCell.
  • C If the timing information required for the random access procedure is not held, the MIB of the target SpCell is obtained.
  • C Reset the MAC entity of the cell group that is the target of synchronized reconfiguration.
  • the value of the new UE identifier (newUE-Identity) included in the synchronized reconfiguration information element is applied as the C-RNTI for the cell group that is the target of the synchronized reconfiguration.
  • E Configure the RRC lower layers (PHY, etc.) according to the SpCell common settings.
  • the network configures one or more conditional reconfiguration information elements for the terminal device, which causes the network to configure, for the terminal device, candidate target SpCells that correspond to the conditional reconfiguration information elements, respectively.
  • the terminal device evaluates the state of the configured candidate target SpCells.
  • the terminal device performs the evaluation and applies one of the conditional RRC reconfiguration information elements included in the conditional reconfiguration information elements associated with one or more candidate target SpCells that satisfy the execution conditions.
  • the terminal device may also hold a list of entries (VarConditionalReconfig), described later, for conditional reconfiguration.
  • the conditional reconfiguration may be referred to as a conditional handover if the candidate target SpCell is an SpCell (i.e., a PCell) of an MCG.
  • the conditional reconfiguration may also be referred to as a conditional PSCell addition and/or conditional PSCell change if the candidate target SpCell is an SpCell (i.e., a PSCell) of an SCG.
  • the terminal device may delete (remove) the conditional reconfiguration settings specified in the entry deletion list from the settings held by the terminal device.
  • conditional reconfiguration e.g., a conditional reconfiguration information element
  • the terminal device may delete the entry corresponding to the entry identifier from the list of entries held by the terminal device.
  • condition list refers to the list of conditional reset entries held by the terminal device unless otherwise specified.
  • conditional reset entry list may also be a variable named VarConditionalReconfig.
  • the entry identifier is also simply referred to as the entry identifier.
  • conditional reconfiguration includes an entry add/modify list (condReconfigToAddModList)
  • the terminal device may add or modify the conditional reconfiguration settings included in the entry add/modify list to the settings held by the terminal device as a conditional reconfiguration configuration process.
  • the entry add/modify list may be a list of one or more conditional reconfiguration information elements. Each entry may be configured by a conditional reconfiguration information element.
  • the conditional reconfiguration information element may include an entry identifier, an execution condition, and a conditional RRC reconfiguration information element.
  • the terminal device may perform the following processing (A) and/or (B).
  • the terminal device may add to the entry list a new entry corresponding to the entry identifier not included in the entry list.
  • the entry deletion list may be a list of one or more entry identifiers to be deleted.
  • Each entry included in the entry addition modification list includes an entry identifier and may additionally include an execution condition and/or a conditional RRC reconfiguration information element.
  • Each entry may be associated with one of one or more candidate target SpCells.
  • the entry identifier may be an identifier used to identify each entry of the CHO, CPA, and CPC.
  • the entry list may include one or more entries. Each entry may include one entry identifier, one or more execution conditions, and one conditional RRC reconfiguration information element. If the entry list held by the terminal device does not include an entry, the terminal device may hold an empty list.
  • the execution condition may be a condition that needs to be satisfied to trigger the execution of the conditional reconfiguration.
  • the conditional RRC reconfiguration information element may be a message regarding the reconfiguration of the RRC connection that is applied when the execution condition is satisfied.
  • the message regarding the reconfiguration of the RRC connection may be a message used to
  • the terminal device may evaluate the execution conditions of the entries included in the entry list held by the terminal device. If the entry list held by the terminal device is empty or if the terminal device does not hold an entry list, it is not necessary to evaluate the execution conditions.
  • Executing a conditional reconfiguration may mean that the terminal device evaluates the execution conditions of entries included in an entry list held by the terminal device, and if one or more execution conditions are satisfied, applies a conditional RRC reconfiguration information element included in the entry that includes the execution condition. Applying a conditional RRC reconfiguration information element may mean executing an RRC reconfiguration procedure using the conditional RRC reconfiguration information element.
  • the terminal device may select one entry from the multiple entries that satisfy the execution condition and apply the conditional RRC reconfiguration information element of the selected entry.
  • the MAC entity of the terminal device may perform part or all of (A) to (O) of the following processes MR.
  • the reset of the MAC entity may be simply referred to as a MAC reset.
  • the MAC entity of the terminal device may perform part or all of (A) to (O) of the following processes MR.
  • the partial reset of the MAC entity may be simply referred to as a partial MAC reset.
  • the process performed in the partial MAC reset may be a process in which only a part of the process performed in the MAC reset is performed.
  • the process performed in the partial MAC reset may be a process in which some of the process performed in the MAC reset is not performed.
  • the MAC entity of the terminal device may perform a MAC reset based on an instruction from the RRC entity of the terminal device to the MAC entity of the terminal device to perform a MAC reset. Additionally or alternatively, the MAC entity of the terminal device may perform a partial MAC reset based on an instruction from the RRC entity of the terminal device to the MAC entity of the terminal device to perform a partial MAC reset.
  • (Processing MR) (A) The parameter Bj set for each logical channel is initialized to 0. (B) Stop all running timers, except for some timers. (C) If one or more time adjustment timers are set, all of those time adjustment timers are considered to have expired, and processing for the expiration of a time adjustment timer is carried out. (D) Set the New Data Indicator (NDI) value of all uplink HARQ processes to 0. (E) If there is a random access procedure in progress, stop the random access procedure. (F) If there are explicitly signalled contention-free random access (CFRA) resources for 4-step and 2-step RA types, discard those resources. (G) Flush the Msg3 buffer. (H) Flush the MSGA buffer.
  • CFRA contention-free random access
  • a Master Cell Group (MCG) and a Secondary Cell Group (SCG) are configured by a message regarding the reconfiguration of the RRC connection described above.
  • Each cell group may be composed of a special cell (SpCell) and zero or more other cells (secondary cells: SCell).
  • SpCell special cell
  • SCell secondary cells
  • the SpCell of an MCG is also referred to as a PCell.
  • the SpCell of an SCG is also referred to as a PSCell.
  • Cell deactivation does not apply to SpCells, but may apply to SCells.
  • Activation and deactivation of a cell may be processed by a MAC entity that exists for each cell group.
  • An SCell configured in a terminal device may be activated and/or deactivated by some or all of the following (A) to (C).
  • A) Reception of a MAC CE that activates/deactivates an SCell (MAC CE named SCell Activation/Deactivation MAC CE or Enhanced SCell Activation/Deactivation MAC CE)
  • B An SCell inactivity timer that is set for each SCell for which a PUCCH is not configured
  • An RRC parameter (sCellState) that is set for each SCell configured in the terminal device
  • the MAC entity of the terminal device may perform the following processing (AD) for each SCell configured in the cell group.
  • MAC CE for deactivating the SCell (SCell Activation/Deactivation MAC CE indicating that the SCell is to be deactivated, or Enhanced SCell Activation/Deactivation MAC CE indicating that the SCell is to be deactivated) is received, or the SCell inactivation timer expires in the activated SCell, or the SCG associated with the activated SCell is deactivated, the MAC entity of the UE 122 performs the process (AD-2).
  • an uplink grant or downlink assignment is indicated by the PDCCH of an activated SCell, or if an uplink grant or downlink assignment for an activated SCell is indicated by the PDCCH of a serving cell, or if a MAC PDU is transmitted in a configured uplink grant or received in a configured downlink assignment, the MAC entity of the UE 122 restarts the SCell inactivity timer associated with that SCell. If the SCell is deactivated, the MAC entity of the UE 122 performs a process (AD-3).
  • the MAC entity of the UE 122 (re)initializes all suspended configured uplink grants of grant type 1 associated with the SCell according to a stored configuration, if any, and additionally or alternatively triggers a PHR.
  • the MAC entity of UE 122 performs some or all of the following (A) to (H).
  • the MAC entity of UE 122 performs some or all of the following (A) to (D).
  • A) Do not transmit SRS on this SCell.
  • B) Do not report CSI for this SCell.
  • C Do not transmit PUCCH, UL-SCH, and/or RACH on this SCell.
  • D Do not monitor the PDCCH of this SCell and/or the PDCCH for this SCell.
  • the MAC entity performs processing (AD) to activate and deactivate the SCell.
  • the initial state of the SCell may be configured by RRC signaling.
  • the SCell deactivation timer For an SCell for which PUCCH is not configured, the value of the SCell deactivation timer (information regarding the time at which the timer is considered to have expired) may be notified by RRC signaling. For example, if information indicating 40 ms as the value of the SCell deactivation timer is notified by RRC signaling, in the above process (AD), the timer is considered to have expired when the notified time (here, 40 ms) has elapsed since the timer was started or restarted without being stopped.
  • the SCell deactivation timer may also be a timer named sCellDeactivationTimer.
  • a BWP may be a part or all of the bandwidth of the serving cell.
  • a BWP may also be referred to as a carrier BWP.
  • One or more BWPs may be configured in a terminal device.
  • a BWP may be configured by information included in system information associated with a synchronization signal detected in the initial cell search.
  • a BWP may also be a frequency bandwidth associated with the frequency at which the initial cell search is performed.
  • a BWP may also be configured by RRC signaling (e.g., Dedicated RRC signaling).
  • a downlink BWP (DL BWP) and an uplink BWP (UL BWP) may also be configured separately.
  • One or more uplink BWPs may be associated with one or more downlink BWPs.
  • the correspondence between the uplink BWP and the downlink BWP may be a default correspondence, or may be correspondence based on RRC signaling (e.g., Dedicated RRC signaling), or may be correspondence based on physical layer signaling (e.g., Downlink Control Information (DCI) notified on the downlink control channel), or may be a combination of these.
  • RRC signaling e.g., Dedicated RRC signaling
  • DCI Downlink Control Information
  • a CORESET may be set in the downlink BWP.
  • a BWP may consist of a group of consecutive physical radio blocks (PRBs: Physical Resource Blocks). Furthermore, parameters of the BWP of each component carrier (one or multiple BWPs) may be set for a connected terminal device.
  • the parameters of the BWP of each component carrier may include some or all of the following: (A) cyclic prefix type, (B) subcarrier spacing, (C) frequency location of the BWP (e.g., the start location or center frequency location of the BWP on the low frequency side) (for example, the ARFCN may be used for the frequency location, or an offset from a specific subcarrier of the serving cell may be used.
  • the offset unit may be a subcarrier unit or a resource block unit.
  • Both the ARFCN and the offset may be set.), (D) bandwidth of the BWP (e.g., the number of PRBs), (E) resource configuration information of the control signal, (F) center frequency location of the SS block (for example, the ARFCN may be used for the frequency location, or an offset from a specific subcarrier of the serving cell may be used.
  • the offset unit may be a subcarrier unit or a resource block unit. Both the ARFCN and the offset may be set.).
  • the resource configuration information of the control signal may be included in the configuration of the BWP of at least some or all of the PCell and/or PSCell.
  • a terminal device may transmit and receive in an Active BWP among one or more configured BWPs.
  • One or more BWPs may be configured in a serving cell associated with the terminal device.
  • up to one uplink BWP and/or up to one downlink BWP may be configured to be the Active BWP.
  • An Active BWP in the downlink is also referred to as an Active DL BWP.
  • An Active BWP in the uplink is also referred to as an Active UL BWP.
  • a BWP that is not an Active BWP may be referred to as an Inactive BWP.
  • Activation of BWP may mean activating a BWP or activating an inactive BWP.
  • Inactivation of BWP may mean inactivating a BWP or inactivating an active BWP.
  • BWP switching in a serving cell is used to activate an inactive BWP and inactivate an active BWP.
  • BWP switching is controlled by the PDCCH indicating a downlink assignment or uplink grant, the BWP inactivity timer, RRC signalling or the MAC entity itself for initiation of a random access procedure.
  • Active BWP in the serving cell is indicated by RRC or PDCCH.
  • the BWP inactivity timer For each activated serving cell for which the BWP inactivity timer is set, the MAC entity performs the following (A).
  • the BWP inactivity timer may be a timer named bwp-InactivityTimer.
  • (A) If any of the following (A-1) through (A-4) is met, the MAC entity performs the following (B) and (D).
  • the default downlink BWP identifier (defaultDownlinkBWP-Id) is set, the Active DL BWP is not the BWP indicated by the defaultDownlinkBWP-Id, and the Active DL BWP is not the BWP indicated by the dormant BWP identifier (dormantBWP-Id).
  • the UE is not a performance-limited terminal (RedCap UE), the default downlink BWP identifier (defaultDownlinkBWP-Id) is not set, the Active DL BWP is not the initialDownlinkBWP, and the Active DL BWP is not the BWP indicated by the dormant BWP identifier (dormantBWP-Id).
  • RedCap UE performance-limited terminal
  • the defaultDownlinkBWP-Id defaultDownlinkBWP-Id
  • the Active DL BWP is not the initialDownlinkBWP
  • the Active DL BWP is not the BWP indicated by the dormant BWP identifier (dormantBWP-Id).
  • the UE is a performance-limited terminal (RedCap UE), the identifier of the default downlink BWP (defaultDownlinkBWP-Id) is not set, the initial downlink BWP for the performance-limited terminal (initialDownlinkBWP-RedCap) is not set, and the Active DL BWP is not the initialDownlinkBWP.
  • RedCap UE performance-limited terminal
  • the identifier of the default downlink BWP defaultDownlinkBWP-Id
  • the initial downlink BWP for the performance-limited terminal initialDownlinkBWP-RedCap
  • the Active DL BWP is not the initialDownlinkBWP.
  • the UE is a performance-limited terminal (RedCap UE), the identifier of the default downlink BWP (defaultDownlinkBWP-Id) is not set, an initial downlink BWP for the performance-limited terminal (initialDownlinkBWP-RedCap) is set, and the Active DL BWP is not initialDownlinkBWP-RedCap.
  • RedCap UE performance-limited terminal
  • the identifier of the default downlink BWP defaultDownlinkBWP-Id
  • an initial downlink BWP for the performance-limited terminal initialDownlinkBWP-RedCap
  • the Active DL BWP is not initialDownlinkBWP-RedCap.
  • C If no random access procedure associated with this serving cell is ongoing or an ongoing random access procedure associated with this serving cell is successfully completed by reception of a PDCCH addressed to the C-RNTI, start or restart the BWP inactivity timer associated with the Active DL BWP.
  • D If the BWP inactivity timer associated with an Active DL BWP expires, the MAC entity performs (E) below.
  • E If defaultDownlinkBWP-Id is set, the MAC entity performs BWP switching to the BWP indicated by this defaultDownlinkBWP-Id. If not, the MAC entity performs the next (F).
  • the MAC entity receives a PDCCH for BWP switching and switches the Active DL BWP, it performs the following (A).
  • A If any of the following (A-1) to (A-4) is met, start or restart the BWP inactivity timer associated with the Active DL BWP.
  • A-1 A default downlink BWP identifier (defaultDownlinkBWP-Id) is set, and the MAC entity switches to a downlink BWP that is not indicated in either the defaultDownlinkBWP-Id or the dormant BWP identifier (dormantBWP-Id).
  • the UE is not a performance-limited terminal (RedCap UE), the default downlink BWP identifier (defaultDownlinkBWP-Id) is not set, and the MAC entity switches to a downlink BWP that is not the initialDownlinkBWP and is not indicated by the dormant BWP identifier (dormantBWP-Id).
  • RedCap UE performance-limited terminal
  • defaultDownlinkBWP-Id default downlink BWP identifier
  • the MAC entity switches to a downlink BWP that is not the initialDownlinkBWP and is not indicated by the dormant BWP identifier (dormantBWP-Id).
  • the UE is a performance-limited terminal (RedCap UE), the identifier of the default downlink BWP (defaultDownlinkBWP-Id) is not set, the initial downlink BWP for the performance-limited terminal (initialDownlinkBWP-RedCap) is not set, and the MAC entity switches to a downlink BWP other than the initialDownlinkBWP.
  • RedCap UE performance-limited terminal
  • the UE is a performance-limited terminal (RedCap UE), the identifier of the default downlink BWP (defaultDownlinkBWP-Id) is not set, an initial downlink BWP for the performance-limited terminal (initialDownlinkBWP-RedCap) is set, and the MAC entity switches to a downlink BWP other than initialDownlinkBWP-RedCap.
  • RedCap UE performance-limited terminal
  • the identifier of the default downlink BWP defaultDownlinkBWP-Id
  • an initial downlink BWP for the performance-limited terminal initialDownlinkBWP-RedCap
  • the MAC entity switches to a downlink BWP other than initialDownlinkBWP-RedCap.
  • the MAC entity shall perform some or all of the following (A) to (H) if the BWP is active (Active BWP) and the Active DL BWP in that serving cell is not a dormant BWP: (A) Transmit UL-SCH with that BWP. (B) If a PRACH occasion is configured, send a RACH in that BWP. (C) Monitor the PDCCH in that BWP. (D) If PUCCH is configured, transmit PUCCH in that BWP. (E) Report the CSI in that BWP. (F) If SRS is configured, send SRS in that BWP. (G) Receive DL-SCH on that BWP. (H) (re)initialize all suspended configured uplink grants of grant type 1 in that Active BWP according to the stored configuration, if any.
  • the MAC entity performs some or all of the following (A) to (L).
  • a MAC entity shall, if a BWP is deactivated, do some or all of the following: (A) Do not transmit UL-SCH in that BWP. (B) Do not send a RACH in that BWP. (C) Do not monitor the PDCCH in that BWP. (D) Do not transmit PUCCH in that BWP. (E) Failing to report a CSI in that BWP. (F) Do not send SRS in that BWP. (G) DL-SCH is not received on that BWP. (H) Clear all configured downlink assignments and/or all configured uplink grants of grant type 2 in that BWP. (I) Suspend all configured uplink grants of grant type 1 for that Inactive BWP.
  • the serving cell may be able to schedule terminal devices from multiple TRPs (Transmit/Receive Points) to provide better coverage, reliability, and/or data rates for PDSCH, PDCCH, PUSCH, and PUCCH.
  • TRPs Transmit/Receive Points
  • the two operation modes may be single-DCI and multi-DCI.
  • the control of uplink and downlink operation for both modes may be performed at the PHY and MAC layers with configuration set by the RRC layer.
  • single-DCI mode the terminal device may be scheduled for both TRPs by the same DCI.
  • multi-DCI mode the terminal device may be scheduled for each TRP by an independent DCI.
  • Each TRP of the mTRP may be identified by TRP information.
  • the TRP information may be information for identifying one TRP among one or more TRPs.
  • the TRP information may be an index for identifying one TRP.
  • one TRP may be determined based on the TRP information.
  • the TRP information may be information for identifying one or more TRPs.
  • the TRP information may be used to select one TRP.
  • the TRP information may be a CORESET pool index.
  • One CORESET may be associated with one CORESET pool index and one CORESET resource set identifier.
  • the terminal device may transmit a PUSCH with a corresponding TRP based on the CORESET resource set identifier.
  • the TRP information may be associated with an index of the CORESET resource pool.
  • a first CORESET pool index may be associated with a first TRP
  • a second CORESET pool index may be associated with a second TRP.
  • the TRP information may be associated with a pool (or a pool index) of a TCI state.
  • a first TCI state pool (or pool index) may be associated with a first TRP
  • a second TCI state pool (or pool index) may be associated with a second TRP.
  • the two operation modes may be PDCCH repetition and single frequency network (SFN) based PDCCH transmission.
  • SFN single frequency network
  • the terminal device can receive each of the PDCCH transmissions carrying the same DCI from each TRP.
  • the terminal device can receive two PDCCH transmissions carrying the same DCI from two linked search spaces, each associated with a different CORESET.
  • the terminal device can receive two PDCCH transmissions carrying the same DCI from a single search space/CORESET using different TCI states.
  • the terminal device may perform PUSCH transmission of the same content in beam directions associated with different spatial relations corresponding to two TRPs.
  • the terminal device may perform PUCCH transmission of the same content in beam directions associated with different spatial relationships corresponding to two TRPs.
  • one or more TCI states in a multi-DCI PDSCH transmission may be associated with an SSB of a Physical Cell Identity (PCI) different from the PCI of the serving cell. Also, at most one TCI state associated with a PCI different from the serving cell may be active at a time.
  • PCI Physical Cell Identity
  • the central unit may be a logical node that hosts the RRC layer, SDAP layer, and PDCP layer of the base station device.
  • the distributed unit may be a logical node that hosts the RLC layer, MAC layer, and PHY layer of the base station device.
  • the central unit may control the operation of one or more distributed units.
  • One distributed unit may support one or more cells. One cell may be supported by only one distributed unit. Some of the functions of the central unit may be implemented in the distributed unit. Some of the functions of the distributed unit may be implemented in the central unit.
  • Layer 1/Layer 2 triggered mobility may be a procedure in which a base station device transmits a DCI or MAC CE that causes a terminal device to identify one or more cells that are targets for the serving cell, and instructs the terminal device to switch (change) the serving cell or cells through the DCI or MAC CE.
  • Layer 1/Layer 2 triggered mobility may be a procedure in which a terminal device receives a DCI or MAC CE from a base station device that identifies one or more cells that are targets for the serving cell, and switches (changes) the serving cell to one or more cells indicated by the DCI or MAC CE.
  • the DCI that allows the terminal device to identify one or more cells that are targets of the serving cell may be a DCI that includes one or more identifiers indicating one or more cells that are targets of the serving cell.
  • the MAC CE that allows the terminal device to identify one or more cells that are targets of the serving cell may be a MAC CE that includes one or more identifiers indicating one or more cells that are targets of the serving cell.
  • the identifiers may be identifiers that correspond to each of the information regarding one or more serving cell targets that is set in advance in the terminal device by, for example, RRC signaling. Also, the identifiers may be referred to as L1/L2 candidate target indexes.
  • the base station device may determine the serving cell target based on a measurement report provided from the terminal device.
  • the measurement report may be a CSI report transmitted from the terminal device on a PUSCH. Additionally or alternatively, the measurement report may be a measurement report message transmitted from the terminal device as RRC signaling. Additionally or alternatively, the measurement report may be measurement report information transmitted from the terminal device as a MAC CE. The measurement report may also be other information.
  • Layer 1/Layer 2 triggered mobility may be rephrased as “Layer 1/Layer 2 mobility (L1/L2 mobility)", “Layer 1/Layer 2 based inter-cell mobility (L1/L2 based inter-cell mobility)”, “Layer 1/Layer 2 inter-cell mobility (L1/L2 inter-cell mobility)”, “Layer 1/Layer 2 serving cell change processing", “Layer 1/Layer 2 serving cell change", or “Layer 1/Layer 2 handover", etc.
  • L1/L2 candidate target identifier may be rephrased as “candidate target index,” “L1/L2 candidate configuration index,” “candidate configuration index,” “L1/L2 candidate target configuration identifier,” or “candidate target configuration identifier,” etc.
  • DCI that causes the terminal device to identify one or more cells that are targets of the serving cell may be rephrased as "DCI that instructs the terminal device to change the serving cell to one or more target cells” or "DCI that changes one or more serving cells of the terminal device", etc.
  • a MAC CE that causes a terminal device to identify one or more cells that are targets of a serving cell may be rephrased as "a MAC CE that instructs a change of the serving cell to one or more target cells” or "a MAC CE that changes one or more serving cells of a terminal device", etc.
  • DCI may also be referred to as Layer 1 signaling.
  • MAC CE may also be referred to as Layer 2 signaling.
  • the above-mentioned measurements may be performed by Layer 1 (PHY layer) and/or Layer 3 (RRC layer).
  • the above-mentioned measurements may also be reported by Layer 1 (PHY layer), Layer 2 (MAC layer), and/or Layer 3 (RRC layer).
  • a base station device may notify a terminal device of information regarding a serving cell target.
  • the information regarding the serving cell target may be notified to the terminal device by RRC signaling. Additionally or alternatively, the information regarding the serving cell target may be notified to the terminal device by MAC CE and/or DCI. For example, part of the information regarding the serving cell target may be notified to the terminal device in advance by RRC signaling, and when changing the serving cell to a target, another part of the information regarding the target may be notified to the terminal device by MAC CE and/or DCI.
  • Information regarding the serving cell target is also referred to as the Layer 1/Layer 2 inter-cell mobility candidate target configuration, the L1/L2-triggered candidate target configuration, the L1/L2 candidate target configuration, or simply the candidate target configuration.
  • the L1/L2 candidate target configuration information regarding the serving cell target is referred to as the L1/L2 candidate target configuration.
  • one or more L1/L2 candidate target configurations corresponding to one or more targets of the serving cell may be notified to the terminal device.
  • the terminal device may store one or more L1/L2 candidate target configurations notified from the base station device.
  • an L1/L2 candidate target identifier associated with each L1/L2 candidate target setting may be notified to the terminal device.
  • the terminal device may store one or more L1/L2 candidate target settings notified from the base station device and the L1/L2 candidate target identifier associated with the L1/L2 candidate target setting.
  • the mobility scenario (A) below may be a scenario in which only the PCell is changed, and in a terminal device in which CA is configured, the mobility scenario (A) below may be a scenario in which the PCell and one or more SCells are changed, or a scenario in which only the PCell is changed. In addition or instead, in a terminal device in which CA is configured, the mobility scenario (A) below may be a scenario in which the current PCell and SCell are replaced, that is, the target PCell and SCell become the current SCell and PCell, respectively.
  • PCell change B
  • C Inter-cell beam management
  • a base station device provides L1/L2 candidate target configuration so that dynamic switching can be performed without requiring full configuration.
  • B The user plane communicates continuously, preferably without resets, to avoid data loss and additional delays for data recovery.
  • (A) Messages related to RRC connection reconfiguration (B) Cell group configuration (C) SpCell configuration and/or SCell configuration (D) Measurement configuration (E) Radio bearer configuration (F) Other information elements
  • the terminal device may be notified of one or more L1/L2 candidate target settings by RRC signaling or other signaling (MAC CE, DCI, etc.).
  • the terminal device may store the L1/L2 candidate target settings until it receives a DCI or MAC CE instructing a change of the serving cell to one or more cells that are targets of the serving cell.
  • the L1/L2 candidate target settings may be common between intra-distributed unit mobility and intra-aggregated unit inter-distributed unit mobility, or some of the L1/L2 candidate target settings may be different.
  • the L1/L2 candidate target settings may include some or all of the system information (searchSpaceSIB1, searchSpaceOtherSystemInformation, etc.), paging messages (pagingSearchSpace, etc.), and common search spaces (commonSearchSpaceList, etc.).
  • security key updates may not be performed in Layer 1/Layer 2 triggered mobility.
  • Each of the one or more cells configured in a given L1/L2 candidate target configuration is called a candidate cell or a candidate target cell.
  • the above cell group configuration, SpCell configuration, SCell configuration, measurement configuration, and bearer configuration may use the same information elements as those included in the message regarding the reconfiguration of the RRC connection, or may use information elements in which new parameters have been added and/or some or all of the parameters have been deleted from those included in the message regarding the reconfiguration of the RRC connection.
  • Each L1/L2 candidate target configuration may be a message regarding reconfiguration of an RRC connection.
  • the L1/L2 candidate target configuration may include at least a cell group configuration related to the MCG.
  • the cell group configuration may include at least an SpCell configuration.
  • the cell group configuration may also include an SCell configuration.
  • the L1/L2 candidate target configuration may include other information.
  • a cell group configuration related to the SCG may be included in the L1/L2 candidate target configuration.
  • a measurement configuration may be included in the L1/L2 candidate target configuration.
  • a radio bearer configuration may be included in the L1/L2 candidate target configuration.
  • an L1/L2 candidate target identifier for identifying each L1/L2 candidate target configuration may be notified from the base station device to the terminal device.
  • the terminal device may receive DCI or MAC CE from the base station device that identifies one or more cells that are targets of the serving cell, and based on the L1/L2 candidate target identifier indicated by the DCI or MAC CE, apply a message regarding reconfiguration of the RRC connection, which is the L1/L2 candidate target setting corresponding to the L1/L2 candidate target identifier, to the RRC settings of the terminal device.
  • Each L1/L2 candidate target configuration may be a cell group configuration.
  • the L1/L2 candidate target configuration may be a cell group configuration of an MCG.
  • the cell group configuration may include at least an SpCell configuration.
  • the cell group configuration may also include an SCell configuration.
  • other information may be associated with the L1/L2 candidate target configuration.
  • a cell group configuration related to an SCG that is separately notified to a terminal device may be associated with the L1/L2 candidate target configuration.
  • a measurement configuration that is separately notified to a terminal device may be associated with the L1/L2 candidate target configuration.
  • a radio bearer configuration that is separately notified to a terminal device may be associated with the L1/L2 candidate target configuration.
  • an L1/L2 candidate target identifier for identifying each L1/L2 candidate target configuration may be notified from the base station device to the terminal device.
  • the L1/L2 candidate target setting is a cell group setting
  • the cell group of this L1/L2 candidate target setting may be referred to as a candidate cell group (CCG).
  • the terminal device may receive DCI or MAC CE from the base station device, which identifies one or more cells that are targets of the serving cell, and apply a cell group setting, which is an L1/L2 candidate target setting corresponding to the L1/L2 candidate target identifier, to the MCG setting of the RRC of the terminal device based on the L1/L2 candidate target identifier indicated by the DCI or MAC CE.
  • the terminal device may apply the associated information to the RRC setting of the terminal device.
  • this L1/L2 candidate target setting may be a cell group setting of the SCG.
  • the terminal device may determine which cell group setting, MCG or SCG, to apply to the RRC setting of the terminal device based on which cell group the DCI or MAC CE identifying one or more cells that are targets of the serving cell is received from.
  • each of the L1/L2 candidate target settings notified to the terminal device may be a setting of a different structure.
  • one L1/L2 candidate target setting may be a cell group setting
  • another L1/L2 candidate target setting may be an SpCell setting.
  • the L1/L2 candidate target settings may have different structures depending on the choice (CHOICE) in the ASN.1 notation.
  • each of the L1/L2 candidate target settings notified to the terminal device may be referred to as a candidate target entry, and a list of one or more candidate target entries (candidate target entry list) may be notified to the terminal device.
  • FIG. 5 is a block diagram showing the configuration of a terminal device (UE122) in this embodiment. Note that, to avoid complicating the explanation, FIG. 5 shows only the main components closely related to this embodiment.
  • the UE 122 shown in FIG. 5 includes a receiver 500 that receives control information (DCI, RRC signaling, etc.) from a base station device, a processor 502 that performs processing according to parameters included in the received control information, and a transmitter 504 that transmits control information (UCI, RRC signaling, etc.) to the base station device.
  • the base station device described above may be the eNB 102 or the gNB 108.
  • the processor 502 may include some or all of the functions of various layers (e.g., the physical layer, the MAC layer, the RLC layer, the PDCP layer, the SDAP layer, the RRC layer, and the NAS layer). That is, the processor 502 may include some or all of the physical layer processor, the MAC layer processor, the RLC layer processor, the PDCP layer processor, the SDAP processor, the RRC layer processor, and the NAS layer processor.
  • FIG. 6 is a block diagram showing the configuration of a base station device in this embodiment. Note that, to avoid complicating the explanation, FIG. 6 shows only the main components closely related to this embodiment.
  • the above-mentioned base station device may be eNB102 or gNB108.
  • the base station device shown in FIG. 6 includes a transmitter 600 that transmits control information (DCI, RRC signaling, etc.) to UE 122, a processor 602 that creates control information (DCI, RRC signaling including parameters, etc.) and transmits it to UE 122, causing the processor 502 of UE 122 to process it, and a receiver 604 that receives control information (UCI, RRC signaling, etc.) from UE 122.
  • the processor 602 may include some or all of the functions of various layers (e.g., physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processor 602 may include some or all of the physical layer processor, MAC layer processor, RLC layer processor, PDCP layer processor, SDAP processor, RRC layer processor, and NAS layer processor.
  • the processing unit 502 of the UE 122 may include an RRC processing unit that performs RRC processing and a MAC processing unit that performs MAC processing.
  • FIG. 9 is a diagram showing an example of processing by the UE 122 in this embodiment.
  • the processing unit 502 of the UE 122 judges the conditions (step S900) and operates based on the judgment (step S902).
  • the UE122 receives RRC signaling from a base station device (gNB108 and/or eNB102).
  • the RRC signaling may include one or more L1/L2 candidate target configurations.
  • the RRC processing unit of UE122 may hold one or more L1/L2 candidate target configurations included in the RRC signaling.
  • the RRC signaling may include an identifier (L1/L2 candidate target identifier) that identifies each of the one or more L1/L2 candidate target configurations. Note that in this embodiment, the L1/L2 candidate target configurations include at least one SCell configuration.
  • UE122 may receive, from a base station device (gNB108 and/or eNB102), a MAC CE (referred to as an LTM MAC CE in the following description, but may be a MAC CE with another name) that identifies one or more target cells of a serving cell of a certain cell group.
  • UE122 may receive, from a base station device (gNB108 and/or eNB102), a MAC CE that includes information indicating that each SCell of a certain cell group is to be activated or information indicating that each SCell is to be deactivated in a serving cell of the certain cell group.
  • the MAC processing unit of UE122 may be the MAC processing unit of this cell group unless explicitly stated.
  • the LTM MAC CE identifies at least one target SCell.
  • the MAC processing unit of UE 122 that has received the LTM MAC CE and a MAC CE including information indicating that the SCell is to be activated or information indicating that the SCell is to be deactivated determines in step S900 whether each of the following conditions (a) to (c) is satisfied.
  • the SCell activated by the MAC CE including information indicating that the SCell is to be activated may be a part or all of the target SCells identified by the LTM MAC CE
  • the SCell deactivated by the MAC CE including information indicating that the SCell is to be deactivated may be a part or all of the target SCells identified by the LTM MAC CE.
  • the LTM MAC CE and a MAC CE including information indicating to activate the target SCell are included in the same MAC PDU, or the LTM MAC CE includes information indicating to UE 122 to activate the target SCell.
  • the LTM MAC CE and a MAC CE including information indicating to deactivate the target SCell are included in the same MAC PDU, or the LTM MAC CE includes information indicating to UE 122 to deactivate the target SCell.
  • step S902 the MAC processing unit of UE122 notifies the RRC processing unit of information indicating the target of the serving cell identified by the LTM MAC CE (e.g., L1/L2 candidate target identifier).
  • the RRC processing unit of UE122 performs a process (L1/L2 candidate target setting application process) of applying the L1/L2 candidate target setting selected based on information indicating the target of the serving cell identified by the LTM MAC CE to the RRC setting of the terminal device.
  • a process L1/L2 candidate target setting application process
  • the RRC processing unit of UE122 notifies the MAC processing unit of information indicating that the L1/L2 candidate target setting application process has been completed.
  • step S902 the MAC processing unit activates the target SCell based on the notification from the RRC processing unit that the L1/L2 candidate target setting application process has been completed.
  • step S902 the MAC processing unit activates the target SCell based on the notification from the RRC processing unit that the L1/L2 candidate target setting application process has been completed.
  • step S902 the MAC processing unit of UE122 activates the target SCell based on the setting of one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE. Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that the condition (b) is satisfied, then in step S902, the MAC processing unit of UE122 performs the above-mentioned process (AD-1) on the target SCell based on the setting of one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE.
  • AD-1 the above-mentioned process
  • step S902 the MAC processing unit deactivates the target SCell based on the notification from the RRC processing unit that the L1/L2 candidate target setting application process has been completed.
  • step S902 the MAC processing unit performs the above-mentioned process (AD-2) and/or process (AD-3) on the target SCell based on the notification from the RRC processing unit that the L1/L2 candidate target setting application process has been completed.
  • step S902 the MAC processing unit deactivates the target SCell based on the setting of one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE. Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that the condition (c) is satisfied, then in step S902, the MAC processing unit performs the above-mentioned process (AD-2) and/or process (AD-3) on the target SCell based on the setting of one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE.
  • AD-2 above-mentioned process
  • AD-3 AD-3
  • step S902 the MAC processing unit activates the target SCell. Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that the conditions (b) and (c) are not satisfied and that the condition (a) is satisfied, then in step S902, the MAC processing unit activates the target SCell. Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that the conditions (b) and (c) are not satisfied and that the condition (a) is satisfied, then in step S902, the MAC processing unit performs the above-mentioned process (AD-1) on the target SCell. In this case, the MAC processing unit of UE122 may operate in step S902 without being notified by the RRC processing unit that the L1/L2 candidate target configuration application process has been completed.
  • the MAC processing unit of UE122 may operate in step S902 without being based on configuring one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE.
  • "after receiving the LTM MAC CE” may be rephrased as “upon receiving the LTM MAC CE,” “based on receiving the LTM MAC CE,” or "after notifying the RRC processing unit of information indicating the target serving cell identified by the LTM MAC CE," etc.
  • the MAC processing unit of UE122 determines in step S900 that none of the conditions (a) to (c) are satisfied, it deactivates the target SCell in step S902. Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that none of the conditions (a) to (c) are satisfied, it performs the above-mentioned process (AD-2) and/or process (AD-3) on the target SCell in step S902. In this case, the MAC processing unit of UE122 may operate in step S902 without being notified by the RRC processing unit that the L1/L2 candidate target configuration application process has been completed.
  • the MAC processing unit of UE122 may operate in step S902 without being based on configuring one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE.
  • "after receiving the LTM MAC CE” may be rephrased as “upon receiving the LTM MAC CE,” “based on receiving the LTM MAC CE,” or "after notifying the RRC processing unit of information indicating the target serving cell identified by the LTM MAC CE," etc.
  • step S902 it activates the target SCell based on the reception of a MAC CE including information indicating that the target SCell is to be activated.
  • step S902 it performs the above-mentioned process (AD-1) on the target SCell based on the reception of a MAC CE including information indicating that the target SCell is to be activated.
  • step S902 it deactivates the target SCell based on the reception of a MAC CE including information indicating that the target SCell is to be deactivated. Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that none of the conditions (a) to (c) are satisfied, then in step S902, the MAC processing unit performs the above-mentioned process (AD-2) and/or process (AD-3) on the target SCell based on receiving a MAC CE including information indicating that the target SCell is to be deactivated.
  • the MAC processing unit of UE122 may operate in step S902 without being notified by the RRC processing unit that the L1/L2 candidate target configuration application process has been completed. Additionally or alternatively, the MAC processing unit of UE122 may operate in step S902 without being based on configuring one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE.
  • “after receiving the LTM MAC CE” may be rephrased as “upon receiving the LTM MAC CE," "based on receiving the LTM MAC CE,” or "after notifying the RRC processing unit of information indicating the target serving cell identified by the LTM MAC CE," etc.
  • the processing unit 502 of the UE 122 judges the conditions (step S900) and operates based on the judgment (step S902).
  • UE122 may receive from a base station device (gNB108 and/or eNB102) a MAC CE including information indicating that each SCell of a cell group is to be activated or information indicating that each SCell is to be deactivated in a serving cell of the cell group.
  • a base station device gNB108 and/or eNB102
  • a MAC CE including information indicating that each SCell of a cell group is to be activated or information indicating that each SCell is to be deactivated in a serving cell of the cell group.
  • the MAC processing unit of UE122 may be the MAC processing unit of the cell group unless otherwise specified.
  • being identified by a MAC CE including information indicating that a SCell is to be activated may mean, for example, that information of a MAC CE corresponding to an identifier of the SCell indicates that the SCell is to be activated
  • being identified by a MAC CE including information indicating that a SCell is to be deactivated may mean, for example, that information of a MAC CE corresponding to an identifier of the SCell indicates that the SCell is to be deactivated.
  • the MAC processing unit of UE 122 that has received a MAC CE including information indicating that the SCell is to be activated or information indicating that the SCell is to be deactivated determines, in step S900, whether each of the following conditions (d) and (e) is satisfied.
  • An LTM MAC CE that specifies one or more of the SCells to be activated is included in a MAC PDU that includes a MAC CE including information indicating that the SCell is to be activated.
  • An LTM MAC CE that specifies one or more SCells to be deactivated is included in a MAC PDU that includes a MAC CE that includes information indicating that the SCell is to be deactivated.
  • step S902 the MAC processing unit activates the LTM MAC CE and the SCell identified by the MAC CE including information indicating that the SCell is to be activated, based on the notification from the RRC processing unit that the L1/L2 candidate target setting application process based on the LTM MAC CE described in the condition (d) has been completed.
  • step S902 the MAC processing unit performs the above-mentioned process (AD-1) on the SCell identified by the MAC CE including information indicating that the LTM MAC CE and the SCell are to be activated, based on the notification from the RRC processing unit that the L1/L2 candidate target setting application process based on the LTM MAC CE described in the condition (d) has been completed.
  • the MAC processing unit of UE122 determines in step S900 that the condition (d) is satisfied, then in step S902, it activates the LTM MAC CE and the SCell identified by the MAC CE including information indicating that the SCell is to be activated based on the configuration of one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE described in the condition (d).
  • the MAC processing unit of UE122 determines in step S900 that the condition (d) is satisfied, then in step S902, it performs the above-mentioned process (AD-1) on the SCell identified by the MAC CE including information indicating that the LTM MAC CE and the SCell are to be activated based on the configuration of one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE described in the condition (d).
  • step S902 based on the notification from the RRC processing unit that the L1/L2 candidate target setting application process based on the LTM MAC CE described in the condition (e) has been completed, the MAC processing unit deactivates the LTM MAC CE and the SCell identified by the MAC CE including information indicating that the SCell is to be deactivated.
  • the MAC processing unit performs the above-mentioned process (AD-2) and/or process (AD-3) on the LTM MAC CE and the SCell identified by the MAC CE including information indicating that the SCell is to be deactivated
  • the MAC processing unit of UE122 determines in step S900 that the condition (e) is satisfied, then in step S902, the MAC processing unit deactivates the LTM MAC CE and the SCell identified by the MAC CE including information indicating that the SCell is to be deactivated, based on the configuration of one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE described in the condition (e).
  • step S902 the MAC processing unit of UE122 performs the above-mentioned processing (AD-2) and/or processing (AD-3) on the SCell identified by the MAC CE including information indicating that the LTM MAC CE and the SCell are to be deactivated, based on the configuration of one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE described in the condition (e).
  • AD-2 above-mentioned processing
  • AD-3 processing
  • step S902 based on receiving a MAC CE including information indicating that the SCell is to be activated, the MAC processing unit of UE122 activates the SCell identified by the MAC CE including information indicating that the SCell is to be activated.
  • the MAC processing unit of UE122 determines in step S900 that neither of the conditions (d) nor (e) is satisfied, then in step S902, based on receiving a MAC CE including information indicating that the SCell is to be activated, the MAC processing unit of UE122 performs the above-mentioned process (AD-1) on the SCell identified by the MAC CE including information indicating that the SCell is to be activated.
  • AD-1 above-mentioned process
  • step S902 based on receiving a MAC CE including information indicating that the SCell is to be deactivated, the MAC processing unit of UE122 deactivates the SCell identified by the MAC CE including information indicating that the SCell is to be deactivated.
  • step S902 based on receiving a MAC CE including information indicating that the SCell is to be deactivated, the MAC processing unit of UE122 performs the above-mentioned processing (AD-2) and/or processing (AD-3) on the SCell identified by the MAC CE including information indicating that the SCell is to be deactivated.
  • the MAC CE including the information indicating to activate the above-mentioned SCell may be, for example, an SCell Activation/Deactivation MAC CE indicating to activate the SCell, or an Enhanced SCell Activation/Deactivation MAC CE indicating to activate the SCell, and the MAC CE including the information indicating to deactivate the above-mentioned SCell may be, for example, an SCell Activation/Deactivation MAC CE indicating to deactivate the SCell, or an Enhanced SCell Activation/Deactivation MAC CE indicating to deactivate the SCell.
  • the MAC CE including the information indicating to activate the above-mentioned SCell and the MAC CE including the information indicating to deactivate the SCell may be the same MAC CE (for example, a MAC CE named SCell Activation/Deactivation MAC CE or Enhanced SCell Activation/Deactivation MAC CE indicating with one bit whether each SCell is to be activated or deactivated).
  • the information in condition (b) indicating that UE122 should activate the SCell and the information in condition (c) indicating that UE122 should deactivate the SCell may be the same information (e.g., a MAC CE named SCell Activation/Deactivation MAC CE or Enhanced SCell Activation/Deactivation MAC CE, which indicates in one bit whether each SCell is to be activated or deactivated).
  • the MAC processing unit of UE122 may determine not to perform the above-mentioned process (AD) for each SCell identified by the LTM MAC CE.
  • timer once a timer is started, it runs until it is stopped or expires. Once a timer expires, it may be considered to be not running (stopped). A timer is always started (if the timer is stopped) or restarted (if the timer is running) from its initial value. The period from when the timer is started or restarted to when it expires is not updated until the timer is stopped or expired.
  • the MAC entity of the terminal device may use a value notified by a higher layer (e.g., the RRC layer) as the period from when the timer is started or restarted to when it expires.
  • the MAC entity of the terminal device may use a pre-configured default value as the period from when the timer is started or restarted to when it expires. If the MAC entity of the terminal device sets the period from when the timer is started or restarted to when it expires to 0, the timer may expire immediately after it is started, unless other conditions are specified.
  • the radio bearer in the above description may be a DRB, an SRB, or a DRB and an SRB. In addition or instead, the radio bearer in the above description may be an MRB.
  • the serving cell change in the above description may refer to a layer 1/layer 2 serving cell change.
  • condition "B” may be expressed as the “other" condition of condition "A.”
  • the program that runs on the device related to this embodiment may be a program that controls a Central Processing Unit (CPU) or the like to cause a computer to function so as to realize the functions of this embodiment.
  • the program or the information handled by the program is temporarily loaded into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or a Hard Disk Drive (HDD), and is read, modified, and written by the CPU as necessary.
  • volatile memory such as Random Access Memory (RAM) during processing
  • non-volatile memory such as flash memory or a Hard Disk Drive (HDD)
  • a part of the device in the above-mentioned embodiment may be realized by a computer.
  • a program for realizing this control function may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read into a computer system and executed to realize the control function.
  • the "computer system” referred to here is a computer system built into the device, and includes hardware such as an operating system and peripheral devices.
  • the "computer-readable recording medium” may be any of semiconductor recording media, optical recording media, magnetic recording media, etc.
  • “computer-readable recording medium” may include something that dynamically holds a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, or something that holds a program for a certain period of time, such as volatile memory within a computer system that serves as a server or client in such a case.
  • the above program may also be one that realizes part of the functions described above, or one that can realize the functions described above in combination with a program already recorded in the computer system.
  • each functional block or feature of the device used in the above-mentioned embodiment may be implemented or executed by an electric circuit, typically an integrated circuit or a plurality of integrated circuits.
  • the electric circuit designed to execute the functions described herein may include a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or a combination thereof.
  • the general-purpose processor may be a microprocessor, or alternatively, the processor may be a conventional processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each of the aforementioned circuits may be composed of digital circuits or analog circuits. Furthermore, if an integrated circuit technology that replaces current integrated circuits emerges due to the progress of semiconductor technology, it is also possible to use an integrated circuit based on that technology.
  • this embodiment is not limited to the above embodiment.
  • an example of a device is described, but this embodiment is not limited to this, and can be applied to terminal devices or communication devices such as stationary or non-movable electronic devices installed indoors or outdoors, for example, AV equipment, kitchen equipment, cleaning/washing equipment, air conditioning equipment, office equipment, vending machines, and other household appliances.
  • One aspect of the present invention can be used, for example, in a communication system, a communication device (e.g., a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (e.g., a communication chip), or a program, etc.
  • a communication device e.g., a mobile phone device, a base station device, a wireless LAN device, or a sensor device
  • an integrated circuit e.g., a communication chip
  • program e.g., a program, etc.
  • E-UTRA 102 eNB 104 EPC 106 NR 108 gNB 110 5GC 112, 114, 116, 118, 120, 124 Interface 122UE 200, 300 PHY 202, 302 MAC 204, 304 RLC 206, 306 PDCP 208, 308 RRC 310SDAP 210, 312 NAS 500, 604 Receiver 502, 602 Processing section 504, 600 Transmitter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

On the basis of a MAC processing unit of this terminal device having received, from a base station device, a first MAC CE indicating an identifier for identifying one or more candidate target configurations including a target SCell, an RRC processing unit of the terminal device applies, to the RRC configuration of the terminal device, the candidate target configuration identified by the first MAC CE. The MAC processing unit determines whether or not the applied candidate target configuration includes information indicating that the target SCell is to be activated, and activates or de-activates the target SCell on the basis of the determination.

Description

端末装置、方法、および、集積回路Terminal device, method, and integrated circuit
 本発明は、端末装置、方法、および、集積回路に関する。
 本願は、2022年11月2日に日本に出願された特願2022-176092号について優先権を主張し、その内容をここに援用する。
The present invention relates to a terminal device, a method, and an integrated circuit.
This application claims priority to Japanese Patent Application No. 2022-176092, filed in Japan on November 2, 2022, the contents of which are incorporated herein by reference.
 セルラ移動通信システムの標準化プロジェクトである、第3世代パートナーシッププロジェクト(3rd Generation Partnership Project:3GPP(登録商標))において、無線アクセス、コア網、サービス等を含む、セルラ移動通信システムの技術検討及び規格策定が行われている。 The 3rd Generation Partnership Project (3GPP (registered trademark)), a standardization project for cellular mobile communication systems, is conducting technical studies and formulating standards for cellular mobile communication systems, including wireless access, core networks, and services.
 例えば、E-UTRA(Evolved Universal Terrestrial Radio Access)は、3GPPにおいて、第3.9世代および第4世代向けセルラ移動通信システム向け無線アクセス技術(Radio Access Technology:RAT)として、技術検討及び規格策定が開始された。現在も3GPPにおいて、E-UTRAの拡張技術の技術検討及び規格策定が行われている。なお、E-UTRAは、Long Term Evolution(LTE:登録商標)とも称し、拡張技術をLTE-Advanced(LTE-A)、LTE-Advanced Pro(LTE-A Pro)と称する事もある。 For example, 3GPP has begun technical discussions and standardization of E-UTRA (Evolved Universal Terrestrial Radio Access) as a radio access technology (Radio Access Technology: RAT) for 3.9G and 4G cellular mobile communication systems. 3GPP is currently conducting technical discussions and standardization of E-UTRA extension technologies. E-UTRA is also known as Long Term Evolution (LTE: registered trademark), and the extension technology is sometimes referred to as LTE-Advanced (LTE-A) and LTE-Advanced Pro (LTE-A Pro).
 また、NR(New Radio、またはNR Radio access)は、3GPPにおいて、第5世代(5th Generation:5G)向けセルラ移動通信システム向け無線アクセス技術(Radio Access Technology:RAT)として、技術検討及び規格策定が開始された。現在も3GPPにおいて、NRの拡張技術の技術検討及び規格策定が行われている。 In addition, 3GPP has begun technical studies and standardization of NR (New Radio, or NR Radio access) as a radio access technology (Radio Access Technology: RAT) for cellular mobile communication systems for the 5th generation (5G). 3GPP is currently conducting technical studies and standardization of NR extension technologies.
 NRの拡張技術として、端末装置があるセルのカバレッジエリアから別のセルのカバレッジエリアへ移動するためのサービングセル変更技術がある。このサービングセル変更は、レイヤ3(RRCとも称する)のメジャメント(measurement)によってトリガされ、サービングセル変更のための同期付再設定は、RRCシグナリングによってトリガされる。RRCシグナリングに比べて、レイヤ1またはレイヤ2のシグナリングは、低遅延かつオーバーヘッドが少ないという利点を持つ。そのため、レイヤ1またはレイヤ2のシグナリングによってトリガされるサービングセル変更技術(レイヤ1/レイヤ2モビリティ最適化(L1/L2 mobility enhancement)技術)の検討が開始された。 As an extension technology of NR, there is a serving cell change technology that allows a terminal device to move from the coverage area of one cell to the coverage area of another cell. This serving cell change is triggered by layer 3 (also called RRC) measurements, and synchronized reconfiguration for the serving cell change is triggered by RRC signaling. Compared to RRC signaling, layer 1 or layer 2 signaling has the advantage of low latency and low overhead. For this reason, studies have begun on a serving cell change technology triggered by layer 1 or layer 2 signaling (Layer 1/Layer 2 mobility optimization (L1/L2 mobility enhancement) technology).
 レイヤ1/レイヤ2モビリティ最適化技術における端末装置の手順の詳細は、上述の検討事項の一つとなっている。しかしながら、非特許文献7および非特許文献8に記載されている端末装置の手順の仕様がレイヤ1/レイヤ2モビリティ最適化技術においてどのように反映されるかについては不明瞭のままである。 The details of the terminal device procedures in Layer 1/Layer 2 mobility optimization technology are one of the issues discussed above. However, it remains unclear how the specifications of the terminal device procedures described in Non-Patent Document 7 and Non-Patent Document 8 are reflected in Layer 1/Layer 2 mobility optimization technology.
 本発明の一態様は、上記した事情に鑑みてなされたもので、通信制御を効率的に行うことができる端末装置、基地局装置、通信方法、集積回路を提供することを目的の一つとする。 One aspect of the present invention was made in consideration of the above circumstances, and one of its objectives is to provide a terminal device, a base station device, a communication method, and an integrated circuit that can efficiently control communications.
 上記の目的を達成するために、本発明の一態様は、以下のような手段を講じた。すなわち本発明の一態様は、基地局装置と通信する端末装置であって、前記基地局装置よりターゲットのSCellを含む一つまたは複数の候補ターゲット設定を識別する識別子を示す第1のMAC CEを受信する受信部と、RRC処理部と、MAC処理部と、を備え、前記RRC処理部は、前記MAC処理部が前記第1のMAC CEを受信したことに基づいて、前記第1のMAC CEによって識別される前記候補ターゲット設定を、前記端末装置のRRCの設定に対して適用し、前記MAC処理部は、前記適用された候補ターゲット設定に、前記ターゲットのSCellを活性化させることを示す情報が含まれるか否かを判断し、前記判断に基づいて、前記ターゲットのSCellを活性化または不活性化する。 In order to achieve the above object, one aspect of the present invention takes the following measures. That is, one aspect of the present invention is a terminal device that communicates with a base station device, and includes a receiver that receives from the base station device a first MAC CE indicating an identifier that identifies one or more candidate target configurations including a target SCell, an RRC processor, and a MAC processor, and based on the MAC processor's reception of the first MAC CE, the RRC processor applies the candidate target configuration identified by the first MAC CE to the RRC configuration of the terminal device, and the MAC processor determines whether the applied candidate target configuration includes information indicating that the target SCell is to be activated, and activates or deactivates the target SCell based on the determination.
 また本発明の一態様は、基地局装置と通信する端末装置の方法であって、前記端末装置のMACエンティティが、前記基地局装置よりターゲットのSCellを含む一つまたは複数の候補ターゲット設定を識別する識別子を示す第1のMAC CEを受信するステップと、前記端末装置のRRCエンティティが、前記MACエンティティが前記第1のMAC CEを受信したことに基づいて、前記第1のMAC CEによって識別される前記候補ターゲット設定を、前記端末装置のRRCの設定に対して適用するステップと、前記MACエンティティが、前記適用された候補ターゲット設定に、前記ターゲットのSCellを活性化させることを示す情報が含まれるか否かを判断するステップと、前記判断に基づいて、前記ターゲットのSCellを活性化または不活性化するステップと、を含む。 Another aspect of the present invention is a method for a terminal device to communicate with a base station device, comprising the steps of: a MAC entity of the terminal device receiving from the base station device a first MAC CE indicating an identifier identifying one or more candidate target configurations including a target SCell; an RRC entity of the terminal device applying the candidate target configuration identified by the first MAC CE to an RRC configuration of the terminal device based on the MAC entity receiving the first MAC CE; a MAC entity determining whether the applied candidate target configuration includes information indicating that the target SCell is to be activated; and activating or deactivating the target SCell based on the determination.
 また本発明の一態様は、基地局装置と通信する端末装置に実装される集積回路であって、前記端末装置のMACエンティティが、前記基地局装置よりターゲットのSCellを含む一つまたは複数の候補ターゲット設定を識別する識別子を示す第1のMAC CEを受信する機能と、前記端末装置のRRCエンティティが、前記MACエンティティが前記第1のMAC CEを受信したことに基づいて、前記第1のMAC CEによって識別される前記候補ターゲット設定を、前記端末装置のRRCの設定に対して適用する機能と、前記MACエンティティが、前記適用された候補ターゲット設定に、前記ターゲットのSCellを活性化させることを示す情報が含まれるか否かを判断する機能と、前記判断に基づいて、前記ターゲットのSCellを活性化または不活性化する機能と、を発揮させる。 Another aspect of the present invention is an integrated circuit implemented in a terminal device that communicates with a base station device, the integrated circuit having the following functions: a MAC entity of the terminal device receives from the base station device a first MAC CE indicating an identifier that identifies one or more candidate target configurations including a target SCell; an RRC entity of the terminal device applies the candidate target configuration identified by the first MAC CE to the RRC configuration of the terminal device based on the MAC entity receiving the first MAC CE; the MAC entity determines whether the applied candidate target configuration includes information indicating that the target SCell is to be activated; and activates or deactivates the target SCell based on the determination.
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 These comprehensive or specific aspects may be realized as a system, device, method, integrated circuit, computer program, or recording medium, or as any combination of a system, device, method, integrated circuit, computer program, and recording medium.
 本発明の一態様によれば、端末装置、方法、および集積回路は、効率的な通信制御処理を実現することができる。 According to one aspect of the present invention, a terminal device, method, and integrated circuit can realize efficient communication control processing.
本実施形態に係る通信システムの概略図。1 is a schematic diagram of a communication system according to an embodiment of the present invention. 本実施形態に係るE-UTRAプロトコル構成の一例の図。FIG. 2 is a diagram showing an example of an E-UTRA protocol configuration according to the present embodiment. 本実施形態に係るNRプロトコル構成の一例の図。FIG. 1 is a diagram showing an example of an NR protocol configuration according to the present embodiment. 本実施形態に係るRRCにおける、各種設定のための手順のフローの一例を示す図。FIG. 2 is a diagram showing an example of a procedure flow for various settings in the RRC according to the present embodiment. 本実施形態における端末装置の構成を示すブロック図。FIG. 2 is a block diagram showing the configuration of a terminal device according to the embodiment. 本実施形態における基地局装置の構成を示すブロック図。FIG. 2 is a block diagram showing the configuration of a base station device according to the present embodiment. 本実施形態におけるNRでのRRCコネクションの再設定に関するメッセージに含まれるASN.1記述の一例。An example of an ASN.1 description included in a message regarding reconfiguration of an RRC connection in NR in this embodiment. 本実施形態におけるServingCellConfigCommon情報要素に関するフィールド、および/または情報要素を表すASN.1記述の一例。13 is an example of an ASN.1 description representing a field and/or an information element related to a ServingCellConfigCommon information element in this embodiment. 本実施形態における端末装置の処理の一例。5 is an example of processing of a terminal device in the present embodiment.
 以下、本実施形態について、図面を参照して詳細に説明する。 This embodiment will be described in detail below with reference to the drawings.
 LTE(およびLTE-A、LTE-A Pro)とNRは、異なる無線アクセス技術(Radio Access Technology:RAT)として定義されてよい。またNRは、LTEに含まれる技術として定義されてもよい。またLTEは、NRに含まれる技術として定義されてもよい。また、NRとMulti-Radio Dual Connectivity(MR-DC)で接続可能なLTEは、従来のLTEと区別されてよい。また、コア網(コアネットワーク、Core Network:CN)に5GCを用いるLTEは、コア網にEPCを用いる従来のLTEと区別されてよい。なお従来のLTEとは、3GPPにおけるリリース15以降に規格化された技術を実装していないLTEの事であってよい。本実施形態はNR、LTEおよび他のRATに適用されてよい。以下の説明では、LTEおよびNRに関連する用語を用いて説明するが、本実施形態は他の用語を用いる他の技術において適用されてもよい。また本実施形態でのE-UTRAという用語は、LTEという用語に置き換えられてよいし、LTEという用語はE-UTRAという用語に置き換えられてよい。 LTE (and LTE-A, LTE-A Pro) and NR may be defined as different radio access technologies (Radio Access Technologies: RATs). NR may be defined as a technology included in LTE. LTE may be defined as a technology included in NR. LTE that can be connected to NR via Multi-Radio Dual Connectivity (MR-DC) may be distinguished from conventional LTE. LTE that uses 5GC in the core network (Core Network: CN) may be distinguished from conventional LTE that uses EPC in the core network. Conventional LTE may refer to LTE that does not implement technologies standardized after Release 15 in 3GPP. This embodiment may be applied to NR, LTE, and other RATs. In the following description, terms related to LTE and NR are used, but this embodiment may be applied to other technologies that use other terms. In this embodiment, the term E-UTRA may be replaced with the term LTE, and the term LTE may be replaced with the term E-UTRA.
 なお、本実施形態において、無線アクセス技術がE-UTRA又はNRである場合の各ノードやエンティティの名称、及び各ノードやエンティティにおける処理等について説明するが、本実施形態は他の無線アクセス技術に用いられてよい。本実施形態における各ノードやエンティティの名称は、別の名称であってよい。 In this embodiment, the names of each node and entity and the processing in each node and entity when the radio access technology is E-UTRA or NR are described, but this embodiment may be used for other radio access technologies. The names of each node and entity in this embodiment may be different names.
 図1は本実施形態に係る通信システムの概略図である。なお図1を用いて説明する各ノード、無線アクセス技術、コア網、インタフェース等の機能は、本実施形態に密接に関わる一部の機能であり、他の機能を持ってよい。 FIG. 1 is a schematic diagram of a communication system according to this embodiment. Note that the functions of each node, radio access technology, core network, interface, etc. described using FIG. 1 are only some of the functions closely related to this embodiment, and the system may have other functions.
 E-UTRA100は無線アクセス技術であってよい。またE-UTRA100は、UE122とeNB102との間のエアインタフェース(air interface)であってよい。UE122とeNB102との間のエアインタフェースをUuインタフェースと呼んでよい。eNB(E-UTRAN Node B)102は、基地局装置であってよい。eNB102は、後述のE-UTRAプロトコルを持ってよい。E-UTRAプロトコルは、後述のE-UTRAユーザプレーン(User Plane:UP)プロトコル、及び後述のE-UTRA制御プレーン(Control Plane:CP)プロトコルから構成されてもよい。eNB102は、UE122に対し、E-UTRAユーザプレーン(User Plane:UP)プロトコル、及びE-UTRA制御プレーン(Control Plane:CP)プロトコルを終端してよい。eNBで構成される無線アクセスネットワークをE-UTRANと呼んでもよい。 E-UTRA 100 may be a radio access technology. E-UTRA 100 may also be an air interface between UE 122 and eNB 102. The air interface between UE 122 and eNB 102 may be referred to as a Uu interface. eNB (E-UTRAN Node B) 102 may be a base station device. eNB 102 may have an E-UTRA protocol, which will be described later. The E-UTRA protocol may be composed of an E-UTRA User Plane (UP) protocol, which will be described later, and an E-UTRA Control Plane (CP) protocol, which will be described later. eNB 102 may terminate the E-UTRA User Plane (UP) protocol and the E-UTRA Control Plane (CP) protocol for UE 122. A radio access network composed of eNBs may be referred to as E-UTRAN.
 EPC(Evolved Packet Core)104は、コア網であってよい。インタフェース112はeNB102とEPC104の間のインタフェース(interface)であり、S1インタフェースと呼ばれてよい。インタフェース112には、制御信号が通る制御プレーンインタフェース、及び/又は(and/or)ユーザデータが通るユーザプレーンインタフェースが存在してよい。インタフェース112の制御プレーンインタフェースはEPC104内のMobility Management Entity(MME:不図示)で終端してよい。インタフェース112のユーザプレーンインタフェースはEPC104内のサービングゲートウェイ(S-GW:不図示)で終端してよい。インタフェース112の制御プレーンインタフェースをS1-MMEインタフェースと呼んでよい。インタフェース112のユーザプレーンインタフェースをS1-Uインタフェースと呼んでよい。 EPC (Evolved Packet Core) 104 may be a core network. Interface 112 is an interface between eNB 102 and EPC 104, and may be referred to as an S1 interface. Interface 112 may include a control plane interface through which control signals pass, and/or a user plane interface through which user data passes. The control plane interface of interface 112 may terminate at a Mobility Management Entity (MME: not shown) in EPC 104. The user plane interface of interface 112 may terminate at a Serving Gateway (S-GW: not shown) in EPC 104. The control plane interface of interface 112 may be referred to as an S1-MME interface. The user plane interface of interface 112 may be referred to as an S1-U interface.
 なお、1つ又は複数のeNB102がEPC104にインタフェース112を介して接続されてよい。EPC104に接続する複数のeNB102の間に、インタフェースが存在してよい(不図示)。EPC104に接続する複数のeNB102間のインタフェースを、X2インタフェースと呼んでよい。 Note that one or more eNBs 102 may be connected to the EPC 104 via an interface 112. An interface may exist between the multiple eNBs 102 connected to the EPC 104 (not shown). The interface between the multiple eNBs 102 connected to the EPC 104 may be referred to as an X2 interface.
 NR106は無線アクセス技術であってよい。またNR106は、UE122とgNB108との間のエアインタフェース(air interface)であってよい。UE122とgNB108との間のエアインタフェースをUuインタフェースと呼んでよい。gNB(g Node B)108は、基地局装置であってよい。gNB108は、後述のNRプロトコルを持ってよい。NRプロトコルは、後述のNRユーザプレーン(User Plane:UP)プロトコル、及び後述のNR制御プレーン(Control Plane:CP)プロトコルから構成されてよい。gNB108は、UE122に対し、NRユーザプレーン(User Plane:UP)プロトコル、及びNR制御プレーン(Control Plane:CP)プロトコルを終端してよい。 NR106 may be a radio access technology. NR106 may also be an air interface between UE122 and gNB108. The air interface between UE122 and gNB108 may be referred to as a Uu interface. gNB (g Node B) 108 may be a base station device. gNB108 may have the NR protocol described below. The NR protocol may be composed of the NR user plane (User Plane: UP) protocol described below and the NR control plane (Control Plane: CP) protocol described below. gNB108 may terminate the NR user plane (User Plane: UP) protocol and the NR control plane (Control Plane: CP) protocol for UE122.
 5GC110は、コア網であってよい。インタフェース116はgNB108と5GC110の間のインタフェース(interface)であり、NGインタフェースと呼ばれてよい。インタフェース116には、制御信号が通る制御プレーンインタフェース、及び/又はユーザデータが通るユーザプレーンインタフェースが存在してよい。インタフェース116の制御プレーンインタフェースは5GC110内のAccess and mobility Management Function(AMF:不図示)で終端してよい。インタフェース116のユーザプレーンインタフェースは5GC110内のUser Plane Function(UPF:不図示)で終端してよい。インタフェース116の制御プレーンインタフェースをNG-Cインタフェースと呼んでよい。インタフェース116のユーザプレーンインタフェースをNG-Uインタフェースと呼んでよい。 5GC110 may be a core network. Interface 116 is an interface between gNB108 and 5GC110, and may be referred to as an NG interface. Interface 116 may have a control plane interface through which control signals pass, and/or a user plane interface through which user data passes. The control plane interface of interface 116 may terminate at an Access and Mobility Management Function (AMF: not shown) in 5GC110. The user plane interface of interface 116 may terminate at a User Plane Function (UPF: not shown) in 5GC110. The control plane interface of interface 116 may be referred to as an NG-C interface. The user plane interface of interface 116 may be referred to as an NG-U interface.
 なお、1つ又は複数のgNB108が5GC110にインタフェース116を介して接続されてよい。5GC110に接続する複数のgNB108の間に、インタフェースが存在してよい(不図示)。5GC110に接続する複数のgNB108間のインタフェースをXnインタフェースと呼んでよい。 Note that one or more gNB108 may be connected to 5GC110 via interface 116. An interface may exist between multiple gNB108 connected to 5GC110 (not shown). The interface between multiple gNB108 connected to 5GC110 may be referred to as an Xn interface.
 eNB102は5GC110に接続する機能を持ってよい。5GC110に接続する機能をもつeNB102を、ng-eNBと呼んでよい。インタフェース114はeNB102と5GC110の間のインタフェースで、NGインタフェースと呼ばれてよい。インタフェース114には、制御信号が通る制御プレーンインタフェース、及び/又はユーザデータが通るユーザプレーンインタフェースが存在してよい。インタフェース114の制御プレーンインタフェースは5GC110内のAMFで終端してよい。インタフェース114のユーザプレーンインタフェースは5GC110内のUPFで終端してよい。インタフェース114の制御プレーンインタフェースをNG-Cインタフェースと呼んでよい。インタフェース114のユーザプレーンインタフェースをNG-Uインタフェースと呼んでよい。ng-eNBまたはgNBで構成される無線アクセスネットワークをNG-RANと称してもよい。NG-RAN、E-UTRANなどを単にネットワークと称してもよい。また、ネットワークには、eNB、ng-eNBおよびgNBなどが含まれてよい。  eNB102 may have a function to connect to 5GC110. eNB102 with a function to connect to 5GC110 may be called ng-eNB. Interface 114 is an interface between eNB102 and 5GC110, and may be called an NG interface. Interface 114 may have a control plane interface through which control signals pass, and/or a user plane interface through which user data passes. The control plane interface of interface 114 may terminate at the AMF in 5GC110. The user plane interface of interface 114 may terminate at the UPF in 5GC110. The control plane interface of interface 114 may be called an NG-C interface. The user plane interface of interface 114 may be called an NG-U interface. A radio access network composed of ng-eNB or gNB may be called NG-RAN. NG-RAN, E-UTRAN, etc. may simply be called a network. In addition, the network may include eNB, ng-eNB, gNB, etc.
 なお、1つ又は複数のeNB102が5GC110にインタフェース114を介して接続されてよい。5GC110に接続する複数のeNB102の間に、インタフェースが存在してよい(不図示)。5GC110に接続する複数のeNB102の間のインタフェースを、Xnインタフェースと呼んでよい。また5GC110に接続するeNB102と、5GC110に接続するgNB108は、インタフェース120で接続されてよい。5GC110に接続するeNB102と、5GC110に接続するgNB108の間のインタフェース120は、Xnインタフェースと呼ばれてよい。 Note that one or more eNB102 may be connected to 5GC110 via interface 114. An interface may exist between multiple eNB102 connected to 5GC110 (not shown). The interface between multiple eNB102 connected to 5GC110 may be called an Xn interface. Furthermore, an eNB102 connected to 5GC110 and a gNB108 connected to 5GC110 may be connected by interface 120. The interface 120 between an eNB102 connected to 5GC110 and a gNB108 connected to 5GC110 may be called an Xn interface.
 gNB108はEPC104に接続する機能を持ってよい。EPC104に接続する機能をもつgNB108を、en-gNBと呼んでよい。インタフェース118はgNB108とEPC104の間のインタフェースで、S1インタフェースと呼ばれてよい。インタフェース118には、ユーザデータが通るユーザプレーンインタフェースが存在してよい。インタフェース118のユーザプレーンインタフェースはEPC104内のS-GW(不図示)で終端してよい。インタフェース118のユーザプレーンインタフェースをS1-Uインタフェースと呼んでよい。またEPC104に接続するeNB102と、EPC104に接続するgNB108は、インタフェース120で接続されてよい。EPC104に接続するeNB102と、EPC104に接続するgNB108の間のインタフェース120はX2インタフェースと呼ばれてよい。 The gNB108 may have the function of connecting to the EPC104. The gNB108 with the function of connecting to the EPC104 may be called an en-gNB. The interface 118 is an interface between the gNB108 and the EPC104, and may be called an S1 interface. The interface 118 may have a user plane interface through which user data passes. The user plane interface of the interface 118 may terminate at an S-GW (not shown) in the EPC104. The user plane interface of the interface 118 may be called an S1-U interface. In addition, the eNB102 connecting to the EPC104 and the gNB108 connecting to the EPC104 may be connected by an interface 120. The interface 120 between the eNB102 connecting to the EPC104 and the gNB108 connecting to the EPC104 may be called an X2 interface.
 インタフェース124はEPC104と5GC110間のインタフェースであり、CPのみ、又はUPのみ、又はCP及びUP両方を通すインタフェースであってよい。また、インタフェース114、インタフェース116、インタフェース118、インタフェース120、及びインタフェース124等のうちの一部又は全てのインタフェースは、通信事業者等が提供する通信システムに応じて存在しない場合があってよい。 Interface 124 is an interface between EPC 104 and 5GC 110, and may be an interface that passes only CP, only UP, or both CP and UP. In addition, some or all of interfaces such as interface 114, interface 116, interface 118, interface 120, and interface 124 may not exist depending on the communication system provided by the communication carrier, etc.
 UE122はeNB102、及び/又はgNB108から送信されるシステム情報や、ページングメッセージを受信する事が可能な端末装置であってよい。またUE122は、eNB102、及び/又はgNB108との無線接続が可能な端末装置であってよい。またUE122は、eNB102との無線接続、及びgNB108と無線接続を同時に行う事が可能な端末装置であってよい。UE122はE-UTRAプロトコル、及び/又はNRプロトコルを持ってよい。なお、無線接続とは、Radio Resource Control(RRC)接続であってよい。 UE122 may be a terminal device capable of receiving system information and paging messages transmitted from eNB102 and/or gNB108. UE122 may also be a terminal device capable of wireless connection with eNB102 and/or gNB108. UE122 may also be a terminal device capable of wireless connection with eNB102 and wireless connection with gNB108 simultaneously. UE122 may have the E-UTRA protocol and/or the NR protocol. The wireless connection may be a Radio Resource Control (RRC) connection.
 またUE122は、eNB102及び/又はgNB108を介して、EPC104、及び/又は5GC110との接続が可能な端末装置であってよい。UE122が通信を行うeNB102、及び/又はgNB108の接続先コア網がEPC104である場合、UE122と、eNB102、及び/又はgNB108との間に確立された後述の各データ無線ベアラ(DRB:Data Radio Bearer)は、更にEPC104内を経由する各EPS(Evolved Packet System)ベアラと一意に紐づけられてよい。各EPSベアラは、EPSベアラ識別子(Identity、またはID)で識別されてよい。また同一のEPSベアラを通るIPパケットや、イーサネット(登録商標)フレーム等のデータには同一のQoSが保証されてよい。 UE122 may also be a terminal device capable of connecting to EPC104 and/or 5GC110 via eNB102 and/or gNB108. When the core network to which eNB102 and/or gNB108, with which UE122 communicates, is connected is EPC104, each Data Radio Bearer (DRB: Data Radio Bearer) described below established between UE122 and eNB102 and/or gNB108 may further be uniquely linked to each EPS (Evolved Packet System) bearer passing through EPC104. Each EPS bearer may be identified by an EPS bearer identifier (Identity, or ID). Furthermore, the same QoS may be guaranteed for data such as IP packets and Ethernet (registered trademark) frames passing through the same EPS bearer.
 また、UE122が通信を行うeNB102、及び/又はgNB108の接続先コア網が5GC110である場合、UE122と、eNB102、及び/又はgNB108との間に確立された各DRBは、更に5GC110内に確立されるPDU(Packet Data Unit)セッションの一つに紐づけられてよい。各PDUセッションには、一つ又は複数のQoSフローが存在してよい。各DRBは、一つ又は複数のQoSフローと対応付け(map)されてよいし、どのQoSフローと対応づけられなくてよい。各PDUセッションは、PDUセッション識別子(Identity、またはID)で識別されてよい。また各QoSフローは、QoSフロー識別子(Identity、またはID)で識別されてよい。また同一のQoSフローを通るIPパケットや、イーサネットフレーム等のデータに同一のQoSが保証されてよい。 Furthermore, if the core network to which eNB102 and/or gNB108, with which UE122 communicates, is connected is 5GC110, each DRB established between UE122 and eNB102 and/or gNB108 may be further linked to one of the PDU (Packet Data Unit) sessions established within 5GC110. One or more QoS flows may exist in each PDU session. Each DRB may be mapped to one or more QoS flows, or may not be mapped to any QoS flow. Each PDU session may be identified by a PDU session identifier (Identity, or ID). Furthermore, each QoS flow may be identified by a QoS flow identifier (Identity, or ID). Furthermore, the same QoS may be guaranteed to data such as IP packets and Ethernet frames passing through the same QoS flow.
 EPC104には、PDUセッション及び/又はQoSフローは存在しなくてよい。また5GC110にはEPSベアラは存在しなくてよい。UE122がEPC104と接続している際、UE122はEPSベアラの情報を持つが、PDUセッション及び/又はQoSフローの内の情報は持たなくてよい。またUE122が5GC110と接続している際、UE122はPDUセッション及び/又はQoSフローの内の情報を持つが、EPSベアラの情報は持たなくてよい。  PDU sessions and/or QoS flows may not exist in EPC104. Also, EPS bearers may not exist in 5GC110. When UE122 is connected to EPC104, UE122 has information on EPS bearers, but does not have information on PDU sessions and/or QoS flows. Also, when UE122 is connected to 5GC110, UE122 has information on PDU sessions and/or QoS flows, but does not have information on EPS bearers.
 なお、以下の説明において、eNB102および/またはgNB108を単に基地局装置とも称し、UE122を単に端末装置又はUEとも称する。 In the following description, eNB102 and/or gNB108 will also be referred to simply as base station devices, and UE122 will also be referred to simply as terminal device or UE.
 図2は本実施形態に係るE-UTRAプロトコル構成(protocol architecture)の一例の図である。また図3は本実施形態に係るNRプロトコル構成の一例の図である。なお図2及び/又は図3を用いて説明する各プロトコルの機能は、本実施形態に密接に関わる一部の機能であり、他の機能を持っていてよい。なお、本実施形態において、上りリンク(uplink:UL)とは端末装置から基地局装置へのリンクであってよい。また本実施形態において、下りリンク(downlink:DL)とは基地局装置から端末装置へのリンクであってよい。 FIG. 2 is a diagram showing an example of an E-UTRA protocol architecture according to this embodiment. FIG. 3 is a diagram showing an example of an NR protocol architecture according to this embodiment. Note that the functions of each protocol described using FIG. 2 and/or FIG. 3 are only some of the functions closely related to this embodiment, and other functions may also be included. Note that in this embodiment, the uplink (UL) may be a link from a terminal device to a base station device. Also, in this embodiment, the downlink (DL) may be a link from a base station device to a terminal device.
 図2(A)はE-UTRAユーザプレーン(UP)プロトコルスタックの図である。図2(A)に示す通り、E-UTRA UPプロトコルは、UE122とeNB102の間のプロトコルであってよい。即ちE-UTRA UPプロトコルは、ネットワーク側ではeNB102で終端するプロトコルであってよい。図2(A)に示す通り、E-UTRAユーザプレーンプロトコルスタックは、無線物理層(無線物理レイヤ)であるPHY(Physical layer)200、媒体アクセス制御層(媒体アクセス制御レイヤ)であるMAC(Medium Access Control)202、無線リンク制御層(無線リンク制御レイヤ)であるRLC(Radio Link Control)204、及びパケットデータ収束プロトコル層(パケットデータ収束プロトコルレイヤ)であるPDCP(Packet Data Convergence Protocol)206から構成されてよい。 Figure 2(A) is a diagram of the E-UTRA user plane (UP) protocol stack. As shown in Figure 2(A), the E-UTRA UP protocol may be a protocol between the UE 122 and the eNB 102. That is, the E-UTRA UP protocol may be a protocol that terminates at the eNB 102 on the network side. As shown in Figure 2(A), the E-UTRA user plane protocol stack may be composed of PHY (Physical layer) 200, which is the radio physical layer, MAC (Medium Access Control) 202, which is the medium access control layer, RLC (Radio Link Control) 204, which is the radio link control layer, and PDCP (Packet Data Convergence Protocol) 206, which is the packet data convergence protocol layer.
 図3(A)はNRユーザプレーン(UP)プロトコルスタックの図である。図3(A)に示す通り、NRUPプロトコルは、UE122とgNB108の間のプロトコルであってよい。即ちNR UPプロトコルは、ネットワーク側ではgNB108で終端するプロトコルであってよい。図3(A)に示す通り、NRユーザプレーンプロトコルスタックは、無線物理層であるPHY300、媒体アクセス制御層であるMAC302、無線リンク制御層であるRLC304、パケットデータ収束プロトコル層である、PDCP306、及びサービスデータ適応プロトコル層(サービスデータ適応プロトコルレイヤ)であるSDAP(Service Data Adaptation Protocol)310であるから構成されてよい。 Figure 3(A) is a diagram of the NR user plane (UP) protocol stack. As shown in Figure 3(A), the NRUP protocol may be a protocol between the UE 122 and the gNB 108. That is, the NR UP protocol may be a protocol that terminates at the gNB 108 on the network side. As shown in Figure 3(A), the NR user plane protocol stack may be composed of PHY 300, which is a radio physical layer, MAC 302, which is a medium access control layer, RLC 304, which is a radio link control layer, PDCP 306, which is a packet data convergence protocol layer, and SDAP (Service Data Adaptation Protocol) 310, which is a service data adaptation protocol layer.
 図2(B)はE-UTRA制御プレーン(CP)プロトコル構成の図である。図2(B)に示す通り、E-UTRA CPプロトコルにおいて、無線リソース制御層(無線リソース制御レイヤ)であるRRC(Radio Resource Control)208は、UE122とeNB102の間のプロトコルであってよい。即ちRRC208は、ネットワーク側ではeNB102で終端するプロトコルであってよい。またE-UTRA CPプロトコルにおいて、非AS(Access Stratum)層(非ASレイヤ)であるNAS(Non Access Stratum)210は、UE122とMMEとの間のプロトコルであってよい。即ちNAS210は、ネットワーク側ではMMEで終端するプロトコルであってよい。 Figure 2(B) is a diagram of the E-UTRA control plane (CP) protocol configuration. As shown in Figure 2(B), in the E-UTRA CP protocol, RRC (Radio Resource Control) 208, which is the radio resource control layer, may be a protocol between UE 122 and eNB 102. In other words, RRC 208 may be a protocol that terminates at eNB 102 on the network side. Also, in the E-UTRA CP protocol, NAS (Non Access Stratum) 210, which is the non-AS (Access Stratum) layer, may be a protocol between UE 122 and MME. In other words, NAS 210 may be a protocol that terminates at MME on the network side.
 図3(B)はNR制御プレーン(CP)プロトコル構成の図である。図3(B)に示す通り、NR CPプロトコルにおいて、無線リソース制御層であるRRC308は、UE122とgNB108の間のプロトコルであってよい。即ちRRC308は、ネットワーク側ではgNB108で終端するプロトコルであってよい。またNR CPプロトコルにおいて、非AS層であるNAS312は、UE122とAMFとの間のプロトコルであってよい。即ちNAS312は、ネットワーク側ではAMFで終端するプロトコルであってよい。 Figure 3(B) is a diagram of the NR control plane (CP) protocol configuration. As shown in Figure 3(B), in the NR CP protocol, RRC308, which is a radio resource control layer, may be a protocol between UE122 and gNB108. In other words, RRC308 may be a protocol that terminates at gNB108 on the network side. Also, in the NR CP protocol, NAS312, which is a non-AS layer, may be a protocol between UE122 and AMF. In other words, NAS312 may be a protocol that terminates at AMF on the network side.
 なおAS(Access Stratum)層とは、UE122とeNB102及び/又はgNB108との間で終端する層であってよい。即ちAS層とは、PHY200、MAC202、RLC204、PDCP206、及びRRC208の一部又は全てを含む層、及び/又はPHY300、MAC302、RLC304、PDCP306、SDAP310、及びRRC308の一部又は全てを含む層であってよい。 The AS (Access Stratum) layer may be a layer that terminates between the UE 122 and the eNB 102 and/or the gNB 108. In other words, the AS layer may be a layer that includes some or all of the PHY 200, the MAC 202, the RLC 204, the PDCP 206, and the RRC 208, and/or a layer that includes some or all of the PHY 300, the MAC 302, the RLC 304, the PDCP 306, the SDAP 310, and the RRC 308.
 なお本実施形態において、以下E-UTRAのプロトコルとNRのプロトコルを区別せず、PHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)と言う用語を用いる場合がある。この場合、PHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)は其々E-UTRAプロトコルのPHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)であってよいし、NRプロトコルの、PHY(PHY層)、MAC(MAC層)、RLC(RLC層)、PDCP(PDCP層)、RRC(RRC層)、NAS(NAS層)であってよい。またSDAP(SDAP層)は、NRプロトコルのSDAP(SDAP層)であってよい。 In this embodiment, the terms PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), and NAS (NAS layer) may be used without distinguishing between the E-UTRA protocol and the NR protocol. In this case, PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), and NAS (NAS layer) may respectively refer to the PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), and NAS (NAS layer) of the E-UTRA protocol, or the PHY (PHY layer), MAC (MAC layer), RLC (RLC layer), PDCP (PDCP layer), RRC (RRC layer), and NAS (NAS layer) of the NR protocol. The SDAP (SDAP layer) may also be the SDAP (SDAP layer) of the NR protocol.
 また本実施形態において、以下E-UTRAのプロトコルとNRのプロトコルを区別する場合、PHY200、MAC202、RLC204、PDCP206、及びRRC208を、それぞれE-UTRA用PHY又はLTE用PHY、E-UTRA用MAC又はLTE用MAC、E-UTRA用RLC又はLTE用RLC、E-UTRA用PDCP又はLTE用PDCP、及びE-UTRA用RRC又はLTE用RRCと呼ぶ事もある。またPHY200、MAC202、RLC204、PDCP206、及びRRC208を、それぞれE-UTRA PHY又はLTE PHY、E-UTRA MAC又はLTE MAC、E-UTRA RLC又はLTE RLC、E-UTRA PDCP又はLTE PDCP、及びE-UTRA RRC又はLTE RRCなどと記述する場合もある。また、E-UTRAのプロトコルとNRのプロトコルを区別する場合、PHY300、MAC302、RLC304、PDCP306、RRC308を、それぞれNR用PHY、NR用MAC、NR用RLC、NR用RLC、及びNR用RRCと呼ぶ事もある。またPHY300、MAC302、RLC304、PDCP306、及びRRC308を、それぞれNR PHY、NR MAC、NR RLC、NR PDCP、NR RRCなどと記述する場合もある。 In addition, in this embodiment, when distinguishing between E-UTRA protocols and NR protocols, PHY200, MAC202, RLC204, PDCP206, and RRC208 may be referred to as E-UTRA PHY or LTE PHY, E-UTRA MAC or LTE MAC, E-UTRA RLC or LTE RLC, E-UTRA PDCP or LTE PDCP, and E-UTRA RRC or LTE RRC, respectively. PHY200, MAC202, RLC204, PDCP206, and RRC208 may be referred to as E-UTRA PHY or LTE PHY, E-UTRA MAC or LTE MAC, E-UTRA RLC or LTE RLC, E-UTRA PDCP or LTE PDCP, and E-UTRA RRC or LTE RRC, respectively. Additionally, when distinguishing between E-UTRA protocols and NR protocols, PHY300, MAC302, RLC304, PDCP306, and RRC308 may be referred to as NR PHY, NR MAC, NR RLC, NR RLC, and NR RRC, respectively. PHY300, MAC302, RLC304, PDCP306, and RRC308 may also be referred to as NR PHY, NR MAC, NR RLC, NR PDCP, and NR RRC, respectively.
 E-UTRA及び/又はNRのAS層におけるエンティティ(entity)について説明する。MAC層の機能の一部又は全てを持つエンティティの事をMACエンティティと呼んでよい。RLC層の機能の一部又は全てを持つエンティティの事をRLCエンティティと呼んでよい。PDCP層の機能の一部又は全てを持つエンティティの事をPDCPエンティティと呼んでよい。SDAP層の機能の一部又は全てを持つエンティティの事をSDAPエンティティと呼んでよい。RRC層の機能の一部又は全てを持つエンティティの事をRRCエンティティと呼んでよい。MACエンティティ、RLCエンティティ、PDCPエンティティ、SDAPエンティティ、RRCエンティティを、其々MAC、RLC、PDCP、SDAP、RRCと言い換えてよい。  Describes entities in the AS layer of E-UTRA and/or NR. An entity having some or all of the functions of the MAC layer may be called a MAC entity. An entity having some or all of the functions of the RLC layer may be called an RLC entity. An entity having some or all of the functions of the PDCP layer may be called a PDCP entity. An entity having some or all of the functions of the SDAP layer may be called an SDAP entity. An entity having some or all of the functions of the RRC layer may be called an RRC entity. The MAC entity, RLC entity, PDCP entity, SDAP entity, and RRC entity may be referred to as MAC, RLC, PDCP, SDAP, and RRC, respectively.
 なお、MAC、RLC、PDCP、SDAPから下位層に提供されるデータ、及び/又はMAC、RLC、PDCP、SDAPに下位層から提供されるデータの事を、それぞれMAC PDU(Protocol Data Unit)、RLC PDU、PDCP PDU、SDAP PDUと呼んでよい。また、MAC、RLC、PDCP、SDAPに上位層から提供されるデータ、及び/又はMAC、RLC、PDCP、SDAPから上位層に提供するデータの事を、それぞれMAC SDU(Service Data Unit)、RLC SDU、PDCP SDU、SDAP SDUと呼んでよい。また、セグメントされたRLC SDUの事をRLC SDUセグメントと呼んでよい。 In addition, data provided from MAC, RLC, PDCP, and SDAP to lower layers, and/or data provided from lower layers to MAC, RLC, PDCP, and SDAP may be referred to as MAC PDU (Protocol Data Unit), RLC PDU, PDCP PDU, and SDAP PDU, respectively. Data provided from higher layers to MAC, RLC, PDCP, and SDAP, and/or data provided from MAC, RLC, PDCP, and SDAP to higher layers may be referred to as MAC SDU (Service Data Unit), RLC SDU, PDCP SDU, and SDAP SDU, respectively. In addition, a segmented RLC SDU may be referred to as an RLC SDU segment.
 ここで、基地局装置と端末装置は、上位層(上位レイヤ:higher layer)において信号をやり取り(送受信)する。例えば、基地局装置と端末装置は、無線リソース制御(RRC:Radio Resource Control)層において、RRCメッセージ(RRC message、RRC information、RRC signallingとも称される)を送受信してもよい。また、基地局装置と端末装置は、MAC(Medium Access Control)層において、MACコントロールエレメントを送受信してもよい。また、端末装置のRRC層は、基地局装置から報知されるシステム情報を取得する。ここで、RRCメッセージ、システム情報、および/または、MACコントロールエレメントは、上位層の信号(上位レイヤ信号:higher layer signaling)または上位層のパラメータ(上位レイヤパラメータ:higher layer parameter)とも称される。端末装置が受信した上位レイヤ信号に含まれるパラメータのそれぞれが上位レイヤパラメータと称されてもよい。PHY層の処理において上位層は、PHY層から見た上位層を意味するため、MAC層、RRC層、RLC層、PDCP層、NAS(Non Access Stratum)層などの1つまたは複数を意味してもよい。例えば、MAC層の処理において上位層とは、RRC層、RLC層、PDCP層、NAS層などの1つまたは複数を意味してもよい。以下、“Aは、上位層で与えられる(提供される)”や“Aは、上位層によって与えられる(提供される)”の意味は、端末装置の上位層(主にRRC層やMAC層など)が、基地局装置からAを受信し、その受信したAが端末装置の上位層から端末装置の物理層に与えられる(提供される)ことを意味してもよい。例えば、端末装置において「上位レイヤパラメータを提供される」とは、基地局装置から上位レイヤ信号を受信し、受信した上位レイヤ信号に含まれる上位レイヤパラメータが端末装置の上位層から端末装置の物理層に提供されることを意味してもよい。端末装置に上位レイヤパラメータが設定されることは端末装置に対して上位レイヤパラメータが与えられる(提供される)ことを意味してもよい。例えば、端末装置に上位レイヤパラメータが設定されることは、端末装置が基地局装置から上位レイヤ信号を受信し、受信した上位レイヤパラメータを上位層で設定することを意味してもよい。ただし、端末装置に上位レイヤパラメータが設定されることには、端末装置の上位層に予め与えられているデフォルトパラメータが設定されることを含んでもよい。端末装置から基地局装置にRRCメッセージを送信することを説明する際に、端末装置のRRCエンティティから下位層(下位レイヤ:lower layer)にメッセージを提出(submit)するという表現を使用する場合がある。端末装置において、RRCエンティティから「下位層にメッセージを提出する」とは、PDCP層にメッセージを提出することを意味してもよい。端末装置において、RRC層から「下位層にメッセージを提出(submit)する」とは、RRCのメッセージは、SRB (SRB0, SRB1, SRB2, SRB3など)を使って送信されるため、それぞれのSRBに対応したPDCPエンティティに提出することを意味してもよい。端末装置のRRCエンティティが下位層から指摘(indication)を受ける際、その下位層は、PHY層、MAC層、RLC層、PDCP層、などの1つまたは複数を意味してもよい。 Here, the base station device and the terminal device exchange (transmit and receive) signals at a higher layer. For example, the base station device and the terminal device may transmit and receive RRC messages (also referred to as RRC messages, RRC information, or RRC signaling) at the Radio Resource Control (RRC) layer. The base station device and the terminal device may also transmit and receive MAC control elements at the MAC (Medium Access Control) layer. The RRC layer of the terminal device acquires system information reported from the base station device. Here, the RRC messages, system information, and/or MAC control elements are also referred to as higher layer signals (higher layer signaling) or higher layer parameters (higher layer parameters). Each of the parameters included in the higher layer signals received by the terminal device may be referred to as a higher layer parameter. In PHY layer processing, the upper layer means the upper layer seen from the PHY layer, and may mean one or more of the MAC layer, RRC layer, RLC layer, PDCP layer, NAS (Non Access Stratum) layer, etc. For example, in MAC layer processing, the upper layer may mean one or more of the RRC layer, RLC layer, PDCP layer, NAS layer, etc. Hereinafter, "A is given (provided) by the upper layer" or "A is given (provided) by the upper layer" may mean that the upper layer (mainly the RRC layer or MAC layer, etc.) of the terminal device receives A from the base station device, and the received A is given (provided) from the upper layer of the terminal device to the physical layer of the terminal device. For example, in a terminal device, "upper layer parameters are provided" may mean that an upper layer signal is received from the base station device, and the upper layer parameters included in the received upper layer signal are provided from the upper layer of the terminal device to the physical layer of the terminal device. Setting upper layer parameters in the terminal device may mean that the upper layer parameters are given (provided) to the terminal device. For example, setting upper layer parameters in a terminal device may mean that the terminal device receives an upper layer signal from a base station device and sets the received upper layer parameters in the upper layer. However, setting upper layer parameters in a terminal device may include setting default parameters that are given in advance to the upper layer of the terminal device. When explaining the transmission of an RRC message from a terminal device to a base station device, the expression "submitting a message from the RRC entity of the terminal device to a lower layer" may be used. In a terminal device, "submitting a message to a lower layer" from the RRC entity may mean submitting a message to the PDCP layer. In a terminal device, "submitting a message to a lower layer" from the RRC layer may mean submitting an RRC message to a PDCP entity corresponding to each SRB, since RRC messages are transmitted using SRBs (SRB0, SRB1, SRB2, SRB3, etc.). When the RRC entity of the terminal device receives an indication from a lower layer, the lower layer may mean one or more of the PHY layer, MAC layer, RLC layer, PDCP layer, etc.
 PHYの機能の一例について説明する。端末装置のPHYは基地局装置のPHYから、下りリンク(Downlink:DL)物理チャネル(Physical Channel)を介して伝送されたデータを受信する機能を有してよい。端末装置のPHYは基地局装置のPHYに対し、上りリンク(Uplink:UL)物理チャネルを介してデータを送信する機能を有してよい。PHYは上位のMACと、トランスポートチャネル(Transport Channel)で接続されてよい。PHYはトランスポートチャネルを介してMACにデータを受け渡してよい。またPHYはトランスポートチャネルを介してMACからデータを提供されてよい。PHYにおいて、様々な制御情報を識別するために、RNTI(Radio Network Temporary Identifier)が用いられてよい。 An example of the functions of the PHY will be described. The PHY of the terminal device may have a function of receiving data transmitted from the PHY of the base station device via a downlink (DL) physical channel. The PHY of the terminal device may have a function of transmitting data to the PHY of the base station device via an uplink (UL) physical channel. The PHY may be connected to an upper MAC via a transport channel. The PHY may pass data to the MAC via the transport channel. The PHY may also be provided with data from the MAC via the transport channel. In the PHY, a Radio Network Temporary Identifier (RNTI) may be used to identify various control information.
 ここで、物理チャネルについて説明する。端末装置と基地局装置との無線通信に用いられる物理チャネルには、以下の物理チャネルが含まれてよい。 Here, we will explain physical channels. The physical channels used for wireless communication between a terminal device and a base station device may include the following physical channels:
  PBCH(物理報知チャネル:Physical Broadcast CHannel)
  PDCCH(物理下りリンク制御チャネル:Physical Downlink Control CHannel)
  PDSCH(物理下りリンク共用チャネル:Physical Downlink Shared CHannel)
  PUCCH(物理上りリンク制御チャネル:Physical Uplink Control CHannel)
  PUSCH(物理上りリンク共用チャネル:Physical Uplink Shared CHannel)
  PRACH(物理ランダムアクセスチャネル:Physical Random Access CHannel)
PBCH (Physical Broadcast CHannel)
PDCCH (Physical Downlink Control CHannel)
PDSCH (Physical Downlink Shared CHannel)
PUCCH (Physical Uplink Control CHannel)
PUSCH (Physical Uplink Shared CHannel)
PRACH (Physical Random Access CHannel)
 PBCHは、端末装置が必要とするシステム情報を報知するために用いられてよい。 The PBCH may be used to notify the terminal device of system information required.
 また、NRにおいて、PBCHは、同期信号のブロック(Synchronization Signal Block:SSB)の周期内の時間インデックス(SSB-Index)を報知するために用いられてよい。 In addition, in NR, the PBCH may be used to report the time index (SSB-Index) within the period of a synchronization signal block (SSB).
 PDCCHは、下りリンクの無線通信(基地局装置から端末装置への無線通信)において、下りリンク制御情報(Downlink Control Information:DCI)を送信する(または運ぶ)ために用いられてよい。ここで、下りリンク制御情報の送信に対して、一つまたは複数のDCI(DCIフォーマットと称してもよい)が定義されてよい。すなわち、下りリンク制御情報に対するフィールドがDCIとして定義され、情報ビットへマップされてよい。PDCCHは、PDCCH候補(candidate)において送信されてよい。端末装置は、サービングセルにおいてPDCCH候補のセットをモニタしてよい。PDCCH候補のセットをモニタするとは、あるDCIフォーマットに応じてPDCCHのデコードを試みることを意味してよい。また、端末装置は、CORESET(Control Resource Set)を、PDCCH候補のセットをモニタするために用いてよい。DCIフォーマットは、サービングセルにおけるPUSCHのスケジューリングのために用いられてもよい。PUSCHは、ユーザデータの送信や、後述するRRCメッセージの送信などのために使われてよい。 The PDCCH may be used to transmit (or carry) downlink control information (DCI) in downlink wireless communication (wireless communication from a base station device to a terminal device). Here, one or more DCIs (which may be referred to as DCI formats) may be defined for the transmission of the downlink control information. That is, a field for the downlink control information may be defined as a DCI and mapped to information bits. The PDCCH may be transmitted in PDCCH candidates. The terminal device may monitor a set of PDCCH candidates in the serving cell. Monitoring the set of PDCCH candidates may mean attempting to decode the PDCCH according to a certain DCI format. In addition, the terminal device may use a CORESET (Control Resource Set) to monitor the set of PDCCH candidates. The DCI format may be used for scheduling the PUSCH in the serving cell. The PUSCH may be used for transmitting user data, transmitting RRC messages described later, and the like.
 PUCCHは、上りリンクの無線通信(端末装置から基地局装置への無線通信)において、上りリンク制御情報(Uplink Control Information:UCI)を送信するために用いられてよい。ここで、上りリンク制御情報には、下りリンクのチャネルの状態を示すために用いられるチャネル状態情報(CSI:Channel State Information)が含まれてもよい。また、上りリンク制御情報には、UL-SCH(UL-SCH:Uplink Shared CHannel)リソースを要求するために用いられるスケジューリング要求(SR:Scheduling Request)が含まれてもよい。また、上りリンク制御情報には、HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement)が含まれてもよい。 The PUCCH may be used to transmit uplink control information (UCI) in uplink wireless communication (wireless communication from a terminal device to a base station device). Here, the uplink control information may include channel state information (CSI: Channel State Information) used to indicate the state of the downlink channel. The uplink control information may also include a scheduling request (SR: Scheduling Request) used to request UL-SCH (UL-SCH: Uplink Shared CHannel) resources. The uplink control information may also include a hybrid automatic repeat reQuest ACKnowledgement (HARQ-ACK).
 PDSCHは、MAC層からの下りリンクデータ(DL-SCH:Downlink Shared CHannel)の送信に用いられてよい。またPDSCHは、下りリンクの場合にはシステム情報(SI:System Information)やランダムアクセス応答(RAR:Random Access Response)などの送信に用いられてよい。 The PDSCH may be used to transmit downlink data (DL-SCH: Downlink Shared CHannel) from the MAC layer. In the case of the downlink, the PDSCH may also be used to transmit system information (SI: System Information) and random access response (RAR: Random Access Response).
 PUSCHは、MAC層からの上りリンクデータ(UL-SCH:Uplink Shared CHannel)または上りリンクデータと共にHARQ-ACKおよび/またはCSIを送信するために用いられてもよい。またPUSCHは、CSIのみ、または、HARQ-ACKおよびCSIのみを送信するために用いられてもよい。すなわちPUSCHは、UCIのみを送信するために用いられてもよい。また、PDSCHまたはPUSCHは、RRCシグナリング(RRCメッセージとも称する)、およびMAC CEを送信するために用いられてもよい。ここで、PDSCHにおいて、基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通のシグナリングであってもよい。また、基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、端末装置固有(UEスペシフィック)の情報は、ある端末装置に対して専用のシグナリングを用いて送信されてもよい。また、PUSCHは、上りリンクにおいてUEの能力(UE Capability)の送信に用いられてもよい。 The PUSCH may be used to transmit uplink data from the MAC layer (UL-SCH: Uplink Shared CHannel) or HARQ-ACK and/or CSI together with uplink data. The PUSCH may also be used to transmit only CSI, or only HARQ-ACK and CSI. That is, the PUSCH may be used to transmit only UCI. The PDSCH or PUSCH may also be used to transmit RRC signaling (also referred to as an RRC message) and MAC CE. Here, in the PDSCH, the RRC signaling transmitted from the base station device may be common signaling for multiple terminal devices within a cell. The RRC signaling transmitted from the base station device may also be dedicated signaling (also referred to as dedicated signaling) for a certain terminal device. That is, terminal device-specific (UE-specific) information may be transmitted using dedicated signaling for a certain terminal device. The PUSCH may also be used to transmit UE capabilities in the uplink.
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられてもよい。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、上りリンク送信に対する同期(タイミング調整)、およびUL-SCHリソースの要求を示すために用いられてもよい。 The PRACH may be used to transmit a random access preamble. The PRACH may also be used for initial connection establishment procedures, handover procedures, connection re-establishment procedures, synchronization (timing adjustment) for uplink transmissions, and to indicate requests for UL-SCH resources.
 MACの機能の一例について説明する。MACは、MAC副層(サブレイヤ)と呼ばれてよい。MACは、多様な論理チャネル(ロジカルチャネル:Logical Channel)を、対応するトランスポートチャネルに対してマッピングを行う機能を持ってよい。論理チャネルは、論理チャネル識別子(Logical Channel Identity、又はLogical Channel ID)によって識別されてよい。MACは上位のRLCと、論理チャネル(ロジカルチャネル)で接続されてよい。論理チャネルは、伝送される情報の種類によって、制御情報を伝送する制御チャネルと、ユーザ情報を伝送するトラフィックチャネルに分けられてよい。また論理チャネルは、上りリンク論理チャネルと、下りリンク論理チャネルに分けられてよい。MACは、一つ又は複数の異なる論理チャネルに所属するMAC SDUを多重化(multiplexing)して、PHYに提供する機能を持ってよい。またMACは、PHYから提供されたMAC PDUを逆多重化(demultiplexing)し、各MAC SDUが所属する論理チャネルを介して上位レイヤに提供する機能を持ってよい。またMACは、HARQ(Hybrid Automatic Repeat reQuest)を通して誤り訂正を行う機能を持ってよい。またMACは、スケジューリング情報(scheduling information)をレポートする機能を持ってよい。MACは、動的スケジューリングを用いて、端末装置間の優先処理を行う機能を持ってよい。またMACは、一つの端末装置内の論理チャネル間の優先処理を行う機能を持ってよい。MACは、一つの端末装置内でオーバーラップしたリソースの優先処理を行う機能を持ってよい。E-UTRA MACはMultimedia Broadcast Multicast Services(MBMS)を識別する機能を持ってよい。またNR MACは、マルチキャスト/ブロードキャストサービス(Multicast Broadcast Service:MBS)を識別する機能を持ってよい。MACは、トランスポートフォーマットを選択する機能を持ってよい。MACは、間欠受信(DRX:Discontinuous Reception)及び/又は間欠送信(DTX:Discontinuous Transmission)を行う機能、ランダムアクセス(RandomAccess:RA)手順を実行する機能、送信可能電力の情報を通知する、パワーヘッドルームレポート(Power Headroom Report:PHR)機能、送信バッファのデータ量情報を通知する、バッファステイタスレポート(Buffer Status Report:BSR)機能、などを持ってよい。NR MACは帯域適応(Bandwidth Adaptation:BA)機能を持ってよい。またE-UTRA MACで用いられるMAC PDUフォーマットとNR MACで用いられるMAC PDUフォーマットは異なってよい。またMAC PDUには、MACにおいて制御を行うための要素である、MAC制御要素(MACコントロールエレメント:MAC CE)が含まれてよい。 An example of the functions of the MAC is described below. The MAC may be called a MAC sublayer. The MAC may have the function of mapping various logical channels to corresponding transport channels. The logical channels may be identified by a logical channel identifier (Logical Channel Identity or Logical Channel ID). The MAC may be connected to the higher-level RLC via a logical channel. Depending on the type of information being transmitted, the logical channels may be divided into a control channel that transmits control information and a traffic channel that transmits user information. The logical channels may also be divided into an uplink logical channel and a downlink logical channel. The MAC may have the function of multiplexing MAC SDUs belonging to one or more different logical channels and providing them to the PHY. The MAC may also have the function of demultiplexing the MAC PDUs provided by the PHY and providing them to the higher layer via the logical channel to which each MAC SDU belongs. The MAC may also have the ability to perform error correction through HARQ (Hybrid Automatic Repeat reQuest). The MAC may also have the ability to report scheduling information. The MAC may have the ability to perform priority processing between terminal devices using dynamic scheduling. The MAC may also have the ability to perform priority processing between logical channels within a single terminal device. The MAC may have the ability to perform priority processing of overlapping resources within a single terminal device. The E-UTRA MAC may have the ability to identify Multimedia Broadcast Multicast Services (MBMS). The NR MAC may have the ability to identify Multicast/broadcast services (MBS). The MAC may have the ability to select a transport format. The MAC may have functions such as discontinuous reception (DRX) and/or discontinuous transmission (DTX), a function to execute random access (RA) procedures, a power headroom report (PHR) function to notify information on the transmittable power, a buffer status report (BSR) function to notify information on the amount of data in the transmit buffer, etc. The NR MAC may have a bandwidth adaptation (BA) function. The MAC PDU format used in the E-UTRA MAC may differ from the MAC PDU format used in the NR MAC. The MAC PDU may also include a MAC control element (MAC CE), which is an element for performing control in the MAC.
 E-UTRA及び/又はNRで用いられる、上りリンク(UL:Uplink)、及び/又は下りリンク(DL:Downlink)用論理チャネルについて説明する。 This section explains the uplink (UL) and/or downlink (DL) logical channels used in E-UTRA and/or NR.
 BCCH(Broadcast Control Channel)は、システム情報(SI:System Information)等の、制御情報を報知(broadcast)するための下りリンク論理チャネルであってよい。 The BCCH (Broadcast Control Channel) may be a downlink logical channel for broadcasting control information such as system information (SI).
 PCCH(Paging Control Channel)は、ページング(Paging)メッセージを運ぶための下りリンク論理チャネルであってよい。 PCCH (Paging Control Channel) may be a downlink logical channel for carrying paging messages.
 CCCH(Common Control Channel)は、端末装置と基地局装置との間で制御情報を送信するための論理チャネルであってよい。CCCHは、端末装置が、RRC接続を有しない場合に用いられてよい。またCCCHは基地局装置と複数の端末装置との間で使われてよい。 The Common Control Channel (CCCH) may be a logical channel for transmitting control information between a terminal device and a base station device. The CCCH may be used when the terminal device does not have an RRC connection. The CCCH may also be used between a base station device and multiple terminal devices.
 DCCH(Dedicated Control Channel)は、端末装置と基地局装置との間で、1対1(point-to-point)の双方向(bi-directional)で、専用制御情報を送信するための論理チャネルであってよい。専用制御情報とは、各端末装置専用の制御情報であってよい。DCCHは、端末装置が、RRC接続を有する場合に用いられてよい。  DCCH (Dedicated Control Channel) may be a logical channel for transmitting dedicated control information in a point-to-point bidirectional manner between a terminal device and a base station device. The dedicated control information may be control information dedicated to each terminal device. DCCH may be used when the terminal device has an RRC connection.
 DTCH(Dedicated Traffic Channel)は、端末装置と基地局装置との間で、1対1(point-to-point)で、ユーザデータを送信するための論理チャネルであってよい。DTCHは専用ユーザデータを送信するための論理チャネルであってよい。専用ユーザデータとは、各端末装置専用のユーザデータであってよい。DTCHは上りリンク、下りリンク両方に存在してよい。 DTCH (Dedicated Traffic Channel) may be a logical channel for transmitting user data point-to-point between a terminal device and a base station device. DTCH may be a logical channel for transmitting dedicated user data. Dedicated user data may be user data dedicated to each terminal device. DTCH may exist in both the uplink and downlink.
 E-UTRA及び/又はNRにおける上りリンクの、論理チャネルとトランスポートチャネルのマッピングについて説明する。 This section describes the mapping of logical channels and transport channels for the uplink in E-UTRA and/or NR.
 CCCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされてよい。 The CCCH may be mapped to the uplink transport channel, UL-SCH (Uplink Shared Channel).
 DCCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされてよい。 The DCCH may be mapped to the uplink transport channel, UL-SCH (Uplink Shared Channel).
 DTCHは、上りリンクトランスポートチャネルである、UL-SCH(Uplink Shared Channel)にマップされてよい。 The DTCH may be mapped to the uplink transport channel, UL-SCH (Uplink Shared Channel).
 E-UTRA及び/又はNRにおける下りリンクの、論理チャネルとトランスポートチャネルのマッピングについて説明する。 This section describes the mapping of logical channels and transport channels for the downlink in E-UTRA and/or NR.
 BCCHは、下りリンクトランスポートチャネルであるBCH(Broadcast Channel)、及び/又はDL-SCH(Downlink Shared Channel)にマップされてよい。 The BCCH may be mapped to the downlink transport channels BCH (Broadcast Channel) and/or DL-SCH (Downlink Shared Channel).
 PCCHは、下りリンクトランスポートチャネルであるPCH(Paging Channel)にマップされてよい。 The PCCH may be mapped to the PCH (Paging Channel), which is a downlink transport channel.
 CCCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされてよい。 The CCCH may be mapped to the downlink transport channel, DL-SCH (Downlink Shared Channel).
 DCCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされてよい。 The DCCH may be mapped to the downlink transport channel, DL-SCH (Downlink Shared Channel).
 DTCHは、下りリンクトランスポートチャネルであるDL-SCH(Downlink Shared Channel)にマップされてよい。 DTCH may be mapped to the downlink transport channel, DL-SCH (Downlink Shared Channel).
 RLCの機能の一例について説明する。RLCは、RLC副層(サブレイヤ)と呼ばれてよい。E-UTRA RLCは、上位レイヤのPDCPから提供されたデータを、分割(Segmentation)及び/又は結合(Concatenation)し、下位層(下位レイヤ)に提供する機能を持ってよい。E-UTRA RLCは、下位レイヤから提供されたデータに対し、再組立て(reassembly)及びリオーダリング(re-ordering)を行い、上位レイヤに提供する機能を持ってよい。NR RLCは、上位レイヤのPDCPから提供されたデータに、PDCPで付加されたシーケンス番号とは独立したシーケンス番号を付加する機能を持ってよい。またNR RLCは、PDCPから提供されたデータを分割(Segmentation)し、下位レイヤに提供する機能を持ってよい。またNR RLCは、下位レイヤから提供されたデータに対し、再組立て(reassembly)を行い、上位レイヤに提供する機能を持ってよい。またRLCは、データの再送機能及び/又は再送要求機能(Automatic Repeat reQuest:ARQ)を持ってよい。またRLCは、ARQによりエラー訂正を行う機能を持ってよい。ARQを行うために、RLCの受信側から送信側に送られる、再送が必要なデータを示す制御情報を、ステータスレポートと言ってよい。またRLCの送信側から受信側に送られる、ステータスレポート送信指示の事をポール(poll)と言ってよい。またRLCは、データ重複の検出を行う機能を持ってよい。またRLCはデータ破棄の機能を持ってよい。RLCには、トランスパレントモード(TM:Transparent Mode)、非応答モード(UM:Unacknowledged Mode)、応答モード(AM:Acknowledged Mode)の3つのモードがあってよい。TMでは上位層から受信したデータの分割は行わず、RLCヘッダの付加は行わなくてよい。TM RLCエンティティは単方向(uni-directional)のエンティティであって、送信(transmitting)TM RLCエンティティとして、又は受信(receiving)TM RLCエンティティとして設定されてよい。UMでは上位層から受信したデータの分割及び/又は結合、RLCヘッダの付加等は行うが、データの再送制御は行わなくてよい。UM RLCエンティティは単方向のエンティティであってもよいし双方向(bi-directional)のエンティティであってもよい。UM RLCエンティティが単方向のエンティティである場合、UM RLCエンティティは送信UM RLCエンティティとして、又は受信UMRLCエンティティとして設定されてよい。UM RLCエンティティが双方向のエンティティである場合、UM RRCエンティティは送信(transmitting)サイド及び受信(receiving)サイドから構成されるUM RLCエンティティとして設定されてよい。AMでは上位層から受信したデータの分割及び/又は結合、RLCヘッダの付加、データの再送制御等を行ってよい。AM RLCエンティティは双方向のエンティティであって、送信(transmitting)サイド及び受信(receiving)サイドから構成されるAM RLCとして設定されてよい。なお、TMで下位層に提供するデータ、及び/又は下位層から提供されるデータの事をTMD PDUと呼んでよい。またUMで下位層に提供するデータ、及び/又は下位層から提供されるデータの事をUMD PDUと呼んでよい。またAMで下位層に提供するデータ、又は下位層から提供されるデータの事をAMD PDUと呼んでよい。E-UTRA RLCで用いられるRLC PDUフォーマットとNR RLCで用いられるRLC PDUフォーマットは異なってよい。またRLC PDUには、データ用RLC PDUと制御用RLC PDUがあってよい。データ用RLC PDUを、RLC DATA PDU(RLC Data PDU、RLCデータPDU)と呼んでよい。また制御用RLC PDUを、RLC CONTROL PDU(RLC Control PDU、RLCコントロールPDU、RLC制御PDU)と呼んでよい。 An example of the RLC function is described below. RLC may be called an RLC sublayer. E-UTRA RLC may have the function of segmenting and/or concatenating data provided from the upper layer PDCP and providing it to the lower layer. E-UTRA RLC may have the function of reassembling and reordering data provided from the lower layer and providing it to the upper layer. NR RLC may have the function of adding a sequence number independent of the sequence number added by PDCP to data provided from the upper layer PDCP. NR RLC may also have the function of segmenting data provided from PDCP and providing it to the lower layer. NR RLC may also have the function of reassembling data provided from the lower layer and providing it to the upper layer. RLC may also have the function of retransmitting data and/or requesting retransmission (Automatic Repeat reQuest: ARQ). RLC may also have the function of performing error correction using ARQ. The control information sent from the receiving side of RLC to the transmitting side to perform ARQ, indicating the data that needs to be retransmitted, may be called a status report. The instruction to send a status report sent from the transmitting side of RLC to the receiving side may be called a poll. RLC may also have the function of detecting data duplication. RLC may also have the function of discarding data. RLC may have three modes: Transparent Mode (TM), Unacknowledged Mode (UM), and Acknowledged Mode (AM). TM does not split data received from the upper layer, and does not require the addition of an RLC header. The TM RLC entity is a uni-directional entity and may be configured as a transmitting TM RLC entity or a receiving TM RLC entity. In UM, data received from a higher layer may be segmented and/or combined, an RLC header may be added, etc., but data retransmission control is not required. The UM RLC entity may be a unidirectional entity or a bi-directional entity. If the UM RLC entity is a unidirectional entity, it may be configured as a transmitting UM RLC entity or as a receiving UMRLC entity. If the UM RLC entity is a bi-directional entity, the UM RRC entity may be configured as a UM RLC entity consisting of a transmitting side and a receiving side. In AM, data received from a higher layer may be segmented and/or combined, an RLC header may be added, data retransmission control is required, etc. The AM RLC entity is a bi-directional entity and may be configured as an AM RLC consisting of a transmitting side and a receiving side. Note that data provided to a lower layer in TM and/or data provided from a lower layer may be called TMD PDU. Furthermore, data provided to a lower layer in UM and/or data provided from a lower layer may be referred to as a UMD PDU. Furthermore, data provided to a lower layer in AM and/or data provided from a lower layer may be referred to as an AMD PDU. The RLC PDU format used in E-UTRA RLC may be different from the RLC PDU format used in NR RLC. Furthermore, RLC PDUs may include RLC PDUs for data and RLC PDUs for control. The RLC PDUs for data may be referred to as RLC DATA PDU (RLC Data PDU, RLC Data PDU). Furthermore, the RLC PDUs for control may be referred to as RLC CONTROL PDU (RLC Control PDU, RLC Control PDU, RLC Control PDU).
 PDCPの機能の一例について説明する。PDCPは、PDCP副層(サブレイヤ)と呼ばれてよい。PDCPは、シーケンス番号のメンテナンスを行う機能を持ってよい。またPDCPは、IPパケット(IP Packet)や、イーサネットフレーム等のユーザデータを無線区間で効率的に伝送するための、ヘッダ圧縮・解凍機能を持ってもよい。IPパケットのヘッダ圧縮・解凍に用いられるプロトコルをROHC(Robust Header Compression)プロトコルと呼んでよい。またイーサネットフレームヘッダ圧縮・解凍に用いられるプロトコルをEHC(Ethernet(登録商標)Header Compression)プロトコルと呼んでよい。また、PDCPは、データの暗号化・復号化の機能を持ってもよい。また、PDCPは、データの完全性保護・完全性検証の機能を持ってもよい。またPDCPは、リオーダリング(re-ordering)の機能を持ってよい。またPDCPは、PDCP SDUの再送機能を持ってよい。またPDCPは、破棄タイマー(discard timer)を用いたデータ破棄を行う機能を持ってよい。またPDCPは、多重化(Duplication)機能を持ってよい。またPDCPは、重複受信したデータを破棄する機能を持ってよい。PDCPエンティティは双方向のエンティティであって、送信(transmitting)PDCPエンティティ、及び受信(receiving)PDCPエンティティから構成されてよい。またE-UTRA PDCPで用いられるPDCP PDUフォーマットとNR PDCPで用いられるPDCP PDUフォーマットは異なってよい。またPDCP PDUには、データ用PDCP PDUと制御用PDCP PDUがあってよい。データ用PDCP PDUを、PDCP DATA PDU(PDCP Data PDU、PDCPデータPDU)と呼んでよい。また制御用PDCP PDUを、PDCP CONTROL PDU(PDCP Control PDU、PDCPコントロールPDU、PDCP制御PDU)と呼んでよい。 An example of the functions of PDCP is described below. PDCP may be called a PDCP sublayer. PDCP may have a function for maintaining sequence numbers. PDCP may also have a header compression/decompression function for efficiently transmitting user data such as IP packets and Ethernet frames over wireless sections. The protocol used for IP packet header compression/decompression may be called the ROHC (Robust Header Compression) protocol. The protocol used for Ethernet frame header compression/decompression may be called the EHC (Ethernet (registered trademark) Header Compression) protocol. PDCP may also have a data encryption/decryption function. PDCP may also have a data integrity protection/integrity verification function. PDCP may also have a re-ordering function. PDCP may also have a PDCP SDU retransmission function. PDCP may also have a data discard function using a discard timer. PDCP may also have a duplication function. PDCP may also have the function of discarding duplicated data received. The PDCP entity is a bidirectional entity and may consist of a transmitting PDCP entity and a receiving PDCP entity. The PDCP PDU format used in E-UTRA PDCP may differ from the PDCP PDU format used in NR PDCP. PDCP PDUs may include data PDCP PDUs and control PDCP PDUs. The data PDCP PDU may be called PDCP DATA PDU (PDCP Data PDU, PDCP Data PDU). The control PDCP PDU may be called PDCP CONTROL PDU (PDCP Control PDU, PDCP Control PDU, PDCP Control PDU).
 SDAPの機能の一例について説明する。SDAPは、サービスデータ適応プロトコル層(サービスデータ適応プロトコルレイヤ)である。SDAPは、5GC110から基地局装置を介して端末装置に送られるダウンリンクのQoSフローとデータ無線ベアラ(DRB)との対応付け(マッピング:mapping)、及び/又は端末装置から基地局装置を介して5GC110に送られるアップリンクのQoSフローと、DRBとのマッピングを行う機能を持ってよい。またSDAPはマッピングルール情報を格納する機能を持ってよい。またSDAPはQoSフロー識別子(QoS Flow ID:QFI)のマーキングを行う機能を持ってよい。なお、SDAP PDUには、データ用SDAP PDUと制御用SDAP PDUがあってよい。データ用SDAP PDUをSDAP DATA PDU(SDAP Data PDU、SDAPデータPDU)と呼んでよい。また制御用SDAP PDUをSDAP CONTROL PDU(SDAP Control PDU、SDAPコントロールPDU、SDAP制御PDU)と呼んでよい。なお端末装置のSDAPエンティティは、PDUセッションに対して一つ存在してよい。 An example of the SDAP function is described below. SDAP is a service data adaptation protocol layer. SDAP may have a function of mapping the downlink QoS flow sent from 5GC110 to the terminal device via the base station device with a data radio bearer (DRB), and/or mapping the uplink QoS flow sent from the terminal device to 5GC110 via the base station device with a DRB. SDAP may also have a function of storing mapping rule information. SDAP may also have a function of marking the QoS flow identifier (QoS Flow ID: QFI). Note that there may be an SDAP PDU for data and an SDAP PDU for control. The SDAP PDU for data may be called an SDAP DATA PDU (SDAP Data PDU, SDAP Data PDU). The SDAP PDU for control may be called an SDAP CONTROL PDU (SDAP Control PDU, SDAP Control PDU, SDAP Control PDU). There may be one SDAP entity in a terminal device for each PDU session.
 RRCの機能の一例について説明する。RRCは、報知(ブロードキャスト:broadcast)機能を持ってよい。RRCは、EPC104及び/又は5GC110からの呼び出し(ページング:Paging)機能を持ってよい。RRCは、gNB108又は5GC110に接続するeNB102からの呼び出し(ページング:Paging)機能を持ってよい。またRRCは、RRC接続管理機能を持ってよい。またRRCは、無線ベアラ制御機能を持ってよい。またRRCは、セルグループ制御機能を持ってよい。またRRCは、モビリティ(mobility)制御機能を持ってよい。またRRCは端末装置測定レポーティング及び端末装置測定レポーティング制御機能を持ってよい。またRRCは、QoS管理機能を持ってよい。またRRCは、無線リンク失敗の検出及び復旧の機能を持ってよい。RRCは、RRCメッセージを用いて、報知、ページング、RRC接続管理、無線ベアラ制御、セルグループ制御、モビリティ制御、端末装置測定レポーティング及び端末装置測定レポーティング制御、QoS管理、無線リンク失敗の検出及び復旧等を行ってよい。なお、E-UTRA RRCで用いられるRRCメッセージやパラメータは、NR RRCで用いられるRRCメッセージやパラメータと異なってよい。 An example of the functions of RRC will be described. RRC may have a broadcast function. RRC may have a paging function from EPC104 and/or 5GC110. RRC may have a paging function from eNB102 connected to gNB108 or 5GC110. RRC may also have an RRC connection management function. RRC may also have a radio bearer control function. RRC may also have a cell group control function. RRC may also have a mobility control function. RRC may also have terminal device measurement reporting and terminal device measurement reporting control functions. RRC may also have a QoS management function. RRC may also have a radio link failure detection and recovery function. RRC may use RRC messages to perform notification, paging, RRC connection management, radio bearer control, cell group control, mobility control, terminal device measurement reporting and terminal device measurement reporting control, QoS management, detection and recovery of radio link failures, etc. Note that the RRC messages and parameters used in E-UTRA RRC may differ from the RRC messages and parameters used in NR RRC.
 RRCメッセージは、論理チャネルのBCCHを用いて送られてよいし、論理チャネルのPCCHを用いて送られてよいし、論理チャネルのCCCHを用いて送られてよいし、論理チャネルのDCCHを用いて送られてよい。また、DCCHを用いて送られるRRCメッセージの事を、専用RRCシグナリング(Dedicated RRC signaling)、又はRRCシグナリングと言い換えてよい。 The RRC message may be sent using the logical channel BCCH, the logical channel PCCH, the logical channel CCCH, or the logical channel DCCH. RRC messages sent using the DCCH may also be referred to as Dedicated RRC signaling, or RRC signaling.
 BCCHを用いて送られるRRCメッセージには、例えばマスター情報ブロック(Master Information Block:MIB)が含まれてよいし、各タイプのシステム情報ブロック(System Information Block:SIB)が含まれてよいし、他のRRCメッセージが含まれてよい。PCCHを用いて送られるRRCメッセージには、例えばページングメッセージが含まれてよいし、他のRRCメッセージが含まれてよい。 RRC messages sent using the BCCH may include, for example, a Master Information Block (MIB), various types of System Information Blocks (SIBs), and other RRC messages. RRC messages sent using the PCCH may include, for example, paging messages, and other RRC messages.
 CCCHを用いてアップリンク(UL)方向に送られるRRCメッセージには、例えばRRCセットアップ要求メッセージ(RRC Setup Request)、RRC再開要求メッセージ(RRC Resume Request)、RRC再確立要求メッセージ(RRC Reestablishment Request)、RRCシステム情報要求メッセージ(RRC System Info Request)などが含まれてよい。また例えばRRCコネクション要求メッセージ(RRC Connection Request)、RRCコネクション再開要求メッセージ(RRC Connection Resume Request)、RRCコネクション再確立要求メッセージ(RRC Connection Reestablishment Request)などが含まれてよい。また他のRRCメッセージが含まれてよい。 RRC messages sent in the uplink (UL) direction using the CCCH may include, for example, an RRC setup request message (RRC Setup Request), an RRC resume request message (RRC Resume Request), an RRC reestablishment request message (RRC Reestablishment Request), an RRC system information request message (RRC System Info Request), etc. They may also include, for example, an RRC connection request message (RRC Connection Request), an RRC connection resume request message (RRC Connection Resume Request), an RRC connection reestablishment request message (RRC Connection Reestablishment Request), etc. They may also include other RRC messages.
 CCCHを用いてダウンリンク(DL)方向に送られるRRCメッセージには、例えばRRCコネクション拒絶メッセージ(RRC Connection Reject)、RRCコネクションセットアップメッセージ(RRC Connection Setup)、RRCコネクション再確立メッセージ(RRC Connection Reestablishment)、RRCコネクション再確立拒絶メッセージ(RRC Connection Reestablishment Reject)などが含まれてよい。また例えばRRC拒絶メッセージ(RRC Reject)、RRCセットアップメッセージ(RRC Setup)などが含まれてよい。また他のRRCメッセージが含まれてよい。 RRC messages sent in the downlink (DL) direction using the CCCH may include, for example, an RRC connection reject message (RRC Connection Reject), an RRC connection setup message (RRC Connection Setup), an RRC connection reestablishment message (RRC Connection Reestablishment Reject), an RRC connection reestablishment rejection message (RRC Connection Reestablishment Reject), etc. They may also include, for example, an RRC reject message (RRC Reject), an RRC setup message (RRC Setup), etc. They may also include other RRC messages.
 DCCHを用いてアップリンク(UL)方向に送られるRRCシグナリングには、例えば測定報告メッセージ(Measurement Report)、RRCコネクション再設定完了メッセージ(RRC Connection Reconfiguration Complete)、RRCコネクションセットアップ完了メッセージ(RRC Connection Setup Complete)、RRCコネクション再確立完了メッセージ(RRC Connection Reestablishment Complete)、セキュリティモード完了メッセージ(Security Mode Complete)、UE能力情報メッセージ(UE Capability Information)などが含まれてよい。また例えば測定報告メッセージ(Measurement Report)、RRC再設定完了メッセージ(RRC Reconfiguration Complete)、RRCセットアップ完了メッセージ(RRC Setup Complete)、RRC再確立完了メッセージ(RRC Reestablishment Complete)、RRC再開完了メッセージ(RRC Resume Complete)、セキュリティモード完了メッセージ(Security Mode Complete)、UE能力情報メッセージ(UE Capability Information)などが含まれてよい。また他のRRCシグナリングが含まれてよい。 RRC signalling sent in the uplink (UL) direction using the DCCH may include, for example, a measurement report message (Measurement Report), an RRC connection reconfiguration complete message (RRC Connection Reconfiguration Complete), an RRC connection setup complete message (RRC Connection Setup Complete), an RRC connection reestablishment complete message (RRC Connection Reestablishment Complete), a security mode complete message (Security Mode Complete), and a UE capability information message (UE Capability Information). It may also include, for example, a measurement report message (Measurement Report), an RRC reconfiguration complete message (RRC Reconfiguration Complete), an RRC setup complete message (RRC Setup Complete), an RRC reestablishment complete message (RRC Resumé Complete), a security mode complete message (Security Mode Complete), a UE capability information message (UE Capability Information), etc. It may also include other RRC signaling.
 DCCHを用いてダウンリンク(DL)方向に送られるRRCシグナリングには、例えばRRCコネクション再設定メッセージ(RRC Connection Reconfiguration)、RRCコネクション解放メッセージ(RRC Connection Release)、セキュリティモードコマンドメッセージ(Security Mode Command)、UE能力照会メッセージ(UE Capability Enquiry)などが含まれてよい。また例えばRRC再設定メッセージ(RRC Reconfiguration)、RRC再開メッセージ(RRC Resume)、RRC解放メッセージ(RRC Release)、RRC再確立メッセージ(RRC Reestablishment)、セキュリティモードコマンドメッセージ(Security Mode Command)、UE能力照会メッセージ(UE Capability Enquiry)などが含まれてよい。また他のRRCシグナリングが含まれてよい。 The RRC signaling sent in the downlink (DL) direction using the DCCH may include, for example, an RRC connection reconfiguration message (RRC Connection Reconfiguration), an RRC connection release message (RRC Connection Release), a security mode command message (Security Mode Command), a UE capability enquiry message (UE Capability Enquiry), etc. It may also include, for example, an RRC reconfiguration message (RRC Reconfiguration), an RRC resume message (RRC Resume), an RRC release message (RRC Release), an RRC reestablishment message (RRC Reestablishment), a security mode command message (Security Mode Command), a UE capability enquiry message (UE Capability Enquiry), etc. It may also include other RRC signaling.
 NASの機能の一例について説明する。NASは、認証機能を持ってよい。またNASは、モビリティ(mobility)管理を行う機能を持ってよい。またNASは、セキュリティ制御の機能を持ってよい。 An example of NAS functions is described below. The NAS may have an authentication function. The NAS may also have a mobility management function. The NAS may also have a security control function.
 前述のPHY、MAC、RLC、PDCP、SDAP、RRC、NASの機能は一例であり、各機能の一部あるいは全てが実装されなくてもよい。また、各層(各レイヤ)の機能の一部あるいは全部が他の層(レイヤ)に含まれてもよい。 The above-mentioned PHY, MAC, RLC, PDCP, SDAP, RRC, and NAS functions are just examples, and some or all of the functions may not be implemented. In addition, some or all of the functions of each layer may be included in another layer.
 次にLTE及びNRにおけるUE122の状態遷移について説明する。EPC、又は5GCに接続するUE122は、RRC接続が確立されている(RRC connection has been established)とき、UE122はRRC_CONNECTED状態であってよい。RRC接続が確立されている状態とは、UE122が、後述のUEコンテキストの一部又は全てを保持している状態を含んでよい。またRRC接続が確立されている状態とは、UE122がユニキャストデータを送信、及び/又は受信できる状態を含んでよい。またUE122は、RRC接続が休止(サスペンド:suspend)しているとき、UE122はRRC_INACTIVE状態であってよい。また、UE122がRRC_INACTIVE状態になるのは、UE122が5GCに接続している場合で、RRC接続が休止しているときであってよい。UE122が、RRC_CONNECTED状態でも、RRC_INACTIVE状態でも無いとき、UE122はRRC_IDLE状態であってよい。 Next, the state transition of UE122 in LTE and NR will be described. When UE122 connected to EPC or 5GC has an RRC connection established, UE122 may be in the RRC_CONNECTED state. The state in which the RRC connection is established may include a state in which UE122 holds some or all of the UE context described below. The state in which the RRC connection is established may also include a state in which UE122 can transmit and/or receive unicast data. When the RRC connection is suspended, UE122 may be in the RRC_INACTIVE state. UE122 may be in the RRC_INACTIVE state when UE122 is connected to 5GC and the RRC connection is suspended. When UE122 is neither in the RRC_CONNECTED state nor in the RRC_INACTIVE state, UE122 may be in the RRC_IDLE state.
 なお、UE122がEPCに接続している場合、RRC_INACTIVE状態を持たないが、E-UTRANによってRRCコネクションの休止が開始されてもよい。UE122がEPCに接続している場合、RRCコネクションが休止されるとき、UE122はUEのASコンテキストと復帰(リジューム:resume)に用いる識別子(resumeIdentity)を保持してRRC_IDLE状態に遷移してよい。UE122のRRCレイヤの上位レイヤ(例えばNASレイヤ)は、UE122がUEのASコンテキストを保持しており、かつE-UTRANによってRRCコネクションの復帰が許可(Permit)されており、かつUE122がRRC_IDLE状態からRRC_CONNECTED状態に遷移する必要があるとき、休止されたRRCコネクションの復帰を開始してもよい。 Note that when UE 122 is connected to the EPC, it does not have the RRC_INACTIVE state, but E-UTRAN may initiate suspension of the RRC connection. When UE 122 is connected to the EPC, UE 122 may transition to the RRC_IDLE state when the RRC connection is suspended, retaining the UE AS context and an identifier (resumeIdentity) used for resumption. A layer above the RRC layer of UE 122 (e.g., the NAS layer) may initiate restoration of the suspended RRC connection when UE 122 retains the UE AS context, E-UTRAN has permitted restoration of the RRC connection, and UE 122 needs to transition from the RRC_IDLE state to the RRC_CONNECTED state.
 EPC104に接続するUE122と、5GC110に接続するUE122とで、休止の定義が異なってよい。また、UE122がEPCに接続している場合(UE122がRRC_IDLE状態で休止している場合)と、UE122が5GCに接続している場合(UE122がRRC_INACTIVE状態で休止している場合)とで、UE122が休止から復帰する手順のすべてあるいは一部が異なってよい。 The definition of dormancy may be different for UE 122 connected to EPC 104 and UE 122 connected to 5GC 110. In addition, all or part of the procedure for UE 122 to return from dormancy may be different when UE 122 is connected to EPC (when UE 122 is dormant in RRC_IDLE state) and when UE 122 is connected to 5GC (when UE 122 is dormant in RRC_INACTIVE state).
 なお、RRC_CONNECTED状態、RRC_INACTIVE状態、RRC_IDLE状態の事をそれぞれ、接続状態(connected mode)、不活性状態(inactive mode)、アイドル状態(idle mode)と呼んでよいし、RRC接続状態(RRC connected mode)、RRC不活性状態(RRC inactive mode)、RRCアイドル状態(RRC idle mode)と呼んでよい。 The RRC_CONNECTED state, RRC_INACTIVE state, and RRC_IDLE state may be referred to as the connected state (connected mode), the inactive state (inactive mode), and the idle state (idle mode), respectively, or as the RRC connected state (RRC connected mode), the RRC inactive state (RRC inactive mode), and the RRC idle state (RRC idle mode).
 UE122が保持するUEのASコンテキストは、現在のRRC設定、現在のセキュリティコンテキスト、ROHC(RObust Header Compression)状態を含むPDCP状態、接続元(Source)のPCellで使われていたC-RNTI(Cell Radio Network Temporary Identifier)、セル識別子(cellIdentity)、接続元のPCellの物理セル識別子、のすべてあるいは一部を含む情報であってよい。なお、eNB102およびgNB108の内のいずれかまたは全ての保持するUEのASコンテキストは、UE122が保持するUEのASコンテキストと同じ情報を含んでもよいし、UE122が保持するUEのASコンテキストに含まれる情報とは異なる情報が含まれてもよい。 The UE AS context held by UE122 may be information including all or part of the following: the current RRC settings, the current security context, the PDCP state including the ROHC (RObust Header Compression) state, the C-RNTI (Cell Radio Network Temporary Identifier) used in the source PCell, the cell identifier, and the physical cell identifier of the source PCell. Note that the UE AS context held by any or all of eNB102 and gNB108 may include the same information as the UE AS context held by UE122, or may include information different from the information included in the UE AS context held by UE122.
 セキュリティコンテキストとは、ASレベルにおける暗号鍵、NH(Next Hop parameter)、次ホップのアクセス鍵導出に用いられるNCC(Next Hop Chaining Counter parameter)、選択されたASレベルの暗号化アルゴリズムの識別子、リプレイ保護のために用いられるカウンター、のすべてあるいは一部を含む情報であってよい。 The security context may be information that includes all or part of the following: an encryption key at the AS level, a Next Hop parameter (NH), a Next Hop Chaining Counter parameter (NCC) used to derive the next hop access key, an identifier for the selected AS level encryption algorithm, and a counter used for replay protection.
 次にサービングセル(Serving Cell)について説明する。後述するCAおよび/またはDCが設定されていないRRC接続状態の端末装置において、サービングセルは、1つのプライマリセル(Primary Cell:PCell)から構成されてよい。また、後述するCAおよび/またはDCが設定されているRRC接続状態の端末装置において、複数のサービングセルは、1つ又は複数のスペシャルセル(Special Cell:SpCell)と、1つ又は複数のすべてのセカンダリセル(Secondary Cell:SCell)から構成される複数のセルの集合(set of cell(s))を意味してよい。SpCellはPUCCH送信およびコンテンション基準ランダムアクセス(contention-based Random Access:CBRA)をサポートしてよいし、またSpCellは常に活性化されてよい。PCellはRRCアイドル状態の端末装置がRRC接続状態に遷移する際の、RRC接続確立手順に用いられるセルであってよい。またPCellは、端末装置がRRC接続の再確立を行う、RRC接続再確立手順に用いられるセルであってよい。またPCellは、ハンドオーバの際のランダムアクセス手順に用いられるセルであってよい。PSCellは、後述するセカンダリノード追加の際に、ランダムアクセス手順に用いられるセルであってよい。またSpCellは、上述の用途以外の用途に用いられるセルであってよい。 Next, the serving cell will be described. In a terminal device in an RRC connected state in which CA and/or DC, which will be described later, are not set, the serving cell may be composed of one primary cell (PCell). In a terminal device in an RRC connected state in which CA and/or DC, which will be described later, are set, the multiple serving cells may refer to a set of multiple cells (set of cell(s)) composed of one or more special cells (SpCells) and one or more all secondary cells (SCells). The SpCell may support PUCCH transmission and contention-based random access (CBRA), and the SpCell may be always activated. The PCell may be a cell used in the RRC connection establishment procedure when a terminal device in an RRC idle state transitions to an RRC connected state. The PCell may also be a cell used in the RRC connection re-establishment procedure in which the terminal device re-establishes the RRC connection. The PCell may be a cell used in a random access procedure during handover. The PSCell may be a cell used in a random access procedure when adding a secondary node, which will be described later. The SpCell may be a cell used for purposes other than those mentioned above.
 端末装置に対して設定されたサービングセルのグループが、SpCell及び1つ以上のSCellから構成されることは、端末装置に対してキャリアアグリゲーション(carrier aggregation:CA)が設定されているとみなされてよい。また、CAが設定されている端末装置に対して、SpCellに対して追加の無線リソースを提供しているセルはSCellを意味してよい。 When a group of serving cells configured for a terminal device is composed of an SpCell and one or more SCells, it may be considered that carrier aggregation (CA) is configured for the terminal device. Furthermore, for a terminal device in which CA is configured, a cell providing additional radio resources to the SpCell may refer to an SCell.
 RRCによって設定されているサービングセルのグループで、その中の上りリンクが設定されているセルに対し同じタイミング参照セル(timing reference cell)および同じタイミングアドバンスの値を使用しているサービングセルのグループの事をタイミングアドバンスグループ(Timing Advance Group:TAG)と呼んでよい。またMACエンティティのSpCellを含むTAGはプライマリタイミングアドバンスグループ(Primary Timing Advance Group:PTAG)を意味してよい。また上記PTAG以外のTAGはセカンダリタイミングアドバンスグループ(Secondary Timing Advance Group:STAG)を意味してよい。なお1つ又は複数の前記TAGは、後述するセルグループ毎に構成されてよい。 A group of serving cells configured by RRC that uses the same timing reference cell and the same timing advance value for the cells in which the uplink is configured may be called a Timing Advance Group (TAG). A TAG including the SpCell of a MAC entity may mean a Primary Timing Advance Group (PTAG). A TAG other than the above PTAG may mean a Secondary Timing Advance Group (STAG). One or more of the TAGs may be configured for each cell group, as described below.
 端末装置に対し基地局装置から設定される、セルグループ(Cell Group)について説明する。セルグループは、1つのSpCellで構成されてよい。またセルグループは、1つのSpCellと、1つ又は複数のSCellから構成されてよい。即ちセルグループは、1つのSpCellと、必要に応じて(optionally)1つ又は複数のSCellから構成されてよい。またセルグループは、セルの集合(set of cell(s))と表現されてよい。 The following describes a cell group, which is set by a base station device for a terminal device. A cell group may be composed of one SpCell. A cell group may also be composed of one SpCell and one or more SCells. In other words, a cell group may be composed of one SpCell and, optionally, one or more SCells. A cell group may also be expressed as a set of cells (set of cell(s)).
 Dual Connectivity(DC)とは、第1の基地局装置(第1のノード)と第2の基地局装置(第2のノード)がそれぞれ構成するセルグループの無線リソースを利用してデータ通信を行う技術であってよい。DCや、後述するMR-DCが行われる場合、端末装置に対し基地局装置からセルグループの追加が行われてよい。DCを行うために、第1の基地局装置が第2の基地局装置を追加してよい。第1の基地局装置の事をマスターノード(Master Node:MN)と呼んでよい。またマスターノードが構成するセルグループをマスターセルグループ(Master Cell Group:MCG)と呼んでよい。第2の基地局装置の事をセカンダリノード(Secondary Node:SN)と呼んでよい。またセカンダリノードが構成するセルグループをセカンダリセルグループ(Secondary Cell Group:SCG)と呼んでよい。なお、マスターノードとセカンダリノードは同じ基地局装置内に構成されていてよい。 Dual Connectivity (DC) may be a technology for performing data communication using radio resources of cell groups respectively configured by a first base station device (first node) and a second base station device (second node). When DC or MR-DC, which will be described later, is performed, a cell group may be added from the base station device to the terminal device. To perform DC, the first base station device may add a second base station device. The first base station device may be called a master node (MN). Furthermore, the cell group configured by the master node may be called a master cell group (MCG). The second base station device may be called a secondary node (SN). Furthermore, the cell group configured by the secondary node may be called a secondary cell group (SCG). The master node and the secondary node may be configured within the same base station device.
 また、DCが設定されていない場合において、端末装置に設定されるセルグループの事をMCGと呼んでよい。また、DCが設定されていない場合において、端末装置に設定されるSpCellはPCellであってよい。また、DCが設定されていないNRを、NRスタンドアロンと呼んでよい。 In addition, when DC is not configured, the cell group configured in the terminal device may be called MCG. In addition, when DC is not configured, the SpCell configured in the terminal device may be a PCell. In addition, NR in which DC is not configured may be called NR standalone.
 なお、Multi-Radio Dual Connectivity(MR-DC)とは、MCGにE-UTRA、SCGにNRを用いたDCを行う技術であってよい。またMR-DCとは、MCGにNR、SCGにE-UTRAを用いたDCを行う技術であってよい。またMR-DCとは、MCG及びSCGの両方に、NRを用いたDCを行う技術であってよい。MR-DCはDCに含まれる技術であってよい。MCGにE-UTRA、SCGにNRを用いるMR-DCの例として、コア網にEPCを用いるEN-DC(E-UTRA-NR Dual Connectivity)があってよいし、コア網に5GCを用いるNGEN-DC(NG-RAN E-UTRA-NR Dual Connectivity)があってよい。またMCGにNR、SCGにE-UTRAを用いるMR-DCの例として、コア網に5GCを用いるNE-DC(NR-E-UTRA Dual Connectivity)があってよい。またMCG及びSCGの両方にNRを用いるMR-DCの例として、コア網に5GCを用いるNR-DC(NR-NR Dual Connectivity)があってよい。 Multi-Radio Dual Connectivity (MR-DC) may be a technology that performs DC using E-UTRA for MCG and NR for SCG. MR-DC may be a technology that performs DC using NR for MCG and E-UTRA for SCG. MR-DC may be a technology that performs DC using NR for both MCG and SCG. MR-DC may be a technology included in DC. An example of MR-DC that uses E-UTRA for MCG and NR for SCG may be EN-DC (E-UTRA-NR Dual Connectivity) that uses EPC in the core network, or NGEN-DC (NG-RAN E-UTRA-NR Dual Connectivity) that uses 5GC in the core network. An example of MR-DC that uses NR for MCG and E-UTRA for SCG may be NE-DC (NR-E-UTRA Dual Connectivity) that uses 5GC in the core network. Another example of MR-DC that uses NR for both MCG and SCG is NR-DC (NR-NR Dual Connectivity), which uses 5GC for the core network.
 なお端末装置において、MACエンティティは各セルグループに対して1つ存在してよい。例えば端末装置にDC又はMR-DCが設定される場合において、MCGに対する1つのMACエンティティ、及びSCGに対する1つのMACエンティティが存在してよい。端末装置におけるMCGに対するMACエンティティは、全ての状態(RRCアイドル状態、RRC接続状態、及びRRC不活性状態など)の端末装置において、常に確立されていてよい。また端末装置におけるSCGに対するMACエンティティは、端末装置にSCGが設定される際、端末装置によってクリエイト(create)されてよい。また端末装置の各セルグループに対するMACエンティティは、端末装置が基地局装置からRRCシグナリングを受け取る事により設定が行われてよい。MACエンティティがMCGに関連付けられている場合、SpCellはPCellを意味してよい。またMACエンティティがSCGに関連付けられている場合、SpCellはプライマリSCGセル(Primary SCG Cell:PSCell)を意味してよい。またMACエンティティがセルグループに関連付けられていない場合、SpCellはPCellを意味してよい。PCell、PSCellおよびSCellはサービングセルである。EN-DC、及びNGEN-DCにおいて、MCGに対するMACエンティティはE-UTRA MACエンティティであってよいし、SCGに対するMACエンティティはNR MACエンティティであってよい。また、NE-DCにおいて、MCGに対するMACエンティティはNR MACエンティティであってよいし、SCGに対するMACエンティティはE-UTRA MACエンティティであってよい。またNR-DCにおいて、MCG及びSCGに対するMACエンティティは共にNR MACエンティティであってよい。なお、MACエンティティが各セルグループに対して1つ存在する事を、MACエンティティは各SpCellに対して1つ存在すると言い換えてよい。また、各セルグループに対する1つのMACエンティティを、各SpCellに対する1つのMACエンティティと言い換えてよい。 In addition, in the terminal device, one MAC entity may exist for each cell group. For example, when DC or MR-DC is configured in the terminal device, one MAC entity for the MCG and one MAC entity for the SCG may exist. The MAC entity for the MCG in the terminal device may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.). The MAC entity for the SCG in the terminal device may be created by the terminal device when the SCG is configured in the terminal device. The MAC entity for each cell group in the terminal device may be configured by the terminal device receiving RRC signaling from the base station device. When the MAC entity is associated with the MCG, the SpCell may mean the PCell. When the MAC entity is associated with the SCG, the SpCell may mean the primary SCG cell (PSCell). When the MAC entity is not associated with a cell group, the SpCell may mean the PCell. The PCell, PSCell, and SCell are serving cells. In the EN-DC and NGEN-DC, the MAC entity for the MCG may be an E-UTRA MAC entity, and the MAC entity for the SCG may be an NR MAC entity. In the NE-DC, the MAC entity for the MCG may be an NR MAC entity, and the MAC entity for the SCG may be an E-UTRA MAC entity. In the NR-DC, the MAC entities for both the MCG and SCG may be NR MAC entities. Note that the existence of one MAC entity for each cell group may be rephrased as the existence of one MAC entity for each SpCell. Also, one MAC entity for each cell group may be rephrased as one MAC entity for each SpCell.
 無線ベアラについて説明する。端末装置が基地局装置と通信する場合、端末装置と、基地局装置との間に無線ベアラ(RB:Radio Bearer)を確立する事により、無線接続を行ってよい。CPに用いられる無線ベアラは、シグナリング無線ベアラ(SRB:Signaling Radio Bearer)と呼ばれてよい。またUPに用いられる無線ベアラは、データ無線ベアラ(DRB:Data Radio Bearer)と呼ばれてよい。各無線ベアラには、無線ベアラ識別子(Identity:ID)が割り当てられてよい。SRB用無線ベアラ識別子は、SRB識別子(SRB Identity、またはSRB ID)と呼ばれてよい。DRB用無線ベアラ識別子は、DRB識別子(DRB Identity、またはDRB ID)と呼ばれてよい。E-UTRAのSRBにはSRB0からSRB2が定義されてよいし、これ以外のSRBが定義されてよい。NRのSRBにはSRB0からSRB3が定義されてよいし、これ以外のSRBが定義されてよい。SRB0は、論理チャネルのCCCHを用いて送信、及び/又は受信が行われる、RRCメッセージのためのSRBであってよい。SRB1は、RRCシグナリングのため、及びSRB2の確立前のNASシグナリングのためのSRBであってよい。SRB1を用いて送信、及び/又は受信が行われるRRCシグナリングには、ピギーバックされたNASシグナリングが含まれてよい。SRB1を用いて送信、及び/又は受信される全てのRRCシグナリングやNASシグナリングには、論理チャネルのDCCHが用いられてよい。SRB2は、NASシグナリングのため、及び記録測定情報(loggedmeasurement information)を含むRRCシグナリングのためのSRBであってよい。SRB2を用いて送信、及び/又は受信される全てのRRCシグナリングやNASシグナリングには、論理チャネルのDCCHが用いられてよい。また、SRB2はSRB1よりも低い優先度であってよい。SRB3は、端末装置に、EN-DC、NGEN-DC、NR-DCなどが設定されているときの特定のRRCシグナリングを送信、及び/又は受信するためのSRBであってよい。SRB3を用いて送信、及び/又は受信される全てのRRCシグナリングやNASシグナリングには、論理チャネルのDCCHが用いられてよい。また、その他の用途のために他のSRBが用意されてもよい。DRBは、ユーザデータのための無線ベアラであってよい。DRBを用いて送信、及び/又は受信が行われるRRCシグナリングには、論理チャネルのDTCHが用いられてもよい。  Explains radio bearers. When a terminal device communicates with a base station device, a wireless connection may be established by establishing a radio bearer (RB: Radio Bearer) between the terminal device and the base station device. The radio bearer used for CP may be called a signaling radio bearer (SRB: Signaling Radio Bearer). The radio bearer used for UP may be called a data radio bearer (DRB: Data Radio Bearer). Each radio bearer may be assigned a radio bearer identifier (Identity: ID). The radio bearer identifier for an SRB may be called an SRB identifier (SRB Identity, or SRB ID). The radio bearer identifier for a DRB may be called a DRB identifier (DRB Identity, or DRB ID). SRB0 to SRB2 may be defined as SRBs for E-UTRA, and other SRBs may also be defined. NR SRBs may be defined as SRB0 to SRB3, or other SRBs may be defined. SRB0 may be an SRB for RRC messages, which are transmitted and/or received using the logical channel CCCH. SRB1 may be an SRB for RRC signaling and for NAS signaling before the establishment of SRB2. The RRC signaling transmitted and/or received using SRB1 may include piggybacked NAS signaling. The logical channel DCCH may be used for all RRC and NAS signaling transmitted and/or received using SRB1. SRB2 may be an SRB for NAS signaling and for RRC signaling including logged measurement information. The logical channel DCCH may be used for all RRC and NAS signaling transmitted and/or received using SRB2. SRB2 may also be of lower priority than SRB1. SRB3 may be an SRB for transmitting and/or receiving specific RRC signaling when EN-DC, NGEN-DC, NR-DC, etc. are configured in the terminal device. The logical channel DCCH may be used for all RRC signaling and NAS signaling transmitted and/or received using SRB3. Other SRBs may also be provided for other uses. The DRB may be a radio bearer for user data. The logical channel DTCH may be used for RRC signaling transmitted and/or received using the DRB.
 端末装置における無線ベアラについて説明する。無線ベアラにはRLCベアラが含まれてよい。RLCベアラは1つ又は2つのRLCエンティティと論理チャネルで構成されてよい。RLCベアラにRLCエンティティが2つ存在する場合のRLCエンティティはTM RLCエンティティ、及び/又は単方向UMモードのRLCエンティティにおける、送信RLCエンティティ及び受信RLCエンティティであってよい。SRB0は1つのRLCベアラから構成されてよい。SRB0のRLCベアラはTMのRLCエンティティ、及び論理チャネルから構成されてよい。SRB0は全ての状態(RRCアイドル状態、RRC接続状態、及びRRC不活性状態など)の端末装置において、常に確立されていてよい。SRB1は端末装置がRRCアイドル状態からRRC接続状態に遷移する際、基地局装置から受信するRRCシグナリングにより、端末装置に1つ確立及び/又は設定されてよい。SRB1は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されてよい。SRB1のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されてよい。SRB2はASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCシグナリングにより、端末装置に1つ確立及び/又は設定されてよい。SRB2は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されてよい。SRB2のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されてよい。なお、SRB1及びSRB2の基地局装置側のPDCPはマスターノードに置かれてよい。SRB3はEN-DC、又はNGEN-DC、又はNR-DCにおけるセカンダリノードが追加される際、又はセカンダリノードが変更される際に、ASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCシグナリングにより、端末装置に1つ確立及び/又は設定されてよい。SRB3は端末装置とセカンダリノードとの間のダイレクトSRBであってよい。SRB3は1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されてよい。SRB3のRLCベアラはAMのRLCエンティティ、及び論理チャネルから構成されてよい。SRB3の基地局装置側のPDCPはセカンダリノードに置かれてよい。DRBはASセキュリティが活性化されたRRC接続状態の端末装置が基地局装置から受信するRRCシグナリングにより、端末装置に1つ又は複数確立及び/又は設定されてよい。DRBは1つのPDCPエンティティ、及び1つ又は複数のRLCベアラから構成されてよい。DRBのRLCベアラはAM又はUMのRLCエンティティ、及び論理チャネルから構成されてよい。 The radio bearer in the terminal device is described below. The radio bearer may include an RLC bearer. The RLC bearer may be composed of one or two RLC entities and logical channels. When there are two RLC entities in the RLC bearer, the RLC entities may be a TM RLC entity and/or a transmitting RLC entity and a receiving RLC entity in a unidirectional UM mode RLC entity. SRB0 may be composed of one RLC bearer. The RLC bearer of SRB0 may be composed of a TM RLC entity and a logical channel. SRB0 may always be established in the terminal device in all states (RRC idle state, RRC connected state, RRC inactive state, etc.). SRB1 may be established and/or configured in the terminal device by RRC signaling received from the base station device when the terminal device transitions from the RRC idle state to the RRC connected state. SRB1 may be composed of one PDCP entity and one or more RLC bearers. The RLC bearer of SRB1 may be composed of an RLC entity of AM and a logical channel. The RLC bearer of SRB2 may be established and/or configured in the terminal device by the RRC signaling received from the base station device by the terminal device in the RRC connected state with AS security activated. The SRB2 may be composed of one PDCP entity and one or more RLC bearers. The RLC bearer of SRB2 may be composed of an RLC entity of AM and a logical channel. The PDCP on the base station device side of SRB1 and SRB2 may be placed in the master node. The SRB3 may be established and/or configured in the terminal device by the RRC signaling received from the base station device by the terminal device in the RRC connected state with AS security activated when a secondary node is added or when a secondary node is changed in EN-DC, NGEN-DC, or NR-DC. The SRB3 may be a direct SRB between the terminal device and the secondary node. The SRB3 may be composed of one PDCP entity and one or more RLC bearers. The RLC bearer of SRB3 may be composed of an AM RLC entity and a logical channel. The PDCP on the base station side of SRB3 may be placed in a secondary node. One or more DRBs may be established and/or configured in the terminal device by RRC signaling received from the base station device by the terminal device in an RRC connected state with AS security activated. The DRB may be composed of one PDCP entity and one or more RLC bearers. The RLC bearer of the DRB may be composed of an AM or UM RLC entity and a logical channel.
 なお、MR-DCにおいて、マスターノードにPDCPが置かれる無線ベアラの事を、MN終端(ターミネティド:terminated)ベアラと呼んでよい。また、MR-DCにおいて、セカンダリノードにPDCPが置かれる無線ベアラの事を、SN終端(ターミネティド:terminated)ベアラと呼んでよい。なお、MR-DCにおいて、RLCベアラがMCGにのみ存在する無線ベアラの事を、MCGベアラ(MCG bearer)と呼んでよい。また、MR-DCにおいて、RLCベアラがSCGにのみ存在する無線ベアラの事を、SCGベアラ(SCG bearer)と呼んでよい。またDCにおいて、RLCベアラがMCG及びSCG両方に存在する無線ベアラの事を、スプリットベアラ(split bearer)と呼んでよい。 In addition, in MR-DC, a radio bearer in which a PDCP is placed in the master node may be called an MN terminated bearer. Also, in MR-DC, a radio bearer in which a PDCP is placed in a secondary node may be called an SN terminated bearer. Also, in MR-DC, a radio bearer in which an RLC bearer exists only in an MCG may be called an MCG bearer. Also, in MR-DC, a radio bearer in which an RLC bearer exists only in an SCG may be called an SCG bearer. Also, in DC, a radio bearer in which an RLC bearer exists in both an MCG and an SCG may be called a split bearer.
 端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるSRB1及びSRB2のベアラタイプは、MN終端MCGベアラ及び/又はMN終端スプリットベアラであってよい。また端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるSRB3のベアラタイプは、SN終端SCGベアラであってよい。また端末装置にMR-DCが設定される場合、端末装置に確立/及び又は設定されるDRBのベアラタイプは、全てのベアラタイプのうちの何れかであってよい。 When MR-DC is configured in a terminal device, the bearer type of SRB1 and SRB2 established and/or configured in the terminal device may be MN terminated MCG bearer and/or MN terminated split bearer. Also, when MR-DC is configured in a terminal device, the bearer type of SRB3 established and/or configured in the terminal device may be SN terminated SCG bearer. Also, when MR-DC is configured in a terminal device, the bearer type of DRB established and/or configured in the terminal device may be any of all bearer types.
 E-UTRAで構成されるセルグループに確立及び/又は設定されるRLCベアラに対し、確立及び/又は設定されるRLCエンティティは、E-UTRA RLCであってよい。またNRで構成されるセルグループに確立及び/又は設定されるRLCベアラに対し、確立及び/又は設定されるRLCエンティティは、NR RLCであってよい。端末装置にEN-DCが設定される場合、MN終端MCGベアラに対し確立及び/又は設定されるPDCPエンティティは、E-UTRA PDCP又はNR PDCPの何れかであってよい。また端末装置にEN-DCが設定される場合、その他のベアラタイプの無線ベアラ、即ちMN終端スプリットベアラ、MN終端SCGベアラ、SN終端MCGベアラ、SN終端スプリットベアラ、及びSN終端SCGベアラ、に対して確立及び/又は設定されるPDCPは、NR PDCPであってよい。また端末装置にNGEN-DC、又はNE-DC、又はNR-DCが設定される場合、全てのベアラタイプにおける無線ベアラに対して確立及び/又は設定されるPDCPエンティティは、NR PDCPであってよい。 For an RLC bearer established and/or configured in a cell group consisting of E-UTRA, the RLC entity established and/or configured may be an E-UTRA RLC. For an RLC bearer established and/or configured in a cell group consisting of NR, the RLC entity established and/or configured may be an NR RLC. When an EN-DC is configured in a terminal device, the PDCP entity established and/or configured for an MN terminated MCG bearer may be either an E-UTRA PDCP or an NR PDCP. When an EN-DC is configured in a terminal device, the PDCP entity established and/or configured for radio bearers of other bearer types, i.e., MN terminated split bearers, MN terminated SCG bearers, SN terminated MCG bearers, SN terminated split bearers, and SN terminated SCG bearers, may be an NR PDCP. When an NGEN-DC, NE-DC, or NR-DC is configured in a terminal device, the PDCP entity established and/or configured for radio bearers of all bearer types may be an NR PDCP.
 なおNRにおいて、端末装置に確立及び/又は設定されるDRBは1つのPDUセッションに紐づけられてよい。端末装置において1つのPDUセッションに対し、1つのSDAPエンティティが確立及び/又は設定されてよい。端末装置に確立及び/又は設定SDAPエンティティ、PDCPエンティティ、RLCエンティティ、及び論理チャネルは、端末装置が基地局装置から受信するRRCシグナリングにより確立及び/又は設定されてよい。 In NR, a DRB established and/or configured in a terminal device may be associated with one PDU session. One SDAP entity may be established and/or configured for one PDU session in the terminal device. The SDAP entity, PDCP entity, RLC entity, and logical channels established and/or configured in the terminal device may be established and/or configured by RRC signaling received by the terminal device from the base station device.
 なお、MR-DCが設定されるか否かに関わらず、マスターノードがeNB102であり、EPC104をコア網とするネットワーク構成を、E-UTRA/EPCと呼んでよい。またマスターノードがeNB102であり、5GC110をコア網とするネットワーク構成を、E-UTRA/5GCと呼んでよい。またマスターノードがgNB108で5GC110をコア網とするネットワーク構成をNR、又はNR/5GCと呼んでよい。MR-DCが設定されない場合において、上述のマスターノードとは、端末装置と通信を行う基地局装置の事を指してよい。 Note that regardless of whether MR-DC is configured, a network configuration in which the master node is eNB102 and EPC104 is the core network may be called E-UTRA/EPC. A network configuration in which the master node is eNB102 and 5GC110 is the core network may be called E-UTRA/5GC. A network configuration in which the master node is gNB108 and 5GC110 is the core network may be called NR or NR/5GC. When MR-DC is not configured, the above-mentioned master node may refer to a base station device that communicates with a terminal device.
 端末装置と基地局装置との間で送受信される、RRCシグナリングのフローについて説明する。図4は、本実施形態に係るRRCにおける、各種設定のための手順(procedure)のフローの一例を示す図である。図4は、基地局装置(eNB102、及び/又はgNB108)から端末装置(UE122)にRRCシグナリングが送られる場合のフローの一例である。 The following describes the flow of RRC signaling transmitted and received between a terminal device and a base station device. Figure 4 is a diagram showing an example of the flow of procedures for various settings in the RRC according to this embodiment. Figure 4 shows an example of the flow when RRC signaling is sent from a base station device (eNB102 and/or gNB108) to a terminal device (UE122).
 図4において、基地局装置はRRCメッセージを作成する(ステップS400)。基地局装置におけるRRCメッセージの作成は、基地局装置がシステム情報(SI:System Information)やページングメッセージを配信するために行われてよい。また基地局装置におけるRRCメッセージの作成は、基地局装置が特定の端末装置に対して処理を行わせるRRCシグナリングを送信するために行われてよい。特定の端末装置に対して行わせる処理は、例えばセキュリティに関する設定、RRCコネクションの再設定、異なるRATへのハンドオーバ、RRCコネクションの休止、RRCコネクションの解放などの処理を含んでよい。RRCコネクションの再設定には、例えば無線ベアラの制御(確立、変更、解放など)、セルグループの制御(確立、追加、変更、解放など)、メジャメント設定、ハンドオーバ、セキュリティ鍵更新、などの処理が含まれてよい。また基地局装置におけるRRCメッセージの作成は、端末装置から送信されたRRCシグナリングへの応答のために行われてよい。端末装置から送信されたRRCシグナリングへの応答は、例えばRRCセットアップ要求への応答、RRC再接続要求への応答、RRC再開要求への応答などを含んでよい。RRCメッセージには各種情報通知や設定のための情報(パラメータ)が含まれる。これらのパラメータは、フィールド及び/又は情報要素と呼ばれてよいし、ASN.1(Abstract Syntax Notation One)という記述方式を用いて記述されてよい。 In FIG. 4, the base station device creates an RRC message (step S400). The base station device may create an RRC message in order to deliver system information (SI) or a paging message. The base station device may create an RRC message in order to transmit RRC signaling for a specific terminal device to perform a process. The process for a specific terminal device may include, for example, security settings, RRC connection reconfiguration, handover to a different RAT, RRC connection suspension, and RRC connection release. The RRC connection reconfiguration may include, for example, radio bearer control (establishment, modification, release, etc.), cell group control (establishment, addition, modification, release, etc.), measurement settings, handover, security key update, and other processes. The base station device may create an RRC message in order to respond to RRC signaling transmitted from a terminal device. Responses to RRC signaling sent from a terminal device may include, for example, a response to an RRC setup request, a response to an RRC reconnection request, a response to an RRC resume request, etc. RRC messages include information (parameters) for various information notifications and settings. These parameters may be called fields and/or information elements, and may be described using a description method called ASN.1 (Abstract Syntax Notation One).
 図4において、次に基地局装置は、作成したRRCシグナリングを端末装置に送信する(ステップS402)。次に端末装置は受信した上述のRRCシグナリングに従って、設定などの処理が必要な場合には処理を行う(ステップS404)。処理を行った端末装置は、基地局装置に対し、応答のためのRRCシグナリングを送信してよい(不図示)。 In FIG. 4, the base station device then transmits the created RRC signaling to the terminal device (step S402). The terminal device then performs processing such as setting according to the received RRC signaling described above if necessary (step S404). After performing the processing, the terminal device may transmit RRC signaling in response to the base station device (not shown).
 RRCシグナリングは、上述の例に限らず、他の目的に使われてよい。 RRC signaling may be used for other purposes, not limited to the above examples.
 なおMR-DCにおいて、SCG側の設定(セルグループ設定、無線ベアラ設定、測定設定など)のためのRRCシグナリングを、端末装置との間で転送するのに、マスターノード側のRRCが用いられてよい。例えばEN-DC、又はNGEN-DCにおいて、eNB102とUE122との間で送受信されるE-UTRAのRRCシグナリングに、NRのRRCシグナリングがコンテナの形で含まれてよい。またNE-DCにおいて、gNB108とUE122との間で送受信されるNRのRRCシグナリングに、E-UTRAのRRCシグナリングがコンテナの形で含まれてよい。SCG側の設定のためのRRCシグナリングは、マスターノードとセカンダリノードの間で送受信されてよい。 In addition, in MR-DC, the RRC on the master node side may be used to transfer RRC signaling for SCG side configuration (cell group configuration, radio bearer configuration, measurement configuration, etc.) between the terminal device. For example, in EN-DC or NGEN-DC, NR RRC signaling may be included in the form of a container in E-UTRA RRC signaling transmitted and received between eNB102 and UE122. Also, in NE-DC, E-UTRA RRC signaling may be included in the form of a container in NR RRC signaling transmitted and received between gNB108 and UE122. RRC signaling for SCG side configuration may be transmitted and received between the master node and secondary node.
 なお、MR-DCを利用する場合に限らず、eNB102からUE122に送信されるE-UTRA用RRCシグナリングに、NR用RRCシグナリングが含まれていてよいし、gNB108からUE122に送信されるNR用RRCシグナリングに、E-UTRA用RRCシグナリングが含まれていてよい。 Note that, regardless of whether MR-DC is used, the RRC signaling for E-UTRA transmitted from the eNB102 to the UE122 may include the RRC signaling for NR, and the RRC signaling for NR transmitted from the gNB108 to the UE122 may include the RRC signaling for E-UTRA.
 次にLTE及びNRにおけるハンドオーバについて説明する。ハンドオーバとは、RRC接続状態の端末装置がサービングセルをソースSpCellからターゲットSpCellへ変更する処理であってよい。ハンドオーバは、RRCが行うモビリティ制御の一部であってよい。端末装置において、ハンドオーバは、基地局装置から受信するハンドオーバを指示するRRCシグナリングに基づいて行われてよい。ハンドオーバを指示するRRCシグナリングとは、ハンドオーバを指示するパラメータを含む情報要素(例えばMobilityControlInfo情報要素、またはReconfigurationWithSync情報要素)を含むRRCコネクションの再設定に関するメッセージであってよい。なお前記MobilityControlInfo情報要素は、モビリティ制御設定情報要素、モビリティ制御設定、またはモビリティ制御情報と称されてよい。なお前記ReconfigurationWithSync情報要素は、同期付再設定情報要素と称されてよい。それに加えてまたはそれに代えて、ハンドオーバを指示するRRCシグナリングとは、他のRATのセルへの移動を示すメッセージ(例えばMobilityFromEUTRACommand、またはMobilityFromNRCommand)であってもよい。ハンドオーバは、RRCによってトリガされてよい。それに加えてまたはそれに代えて、ハンドオーバは、DCIまたはMACコントロールエレメント(MAC CE)によってトリガされてよい。また端末装置がハンドオーバを行うことができる条件に、ASセキュリティが活性化されていること、SRB2が確立されていること、および少なくとも一つのDRBが確立していること、のうちの一部または全ての条件が含まれてよい。 Next, handover in LTE and NR will be described. Handover may be a process in which a terminal device in an RRC connected state changes the serving cell from a source SpCell to a target SpCell. Handover may be part of mobility control performed by RRC. In the terminal device, handover may be performed based on RRC signaling instructing a handover received from a base station device. The RRC signaling instructing a handover may be a message regarding reconfiguration of an RRC connection including an information element (e.g., a MobilityControlInfo information element, or a ReconfigurationWithSync information element) including a parameter instructing a handover. The MobilityControlInfo information element may be referred to as a mobility control setting information element, mobility control setting, or mobility control information. The ReconfigurationWithSync information element may be referred to as a reconfiguration with synchronization information element. Additionally or alternatively, the RRC signaling indicating the handover may be a message indicating a movement to a cell of another RAT (e.g., MobilityFromEUTRACommand or MobilityFromNRCommand). The handover may be triggered by the RRC. Additionally or alternatively, the handover may be triggered by a DCI or a MAC Control Element (MAC CE). The conditions under which the terminal device can perform a handover may include some or all of the following conditions: AS security is activated, an SRB2 is established, and at least one DRB is established.
 RRCコネクションの再設定に関するメッセージに含まれる、パラメータの一例を説明する。図7は、図4において、NRでのRRCコネクションの再設定に関するメッセージに含まれるフィールド、および/または情報要素を表すASN.1記述の一例である。図7に限らず、本実施形態におけるASN.1の例で、<略>とは、ASN.1の表記の一部ではなく、他の情報を省略していることを示す。なお<略>という記載の無い所でも、情報要素が省略されていてよい。本実施形態においてASN.1の例は、本実施形態におけるRRCシグナリングのパラメータの一例を表すものであり、他の名称や他の表記が用いられてよい。またASN.1の例は、説明が煩雑になることを避けるために、本実施形態と密接に関連する主な情報に関する例のみを示す。なお、各実施形態において、ASN.1で記述されるパラメータを、フィールド、情報要素等に区別せず、全て情報要素と表現する場合がある。また各実施形態において、RRCシグナリングに含まれる、ASN.1で記述されるフィールド、および/または情報要素は、情報と言い換えられてよいし、それに加えてまたはそれに代えて、パラメータと言い換えられてよい。なおRRCコネクションの再設定に関するメッセージとは、NRにおけるRRC再設定メッセージであってよい。また、RRCコネクションの再設定に関するメッセージとは、E-UTRAにおけるRRCコネクション再設定メッセージであってよい。 An example of a parameter included in a message regarding reconfiguration of an RRC connection will be described. FIG. 7 is an example of an ASN.1 description representing a field and/or information element included in a message regarding reconfiguration of an RRC connection in NR in FIG. 4. Not limited to FIG. 7, in the ASN.1 examples in this embodiment, <omitted> indicates that other information is omitted, not a part of the ASN.1 notation. Note that even in places without the notation <omitted>, the information element may be omitted. In this embodiment, the ASN.1 example represents an example of a parameter of RRC signaling in this embodiment, and other names and notations may be used. In addition, in the ASN.1 example, in order to avoid complicating the explanation, only an example of main information closely related to this embodiment is shown. Note that in each embodiment, the parameters described in ASN.1 may not be distinguished between fields, information elements, etc., and may all be expressed as information elements. In each embodiment, the fields and/or information elements described in ASN.1 included in RRC signaling may be referred to as information, and in addition to or instead of that, may be referred to as parameters. The message regarding reconfiguration of the RRC connection may be an RRC reconfiguration message in NR. Also, the message regarding reconfiguration of the RRC connection may be an RRC connection reconfiguration message in E-UTRA.
 図7において、RRCコネクションの再設定に関するメッセージには、NRのMCGまたはSCGのセルグループの設定、変更、解放等に用いられる情報要素(CellGroupConfig情報要素)が含まれてよい。RRCコネクションの再設定に関するメッセージには、MCGの設定のためのCellGroupConfig情報要素と、SCGの設定のためのCellGroupConfig情報要素とが独立して含まれてよい。CellGroupConfig情報要素は、セルグループ設定情報要素、またはセルグループ設定と称されてもよい。 In FIG. 7, a message regarding reconfiguration of an RRC connection may include an information element (CellGroupConfig information element) used for setting, changing, releasing, etc., a cell group of an NR MCG or SCG. A message regarding reconfiguration of an RRC connection may independently include a CellGroupConfig information element for setting an MCG and a CellGroupConfig information element for setting an SCG. The CellGroupConfig information element may be referred to as a cell group setting information element or a cell group setting.
 CellGroupConfig情報要素には、このセルグループを識別するための識別子情報として、cellGroupId情報要素が含まれてよい。 The CellGroupConfig information element may include a cellGroupId information element as identifier information for identifying this cell group.
 CellGroupConfig情報要素には、RLCエンティティの設定に用いられる情報として、RLC-BearerConfig情報要素が含まれてよい。 The CellGroupConfig information element may include an RLC-BearerConfig information element as information used to configure the RLC entity.
 CellGroupConfig情報要素には、そのセルグループにおけるMACのパラメータの設定に用いられる情報として、MAC-CellGroupConfig情報要素が含まれてよい。 The CellGroupConfig information element may include a MAC-CellGroupConfig information element as information used to configure MAC parameters in that cell group.
 CellGroupConfig情報要素には、そのセルグループ特有のPHY(L1)パラメータの設定に用いられる情報として、PhysicalCellGroupConfig情報要素が含まれてよい。 The CellGroupConfig information element may include a PhysicalCellGroupConfig information element as information used to configure PHY (L1) parameters specific to that cell group.
 CellGroupConfig情報要素には、そのセルグループのSpCellに対するパラメータの設定に用いられる情報として、SpCellConfig情報要素が含まれてよい。SpCellConfig情報要素は、SpCell設定情報要素、またはSpCell設定と称されてもよい。 The CellGroupConfig information element may include an SpCellConfig information element as information used to set parameters for the SpCell of the cell group. The SpCellConfig information element may be referred to as an SpCell configuration information element or an SpCell configuration.
 CellGroupConfig情報要素には、そのセルグループの一つまたは複数のSCellに対するパラメータの設定に用いられる情報として、SCell毎にSCellConfig情報要素が含まれてよい。SCellConfig情報要素は、SCell設定情報要素、またはSCell設定と称されてもよい。 The CellGroupConfig information element may include a SCellConfig information element for each SCell as information used to configure parameters for one or more SCells in the cell group. The SCellConfig information element may be referred to as a SCell configuration information element or a SCell configuration.
 MAC-CellGroupConfig情報要素には、TAGに関するパラメータの設定に用いられる情報として、TAG-Config情報要素が含まれてよい。TAG-Config情報要素には、端末装置に設定される一つまたは複数のTAGの識別子(TAG-Id)とそのTAGの識別子に対応する時間調整タイマーの値が含まれてよい。 The MAC-CellGroupConfig information element may include a TAG-Config information element as information used to configure parameters related to the TAG. The TAG-Config information element may include one or more TAG identifiers (TAG-Id) configured in the terminal device and the value of the time adjustment timer corresponding to the TAG identifiers.
 SpCellConfig情報要素には、SpCellに関する端末装置特有(UE specific)のパラメータの設定に用いられる情報として、ServingCellConfig情報要素が含まれてよい。また、SCellConfig情報要素には、SCellに関する端末装置特有(UE specific)のパラメータの設定に用いられる情報として、このServingCellConfig情報要素が含まれてよい。CellGroupConfig情報要素には、SpCellと各SCellに関する端末装置特有のパラメータの設定のために、サービングセル毎にServingCellConfig情報要素が含まれてよい。各ServingCellConfig情報要素には、そのサービングセルがセルグループ内の何れのTAGに属するかを示すTAGの識別子(TAG-Id)が含まれてよい。また、ServingCellConfig情報要素には端末装置特有のパラメータだけでなく、セル特有(cell specific)のパラメータが含まれてもよい。 The SpCellConfig information element may include a ServingCellConfig information element as information used to configure terminal device specific (UE specific) parameters related to the SpCell. The SCellConfig information element may include this ServingCellConfig information element as information used to configure terminal device specific (UE specific) parameters related to the SCell. The CellGroupConfig information element may include a ServingCellConfig information element for each serving cell to configure terminal device specific parameters related to the SpCell and each SCell. Each ServingCellConfig information element may include a TAG identifier (TAG-Id) indicating which TAG in the cell group the serving cell belongs to. The ServingCellConfig information element may include not only terminal device specific parameters but also cell specific parameters.
 各ServingCellConfig情報要素には、初期下りリンクBWP(initial downlink BWP)のための端末装置特有の設定として、BWP-DownlinkDedicated情報要素を示すinitialDownlinkBWPが含まれてよい。BWP-DownlinkDedicated情報要素を、下りリンクBWP専用設定とも称する。それに加えてまたはそれに代えて、各ServingCellConfig情報要素には、第1アクティブ下りリンクBWP識別子(firstActiveDownlinkBWP-Id)、BWP不活性タイマー(bwp-InactivityTimer)、およびデフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)の一部または全部が含まれてよい。 Each ServingCellConfig information element may include an initialDownlinkBWP indicating a BWP-DownlinkDedicated information element as a terminal device specific setting for the initial downlink BWP. The BWP-DownlinkDedicated information element is also referred to as a downlink BWP dedicated setting. Additionally or alternatively, each ServingCellConfig information element may include some or all of the first active downlink BWP identifier (firstActiveDownlinkBWP-Id), the BWP inactivity timer (bwp-InactivityTimer), and the identifier of the default downlink BWP (defaultDownlinkBWP-Id).
 各SCellに関する端末装置特有のパラメータの設定のためのServingCellConfig情報要素には、SCellのための休眠(Dormant)BWPの設定として、DormantBWP-Config情報要素が含まれてよい。DormantBWP-Config情報要素を、休眠BWP設定とも称する。例えば、DormantBWP-Config情報要素には、休眠BWPの識別子(dormantBWP-Id)が含まれてよい。 The ServingCellConfig information element for configuring terminal device-specific parameters for each SCell may include a DormantBWP-Config information element as a dormant BWP configuration for the SCell. The DormantBWP-Config information element is also referred to as a dormant BWP configuration. For example, the DormantBWP-Config information element may include a dormant BWP identifier (dormantBWP-Id).
 SCellConfig情報要素には、SCell設定の際にSCellが活性化されているか否かを示すRRCパラメータ(sCellState)が含まれてよい。sCellStateを、SCell状態設定とも称する。例えば、SCellConfig情報要素にsCellStateが含まれている場合、またはそれに代えて、SCellConfig情報要素に含まれるsCellStateがactivatedに設定されている場合、端末装置のMACエンティティは、当該SCellを活性化してよいし、それに加えてまたはそれに代えて、端末装置のRRCレイヤは、当該SCellが活性化されていると考慮(consider)するように下位レイヤ(MACエンティティ等)を設定してよい。それに加えてまたはそれに代えて、例えば、SCellConfig情報要素にsCellStateが含まれていない場合、端末装置のMACエンティティは、当該SCellを不活性化してよいし、それに加えてまたはそれに代えて、端末装置のRRCレイヤは、当該SCellが不活性化されていると考慮(consider)するように下位レイヤ(MACエンティティ等)を設定してよい。 The SCellConfig information element may include an RRC parameter (sCellState) indicating whether the SCell is activated or not when the SCell is configured. The sCellState is also referred to as the SCell state configuration. For example, if the SCellConfig information element includes sCellState, or if the sCellState included in the SCellConfig information element is set to activated, the MAC entity of the terminal device may activate the SCell, and in addition or instead, the RRC layer of the terminal device may configure a lower layer (such as a MAC entity) to consider that the SCell is activated. In addition or instead, for example, if the SCellConfig information element does not include sCellState, the MAC entity of the terminal device may deactivate the SCell, and in addition or instead, the RRC layer of the terminal device may configure a lower layer (such as a MAC entity) to consider that the SCell is deactivated.
 PUCCHが設定されていない各SCellに関する端末装置特有のパラメータの設定のためのServingCellConfig情報要素には、SCell不活性タイマーが含まれてよい。 The ServingCellConfig information element for configuring terminal device specific parameters for each SCell for which PUCCH is not configured may include a SCell inactivity timer.
 各ServingCellConfig情報要素には、上りリンクの設定として、UplinkConfig情報要素が含まれてよい。UplinkConfig情報要素を、上りリンク設定とも称する。UplinkConfig情報要素には、初期上りリンクBWP(initial uplink BWP)のための端末装置特有の設定として、BWP-UplinkDedicated情報要素を示すinitialUplinkBWPが含まれてよい。BWP-UplinkDedicated情報要素を、上りリンクBWP専用設定とも称する。それに加えてまたはそれに代えて、UplinkConfig情報要素には、第1アクティブ上りリンクBWP識別子(firstActiveUplinkBWP-Id)が含まれてよい。 Each ServingCellConfig information element may include an UplinkConfig information element as an uplink configuration. The UplinkConfig information element is also referred to as an uplink configuration. The UplinkConfig information element may include an initialUplinkBWP indicating a BWP-UplinkDedicated information element as a terminal device specific configuration for an initial uplink BWP. The BWP-UplinkDedicated information element is also referred to as an uplink BWP dedicated configuration. Additionally or alternatively, the UplinkConfig information element may include a first active uplink BWP identifier (firstActiveUplinkBWP-Id).
 SpCellConfig情報要素には、ソースSpCellからターゲットSpCellへの同期付再設定(synchronous reconfiguration)の処理のために必要なパラメータを含む情報として、ReconfigurationWithSync情報要素が含まれてよい。ReconfigurationWithSync情報要素は、前述の同期付再設定情報要素であってよい。MCGのSpCellConfig情報要素にReconfigurationWithSync情報要素が含まれる場合、ターゲットSpCellへの同期付再設定の処理はハンドオーバであってよい。SCGのSpCellConfig情報要素にReconfigurationWithSync情報要素が含まれる場合、ターゲットSpCellへの同期付再設定の処理はPSCell追加またはPSCell変更であってよい。 The SpCellConfig information element may include a ReconfigurationWithSync information element as information including parameters necessary for processing synchronous reconfiguration from the source SpCell to the target SpCell. The ReconfigurationWithSync information element may be the synchronous reconfiguration information element described above. If the SpCellConfig information element of the MCG includes a ReconfigurationWithSync information element, the synchronous reconfiguration processing to the target SpCell may be a handover. If the SpCellConfig information element of the SCG includes a ReconfigurationWithSync information element, the synchronous reconfiguration processing to the target SpCell may be a PSCell addition or a PSCell change.
 ReconfigurationWithSync情報要素、およびSCellConfig情報要素には、サービングセルのセル特有(cell specific)のパラメータの設定に用いられる情報として、ServingCellConfigCommon情報要素が含まれてよい。ServingCellConfigCommon情報要素には、通常(typically)端末装置がアイドル状態からセルにアクセスするときに、そのセルのSSB、MIB、または一つまたは複数のSIBから取得するパラメータが含まれてよい。 The ReconfigurationWithSync information element and the SCellConfig information element may include a ServingCellConfigCommon information element as information used to configure cell-specific parameters of the serving cell. The ServingCellConfigCommon information element may include parameters that are typically obtained from the SSB, MIB, or one or more SIBs of the cell when the terminal device accesses the cell from the idle state.
 ReconfigurationWithSync情報要素には、例えば、ターゲットSpCellのセルグループで用いられるC-RNTIの値の情報が含まれてよい。ReconfigurationWithSync情報要素には、例えば、ターゲットSpCellにおける非衝突ランダムアクセス手順の実行に必要な情報が含まれてよい。 The ReconfigurationWithSync information element may include, for example, information on the value of the C-RNTI used in the cell group of the target SpCell. The ReconfigurationWithSync information element may include, for example, information required to execute a non-contention random access procedure in the target SpCell.
 図8は、図7において、SCellConfig情報要素、およびSpCellConfig情報要素内のReconfigurationWithSync情報要素に含まれる、ServingCellConfigCommon情報要素に関するフィールド、および/または情報要素を表すASN.1記述の一例である。 Figure 8 shows an example of an ASN.1 description representing fields and/or information elements related to the ServingCellConfigCommon information element contained in the SCellConfig information element and the ReconfigurationWithSync information element in the SpCellConfig information element in Figure 7.
 ServingCellConfigCommon情報要素には、そのセルの物理セル識別子(physCellId)が含まれてよい。 The ServingCellConfigCommon information element may include the physical cell identifier (physCellId) of the cell.
 ServingCellConfigCommon情報要素には、セル特有(セル共通)の下りリンクパラメータを提供する情報として、DownlinkConfigCommon情報要素が含まれてよい。DownlinkConfigCommon情報要素を、下りリンク共通設定とも称する。 The ServingCellConfigCommon information element may include a DownlinkConfigCommon information element as information that provides cell-specific (cell-common) downlink parameters. The DownlinkConfigCommon information element is also referred to as downlink common configuration.
 ServingCellConfigCommon情報要素には、セル特有(セル共通)の上りリンクパラメータを提供する情報として、UplinkConfigCommon情報要素が含まれてよい。UplinkConfigCommon情報要素を、上りリンク共通設定とも称する。 The ServingCellConfigCommon information element may include an UplinkConfigCommon information element as information that provides cell-specific (cell-common) uplink parameters. The UplinkConfigCommon information element is also referred to as uplink common configuration.
 ServingCellConfigCommon情報要素には、そのセルにおけるすべての上りリンク送信に対して適用されるN_{TA,offset}の値が含まれてよい。 The ServingCellConfigCommon information element may contain the value of N_{TA,offset} that applies to all uplink transmissions in that cell.
 DownlinkConfigCommon情報要素には、下りリンクキャリアとその下りリンクキャリアでの送信に関する基本的な情報として、FrequencyInfoDL情報要素が含まれてよい。例えば、FrequencyInfoDL情報要素には、SSBの周波数情報が含まれてよい。 The DownlinkConfigCommon information element may include a FrequencyInfoDL information element as basic information regarding the downlink carrier and transmission on the downlink carrier. For example, the FrequencyInfoDL information element may include frequency information of the SSB.
 DownlinkConfigCommon情報要素には、そのセルの初期下りリンクBWP(initial downlinkBWP)の設定として、BWP-DownlinkCommon情報要素を示すinitialDownlinkBWPが含まれてよい。それに加えてまたはそれに代えて、DownlinkConfigCommon情報要素には、一つまたは複数の性能制限端末(RedCap UE)がinitialDownlinkBWPの代わりに使用する、BWP-DownlinkCommon情報要素を示すinitialDownlinkBWP-RedCapが含まれてよい。BWP-DownlinkCommon情報要素を、下りリンクBWP共通設定とも称する。 The DownlinkConfigCommon information element may include initialDownlinkBWP, which indicates the BWP-DownlinkCommon information element as the initial downlink BWP setting for that cell. Additionally or alternatively, the DownlinkConfigCommon information element may include initialDownlinkBWP-RedCap, which indicates the BWP-DownlinkCommon information element to be used by one or more performance-limited terminals (RedCap UEs) instead of initialDownlinkBWP. The BWP-DownlinkCommon information element is also referred to as the downlink BWP common setting.
 BWP-DownlinkCommon情報要素には、BWPの一般的(generic)なパラメータを設定するための情報として、BWP情報要素が含まれてよい。 The BWP-DownlinkCommon information element may include a BWP information element as information for setting generic parameters of the BWP.
 BWP-DownlinkCommon情報要素には、このBWPのPDCCHのためのセル特有のパラメータを設定するための情報として、PDCCH-ConfigCommon情報要素が含まれてよい。PDCCH-ConfigCommon情報要素を、PDCCH共通設定とも称する。 The BWP-DownlinkCommon information element may include a PDCCH-ConfigCommon information element as information for setting cell-specific parameters for the PDCCH of this BWP. The PDCCH-ConfigCommon information element is also referred to as a PDCCH common configuration.
 BWP-DownlinkCommon情報要素には、このBWPのPDSCHのためのセル特有のパラメータを設定するための情報として、PDSCH-ConfigCommon情報要素が含まれてよい。PDSCH-ConfigCommon情報要素を、PDSCH共通設定とも称する。 The BWP-DownlinkCommon information element may include a PDSCH-ConfigCommon information element as information for setting cell-specific parameters for the PDSCH of this BWP. The PDSCH-ConfigCommon information element is also referred to as the PDSCH common configuration.
 PDCCH-ConfigCommon情報要素には、共通サーチスペース(common search space:CSS)#0のパラメータを設定するための情報として、SearchSpaceZero情報要素が含まれてよい。このSearchSpaceZero情報要素は、BWPが初期下りリンクBWPである場合にのみPDCCH-ConfigCommon情報要素に含まれてもよい。 The PDCCH-ConfigCommon information element may include a SearchSpaceZero information element as information for setting parameters of the common search space (CSS) #0. This SearchSpaceZero information element may be included in the PDCCH-ConfigCommon information element only if the BWP is an initial downlink BWP.
 PDCCH-ConfigCommon情報要素には、一つまたは複数の共通サーチスペース(common search spaces)、および一つまたは複数のUE特有サーチスペース(UE-specific search spaces)で用いられる共通CORESET#0のパラメータを設定するための情報として、ControlResourceSetZero情報要素が含まれてよい。このControlResourceSetZero情報要素は、BWPが初期下りリンクBWPである場合にのみPDCCH-ConfigCommon情報要素に含まれてもよい。 The PDCCH-ConfigCommon information element may include a ControlResourceSetZero information element as information for setting parameters of the common CORESET#0 used in one or more common search spaces and one or more UE-specific search spaces. This ControlResourceSetZero information element may be included in the PDCCH-ConfigCommon information element only if the BWP is an initial downlink BWP.
 PDCCH-ConfigCommon情報要素には、追加の共通CORESETのパラメータを設定するための情報として、ControlResourceSet情報要素が含まれてよい。 The PDCCH-ConfigCommon information element may include a ControlResourceSet information element as information for setting additional common CORESET parameters.
 PDCCH-ConfigCommon情報要素には、追加の一つまたは複数のCSSの設定を示す情報要素(SearchSpace情報要素)のリスト(commonSearchSpaceList)が含まれてよい。 The PDCCH-ConfigCommon information element may include a list (commonSearchSpaceList) of information elements (SearchSpace information elements) that indicate the configuration of one or more additional CSSs.
 PDCCH-ConfigCommon情報要素には、システム情報(SIB1)のためのサーチスペースの設定が前記commonSearchSpaceListの何れのCSSの設定であるかを示す情報(searchSpaceSIB1)が含まれてよい。 The PDCCH-ConfigCommon information element may include information (searchSpaceSIB1) indicating which CSS in the commonSearchSpaceList the search space setting for the system information (SIB1) is.
 PDCCH-ConfigCommon情報要素には、システム情報(SIB2以降)のためのサーチスペースの設定が前記commonSearchSpaceListの何れのCSSの設定であるかを示す情報(searchSpaceOtherSystemInformation)が含まれてよい。 The PDCCH-ConfigCommon information element may include information (searchSpaceOtherSystemInformation) indicating which CSS in the commonSearchSpaceList the search space setting for system information (SIB2 and later) is.
 PDCCH-ConfigCommon情報要素には、ページングメッセージのためのサーチスペースの設定が前記commonSearchSpaceListの何れのCSSの設定であるかを示す情報(pagingSearchSpace)が含まれてよい。 The PDCCH-ConfigCommon information element may include information (pagingSearchSpace) indicating which CSS in the commonSearchSpaceList is used to set the search space for paging messages.
 UplinkConfigCommon情報要素には、絶対上りリンク周波数(absolute uplink frequency)の設定およびサブキャリア特有の複数の仮想キャリア(virtual carriers)として、FrequencyInfoUL情報要素が含まれてよい。例えば、FrequencyInfoUL情報要素には、最大送信電力を示す情報が含まれてよい。 The UplinkConfigCommon information element may include a FrequencyInfoUL information element for configuring the absolute uplink frequency and multiple subcarrier specific virtual carriers. For example, the FrequencyInfoUL information element may include information indicating the maximum transmit power.
 UplinkConfigCommon情報要素には、そのセルの初期上りリンクBWP(initial uplink BWP)の設定として、BWP-UplinkCommon情報要素を示すinitialUplinkBWPが含まれてよい。それに加えてまたはそれに代えて、UplinkConfigCommon情報要素には、一つまたは複数の性能制限端末(RedCap UE)がinitialUplinkBWPの代わりに使用する、BWP-UplinkCommon情報要素を示すinitialUplinkBWP-RedCapが含まれてよい。BWP-UplinkCommon情報要素を、上りリンクBWP共通設定とも称する。 The UplinkConfigCommon information element may include initialUplinkBWP, which indicates the BWP-UplinkCommon information element as the initial uplink BWP setting for that cell. Additionally or alternatively, the UplinkConfigCommon information element may include initialUplinkBWP-RedCap, which indicates the BWP-UplinkCommon information element to be used by one or more performance-limited terminals (RedCap UEs) instead of initialUplinkBWP. The BWP-UplinkCommon information element is also referred to as the uplink BWP common setting.
 BWP-UplinkCommon情報要素には、BWPの一般的(generic)なパラメータを設定するための情報として、BWP情報要素が含まれてよい。 The BWP-UplinkCommon information element may include a BWP information element as information for setting generic parameters of the BWP.
 BWP-UplinkCommon情報要素には、このBWPのPUCCHのためのセル特有のパラメータを設定するための情報として、PUCCH-ConfigCommon情報要素が含まれてよい。PUCCH-ConfigCommon情報要素を、PUCCH共通設定とも称する。 The BWP-UplinkCommon information element may include a PUCCH-ConfigCommon information element as information for setting cell-specific parameters for the PUCCH of this BWP. The PUCCH-ConfigCommon information element is also referred to as PUCCH common configuration.
 BWP-UplinkCommon情報要素には、このBWPのPUSCHのためのセル特有のパラメータを設定するための情報として、PUSCH-ConfigCommon情報要素が含まれてよい。PUSCH-ConfigCommon情報要素を、PUSCH共通設定とも称する。 The BWP-UplinkCommon information element may include a PUSCH-ConfigCommon information element as information for setting cell-specific parameters for the PUSCH of this BWP. The PUSCH-ConfigCommon information element is also referred to as a PUSCH common configuration.
 BWP-UplinkCommon情報要素には、セル特有のランダムアクセスのパラメータを設定するための情報として、RACH-ConfigCommon情報要素が含まれてよい。RACH-ConfigCommon情報要素を、RACH共通設定とも称する。 The BWP-UplinkCommon information element may include a RACH-ConfigCommon information element as information for setting cell-specific random access parameters. The RACH-ConfigCommon information element is also referred to as RACH common configuration.
 なお、上記各情報要素には、説明した情報以外のその他の情報が含まれてよい。 Note that each of the above information elements may include other information in addition to the information described above.
 RRC再設定手順について説明する。RRC再設定手順とは、端末装置が、RRCコネクションの再設定に関するメッセージに基づき、RRC接続(RRC connection)を修正(modify)するための手順(procedure)であってよい。また、RRC再設定手順の目的は、下記(A)から(F)の一部または全部であってよい。
  (A)無線ベアラを確立、修正、および/または、解放すること
  (B)同期付再設定を実施すること
  (C)メジャメント(measurement)をセットアップ、修正、および/または、解放すること
  (D)SCellおよびセルグループを追加、修正、および/または、解放すること
  (E)条件付ハンドオーバ(conditional handover:CHO)の設定を追加、修正、および/または、解放すること
  (F)条件付PSCell変更(conditional PSCell change:CPC)または条件付PSCell追加(conditional PSCell addition:CPA)の設定を追加、修正、および/または、解放すること
The RRC reconfiguration procedure will be described. The RRC reconfiguration procedure may be a procedure for a terminal device to modify an RRC connection based on a message related to reconfiguration of the RRC connection. The purpose of the RRC reconfiguration procedure may be some or all of the following (A) to (F).
(A) Establishing, modifying and/or releasing radio bearers; (B) Performing synchronized reconfiguration; (C) Setting up, modifying and/or releasing measurements; (D) Adding, modifying and/or releasing SCells and cell groups; (E) Adding, modifying and/or releasing conditional handover (CHO) configuration; (F) Adding, modifying and/or releasing conditional PSCell change (CPC) or conditional PSCell addition (CPA) configuration.
 基地局装置(ネットワーク:Network)は、RRC_CONNECTED状態の端末装置に対してRRC再設定手順を開始(initiate)してよい。なお、「基地局装置が端末装置に対してRRC再設定手順を開始する」とは、「基地局装置が端末装置に対してRRCコネクションの再設定に関するメッセージを送信する」と言い換えられてよい。 The base station device (network) may initiate an RRC reconfiguration procedure for a terminal device in the RRC_CONNECTED state. Note that "the base station device initiates an RRC reconfiguration procedure for a terminal device" may be rephrased as "the base station device sends a message regarding the reconfiguration of the RRC connection to the terminal device."
 端末装置は、RRCコネクションの再設定に関するメッセージを受信したとき、または、条件付再設定(CHO、CPA、またはCPC)の実行時に、下記の処理RRPの(A)から(D)の一部または全部を実施(perform)してよい。
 (処理RRP)
  (A)もしRRCコネクションの再設定に関するメッセージがMCGのセルグループ設定を含んでいたら、そのセルグループ設定を用いてセルグループの設定を実施する。それに加えて、そのセルグループ設定が同期付再設定情報要素を含むSpCell設定を含んでいたら、同期付再設定を実施する。
  (B)もしRRCコネクションの再設定に関するメッセージがSCGのセルグループ設定を含んでいたら、そのセルグループ設定を用いてセルグループの設定を実施する。それに加えて、そのセルグループ設定が同期付再設定情報要素を伴うSpCell設定を含んでいたら、同期付再設定を実施する。
  (C)もしRRCコネクションの再設定に関するメッセージが条件付再設定に関する情報を含んでいたら、その条件付再設定に関する情報を用いて、条件付再設定の設定処理を実施する。
  (D)新しい設定を用いた送信のため、端末装置の下位レイヤ(PHY、MAC等)にRRC再設定完了メッセージを提出(submit)する。
When the terminal device receives a message regarding reconfiguration of an RRC connection or when performing a conditional reconfiguration (CHO, CPA, or CPC), it may perform some or all of the following processes RRP (A) to (D).
(Processing RRP)
(A) If the message regarding the RRC connection reconfiguration includes a cell group configuration of the MCG, perform cell group configuration using the cell group configuration. In addition, if the cell group configuration includes an SpCell configuration including a synchronized reconfiguration information element, perform synchronized reconfiguration.
(B) If the message regarding the RRC connection reconfiguration includes a cell group configuration of the SCG, perform cell group configuration using the cell group configuration, and if the cell group configuration includes an SpCell configuration with a synchronized reconfiguration information element, perform synchronized reconfiguration.
(C) If the message regarding the reconfiguration of the RRC connection includes information regarding conditional reconfiguration, the information regarding the conditional reconfiguration is used to perform a configuration process for the conditional reconfiguration.
(D) Submit an RRC reconfiguration complete message to the lower layers (PHY, MAC, etc.) of the terminal device for transmission using the new settings.
 端末装置は、同期付再設定を実行(execute)するために、下記の処理RWSの(A)から(E)の一部または全部を実施(perform)してよい。「同期付再設定を実行する」は、「同期付再設定を実施する」または「同期付再設定をトリガする」と言い換えられてよい。
 (処理RWS)
  (A)もし、同期付再設定情報要素にfrequencyInfoDL情報要素が含まれていたら、ターゲットSpCellが、frequencyInfoDL情報要素で示されるSSB周波数にある、同期付再設定情報要素に含まれる物理セル識別子で示されるセルであると判断する。もし、同期付再設定情報要素にfrequencyInfoDL情報要素が含まれていなければ、ターゲットSpCellが、ソースSpCellと同じSSB周波数にある、同期付再設定情報要素に含まれる物理セル識別子で示されるセルであると判断する。
  (B)ターゲットSpCellへの下りリンク同期を開始する。
  (C)ランダムアクセス手順に必要なタイミング情報を保持していない場合、ターゲットSpCellのMIBを取得する。
  (C)同期付再設定の対象となるセルグループのMACエンティティをリセットする。
  (D)同期付再設定情報要素に含まれる新しいUE識別子(newUE-Identity)の値を、同期付再設定の対象となるセルグループのためのC-RNTIとして適用する。
  (E)SpCell共通設定に従ってRRCの下位レイヤ(PHY等)を設定する。
In order to execute synchronous reconfiguration, the terminal device may perform some or all of the following processes RWS (A) to (E). "Executing synchronous reconfiguration" may be rephrased as "implementing synchronous reconfiguration" or "triggering synchronous reconfiguration."
(Processing RWS)
(A) If the frequencyInfoDL information element is included in the synchronization-assisted reconfiguration information element, it is determined that the target SpCell is a cell that is located at the SSB frequency indicated in the frequencyInfoDL information element and is indicated by the physical cell identifier included in the synchronization-assisted reconfiguration information element. If the frequencyInfoDL information element is not included in the synchronization-assisted reconfiguration information element, it is determined that the target SpCell is a cell that is located at the same SSB frequency as the source SpCell and is indicated by the physical cell identifier included in the synchronization-assisted reconfiguration information element.
(B) Initiate downlink synchronization to the target SpCell.
(C) If the timing information required for the random access procedure is not held, the MIB of the target SpCell is obtained.
(C) Reset the MAC entity of the cell group that is the target of synchronized reconfiguration.
(D) The value of the new UE identifier (newUE-Identity) included in the synchronized reconfiguration information element is applied as the C-RNTI for the cell group that is the target of the synchronized reconfiguration.
(E) Configure the RRC lower layers (PHY, etc.) according to the SpCell common settings.
 条件付再設定について説明する。ネットワークは、端末装置に対して、一つまたは複数の条件付再設定情報要素を設定し、それによって、ネットワークは、端末装置に対して、条件付再設定情報要素にそれぞれ対応づけられた候補ターゲットSpCellを設定する。端末装置は、設定された前記候補ターゲットSpCellの状態を評価する。端末装置は、前記評価を行い、実行条件を満たした一つまたは複数の候補ターゲットSpCellに関連づけられた条件付再設定情報要素に含まれる条件付RRC再設定情報要素のうちの一つを適用する。また、端末装置は、条件付再設定のために、後述するエントリのリスト(VarConditionalReconfig)を保持してよい。 Conditional reconfiguration will now be described. The network configures one or more conditional reconfiguration information elements for the terminal device, which causes the network to configure, for the terminal device, candidate target SpCells that correspond to the conditional reconfiguration information elements, respectively. The terminal device evaluates the state of the configured candidate target SpCells. The terminal device performs the evaluation and applies one of the conditional RRC reconfiguration information elements included in the conditional reconfiguration information elements associated with one or more candidate target SpCells that satisfy the execution conditions. The terminal device may also hold a list of entries (VarConditionalReconfig), described later, for conditional reconfiguration.
 条件付再設定は、候補ターゲットSpCellがMCGのSpCell(すなわちPCell)である場合、条件付ハンドオーバと称されてよい。また、条件付再設定は、候補ターゲットSpCellがSCGのSpCell(すなわちPSCell)である場合、条件付PSCell追加、および/または条件付PSCell変更と称されてよい。 The conditional reconfiguration may be referred to as a conditional handover if the candidate target SpCell is an SpCell (i.e., a PCell) of an MCG. The conditional reconfiguration may also be referred to as a conditional PSCell addition and/or conditional PSCell change if the candidate target SpCell is an SpCell (i.e., a PSCell) of an SCG.
 端末装置は、条件付再設定の設定処理として、条件付再設定に関する情報(例えば条件付再設定情報要素)を受け取ったことに基づいて、前記条件付再設定に関する情報に、エントリの削除リスト(condReconfigToRemoveList)が含まれる場合、エントリの削除リストで指定された条件付再設定の設定を端末装置の保持する設定から削除(remove)してよい。具体的には、前記エントリの削除リストに含まれる、エントリの識別子(condReconfigId)が、端末装置が保持しているエントリのリストに含まれる場合、端末装置が、前記端末装置が保持しているエントリのリストから前記エントリの識別子に対応するエントリを削除することであってよい。 When the terminal device receives information about conditional reconfiguration (e.g., a conditional reconfiguration information element) as a setting process for conditional reconfiguration, and the information about the conditional reconfiguration includes an entry deletion list (condReconfigToRemoveList), the terminal device may delete (remove) the conditional reconfiguration settings specified in the entry deletion list from the settings held by the terminal device. Specifically, when an entry identifier (condReconfigId) included in the entry deletion list is included in the list of entries held by the terminal device, the terminal device may delete the entry corresponding to the entry identifier from the list of entries held by the terminal device.
 なお、以下の説明において、端末装置が保持している条件付再設定のエントリのリストのことを単にエントリリストとも称する。すなわち、以下の説明における「エントリリスト」は、特に明示しない限り、端末装置が保持している条件付再設定のエントリのリストのことを指す。また、条件付再設定のエントリリストは、VarConditionalReconfigという名称の変数であってもよい。また、エントリの識別子のことを単にエントリ識別子とも称する。 In the following description, the list of conditional reset entries held by the terminal device is also simply referred to as the entry list. In other words, in the following description, "entry list" refers to the list of conditional reset entries held by the terminal device unless otherwise specified. The conditional reset entry list may also be a variable named VarConditionalReconfig. The entry identifier is also simply referred to as the entry identifier.
 端末装置は、条件付再設定の設定処理として、前記条件付再設定に関する情報に、エントリの追加修正リスト(condReconfigToAddModList)が含まれる場合、エントリの追加修正リストに含まれる条件付再設定の設定を端末装置の保持する設定に追加または修正してよい。エントリの追加修正リストは、一つまたは複数の条件付再設定情報要素のリストであってよい。各エントリは条件付再設定情報要素によって設定されてよい。条件付再設定情報要素は、エントリ識別子、実行条件、および条件付RRC再設定情報要素が含まれてよい。 If the information regarding conditional reconfiguration includes an entry add/modify list (condReconfigToAddModList), the terminal device may add or modify the conditional reconfiguration settings included in the entry add/modify list to the settings held by the terminal device as a conditional reconfiguration configuration process. The entry add/modify list may be a list of one or more conditional reconfiguration information elements. Each entry may be configured by a conditional reconfiguration information element. The conditional reconfiguration information element may include an entry identifier, an execution condition, and a conditional RRC reconfiguration information element.
 具体的には、エントリの追加修正リストに含まれる各エントリ識別子が、エントリリストのエントリに存在する場合に、端末装置は、以下の処理(A)及び、または(B)を実施してよい。
  (A)エントリの追加修正リストに含まれるエントリに、実行条件(condExecutionCond)が含まれる場合、このエントリのエントリ識別子と合致する、エントリリストのエントリの実行条件を、そのエントリの追加修正リストに含まれる実行条件で置き換える。
  (B)エントリの追加修正リストに含まれるエントリに、条件付RRC再設定情報要素(condRRCReconfig)が含まれる場合、このエントリのエントリ識別子と合致する、エントリリストの条件付RRC再設定情報要素を、そのエントリの追加修正リストに含まれる条件付RRC再設定情報要素で置き換える。
Specifically, when each entry identifier included in the entry addition/modification list exists in an entry of the entry list, the terminal device may perform the following processing (A) and/or (B).
(A) If an entry included in the addition/modification list of an entry includes an execution condition (condExecutionCond), the execution condition of an entry in the entry list that matches the entry identifier of this entry is replaced with the execution condition included in the addition/modification list of that entry.
(B) If an entry included in the additional modification list of an entry includes a conditional RRC reconfiguration information element (condRRCReconfig), the conditional RRC reconfiguration information element in the entry list that matches the entry identifier of this entry is replaced with the conditional RRC reconfiguration information element included in the additional modification list of that entry.
 また、エントリの追加修正リストに含まれるエントリ識別子が、エントリリストに含まれない場合、端末装置は、エントリリストに含まれないエントリ識別子に対応する新しいエントリをエントリリストに追加してよい。 In addition, if an entry identifier included in the entry addition/modification list is not included in the entry list, the terminal device may add to the entry list a new entry corresponding to the entry identifier not included in the entry list.
 なお、エントリの削除リストとは、削除される一つまたは複数のエントリ識別子のリストであってよい。エントリの追加修正リストに含まれる各エントリはエントリ識別子を含み、それに加えて、実行条件および/または条件付RRC再設定情報要素を含んでよい。各エントリは一つまたは複数の候補ターゲットSpCellのうちの一つの候補ターゲットSpCellに関連付けられてよい。エントリ識別子とは、CHO、CPA及びCPCの各エントリの識別に使用される識別子であってよい。エントリリストは、一つまたは複数のエントリを含んでよい。各エントリは、一つのエントリ識別子、一つまたは複数の実行条件、および一つの条件付RRC再設定情報要素を含んでよい。端末装置が保持しているエントリリストがエントリを含まない場合、端末装置は空のリストを保持してもよい。実行条件とは、条件付再設定の実行をトリガするために満たす必要のある条件であってよい。条件付RRC再設定情報要素とは、前記実行条件が満たされた際に適用されるRRCコネクションの再設定に関するメッセージであってよい。前記RRCコネクションの再設定に関するメッセージは、候補ターゲットSpCellに接続するために用いられるメッセージであってよい。 Note that the entry deletion list may be a list of one or more entry identifiers to be deleted. Each entry included in the entry addition modification list includes an entry identifier and may additionally include an execution condition and/or a conditional RRC reconfiguration information element. Each entry may be associated with one of one or more candidate target SpCells. The entry identifier may be an identifier used to identify each entry of the CHO, CPA, and CPC. The entry list may include one or more entries. Each entry may include one entry identifier, one or more execution conditions, and one conditional RRC reconfiguration information element. If the entry list held by the terminal device does not include an entry, the terminal device may hold an empty list. The execution condition may be a condition that needs to be satisfied to trigger the execution of the conditional reconfiguration. The conditional RRC reconfiguration information element may be a message regarding the reconfiguration of the RRC connection that is applied when the execution condition is satisfied. The message regarding the reconfiguration of the RRC connection may be a message used to connect to the candidate target SpCell.
 端末装置は、端末装置が保持しているエントリリストに含まれるエントリの実行条件を評価してよい。端末装置が保持しているエントリリストが空である場合または、エントリリストを保持していない場合、実行条件の評価を行わなくてよい。 The terminal device may evaluate the execution conditions of the entries included in the entry list held by the terminal device. If the entry list held by the terminal device is empty or if the terminal device does not hold an entry list, it is not necessary to evaluate the execution conditions.
 条件付再設定の実行とは、端末装置が、端末装置が保持しているエントリリストに含まれるエントリの実行条件を評価して、一つまたは複数の実行条件が満たされた場合に、その実行条件を含むエントリに含まれる、条件付RRC再設定情報要素を適用することであってよい。条件付RRC再設定情報要素を適用するとは、その条件付RRC再設定情報要素を用いてRRC再設定手順を実行することであってよい。 Executing a conditional reconfiguration may mean that the terminal device evaluates the execution conditions of entries included in an entry list held by the terminal device, and if one or more execution conditions are satisfied, applies a conditional RRC reconfiguration information element included in the entry that includes the execution condition. Applying a conditional RRC reconfiguration information element may mean executing an RRC reconfiguration procedure using the conditional RRC reconfiguration information element.
 実行条件を満たした複数のエントリが存在する場合、端末装置は、前記実行条件を満たした複数のエントリの中から一つのエントリを選択し、選択したエントリの条件付RRC再設定情報要素を適用してよい。 If there are multiple entries that satisfy the execution condition, the terminal device may select one entry from the multiple entries that satisfy the execution condition and apply the conditional RRC reconfiguration information element of the selected entry.
 端末装置のMACエンティティは、上位レイヤ(例えばRRC)からMACエンティティのリセット(reset of the MAC entity)が要求された場合、下記処理MRの(A)から(O)の一部または全部を実施してよい。前記MACエンティティのリセットは、単に、MACリセット(MAC reset)と称されてもよい。端末装置のMACエンティティは、上位レイヤ(例えばRRC)からMACエンティティの部分的リセット(partial reset of the MAC entity)が要求された場合、下記処理MRの(A)から(O)の一部または全部を実施してよい。前記MACエンティティの部分的リセットは、単に、部分的MACリセット(partial MAC reset)と称されてもよい。部分的MACリセットで実施される処理は、MACリセットで実施される処理の一部のみが実施される処理であってもよい。部分的MACリセットで実施される処理は、MACリセットで実施される処理の一部が実施されない処理であってもよい。端末装置のRRCエンティティが、端末装置のMACエンティティにMACリセットを実施するよう指示(instruct)することに基づき、端末装置のMACエンティティがMACリセットを実施してもよい。それに加えてまたはそれに代えて、端末装置のRRCエンティティが、端末装置のMACエンティティに部分的MACリセットを実施するよう指示(instruct)することに基づき、端末装置のMACエンティティが部分的MACリセットを実施してもよい。 When a reset of the MAC entity is requested from an upper layer (e.g., RRC), the MAC entity of the terminal device may perform part or all of (A) to (O) of the following processes MR. The reset of the MAC entity may be simply referred to as a MAC reset. When a partial reset of the MAC entity is requested from an upper layer (e.g., RRC), the MAC entity of the terminal device may perform part or all of (A) to (O) of the following processes MR. The partial reset of the MAC entity may be simply referred to as a partial MAC reset. The process performed in the partial MAC reset may be a process in which only a part of the process performed in the MAC reset is performed. The process performed in the partial MAC reset may be a process in which some of the process performed in the MAC reset is not performed. The MAC entity of the terminal device may perform a MAC reset based on an instruction from the RRC entity of the terminal device to the MAC entity of the terminal device to perform a MAC reset. Additionally or alternatively, the MAC entity of the terminal device may perform a partial MAC reset based on an instruction from the RRC entity of the terminal device to the MAC entity of the terminal device to perform a partial MAC reset.
 (処理MR)
  (A)論理チャネル毎に設定されているパラメータBjを0に初期化(initialize)する。
  (B)一部のタイマーを除き、走っているすべてのタイマーを停止する。
  (C)もし一つまたは複数の時間調整タイマーが設定されていれば、それらすべての時間調整タイマーが満了したとみなして、時間調整タイマーが満了したときの処理を実施する。
  (D)すべての上りリンクHARQプロセスのNew Data Indicator(NDI)の値を0にセットする。
  (E)もし進行中のランダムアクセス手順があれば、そのランダムアクセス手順を停止する。
  (F)もし明示的にシグナリングされた(explicitly signalled)、4ステップおよび2ステップのRAタイプのコンテンションフリーランダムアクセス(contention-free Random Access:CFRA)のリソースがあれば、そのリソースを破棄する。
  (G)Msg3のバッファをフラッシュする。
  (H)MSGAのバッファをフラッシュする。
  (I)もしトリガされたScheduling Request(SR)手順があれば、そのSR手順をキャンセルする。
  (J)もしトリガされたBuffer Status Reporting(BSR)手順があれば、そのBSR手順をキャンセルする。
  (K)もしトリガされたPower Headroom Reporting(PHR)手順があれば、そのPHR手順をキャンセルする。
  (L)すべての下りリンクHARQプロセスのソフトバッファをフラッシュする。
  (M)もしトリガされたBeam Failure Reporting(BFR)があれば、そのBFRをキャンセルする。
  (N)もしテンポラリC-RNTI(Temporary C-RNTI)があれば、そのテンポラリC-RNTIをリリース(release)する。
  (O)すべてのBFI_COUNTERをリセット(reset)する。
(Processing MR)
(A) The parameter Bj set for each logical channel is initialized to 0.
(B) Stop all running timers, except for some timers.
(C) If one or more time adjustment timers are set, all of those time adjustment timers are considered to have expired, and processing for the expiration of a time adjustment timer is carried out.
(D) Set the New Data Indicator (NDI) value of all uplink HARQ processes to 0.
(E) If there is a random access procedure in progress, stop the random access procedure.
(F) If there are explicitly signalled contention-free random access (CFRA) resources for 4-step and 2-step RA types, discard those resources.
(G) Flush the Msg3 buffer.
(H) Flush the MSGA buffer.
(I) If any Scheduling Request (SR) procedure has been triggered, cancel the SR procedure.
(J) If a Buffer Status Reporting (BSR) procedure has been triggered, cancel the BSR procedure.
(K) If any Power Headroom Reporting (PHR) procedure has been triggered, cancel the PHR procedure.
(L) Flush the soft buffers of all downlink HARQ processes.
(M) If any Beam Failure Reporting (BFR) has been triggered, cancel the BFR.
(N) If there is a Temporary C-RNTI, release the temporary C-RNTI.
(O) Reset all BFI_COUNTERs.
 セルの活性化(Activation)および不活性化(Deactivation)について説明する。Dual Connectivityで通信する端末装置において、前述のRRCコネクションの再設定に関するメッセージによって、マスターセルグループ(MCG)の設定とセカンダリセルグループ(SCG)が設定される。各セルグループは、スペシャルセル(SpCell)とそれ以外の0個以上のセル(セカンダリセル:SCell)とで構成されてよい。MCGのSpCellはPCellとも称する。SCGのSpCellはPSCellとも称する。セルの不活性化は、SpCellには適用されず、SCellに適用されてよい。 The following describes cell activation and deactivation. In a terminal device communicating using Dual Connectivity, a Master Cell Group (MCG) and a Secondary Cell Group (SCG) are configured by a message regarding the reconfiguration of the RRC connection described above. Each cell group may be composed of a special cell (SpCell) and zero or more other cells (secondary cells: SCell). The SpCell of an MCG is also referred to as a PCell. The SpCell of an SCG is also referred to as a PSCell. Cell deactivation does not apply to SpCells, but may apply to SCells.
 セルの活性化および不活性化はセルグループ毎に存在するMACエンティティで処理されてよい。端末装置に設定されたSCellは下記(A)から(C)の一部または全部によって活性化および/または不活性化されてよい。
  (A)SCellを活性化/不活性化させるMAC CE(SCell Activation/Deactivation MAC CEまたはEnhanced SCell Activation/Deactivation MAC CEという名称のMAC CE)の受信
  (B)PUCCHが設定されていないSCell毎に設定されているSCell不活性タイマー
  (C)端末装置に設定されたSCell毎に設定されているRRCパラメータ(sCellState)
Activation and deactivation of a cell may be processed by a MAC entity that exists for each cell group. An SCell configured in a terminal device may be activated and/or deactivated by some or all of the following (A) to (C).
(A) Reception of a MAC CE that activates/deactivates an SCell (MAC CE named SCell Activation/Deactivation MAC CE or Enhanced SCell Activation/Deactivation MAC CE) (B) An SCell inactivity timer that is set for each SCell for which a PUCCH is not configured (C) An RRC parameter (sCellState) that is set for each SCell configured in the terminal device
 具体的には、端末装置のMACエンティティはセルグループに設定されている各SCellに対して以下の処理(AD)を行ってよい。 Specifically, the MAC entity of the terminal device may perform the following processing (AD) for each SCell configured in the cell group.
 (処理AD)
 もし、SCell設定の際にSCellに設定されているRRCパラメータ(sCellState)がactivatedに設定されている、またはSCellを活性化させるMAC CE(SCellを活性化させることを示すSCell Activation/Deactivation MAC CE、または、SCellを活性化させることを示すEnhanced SCell Activation/Deactivation MAC CE)を受信した場合、UE122のMACエンティティは処理(AD-1)を行う。そうでなく、もし、SCellを不活性化させるMAC CE(SCellを不活性化させることを示すSCell Activation/Deactivation MAC CE、または、SCellを不活性化させることを示すEnhanced SCell Activation/Deactivation MAC CE)を受信した、または、活性化されているSCellにおいてSCell不活性タイマーが満了した、または、活性化されているSCellに関連付けられているSCGが不活性化されたら、UE122のMACエンティティは処理(AD-2)を行う。それに加えてまたはそれに代えて、もし、活性化されているSCellのPDCCHによって上りリンクグラントまたは下りリンクアサインメントが通知されたら、または、あるサービングセルのPDCCHによって、活性化されているSCellに対する上りリンクグラントまたは下りリンクアサインメントが通知されたら、または、コンフィギュアード上りリンクグラントにおいてMAC PDUが送信された、または、コンフィギュアード下りリンクアサインメントにおいてMAC PDUが受信されたら、UE122のMACエンティティはそのSCellに関連付けられたSCell不活性タイマーを再スタートする。もし、SCellが不活性化されたら、UE122のMACエンティティは処理(AD-3)を行う。
(Processing AD)
If the RRC parameter (sCellState) configured for the SCell during SCell configuration is set to activated, or if a MAC CE for activating the SCell (SCell Activation/Deactivation MAC CE indicating that the SCell is to be activated, or Enhanced SCell Activation/Deactivation MAC CE indicating that the SCell is to be activated) is received, the MAC entity of the UE 122 performs the process (AD-1). Otherwise, if a MAC CE for deactivating the SCell (SCell Activation/Deactivation MAC CE indicating that the SCell is to be deactivated, or Enhanced SCell Activation/Deactivation MAC CE indicating that the SCell is to be deactivated) is received, or the SCell inactivation timer expires in the activated SCell, or the SCG associated with the activated SCell is deactivated, the MAC entity of the UE 122 performs the process (AD-2). Additionally or alternatively, if an uplink grant or downlink assignment is indicated by the PDCCH of an activated SCell, or if an uplink grant or downlink assignment for an activated SCell is indicated by the PDCCH of a serving cell, or if a MAC PDU is transmitted in a configured uplink grant or received in a configured downlink assignment, the MAC entity of the UE 122 restarts the SCell inactivity timer associated with that SCell. If the SCell is deactivated, the MAC entity of the UE 122 performs a process (AD-3).
 (処理AD-1)
  もし、NRにおいて、このSCellを活性化させるMAC CEを受信する前にこのSCellが不活性化されていた、またはSCell設定の際にそのSCellに設定されているRRCパラメータ(sCellState)がactivatedに設定されているならば、UE122のMACエンティティは処理(AD-1A)、処理(AD-1B)および処理(AD-1C)の一部または全部を行う。それに加えてまたはそれに代えて、UE122のMACエンティティはそのSCellに対応付けられたSCell不活性タイマーをスタート、または(すでにスタートしている場合は)再スタートする。もし、Active DL BWPが休眠BWP(Dormant BWP)でない場合、UE122のMACエンティティは、もしあれば貯蓄された設定(stored configuration)に従って、このSCellに対応付けられている、グラントタイプ1のサスペンドされたすべてのコンフィギュアード上りリンクグラントを(再び)初期化し、それに加えてまたはそれに代えて、PHRをトリガする。
(Process AD-1)
If the SCell was deactivated in NR before receiving a MAC CE activating the SCell or if the RRC parameter (sCellState) configured for the SCell during SCell configuration is set to activated, the MAC entity of the UE 122 performs some or all of steps (AD-1A), (AD-1B) and (AD-1C). Additionally or alternatively, the MAC entity of the UE 122 starts or restarts (if already started) the SCell inactivity timer associated with the SCell. If the Active DL BWP is not a Dormant BWP, the MAC entity of the UE 122 (re)initializes all suspended configured uplink grants of grant type 1 associated with the SCell according to a stored configuration, if any, and additionally or alternatively triggers a PHR.
 (処理AD-1A)
  もし第1アクティブ下りリンクBWP識別子(firstActiveDownlinkBWP-Id)で示されるBWPが休眠(Dormant)BWPに設定されていなければ、UE122のMACエンティティはSCellを活性化し、下記(A)から(E)の一部または全部を実施する。
   (A)このSCellでサウンディング参照信号(SRS)を送信する。
   (B)このSCellのためのCSIを報告する。
   (C)このSCellのPDCCHをモニタする。
   (D)このSCellに対するPDCCHをモニタする。(他のサービングセルにおいてこのSCellに対するスケジュールが行われる場合)
   (E)もしPUCCHが設定されていれば、このSCellでPUCCHを送信する。
(Process AD-1A)
If the BWP indicated by the first active downlink BWP identifier (firstActiveDownlinkBWP-Id) is not set to a dormant BWP, the MAC entity of UE 122 activates the SCell and performs some or all of the following (A) to (E).
(A) Transmit a sounding reference signal (SRS) on this SCell.
(B) Report the CSI for this SCell.
(C) Monitor the PDCCH of this SCell.
(D) Monitor the PDCCH for this SCell (if scheduling for this SCell is performed in another serving cell).
(E) If PUCCH is configured, transmit PUCCH on this SCell.
 (処理AD-1B)
  もし第1アクティブ下りリンクBWP識別子(firstActiveDownlinkBWP-Id)で示されるBWPが休眠(Dormant)BWPに設定されていれば、UE122のMACエンティティはこのサービングセルのBWP不活性タイマーが走っているならば停止する。
(Process AD-1B)
If the BWP indicated by the firstActiveDownlinkBWP-Id is configured as a Dormant BWP, the MAC entity of the UE 122 stops the BWP inactivity timer of this serving cell if it is running.
 (処理AD-1C)
  第1アクティブ下りリンクBWP識別子(firstActiveDownlinkBWP-Id)および第1アクティブ上りリンクBWP識別子(firstActiveUplinkBWP-Id)でそれぞれ示される下りリンクBWPおよび上りリンクBWPを活性化する。
(Process AD-1C)
The downlink BWP and the uplink BWP indicated by the first active downlink BWP identifier (firstActiveDownlinkBWP-Id) and the first active uplink BWP identifier (firstActiveUplinkBWP-Id), respectively, are activated.
 (処理AD-2)
  UE122のMACエンティティは下記(A)から(H)の一部または全部を実施する。
   (A)このSCellを不活性化する。
   (B)このSCellに関連付けられているSCell不活性タイマーを停止する。
   (C)このSCellに関連付けられているBWP不活性タイマーを停止する。
   (D)このSCellに関連付けられているすべてのActive BWPを不活性化する。
   (E)このSCellに関連付けられている、すべてのコンフィギュアード下りリンクアサインメントおよび/またはすべてのグラントタイプ2のコンフィギュアード上りリンクグラントをクリアする。
   (F)このSCellに関連付けられているsemi-persistent CSI reportingのためのすべてのPUSCHリソースをクリアする。
   (G)このSCellに関連付けられている、すべてのグラントタイプ1のコンフィギュアード上りリンクグラントをサスペンドする。
   (H)このSCellに関連付けられているHARQのバッファをフラッシュする。
(Process AD-2)
The MAC entity of UE 122 performs some or all of the following (A) to (H).
(A) This SCell is deactivated.
(B) Stop the SCell inactivity timer associated with this SCell.
(C) Stop the BWP inactivity timer associated with this SCell.
(D) Deactivate all Active BWPs associated with this SCell.
(E) Clear all configured downlink assignments and/or all configured uplink grants of grant type 2 associated with this SCell.
(F) Clear all PUSCH resources for semi-persistent CSI reporting associated with this SCell.
(G) Suspend all configured uplink grants of grant type 1 associated with this SCell.
(H) Flush the HARQ buffer associated with this SCell.
 (処理AD-3)
  UE122のMACエンティティは下記(A)から(D)の一部または全部を実施する。
   (A)このSCellでSRSを送信しない。
   (B)このSCellのためのCSIを報告しない。
   (C)このSCellでPUCCH、UL-SCH、および/またはRACHを送信しない。
   (D)このSCellのPDCCH、および/またはこのSCellに対するPDCCHのモニタをしない。
(Process AD-3)
The MAC entity of UE 122 performs some or all of the following (A) to (D).
(A) Do not transmit SRS on this SCell.
(B) Do not report CSI for this SCell.
(C) Do not transmit PUCCH, UL-SCH, and/or RACH on this SCell.
(D) Do not monitor the PDCCH of this SCell and/or the PDCCH for this SCell.
 上記のように、MACエンティティが処理(AD)を行うことにより、SCellが活性化および不活性化される。 As described above, the MAC entity performs processing (AD) to activate and deactivate the SCell.
 また前述のようにSCellが追加される場合に、RRCシグナリングによってSCellの初期状態が設定されてもよい。 Also, when an SCell is added as described above, the initial state of the SCell may be configured by RRC signaling.
 ここで、SCell不活性タイマーについて説明する。PUCCHが設定されないSCellに対しては、RRCシグナリングによって、SCell不活性タイマーの値(タイマーが満了したとみなされる時間に関する情報)が通知されてよい。例えば、RRCシグナリングでSCell不活性タイマーの値として40msを示す情報が通知された場合、上記処理(AD)において、タイマーをスタートまたは再スタートしてからタイマーが停止することなく通知された時間(ここでは40ms)が経過したしたときに、タイマーが満了したとみなされる。また、SCell不活性タイマーは、sCellDeactivationTimerという名称のタイマーであってもよい。 Here, the SCell deactivation timer will be explained. For an SCell for which PUCCH is not configured, the value of the SCell deactivation timer (information regarding the time at which the timer is considered to have expired) may be notified by RRC signaling. For example, if information indicating 40 ms as the value of the SCell deactivation timer is notified by RRC signaling, in the above process (AD), the timer is considered to have expired when the notified time (here, 40 ms) has elapsed since the timer was started or restarted without being stopped. The SCell deactivation timer may also be a timer named sCellDeactivationTimer.
 ここで、帯域部分(BWP)について説明する。 Here, we will explain the band portion (BWP).
 BWPはサービングセルの帯域の一部あるいは全部の帯域であってよい。また、BWPはキャリアBWP(Carrier BWP)と呼称されてもよい。端末装置には、1つまたは複数のBWPが設定されてよい。あるBWPは初期セルサーチで検出された同期信号に対応づけられたシステム情報に含まれる情報によって設定されてもよい。また、あるBWPは初期セルサーチを行う周波数に対応づけられた周波数帯域幅であってもよい。また、あるBWPはRRCシグナリング(例えばDedicated RRC signaling)で設定されてもよい。また、下りリンクのBWP(DL BWP)と上りリンクのBWP(UL BWP)とが個別に設定されてもよい。また、1つまたは複数の上りリンクのBWPが1つまたは複数の下りリンクのBWPと対応づけられてよい。また、上りリンクのBWPと下りリンクのBWPとの対応づけは既定の対応づけであってもよいし、RRCシグナリング(例えばDedicated RRC signaling)による対応付けでもよいし、物理層のシグナリング(例えば下りリンク制御チャネルで通知される下りリンク制御情報(DCI)による対応付けであってもよいし、それらの組み合わせであってもよい。また、下りリンクのBWPにおいて、CORESETが設定されてよい。 A BWP may be a part or all of the bandwidth of the serving cell. A BWP may also be referred to as a carrier BWP. One or more BWPs may be configured in a terminal device. A BWP may be configured by information included in system information associated with a synchronization signal detected in the initial cell search. A BWP may also be a frequency bandwidth associated with the frequency at which the initial cell search is performed. A BWP may also be configured by RRC signaling (e.g., Dedicated RRC signaling). A downlink BWP (DL BWP) and an uplink BWP (UL BWP) may also be configured separately. One or more uplink BWPs may be associated with one or more downlink BWPs. Furthermore, the correspondence between the uplink BWP and the downlink BWP may be a default correspondence, or may be correspondence based on RRC signaling (e.g., Dedicated RRC signaling), or may be correspondence based on physical layer signaling (e.g., Downlink Control Information (DCI) notified on the downlink control channel), or may be a combination of these. Furthermore, a CORESET may be set in the downlink BWP.
 BWPは連続する物理無線ブロック(PRB:Physical Resource Block)のグループで構成されてよい。また、接続状態の端末装置に対して、各コンポーネントキャリアのBWP(1つまたは複数のBWP)のパラメータが設定されてよい。各コンポーネントキャリアのBWPのパラメータには、(A)サイクリックプレフィックスの種類、(B)サブキャリア間隔、(C)BWPの周波数位置(例えば、BWPの低周波数側の開始位置または中心周波数位置)(周波数位置は例えば、ARFCNが用いられてもよいし、サービングセルの特定のサブキャリアからのオフセットが用いられてもよい。また、オフセットの単位はサブキャリア単位であってもよいし、リソースブロック単位でもよい。また、ARFCNとオフセットの両方が設定されるかもしれない。)、(D)BWPの帯域幅(例えばPRB数)、(E)制御信号のリソース設定情報、(F)SSブロックの中心周波数位置(周波数位置は例えば、ARFCNが用いられてもよいし、サービングセルの特定のサブキャリアからのオフセットが用いられてもよい。また、オフセットの単位はサブキャリア単位であってもよいし、リソースブロック単位でもよい。また、ARFCNとオフセットの両方が設定されるかもしれない。)の一部あるいは全部が含まれてよい。また、制御信号のリソース設定情報が、少なくともPCellおよび/またはPSCellの一部あるいは全部のBWPの設定に含まれてもよい。 A BWP may consist of a group of consecutive physical radio blocks (PRBs: Physical Resource Blocks). Furthermore, parameters of the BWP of each component carrier (one or multiple BWPs) may be set for a connected terminal device. The parameters of the BWP of each component carrier may include some or all of the following: (A) cyclic prefix type, (B) subcarrier spacing, (C) frequency location of the BWP (e.g., the start location or center frequency location of the BWP on the low frequency side) (for example, the ARFCN may be used for the frequency location, or an offset from a specific subcarrier of the serving cell may be used. The offset unit may be a subcarrier unit or a resource block unit. Both the ARFCN and the offset may be set.), (D) bandwidth of the BWP (e.g., the number of PRBs), (E) resource configuration information of the control signal, (F) center frequency location of the SS block (for example, the ARFCN may be used for the frequency location, or an offset from a specific subcarrier of the serving cell may be used. The offset unit may be a subcarrier unit or a resource block unit. Both the ARFCN and the offset may be set.). The resource configuration information of the control signal may be included in the configuration of the BWP of at least some or all of the PCell and/or PSCell.
 端末装置は、1つまたは複数の設定されたBWPのうち、Active BWP(アクティブなBWP)において送受信をおこなってよい。端末装置に関連付けられている1つのサービングセルにおいて、1つまたは複数のBWPが設定されてよい。端末装置に関連付けられている1つのサービングセルに対して設定された1つまたは複数のBWPのうち、ある時間において、最大で1つの上りリンクBWP、および/または最大で1つの下りリンクBWPがActive BWPとなるように設定されてもよい。下りリンクのActive BWPをAcitve DL BWPとも称する。上りリンクのActive BWPをActive UL BWPとも称する。また、端末装置に1つまたは複数設定されているBWPのうち、Active BWPでないBWPをInactive BWP(インアクティブなBWP)と称してよい。 A terminal device may transmit and receive in an Active BWP among one or more configured BWPs. One or more BWPs may be configured in a serving cell associated with the terminal device. Among one or more BWPs configured for a serving cell associated with the terminal device, at a given time, up to one uplink BWP and/or up to one downlink BWP may be configured to be the Active BWP. An Active BWP in the downlink is also referred to as an Active DL BWP. An Active BWP in the uplink is also referred to as an Active UL BWP. Furthermore, among one or more BWPs configured in a terminal device, a BWP that is not an Active BWP may be referred to as an Inactive BWP.
 次にBWPの活性化/不活性化について説明する。BWPの活性化とは、BWPを活性化すること、または、Inactive BWPを活性化することを意味してよい。また、BWPの不活性化とは、BWPを不活性化すること、または、Active BWPを不活性化することを意味してよい。サービングセルにおけるBWP切り替え(BWP switching)は、Inactive BWPを活性化して、Active BWPを不活性化するために用いられる。 Next, we will explain the activation/inactivation of BWP. Activation of BWP may mean activating a BWP or activating an inactive BWP. Inactivation of BWP may mean inactivating a BWP or inactivating an active BWP. BWP switching in a serving cell is used to activate an inactive BWP and inactivate an active BWP.
 BWP切り替えは、下りリンクアサインメントまたは上りリンクグラントを示すPDCCH、BWP不活性タイマー、RRCシグナリング、またはランダムアクセス手順の開始のためにMACエンティティそれ自身によって制御される。サービングセルのActive BWPは、RRCまたはPDCCHによって示される。 BWP switching is controlled by the PDCCH indicating a downlink assignment or uplink grant, the BWP inactivity timer, RRC signalling or the MAC entity itself for initiation of a random access procedure. Active BWP in the serving cell is indicated by RRC or PDCCH.
 次にBWP不活性タイマーについて説明する。BWP不活性タイマーが設定された、活性化されたサービングセル(Activated Serving Cell)の各々に対してMACエンティティは、次の(A)を実施する。また、BWP不活性タイマーは、bwp-InactivityTimerという名称のタイマーであってもよい。
  (A)もし次の(A-1)から(A-4)のうちいずれかを満たすなら、MACエンティティは次の(B)および(D)を実施する。
   (A-1)デフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されており、Active DL BWPがdefaultDownlinkBWP-Idで示されるBWPでなく、かつ、Active DL BWPが休眠BWPの識別子(dormantBWP-Id)で示されるBWPでない。
   (A-2)UEが性能制限端末(RedCap UE)でなく、デフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されておらず、Active DL BWPがinitialDownlinkBWPでなく、かつ、Active DL BWPが休眠BWPの識別子(dormantBWP-Id)で示されるBWPでない。
   (A-3)UEが性能制限端末(RedCap UE)であり、デフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されておらず、性能制限端末のための初期下りリンクBWP(initialDownlinkBWP-RedCap)が設定されておらず、かつ、Active DL BWPがinitialDownlinkBWPでない。
   (A-4)UEが性能制限端末(RedCap UE)であり、デフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されておらず、性能制限端末のための初期下りリンクBWP(initialDownlinkBWP-RedCap)が設定されており、かつ、Active DL BWPがinitialDownlinkBWP-RedCapでない。
  (B)もし、Active BWPで、下りリンクアサインメント(assignment)または上りリンクグラントを示す、C-RNTIまたはCS-RNTIにアドレスされたPDCCHを受信した、または、もし、Active BWPのための、下りリンクアサインメントまたは上りリンクグラントを示す、C-RNTIまたはCS-RNTIにアドレスされたPDCCHを受信した、または、もし、コンフィギュアード上りリンクグラントでMAC PDUが送信された、またはコンフィギュアード下りリンクアサインメントでMAC PDUが受信されたなら、MACエンティティは次の(C)を実施する。
  (C)もし、このサービングセルに関連付けられたランダムアクセス手順が実行中でない、または、このサービングセルに関連付けられた実行中のランダムアクセス手順が、C-RNTIにアドレスされたPDCCHの受信によって成功裏に完了(Successfully completed)したら、Active DL BWPに関連付けられたBWP不活性タイマーをスタートまたは再スタートする。
  (D)もし、Active DL BWPに関連付けられたBWP不活性タイマーが満了(Expire)したら、MACエンティティは次の(E)を実施する。
  (E)もし、defaultDownlinkBWP-Idが設定されていたら、このdefaultDownlinkBWP-Idで示されるBWPにBWP切り替えをおこない、そうでないならMACエンティティは次の(F)を実施する。
  (F)もし、UEが性能制限端末(RedCap UE)であり、かつ、性能制限端末のための初期下りリンクBWP(initialDownlinkBWP-RedCap)が設定されていたら、このinitialDownlinkBWP-RedCapにBWP切り替えをおこない、そうでないならinitialDownlinkBWPにBWP切り替えをおこなう。
Next, the BWP inactivity timer will be described. For each activated serving cell for which the BWP inactivity timer is set, the MAC entity performs the following (A). The BWP inactivity timer may be a timer named bwp-InactivityTimer.
(A) If any of the following (A-1) through (A-4) is met, the MAC entity performs the following (B) and (D).
(A-1) The default downlink BWP identifier (defaultDownlinkBWP-Id) is set, the Active DL BWP is not the BWP indicated by the defaultDownlinkBWP-Id, and the Active DL BWP is not the BWP indicated by the dormant BWP identifier (dormantBWP-Id).
(A-2) The UE is not a performance-limited terminal (RedCap UE), the default downlink BWP identifier (defaultDownlinkBWP-Id) is not set, the Active DL BWP is not the initialDownlinkBWP, and the Active DL BWP is not the BWP indicated by the dormant BWP identifier (dormantBWP-Id).
(A-3) The UE is a performance-limited terminal (RedCap UE), the identifier of the default downlink BWP (defaultDownlinkBWP-Id) is not set, the initial downlink BWP for the performance-limited terminal (initialDownlinkBWP-RedCap) is not set, and the Active DL BWP is not the initialDownlinkBWP.
(A-4) The UE is a performance-limited terminal (RedCap UE), the identifier of the default downlink BWP (defaultDownlinkBWP-Id) is not set, an initial downlink BWP for the performance-limited terminal (initialDownlinkBWP-RedCap) is set, and the Active DL BWP is not initialDownlinkBWP-RedCap.
(B) If a PDCCH addressed to the C-RNTI or CS-RNTI is received indicating a downlink assignment or uplink grant for an Active BWP, or if a PDCCH addressed to the C-RNTI or CS-RNTI is received indicating a downlink assignment or uplink grant for an Active BWP, or if a MAC PDU is sent with a configured uplink grant or a MAC PDU is received with a configured downlink assignment, the MAC entity performs the following (C).
(C) If no random access procedure associated with this serving cell is ongoing or an ongoing random access procedure associated with this serving cell is successfully completed by reception of a PDCCH addressed to the C-RNTI, start or restart the BWP inactivity timer associated with the Active DL BWP.
(D) If the BWP inactivity timer associated with an Active DL BWP expires, the MAC entity performs (E) below.
(E) If defaultDownlinkBWP-Id is set, the MAC entity performs BWP switching to the BWP indicated by this defaultDownlinkBWP-Id. If not, the MAC entity performs the next (F).
(F) If the UE is a performance-limited terminal (RedCap UE) and an initial downlink BWP for a performance-limited terminal (initialDownlinkBWP-RedCap) is configured, perform BWP switching to this initialDownlinkBWP-RedCap; otherwise, perform BWP switching to the initialDownlinkBWP.
 また、MACエンティティは、もし、BWP切り替えのためのPDCCHを受信し、Active DL BWPを切り替えたら、次の(A)を実施する。
  (A)もし次の(A-1)から(A-4)のうちいずれかを満たすなら、Active DL BWPに関連付けられたBWP不活性タイマーをスタートまたは再スタートする。
   (A-1)デフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されており、かつ、MACエンティティが、defaultDownlinkBWP-Idおよび休眠BWPの識別子(dormantBWP-Id)のいずれにも示されていない下りリンクのBWPに切り替える。
   (A-2)UEが性能制限端末(RedCap UE)でなく、デフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されておらず、かつ、MACエンティティが、initialDownlinkBWPでなく、かつ、休眠BWPの識別子(dormantBWP-Id)で示されていない下りリンクのBWPに切り替える。
   (A-3)UEが性能制限端末(RedCap UE)であり、デフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されておらず、性能制限端末のための初期下りリンクBWP(initialDownlinkBWP-RedCap)が設定されておらず、かつ、MACエンティティが、initialDownlinkBWPでない下りリンクのBWPに切り替える。
   (A-4)UEが性能制限端末(RedCap UE)であり、デフォルト下りリンクBWPの識別子(defaultDownlinkBWP-Id)が設定されておらず、性能制限端末のための初期下りリンクBWP(initialDownlinkBWP-RedCap)が設定されており、かつ、MACエンティティが、initialDownlinkBWP-RedCapでない下りリンクのBWPに切り替える。
Furthermore, if the MAC entity receives a PDCCH for BWP switching and switches the Active DL BWP, it performs the following (A).
(A) If any of the following (A-1) to (A-4) is met, start or restart the BWP inactivity timer associated with the Active DL BWP.
(A-1) A default downlink BWP identifier (defaultDownlinkBWP-Id) is set, and the MAC entity switches to a downlink BWP that is not indicated in either the defaultDownlinkBWP-Id or the dormant BWP identifier (dormantBWP-Id).
(A-2) The UE is not a performance-limited terminal (RedCap UE), the default downlink BWP identifier (defaultDownlinkBWP-Id) is not set, and the MAC entity switches to a downlink BWP that is not the initialDownlinkBWP and is not indicated by the dormant BWP identifier (dormantBWP-Id).
(A-3) The UE is a performance-limited terminal (RedCap UE), the identifier of the default downlink BWP (defaultDownlinkBWP-Id) is not set, the initial downlink BWP for the performance-limited terminal (initialDownlinkBWP-RedCap) is not set, and the MAC entity switches to a downlink BWP other than the initialDownlinkBWP.
(A-4) The UE is a performance-limited terminal (RedCap UE), the identifier of the default downlink BWP (defaultDownlinkBWP-Id) is not set, an initial downlink BWP for the performance-limited terminal (initialDownlinkBWP-RedCap) is set, and the MAC entity switches to a downlink BWP other than initialDownlinkBWP-RedCap.
 BWPが設定されている、活性化された各サービングセルにおいて、MACエンティティは、もし、BWPが活性化され(Active BWPであり)、そのサービングセルにおけるActive DL BWPが休眠BWP(dormant BWP)でないなら、下記(A)から(H)の一部または全部を行う。
  (A)そのBWPでUL-SCHを送信する。
  (B)もしPRACHオケージョンが設定されているなら、そのBWPでRACHを送信する。
  (C)そのBWPでPDCCHをモニタする。
  (D)もしPUCCHが設定されているなら、そのBWPでPUCCHを送信する。
  (E)そのBWPでCSIを報告する。
  (F)もしSRSが設定されているなら、そのBWPでSRSを送信する。
  (G)そのBWPでDL-SCHを受信する。
  (H)もしあれば貯蓄された設定(stored configuration)に従って、そのActive BWPで設定されている、グラントタイプ1のサスペンドされたすべてのコンフィギュアード上りリンクグラントを(再び)初期化する。
In each active serving cell in which a BWP is configured, the MAC entity shall perform some or all of the following (A) to (H) if the BWP is active (Active BWP) and the Active DL BWP in that serving cell is not a dormant BWP:
(A) Transmit UL-SCH with that BWP.
(B) If a PRACH occasion is configured, send a RACH in that BWP.
(C) Monitor the PDCCH in that BWP.
(D) If PUCCH is configured, transmit PUCCH in that BWP.
(E) Report the CSI in that BWP.
(F) If SRS is configured, send SRS in that BWP.
(G) Receive DL-SCH on that BWP.
(H) (re)initialize all suspended configured uplink grants of grant type 1 in that Active BWP according to the stored configuration, if any.
 MACエンティティは、もし、BWPが活性化され(Active BWPであり)、そのサービングセルにおけるActive DL BWP が休眠BWP(dormant BWP)であるなら、下記(A)から(L)の一部または全部を行う。
  (A)このサービングセルのBWP不活性タイマーが走っているならば停止する。
  (B)そのBWPでPDCCHをモニタしない。
  (C)そのBWPのためにPDCCHをモニタしない。
  (D)そのBWPでDL-SCHを受信しない。
  (E)そのBWPでCSIを報告せず、そのBWPのために非周期CSI(aperiodic CSI)を除くCSIを報告する。
  (F)そのBWPでSRSを送信しない。
  (G)そのBWPでUL-SCHを送信しない。
  (H)そのBWPでRACHを送信しない。
  (I)そのBWPでPUCCHを送信しない。
  (J)そのSCellに関連付けられた、すべてのコンフィギュアード下りリンクアサインメントおよび/またはすべてのグラントタイプ2のコンフィギュアード上りリンクグラントをクリアする。
  (K)そのSCellに関連付けられた、すべてのグラントタイプ1のコンフィギュアード上りリンクグラントをサスペンドする。
  (L)もしビーム失敗が検出されたら、そのSCellのためのビーム失敗検出およびビーム失敗回復を実行する。
If the BWP is activated (Active BWP) and the Active DL BWP in its serving cell is a dormant BWP, the MAC entity performs some or all of the following (A) to (L).
(A) Stop this serving cell's BWP inactivity timer, if it is running.
(B) Do not monitor the PDCCH in that BWP.
(C) Do not monitor the PDCCH for that BWP.
(D) DL-SCH is not received on that BWP.
(E) Do not report CSI in that BWP, and report CSI excluding aperiodic CSI for that BWP.
(F) Do not send SRS in that BWP.
(G) Do not transmit UL-SCH in that BWP.
(H) Do not send a RACH in that BWP.
(I) Do not transmit PUCCH in that BWP.
(J) Clear all configured downlink assignments and/or all configured uplink grants of grant type 2 associated with that SCell.
(K) Suspend all configured uplink grants of grant type 1 associated with that SCell.
(L) If beam failure is detected, perform beam failure detection and beam failure recovery for that SCell.
 MACエンティティは、もし、BWPが不活性化されたら、下記(A)から(I)の一部または全部を行う。
  (A)そのBWPでUL-SCHを送信しない。
  (B)そのBWPでRACHを送信しない。
  (C)そのBWPでPDCCHをモニタしない。
  (D)そのBWPでPUCCHを送信しない。
  (E)そのBWPでCSIを報告しない。
  (F)そのBWPでSRSを送信しない。
  (G)そのBWPでDL-SCHを受信しない。
  (H)そのBWPで設定されている、すべてのコンフィギュアード下りリンクアサインメントおよび/またはすべてのグラントタイプ2のコンフィギュアード上りリンクグラントをクリアする。
  (I)そのInactive BWP(インアクティブなBWP)のすべてのグラントタイプ1のコンフィギュアード上りリンクグラントをサスペンドする。
A MAC entity shall, if a BWP is deactivated, do some or all of the following:
(A) Do not transmit UL-SCH in that BWP.
(B) Do not send a RACH in that BWP.
(C) Do not monitor the PDCCH in that BWP.
(D) Do not transmit PUCCH in that BWP.
(E) Failing to report a CSI in that BWP.
(F) Do not send SRS in that BWP.
(G) DL-SCH is not received on that BWP.
(H) Clear all configured downlink assignments and/or all configured uplink grants of grant type 2 in that BWP.
(I) Suspend all configured uplink grants of grant type 1 for that Inactive BWP.
 複数送信/受信点(multiple Transmit/Receive Point:multi-TRPまたはmTRPとも称する)オペレーションについて説明する。 This section explains multiple transmit/receive point (also called multi-TRP or mTRP) operation.
 mTRPオペレーションにおいて、サービングセルは、PDSCH、PDCCH、PUSCH、およびPUCCHのための、より良いカバレッジ、信頼性、および/またはデータレートを提供するために、複数のTRP(Transmit/Receive Point)から端末装置をスケジュールすることができてよい。 In mTRP operation, the serving cell may be able to schedule terminal devices from multiple TRPs (Transmit/Receive Points) to provide better coverage, reliability, and/or data rates for PDSCH, PDCCH, PUSCH, and PUCCH.
 mTRPのPDSCH送信のスケジュールのために、二つの異なるオペレーションモードがあってよい。二つのオペレーションモードは、single-DCIとmulti-DCIであってよい。両方のモードに対する上りリンクと下りリンクオペレーションの制御は、RRC層によって設定される設定を用いて、PHY層とMAC層で行われてよい。single-DCIモードでは、端末装置に対して、同じDCIによって両方のTRP対するスケジュールがなされてよい。multi-DCIモードでは、端末装置に対して、独立したDCIによってそれぞれのTRPに対するスケジュールがなされてよい。 There may be two different operation modes for scheduling PDSCH transmissions of mTRP. The two operation modes may be single-DCI and multi-DCI. The control of uplink and downlink operation for both modes may be performed at the PHY and MAC layers with configuration set by the RRC layer. In single-DCI mode, the terminal device may be scheduled for both TRPs by the same DCI. In multi-DCI mode, the terminal device may be scheduled for each TRP by an independent DCI.
 mTRPの各TRPは、TRP情報によって特定されてもよい。例えば、TRP情報は、一つまたは複数のTRPのうち一つのTRPを特定するための情報であってもよい。例えば、TRP情報は、一つのTRPを特定するためのインデックスであってもよい。例えば、TRP情報に基づいて、一つのTRPが決定されてもよい。例えば、TRP情報は、一つまたは複数のTRPを特定するための情報であってもよい。TRP情報は、一つのTRPを選択するために用いられてもよい。TRP情報は、CORESETプールインデックスであってもよい。一つのCORESETに、一つのCORESETプールインデックスと一つのCORESETリソースセット識別子とが関連付けられてよい。端末装置は、CORESETリソースセット識別子に基づいて対応するTRPでPUSCHを送信してもよい。TRP情報は、CORESETリソースプールのインデックスに関連付けられてもよい。例えば、第一のCORESETプールインデックスは、第一のTRPに関連付けられてもよく、第二のCORESETプールインデックスは、第二のTRPに関連付けられてもよい。TRP情報は、TCI状態のプール(またはTCI状態のプールインデックス)に関連付けられてもよい。例えば、第一のTCI状態プール(またはプールインデックス)は、第一のTRPに関連付けられてもよく、第二のTCI状態プール(またはプールインデックス)は、第二のTRPに関連付けられてもよい。 Each TRP of the mTRP may be identified by TRP information. For example, the TRP information may be information for identifying one TRP among one or more TRPs. For example, the TRP information may be an index for identifying one TRP. For example, one TRP may be determined based on the TRP information. For example, the TRP information may be information for identifying one or more TRPs. The TRP information may be used to select one TRP. The TRP information may be a CORESET pool index. One CORESET may be associated with one CORESET pool index and one CORESET resource set identifier. The terminal device may transmit a PUSCH with a corresponding TRP based on the CORESET resource set identifier. The TRP information may be associated with an index of the CORESET resource pool. For example, a first CORESET pool index may be associated with a first TRP, and a second CORESET pool index may be associated with a second TRP. The TRP information may be associated with a pool (or a pool index) of a TCI state. For example, a first TCI state pool (or pool index) may be associated with a first TRP, and a second TCI state pool (or pool index) may be associated with a second TRP.
 mTRPのPDCCH送信のスケジュールのために、二つの異なるオペレーションモードがあってよい。二つのオペレーションモードは、PDCCH繰り返しと、単一周波数ネットワーク(single frequency network:SFN)ベースのPDCCH送信であってよい。両方のモードにおいて、端末装置は、各TRPから同じDCIを運ぶPDCCH送信のそれぞれを受信することができる。PDCCH繰り返しモードにおいて、端末装置は、それぞれ異なるCORESETに対応付けられた二つのリンクされたサーチスペースから同じDCIを運ぶ二つのPDCCH送信を受信することができる。SFNベースのPDCCH送信モードにおいて、端末装置は、異なるTCI状態(TCI state)を用いて、単一のサーチスペース/CORESETから、同じDCIを運ぶ二つのPDCCH送信を受信することができる。 There may be two different operation modes for scheduling PDCCH transmissions of an mTRP. The two operation modes may be PDCCH repetition and single frequency network (SFN) based PDCCH transmission. In both modes, the terminal device can receive each of the PDCCH transmissions carrying the same DCI from each TRP. In the PDCCH repetition mode, the terminal device can receive two PDCCH transmissions carrying the same DCI from two linked search spaces, each associated with a different CORESET. In the SFN based PDCCH transmission mode, the terminal device can receive two PDCCH transmissions carrying the same DCI from a single search space/CORESET using different TCI states.
 mTRP PUSCH繰り返しにおいて、単一のDCI、またはRRCシグナリングによって提供されたコンフィギュアード上りリンクグラントによるインディケーションによって、端末装置は、二つのTRPに対応する、異なる空間的関係(spatial relation)に関連付けられたビーム方向に同じコンテンツのPUSCH送信を実行(perform)してよい。 In mTRP PUSCH repetition, upon indication by a single DCI or a configured uplink grant provided by RRC signaling, the terminal device may perform PUSCH transmission of the same content in beam directions associated with different spatial relations corresponding to two TRPs.
 mTRP PUCCH繰り返しにおいて、端末装置は、二つのTRPに対応する、異なる空間的関係に関連付けられたビーム方向に同じコンテンツのPUCCH送信を実行してよい。 In mTRP PUCCH repetition, the terminal device may perform PUCCH transmission of the same content in beam directions associated with different spatial relationships corresponding to two TRPs.
 セル間(inter-cell)のmTRPオペレーションにおいて、multi-DCI PDSCH送信における一つまたは複数のTCI状態が、サービングセルの物理セル識別子(Physical Cell Identity:PCI)とは異なるPCIのSSBに関連付けられてよい。また、一度に活性化される、サービングセルとは異なるPCIに関連付けられたTCI状態は最大一つであってよい。 In inter-cell mTRP operation, one or more TCI states in a multi-DCI PDSCH transmission may be associated with an SSB of a Physical Cell Identity (PCI) different from the PCI of the serving cell. Also, at most one TCI state associated with a PCI different from the serving cell may be active at a time.
 次に集約ユニット(Central Unit:CU)および分散ユニット(Distributed Unit:DU)について説明する。集約ユニットとは、基地局装置のRRC層、SDAP層およびPDCP層をホストする(hosting)論理ノードのことであってよい。また、分散ユニットとは、基地局装置のRLC層、MAC層およびPHY層をホストする論理ノードのことであってよい。集約ユニットは、一つまたは複数の分散ユニットの操作(operation)を制御してよい。また、一つの分散ユニットは、一つまたは複数のセルをサポートしてよい。一つのセルは、ただ一つの分散ユニットのみによってサポートされてよい。なお集約ユニットの機能の一部が分散ユニットに実装されてもよい。また、分散ユニットの機能の一部が集約ユニットに実装されてもよい。 Next, we will explain the central unit (CU) and distributed unit (DU). The central unit may be a logical node that hosts the RRC layer, SDAP layer, and PDCP layer of the base station device. The distributed unit may be a logical node that hosts the RLC layer, MAC layer, and PHY layer of the base station device. The central unit may control the operation of one or more distributed units. One distributed unit may support one or more cells. One cell may be supported by only one distributed unit. Some of the functions of the central unit may be implemented in the distributed unit. Some of the functions of the distributed unit may be implemented in the central unit.
 次に、本実施形態におけるレイヤ1/レイヤ2トリガモビリティ(L1/L2-triggered mobility:LTM)について説明する。 Next, we will explain Layer 1/Layer 2 triggered mobility (L1/L2-triggered mobility: LTM) in this embodiment.
 レイヤ1/レイヤ2トリガモビリティとは、基地局装置が、サービングセルのターゲット(変更先)である一つまたは複数のセルを端末装置に特定させるDCIまたはMAC CEを送信し、そのDCIまたはMAC CEを通じて、一つまたは複数のサービングセルの切り替え(変更)を端末装置に指示する手順(procedure)であってよい。それに加えてまたはそれに代えて、レイヤ1/レイヤ2トリガモビリティとは、端末装置が、サービングセルのターゲットである一つまたは複数のセルを特定するDCIまたはMAC CEを基地局装置から受信し、そのDCIまたはMAC CEによって示される一つまたは複数のセルへ、サービングセルを切り替える(変更する)手順のことであってよい。 Layer 1/Layer 2 triggered mobility may be a procedure in which a base station device transmits a DCI or MAC CE that causes a terminal device to identify one or more cells that are targets for the serving cell, and instructs the terminal device to switch (change) the serving cell or cells through the DCI or MAC CE. In addition or instead, Layer 1/Layer 2 triggered mobility may be a procedure in which a terminal device receives a DCI or MAC CE from a base station device that identifies one or more cells that are targets for the serving cell, and switches (changes) the serving cell to one or more cells indicated by the DCI or MAC CE.
 例えば、サービングセルのターゲットである一つまたは複数のセルを端末装置に特定させるDCIは、サービングセルのターゲットである一つまたは複数のセルを示す一つまたは複数の識別子を含むDCIであってよい。また、例えば、サービングセルのターゲットである一つまたは複数のセルを特定させるMAC CEは、サービングセルのターゲットである一つまたは複数のセルを示す一つまたは複数の識別子を含むMAC CEであってよい。前記識別子は、例えばRRCシグナリングによって予め端末装置に設定されている一つまたは複数のサービングセルのターゲットに関する情報のそれぞれと対応づけられた識別子であってよい。また、前記識別子をL1/L2候補ターゲット識別子(L1/L2 candidate target index)と称してよい。 For example, the DCI that allows the terminal device to identify one or more cells that are targets of the serving cell may be a DCI that includes one or more identifiers indicating one or more cells that are targets of the serving cell. Also, for example, the MAC CE that allows the terminal device to identify one or more cells that are targets of the serving cell may be a MAC CE that includes one or more identifiers indicating one or more cells that are targets of the serving cell. The identifiers may be identifiers that correspond to each of the information regarding one or more serving cell targets that is set in advance in the terminal device by, for example, RRC signaling. Also, the identifiers may be referred to as L1/L2 candidate target indexes.
 レイヤ1/レイヤ2トリガモビリティにおいて、基地局装置は、端末装置から提供されるメジャメントのレポート(measurement report)に基づいて、サービングセルのターゲットを決定してもよい。前記メジャメントのレポートは、端末装置からPUSCHで送信されるCSI報告(CSI reporting)であってよい。それに加えてまたはそれに代えて、前記メジャメントのレポートは、端末装置からRRCシグナリングとして送信される測定報告メッセージ(measurement report message)であってよい。それに加えてまたはそれに代えて、前記メジャメントのレポートは、端末装置からMAC CEとして送信される測定報告情報であってよい。また、前記メジャメントのレポートは、その他の情報であってもよい。 In Layer 1/Layer 2 triggered mobility, the base station device may determine the serving cell target based on a measurement report provided from the terminal device. The measurement report may be a CSI report transmitted from the terminal device on a PUSCH. Additionally or alternatively, the measurement report may be a measurement report message transmitted from the terminal device as RRC signaling. Additionally or alternatively, the measurement report may be measurement report information transmitted from the terminal device as a MAC CE. The measurement report may also be other information.
 なお、「レイヤ1/レイヤ2トリガモビリティ」は、「レイヤ1/レイヤ2モビリティ(L1/L2mobility)」、「レイヤ1/レイヤ2ベースのセル間モビリティ(L1/L2 based inter-cell mobility)」、「レイヤ1/レイヤ2セル間モビリティ(L1/L2 inter-cell mobility)」、「レイヤ1/レイヤ2サービングセル変更処理」、「レイヤ1/レイヤ2サービングセル変更」または「レイヤ1/レイヤ2ハンドオーバ」等と言い換えられてよい。 Note that "Layer 1/Layer 2 triggered mobility" may be rephrased as "Layer 1/Layer 2 mobility (L1/L2 mobility)", "Layer 1/Layer 2 based inter-cell mobility (L1/L2 based inter-cell mobility)", "Layer 1/Layer 2 inter-cell mobility (L1/L2 inter-cell mobility)", "Layer 1/Layer 2 serving cell change processing", "Layer 1/Layer 2 serving cell change", or "Layer 1/Layer 2 handover", etc.
 「L1/L2候補ターゲット識別子」は、「候補ターゲット識別子(candidate target index)」、「L1/L2候補設定識別子(L1/L2 candidate configuration index)」、「候補設定識別子(candidate configuration index)」、「L1/L2候補ターゲット設定識別子」または「候補ターゲット設定識別子」等と言い換えられてよい。 The term "L1/L2 candidate target identifier" may be rephrased as "candidate target index," "L1/L2 candidate configuration index," "candidate configuration index," "L1/L2 candidate target configuration identifier," or "candidate target configuration identifier," etc.
 「サービングセルのターゲットである一つまたは複数のセルを端末装置に特定させるDCI」は、「ターゲットである一つまたは複数のセルへのサービングセルの変更を端末装置に指示するDCI」や「端末装置の一つまたは複数のサービングセルを変更するDCI」等と言い換えられてよい。 "DCI that causes the terminal device to identify one or more cells that are targets of the serving cell" may be rephrased as "DCI that instructs the terminal device to change the serving cell to one or more target cells" or "DCI that changes one or more serving cells of the terminal device", etc.
 「サービングセルのターゲットである一つまたは複数のセルを端末装置に特定させるMAC CE」は、「ターゲットである一つまたは複数のセルへのサービングセルの変更を指示するMAC CE」や「端末装置の一つまたは複数のサービングセルを変更するMAC CE」等と言い換えられてよい。 "A MAC CE that causes a terminal device to identify one or more cells that are targets of a serving cell" may be rephrased as "a MAC CE that instructs a change of the serving cell to one or more target cells" or "a MAC CE that changes one or more serving cells of a terminal device", etc.
 また、DCIは、レイヤ1シグナリングと言い換えられてよい。MAC CEは、レイヤ2シグナリングと言い換えられてよい。また、上述のメジャメントは、レイヤ1(PHYレイヤ)、および/または、レイヤ3(RRCレイヤ)によって行われてよい。また、上述のメジャメントのレポートは、レイヤ1(PHYレイヤ)、レイヤ2(MACレイヤ)、および/またはレイヤ3(RRCレイヤ)によって行われてよい。 DCI may also be referred to as Layer 1 signaling. MAC CE may also be referred to as Layer 2 signaling. The above-mentioned measurements may be performed by Layer 1 (PHY layer) and/or Layer 3 (RRC layer). The above-mentioned measurements may also be reported by Layer 1 (PHY layer), Layer 2 (MAC layer), and/or Layer 3 (RRC layer).
 レイヤ1/レイヤ2トリガモビリティにおいて、基地局装置は端末装置に対して、サービングセルのターゲットに関する情報を通知してよい。サービングセルのターゲットに関する情報は、RRCシグナリングによって端末装置に通知されてよい。それに加えてまたはそれに代えて、サービングセルのターゲットに関する情報は、MAC CE、および/またはDCIによって端末装置に通知されてよい。例えば、サービングセルのターゲットに関する情報の一部は予めRRCシグナリングによって端末装置に通知され、サービングセルをターゲットに変更するときに、前記ターゲットに関する情報の他の一部をMAC CE、および/またはDCIによって端末装置に通知してもよい。サービングセルのターゲットに関する情報を、レイヤ1/レイヤ2セル間モビリティ候補ターゲット設定(L1/L2 inter-cell mobility candidate target configuration)、L1/L2トリガ候補ターゲット設定(L1/L2-triggered candidatetarget configuration)、L1/L2候補ターゲット設定(L1/L2 candidate target configuration)、または単に、候補ターゲット設定(candidate target configuration)等とも称する。なお、以下の説明では条件付再設定の候補ターゲットSpCellなどとの混同を避けるため、サービングセルのターゲットに関する情報を、L1/L2候補ターゲット設定と称する。また、サービングセルの一つまたは複数のターゲットに対応する、一つまたは複数のL1/L2候補ターゲット設定が、端末装置に通知されてよい。端末装置は、基地局装置から通知された一つまたは複数のL1/L2候補ターゲット設定を保持(store)してよい。 In Layer 1/Layer 2 triggered mobility, a base station device may notify a terminal device of information regarding a serving cell target. The information regarding the serving cell target may be notified to the terminal device by RRC signaling. Additionally or alternatively, the information regarding the serving cell target may be notified to the terminal device by MAC CE and/or DCI. For example, part of the information regarding the serving cell target may be notified to the terminal device in advance by RRC signaling, and when changing the serving cell to a target, another part of the information regarding the target may be notified to the terminal device by MAC CE and/or DCI. Information regarding the serving cell target is also referred to as the Layer 1/Layer 2 inter-cell mobility candidate target configuration, the L1/L2-triggered candidate target configuration, the L1/L2 candidate target configuration, or simply the candidate target configuration. In the following description, to avoid confusion with the conditional reconfiguration candidate target SpCell, etc., information regarding the serving cell target is referred to as the L1/L2 candidate target configuration. In addition, one or more L1/L2 candidate target configurations corresponding to one or more targets of the serving cell may be notified to the terminal device. The terminal device may store one or more L1/L2 candidate target configurations notified from the base station device.
 一つまたは複数のL1/L2候補ターゲット設定のそれぞれを識別するために、例えば各L1/L2候補ターゲット設定に対応付けられたL1/L2候補ターゲット識別子が、端末装置に通知されてもよい。端末装置は、基地局装置から通知された一つまたは複数のL1/L2候補ターゲット設定とそのL1/L2候補ターゲット設定に対応付けられたL1/L2候補ターゲット識別子とを保持(store)してよい。 In order to identify each of the one or more L1/L2 candidate target settings, for example, an L1/L2 candidate target identifier associated with each L1/L2 candidate target setting may be notified to the terminal device. The terminal device may store one or more L1/L2 candidate target settings notified from the base station device and the L1/L2 candidate target identifier associated with the L1/L2 candidate target setting.
 レイヤ1/レイヤ2トリガモビリティにおいて、下記(A)から(C)の一部または全部のモビリティのシナリオがサポートされてよいし、その他のモビリティのシナリオがサポートされてもよい。また、CAが設定されていない端末装置において、下記(A)のモビリティのシナリオは、PCellのみが変更されるというシナリオであってよいし、CAが設定されている端末装置において、下記(A)のモビリティのシナリオは、PCell、および、一つまたは複数のSCellが変更されるというシナリオであってよいし、PCellのみが変更されるというシナリオであってよい。それに加えてまたはそれに代えて、CAが設定されている端末装置において、下記(A)のモビリティのシナリオは、現在のPCellとSCellが入れ替わる、つまり、ターゲットのPCellおよびSCellが、それぞれ現在のSCellおよびPCellとなるというシナリオであってよい。
  (A)PCell変更
  (B)分散ユニット内(intra-DU)モビリティおよび集約ユニット内分散ユニット間(intra-CU-inter-DU)モビリティ
  (C)セル間ビーム制御(inter-cell beam management)
In the Layer 1/Layer 2 trigger mobility, some or all of the mobility scenarios (A) to (C) below may be supported, or other mobility scenarios may be supported. In addition, in a terminal device in which CA is not configured, the mobility scenario (A) below may be a scenario in which only the PCell is changed, and in a terminal device in which CA is configured, the mobility scenario (A) below may be a scenario in which the PCell and one or more SCells are changed, or a scenario in which only the PCell is changed. In addition or instead, in a terminal device in which CA is configured, the mobility scenario (A) below may be a scenario in which the current PCell and SCell are replaced, that is, the target PCell and SCell become the current SCell and PCell, respectively.
(A) PCell change (B) Intra-DU mobility and intra-CU-inter-DU mobility (C) Inter-cell beam management
 レイヤ1/レイヤ2トリガモビリティにおいて、下記(A)および/または(B)の原理(principle)が適用されてよい。
  (A)基地局装置が、フル設定(full configuration)を必要とせずに動的切り替え(dynamic switching)ができるようにL1/L2候補ターゲット設定を用意する。
  (B)ユーザプレーンが、データ損失およびデータ回復のための追加遅延を回避するため出来るだけリセットせずに連続的に通信する。
In Layer 1/Layer 2 triggered mobility, the following principles (A) and/or (B) may be applied.
(A) A base station device provides L1/L2 candidate target configuration so that dynamic switching can be performed without requiring full configuration.
(B) The user plane communicates continuously, preferably without resets, to avoid data loss and additional delays for data recovery.
 レイヤ1/レイヤ2トリガモビリティにおいて、下記(A)から(F)の一部または全部がL1/L2候補ターゲット設定のために用いられてよい。
  (A)RRCコネクションの再設定に関するメッセージ
  (B)セルグループ設定
  (C)SpCell設定および/またはSCell設定
  (D)測定設定
  (E)無線ベアラ設定
  (F)その他の情報要素
In Layer 1/Layer 2 triggered mobility, some or all of the following (A) to (F) may be used for L1/L2 candidate target setting.
(A) Messages related to RRC connection reconfiguration (B) Cell group configuration (C) SpCell configuration and/or SCell configuration (D) Measurement configuration (E) Radio bearer configuration (F) Other information elements
 一つまたは複数のL1/L2候補ターゲット設定は、RRCシグナリング、または、その他のシグナリング(MAC CE、DCI等)によって端末装置に通知されてよい。端末装置は、前記L1/L2候補ターゲット設定を、サービングセルのターゲットである一つまたは複数のセルへのサービングセルの変更を指示するDCIまたはMAC CEを受信するまで保持(store)してよい。また、分散ユニット内モビリティと集約ユニット内分散ユニット間モビリティで、前記L1/L2候補ターゲット設定が共通であってよいし、前記L1/L2候補ターゲット設定の一部が異なっていてもよい。なお、前記L1/L2候補ターゲット設定には、システム情報(searchSpaceSIB1、searchSpaceOtherSystemInformation等)、ページングメッセージ(pagingSearchSpace等)、共通サーチスペース(commonSearchSpaceList等)の一部または全部が含まれてよい。また、レイヤ1/レイヤ2トリガモビリティにおいて、セキュリティ鍵更新は行われなくてよい。 The terminal device may be notified of one or more L1/L2 candidate target settings by RRC signaling or other signaling (MAC CE, DCI, etc.). The terminal device may store the L1/L2 candidate target settings until it receives a DCI or MAC CE instructing a change of the serving cell to one or more cells that are targets of the serving cell. The L1/L2 candidate target settings may be common between intra-distributed unit mobility and intra-aggregated unit inter-distributed unit mobility, or some of the L1/L2 candidate target settings may be different. The L1/L2 candidate target settings may include some or all of the system information (searchSpaceSIB1, searchSpaceOtherSystemInformation, etc.), paging messages (pagingSearchSpace, etc.), and common search spaces (commonSearchSpaceList, etc.). In addition, security key updates may not be performed in Layer 1/Layer 2 triggered mobility.
 あるL1/L2候補ターゲット設定で設定される一つまたは複数のセルのそれぞれを、候補セル(candidate cell)、または候補ターゲットセル(candidate target cell)と称する。 Each of the one or more cells configured in a given L1/L2 candidate target configuration is called a candidate cell or a candidate target cell.
 上記のセルグループ設定、SpCell設定、SCell設定、測定設定、およびベアラ設定は、RRCコネクションの再設定に関するメッセージに含まれるものと同じ情報要素が用いられてもよいし、RRCコネクションの再設定に関するメッセージに含まれるものに対して、新たなパラメータが追加されたもの、および/または一部または全部のパラメータが削除されたものが用いられてもよい。 The above cell group configuration, SpCell configuration, SCell configuration, measurement configuration, and bearer configuration may use the same information elements as those included in the message regarding the reconfiguration of the RRC connection, or may use information elements in which new parameters have been added and/or some or all of the parameters have been deleted from those included in the message regarding the reconfiguration of the RRC connection.
 各L1/L2候補ターゲット設定はRRCコネクションの再設定に関するメッセージであってよい。この場合、L1/L2候補ターゲット設定には少なくともMCGに関するセルグループ設定が含まれてよい。セルグループ設定には少なくともSpCell設定が含まれてよい。また、セルグループ設定にはSCell設定が含まれてもよい。それに加えて、L1/L2候補ターゲット設定には他の情報が含まれてもよい。例えば、SCGに関するセルグループ設定がL1/L2候補ターゲット設定に含まれてもよい。例えば、測定設定がL1/L2候補ターゲット設定に含まれてもよい。例えば、無線ベアラ設定がL1/L2候補ターゲット設定に含まれてもよい。一つまたは複数のL1/L2候補ターゲット設定に加えて、各L1/L2候補ターゲット設定を識別するためのL1/L2候補ターゲット識別子が、基地局装置から端末装置に通知されてよい。 Each L1/L2 candidate target configuration may be a message regarding reconfiguration of an RRC connection. In this case, the L1/L2 candidate target configuration may include at least a cell group configuration related to the MCG. The cell group configuration may include at least an SpCell configuration. The cell group configuration may also include an SCell configuration. In addition, the L1/L2 candidate target configuration may include other information. For example, a cell group configuration related to the SCG may be included in the L1/L2 candidate target configuration. For example, a measurement configuration may be included in the L1/L2 candidate target configuration. For example, a radio bearer configuration may be included in the L1/L2 candidate target configuration. In addition to one or more L1/L2 candidate target configurations, an L1/L2 candidate target identifier for identifying each L1/L2 candidate target configuration may be notified from the base station device to the terminal device.
 例えば、端末装置は、サービングセルのターゲットである一つまたは複数のセルを特定するDCIまたはMAC CEを基地局装置から受信し、そのDCIまたはMAC CEによって示されるL1/L2候補ターゲット識別子に基づき、そのL1/L2候補ターゲット識別子に対応するL1/L2候補ターゲット設定であるRRCコネクションの再設定に関するメッセージを、端末装置のRRCの設定に対して適用してよい。 For example, the terminal device may receive DCI or MAC CE from the base station device that identifies one or more cells that are targets of the serving cell, and based on the L1/L2 candidate target identifier indicated by the DCI or MAC CE, apply a message regarding reconfiguration of the RRC connection, which is the L1/L2 candidate target setting corresponding to the L1/L2 candidate target identifier, to the RRC settings of the terminal device.
 各L1/L2候補ターゲット設定はセルグループ設定であってよい。この場合、L1/L2候補ターゲット設定はMCGのセルグループ設定であってよい。セルグループ設定には少なくともSpCell設定が含まれてよい。また、セルグループ設定にはSCell設定が含まれてもよい。それに加えて、L1/L2候補ターゲット設定には他の情報が関連付けられてもよい。例えば、別途端末装置に通知されるSCGに関するセルグループ設定がL1/L2候補ターゲット設定に関連付けられてもよい。例えば、別途端末装置に通知される測定設定がL1/L2候補ターゲット設定に関連付けられてもよい。例えば、別途端末装置に通知される無線ベアラ設定がL1/L2候補ターゲット設定に関連付けられてもよい。一つまたは複数のL1/L2候補ターゲット設定に加えて、各L1/L2候補ターゲット設定を識別するためのL1/L2候補ターゲット識別子が、基地局装置から端末装置に通知されてよい。また、L1/L2候補ターゲット設定がセルグループ設定である場合、このL1/L2候補ターゲット設定のセルグループを候補セルグループ(Candidate Cell Group:CCG)と称してよい。 Each L1/L2 candidate target configuration may be a cell group configuration. In this case, the L1/L2 candidate target configuration may be a cell group configuration of an MCG. The cell group configuration may include at least an SpCell configuration. The cell group configuration may also include an SCell configuration. In addition, other information may be associated with the L1/L2 candidate target configuration. For example, a cell group configuration related to an SCG that is separately notified to a terminal device may be associated with the L1/L2 candidate target configuration. For example, a measurement configuration that is separately notified to a terminal device may be associated with the L1/L2 candidate target configuration. For example, a radio bearer configuration that is separately notified to a terminal device may be associated with the L1/L2 candidate target configuration. In addition to one or more L1/L2 candidate target configurations, an L1/L2 candidate target identifier for identifying each L1/L2 candidate target configuration may be notified from the base station device to the terminal device. In addition, when the L1/L2 candidate target setting is a cell group setting, the cell group of this L1/L2 candidate target setting may be referred to as a candidate cell group (CCG).
 例えば、端末装置は、サービングセルのターゲットである一つまたは複数のセルを特定するDCIまたはMAC CEを基地局装置から受信し、そのDCIまたはMAC CEによって示されるL1/L2候補ターゲット識別子に基づき、そのL1/L2候補ターゲット識別子に対応するL1/L2候補ターゲット設定であるセルグループ設定を、端末装置のRRCのMCGの設定に対して適用してよい。また、適用したL1/L2候補ターゲット設定に関連付けられた情報がある場合、端末装置は、その関連付けられた情報を端末装置のRRCの設定に対して適用してもよい。なお、例えば、L1/L2候補ターゲット設定がセカンダリノードによって設定される場合、このL1/L2候補ターゲット設定はSCGのセルグループ設定であってもよい。端末装置は、サービングセルのターゲットである一つまたは複数のセルを特定するDCIまたはMAC CEが何れのセルグループのセルで受信したかに基づき、MCGとSCGの何れのセルグループ設定を端末装置のRRCの設定に対して適用するかを判断してよい。 For example, the terminal device may receive DCI or MAC CE from the base station device, which identifies one or more cells that are targets of the serving cell, and apply a cell group setting, which is an L1/L2 candidate target setting corresponding to the L1/L2 candidate target identifier, to the MCG setting of the RRC of the terminal device based on the L1/L2 candidate target identifier indicated by the DCI or MAC CE. In addition, if there is information associated with the applied L1/L2 candidate target setting, the terminal device may apply the associated information to the RRC setting of the terminal device. Note that, for example, if the L1/L2 candidate target setting is set by a secondary node, this L1/L2 candidate target setting may be a cell group setting of the SCG. The terminal device may determine which cell group setting, MCG or SCG, to apply to the RRC setting of the terminal device based on which cell group the DCI or MAC CE identifying one or more cells that are targets of the serving cell is received from.
 また、端末装置に通知されるL1/L2候補ターゲット設定のそれぞれは、異なる構造の設定であってよい。例えば、あるL1/L2候補ターゲット設定はセルグループ設定であり、別のL1/L2候補ターゲット設定はSpCell設定であってもよい。すなわち、L1/L2候補ターゲット設定はASN.1記法における選択(CHOICE)により異なる構造をとってよい。 Furthermore, each of the L1/L2 candidate target settings notified to the terminal device may be a setting of a different structure. For example, one L1/L2 candidate target setting may be a cell group setting, and another L1/L2 candidate target setting may be an SpCell setting. In other words, the L1/L2 candidate target settings may have different structures depending on the choice (CHOICE) in the ASN.1 notation.
 また、端末装置に通知されるL1/L2候補ターゲット設定のそれぞれは、候補ターゲットエントリと呼ばれてもよく、一つまたは複数の候補ターゲットエントリのリスト(候補ターゲットエントリリスト)が端末装置に通知されてもよい。 Furthermore, each of the L1/L2 candidate target settings notified to the terminal device may be referred to as a candidate target entry, and a list of one or more candidate target entries (candidate target entry list) may be notified to the terminal device.
 以上の説明をベースとして、様々な本実施形態を説明する。なお、以下の説明で省略される各処理については上記で説明した各処理が適用されてよい。 Based on the above explanation, various embodiments of the present invention will be described. Note that the processes described above may be applied to the processes omitted in the following explanation.
 図5は本実施形態における端末装置(UE122)の構成を示すブロック図である。なお、説明が煩雑になることを避けるために、図5では、本実施形態と密接に関連する主な構成部のみを示す。 FIG. 5 is a block diagram showing the configuration of a terminal device (UE122) in this embodiment. Note that, to avoid complicating the explanation, FIG. 5 shows only the main components closely related to this embodiment.
 図5に示すUE122は、基地局装置より制御情報(DCI、RRCシグナリング等)を受信する受信部500、及び受信した制御情報に含まれるパラメータに従って処理を行う処理部502、および基地局装置に制御情報(UCI、RRCシグナリング等)を送信する送信部504、から成る。上述の基地局装置とは、eNB102であってよいし、gNB108であってよい。また、処理部502には様々な層(例えば、物理層、MAC層、RLC層、PDCP層、SDAP層、RRC層、およびNAS層)の機能の一部または全部が含まれてよい。すなわち、処理部502には、物理層処理部、MAC層処理部、RLC層処理部、PDCP層処理部、SDAP処理部、RRC層処理部、およびNAS層処理部の一部または全てが含まれてよい。 The UE 122 shown in FIG. 5 includes a receiver 500 that receives control information (DCI, RRC signaling, etc.) from a base station device, a processor 502 that performs processing according to parameters included in the received control information, and a transmitter 504 that transmits control information (UCI, RRC signaling, etc.) to the base station device. The base station device described above may be the eNB 102 or the gNB 108. The processor 502 may include some or all of the functions of various layers (e.g., the physical layer, the MAC layer, the RLC layer, the PDCP layer, the SDAP layer, the RRC layer, and the NAS layer). That is, the processor 502 may include some or all of the physical layer processor, the MAC layer processor, the RLC layer processor, the PDCP layer processor, the SDAP processor, the RRC layer processor, and the NAS layer processor.
 図6は本実施形態における基地局装置の構成を示すブロック図である。なお、説明が煩雑になることを避けるために、図6では、本実施形態と密接に関連する主な構成部のみを示す。上述の基地局装置とは、eNB102であってよいし、gNB108であってよい。 FIG. 6 is a block diagram showing the configuration of a base station device in this embodiment. Note that, to avoid complicating the explanation, FIG. 6 shows only the main components closely related to this embodiment. The above-mentioned base station device may be eNB102 or gNB108.
 図6に示す基地局装置は、UE122へ制御情報(DCI、RRCシグナリング等)を送信する送信部600、及び制御情報(DCI、パラメータを含むRRCシグナリング等)を作成し、UE122に送信する事により、UE122の処理部502に処理を行わせる処理部602、およびUE122から制御情報(UCI、RRCシグナリング等)を受信する受信部604から成る。また、処理部602には様々な層(例えば、物理層、MAC層、RLC層、PDCP層、SDAP層、RRC層、およびNAS層)の機能の一部または全部が含まれてよい。すなわち、処理部602には、物理層処理部、MAC層処理部、RLC層処理部、PDCP層処理部、SDAP処理部、RRC層処理部、およびNAS層処理部の一部または全部が含まれてよい。 The base station device shown in FIG. 6 includes a transmitter 600 that transmits control information (DCI, RRC signaling, etc.) to UE 122, a processor 602 that creates control information (DCI, RRC signaling including parameters, etc.) and transmits it to UE 122, causing the processor 502 of UE 122 to process it, and a receiver 604 that receives control information (UCI, RRC signaling, etc.) from UE 122. The processor 602 may include some or all of the functions of various layers (e.g., physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer, RRC layer, and NAS layer). That is, the processor 602 may include some or all of the physical layer processor, MAC layer processor, RLC layer processor, PDCP layer processor, SDAP processor, RRC layer processor, and NAS layer processor.
 図9を用いて本実施形態における、端末装置(UE122)の処理の一例を説明する。なお、本実施形態において、UE122の処理部502には、RRCの処理をおこなうRRC処理部とMACの処理を行うMAC処理部とが含まれてよい。 An example of the processing of the terminal device (UE 122) in this embodiment will be described with reference to FIG. 9. Note that in this embodiment, the processing unit 502 of the UE 122 may include an RRC processing unit that performs RRC processing and a MAC processing unit that performs MAC processing.
 図9は本実施形態における、UE122の処理の一例を示す図である。UE122の処理部502は、条件の判断を行い(ステップS900)、前記判断に基づいて動作する(ステップS902)。 FIG. 9 is a diagram showing an example of processing by the UE 122 in this embodiment. The processing unit 502 of the UE 122 judges the conditions (step S900) and operates based on the judgment (step S902).
 UE122は、基地局装置(gNB108および/またはeNB102)からRRCシグナリングを受信する。前記RRCシグナリングには一つまたは複数のL1/L2候補ターゲット設定が含まれてよい。UE122のRRC処理部は、前記RRCシグナリングに含まれる一つまたは複数のL1/L2候補ターゲット設定を保持してよい。前記RRCシグナリングには、一つまたは複数のL1/L2候補ターゲット設定のそれぞれを識別する識別子(L1/L2候補ターゲット識別子)が含まれてよい。なお、本実施形態において、L1/L2候補ターゲット設定にはSCell設定が少なくとも一つ含まれる。 UE122 receives RRC signaling from a base station device (gNB108 and/or eNB102). The RRC signaling may include one or more L1/L2 candidate target configurations. The RRC processing unit of UE122 may hold one or more L1/L2 candidate target configurations included in the RRC signaling. The RRC signaling may include an identifier (L1/L2 candidate target identifier) that identifies each of the one or more L1/L2 candidate target configurations. Note that in this embodiment, the L1/L2 candidate target configurations include at least one SCell configuration.
 UE122は、基地局装置(gNB108および/またはeNB102)から、あるセルグループのサービングセルにおいて、サービングセルのターゲットである一つまたは複数のセルを特定するMAC CE(以降の説明においてLTM MAC CEと称するが、他の名称のMAC CEであってもよい)を受信してよい。それに加えてまたはそれに代えて、UE122は、基地局装置(gNB108および/またはeNB102)から、あるセルグループのサービングセルにおいて、このセルグループの各SCellを活性化させることを示す情報または各SCellを不活性化させることを示す情報が含まれるMAC CEを受信してよい。以降の説明において、UE122のMAC処理部は、明示しない限りこのセルグループのMAC処理部であってよい。なお、本実施形態において、前記LTM MAC CEは、ターゲットのSCellを少なくとも一つ特定する。 UE122 may receive, from a base station device (gNB108 and/or eNB102), a MAC CE (referred to as an LTM MAC CE in the following description, but may be a MAC CE with another name) that identifies one or more target cells of a serving cell of a certain cell group. In addition to or instead of this, UE122 may receive, from a base station device (gNB108 and/or eNB102), a MAC CE that includes information indicating that each SCell of a certain cell group is to be activated or information indicating that each SCell is to be deactivated in a serving cell of the certain cell group. In the following description, the MAC processing unit of UE122 may be the MAC processing unit of this cell group unless explicitly stated. In this embodiment, the LTM MAC CE identifies at least one target SCell.
 前記LTM MAC CE、および、前記SCellを活性化させることを示す情報または前記SCellを不活性化させることを示す情報が含まれるMAC CEを受信したUE122のMAC処理部は、ステップS900において、以下の(a)から(c)の条件のそれぞれが満たされているか否かを判断する。以降の説明において、前記SCellを活性化させることを示す情報が含まれるMAC CEによって活性化されるSCellは、前記LTM MAC CEによって特定されるターゲットのSCellのうちの一部または全部であってよいし、前記SCellを不活性化させることを示す情報が含まれるMAC CEによって不活性化されるSCellは、前記LTM MAC CEによって特定されるターゲットのSCellのうちの一部または全部であってよい。
  (a)前記LTM MAC CEによって特定される前記ターゲットのSCellを活性化させることを示す情報(例えばactivatedに設定されているsCellState)が上位レイヤ(RRC等)によって設定されている。
  (b)前記LTM MAC CEおよび前記ターゲットのSCellを活性化させることを示す情報が含まれるMAC CEが同じMAC PDUに含まれる、または、前記LTM MAC CEに、UE122に前記ターゲットのSCellを活性化させることを示す情報が含まれる。
  (c)前記LTM MAC CEおよび前記ターゲットのSCellを不活性化させることを示す情報が含まれるMAC CEが同じMAC PDUに含まれる、または、前記LTM MAC CEに、UE122に前記ターゲットのSCellを不活性化させることを示す情報が含まれる。
The MAC processing unit of UE 122 that has received the LTM MAC CE and a MAC CE including information indicating that the SCell is to be activated or information indicating that the SCell is to be deactivated determines in step S900 whether each of the following conditions (a) to (c) is satisfied. In the following description, the SCell activated by the MAC CE including information indicating that the SCell is to be activated may be a part or all of the target SCells identified by the LTM MAC CE, and the SCell deactivated by the MAC CE including information indicating that the SCell is to be deactivated may be a part or all of the target SCells identified by the LTM MAC CE.
(a) Information indicating that the target SCell identified by the LTM MAC CE is to be activated (for example, sCellState set to activated) is set by a higher layer (such as RRC).
(b) The LTM MAC CE and a MAC CE including information indicating to activate the target SCell are included in the same MAC PDU, or the LTM MAC CE includes information indicating to UE 122 to activate the target SCell.
(c) The LTM MAC CE and a MAC CE including information indicating to deactivate the target SCell are included in the same MAC PDU, or the LTM MAC CE includes information indicating to UE 122 to deactivate the target SCell.
 UE122のMAC処理部は、ステップS902において、前記LTM MAC CEによって特定されるサービングセルのターゲットを示す情報(例えばL1/L2候補ターゲット識別子)をRRC処理部に通知する。 In step S902, the MAC processing unit of UE122 notifies the RRC processing unit of information indicating the target of the serving cell identified by the LTM MAC CE (e.g., L1/L2 candidate target identifier).
 UE122のRRC処理部は、前記LTM MAC CEによって特定されるサービングセルのターゲットを示す情報に基づいて選択したL1/L2候補ターゲット設定を、端末装置のRRCの設定に適用する処理(L1/L2候補ターゲット設定適用処理)を実施する。また、UE122のRRC処理部は、前記L1/L2候補ターゲット設定適用処理を実施した後に、前記L1/L2候補ターゲット設定適用処理が完了したことを示す情報をMAC処理部に通知する。 The RRC processing unit of UE122 performs a process (L1/L2 candidate target setting application process) of applying the L1/L2 candidate target setting selected based on information indicating the target of the serving cell identified by the LTM MAC CE to the RRC setting of the terminal device. In addition, after performing the L1/L2 candidate target setting application process, the RRC processing unit of UE122 notifies the MAC processing unit of information indicating that the L1/L2 candidate target setting application process has been completed.
 それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(b)が満たされていると判断した場合、ステップS902において、RRC処理部から前記L1/L2候補ターゲット設定適用処理が完了したことが通知されたことに基づいて、前記ターゲットのSCellを活性化する。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(b)が満たされていると判断した場合、ステップS902において、RRC処理部から前記L1/L2候補ターゲット設定適用処理が完了したことが通知されたことに基づいて、前記ターゲットのSCellに対して上述の処理(AD-1)を行う。 In addition or instead, if the MAC processing unit of UE122 determines in step S900 that the condition (b) is satisfied, then in step S902, the MAC processing unit activates the target SCell based on the notification from the RRC processing unit that the L1/L2 candidate target setting application process has been completed.In addition or instead, if the MAC processing unit of UE122 determines in step S900 that the condition (b) is satisfied, then in step S902, the MAC processing unit activates the target SCell based on the notification from the RRC processing unit that the L1/L2 candidate target setting application process has been completed.
 それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(b)が満たされていると判断した場合、ステップS902において、前記LTM MAC CEを受信した後に前記LTE MAC CEによって特定される一つまたは複数のSCellを設定したことに基づいて、前記ターゲットのSCellを活性化する。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(b)が満たされていると判断した場合、ステップS902において、前記LTM MAC CEを受信した後に前記LTE MAC CEによって特定される一つまたは複数のSCellを設定したことに基づいて、前記ターゲットのSCellに対して上述の処理(AD-1)を行う。なお、「前記LTM MAC CEを受信した後に」は、「前記LTM MAC CEを受信した際に」、「前記LTM MAC CEを受信したことに基づいて」または「前記LTM MAC CEによって特定されるサービングセルのターゲットを示す情報をRRC処理部に通知した後に」等と言い換えられてよい。 Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that the condition (b) is satisfied, then in step S902, the MAC processing unit of UE122 activates the target SCell based on the setting of one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE. Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that the condition (b) is satisfied, then in step S902, the MAC processing unit of UE122 performs the above-mentioned process (AD-1) on the target SCell based on the setting of one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE. Note that "after receiving the LTM MAC CE" may be rephrased as "upon receiving the LTM MAC CE", "based on receiving the LTM MAC CE", "after notifying the RRC processing unit of information indicating the target serving cell identified by the LTM MAC CE", etc.
 それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(c)が満たされていると判断した場合、ステップS902において、RRC処理部から前記L1/L2候補ターゲット設定適用処理が完了したことが通知されたことに基づいて、前記ターゲットのSCellを不活性化する。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(c)が満たされていると判断した場合、ステップS902において、RRC処理部から前記L1/L2候補ターゲット設定適用処理が完了したことが通知されたことに基づいて、前記ターゲットのSCellに対して上述の処理(AD-2)および/または処理(AD-3)を行う。 In addition or instead, if the MAC processing unit of UE122 determines in step S900 that the condition (c) is satisfied, then in step S902, the MAC processing unit deactivates the target SCell based on the notification from the RRC processing unit that the L1/L2 candidate target setting application process has been completed.In addition or instead, if the MAC processing unit of UE122 determines in step S900 that the condition (c) is satisfied, then in step S902, the MAC processing unit performs the above-mentioned process (AD-2) and/or process (AD-3) on the target SCell based on the notification from the RRC processing unit that the L1/L2 candidate target setting application process has been completed.
 それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(c)が満たされていると判断した場合、ステップS902において、前記LTM MAC CEを受信した後に前記LTE MAC CEによって特定される一つまたは複数のSCellを設定したことに基づいて、前記ターゲットのSCellを不活性化する。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(c)が満たされていると判断した場合、ステップS902において、前記LTM MAC CEを受信した後に前記LTE MAC CEによって特定される一つまたは複数のSCellを設定したことに基づいて、前記ターゲットのSCellに対して上述の処理(AD-2)および/または処理(AD-3)を行う。なお、「前記LTM MAC CEを受信した後に」は、「前記LTM MAC CEを受信した際に」、「前記LTM MAC CEを受信したことに基づいて」または「前記LTM MAC CEによって特定されるサービングセルのターゲットを示す情報をRRC処理部に通知した後に」等と言い換えられてよい。 Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that the condition (c) is satisfied, then in step S902, the MAC processing unit deactivates the target SCell based on the setting of one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE. Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that the condition (c) is satisfied, then in step S902, the MAC processing unit performs the above-mentioned process (AD-2) and/or process (AD-3) on the target SCell based on the setting of one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE. Note that "after receiving the LTM MAC CE" may be rephrased as "upon receiving the LTM MAC CE", "based on receiving the LTM MAC CE", "after notifying the RRC processing unit of information indicating the target serving cell identified by the LTM MAC CE", etc.
 それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(b)および(c)が満たされていないと判断し、かつ、前記条件(a)が満たされていると判断した場合、ステップS902において、前記ターゲットのSCellを活性化する。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(b)および(c)が満たされていないと判断し、かつ、前記条件(a)が満たされていると判断した場合、ステップS902において、前記ターゲットのSCellに対して上述の処理(AD-1)を行う。この場合、UE122のMAC処理部は、ステップS902において、RRC処理部から前記L1/L2候補ターゲット設定適用処理が完了したことが通知されたことに基づかずに動作してよい。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS902において、前記LTM MAC CEを受信した後に前記LTE MAC CEによって特定される一つまたは複数のSCellを設定したことに基づかずに動作してよい。なお、「前記LTM MAC CEを受信した後に」は、「前記LTM MAC CEを受信した際に」、「前記LTM MAC CEを受信したことに基づいて」または「前記LTM MAC CEによって特定されるサービングセルのターゲットを示す情報をRRC処理部に通知した後に」等と言い換えられてよい。 Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that the conditions (b) and (c) are not satisfied and that the condition (a) is satisfied, then in step S902, the MAC processing unit activates the target SCell. Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that the conditions (b) and (c) are not satisfied and that the condition (a) is satisfied, then in step S902, the MAC processing unit performs the above-mentioned process (AD-1) on the target SCell. In this case, the MAC processing unit of UE122 may operate in step S902 without being notified by the RRC processing unit that the L1/L2 candidate target configuration application process has been completed. Additionally or alternatively, the MAC processing unit of UE122 may operate in step S902 without being based on configuring one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE. In addition, "after receiving the LTM MAC CE" may be rephrased as "upon receiving the LTM MAC CE," "based on receiving the LTM MAC CE," or "after notifying the RRC processing unit of information indicating the target serving cell identified by the LTM MAC CE," etc.
 それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(a)から(c)がいずれも満たされていないと判断した場合、ステップS902において、前記ターゲットのSCellを不活性化する。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(a)から(c)がいずれも満たされていないと判断した場合、ステップS902において、前記ターゲットのSCellに対して上述の処理(AD-2)および/または処理(AD-3)を行う。この場合、UE122のMAC処理部は、ステップS902において、RRC処理部から前記L1/L2候補ターゲット設定適用処理が完了したことが通知されたことに基づかずに動作してよい。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS902において、前記LTM MAC CEを受信した後に前記LTE MAC CEによって特定される一つまたは複数のSCellを設定したことに基づかずに動作してよい。なお、「前記LTM MAC CEを受信した後に」は、「前記LTM MAC CEを受信した際に」、「前記LTM MAC CEを受信したことに基づいて」または「前記LTM MAC CEによって特定されるサービングセルのターゲットを示す情報をRRC処理部に通知した後に」等と言い換えられてよい。 Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that none of the conditions (a) to (c) are satisfied, it deactivates the target SCell in step S902. Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that none of the conditions (a) to (c) are satisfied, it performs the above-mentioned process (AD-2) and/or process (AD-3) on the target SCell in step S902. In this case, the MAC processing unit of UE122 may operate in step S902 without being notified by the RRC processing unit that the L1/L2 candidate target configuration application process has been completed. Additionally or alternatively, the MAC processing unit of UE122 may operate in step S902 without being based on configuring one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE. In addition, "after receiving the LTM MAC CE" may be rephrased as "upon receiving the LTM MAC CE," "based on receiving the LTM MAC CE," or "after notifying the RRC processing unit of information indicating the target serving cell identified by the LTM MAC CE," etc.
 それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(a)から(c)がいずれも満たされていないと判断した場合、ステップS902において、前記ターゲットのSCellを活性化させることを示す情報が含まれるMAC CEを受信したことに基づいて、前記ターゲットのSCellを活性化する。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(a)から(c)がいずれも満たされていないと判断した場合、ステップS902において、前記ターゲットのSCellを活性化させることを示す情報が含まれるMAC CEを受信したことに基づいて、前記ターゲットのSCellに対して上述の処理(AD-1)を行う。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(a)から(c)がいずれも満たされていないと判断した場合、ステップS902において、前記ターゲットのSCellを不活性化させることを示す情報が含まれるMAC CEを受信したことに基づいて、前記ターゲットのSCellを不活性化する。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(a)から(c)がいずれも満たされていないと判断した場合、ステップS902において、前記ターゲットのSCellを不活性化させることを示す情報が含まれるMAC CEを受信したことに基づいて、前記ターゲットのSCellに対して上述の処理(AD-2)および/または処理(AD-3)を行う。この場合、UE122のMAC処理部は、ステップS902において、RRC処理部から前記L1/L2候補ターゲット設定適用処理が完了したことが通知されたことに基づかずに動作してよい。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS902において、前記LTM MAC CEを受信した後に前記LTE MAC CEによって特定される一つまたは複数のSCellを設定したことに基づかずに動作してよい。なお、「前記LTM MAC CEを受信した後に」は、「前記LTM MAC CEを受信した際に」、「前記LTM MAC CEを受信したことに基づいて」または「前記LTM MAC CEによって特定されるサービングセルのターゲットを示す情報をRRC処理部に通知した後に」等と言い換えられてよい。 In addition or instead, if the MAC processing unit of UE122 determines in step S900 that none of the conditions (a) to (c) are satisfied, then in step S902 it activates the target SCell based on the reception of a MAC CE including information indicating that the target SCell is to be activated. In addition or instead, if the MAC processing unit of UE122 determines in step S900 that none of the conditions (a) to (c) are satisfied, then in step S902 it performs the above-mentioned process (AD-1) on the target SCell based on the reception of a MAC CE including information indicating that the target SCell is to be activated. In addition or instead, if the MAC processing unit of UE122 determines in step S900 that none of the conditions (a) to (c) are satisfied, then in step S902 it deactivates the target SCell based on the reception of a MAC CE including information indicating that the target SCell is to be deactivated. Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that none of the conditions (a) to (c) are satisfied, then in step S902, the MAC processing unit performs the above-mentioned process (AD-2) and/or process (AD-3) on the target SCell based on receiving a MAC CE including information indicating that the target SCell is to be deactivated. In this case, the MAC processing unit of UE122 may operate in step S902 without being notified by the RRC processing unit that the L1/L2 candidate target configuration application process has been completed. Additionally or alternatively, the MAC processing unit of UE122 may operate in step S902 without being based on configuring one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE. In addition, "after receiving the LTM MAC CE" may be rephrased as "upon receiving the LTM MAC CE," "based on receiving the LTM MAC CE," or "after notifying the RRC processing unit of information indicating the target serving cell identified by the LTM MAC CE," etc.
 次に、本実施形態における、端末装置(UE122)の別の処理の一例を図9を用いて説明する。なお、本実施形態において説明されるそれぞれの処理は互いに組み合わせて使われてよい。 Next, an example of another process of the terminal device (UE122) in this embodiment will be described with reference to FIG. 9. Note that the processes described in this embodiment may be used in combination with each other.
 図9において、UE122の処理部502は、条件の判断を行い(ステップS900)、前記判断に基づいて動作する(ステップS902)。 In FIG. 9, the processing unit 502 of the UE 122 judges the conditions (step S900) and operates based on the judgment (step S902).
 UE122は、基地局装置(gNB108および/またはeNB102)から、あるセルグループのサービングセルにおいて、このセルグループの各SCellを活性化させることを示す情報または各SCellを不活性化させることを示す情報が含まれるMAC CEを受信してよい。以降の説明において、UE122のMAC処理部は、明示しない限りこのセルグループのMAC処理部であってよい。それに加えてまたはそれに代えて、SCellを活性化させることを示す情報が含まれるMAC CEによって特定されるとは、例えば、前記SCellの識別子に対応するMAC CEの情報が、前記SCellを活性化させることを示すことであってよいし、SCellを不活性化させることを示す情報が含まれるMAC CEによって特定されるとは、例えば、前記SCellの識別子に対応するMAC CEの情報が、前記SCellを不活性化させることを示すことであってよい。 UE122 may receive from a base station device (gNB108 and/or eNB102) a MAC CE including information indicating that each SCell of a cell group is to be activated or information indicating that each SCell is to be deactivated in a serving cell of the cell group. In the following description, the MAC processing unit of UE122 may be the MAC processing unit of the cell group unless otherwise specified. In addition or instead, being identified by a MAC CE including information indicating that a SCell is to be activated may mean, for example, that information of a MAC CE corresponding to an identifier of the SCell indicates that the SCell is to be activated, and being identified by a MAC CE including information indicating that a SCell is to be deactivated may mean, for example, that information of a MAC CE corresponding to an identifier of the SCell indicates that the SCell is to be deactivated.
 前記SCellを活性化させることを示す情報または前記SCellを不活性化させることを示す情報が含まれるMAC CEを受信したUE122のMAC処理部は、ステップS900において、以下の(d)および(e)の条件のそれぞれが満たされているか否かを判断する。
  (d)前記SCellを活性化させることを示す情報が含まれるMAC CEを含むMAC PDUに、一つ以上の前記活性化されるSCellを特定するLTM MAC CEが含まれる。
  (e)前記SCellを不活性化させることを示す情報が含まれるMAC CEを含むMAC PDUに、一つ以上の前記不活性化されるSCellを特定するLTM MAC CEが含まれる。
The MAC processing unit of UE 122 that has received a MAC CE including information indicating that the SCell is to be activated or information indicating that the SCell is to be deactivated determines, in step S900, whether each of the following conditions (d) and (e) is satisfied.
(d) An LTM MAC CE that specifies one or more of the SCells to be activated is included in a MAC PDU that includes a MAC CE including information indicating that the SCell is to be activated.
(e) An LTM MAC CE that specifies one or more SCells to be deactivated is included in a MAC PDU that includes a MAC CE that includes information indicating that the SCell is to be deactivated.
 UE122のMAC処理部は、ステップS900において、前記条件(d)が満たされていると判断した場合、ステップS902において、RRC処理部から前記条件(d)に記載のLTM MAC CEに基づくL1/L2候補ターゲット設定適用処理が完了したことが通知されたことに基づいて、前記LTMMAC CEおよび前記SCellを活性化させることを示す情報が含まれるMAC CEによって特定されるSCellを活性化する。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(d)が満たされていると判断した場合、ステップS902において、RRC処理部から前記条件(d)に記載のLTM MAC CEに基づくL1/L2候補ターゲット設定適用処理が完了したことが通知されたことに基づいて、前記LTM MAC CEおよび前記SCellを活性化させることを示す情報が含まれるMAC CEによって特定されるSCellに対して上述の処理(AD-1)を行う。 If the MAC processing unit of UE122 determines in step S900 that the condition (d) is satisfied, then in step S902, the MAC processing unit activates the LTM MAC CE and the SCell identified by the MAC CE including information indicating that the SCell is to be activated, based on the notification from the RRC processing unit that the L1/L2 candidate target setting application process based on the LTM MAC CE described in the condition (d) has been completed. In addition or instead, if the MAC processing unit of UE122 determines in step S900 that the condition (d) is satisfied, then in step S902, the MAC processing unit performs the above-mentioned process (AD-1) on the SCell identified by the MAC CE including information indicating that the LTM MAC CE and the SCell are to be activated, based on the notification from the RRC processing unit that the L1/L2 candidate target setting application process based on the LTM MAC CE described in the condition (d) has been completed.
 それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(d)が満たされていると判断した場合、ステップS902において、前記条件(d)に記載のLTM MAC CEを受信した後に前記LTE MAC CEによって特定される一つまたは複数のSCellを設定したことに基づいて、前記LTM MAC CEおよび前記SCellを活性化させることを示す情報が含まれるMAC CEによって特定されるSCellを活性化する。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(d)が満たされていると判断した場合、ステップS902において、前記条件(d)に記載のLTM MAC CEを受信した後に前記LTE MAC CEによって特定される一つまたは複数のSCellを設定したことに基づいて、前記LTM MAC CEおよび前記SCellを活性化させることを示す情報が含まれるMAC CEによって特定されるSCellに対して上述の処理(AD-1)を行う。なお、「前記条件(d)に記載のLTM MAC CEを受信した後に」は、「前記条件(d)に記載のLTM MAC CEを受信した際に」、「前記条件(d)に記載のLTM MAC CEを受信したことに基づいて」または「前記条件(d)に記載のLTM MAC CEによって特定されるサービングセルのターゲットを示す情報をRRC処理部に通知した後に」等と言い換えられてよい。 In addition or instead, if the MAC processing unit of UE122 determines in step S900 that the condition (d) is satisfied, then in step S902, it activates the LTM MAC CE and the SCell identified by the MAC CE including information indicating that the SCell is to be activated based on the configuration of one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE described in the condition (d).In addition or instead, if the MAC processing unit of UE122 determines in step S900 that the condition (d) is satisfied, then in step S902, it performs the above-mentioned process (AD-1) on the SCell identified by the MAC CE including information indicating that the LTM MAC CE and the SCell are to be activated based on the configuration of one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE described in the condition (d). In addition, "after receiving the LTM MAC CE described in the condition (d)" may be rephrased as "upon receiving the LTM MAC CE described in the condition (d)", "based on receiving the LTM MAC CE described in the condition (d)", or "after notifying the RRC processing unit of information indicating the target of the serving cell identified by the LTM MAC CE described in the condition (d)", etc.
 それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(e)が満たされていると判断した場合、ステップS902において、RRC処理部から前記条件(e)に記載のLTM MAC CEに基づくL1/L2候補ターゲット設定適用処理が完了したことが通知されたことに基づいて、前記LTM MAC CEおよび前記SCellを不活性化させることを示す情報が含まれるMAC CEによって特定されるSCellを不活性化する。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(e)が満たされていると判断した場合、ステップS902において、RRC処理部から前記条件(e)に記載のLTM MAC CEに基づくL1/L2候補ターゲット設定適用処理が完了したことが通知されたことに基づいて、前記LTM MAC CEおよび前記SCellを不活性化させることを示す情報が含まれるMAC CEによって特定されるSCellに対して上述の処理(AD-2)および/または処理(AD-3)を行う。 In addition or instead, if the MAC processing unit of UE122 determines in step S900 that the condition (e) is satisfied, then in step S902, based on the notification from the RRC processing unit that the L1/L2 candidate target setting application process based on the LTM MAC CE described in the condition (e) has been completed, the MAC processing unit deactivates the LTM MAC CE and the SCell identified by the MAC CE including information indicating that the SCell is to be deactivated.In addition or instead, if the MAC processing unit of UE122 determines in step S900 that the condition (e) is satisfied, then in step S902, based on the notification from the RRC processing unit that the L1/L2 candidate target setting application process based on the LTM MAC CE described in the condition (e) has been completed, the MAC processing unit performs the above-mentioned process (AD-2) and/or process (AD-3) on the LTM MAC CE and the SCell identified by the MAC CE including information indicating that the SCell is to be deactivated.
 それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(e)が満たされていると判断した場合、ステップS902において、前記条件(e)に記載のLTM MAC CEを受信した後に前記LTE MAC CEによって特定される一つまたは複数のSCellを設定したことに基づいて、前記LTM MAC CEおよび前記SCellを不活性化させることを示す情報が含まれるMAC CEによって特定されるSCellを不活性化する。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(e)が満たされていると判断した場合、ステップS902において、前記条件(e)に記載のLTM MAC CEを受信した後に前記LTE MAC CEによって特定される一つまたは複数のSCellを設定したことに基づいて、前記LTM MAC CEおよび前記SCellを不活性化させることを示す情報が含まれるMAC CEによって特定されるSCellに対して上述の処理(AD-2)および/または処理(AD-3)を行う。なお、「前記条件(e)に記載のLTM MAC CEを受信した後に」は、「前記条件(e)に記載のLTM MAC CEを受信した際に」、「前記条件(e)に記載のLTM MAC CEを受信したことに基づいて」または「前記条件(e)に記載のLTM MAC CEによって特定されるサービングセルのターゲットを示す情報をRRC処理部に通知した後に」等と言い換えられてよい。 Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that the condition (e) is satisfied, then in step S902, the MAC processing unit deactivates the LTM MAC CE and the SCell identified by the MAC CE including information indicating that the SCell is to be deactivated, based on the configuration of one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE described in the condition (e). Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that the condition (e) is satisfied, then in step S902, the MAC processing unit of UE122 performs the above-mentioned processing (AD-2) and/or processing (AD-3) on the SCell identified by the MAC CE including information indicating that the LTM MAC CE and the SCell are to be deactivated, based on the configuration of one or more SCells identified by the LTE MAC CE after receiving the LTM MAC CE described in the condition (e). In addition, "after receiving the LTM MAC CE described in the condition (e)" may be rephrased as "upon receiving the LTM MAC CE described in the condition (e)", "based on receiving the LTM MAC CE described in the condition (e)", or "after notifying the RRC processing unit of information indicating the target of the serving cell identified by the LTM MAC CE described in the condition (e)", etc.
 それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(d)および(e)がいずれも満たされていないと判断した場合、ステップS902において、前記SCellを活性化させることを示す情報が含まれるMAC CEを受信したことに基づいて、前記SCellを活性化させることを示す情報が含まれるMAC CEによって特定されるSCellを活性化する。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(d)および(e)がいずれも満たされていないと判断した場合、ステップS902において、前記SCellを活性化させることを示す情報が含まれるMAC CEを受信したことに基づいて、前記SCellを活性化させることを示す情報が含まれるMAC CEによって特定されるSCellに対して上述の処理(AD-1)を行う。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(d)および(e)がいずれも満たされていないと判断した場合、ステップS902において、前記SCellを不活性化させることを示す情報が含まれるMAC CEを受信したことに基づいて、前記SCellを不活性化させることを示す情報が含まれるMAC CEによって特定されるSCellを不活性化する。それに加えてまたはそれに代えて、UE122のMAC処理部は、ステップS900において、前記条件(d)および(e)がいずれも満たされていないと判断した場合、ステップS902において、前記SCellを不活性化させることを示す情報が含まれるMAC CEを受信したことに基づいて、前記SCellを不活性化させることを示す情報が含まれるMAC CEによって特定されるSCellに対して上述の処理(AD-2)および/または処理(AD-3)を行う。 In addition or instead, if the MAC processing unit of UE122 determines in step S900 that neither of the conditions (d) nor (e) is satisfied, then in step S902, based on receiving a MAC CE including information indicating that the SCell is to be activated, the MAC processing unit of UE122 activates the SCell identified by the MAC CE including information indicating that the SCell is to be activated.In addition or instead, if the MAC processing unit of UE122 determines in step S900 that neither of the conditions (d) nor (e) is satisfied, then in step S902, based on receiving a MAC CE including information indicating that the SCell is to be activated, the MAC processing unit of UE122 performs the above-mentioned process (AD-1) on the SCell identified by the MAC CE including information indicating that the SCell is to be activated. Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that neither of the conditions (d) nor (e) is satisfied, then in step S902, based on receiving a MAC CE including information indicating that the SCell is to be deactivated, the MAC processing unit of UE122 deactivates the SCell identified by the MAC CE including information indicating that the SCell is to be deactivated. Additionally or alternatively, if the MAC processing unit of UE122 determines in step S900 that neither of the conditions (d) nor (e) is satisfied, then in step S902, based on receiving a MAC CE including information indicating that the SCell is to be deactivated, the MAC processing unit of UE122 performs the above-mentioned processing (AD-2) and/or processing (AD-3) on the SCell identified by the MAC CE including information indicating that the SCell is to be deactivated.
 上述のSCellを活性化させることを示す情報が含まれるMAC CEは、例えばSCellを活性化させることを示すSCell Activation/Deactivation MAC CE、または、SCellを活性化させることを示すEnhanced SCell Activation/Deactivation MAC CEであってよいし、上述のSCellを不活性化させることを示す情報が含まれるMAC CEは、例えばSCellを不活性化させることを示すSCell Activation/Deactivation MAC CE、または、SCellを不活性化させることを示すEnhanced SCell Activation/Deactivation MAC CEであってよい。それに加えてまたはそれに代えて、上述のSCellを活性化させることを示す情報が含まれるMAC CE、および、SCellを不活性化させることを示す情報が含まれるMAC CEは、同一のMAC CE(例えばSCell Activation/Deactivation MAC CEまたはEnhanced SCell Activation/Deactivation MAC CEという名称の、各SCellを活性化するか不活性化するかを1ビットで示すMAC CE)であってよい。また、それに加えてまたはそれに代えて、前記条件(b)に記載の、UE122に前記SCellを活性化させることを示す情報、および、前記条件(c)に記載の、UE122に前記SCellを不活性化させることを示す情報は、同一の情報(例えばSCell Activation/Deactivation MAC CEまたはEnhanced SCell Activation/Deactivation MAC CEという名称の、各SCellを活性化するか不活性化するかを1ビットで示すMAC CE)であってよい。また、それに加えてまたはそれに代えて、前記L1/L2候補ターゲット設定適用処理において、UE122のMAC処理部は、前記LTM MAC CEによって特定される各SCellに対して上述の処理(AD)を行わないよう判断してよい。 The MAC CE including the information indicating to activate the above-mentioned SCell may be, for example, an SCell Activation/Deactivation MAC CE indicating to activate the SCell, or an Enhanced SCell Activation/Deactivation MAC CE indicating to activate the SCell, and the MAC CE including the information indicating to deactivate the above-mentioned SCell may be, for example, an SCell Activation/Deactivation MAC CE indicating to deactivate the SCell, or an Enhanced SCell Activation/Deactivation MAC CE indicating to deactivate the SCell. Additionally or alternatively, the MAC CE including the information indicating to activate the above-mentioned SCell and the MAC CE including the information indicating to deactivate the SCell may be the same MAC CE (for example, a MAC CE named SCell Activation/Deactivation MAC CE or Enhanced SCell Activation/Deactivation MAC CE indicating with one bit whether each SCell is to be activated or deactivated). Additionally or alternatively, the information in condition (b) indicating that UE122 should activate the SCell and the information in condition (c) indicating that UE122 should deactivate the SCell may be the same information (e.g., a MAC CE named SCell Activation/Deactivation MAC CE or Enhanced SCell Activation/Deactivation MAC CE, which indicates in one bit whether each SCell is to be activated or deactivated). Additionally or alternatively, in the L1/L2 candidate target setting application process, the MAC processing unit of UE122 may determine not to perform the above-mentioned process (AD) for each SCell identified by the LTM MAC CE.
 これにより、レイヤ1/レイヤ2トリガモビリティにおけるターゲットのSCellを効率的に活性化/不活性化することが可能となる。 This makes it possible to efficiently activate/deactivate the target SCell in Layer 1/Layer 2 triggered mobility.
 上記説明において、タイマーは、一度スタートされたら、停止(stop)されるか、満了(expire)するまで走っている(running)。タイマーは、満了すると走っていない(停止している)とみなされてよい。タイマーは常に初期値からスタート(タイマーが停止している場合)あるいはリスタート(タイマーが走っている場合)される。タイマーがスタートあるいはリスタートしてから満了するまでの期間は、タイマーが停止あるいは満了するまで更新されない。端末装置のMACエンティティは、タイマーがスタートあるいはリスタートしてから満了するまでの期間を上位レイヤ(例えばRRCレイヤ)から通知される値としてよい。それに加えてまたはそれに代えて、端末装置のMACエンティティは、タイマーがスタートあるいはリスタートしてから満了するまでの期間を予め設定されたデフォルト値としてよい。端末装置のMACエンティティが、タイマーがスタートあるいはリスタートしてから満了するまでの期間を0に設定した場合、他の条件が特に明記されない限り、タイマーはスタートしたらすぐに満了してよい。 In the above description, once a timer is started, it runs until it is stopped or expires. Once a timer expires, it may be considered to be not running (stopped). A timer is always started (if the timer is stopped) or restarted (if the timer is running) from its initial value. The period from when the timer is started or restarted to when it expires is not updated until the timer is stopped or expired. The MAC entity of the terminal device may use a value notified by a higher layer (e.g., the RRC layer) as the period from when the timer is started or restarted to when it expires. In addition or instead, the MAC entity of the terminal device may use a pre-configured default value as the period from when the timer is started or restarted to when it expires. If the MAC entity of the terminal device sets the period from when the timer is started or restarted to when it expires to 0, the timer may expire immediately after it is started, unless other conditions are specified.
 また、上記説明における無線ベアラとは、特に明記しない限り、DRBであってよいし、SRBであってよいし、DRB及びSRBであってよい。それに加えてまたはそれに代えて、上記説明における無線ベアラとは、MRBであってもよい。 Furthermore, unless otherwise specified, the radio bearer in the above description may be a DRB, an SRB, or a DRB and an SRB. In addition or instead, the radio bearer in the above description may be an MRB.
 また上記説明において、「ユーザプレーン」、「ユーザプレーンプロトコル」、「ユーザプレーンインターフェース」等の表現は、互いに換言されてもよい。 In addition, in the above description, expressions such as "user plane," "user plane protocol," and "user plane interface" may be used interchangeably.
 また上記説明において、「ターゲットの一つまたは複数のセルへのサービングセルの変更を指示するDCIまたはMACコントロールエレメントを受信する」を「ターゲットの一つまたは複数のセルへのサービングセルの変更を指示される」と言い換えてよい。 In addition, in the above description, "receive a DCI or MAC control element instructing a change of serving cell to one or more target cells" may be rephrased as "be instructed to change the serving cell to one or more target cells."
 また上記説明において、「候補ターゲット」、「候補セル」、「CCG」等の表現は、互いに換言されてもよい。 In addition, in the above description, expressions such as "candidate target," "candidate cell," and "CCG" may be used interchangeably.
 また上記説明におけるサービングセル変更とは、特に明記しない限り、レイヤ1/レイヤ2サービングセル変更であってよい。 Furthermore, unless otherwise specified, the serving cell change in the above description may refer to a layer 1/layer 2 serving cell change.
 また上記説明において、「通知される」、「指摘を受ける」等の表現は、互いに換言されてもよい。 In addition, in the above explanation, expressions such as "to be notified" and "to be pointed out" may be used interchangeably.
 また上記説明において、「紐づける」、「対応付ける」、「関連付ける」等の表現は、互いに換言されてもよい。 In addition, in the above description, expressions such as "link," "associate," and "relate" may be used interchangeably.
 また上記説明において、「含まれる」、「含まれている」、「含まれていた」等の表現は、互いに換言されてもよい。 In addition, in the above description, expressions such as "includes," "included," and "was included" may be used interchangeably.
 また上記説明において、「前記~」を「上述の~」と言い換えてよい。 In addition, in the above explanation, "the above-mentioned" can be replaced with "the above-mentioned".
 また上記説明において、「~と確定した」、「~が設定されている」、「~が含まれる」等の表現は、互いに換言されてもよい。 In addition, in the above explanation, expressions such as "determined to be...", "is set to...", "contains..." and the like may be used interchangeably.
 また上記説明における各処理の例、又は各処理のフローの例において、ステップの一部または全ては実行されなくてもよい。また上記説明における各処理の例、又は各処理のフローの例において、ステップの順番は異なってもよい。また上記説明における各処理の例、又は各処理のフローの例において、各ステップ内の一部または全ての処理は実行されなくてもよい。また上記説明における各処理の例、又は各処理のフローの例において、各ステップ内の処理の順番は異なってもよい。また上記説明において「Aである事に基づいてBを行う」は、「Bを行う」と言い換えられてもよい。即ち「Bを行う」事は「Aである事」と独立して実行されてもよい。 Furthermore, in each of the process examples or process flow examples in the above description, some or all of the steps may not be executed. Furthermore, in each of the process examples or process flow examples in the above description, the order of the steps may be different. Furthermore, in each of the process examples or process flow examples in the above description, some or all of the processing within each step may not be executed. Furthermore, in each of the process examples or process flow examples in the above description, the order of the processing within each step may be different. Furthermore, in the above description, "doing B based on A being true" may be rephrased as "doing B". In other words, "doing B" may be executed independently of "A being true".
 なお、上記説明において、「AをBと言い換えてよい」は、AをBと言い換えることに加え、BをAと言い換える意味も含んでよい。また上記説明において、「CはDであってよい」と「CはEであってよい」とが記載されている場合には、「DはEであってよい」事を含んでもよい。また上記説明において、「FはGであってよい」と「GはHであってよい」とが記載されている場合には、「FはHであってよい」事を含んでもよい。 In addition, in the above explanation, "A may be replaced with B" may mean replacing A with B, as well as replacing B with A. Also, in the above explanation, when it is written that "C may be D" and "C may be E", it may also mean that "D may be E". Also, in the above explanation, when it is written that "F may be G" and "G may be H", it may also mean that "F may be H".
 また上記説明において、「A」という条件と、「B」という条件が、相反する条件の場合には、「B」という条件は、「A」という条件の「その他」の条件として表現されてもよい。 In addition, in the above explanation, if condition "A" and condition "B" are contradictory conditions, condition "B" may be expressed as the "other" condition of condition "A."
 本実施形態に関わる装置で動作するプログラムは、本実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであってもよい。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)などの揮発性メモリに読み込まれ、あるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。 The program that runs on the device related to this embodiment may be a program that controls a Central Processing Unit (CPU) or the like to cause a computer to function so as to realize the functions of this embodiment. The program or the information handled by the program is temporarily loaded into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or a Hard Disk Drive (HDD), and is read, modified, and written by the CPU as necessary.
 なお、上述した実施形態における装置の一部、をコンピュータで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムは、コンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現されてもよい。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであってもよい。 It should be noted that a part of the device in the above-mentioned embodiment may be realized by a computer. In that case, a program for realizing this control function may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read into a computer system and executed to realize the control function. The "computer system" referred to here is a computer system built into the device, and includes hardware such as an operating system and peripheral devices. Furthermore, the "computer-readable recording medium" may be any of semiconductor recording media, optical recording media, magnetic recording media, etc.
 さらに「コンピュータが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュ-タシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュ-タシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。 Furthermore, "computer-readable recording medium" may include something that dynamically holds a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, or something that holds a program for a certain period of time, such as volatile memory within a computer system that serves as a server or client in such a case. The above program may also be one that realizes part of the functions described above, or one that can realize the functions described above in combination with a program already recorded in the computer system.
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、代わりにプロセッサは従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであってもよい。汎用用途プロセッサ、または前述した各回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Furthermore, each functional block or feature of the device used in the above-mentioned embodiment may be implemented or executed by an electric circuit, typically an integrated circuit or a plurality of integrated circuits. The electric circuit designed to execute the functions described herein may include a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or a combination thereof. The general-purpose processor may be a microprocessor, or alternatively, the processor may be a conventional processor, controller, microcontroller, or state machine. The general-purpose processor or each of the aforementioned circuits may be composed of digital circuits or analog circuits. Furthermore, if an integrated circuit technology that replaces current integrated circuits emerges due to the progress of semiconductor technology, it is also possible to use an integrated circuit based on that technology.
 なお、本実施形態は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本実施形態は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。 Note that this embodiment is not limited to the above embodiment. In the embodiment, an example of a device is described, but this embodiment is not limited to this, and can be applied to terminal devices or communication devices such as stationary or non-movable electronic devices installed indoors or outdoors, for example, AV equipment, kitchen equipment, cleaning/washing equipment, air conditioning equipment, office equipment, vending machines, and other household appliances.
 以上、この実施形態に関して、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この実施形態の要旨を逸脱しない範囲の設計変更等も含まれる。また、本実施形態は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本実施形態の技術的範囲に含まれる。また、上記実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 Although this embodiment has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes and the like that do not depart from the gist of this embodiment are also included. Furthermore, this embodiment can be modified in various ways within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in different embodiments are also included in the technical scope of this embodiment. Also included are configurations in which elements described in the above embodiments are substituted for elements that have the same effect.
 本発明の一態様は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。 One aspect of the present invention can be used, for example, in a communication system, a communication device (e.g., a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (e.g., a communication chip), or a program, etc.
100 E-UTRA
102 eNB
104 EPC
106 NR
108 gNB
110 5GC
112、114、116、118、120、124 インタフェース
122 UE
200、300 PHY
202、302 MAC
204、304 RLC
206、306 PDCP
208、308 RRC
310 SDAP
210、312 NAS
500、604 受信部
502、602 処理部
504、600 送信部
100 E-UTRA
102 eNB
104 EPC
106 NR
108 gNB
110 5GC
112, 114, 116, 118, 120, 124 Interface
122UE
200, 300 PHY
202, 302 MAC
204, 304 RLC
206, 306 PDCP
208, 308 RRC
310SDAP
210, 312 NAS
500, 604 Receiver
502, 602 Processing section
504, 600 Transmitter

Claims (3)

  1.  基地局装置と通信する端末装置であって、
     前記基地局装置よりターゲットのSCellを含む一つまたは複数の候補ターゲット設定を識別する識別子を示す第1のMAC CEを受信する受信部と、
     RRC処理部と、
     MAC処理部と、
     を備え、
     前記RRC処理部は、
     前記MAC処理部が前記第1のMAC CEを受信したことに基づいて、
     前記第1のMAC CEによって識別される前記候補ターゲット設定を、
     前記端末装置のRRCの設定に対して適用し、
     前記MAC処理部は、
     前記適用された候補ターゲット設定に、前記ターゲットのSCellを活性化させることを示す情報が含まれるか否かを判断し、
     前記判断に基づいて、
     前記ターゲットのSCellを活性化または不活性化する、
     端末装置。
    A terminal device that communicates with a base station device,
    A receiver that receives a first MAC CE indicating an identifier that identifies one or more candidate target configurations including a target SCell from the base station device;
    An RRC processing unit;
    A MAC processing unit;
    Equipped with
    The RRC processing unit:
    Based on the MAC processing unit receiving the first MAC CE,
    the candidate target configuration identified by the first MAC CE,
    Applying to the RRC setting of the terminal device,
    The MAC processing unit,
    determining whether the applied candidate target configuration includes information indicating that the target SCell is to be activated;
    Based on the above judgment,
    Activating or deactivating the target SCell;
    Terminal device.
  2.  基地局装置と通信する端末装置の方法であって、
     前記端末装置のMACエンティティが、
     前記基地局装置よりターゲットのSCellを含む一つまたは複数の候補ターゲット設定を識別する識別子を示す第1のMAC CEを受信するステップと、
     前記端末装置のRRCエンティティが、
     前記MACエンティティが前記第1のMAC CEを受信したことに基づいて、
     前記第1のMAC CEによって識別される前記候補ターゲット設定を、
     前記端末装置のRRCの設定に対して適用するステップと、
     前記MACエンティティが、
     前記適用された候補ターゲット設定に、前記ターゲットのSCellを活性化させることを示す情報が含まれるか否かを判断するステップと、
     前記判断に基づいて、
     前記ターゲットのSCellを活性化または不活性化するステップと、
     を含む方法。
    A method for a terminal device communicating with a base station device, comprising:
    a MAC entity of the terminal device,
    receiving a first MAC CE indicating an identifier identifying one or more candidate target configurations including a target SCell from the base station device;
    An RRC entity of the terminal device,
    Based on the MAC entity receiving the first MAC CE,
    the candidate target configuration identified by the first MAC CE,
    Applying the RRC setting of the terminal device;
    said MAC entity:
    determining whether the applied candidate target configuration includes information indicating to activate the target SCell;
    Based on the above judgment,
    activating or deactivating the target SCell;
    The method includes:
  3.  基地局装置と通信する端末装置に実装される集積回路であって、
     前記端末装置のMACエンティティが、
     前記基地局装置よりターゲットのSCellを含む一つまたは複数の候補ターゲット設定を識別する識別子を示す第1のMAC CEを受信する機能と、
     前記端末装置のRRCエンティティが、
     前記MACエンティティが前記第1のMAC CEを受信したことに基づいて、
     前記第1のMAC CEによって識別される前記候補ターゲット設定を、
     前記端末装置のRRCの設定に対して適用する機能と、
     前記MACエンティティが、
     前記適用された候補ターゲット設定に、前記ターゲットのSCellを活性化させることを示す情報が含まれるか否かを判断する機能と、
     前記判断に基づいて、
     前記ターゲットのSCellを活性化または不活性化する機能と、
     を発揮させる集積回路。
    An integrated circuit implemented in a terminal device that communicates with a base station device,
    a MAC entity of the terminal device,
    receiving a first MAC CE indicating an identifier for identifying one or more candidate target configurations including a target SCell from the base station device;
    An RRC entity of the terminal device,
    Based on the MAC entity receiving the first MAC CE,
    the candidate target configuration identified by the first MAC CE,
    A function to be applied to the RRC setting of the terminal device;
    said MAC entity:
    a function of determining whether the applied candidate target configuration includes information indicating that the target SCell is to be activated;
    Based on the above judgment,
    A function for activating or deactivating the target SCell;
    An integrated circuit that exerts
PCT/JP2023/039601 2022-11-02 2023-11-02 Terminal device, method, and integrated circuit WO2024096097A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-176092 2022-11-02
JP2022176092 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024096097A1 true WO2024096097A1 (en) 2024-05-10

Family

ID=90930667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039601 WO2024096097A1 (en) 2022-11-02 2023-11-02 Terminal device, method, and integrated circuit

Country Status (1)

Country Link
WO (1) WO2024096097A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210285A1 (en) * 2021-04-01 2022-10-06 シャープ株式会社 Terminal device, method, and integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210285A1 (en) * 2021-04-01 2022-10-06 シャープ株式会社 Terminal device, method, and integrated circuit

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, INC.: "L1/2 handover trigger.", 3GPP DRAFT; R2-2210194, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20221010 - 20221019, 30 September 2022 (2022-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052263517 *
QUALCOMM INCORPORATED: "L1/L2 Mobility Considerations", 3GPP DRAFT; R2-2209701, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20221010 - 20221019, 30 September 2022 (2022-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052263028 *
TOSHIZO NOGAMI, SHARP: "Cell Switch for LTM", 3GPP DRAFT; R2-2301819; TYPE DISCUSSION; NR_MOB_ENH2-CORE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 2, no. Athens, GR; 20230227 - 20230303, 17 February 2023 (2023-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052246445 *
TOSHIZO NOGAMI, SHARP: "Remaining issues for The Contents of LTM MAC CE", 3GPP DRAFT; R2-2308147; TYPE DISCUSSION; NR_MOB_ENH2-CORE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 2, no. Toulouse, FR; 20230821 - 20230825, 10 August 2023 (2023-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052443857 *

Similar Documents

Publication Publication Date Title
US20230379842A1 (en) Terminal apparatus, communication method, and base station apparatus
WO2022085663A1 (en) Method and integrated circuit
WO2022080306A1 (en) Terminal device, base station device, and method
WO2022080419A1 (en) Terminal device, base station device, and method
WO2024096097A1 (en) Terminal device, method, and integrated circuit
WO2024070447A1 (en) Terminal device, method, and integrated circuit
WO2024070379A1 (en) Terminal device, method, and integrated circuit
WO2023136231A1 (en) Terminal device, method, and integrated circuit
WO2023132370A1 (en) Terminal device, method, and integrated circuit
WO2024005010A1 (en) Terminal device, method, and integrated circuit
WO2024005069A1 (en) Terminal device, method, and integrated circuit
WO2023106315A1 (en) Terminal device, base station device, and method
WO2023013292A1 (en) Terminal device, base station device, and method
US20230292392A1 (en) Terminal apparatus, base station apparatus, and method
WO2024009884A1 (en) Terminal device, method, and integrated circuit
WO2023100981A1 (en) Terminal device, method, and integrated circuit
WO2023042747A1 (en) Terminal device, base station device, and method
WO2024029478A1 (en) Terminal device, method, and integrated circuit
WO2023042752A1 (en) Terminal device, base station device, and method
WO2023112531A1 (en) Terminal device, method, and integrated circuit
WO2023243571A1 (en) Terminal device, method, and integrated circuit
WO2023063342A1 (en) Terminal device, base station device, and method
WO2023112792A1 (en) Terminal device, method, and integrated circuit
WO2023238820A1 (en) Terminal device, method, and integrated circuit
WO2024057978A1 (en) Terminal device, method, and integrated circuit