WO2024058021A1 - 太陽電池素子及び太陽電池モジュール - Google Patents

太陽電池素子及び太陽電池モジュール Download PDF

Info

Publication number
WO2024058021A1
WO2024058021A1 PCT/JP2023/032490 JP2023032490W WO2024058021A1 WO 2024058021 A1 WO2024058021 A1 WO 2024058021A1 JP 2023032490 W JP2023032490 W JP 2023032490W WO 2024058021 A1 WO2024058021 A1 WO 2024058021A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
section
diffusion
electrode
cell element
Prior art date
Application number
PCT/JP2023/032490
Other languages
English (en)
French (fr)
Inventor
浩孝 佐野
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024058021A1 publication Critical patent/WO2024058021A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes

Definitions

  • the present disclosure relates to solar cell elements and solar cell modules.
  • Patent Document 1 There is a solar cell element that includes a semiconductor that generates power using incident light, a transparent electrode film provided on the light-receiving surface of the solar cell section, and a current collecting electrode provided on the transparent electrode film.
  • Patent Document 2 it is known to utilize a transparent electrode film as an interface layer for reducing deterioration due to diffusion between the current collecting electrode and the semiconductor (for example, Patent Document 2).
  • One embodiment of the solar cell element includes a solar cell section, an electrode section, and a first diffusion reduction section.
  • the solar cell section has a light receiving surface.
  • the first diffusion reduction section is located between the solar cell section and the electrode section.
  • the first diffusion reduction section has a first surface on the light receiving surface side and a second surface on the electrode section side.
  • the first diffusion reducing section is located avoiding at least a part of the region that does not overlap with the electrode section when the light receiving surface is viewed from above.
  • the solar cell element includes a solar cell section, an electrode section, and a first diffusion reduction section.
  • the solar cell section has a light receiving surface.
  • the first diffusion reduction section is located between the solar cell section and the electrode section.
  • the first diffusion reducing section includes a first surface on the light-receiving surface side, a second surface on the electrode section side, and a first surface located in at least a part of a region that does not overlap with the electrode section when the light-receiving surface is viewed from above. has an opposite third surface. The thickness between the first surface and the third surface is smaller than the thickness between the first surface and the second surface.
  • One embodiment of the solar cell module includes a solar cell section having a light-receiving surface.
  • the solar cell module includes a first surface that is in contact with the light-receiving surface, a second surface that is the opposite surface to the first surface, and a third surface that is different from the second surface.
  • a first diffusion reduction section located at .
  • the solar cell module includes an electrode section located on the second surface.
  • the first diffusion reduction portion includes a first portion that becomes thicker from the first surface to the second surface, and a second portion that becomes thicker from the first surface to the third surface. The thickness of the second portion is smaller than the thickness of the first portion.
  • FIG. 1 is a perspective view showing a part of the solar cell element 10 according to the first embodiment.
  • FIG. 2 is a top view showing a part of the solar cell element 10 according to the first embodiment.
  • FIG. 3 is an end view of the solar cell element 10 according to Embodiment 1, taken along III-III cross section in FIG.
  • FIG. 4 is an enlarged view of a part of FIG. 3 of the solar cell element 10 according to the first embodiment.
  • FIG. 5 is a diagram showing a modification of the solar cell element 10 according to the first embodiment.
  • FIG. 6 is a diagram showing an example of the solar cell element 10 according to the first embodiment.
  • FIG. 7 is a diagram showing an example of the solar cell element 10 according to the first embodiment.
  • FIG. 8 is a diagram showing an example of the solar cell element 10 according to the first embodiment.
  • FIG. 9 is a diagram showing an example of the solar cell element 10 according to the first embodiment.
  • FIG. 10 is a flow diagram of a method for manufacturing the solar cell element 10 according to the first embodiment.
  • FIG. 11 is a cross-sectional view of the solar cell module 1 according to the first embodiment.
  • FIG. 12 is a cross-sectional view of the solar cell module 2 according to the second embodiment.
  • FIG. 13 is a diagram of a solar cell element 30 according to the third embodiment.
  • FIG. 14 is a diagram of a solar cell element 40 according to the fourth embodiment.
  • FIG. 15 is a diagram of a solar cell element 50 according to the fifth embodiment.
  • FIG. 16 is a diagram of a solar cell element 60 according to Embodiment 6.
  • FIG. 17 is a diagram of a solar cell element module 6 according to the sixth embodiment.
  • FIG. 18 is a diagram of a solar cell element 70 according to Embodiment 7.
  • FIG. 19 is a diagram of a solar cell element module 7 according to Embodiment 7.
  • the solar cell element includes a first electrode part on the light-receiving surface side where the solar cell element receives light, which collects electricity generated in the solar cell part that generates electricity from the incident light.
  • the diffusion reducing part when the diffusion reducing part is formed between the first electrode part and the solar cell part, sunlight is absorbed by the diffusion reducing part, and the amount of sunlight received that contributes to power generation in the solar cell part decreases. In other words, if the diffusion reducing portion is formed, the power generation efficiency of the solar cell element may be reduced.
  • FIG. 1 is a partial perspective view of a solar cell element 10 according to the first embodiment.
  • FIG. 2 is a top view of a part of the solar cell element 10 according to the first embodiment from the light-receiving surface F1 side.
  • FIG. 3 is a cross-sectional view taken along line III--III in FIG. That is, FIG. 3 is a cross-sectional view of the first electrode section 101 in a cross section perpendicular to the longitudinal direction.
  • FIGS. 1 and 2 are diagrams showing a portion of the solar cell element 10, rather than the entire solar cell element 10.
  • the solar cell element 10 has a light-receiving surface F1 that mainly receives light, and a back surface F2 located on the opposite side of the light-receiving surface F1.
  • the light receiving surface F1 faces the +Z direction.
  • the back surface F2 faces the -Z direction.
  • the +Z direction may be set in a direction facing the sun, which is in the south.
  • the solar cell element 10 includes a first electrode section 101, a first diffusion reduction section 102, a solar cell section 103, a second electrode section 104, and a substrate section 105.
  • the solar cell section 103 includes a first carrier transport section 1031, a photoelectric conversion section 1032, and a second carrier transport section 1033.
  • the second electrode part 104, the second carrier transport part 1033, the photoelectric conversion part 1032, the first carrier transport part 1031, the first diffusion reduction part 102, and the first 1 electrode part 101 are laminated in the order shown.
  • an antireflection film may be provided on the surface of the solar cell module 1 (described later).
  • an insulating film made of silicon nitride or the like is applied to the antireflection film.
  • a passivation film may be located between the first electrode section 101, the first diffusion reduction section 102, or the solar cell section 103 and the antireflection film.
  • a thin film made of an oxide such as aluminum oxide or a nitride is used as the passivation film.
  • the plurality of solar cell elements 10 can form the solar cell module 1.
  • a solar cell module 1 having a size of about 1 m square may be manufactured.
  • the plurality of solar cell modules 1 can form a solar cell string.
  • the plurality of solar cell strings can form a solar cell array.
  • the substrate section 105 is a base on which parts included in the solar cell element 10 (solar cell section 103, etc.) are formed.
  • the material of the substrate portion 105 may be, for example, glass, plastic such as acrylic or polycarbonate, or metal such as stainless steel.
  • the shape of the substrate portion 105 may be, for example, a flat plate, a sheet, or a film.
  • the thickness of the substrate portion 105 may be, for example, approximately 0.01 millimeter (mm) to 5 mm.
  • Second electrode section 104 The second electrode section 104 is located on the substrate section 105.
  • the second electrode section 104 can collect carriers generated by photoelectric conversion in response to irradiation of light onto the solar cell section 103, which will be described later.
  • the second electrode section 104 can serve, for example, as an electrode (also referred to as a negative electrode) that collects electrons as carriers.
  • a metal with excellent conductivity such as silver (Ag), gold (Au), copper (Cu), titanium (Ti), indium (In), or tin (Sn) is used. may be applied.
  • the material of the second electrode part 104 may be, for example, a transparent conductive oxide (TCO) that is transparent to light in a specific wavelength range.
  • TCO transparent conductive oxide
  • the thickness of the second electrode portion 104 may be, for example, approximately 10 nanometers (nm) to 1000 nm.
  • the second electrode section 104 may be formed on the substrate section 105 by, for example, a vacuum process such as sputtering.
  • TCO examples include indium tin oxide (ITO), aluminum-doped zinc oxide (AZO), boron-doped zinc oxide (BZO), and gallium-doped zinc oxide (Gallium oxide).
  • the transparent conductive oxide film may be a laminated film having a plurality of films, and the laminated film may include a film of tin oxide or the like in addition to the above oxide.
  • Dopants for films such as tin oxide include In, silicon (Si), germanium (Ge), Ti, Cu, antimony (Sb), Nb, F, Ta, W, Mo, bromine (Br), and iodine (I).
  • it may be one or more selected from the group consisting of chlorine (Cl), etc., and is not particularly limited.
  • Solar cell section 103 is located above second electrode section 104 .
  • the solar cell unit 103 converts light (for example, sunlight) incident from the outside into electric power.
  • the solar cell unit 103 may generate carriers through photoelectric conversion in response to light irradiation.
  • the carrier includes at least one of electrons and holes.
  • Solar cell section 103 has a first light-receiving surface F1.
  • the first carrier transporting section 1031 as a p-type semiconductor, the photoelectric conversion section 1032 as an i-type semiconductor, and the second carrier transporting section 1033 as an n-type semiconductor form a PIN junction region. is in a state of being.
  • the PIN junction region can generate electricity through photoelectric conversion in response to light irradiation.
  • the solar cell section 103 is a perovskite solar cell.
  • the solar cell system may be an inorganic solar cell or an organic solar cell.
  • the inorganic solar cell may be a silicon solar cell or a compound solar cell.
  • the organic solar cell may be a dye-sensitized solar cell or an organic thin film solar cell.
  • the solar cell system may be a crystal solar cell or a thin film solar cell.
  • the crystalline solar cell may be a silicon solar cell or a compound semiconductor solar cell such as a CIGS solar cell.
  • the thin film solar cell may be a perovskite solar cell, a dye-sensitized solar cell, an organic thin film solar cell, or the like.
  • the solar cell section 103 includes a first carrier transport section 1031, a photoelectric conversion section 1032, and a second carrier transport section 1033.
  • a second carrier transport section 1033, a photoelectric conversion section 1032, and a first carrier transport section 1031 are stacked on the second electrode section 104 in this order.
  • the second carrier transport section 1033 is located above the second electrode section 104.
  • a semiconductor made of an inorganic material also referred to as an inorganic semiconductor
  • a semiconductor having an n-type conductivity type may be applied to the inorganic semiconductor material.
  • the second carrier transport section 1033 has a function as, for example, a so-called hole blocking layer or an electron transport layer (ETL).
  • the electron transport layer collects and outputs electrons, for example.
  • the n-type semiconductor may be, for example, methyl [6,6]-phenyl-C-61-butyrate (PCBM), C60, or an oxide semiconductor layer.
  • oxide semiconductor layer include titanium (IV) oxide (TiO 2 ), zinc oxide (ZnO), indium (III) oxide (In 2 O 3 ), tin (IV) oxide (SnO 2 ), or magnesium oxide. (MgO) may also be applied.
  • the photoelectric conversion section 1032 is located on the second carrier transport section 1033. This photoelectric conversion section 1032 can absorb light that has passed through the first diffusion reduction section 102 and the first carrier transport section 1031, which will be described later.
  • an intrinsic semiconductor also referred to as an i-type semiconductor
  • a semiconductor having a perovskite structure also referred to as a perovskite semiconductor
  • Perovskite semiconductors may include, for example, halide-based organic-inorganic perovskite semiconductors.
  • the halide-based organic-inorganic perovskite semiconductor is a semiconductor having a perovskite structure with a composition of ABX3.
  • A includes, for example, one or more of methylammonium (CH 3 NH 3 ), formamidinium (CH(NH 2 ) 2 ), cesium (Cs), rubidium (Rb), or potassium (K). ion is applied.
  • B for example, one or more ions of lead (Pb) or tin (Sn) is applied.
  • Pb lead
  • Sn tin
  • ions of iodine (I), bromine (Br), or chlorine (Cl) are applied to X.
  • a semiconductor having a perovskite structure having a composition of ABX3 is composed of an organic perovskite such as CH3NH3PbI3 or (CH( NH2 ) 2 ,Cs ) Pb(I,Br) 3, for example.
  • the organic perovskite may be formed, for example, by applying the first raw material liquid onto the second carrier transport section 1033 and drying it.
  • the organic perovskite is a thin film with crystallinity.
  • the first raw material liquid may be generated, for example, by dissolving the raw materials, halogenated alkylamine and lead halide, in a solvent.
  • the thickness of the photoelectric conversion section 1032 may be, for example, about 100 nm to 2000 nm.
  • the first carrier transport section 1031 is located above the photoelectric conversion section 1032.
  • the surface of the first carrier transport layer 1031 opposite to the photoelectric conversion section 1032 may be the light receiving surface F1.
  • a semiconductor having a p-type conductivity type also referred to as a p-type semiconductor
  • the first carrier transport section 1031 has a function as, for example, a so-called electron blocking layer or a hole transport layer (HTL).
  • HTL for example, collects and outputs holes.
  • HTL materials include, for example, soluble diamine derivative [2,2',7,7'-tetrakis(N,N-di-P-methoxyphenylamino)-9,9'-spirobifluorene] (spiro -OMeTAD) etc. are applied.
  • HTL can be generated, for example, by applying a second raw material liquid onto a layer of perovskite semiconductor serving as the photoelectric conversion portion 1032 and drying it.
  • the thickness of the carrier transport layer may be, for example, about 50 nm to 200 nm.
  • the p-type semiconductor may be, for example, nickel (II) oxide (NiO), copper (I) thiocyanate (CuSCN), copper (I) oxide (Cu 2 O), or an organic semiconductor layer.
  • the organic semiconductor layer include spiro-OMeTAD, poly[bis(4-phenyl)(2,4,6-triphenylmethyl)amine] (PTAA), and poly(3-hexylthiophene-2,5-diyl).
  • P3HT poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate) (PEDOT/PSS) may also be applied.
  • First diffusion reduction unit 102 The first diffusion reduction section 102 is located above the solar cell section 103. In other words, the first diffusion reducing section 102 is located above the light receiving surface F1 of the solar cell section 103. In other words, the first diffusion reducing section 102 is located between the first electrode section 101 and the solar cell section 103.
  • the first diffusion reduction section 102 includes a first surface F3, which is a surface in contact with the light-receiving surface F1 of the solar cell section 103, and a second surface F4, which is a surface opposite to the first surface F3. Good too.
  • the first surface F3 is the surface of the first diffusion reduction section 102 on the solar cell section 103 side
  • the second surface F4 is the surface of the first diffusion reduction section 102 on the first electrode section 101 side.
  • the second surface F4 is also a surface that faces the first surface F3 in the thickness direction of the solar cell section 103.
  • the first surface F3 and the second surface F4 may be flat surfaces, for example.
  • the first diffusion reduction section 102 has a third surface F5 that coincides with the first surface F3. That is, the position of the third surface F5 in the +Z direction may coincide with the position of the first surface F3 in the +Z direction. As will be described in detail in Embodiment 3 below with reference to FIG. 13, the third surface F5 may be different from the first surface F3 and the second surface F4. As shown in FIG. 13, the third surface F5 may exist between the position of the first surface F3 in the +Z direction and the position of the second surface F4 in the +Z direction. The third surface F5 is located in at least a part of the region that does not overlap with the first electrode section 101 when the light receiving surface F1 is viewed from above. Further, in FIG.
  • the third surface F5 may be composed of one surface, and may be considered as a collection of surfaces of the first diffusion reduction section 102 parallel to the first surface F3 and the second surface F4.
  • the third surface F5 is a first diffusion reducing portion in which the position of the third surface F5 in the +Z direction is between the position of the first surface F3 in the +Z direction and the position of the second surface F4 in the +Z direction. It can be thought of as a set of 102 faces.
  • the third surface F5 may be parallel to the first surface F3 and the second surface F4.
  • FIGS. 1 to 3 show the solar cell element 10 in which the thickness of the second portion A2, which will be described later, is 0.
  • the third surface F5 (here, the first surface F3) may be parallel to the second surface F4.
  • the thickness of the first diffusion reduction section 102 refers to the thickness in the +Z direction.
  • the thickness of the first diffusion reducing portion 102 may be considered as the thickness in the direction from the first surface F3 to the second surface F4.
  • the thickness of the first portion A1 or the second portion A2, which will be described later, is also considered to be the same as the thickness of the first diffusion reduction portion 102.
  • the first diffusion reduction section 102 may be formed on the first carrier transport section 1031 by, for example, a vacuum process. As the vacuum process, sputtering, chemical vapor deposition (CVD), vacuum evaporation, atomic layer deposition (ALD), or the like may be applied.
  • the thickness of the first diffusion reducing section 102 may be, for example, approximately 1 nm to 100 nm.
  • the first diffusion reduction section 102 is an interface layer between the first electrode section 101 and the solar cell section 103.
  • the interfacial layer between the upper and lower parts herein means an intermediate layer having an upper surface in contact with the upper part and a lower surface in contact with the lower part.
  • the first diffusion reduction section 102 has a function as a diffusion barrier film.
  • molecules constituting the photoelectric conversion section 1032 of the first carrier transport section 1031 may diffuse into the first electrode section 101, thereby causing the first electrode section 101 to deteriorate. Due to these, the conversion efficiency of the solar cell element 10 may deteriorate. Therefore, by providing the first diffusion reduction section 102 between the first carrier transport section 1031 and the first electrode section 101, it is possible to reduce the deterioration of the conversion efficiency of the solar cell element 10 due to diffusion. In other words, the first diffusion reduction section 102 reduces the amount of metal movement from the first electrode section 101 to the first carrier transport section 1031 and the amount of metal movement from the first carrier transport section 1031 to the first electrode section 101. Reduce at least one of them.
  • the first diffusion reduction unit 102 includes a first portion A1 and a second portion A2.
  • the first portion A1 is a portion of the first diffusion reduction portion 102 that has a thickness from the first surface F3 toward the second surface F4.
  • the second portion A2 is a portion of the first diffusion reducing portion 102 that increases in thickness from the first surface F3 toward the third surface F5.
  • the thickness of the first portion A1 is The thickness is greater than the thickness of portion A2.
  • the first diffusion reduction unit 102 can be considered to include a first portion A1 and a second portion A2 having a smaller thickness than the first portion A1.
  • the first diffusion reduction unit 102 may be considered to include a second portion A2 and a first portion A1 that is thicker than the second portion A2. That is, in the first diffusion reduction unit 102, the relatively thick portion may be considered as the first portion A1, and the relatively thin portion may be considered as the second portion A2.
  • the thickness of the second portion A2 may be 0 (see also FIG. 1).
  • the second portion A2 is a portion where the first diffusion reducing portion 102 does not cover the light receiving surface F1 of the solar cell portion 103.
  • the second portion A2 is a portion where the light-receiving surface F1 of the solar cell section 103 is exposed. Note that exposure here means, for example, that the light-receiving surface F1 of the solar cell section 103 has a portion exposed from the first diffusion reduction section 102.
  • a transparent layer different from the first diffusion reducing section 102 may be provided on the corresponding portion of the light-receiving surface F1 of the solar cell section 103.
  • the light-receiving surface F1 of the solar cell section 103 includes a first portion A1 that is a portion covered with the first diffusion reducing section 102, and a first portion A1 that is a portion not covered with the first diffusion reducing section 102. It may be considered that it includes two parts A2.
  • the first diffusion reducing portion 102 or the first electrode portion 101 is observed in the first portion A1.
  • the solar cell element 10 is viewed from above from the light-receiving surface F1 side, the light-receiving surface F1 of the solar cell section 103 is observed in the second portion A2.
  • the first diffusion reducing section 102 is located so as to avoid at least a part of the region that does not overlap with the first electrode section 101 when the light receiving surface F1 is viewed from above.
  • the first electrode portion 101 may have a plurality of longitudinal portions 1011 extending in a predetermined longitudinal direction when the light receiving surface F1 is viewed from above (see FIG. 2).
  • the longitudinal portions 1011 may be arranged at intervals in a direction intersecting the longitudinal direction.
  • the first diffusion reduction unit 102 may be located, for example, avoiding at least part of the area between the longitudinal portions 1011.
  • the thickness of the second portion A2 may be constant throughout the first diffusion reducing portion 102.
  • the position of the third surface F5 in the +Z direction is constant throughout the first diffusion reduction section 102.
  • the height of the third surface F5 in the +Z direction with respect to the first surface F3 is constant throughout the first diffusion reduction section 102.
  • the second portion A2 may have a plurality of thicknesses within the first diffusion reduction section 102.
  • the second portion A2 may include a portion having a first thickness and a portion having a second thickness.
  • the position of the third surface F5 in the +Z direction may take a plurality of positions within the first diffusion reduction unit 102.
  • the third surface F5 has a portion where the distance between the first surface F3 and the third surface F5 is equal to the first thickness, and a portion where the distance between the first surface F3 and the third surface F5 is equal to the second thickness. It may also include.
  • the first thickness or the second thickness may be 0, or may be the same thickness as the thickness between the first surface F3 and the second surface F4.
  • the second portion A2 Since the second portion A2 has a plurality of thicknesses within the first diffusion reducing portion 102, the second portion A2 has a thick portion and a thin portion. Thereby, the manufacturing cost of the solar cell element 10 regarding the thin portion of the second portion A2 can be reduced.
  • a first electrode section 101 which will be described later, is located above the first portion A1. Specifically, the first electrode portion 101, which will be described later, is located on the second surface F4 in the first portion A1.
  • the first diffusion reducing section 102 has a portion (first section A1) where the first electrode section 101 is located above the first diffusion reducing section 102 and a first electrode section above the first diffusion reducing section 102. It may be considered that the thickness of the first diffusion reducing portion 102 is different between the portion where the first diffusion reducing portion 101 is not located (second portion A2).
  • the first electrode portion 101 which will be described later, is located above the first portion A1.
  • the first electrode section 101 may be considered to be located above the first diffusion reduction section 102.
  • the thickness of the second portion A2 may be smaller than the thickness of the first portion A1.
  • the position of the third surface F5 in the +Z direction exists between the position of the first surface F3 in the +Z direction and the position of the second surface F4 in the +Z direction.
  • the thickness of the second portion A2 may be 0.
  • the third surface F5 being parallel to the first surface F3, if the third surface F5 and the first surface F3 coincide, at least a portion of the portion where the first electrode section 101 is not located
  • the first diffusion reduction unit 102 may not be provided. That is, when the solar cell element 10 is viewed from above from the first electrode part 101 side, the first diffusion reducing part 102 is formed in the second part A2 so that the light-receiving surface F1 of the solar cell part 103 is observed. Good too.
  • the material of the first diffusion reduction section 102 may include a material whose absorption wavelength overlaps with that of the photoelectric conversion section 1032. That is, the material of the first diffusion reduction section 102 may include a material that does not have transparency to the absorption wavelength of the photoelectric conversion section 1032.
  • the first diffusion reducing section 102 located under the first electrode section 101 is Even if the light has the same absorption wavelength as the absorption wavelength of the conversion unit 1032, the light incident on the photoelectric conversion unit 1032 does not change much.
  • the selection of materials to be applied to the first diffusion reduction section 102 can be increased. Therefore, when the thickness of the second portion A2 is 0, the material of the first diffusion reducing part 102 is configured to include a material whose absorption wavelength overlaps with that of the photoelectric conversion part 1032, so that the first diffusion reducing part The selection of materials to be applied to 102 can be increased.
  • the width Wp of the first diffusion reducing portion 102 of the first portion A1 may be larger than the width We of the first electrode portion 101.
  • the width Wp of the first diffusion reducing portion 102 of the first portion A1 is The width We may be larger than the width We of the portion 101.
  • the width Wp may be the width of the second surface F4 of the first diffusion reduction section 102.
  • the width Wp of the first diffusion reducing portion 102 of the first portion A1 may be the width We of the first electrode portion 101 plus a predetermined width.
  • the predetermined width may be determined based on the positional accuracy of forming the first electrode part 101. For example, the predetermined width may be determined to be a value larger than the error in forming the first electrode portion 101. In this case, since errors in forming the first electrode part 101 may occur in either the left or right direction, the predetermined width may be twice or more the error in forming the first electrode part 101.
  • the width Wp of the first diffusion reduction section 102 of the first portion A1 may be determined based on the width We of the first electrode section 101.
  • the width Wp of the first diffusion reducing portion 102 of the first portion A1 may be smaller than the width We of the first electrode portion 101 by about 100 nm or more and 100 micrometers ( ⁇ m) or less.
  • the width Wp of the first diffusion reduction portion 102 of the first portion A1 is 10 ⁇ m or more and less than the width We of the first electrode portion 101. It may be increased to about 100 ⁇ m or less.
  • the width Wp of the first diffusion reducing portion 102 of the first portion A1 may be greater than 100% and less than or equal to 200% of the width We of the first electrode portion 101.
  • the first electrode section 101 may be formed at a position biased to either the left or right side of the first diffusion reduction section 102 of the first portion A1.
  • the center line of the first electrode part 101 in the left-right direction and the center line of the first diffusion reduction part 102 of the first portion A1 in the left-right direction may be apart.
  • the distance from the left end of the first electrode part 101 to the left end of the first diffusion reduction part 102 of the first part A1, and the distance from the right end of the first electrode part 101 to the first diffusion reduction part of the first part A1 The distance to the right end of section 102 may be different.
  • the cross-sectional shape of the first diffusion reducing portion 102 of the first portion A1 is rectangular, but the cross-sectional shape of the first diffusion reducing portion 102 of the first portion A1 is not limited to this.
  • types of cross-sectional shapes of the first diffusion reducing portion 102 of the first portion A1 will be explained with reference to FIGS. 5 to 9.
  • the width Wd of the surface of the first portion A1 on the first surface F3 side may be larger than the width Wu of the surface of the first portion A1 on the second surface F4 side.
  • the area of the surface in contact with the solar cell portion 103 is larger than the area of the surface in contact with the first electrode portion 101. may also be large.
  • the center of gravity of the first diffusion reducing section 102 is located on the solar cell section 103 side, so that the stability of the structure of the first diffusion reducing section 102 can be improved.
  • the cross-sectional shape of the first diffusion reducing portion 102 of the first portion A1 may be trapezoidal, as shown in FIG. 5.
  • the cross-sectional shape of the first diffusion reducing portion 102 of the first portion A1 may be a dome shape, as shown in FIG.
  • the fourth surface F6, which is the side surface of the first portion A1 may be a curved surface that curves into an arc having a center within the first diffusion reducing section 102.
  • the cross-sectional shape of the first diffusion reducing portion 102 of the first portion A1 may be a shape with a wide base as shown in FIG.
  • the fourth surface F6 of the first portion A1 may be a curved surface that curves in an arc shape having a center outside the first diffusion reducing section 102 in the X direction.
  • the width Wd on the solar cell portion 103 side may be smaller than the width Wu on the first electrode portion 101 side, as shown in FIG.
  • the light-receiving area of the solar cell section 103 can be increased, so that the conversion efficiency of the solar cell element 10 can be improved.
  • the width Wp of the first diffusion reducing portion 102 of the first portion A1 is larger than the width We of the first electrode portion 101.
  • the material of the first diffusion reduction section 102 may include a material whose absorption wavelength overlaps with that of the photoelectric conversion section 1032.
  • the surface connecting the first surface F3 and the second surface F4 of the first portion A1 is referred to as a fourth surface F6.
  • the fourth surface F6 is a different surface from the third surface F5.
  • the fourth surface F6 may be a plane or a curved surface. Further, the fourth surface F6 may be considered as a set of surfaces connecting the first surface F3 and the second surface F4 of the first portion A1.
  • the specific resistance of the first electrode section 101 may be smaller than the specific resistance of the solar cell section 103.
  • the specific resistance value of the first diffusion reducing section 102 may be less than or equal to the specific resistance value of the solar cell section 103 and greater than or equal to the specific resistance value of the first electrode section 101.
  • the value of the specific resistance of the first diffusion reducing section 102 may be less than or equal to the value of the specific resistance of the first carrier transporting section 1031 and greater than or equal to the value of the specific resistance of the first electrode section 101.
  • the specific resistance value changes stepwise from the solar cell section 103 toward the first electrode section 101, so that an increase in resistance can be reduced.
  • the value of the specific resistance of the first diffusion reducing section 102 may be realized by selecting the material of the first diffusion reducing section 102 or adjusting the film forming conditions of the first diffusion reducing section 102.
  • the specific resistance may be a specific electrical resistance, an electrical resistivity, or a resistivity, and a unit such as ohmmeter ( ⁇ m) is used as the unit.
  • the first electrode section 101 can collect carriers generated by photoelectric conversion in response to irradiation of the photoelectric conversion section 1032 with light.
  • the first electrode section 101 can serve, for example, as an electrode (also referred to as a positive electrode) that collects holes as carriers. Further, the first electrode section 101 may serve as a current collecting electrode, for example.
  • the first electrode section 101 may be formed on the first diffusion reduction section 102 by, for example, a vacuum process such as sputtering.
  • the average thickness of the first electrode section 101 is not particularly limited, but may be in the range of 1 ⁇ m or more and 50 ⁇ m or less, for example.
  • the first electrode portion 101 may be formed, for example, by applying a metal paste as a coating liquid by screen printing or the like, and then drying and solidifying the metal paste.
  • the metal paste may be produced, for example, by adding particles having high light reflectance and conductivity to a binder such as a transparent resin.
  • a binder such as a transparent resin.
  • the resin having translucency for example, epoxy resin or the like may be used.
  • the particles contained in the metal paste for example, metal particles such as Cu, Al, Ni, and an alloy of Zn and Ag may be employed.
  • the first electrode section 101 includes a large number of conductive particles, and the conductivity of the first electrode section 101 may be ensured by the large number of particles.
  • the first electrode portion 101 may be layered, for example.
  • the shape of the first electrode part 101 is not limited to the shapes shown in FIGS. 1 to 3 of the first embodiment.
  • the shape of the first electrode section 101 and the shape of the first diffusion reduction section 102 may be changed as appropriate in order to improve carrier recovery efficiency.
  • the shape of the first electrode section 101 and the shape of the first diffusion reduction section 102 may be a so-called comb-shaped electrode structure, or a structure combining a so-called bus bar electrode and a so-called finger electrode.
  • a lead wire is electrically connected to each of the first electrode section 101 and the second electrode section 104.
  • a first lead wire is electrically connected to the first electrode section 101
  • a second lead wire is connected to the second electrode section 104.
  • Each lead wire can be joined to each of the first electrode section 101 and the second electrode section 104, for example, by soldering or the like.
  • the output obtained by photoelectric conversion in the solar cell element 10 can be taken out by the first lead wire and the second lead wire.
  • the solar cell element 10 according to the first embodiment can be manufactured by performing the processes from step S1 to step S5 in the order described.
  • the second electrode section 104 is formed on the substrate section 105.
  • the second electrode part 104 can be formed on the substrate part 105 by depositing the material of the second electrode part 104 on the substrate part 105, for example, by a vacuum process such as sputtering.
  • a metal with excellent conductivity such as Au or a TCO such as ITO, FTO, or ZnO is used.
  • a second carrier transport section 1033 is formed on the second electrode section 104.
  • the material of the second carrier transport portion 1033 is, for example, a metal oxide such as TiO 2 , SnO 2 , ZnO, or In 2 O 3 .
  • a raw material solution prepared by dissolving raw materials such as metal chlorides or metal isopropoxides in a polar solution is applied onto the second electrode part 104, and the raw materials are hydrolyzed to generate metal oxides.
  • the second carrier transport section 1033 may be formed on the second electrode section 104.
  • Metal chlorides include, for example, titanium chloride, tin chloride, zinc chloride, or indium chloride.
  • Metal isopropoxides include, for example, titanium isopropoxide, tin isopropoxide, zinc isopropoxide, or indium isopropoxide.
  • a titanium tetrachloride aqueous solution is applied onto the second electrode portion 104 by spin coating or the like and dried. Thereafter, by hydrolyzing titanium tetrachloride by heating at about 150° C. on a hot plate, for example, a second carrier transporting portion 1033 of TiO 2 can be formed on the second electrode portion 104.
  • an organic material may be applied to the material of the second carrier transport section 1033.
  • fullerene derivatives such as PCBM may be applied to this organic material.
  • a raw material solution prepared by dissolving a fullerene derivative in a chlorobenzene solvent so that about 5 milligrams (mg) to 20 mg of the fullerene derivative is contained in 1 milliliter (1 ml) of the raw material solution is used.
  • a raw material solution in which the solvent is chlorobenzene and the concentration of the fullerene derivative is about 5 mg/ml to 20 mg/ml is used.
  • the second carrier transport section 1033 of PCBM may be formed on the second electrode section 104 by drying and annealing the raw material liquid applied on the second electrode section 104.
  • the organic material used as the material of the second carrier transport portion 1033 for example, the functional group may be changed to change the solubility in the organic solvent and the physical properties.
  • the photoelectric conversion section 1032 is formed on the second carrier transport section 1033.
  • the photoelectric conversion section 1032 can be formed, for example, by applying a raw material liquid onto the second carrier transporting section 1033 and annealing the applied raw material liquid.
  • the raw material liquid can be generated, for example, by dissolving a halogenated alkylamine and lead halide or tin halide, which are raw materials for the photoelectric conversion unit 1032, in a solvent.
  • the photoelectric conversion section 1032 may be formed of a thin film of a halogenated perovskite semiconductor having crystallinity.
  • the first carrier transport section 1031 is formed on the photoelectric conversion section 1032.
  • the first carrier transport section 1031 can be formed on the photoelectric conversion section 1032 by applying a raw material liquid onto the photoelectric conversion section 1032 and drying and annealing the raw material liquid.
  • an organic semiconductor material such as spiro-OMeTAD, P3HT, PTAA, or Poly-TPD can be applied, for example.
  • the raw material liquid can be prepared by dissolving spiro-OMeTAD in chlorobenzene so that about 10 mg to 85 mg of spiro-OMeTAD is contained in 1 ml of the raw material liquid.
  • a raw material solution is used in which the solvent is chlorobenzene and the concentration of spiro-OMeTAD is about 10 mg/ml to 85 mg/ml.
  • the raw material liquid may be prepared by dissolving P3HT in dichlorobenzene so that about 5 mg to 20 mg of P3HT is contained in 1 ml of the raw material liquid.
  • a raw material solution may be used in which the solvent is dichlorobenzene and the concentration of P3HT is approximately 5 mg/ml to 20 mg/ml.
  • the raw material liquid may be prepared by dissolving PTAA in toluene so that about 5 mg to 20 mg of PTAA is contained in 1 ml of the raw material liquid.
  • a raw material solution may be used in which the solvent is toluene and the concentration of PTAA is 5 mg/ml to 20 mg/ml.
  • the raw material liquid may be prepared by dissolving Poly-TPD in chlorobenzene so that about 5 mg to 20 mg of Poly-TPD is contained in 1 ml of the raw material liquid.
  • a raw material solution may be used in which the solvent is chlorobenzene and the concentration of Poly-TPD is 5 mg/ml to 20 mg/ml.
  • the first diffusion reduction section 102 is formed on the first carrier transport section 1031.
  • the first electrode part 101 is formed on the first carrier transport part 1031 by depositing the material of the first diffusion reduction part 102 on the first carrier transport part 1031, for example, by a vacuum process such as sputtering. be able to.
  • a vacuum process such as sputtering. be able to.
  • TCO such as ITO, FTO, or ZnO is applied.
  • the first portion A1 and the second portion A2 of the first diffusion reduction portion 102 may be formed by combining a vacuum process and mask patterning. For example, by depositing the material of the first diffusion reduction part 102 on the first carrier transport part 1031 with a mask formed on the part where the second part A2 is to be formed, the first part of the first diffusion reduction part 102 can be removed. A1 may also be formed. Further, for example, by depositing the material of the first diffusion reducing part 102 on the entire surface of the first carrier transporting part 1031 and etching the part that will become the second part A2, the material of the first diffusion reducing part 102 can be etched. Two parts A2 may be formed. For etching, etching using plasma gas, etching using laser, etching using chemical liquid, or the like may be used.
  • the first electrode section 101 is formed on the first diffusion reduction section 102.
  • the first electrode section 101 is formed so as to be in contact with the surface of the first diffusion reduction section 102 on the opposite side to the first carrier transport section 1031 .
  • the first electrode part 101 is formed on the first diffusion reduction part 102 by depositing the material of the first electrode part 101 on the first diffusion reduction part 102 by a vacuum process such as sputtering. Can be done.
  • a metal with excellent conductivity such as Au, or TCO such as ITO, FTO, or ZnO is used.
  • the first electrode portion 101 may be formed, for example, by applying a metal paste as a coating liquid by screen printing or the like, and then drying and solidifying the metal paste.
  • Solar cell module 1 In the solar cell module 1, for example, as shown in FIG. 11, a plurality of solar cell elements 10 are formed on one substrate portion 105. In other words, a plurality of solar cell elements 10 share the substrate section 105. In this case, the substrate section 105 can play the role of supporting the plurality of solar cell elements 10 and the role of protecting the plurality of solar cell elements 10.
  • the substrate portion 105 for example, a flat plate having a rectangular board surface is employed.
  • the material of the substrate portion 105 for example, glass or resin such as acrylic or polycarbonate is used.
  • the glass for example, a material with high light transmittance such as white plate glass, tempered glass, heat ray reflective glass, etc. can be adopted.
  • the plurality of solar cell elements 10 are arranged in a plane along the +X direction as the first direction.
  • being lined up in a plane means that each solar cell element 10 is located along a virtual or actual plane, and that a plurality of solar cell elements 10 are lined up.
  • the plurality of solar cell elements 10 are arranged on the substrate section 105 along the surface of the substrate section 105.
  • the plurality of solar cell elements 10 may include five solar cell elements 10 lined up along the first direction (+X direction) on the substrate portion 105.
  • the five solar cell elements 10 include, for example, a first solar cell element 111, a second solar cell element 112, a third solar cell element 113, a fourth solar cell element 114, and a fifth solar cell element, which are arranged in order in the +X direction.
  • a battery element 115 is included. That is, the plurality of solar cell elements 10 include the n-th solar cell element 11n (n is a natural number from 1 to 5).
  • each solar cell element 10 has a strip-like shape with the +Y direction as the longitudinal direction.
  • Each solar cell element 10 has a first electrode section 101 , a first diffusion reduction section 102 , a solar cell section 103 , and a second electrode section 104 .
  • Embodiment 1 on the substrate section 105, five second electrode sections 104 are arranged planarly in order in the +X direction.
  • the second electrode part 104 of the m-th solar cell element 11m (m is a natural number from 1 to 4) and the second electrode part 104 of the (m+1)-th solar cell element 11 (m+1) They are lined up with G1 (also called a gap) in between.
  • G1 also called a gap
  • the second electrode part 104 of the first solar cell element 111 and the second electrode part 104 of the second solar cell element 112 are lined up with a gap (also referred to as a first gap) G1 in between.
  • Each first gap G1 has a longitudinal direction along the +Y direction.
  • there is a first groove portion P1 whose bottom surface is the substrate portion 105 and whose side surfaces are two mutually opposing end surfaces of the two second electrode portions 104 sandwiching the first gap G1.
  • the five first electrode parts 101 are arranged planarly in order in the +X direction.
  • the first electrode section 101 of the m-th solar cell element 11m and the first electrode section 101 of the (m+1)th solar cell element 11 (m+1) are lined up with a gap (also referred to as a second gap) G2 in between. I'm here.
  • the first electrode section 101 of the first solar cell element 111 and the first electrode section 101 of the second solar cell element 112 are lined up with a gap (second gap) G2 in between.
  • Each second gap G2 has, for example, a longitudinal direction along the +Y direction.
  • a third groove portion P3 having the second electrode portion 104 as a bottom surface is formed.
  • the second electrode part 104 protrudes more in the +X direction than the first electrode part 101.
  • the first gap G1 is located at a position shifted in the first direction (+X direction) from the second gap G2.
  • the connecting portion 12 electrically connects two adjacent solar cell elements 10 of the plurality of solar cell elements 10 in series.
  • the m-th connecting portion 12m electrically connects the m-th solar cell element 11m and the (m+1)th solar cell element 11 (m+1).
  • the first connecting portion 121 electrically connects the first solar cell element 111 and the second solar cell element 112.
  • the m-th connection section 12m electrically connects the second electrode section 104 of the m-th solar cell element 11m and the first electrode section 101 of the (m+1)th solar cell element 11 (m+1).
  • the first connection portion 121 electrically connects the second electrode portion 104 of the first solar cell element 111 and the first electrode portion 101 of the second solar cell element 112.
  • the plurality of solar cell elements 10 can be electrically connected in series.
  • the connecting portion 12 is located between the solar cell portions 103 in the +X direction. From another point of view, there is a second groove portion P2 whose both sides are the solar cell portion 103 and whose bottom surface is the surface of the second electrode portion 104 in the ⁇ Z direction.
  • the second groove portion P2 has a longitudinal direction along the +Y direction.
  • the second groove portion P2 is provided with the connecting portion 12.
  • the connection part 12 may be one in which the first electrode part 101 is filled in the second groove part P2.
  • the first electrode section 101 has a first electrode section 101 that is a part protruding in the -X direction from the first diffusion reducing section 102, the solar cell section 103, and the second electrode section 104.
  • a protrusion 101e is present.
  • the second electrode section 104 has a second protrusion that is a part that protrudes in the +X direction more than the first electrode section 101, the first diffusion reduction section 102, and the solar cell section 103.
  • a portion 104e is present.
  • a first conductor W1 for outputting a first polarity is electrically connected to the first protrusion 101e.
  • a second conductor W2 for outputting a second polarity is electrically connected to the second protrusion 104e.
  • the second polarity is a positive polarity.
  • the second polarity is a negative polarity.
  • Embodiment 2 will be described below. Below, differences from Embodiment 1 will be mainly explained.
  • FIG. 12 is a cross-sectional view of the solar cell module 2 according to the second embodiment from the +Y direction.
  • the solar cell module 2 and the solar cell element 20 according to the second embodiment further include a first diffusion reducing portion 102 between the connecting portion 12 (first electrode portion 101) and the second electrode portion 104 in the second groove portion P2. .
  • the contact area between the side surface of the connecting portion 12 (first electrode portion 101) and the side surface of the solar cell portion 103 can be reduced. Thereby, the possibility that the first electrode part 101 or the solar cell part 103 will deteriorate due to contact between the first electrode part 101 and the solar cell part 103 can be reduced.
  • Embodiment 3 will be described below. Below, differences from Embodiment 1 will be mainly explained.
  • FIG. 13 is a cross-sectional view perpendicular to the longitudinal direction of the electrode when the light-receiving surface F1 of the solar cell element 30 according to the third embodiment is viewed from above.
  • the thickness of the second portion A2 of the first diffusion reducing section 102 is not zero.
  • the thickness of the second portion A2 of the first diffusion reduction section 102 is zero.
  • the first diffusion reduction unit 102 includes a first portion A1 having a third thickness and a second portion A2 having a fourth thickness smaller than the third thickness.
  • the first diffusion reducing unit 102 has a first layer having a fourth thickness formed on the solar cell unit 103, and a third thickness and a fourth thickness in the first portion A1.
  • a second layer having a different thickness may be considered to be formed on top of the first layer with the resulting convex shape.
  • TCO such as ITO, FTO, or ZnO is used as the material for the first diffusion reducing portion 102.
  • the thickness of the first diffusion reduction section 102 may be, for example, about 10 nm to 1000 nm.
  • the third thickness may be, for example, about 1 nm to 100 nm larger than the fourth thickness.
  • the first electrode section 101 can improve the efficiency of collecting carriers from the first carrier transport section 1031. This can improve the conversion efficiency of the solar cell element 10.
  • the first portion A1 and the second portion A2 of the first diffusion reduction portion 102 may be formed by combining a vacuum process and mask patterning in step S5 of the first embodiment. For example, by depositing the material of the first diffusion reducing part 102 on the entire surface of the first carrier transporting part 1031 and etching the part that will become the second part A2, the second part of the first diffusion reducing part 102 can be etched. A2 may also be formed. For etching, etching using plasma gas, etching using laser, etching using chemical liquid, or the like may be used.
  • Embodiment 4 will be described below. In the following, differences from Embodiment 3 will be mainly explained.
  • FIG. 14 is a cross-sectional view perpendicular to the longitudinal direction of the electrode when the light-receiving surface F1 of the solar cell element 40 according to the fourth embodiment is viewed from above.
  • the solar cell element 40 according to the fourth embodiment further includes a second diffusion reduction section 106 between the first diffusion reduction section 102 and the solar cell section 103 (first carrier transport section 1031). That is, the second diffusion reduction section 106 is located between the first diffusion reduction section 102 and the solar cell section 103.
  • the solar cell element 40 according to the fourth embodiment is the same as the solar cell element 10 according to the first embodiment, between the first diffusion reducing section 102 and the solar cell section 103 (first carrier transport section 1031).
  • the solar cell element 40 according to the fourth embodiment is different from the first diffusion reducing section 102 between the second surface F4 and the third surface F5 in the solar cell element 30 according to the third embodiment. , it may be considered to have a configuration obtained by differentiating the first diffusion reducing portion 102 between the third surface F5 and the first surface F3.
  • the second diffusion reduction section 106 is located above the light receiving surface F1 of the solar cell section 103.
  • the second diffusion reduction section 106 includes a fifth surface F7, which is a surface in contact with the light-receiving surface F1 of the solar cell section 103, and a sixth surface F8, which is a surface opposite to the fifth surface F7.
  • the first diffusion reduction section 102 is provided on the sixth surface F8 of the second diffusion reduction section 106.
  • the first surface F3 of the first diffusion reduction section 102 contacts the sixth surface F8 of the second diffusion reduction section 106.
  • the second diffusion reduction section 106 may cover the entire light-receiving surface F1 of the solar cell section 103.
  • the first diffusion reducing section 102 or the first electrode section 101 is observed in the first portion A1 of the first diffusion reducing section 102.
  • the sixth surface F8 of the second diffusion reduction section 106 is observed in the second portion A2 of the first diffusion reduction section 102. That is, when the solar cell element 40 is viewed from above from the light-receiving surface F1 side, the sixth surface F8 of the second diffusion reduction section 106 is exposed in the second portion A2 of the first diffusion reduction section 102.
  • the value of the specific resistance of the first diffusion reduction section 102 and the value of the specific resistance of the second diffusion reduction section 106 may be different.
  • the value of the specific resistance of the second diffusion reduction section 106 may be greater than or equal to the value of the specific resistance of the first diffusion reduction section 102.
  • the value of the specific resistance of the second diffusion reduction section 106 may be larger than the value of the specific resistance of the first diffusion reduction section 102.
  • the value of the resistivity of the first diffusion reducing section 102 and the value of the resistivity of the second diffusion reducing section 106 are determined by the selection of materials for the first diffusion reducing section 102 and the second diffusion reducing section 106, or the value of the resistivity of the first diffusion reducing section 102 and the second diffusion reducing section 106. This may be achieved by adjusting the film forming conditions of the reduction unit 102 and the second diffusion reduction unit 106.
  • the first diffusion reduction section 102 and the second diffusion reduction section 106 may be made of the same kind of material.
  • the first diffusion reduction section 102 and the second diffusion reduction section 106 may be made of the same type of elements or a combination thereof. That is, the constituent elements of the first diffusion reduction section 102 and the constituent elements of the second diffusion reduction section 106 may be the same.
  • As the material of the first diffusion reduction section 102 and the material of the second diffusion reduction section 106 for example, TCO such as ITO, FTO, or ZnO is applied.
  • the first diffusion reduction section 102 and the second diffusion reduction section 106 may be formed to have different carrier densities.
  • the carrier density of the first diffusion reduction section 102 may be higher than the carrier density of the second diffusion reduction section 106.
  • TCO there is often a trade-off relationship between conductivity (carrier density) and transparency. Since no light enters the first diffusion reducing section 102 that exists under the first electrode section 101, even if the transmittance decreases, the effect on the conversion efficiency of the solar cell element 40 is small.
  • the carrier density of the first diffusion reduction section 102 and the carrier density of the second diffusion reduction section 106 may be realized by adjusting the film forming conditions of the first diffusion reduction section 102 and the second diffusion reduction section 106.
  • the first diffusion reduction section 102 and the second diffusion reduction section 106 may be made of different types of materials. That is, the constituent elements of the first diffusion reduction section 102 and the constituent elements of the second diffusion reduction section 106 may be different.
  • TCO such as ITO, FTO, or ZnO
  • the material for the first diffusion reduction portion 102 may be a conductive material such as a conductive oxide. of inorganic materials may be applied. Since no light enters the first diffusion reducing section 102 that exists under the first electrode section 101, even if the transmittance decreases, the effect on the conversion efficiency of the solar cell element 40 is small.
  • the material of the second diffusion reduction part 106 is required to have transparency to the absorption wavelength of the solar cell part 103, but the material of the first diffusion reduction part 102 is required to have transparency to the absorption wavelength of the solar cell part 103. is not required. That is, by configuring the first diffusion reducing section 102 and the second diffusion reducing section 106 from different types of materials, it is possible to expand the selection of materials that can be used for the first diffusion reducing section 102.
  • a step of forming the second diffusion reduction section 106 is performed between step S4 and step S5 of the first embodiment.
  • the second diffusion reduction section 106 is formed on the first carrier transport section 1031 of the solar cell section 103.
  • the second diffusion reducing section 106 is formed on the first carrier transporting section 1031 by depositing the material of the second diffusion reducing section 106 on the first carrier transporting section 1031, for example, by a vacuum process such as sputtering. can do.
  • the solar cell element 50 according to the fifth embodiment is a multijunction solar cell, a tandem solar cell, a laminated solar cell, a stacked solar cell, or the like. More specifically, the solar cell element of the multijunction solar cell according to Embodiment 5 is a solar cell element in which thin film solar cells are joined together.
  • the combination of thin film solar cells may be a combination of perovskite solar cells, or a combination of a perovskite solar cell and another thin film solar cell such as a silicon thin film solar cell.
  • FIG. 15 is a cross-sectional view perpendicular to the longitudinal direction of the first electrode section 101 when the light-receiving surface F1 of the solar cell element 50 according to the fifth embodiment is viewed from above.
  • the solar cell element 50 according to the fifth embodiment further includes a second solar cell section 108 in addition to the first solar cell section 107 .
  • a second electrode part 104, a second solar cell part 108, a first solar cell part 107, a first diffusion reduction part 102, a first electrode part 101 are stacked in this order.
  • the first diffusion reduction unit 102 may have the configuration described in the third embodiment or the fourth embodiment.
  • the first solar cell unit 107 converts light (for example, sunlight) incident from the outside into electric power.
  • the solar cell unit 103 may generate carriers through photoelectric conversion in response to light irradiation.
  • the carrier includes at least one of electrons and holes.
  • the first solar cell section 107 may be a perovskite solar cell, or other types of solar cells may be applied.
  • the solar cell system may be an inorganic solar cell or an organic solar cell.
  • the inorganic solar cell may be a silicon solar cell or a compound solar cell.
  • the organic solar cell may be a dye-sensitized solar cell or an organic thin film solar cell.
  • the first solar cell section 107 includes a first carrier transport section 1031, a photoelectric conversion section 1032, and a second carrier transport section 1033.
  • the material constituting the first solar cell section 107 has translucency to light having the absorption wavelength of the second solar cell section 108.
  • light having a wavelength absorbed by the second solar cell section 108 can be incident on the second solar cell section 108.
  • the second solar cell unit 108 converts light (for example, sunlight) incident from the outside into electric power.
  • the second solar cell section 108 has an absorption wavelength different from that of the first solar cell section 107 .
  • the absorption wavelength of the second solar cell section 108 may be larger than the absorption wavelength of the first solar cell section 107.
  • the absorption wavelength may include not only one wavelength but also a certain wavelength band.
  • the absorption wavelength may be in a wavelength band such as a visible light region, or may be a wavelength band from a first wavelength to a second wavelength.
  • the second solar cell section 108 may be a perovskite solar cell, or other types of solar cells may be applied.
  • the solar cell system may be an inorganic solar cell or an organic solar cell.
  • the inorganic solar cell may be a silicon solar cell or a compound solar cell.
  • the organic solar cell may be a dye-sensitized solar cell or an organic thin film solar cell.
  • the second solar cell section 108 includes a first carrier transport section 1031, a photoelectric conversion section 1032, and a second carrier transport section 1033, as in the first embodiment.
  • the plurality of solar cell parts 103 are connected in series by stacking the plurality of solar cell parts 103 such as the first solar cell part 107 and the second solar cell part 108. Therefore, since the output power of the solar cell element 50 can be increased, the conversion efficiency of the solar cell element 50 can be improved.
  • the solar cell element 50 may further include a buffer section (not shown) between the first solar cell section 107 and the second solar cell section 108. good.
  • the buffer section is used to connect the first solar cell section 107 and the second solar cell section 108.
  • the buffer section is transparent to the absorption wavelength of the second solar cell section 108.
  • FIG. 15 illustrates a two-layer multijunction solar cell element
  • the solar cell element 50 is not limited to this.
  • the solar cell element 50 may be a multi-junction solar cell element with two or more layers.
  • the solar cell section 103 is a crystalline solar cell.
  • the solar cell section 103 of the solar cell element 10 according to the first embodiment may be considered to be a crystalline solar cell.
  • FIG. 16 is a cross-sectional view perpendicular to the longitudinal direction of the first electrode section 101 when the light-receiving surface F1 of the solar cell element 60 according to the sixth embodiment is viewed from above.
  • a solar cell element 60 according to the sixth embodiment includes a third solar cell section 110.
  • the second electrode section 104, the third solar cell section 110, the first diffusion reduction section 102, and the first electrode section 101 are stacked in this order.
  • the first diffusion reduction unit 102 may have the configuration described in the second embodiment or the third embodiment.
  • the third solar cell section 110 is a solar cell containing silicon crystal.
  • the third solar cell unit 110 can generate electricity by photoelectrically converting the light incident on the silicon crystal.
  • the silicon crystal may be a silicon single crystal or a silicon polycrystal.
  • the third solar cell section 110 may be a PN junction solar cell or a PIN junction solar cell.
  • the third solar cell section 110 is made of silicon crystal and has rigidity, so it can function as the substrate section 105. Therefore, the solar cell element 60 does not need to include the substrate section 105.
  • the plurality of solar cell elements 60 are located between the first protection member 61 and the second protection member 63. Further, the plurality of solar cell elements 60 are arranged in a plane along the module surface F9 of the first protection member 61. In the example of FIG. 17, the plurality of solar cell elements 60 are two-dimensionally arranged along a virtual XY plane.
  • the solar cell module 6 has, for example, a module front surface F9 on which sunlight mainly enters, and a module back surface F10 located on the opposite side of the module front surface F9.
  • Module surface F9 is the surface of solar cell module 6 on the side toward which light-receiving surface F1 of solar cell element 60 faces.
  • the module back surface F10 is the surface of the solar cell module 6 that faces the back surface F2 of the solar cell element 60.
  • the module surface F9 is in a state facing the +Z direction.
  • the module rear surface F10 is in a state facing the ⁇ Z direction.
  • the +Z direction is set, for example, in a direction facing the sun, which is in the south.
  • the solar cell module 6 includes a plurality of solar cell elements 60, a first protection member 61, and a sealing material 62.
  • the solar cell module 6 further includes a second protection member 63.
  • the solar cell module 6 may further include a terminal box 65 for extracting the generated power to the outside.
  • the terminal box 65 is located, for example, on the back surface F10 of the module.
  • the solar cell module 6 may further include a frame 66 for protecting the outer periphery of the solar cell module 6.
  • the frame 66 is located, for example, along the outer periphery of the solar cell module 6.
  • a sealing material 62 with low moisture permeability such as a butyl resin, may be further filled between the outer peripheral portion of the solar cell module 6 and the frame 66.
  • the first protection member 61 is, for example, a member for protecting the solar cell element 60 from the module surface F9 side.
  • the first protection member 61 is in a state of forming the module surface F9, for example.
  • the first protection member 61 has, for example, translucency.
  • the first protection member 61 has, for example, transparency to light having a wavelength in a specific range.
  • the specific range of wavelengths includes, for example, the wavelength of light that can be photoelectrically converted by the solar cell element 60. If the specific range of wavelengths includes wavelengths of sunlight with high irradiation intensity, the conversion efficiency of the solar cell module 6 can be improved.
  • a sheet-like or film-like member is applied to the first protection member 61.
  • a weather-resistant resin such as a fluorine-based resin is applied.
  • weather-resistant fluorine-based resins include fluorinated ethylene propylene copolymer (FEP), ethylene tetrafluoroethylene copolymer (ETFE), and ethylene/chlorotrifluoroethylene copolymer. Including Ethylene Chlorotrifluoroethylene (ECTFE) and the like.
  • the sealing material 62 is in a state covering the solar cell element 60.
  • the sealing material 62 is filled in the area between the first protection member 61 and the second protection member 63, and the sealing material 62 is filled in the area between the first protection member 61 and the second protection member 63, and the sealing material 62 is filled in the area between the first protection member 61 and the second protection member 63. is in a state of being covered.
  • the sealing material 62 includes, for example, a sealing material 62 (also referred to as a first sealing material 621) located on the module front surface F9 side and a sealing material 62 (second sealing material 621) located on the module back surface F10 side.
  • the first sealing material 621 is in a state of covering the entire surface of the solar cell element 60 on the first protection member 61 side. In other words, the first sealing material 621 is in a state of covering the solar cell element 60 between the first protection member 61 and the solar cell element 60, for example.
  • the second sealing material 622 is in a state of covering the entire surface of the solar cell section 103 on the second protection member 63 side. In other words, the second sealing material 622 is in a state of covering the solar cell element 60 between the second protection member 63 and the solar cell element 60, for example. Therefore, the solar cell element 60 is, for example, sandwiched and surrounded by the first encapsulant 621 and the second encapsulant 622. Thereby, for example, the posture of the solar cell element 60 can be maintained by the sealing material 62.
  • the sealing material 62 has, for example, translucency.
  • the sealing material 62 has, for example, translucency to light having a wavelength in the above-mentioned specific range.
  • the module surface F9 side The incident light can reach the solar cell element 60.
  • resin is used as the material for each of the first sealing material 621 and the second sealing material 622.
  • the material of the first sealing material 621 includes, for example, polyvinyl acetal or acid such as ethylene-vinyl acetate copolymer (EVA), polyvinyl butyral (PVB), etc. Modified resin etc. are applied.
  • EVA ethylene-vinyl acetate copolymer
  • PVB polyvinyl butyral
  • Modified resin etc. are applied.
  • EVA ethylene-vinyl acetate copolymer
  • PVB polyvinyl butyral
  • Modified resin etc. are applied.
  • the acid-modified resin includes, for example, a modified polyolefin resin that can be formed by graft modification of a resin such as polyolefin with an acid.
  • first sealing material 621 and the second sealing material 622 may be made of two or more types of materials, for example.
  • the solar cell panel also includes a packing portion (not shown) located along an annular portion of the region between the first protection member 61 and the second protection member 63 that is open to the outside space. ) may further be provided.
  • the packing portion surrounds, for example, the outer peripheral portion of the region between the first protection member 61 and the second protection member 63 that includes the solar cell element 60 and the sealing material 62.
  • the packing part is located, for example, so as to fill the area from the first protection member 61 to the second protection member 63.
  • the packing part has a lower moisture permeability than the sealing material 62, the packing part will be attached to the outer peripheral part of the area between the first protection member 61 and the second protection member 63.
  • the part along the can be sealed.
  • the packing part can reduce the intrusion of moisture and the like from the outside of the solar cell module 6 toward the solar cell element 60, for example.
  • the material of the packing part for example, butyl resin, polyisopropylene resin, acrylic resin, or the like is used.
  • the material of the packing portion may include, for example, a metal such as copper or solder, or a non-metal such as glass, as long as it is a material with low moisture permeability.
  • the second protection member 63 is, for example, a member for protecting the solar cell element 60 from the module back surface F10.
  • the second protection member 63 is in a state of forming, for example, the module back surface F10.
  • the second protection member 63 may or may not have translucency, for example.
  • a sheet-like or flat-like member is applied to the second protection member 63.
  • a back sheet forming the module back surface F10 is applied to the sheet-like member.
  • resin is used as the material for the back sheet.
  • the current collector 64 functions as an extraction electrode.
  • the current collector 64 is, for example, aluminum or copper wiring.
  • the current collector 64 is connected to a terminal from which electricity generated by the solar cell module 6 is taken out.
  • the solar cell element 70 according to the seventh embodiment is a multijunction solar cell, a tandem solar cell, a laminated solar cell, a stacked solar cell, or the like.
  • the solar cell element 70 according to Embodiment 7 may be a solar cell element in which a crystalline solar cell and a thin film solar cell are stacked.
  • the solar cell element 70 according to the seventh embodiment is a solar cell element in which a silicon crystal solar cell and a perovskite solar cell are joined.
  • the solar cell element 70 of the multijunction solar cell according to Embodiment 7 may be a solar cell element 70 in which a perovskite solar cell is bonded onto a silicon crystal solar cell.
  • the solar cell element 70 according to the seventh embodiment is the solar cell element 10 according to the first embodiment, in which the third solar cell part 110 is inserted between the solar cell part 103 and the second electrode part 104. It may be considered to have a configuration obtained by doing so. Furthermore, it is considered that the solar cell element 70 according to the seventh embodiment has a configuration obtained by replacing the second solar cell section 108 with the third solar cell section 110 in the solar cell element 50 according to the fifth embodiment. Good too. Furthermore, in the solar cell element 70 according to the seventh embodiment, the first solar cell section 107 is inserted between the first diffusion reducing section 102 and the third solar cell section 110 in the solar cell element 60 according to the sixth embodiment. It may be considered to have a configuration obtained by
  • FIG. 18 is a cross-sectional view perpendicular to the longitudinal direction of the first electrode portion 101 when the light-receiving surface F1 of the solar cell element 70 according to the seventh embodiment is viewed from above.
  • the solar cell element 70 according to the seventh embodiment further includes a third solar cell section 110 in addition to the first solar cell section 107.
  • the second electrode section 104, the third solar cell section 110, the first solar cell section 107, the first diffusion reduction section 102, and the first electrode section 101 are stacked in this order.
  • the first diffusion reduction unit 102 may have the configuration described in the second embodiment or the third embodiment.
  • a buffer section (not shown) may be further provided between the first solar cell section 107 and the third solar cell section 110.
  • the solar cell module 7 according to the seventh embodiment is obtained by replacing the solar cell element 60 in the solar cell module 6 according to the sixth embodiment with the solar cell element 70 according to the seventh embodiment. It may have a configuration.
  • the solar cell element includes a solar cell section having a light-receiving surface, an electrode section, and a first diffusion reducing section located between the solar cell section and the electrode section.
  • the first diffusion reducing section may have a first surface on the light receiving surface side and a second surface on the electrode section side, and the first diffusion reducing section may have the light receiving surface as an upper surface.
  • the electrode portion may be located avoiding at least a portion of a region that does not overlap with the electrode portion when viewed from above.
  • the solar cell element includes a solar cell part having a light-receiving surface, an electrode part, and a first diffusion reducing part located between the solar cell part and the electrode part,
  • the first diffusion reducing portion is located on a first surface on the light-receiving surface side, a second surface on the electrode portion side, and at least a part of a region that does not overlap with the electrode portion when the light-receiving surface is viewed from above.
  • a third surface opposite to the first surface, and the thickness between the first surface and the third surface is greater than the thickness between the first surface and the second surface. It can be small.
  • the width of the second surface in the direction perpendicular to the longitudinal direction of the electrode portion is: The width may be larger than the width of the electrode section.
  • the first diffusion The width of the first portion of the reducing portion on the first surface side that is thicker from the first surface to the second surface may be greater than the width of the first portion on the second surface side. good.
  • the first diffusion reducing section is a second diffusion reducing section located between the first diffusion reducing section and the solar cell section. It is possible to further include the following.
  • the value of the specific resistance of the second diffusion reducing section may be greater than or equal to the value of the specific resistance of the first diffusion reducing section.
  • the second diffusion reduction part when the constituent elements of the second diffusion reduction part and the constituent elements of the first diffusion reduction part are the same, the second diffusion reduction part
  • the carrier density may be smaller than the carrier density of the first diffusion reduction section.
  • the solar cell portion may include a semiconductor having a perovskite structure.
  • the solar cell module includes: a solar cell section having a light-receiving surface; a first surface in contact with the light-receiving surface; a second surface opposite to the first surface; A third surface that is a different surface from the second surface, and a first diffusion reducing section located above the light receiving surface and an electrode section located above the second surface.
  • the first diffusion reducing portion has a first portion that is thicker from the first surface to the second surface, and a second portion that is thicker from the first surface to the third surface. The thickness of the second portion may be smaller than the thickness of the first portion.
  • the third surface may be coincident with the first surface.
  • the width of the first portion may be greater than the width of the electrode portion in a direction perpendicular to the longitudinal direction of the electrode portion when the light receiving surface is viewed from above.
  • the first portion when viewed in cross section from a cross section perpendicular to the longitudinal direction of the electrode portion when the light receiving surface is viewed from above, the first portion
  • the width on the first surface side may be larger than the width of the first portion on the second surface side.
  • the first diffusion reducing section further includes a second diffusion reducing section between the first diffusion reducing section and the solar cell section. You can prepare.
  • the value of the specific resistance of the second diffusion reduction section may be greater than or equal to the value of the specific resistance of the first diffusion reduction section.
  • the second diffusion reducing part when the constituent elements of the second diffusion reducing part and the constituent elements of the first diffusion reducing part are the same, the second diffusion reducing part
  • the carrier density may be smaller than the carrier density of the first diffusion reduction section.
  • the solar cell portion may include a semiconductor having a perovskite structure.
  • Solar cell module 10 Solar cell element 101: First electrode section 102: First diffusion reducing section 103: Solar cell section 1031: First carrier transport section 1032: Photoelectric conversion section 1033: Second carrier transport section 104: First 2 electrode part 105 : Substrate part 106 : Second diffusion reduction part 107 ; First solar cell part 108 : Second solar cell part 109 : Buffer part 110 : Third solar cell part 111 : First solar cell element 112 : Second Solar cell element 113 : Third solar cell element 114 : Fourth solar cell element 115 : Fifth solar cell element 12 : Connection part 121 : First connection part 122 : Second connection part 123 : Third connection part 124 : Fourth Connection part 2: Solar cell module 20: Solar cell element 3: Solar cell module 30: Solar cell element 4: Solar cell module 40: Solar cell element 5: Solar cell module 50: Solar cell element 6: Solar cell module 60: Sun Battery element 61; First protective member 62; Encapsulant 621: First encapsulant 622: Second encapsulant

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池部(103)と、電極部(101)と、第1拡散低減部(102)とを備える。太陽電池部(103)は受光面(F1)を有する。第1拡散低減部(102)は太陽電池部(103)と電極部(101)との間に位置する。第1拡散低減部(102)は、受光面(F1)側の第1面(F3)と、電極部(101)側の第2面(F4)と、を有する。第1拡散低減部(102)は、受光面(F1)を上面視した場合において電極部(101)と重ならない領域の少なくとも一部を避けて位置する。

Description

太陽電池素子及び太陽電池モジュール 関連出願の相互参照
 本出願は、日本国出願2022-145444号(2022年9月13日出願)の優先権を主張する出願であり、当該日本国出願の開示全体を、ここに参照のために取り込む。
 本開示は、太陽電池素子及び太陽電池モジュールに関する。
 入射した光で発電をする半導体と、太陽電池部の受光面上に備えられる透明電極膜と、透明電極膜上に備えられる集電電極と、を備える太陽電池素子がある(例えば、特許文献1)。このような太陽電池素子では、集電電極と半導体との間での拡散による劣化を低減するための界面層として、透明電極膜を利用することが知られている(例えば、特許文献2)。
特開2002-76385号公報 特開2015-122435号公報
 太陽電池素子については、信頼性を上昇させることと発電効率の低下を低減することとを両立させる点で改善の余地がある。
 太陽電池素子の一態様は、太陽電池部と、電極部と、第1拡散低減部とを備える。太陽電池部は受光面を有する。第1拡散低減部は太陽電池部と電極部との間に位置する。第1拡散低減部は、受光面側の第1面と、電極部側の第2面と、を有する。第1拡散低減部は、受光面を上面視した場合において電極部と重ならない領域の少なくとも一部を避けて位置する。
 太陽電池素子の一態様は、太陽電池部と、電極部と、第1拡散低減部とを備える。太陽電池部は受光面を有する。第1拡散低減部は太陽電池部と電極部との間に位置する。第1拡散低減部は、受光面側の第1面と、電極部側の第2面と、受光面を上面視した場合において電極部と重ならない領域の少なくとも一部に位置する第1面とは逆側の第3面とを有する。第1面と第3面との間の厚みは、第1面と第2面との間の厚みよりも小さい。
 太陽電池モジュールの一態様は、受光面を有する太陽電池部を備える。太陽電池モジュールは、受光面と接する第1面と、第1面の反対側の面である第2面と、第2面と異なる面である第3面とを備え、かつ、受光面の上に位置する第1拡散低減部を備える。太陽電池モジュールは、第2面の上に位置する電極部を備える。第1拡散低減部は、第1面から第2面に向かって厚みを有する第1部分と、第1面から第3面に向かって厚みを有する第2部分と、を備える。第2部分の厚みは、第1部分の厚みよりも小さい。
 太陽電池素子並びに太陽電池モジュールにおける、信頼性を上昇させることと発電効率の低下を低減することとを両立させることができる。
図1は、実施形態1に係る太陽電池素子10の一部を示す斜視図である。 図2は、実施形態1に係る太陽電池素子10の一部を示す上面図である。 図3は、実施形態1に係る太陽電池素子10の、図2中のIII―III断面における端面図である。 図4は、実施形態1に係る太陽電池素子10の、図3の一部を拡大した図である。 図5は、実施形態1に係る太陽電池素子10の、変形例を示した図である。 図6は、実施形態1に係る太陽電池素子10の、一例を示した図である。 図7は、実施形態1に係る太陽電池素子10の、一例を示した図である。 図8は、実施形態1に係る太陽電池素子10の、一例を示した図である。 図9は、実施形態1に係る太陽電池素子10の、一例を示した図である。 図10は、実施形態1に係る太陽電池素子10の製造方法のフロー図である。 図11は、実施形態1に係る太陽電池モジュール1の断面図である。 図12は、実施形態2に係る太陽電池モジュール2の断面図である。 図13は、実施形態3に係る太陽電池素子30の図である。 図14は、実施形態4に係る太陽電池素子40の図である。 図15は、実施形態5に係る太陽電池素子50の図である。 図16は、実施形態6に係る太陽電池素子60の図である。 図17は、実施形態6に係る太陽電池素子モジュール6の図である。 図18は、実施形態7に係る太陽電池素子70の図である。 図19は、実施形態7に係る太陽電池素子モジュール7の図である。
 太陽電池素子は、太陽電池素子が光を受ける受光面側において、入射した光によって発電する太陽電池部で生じた電気を集める第1電極部を備える。
 このような太陽電池素子は、一定期間使用すると発電効率が低下することが知られている。発電効率が低下する要因の一つとして、太陽電池部の材料が第1電極部の中に拡散してしまうこと、又は第1電極部の材料が太陽電池部の中に拡散してしまうこと等が知られている。
 そこで、例えば、第1電極部と太陽電池部の間に拡散低減部を形成することで、第1電極部と太陽電池部の間の拡散による発電効率の低下が生じる可能性を低減させることが考えられる。つまり、第1電極部と太陽電池部の間に拡散低減部を形成することで、太陽電池素子の信頼性を向上させることが考えられる。
 しかし、第1電極部と太陽電池部の間に拡散低減部を形成すると、拡散低減部で太陽光の吸収が生じてしまい、太陽電池部において発電に寄与する太陽光の受光量が低下する。つまり、拡散低減部を形成すると、太陽電池素子の発電効率が低下することが考えられる。
 したがって、太陽電池素子については、信頼性を上昇させることと発電効率の低下を低減することとを両立させる点で改善の余地がある。また、太陽電池素子を利用する太陽電池モジュールについても同じ問題がある。
 そこで、本開示の発明者は、太陽電池素子及び太陽電池モジュールについて、発電効率及び信頼性を向上させることができる技術を創出した。これについて、以下、実施形態1から実施形態7について図面を参照しつつ説明する。
 以下において、実施形態について図面を参照しながら説明する。図面においては同じ又は類似な構成及び機能を有する部分に同じ符号が付されており、下記説明では重複説明が省略される。図面は模式的に示されたものである。各図には、それぞれ右手系のXYZ座標系が付されている。このXYZ座標系では、太陽電池素子10の受光面F1の法線方向が+Z方向とされ、受光面F1に沿った一方向が+X方向とされ、受光面F1に沿った方向であって、+X方向と+Z方向との両方に直交する方向が+Y方向とされている。また、以下では、特に断りがない場合、上方向とは、+Z方向を指すものとする。
 [実施形態1]
 <1-1.太陽電池素子10>
 実施形態1に係る太陽電池素子10について、図1から図3を参照しつつ説明する。図1は、実施形態1に係る太陽電池素子10の一部の斜視図である。図2は、実施形態1に係る太陽電池素子10の一部の、受光面F1側からの上面視図である。図3は、図2の線III―IIIにおける断面図である。つまり、図3は、第1電極部101の長手方向に直交する断面における断面図である。なお、図1と図2は、太陽電池素子10の全体ではなく、太陽電池素子の10の一部を切りだして示した図である。
 図1で示されるように、太陽電池素子10は、主に光を受ける受光面F1と、この受光面F1の逆側に位置する裏面F2と、を有する。第1実施形態では、受光面F1が、+Z方向を向いている。裏面F2が、-Z方向を向いている。例えば、+Z方向は、南中している太陽に向く方向に設定されてもよい。
 図3で示されるように、太陽電池素子10は、第1電極部101と、第1拡散低減部102と、太陽電池部103と、第2電極部104と、基板部105とを備えている。また、図3で示されるように、太陽電池部103は、第1キャリア輸送部1031と、光電変換部1032と、第2キャリア輸送部1033とを備えている。実施形態1では、基板部105の上に、第2電極部104と、第2キャリア輸送部1033と、光電変換部1032と、第1キャリア輸送部1031と、第1拡散低減部102と、第1電極部101と、がこの記載の順に積層されている。
 なお、図示していないが、太陽電池モジュール1(後述)の表面には反射防止膜が備えられてもよい。反射防止膜には、例えば、窒化シリコン等で構成された絶縁膜が適用される。また、図示していないが、第1電極部101、第1拡散低減部102又は太陽電池部103と反射防止膜との間に、パッシベーション膜が位置していてもよい。パッシベーション膜には、例えば、酸化アルミニウム等の酸化物又は窒化物等で構成された薄膜が適用される。
 複数の太陽電池素子10同士を接続することで、該複数の太陽電池素子10が太陽電池モジュール1を形成することができる。例えば、太陽電池素子10を複数枚繋ぐことで、1m角程度の大きさの太陽電池モジュール1が作製されてもよい。また、複数の太陽電池モジュール1同士を接続することで、該複数の太陽電池モジュール1が太陽電池ストリングスを形成することができる。複数の太陽電池ストリングス同士を接続することで、該複数の太陽電池ストリングスが太陽電池アレイを形成することができる。
 次に、太陽電池素子10に含まれる部分の説明を行う。説明の簡単のために、以下では、基板部105から順番に各部分を説明する。
 <1-1―1.基板部105>
 基板部105は、太陽電池素子10に含まれる部分(太陽電池部103等)を形成する土台である。基板部105の材料には、例えば、ガラス、アクリル又はポリカーボネート等のプラスチック、若しくはステンレス等の金属が適用されてもよい。基板部105の形状としては、例えば、平板状、シート状又はフィルム状等が適用されてもよい。基板部105の厚さは、例えば、0.01ミリメートル(mm)から5mm程度であってもよい。
 <1-1―2.第2電極部104>
 第2電極部104は、基板部105の上に位置している。第2電極部104は、後述する太陽電池部103に対する光の照射に応じて光電変換で生じたキャリアを集めることができる。第2電極部104は、例えば、キャリアとしての電子を集める電極(負電極ともいう)としての役割を果たすことができる。第2電極部104の材料としては、例えば、銀(Ag)、金(Au)、銅(Cu)、チタン(Ti)、インジウム(In)又はスズ(Sn)等の導電性に優れた金属が適用されてもよい。
 また、第2電極部104の材料には、例えば、特定波長域の光に対して透光性を有する透明導電性酸化物(TCO)が適用されてもよい。第2電極部104の厚さは、例えば、10ナノメートル(nm)から1000nm程度とされてもよい。第2電極部104は、例えば、スパッタリング等の真空プロセスによって、基板部105上に形成されてもよい。
 TCOは、例えば、酸化インジウムスズ(Indium Tin Oxide:ITO)、アルミニウムドープ酸化亜鉛(Al―doped Zinc Oxide:AZO)、ボロンドープ酸化亜鉛(Boron―doped Zinc Oxide:BZO)、ガリウムドープ酸化亜鉛(Gallium―doped Zinc Oxide:GZO)、フッ素ドープ酸化スズ(Fluorine―doped Tin Oxide:FTO)、アンチモンドープ酸化スズ(Antimony―doped Tin Oxide:ATO)、チタンドープ酸化インジウム(Titanium―doped Indium Oxide:ITiO)、酸化インジウム酸化亜鉛(Indium Zinc Oxide:IZO)、酸化インジウムガリウム亜鉛(Indium Gallium Zinc Oxide:IGZO)、タンタルドープ酸化スズ(Ta―doped Tin Oxide:SnO:Ta)、ニオブドープ酸化スズ(Nb―doped Tin Oxide: SnO:Nb)、タングステンドープ酸化スズ(W―doped Tin Oxide:SnO:W)、モリブデンドープ酸化スズ(Mo―doped Tin Oxide:SnO:Mo)、フッ素ドープ酸化スズ(F―doped Tin Oxide:SnO:F)、水素ドープ酸化インジウム(Hydrogen―doped Indium Oxide:IOH)等であってよく、特に限定されない。透明導電性酸化物膜は、複数の膜を持つ積層膜であってもよく、上記酸化物の他に酸化スズ等の膜が積層膜に含まれていてもよい。酸化スズ等の膜へのドーパントは、In、シリコン(Si)、ゲルマニウム(Ge)、Ti、Cu、アンチモン(Sb)、Nb、F、Ta、W、Mo、臭素(Br)、ヨウ素(I)又は塩素(Cl)等からなる群より選ばれる1種以上であってよく、特に限定されない。
 <1-1―3.太陽電池部103>
 太陽電池部103は、第2電極部104の上に位置している。太陽電池部103は、外部から入射された光(例えば太陽光)を電力に変換する。例えば、太陽電池部103は、光の照射に応じて光電変換によって、キャリアを生じてもよい。キャリアは、電子又は正孔の少なくとも一方を含む。太陽電池部103は第1受光面F1を有している。
 実施形態1では、p型半導体としての第1キャリア輸送部1031と、i型半導体としての光電変換部1032と、n型半導体としての第2キャリア輸送部1033とが、PIN接合領域を形成している状態にある。PIN接合領域により、光の照射に応じた光電変換によって発電が行われ得る。
 実施形態1では、太陽電池部103が、ペロブスカイト型太陽電池である場合を例に説明する。しかし、これはあくまでも一例であり、他の方式の太陽電池が適用されてもよい。例えば、太陽電池の方式は、無機系太陽電池であってもよく、有機系太陽電池であってもよい。無機系太陽電池は、シリコン系太陽電池であってもよく、化合物太陽電池であってもよい。有機系太陽電池は、色素増感太陽電池であってもよく、有機薄膜太陽電池であってもよい。また、例えば、太陽電池の方式は、結晶系太陽電池であってもよく、薄膜系太陽電池であってもよい。結晶系太陽電池は、シリコン系太陽電池又はCIGS太陽電池等の化合物半導体系の太陽電池であってもよい。薄膜系太陽電池は、ペロブスカイト型太陽電池であってもよく、色素増感太陽電池又は有機薄膜太陽電池等であってもよい。
 図3で示されるように、太陽電池部103は、第1キャリア輸送部1031と、光電変換部1032と、第2キャリア輸送部1033とを備えている。実施形態1では、第2電極部104の上に、第2キャリア輸送部1033と、光電変換部1032と、第1キャリア輸送部1031と、がこの記載の順に積層されている。
 次に、太陽電池部103に含まれる部分の説明を行う。説明の簡単のために、以下では、第2キャリア輸送部1033から順番に各部分を説明する。
 第2キャリア輸送部1033は、第2電極部104の上に位置している。第2キャリア輸送部1033には、例えば、第2電極部104よりも高い電気抵抗を有する無機材料の半導体(無機半導体ともいう)が適用されてもよい。これにより、第2電極部104と光電変換部1032との電気的なコンタクトが生じにくくなる。
 実施形態1では、無機半導体の材料には、例えば、n型の導電型を有する半導体(n型半導体ともいう)が適用されてもよい。この場合には、第2キャリア輸送部1033は、例えば、いわゆるホールブロッキング層又は電子輸送層(ETL)としての機能を有する。電子輸送層は、例えば、電子を収集して出力する。
 n型半導体としては、例えば、[6,6]-フェニル-C―61-酪酸メチル(PCBM)、C60又は酸化物半導体層であってよい。酸化物半導体層としては、例えば、酸化チタン(IV)(TiO)、酸化亜鉛(ZnO)、酸化インジウム(III)(In)、酸化スズ(IV)(SnO)、又は酸化マグネシウム(MgO)を適用してもよい。
 光電変換部1032は、第2キャリア輸送部1033上に位置している。この光電変換部1032は、後述する第1拡散低減部102と第1キャリア輸送部1031を透過した光を吸収することができる。実施形態1では、光電変換部1032には、例えば、真性半導体(i型半導体ともいう)が適用される。i型半導体には、例えば、ペロブスカイト構造を有する半導体(ペロブスカイト半導体ともいう)が適用されてもよい。ペロブスカイト半導体は、例えば、ハライド系有機-無機ペロブスカイト半導体を含み得る。ハライド系有機-無機ペロブスカイト半導体は、ABX3の組成のペロブスカイト構造を有する半導体である。ここで、Aには、例えば、メチルアンモニウム(CHNH)、ホルムアミジニウム(CH(NH)、セシウム(Cs)、ルビジウム(Rb)又はカリウム(K)のうちの1種以上のイオンが適用される。また、Bには、例えば、鉛(Pb)又はスズ(Sn)のうちの1種以上のイオンが適用される。また、Xには、例えば、ヨウ素(I)、臭素(Br)又は塩素(Cl)のうちの1種以上のイオンが適用される。具体的には、ABX3の組成のペロブスカイト構造を有する半導体は、例えば、CHNHPbI又は(CH(NH、Cs)Pb(I、Br)等の有機ペロブスカイトによって構成されてもよい。有機ペロブスカイトは、例えば、第2キャリア輸送部1033の上に第1原料液が塗布されて、乾燥されることで形成されてもよい。ここでは、有機ペロブスカイトは、結晶性を有する薄膜である。第1原料液は、例えば、原料であるハロゲン化アルキルアミンとハロゲン化鉛とが溶媒に溶かされることで生成されてもよい。光電変換部1032の厚さは、例えば、100nmから2000nm程度であってもよい。
 第1キャリア輸送部1031は、光電変換部1032上に位置している。第1キャリア輸送層1031のうちの光電変換部1032とは逆側の面が受光面F1であり得る。実施形態1では、例えば、第1キャリア輸送部1031には、p型の導電型を有する半導体(p型半導体ともいう)が適用されてもよい。この場合には、第1キャリア輸送部1031は、例えば、いわゆる電子ブロッキング層又は正孔輸送層(HTL)としての機能を有する。HTLは、例えば、正孔を収集して出力する。
 HTLの材料には、例えば、可溶性ジアミン誘導体である[2,2’,7,7’―テトラキス(N,N―ジ-P―メトキシフェニルアミノ)-9,9’-スピロビフルオレン](spiro-OMeTAD)等が適用される。HTLは、例えば、光電変換部1032としてのペロブスカイト半導体の層の上に第2原料液が塗布されて、乾燥されることで生成され得る。キャリア輸送層の厚さは、例えば、50nmから200nm程度であってもよい。
 p型半導体としては、例えば、酸化ニッケル(II)(NiO)、チオシアン酸銅(I)(CuSCN)又は酸化銅(I)(CuO)又は有機半導体層等であってもよい。有機半導体層としては、例えば、spiro-OMeTAD、ポリ[ビス(4-フェニル)(2,4,6-トリフェニルメチル)アミン](PTAA)、ポリ(3-ヘキシルチオフェン-2,5-ジイル)(P3HT)、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(4-スチレンスルホン酸塩)(PEDOT/PSS)を適用してもよい。
 <1-1―4.第1拡散低減部102>
 第1拡散低減部102は、太陽電池部103の上に位置している。言い換えると、第1拡散低減部102は、太陽電池部103の受光面F1の上に位置している。さらに言い換えると、第1拡散低減部102は、第1電極部101と、太陽電池部103との間に位置している。ここで、第1拡散低減部102は、太陽電池部103の受光面F1と接する面である第1面F3と、第1面F3と反対側の面である第2面F4とを備えていてもよい。第1面F3は、第1拡散低減部102のうちの太陽電池部103側の面であり、第2面F4は、第1拡散低減部102のうちの第1電極部101側の面である。第2面F4は、太陽電池部103の厚み方向において第1面F3と向かい合う面でもある。第1面F3および第2面F4は例えば平坦面であってもよい。
 図1の例では、第1拡散低減部102は、第1面F3と一致する第3面F5を有している。つまり、+Z方向における第3面F5の位置は、+Z方向における第1面F3の位置と一致してもよい。後述の実施形態3において図13を参照して詳述されるように、第3面F5は第1面F3および第2面F4と異なってもよい。図13で示されるように、第3面F5は、+Z方向における第1面F3の位置と+Z方向における第2面F4の位置との間に存在してもよい。第3面F5は、受光面F1を上面視した場合に、第1電極部101と重ならない領域の少なくとも一部に位置している。また、図13において、第3面F5は1つの面から構成されてもよく、第1面F3と第2面F4とに平行な第1拡散低減部102の面の集合と考えてもよい。例えば、第3面F5は、+Z方向における第3面F5の位置が、+Z方向における第1面F3の位置と+Z方向における第2面F4の位置との間に存在する、第1拡散低減部102の面の集合と考えてもよい。図13の例では、第3面F5は第1面F3および第2面F4に平行であってもよい。
 図1から図3は、後述する第2部分A2の厚みが0である場合の太陽電池素子10を示している、と考えてもよい。図1および図3で示されるように、第3面F5(ここでは第1面F3)は第2面F4に平行であってもよい。
 以下において、第1拡散低減部102の厚みは、+Z方向の厚みをいう。言い換えると、第1拡散低減部102の厚みは、第1面F3から第2面F4に向かう方向の厚みと考えてもよい。後述する第1部分A1又は第2部分A2の厚みについても、第1拡散低減部102の厚みと同じに考える。
 第1拡散低減部102の材料としては、導電性の無機物が適用され得る。例えば、導電性酸化物、又は導電性窒化物が適用されてもよい。第1拡散低減部102は、例えば、真空プロセスによって第1キャリア輸送部1031上に形成されてもよい。真空プロセスは、スパッタリング、化学気相成長法(Chemical Vapor Deposition:CVD)、真空蒸着法、又は原子層堆積法(Atomic Layer Deposition:ALD)等が適用されてもよい。第1拡散低減部102の厚みは、例えば、1nmから100nm程度としてもよい。
 第1拡散低減部102は、第1電極部101と太陽電池部103との界面層である。ここでいう上部と下部との界面層とは、当該上部と接する上面と、当該下部と接する下面とを有する中間層を意味する。例えば、第1拡散低減部102は、拡散バリア膜としての機能を有する。第1電極部101が受光面F1上に直接形成されると、第1電極部101を構成する金属が第1キャリア輸送部1031又は光電変換部1032の中に拡散することで、第1キャリア輸送部1031又は光電変換部1032が劣化することがある。あるいは、第1キャリア輸送部1031は光電変換部1032を構成する分子が第1電極部101の中に拡散することで、第1電極部101が劣化することがある。これらにより、太陽電池素子10の変換効率が悪化してしまうことがある。そこで、第1拡散低減部102を第1キャリア輸送部1031と第1電極部101との間に設けることで、拡散による太陽電池素子10の変換効率の悪化を低減することができる。つまり、第1拡散低減部102は、第1電極部101から第1キャリア輸送部1031への金属の移動量、および、第1キャリア輸送部1031から第1電極部101への金属の移動量の少なくともいずれか一方を低減させる。
 第1拡散低減部102は、第1部分A1と第2部分A2とを備える。第1部分A1は、第1面F3から第2面F4に向かって厚みを有する、第1拡散低減部102の部分である。図13から容易に理解できるように、第2部分A2は、第1面F3から第3面F5に向かって厚みを有する、第1拡散低減部102の部分である。例えば、+Z方向における第3面F5の位置が、+Z方向における第1面F3の位置と+Z方向における第2面F4の位置との間に存在する場合、第1部分A1の厚みは、第2部分A2の厚みよりも大きくなる。第1拡散低減部102は、第1部分A1と、第1部分A1よりも厚みが小さい第2部分A2とを備えると考えることができる。言い換えると、この場合、第1拡散低減部102は、第2部分A2と、第2部分A2よりも厚みが大きい第1部分A1とを備えると考えてもよい。つまり、第1拡散低減部102において、厚みが相対的に大きい部分を第1部分A1と、厚みが相対的に小さい部分を第2部分A2と考えてもよい。
 第2部分A2の厚みは0であってもよい(図1も参照)。言い換えると、第3面F5が第1面F3と平行であることに代えて、第3面F5と第1面F3とが一致し得る、と考えてよい。この場合、第2部分A2は、第1拡散低減部102が太陽電池部103の受光面F1を覆っていない部分である。言い換えると、この場合、太陽電池素子10を上面視した場合において、第2部分A2は、太陽電池部103の受光面F1が暴露している部分である。なお、ここでいう暴露とは、例えば、太陽電池部103の受光面F1が、第1拡散低減部102から露出した部分を有することをいう。言い換えれば、太陽電池部103の受光面F1のうちの当該部分の上に、第1拡散低減部102とは別の透明な層が設けられてもよい。
 別の見方をすると、太陽電池部103の受光面F1は、第1拡散低減部102で覆われた部分である第1部分A1と、第1拡散低減部102で覆われていない部分である第2部分A2とを備えると考えてもよい。この場合、太陽電池素子10を受光面F1側から上面視した場合、第1部分A1では、第1拡散低減部102又は第1電極部101が観察される。一方で、太陽電池素子10を受光面F1側から上面視した場合、第2部分A2では、太陽電池部103の受光面F1が観察される。つまり、太陽電池素子10を受光面F1側から上面視した場合、第2部分A2では、太陽電池部103の受光面F1が暴露している。言い換えれば、第1拡散低減部102は、受光面F1を上面視した場合、第1電極部101と重ならない領域の少なくとも一部を避けて位置している。具体的な一例として、第1電極部101は、受光面F1を上面視した場合に、所定の長手方向に延びている複数の長手部分1011を有し得る(図2参照)。長手部分1011は、長手方向に交差する方向において間隔を空けて並んでもよい。第1拡散低減部102は、例えば、長手部分1011どうしの間の領域の少なくとも一部を避けて位置してもよい。
 なお、図13で示されるように、第2部分A2の厚みは、第1拡散低減部102内にわたって一定であってもよい。この場合、+Z方向における第3面F5の位置は、第1拡散低減部102内にわたって一定である。言い換えると、この場合、+Z方向における、第1面F3を基準とした第3面F5の高さは、第1拡散低減部102内にわたって一定である。第2部分A2の厚みを第1拡散低減部102内にわたって一定とすることで、太陽電池素子10の製造工程を簡略化することができる。
 一方で、第2部分A2の厚みは、第1拡散低減部102内において、複数の厚みを有してもよい。例えば、第2部分A2は、第1の厚みを有する部分と、第2の厚みを有する部分とを備えてもよい。言い換えると、+Z方向における、第3面F5の位置は、第1拡散低減部102内において、複数の位置をとってもよい。例えば、第3面F5は、第1面F3と第3面F5との距離が第1の厚みと等しい部分と、第1面F3と第3面F5との距離が第2の厚みと等しい部分とを備えてもよい。なお、第1の厚み又は第2の厚みは0であってもよく、第1面F3と第2面F4との間の厚みと同じ厚みであってもよい。第2部分A2の厚みが第1拡散低減部102内において複数の厚みを有することで、第2部分A2は、厚みが厚い部分と薄い部分とを有する。これにより、第2部分A2の厚みが薄い部分に関する、太陽電池素子10の製造コストを低減することができる。
 後述する第1電極部101は、第1部分A1の上に位置している。具体的には、後述する第1電極部101は、第1部分A1における第2面F4の上に位置している。言い換えると、第1拡散低減部102は、第1拡散低減部102の上に第1電極部101が位置する部分(第1部分A1)と、第1拡散低減部102の上に第1電極部101が位置しない部分(第2部分A2)とで、第1拡散低減部102の厚みが異なると考えてもよい。例えば、実施形態1においては、第1拡散低減部102の上に第1電極部101が位置する部分の厚みは、第1拡散低減部102の上に第1電極部101が位置しない部分の厚み(=0)よりも大きい。
 なお、第2部分A2の厚みが0の場合でも、後述する第1電極部101は、第1部分A1の上に位置している。この場合、第1電極部101は、第1拡散低減部102の上に位置していると考えてもよい。
 上記構造を採用した場合、第1電極部101の下に位置する太陽電池部103には光が入射しないため、第1拡散低減部102の厚みを大きくしても光電変換部1032に入射する光に変化は小さい。一方で、第1拡散低減部102の厚みを大きくすることで第1電極部101と太陽電池部103との間で一方の分子が他方に拡散する可能性を低減することができる。つまり、第1拡散低減部102の第1部分A1の上だけに第1電極部101が位置していることで、太陽電池部103の受光量をあまり変化させずに、第1拡散低減部102による拡散低減機能を向上させることができる。
 太陽電池素子10において、第2部分A2の厚みを第1部分A1の厚みよりも小さくしてもよい。この場合、第1拡散低減部102は、+Z方向における第3面F5の位置が、+Z方向における第1面F3の位置と+Z方向における第2面F4の位置との間に存在する。この構造を採用した場合、太陽電池部103に入射する光が第1拡散低減部102の第2部分A2を通過する際に減衰する量を低減することができる。つまり、第2部分A2の厚みを第1部分A1の厚みよりも小さくすることで、第2部分A2の厚みと第1部分A1の厚みとが等しい場合に比べて、太陽電池部103に入射する光の量を多くすることができる。これにより、太陽電池素子10の発電効率を向上させることができる。
 例えば、第2部分A2の厚みは0としてもよい。つまり、第1電極部101が位置しない部分の少なくとも一部に第1拡散低減部102を設けなくてもよい。つまり、太陽電池素子10を受光面F1側から上面視した場合、第1電極部101がない部分で太陽電池部103が観察されるように、第1拡散低減部102を形成してもよい。言い換えると、第3面F5が第1面F3と平行であることに代えて、第3面F5と第1面F3とが一致する場合、第1電極部101が位置しない部分の少なくとも一部に第1拡散低減部102を設けなくてもよい。つまり、太陽電池素子10を第1電極部101側から上面視した場合、第2部分A2では、太陽電池部103の受光面F1が観察されるように、第1拡散低減部102を形成してもよい。
 上記構造を採用した場合、第2部分A2の第1拡散低減部102による、光の吸収損失を低減することができる。つまり、第2部分A2を通過して光電変換部1032に入射する光を増やすことができる。したがって、光電変換部1032に入射する光を増加するため、太陽電池素子10の変換効率を向上させることができる。
 第2部分A2の厚みが0の場合において、第1拡散低減部102の材料は光電変換部1032の吸収波長と吸収波長が重複する材料を含んでもよい。つまり、第1拡散低減部102の材料は光電変換部1032の吸収波長に対して透過性を有していない材料を含んでもよい。
 上記構成を採用した場合、第1電極部101の下に位置する太陽電池部103には光がもともと入射しないため、第1電極部101の下に位置する部分の第1拡散低減部102が光電変換部1032の吸収波長と同じ吸収波長を有していても光電変換部1032に入射する光にあまり変化がない。一方で、吸収波長に対する要件が緩和されるために、第1拡散低減部102に適用する材料の選択肢を増やすことができる。したがって、第2部分A2の厚みが0の場合において、第1拡散低減部102の材料は光電変換部1032の吸収波長と吸収波長が重複する材料を含む構成とすることで、第1拡散低減部102に適用する材料の選択肢を増やすことができる。
 太陽電池素子10の受光面F1を上面視した場合において、第1部分A1の第1拡散低減部102の幅Wpは、第1電極部101の幅Weよりも大きくてもよい。言い換えると、太陽電池素子10の受光面F1を上面視した場合における電極の長手方向に垂直な断面(図4)において、第1部分A1の第1拡散低減部102の幅Wpは、第1電極部101の幅Weよりも大きくてもよい。幅Wpは、第1拡散低減部102の第2面F4の幅であってもよい。
 上記構造を採用した場合、第1部分A1の第1拡散低減部102の幅Wpと第1電極部101の幅Weが同じ場合に比べて、第1電極部101の側面の分子が脱落して太陽電池部103の中に拡散することを低減することができる。これにより、太陽電池素子10の変換効率の低下を低減し得る。
 第1部分A1の第1拡散低減部102の幅Wpは、第1電極部101の幅Weに所定幅を加えた幅としてもよい。所定幅は、第1電極部101を形成する位置精度に基づいて決定されてもよい。例えば、第1電極部101を形成する際の誤差よりも大きな値に所定幅を決定してもよい。この場合、第1電極部101を形成する際の誤差は左右いずれの方向にも生じる可能性があるため、所定幅は第1電極部101を形成する際の誤差の2倍以上としてもよい。
 第1部分A1の第1拡散低減部102の幅Wpは、第1電極部101の幅Weに基づいて決定されてもよい。例えば、第1部分A1の第1拡散低減部102の幅Wpは、第1電極部101の幅Weに対して、100nm以上かつ100マイクロメートル(μm)以下程度だけ小さくてもよい。例えば、第1電極部101の幅Weが10μm以上かつ100μm以下である場合、第1部分A1の第1拡散低減部102の幅Wpは、第1電極部101の幅Weに対して10μm以上かつ100μm以下程度大きくしてもよい。例えば、第1部分A1の第1拡散低減部102の幅Wpは、第1電極部101の幅Weに対して、100%よりも大きく200%以下としてもよい。
 なお、第1電極部101は、第1部分A1の第1拡散低減部102の左右のいずれかに偏った位置に形成されてもよい。言い換えると、図4において、第1電極部101の左右方向の中心線と、第1部分A1の第1拡散低減部102の左右方向の中心線とが離れていてもよい。言い換えると、図4において、第1電極部101の左端から第1部分A1の第1拡散低減部102の左端までの距離と、第1電極部101の右端から第1部分A1の第1拡散低減部102の右端までの距離とが異なってもよい。
 なお、実施形態1では、第1部分A1の第1拡散低減部102の断面形状は矩形であるが、第1部分A1の第1拡散低減部102の断面形状はこれに限定されない。以下では、第1部分A1の第1拡散低減部102の断面形状の種類について図5から図9を参照して説明する。
 例えば、第1部分A1の第1拡散低減部102の断面形状において、図5から図7のように、太陽電池部103に接する面の幅Wdが第1電極部101に接する面の幅Wuよりも大きくてもよい。つまり、第1部分A1の第1面F3側の面の幅Wdは、第1部分A1の第2面F4側の面の幅Wuよりも大きくてもよい。さらに言い換えると、第1部分A1の第1拡散低減部102の断面形状において、図5から図7のように、太陽電池部103に接する面の面積が第1電極部101に接する面の面積よりも大きくてもよい。この構造を採用することで、第1拡散低減部102の重心が太陽電池部103側に位置するため、第1拡散低減部102の構造の安定性を高めることができる。この場合、第1部分A1の第1拡散低減部102の断面形状は、図5のように、台形状としてもよい。また、第1部分A1の第1拡散低減部102の断面形状は、図6のように、ドーム形状としてもよい。言い換えれば、第1部分A1の側面である第4面F6は、第1拡散低減部102内に中心を有した弧状に湾曲する湾曲面であってもよい。また、第1部分A1の第1拡散低減部102の断面形状は、図7のように、裾野が広がる形状であってもよい。言い換えれば、第1部分A1の第4面F6は、X方向において第1拡散低減部102の外側に中心を有した弧状に湾曲する湾曲面であってもよい。
 例えば、第1部分A1の第1拡散低減部102の断面形状において、図8のように、太陽電池部103側の幅Wdが第1電極部101側の幅Wuよりも小さくてもよい。この構造を採用することで、太陽電池部103の受光できる面積を増やすことができるため、太陽電池素子10の変換効率を向上させることができる。
 また、図9のように、太陽電池素子10の受光面F1を上面視した場合において、第1部分A1の第1拡散低減部102の幅Wpは、第1電極部101の幅Weよりも大きい場合においても、第1拡散低減部102の材料は光電変換部1032の吸収波長と吸収波長が重複する材料を含んでもよい。
 なお、図5から図8において、第1部分A1の第1面F3と第2面F4を接続する面を第4面F6と呼ぶ。第4面F6は、第3面F5とは異なる面である。第4面F6は、平面であってもよく、曲面であってもよい。また、第4面F6は、第1部分A1の第1面F3と第2面F4を接続する面の集合と考えてもよい。
 第1電極部101の比抵抗は太陽電池部103の比抵抗よりも小さくてもよい。第1拡散低減部102の比抵抗の値は、太陽電池部103の比抵抗の値以下かつ第1電極部101の比抵抗の値以上であってもよい。この場合、第1拡散低減部102の比抵抗の値は、第1キャリア輸送部1031の比抵抗の値以下かつ第1電極部101の比抵抗の値以上であってもよい。この比抵抗の値の設定によれば、太陽電池部103から第1電極部101に向けて、比抵抗の値が段階的に変化するため、抵抗の増加を低減することができる。この場合、第1拡散低減部102の比抵抗の値は、第1拡散低減部102の材料の選択又は第1拡散低減部102の成膜条件の調整によって実現されてもよい。なお、比抵抗は、比電気抵抗、電気抵抗率又は抵抗率であってもよく、その単位はオームメートル(Ω・m)等の単位が用いられる。
 <1-1―5.第1電極部101>
 第1電極部101は、第1拡散低減部102の上に位置している。具体的には、第1電極部101は、第1拡散低減部102の第2面F4の上に備えられる。
 第1電極部101は、光電変換部1032に対する光の照射に応じて光電変換で生じたキャリアを集めることができる。第1電極部101は、例えば、キャリアとしての正孔を集める電極(正電極ともいう)としての役割を果たすことができる。また、第1電極部101は、例えば、集電電極としての役割を果たしてもよい。
 第1電極部101の材料としては、例えば、Ag、Au、Cu、Ti、In又はSn等の導電性に優れた金属が適用されてもよい。第1電極部101は、例えば、スパッタリング等の真空プロセスによって、第1拡散低減部102上に形成されてもよい。第1電極部101の平均厚みとしては、特に限定されないが、例えば1μm以上かつ50μm以下の範囲を採用してもよい。
 また、第1電極部101は、例えば、塗布液としての金属ペーストがスクリーン印刷等によって塗布された後に乾燥されて該金属ペーストが固化されることで形成されてもよい。金属ペーストは、例えば、透光性を有する樹脂等のバインダーに、光反射率が高く且つ導電性を有する粒子が添加されることで作製されてもよい。ここで、透光性を有する樹脂としては、例えば、エポキシ樹脂等が採用されてもよい。また、金属ペーストに含まれる粒子としては、例えば、Cu、Al、Ni並びにZnとAgとの合金等の金属粒子が採用されてもよい。この場合、第1電極部101には、導電性を有する多数の粒子が含まれており、該多数の粒子によって、第1電極部101における導電性が確保されてもよい。第1電極部101は、例えば層状であってもよい。
 第1電極部101の形状は、実施形態1の図1から図3の形状に限定されない。第1電極部101の形状及び第1拡散低減部102の形状は、キャリアの回収効率を向上させるために、適宜変更がされてもよい。第1電極部101の形状及び第1拡散低減部102の形状は、いわゆる櫛型電極構造等であってもよく、いわゆるバスバー電極といわゆるフィンガー電極とを組み合わせた構造等であってもよい。
 第1電極部101及び第2電極部104のそれぞれには、例えば、リード線が電気的に接続されている状態にある。具体的には、例えば、第1電極部101に第1リード線が電気的に接続され、第2電極部104に第2リード線が接続されている状態にある。各リード線は、例えば、半田付け等によって、第1電極部101及び第2電極部104のそれぞれに接合され得る。ここでは、例えば、第1リード線及び第2リード線によって、太陽電池素子10における光電変換で得られる出力が取り出され得る。
 <1-1―6.太陽電池素子10の製法>
 例えば、図10で示されるように、ステップS1からステップS5の処理を、この記載の順に行うことで、実施形態1に係る太陽電池素子10を製造することができる。
 ステップS1では、基板部105上に第2電極部104を形成する。ここでは、例えば、スパッタリング等の真空プロセスによって、基板部105上に第2電極部104の材料を堆積させることで、基板部105上に第2電極部104を形成することができる。第2電極部104の材料には、例えば、Au等の導電性に優れた金属あるいはITO、FTO又はZnO等のTCOが適用される。
 ステップS2では、第2電極部104上に第2キャリア輸送部1033を形成する。第2キャリア輸送部1033の材料には、例えば、TiO、SnO、ZnO又はIn2O等の金属酸化物が適用される。ここで、例えば、金属塩化物又は金属イソプロポキシド等の原料を極性溶液に溶解させることで調製した原料液を第2電極部104上に塗布し、原料を加水分解させて金属酸化物を生成することで、第2電極部104上に第2キャリア輸送部1033を形成してもよい。金属塩化物は、例えば、塩化チタン、塩化スズ、塩化亜鉛又は塩化インジウム等を含む。金属イソプロポキシドは、例えば、チタンイソプロポキシド、スズイソプロポキシド、亜鉛イソプロポキシド又はインジウムイソプロポキシド等を含む。具体的には、例えば、4塩化チタン水溶液をスピンコート等で第2電極部104上に塗布して乾燥させる。その後、例えば、ホットプレートにおける約150℃の加熱によって4塩化チタンを加水分解させることで、第2電極部104上にTiOの第2キャリア輸送部1033を形成することができる。
 また、ここでは、例えば、第2キャリア輸送部1033の材料に、有機材料が適用されてもよい。この有機材料には、例えば、PCBM等のフラーレン誘導体を適用してもよい。この場合には、例えば、1ミリリットル(1ml)の原料液の中に5ミリグラム(mg)から20mg程度のフラーレン誘導体が含まれるように、フラーレン誘導体をクロロベンゼン溶媒に溶解させることで調製した原料液を用いる。換言すれば、例えば、溶媒がクロロベンゼンであり、フラーレン誘導体の濃度が5mg/mlから20mg/ml程度である原料液を用いる。そして、第2電極部104上に塗布した原料液に乾燥及びアニールを施すことで、第2電極部104上にPCBMの第2キャリア輸送部1033を形成してもよい。また、第2キャリア輸送部1033の材料に適用される有機材料については、例えば、官能基を変更して、有機溶媒に対する溶解性及び物性を変えてもよい。
 ステップS3では、第2キャリア輸送部1033上に光電変換部1032を形成する。ここでは、光電変換部1032は、例えば、第2キャリア輸送部1033上に原料液を塗布し、塗布後の原料液にアニールを施すことで、形成され得る。原料液は、例えば、光電変換部1032の原料であるハロゲン化アルキルアミンとハロゲン化鉛若しくはハロゲン化錫とが溶媒に溶かされることで生成され得る。この場合、光電変換部1032は、結晶性を有するハロゲン化ペロブスカイト半導体の薄膜によって構成され得る。
 ステップS4では、光電変換部1032上に第1キャリア輸送部1031を形成する。ここでは、例えば、光電変換部1032上に原料液を塗布し、この原料液に乾燥及びアニールを施すことで、光電変換部1032上に第1キャリア輸送部1031を形成することができる。第1キャリア輸送部1031の材料には、例えば、spiro-OMeTAD、P3HT、PTAA又はPoly-TPD等の有機半導体材料が適用され得る。ここで、例えば、1mlの原料液の中に10mgから85mg程度のspiro-OMeTADが含まれるように、spiro-OMeTADをクロロベンゼンに溶解させることで原料液を調製することができる。換言すれば、例えば、溶媒がクロロベンゼンであり、spiro-OMeTADの濃度が10mg/mlから85mg/ml程度である原料液を用いる。また、例えば、1mlの原料液の中に5mgから20mg程度のP3HTが含まれるように、P3HTをジクロロベンゼンに溶解させることで原料液を調製してもよい。換言すれば、例えば、溶媒がジクロロベンゼンであり、P3HTの濃度が5mg/mlから20mg/ml程度である原料液を用いてもよい。また、例えば、1mlの原料液の中に5mgから20mg程度のPTAAが含まれるように、PTAAをトルエンに溶解させることで原料液を調製してもよい。換言すれば、例えば、溶媒がトルエンであり、PTAAの濃度が5mg/mlから20mg/mlである原料液を用いてもよい。また、例えば、1mlの原料液の中に5mgから20mg程度のPoly-TPDが含まれるように、Poly-TPDをクロロベンゼンに溶解させることで原料液を調製してもよい。換言すれば、例えば、溶媒がクロロベンゼンであり、Poly-TPDの濃度が5mg/mlから20mg/mlである原料液を用いてもよい。
 ステップS5では、第1キャリア輸送部1031上に第1拡散低減部102を形成する。ここでは、例えば、スパッタリング等の真空プロセスによって、第1キャリア輸送部1031上に第1拡散低減部102の材料を堆積させることで、第1キャリア輸送部1031上に第1電極部101を形成することができる。第1拡散低減部102の材料には、例えば、ITO、FTO又はZnO等のTCOが適用される。
 ステップS5では、真空プロセスとマスクパターニングを組み合わせることで、第1拡散低減部102の第1部分A1と第2部分A2とを形成してもよい。例えば、第2部分A2を形成する部分にマスクを形成した状態で、第1キャリア輸送部1031上に第1拡散低減部102の材料を堆積させることで、第1拡散低減部102の第1部分A1を形成してもよい。また、例えば、第1キャリア輸送部1031上の全面に第1拡散低減部102の材料を堆積させた状態で、第2部分A2となる部分をエッチングすることで、第1拡散低減部102の第2部分A2を形成してもよい。エッチングには、プラズマガスを用いたエッチング、レーザーによるエッチング、又は薬液によるエッチング等が用いられてもよい。
 ステップS6では、第1拡散低減部102上に第1電極部101を形成する。例えば、第1拡散低減部102のうちの第1キャリア輸送部1031とは逆側の面に接するように第1電極部101を形成する。ここでは、例えば、スパッタリング等の真空プロセスによって、第1拡散低減部102上に第1電極部101の材料を堆積させることで、第1拡散低減部102上に第1電極部101を形成することができる。第1電極部101の材料には、例えば、Au等の導電性に優れた金属あるいはITO、FTO又はZnO等のTCOが適用される。また、第1電極部101は、例えば、塗布液としての金属ペーストがスクリーン印刷等によって塗布された後に乾燥されて該金属ペーストが固化されることで形成されてもよい。
 <1-2.太陽電池モジュール1>
 太陽電池モジュール1では、例えば図11に示すように、1つの基板部105上に、複数の太陽電池素子10が形成される。言い換えると、複数の太陽電池素子10が基板部105を共有している。この場合、基板部105は、複数の太陽電池素子10を支持する役割と、複数の太陽電池素子10を保護する役割と、を果たすことができる。基板部105としては、例えば、矩形状の盤面を有する平板が採用される。基板部105の素材として、例えば、ガラスあるいはアクリル又はポリカーボネート等の樹脂が採用される。ガラスとしては、例えば、白板ガラス、強化ガラス又は熱線反射ガラス等といった光透過率の高い材料が採用され得る。
 複数の太陽電池素子10は、第1方向としての+X方向に沿って平面的に並んでいる。ここで、平面的に並ぶとは、仮想あるいは実際の平面に沿って、各太陽電池素子10が位置しており且つ複数の太陽電池素子10が並んでいることを意味する。実施形態1では、複数の太陽電池素子10は、基板部105上において基板部105の表面に沿って並んでいる。
 より具体的には、例えば、複数の太陽電池素子10は、基板部105上において第1方向(+X方向)に沿って並んでいる5つの太陽電池素子10を含んでもよい。5つの太陽電池素子10には、例えば、+X方向において順に並んでいる、第1太陽電池素子111、第2太陽電池素子112、第3太陽電池素子113、第4太陽電池素子114及び第5太陽電池素子115が含まれている。つまり、複数の太陽電池素子10には、第n太陽電池素子11n(nは1から5の自然数)が含まれている。
 実施形態1では、各太陽電池素子10は、+Y方向を長手方向とする短冊状の形態を有している。各太陽電池素子10は、第1電極部101と、第1拡散低減部102と、太陽電池部103と、第2電極部104と、を有している。
 実施形態1では、基板部105上において、5つの第2電極部104が、+X方向に順に平面的に並んでいる。ここで、第m太陽電池素子11m(mは1から4の自然数)の第2電極部104と、第(m+1)太陽電池素子11(m+1)の第2電極部104とが、間隙(第1間隙ともいう)G1を挟んで並んでいる。例えば、第1太陽電池素子111の第2電極部104と、第2太陽電池素子112の第2電極部104とが、間隙(第1間隙ともいう)G1を挟んで並んでいる。各第1間隙G1は、+Y方向に沿った長手方向を有している。また、基板部105を底面とし、第1間隙G1を挟む2つの第2電極部104の互いに対向する2つの端面を側面とする第1溝部P1が存在している。
 実施形態1では、5つの第1電極部101が、+X方向に順に平面的に並んでいる。ここでは、第m太陽電池素子11mの第1電極部101と、第(m+1)太陽電池素子11(m+1)の第1電極部101とが、間隙(第2間隙ともいう)G2を挟んで並んでいる。例えば、第1太陽電池素子111の第1電極部101と、第2太陽電池素子112の第1電極部101とが、間隙(第2間隙)G2を挟んで並んでいる。各第2間隙G2は、例えば、+Y方向に沿った長手方向を有している。また、第2電極部104を底面とする第3溝部P3を構成している。各太陽電池素子10において、第1電極部101よりも第2電極部104の方が+X方向に飛び出している。別の観点から言えば、第1間隙G1は、第2間隙G2よりも第1方向(+X方向)にずれた位置に存在している。
 接続部12は、複数の太陽電池素子10のうちの隣り合う2つの太陽電池素子10を電気的に直列に接続している。実施形態1では、第m接続部12mが、第m太陽電池素子11mと第(m+1)太陽電池素子11(m+1)とを電気的に接続している。例えば、第1接続部121が、第1太陽電池素子111と第2太陽電池素子112とを電気的に接続している。より具体的には、第m接続部12mは、第m太陽電池素子11mの第2電極部104と第(m+1)太陽電池素子11(m+1)の第1電極部101とを電気的に接続している。例えば、第1接続部121は、第1太陽電池素子111の第2電極部104と第2太陽電池素子112の第1電極部101とを電気的に接続している。これにより、複数の太陽電池素子10が電気的に直列に接続され得る。
 また、接続部12は、+X方向において、太陽電池部103の間に位置している。別の観点から言えば、太陽電池部103を両側面とし、第2電極部104の-Z方向の面を底面とする第2溝部P2が存在している。第2溝部P2は、+Y方向に沿った長手方向を有する。そして、例えば、第2溝部P2に接続部12が備えられている。この場合、接続部12は、第1電極部101が第2溝部P2に充填されたものであってもよい。
 なお、第1太陽電池素子111では、第1電極部101は、第1拡散低減部102、太陽電池部103、及び第2電極部104よりも、-X方向に突出している部分である第1突出部101eが存在している。また、第5太陽電池素子115では、第2電極部104は、第1電極部101、第1拡散低減部102、及び太陽電池部103よりも、+X方向に突出している部分である第2突出部104eが存在している。第1突出部101e上には、第1の極性の出力用の第1導体W1が電気的に接続されている。第2突出部104e上には、第2の極性の出力用の第2導体W2が電気的に接続されている。ここで、例えば、第1の極性が負極であれば、第2の極性が正極となる。なお、例えば、第1の極性が正極であれば、第2の極性が負極となる。
 <2.他の実施形態>
 本開示は上述の実施形態1に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更及び改良等が可能である。
 [実施形態2]
 以下において、実施形態2について説明する。以下においては、実施形態1に対する相違点について主として説明する。
 図12は、実施形態2に係る太陽電池モジュール2を+Y方向から断面視した図である。実施形態2に係る太陽電池モジュール2及び太陽電池素子20は、第2溝部P2において、接続部12(第1電極部101)と第2電極部104の間に第1拡散低減部102をさらに備える。
 この構成を採用することで、接続部12(第1電極部101)の側面と太陽電池部103の側面との接触する面積を低減することができる。これにより、第1電極部101と太陽電池部103との接触に起因して第1電極部101又は太陽電池部103が劣化する可能性を、低減することができる。
 [実施形態3]
 以下において、実施形態3について説明する。以下においては、実施形態1に対する相違点について主として説明する。
 図13は、実施形態3に係る太陽電池素子30の受光面F1を上面視した場合における電極の長手方向に垂直な断面図である。実施形態3に係る太陽電池素子30では、第1拡散低減部102の第2部分A2の厚みが0ではない。なお、実施形態1に係る太陽電池素子10では、第1拡散低減部102の第2部分A2の厚みが0である。実施形態3では、第1拡散低減部102は、第3の厚みを有する第1部分A1と、第3の厚みよりも小さい第4の厚みを有する第2部分A2とを有する。別の観点では、第1拡散低減部102は、太陽電池部103上に第4の厚みの第1層が形成され、第1部分A1の部分において、第3の厚みと第4の厚みとの差の厚みを有する第2層が第1層の上に形成されて得られた凸状形状を有していると考えてもよい。この場合、第1拡散低減部102の材料としては、ITO、FTO又はZnO等のTCOが適用される。この場合、第1拡散低減部102の厚みは、例えば、10nmから1000nm程度とされてもよい。第3の厚みは、第4の厚みに対して、例えば、1nmから100nm程度大きい厚みとしてもよい。
 この場合、太陽電池部103の第1キャリア輸送部1031の上に、導電性の第1拡散低減部102が形成されることで、第1電極部101が第1キャリア輸送部1031からのキャリアの回収効率を向上させることができる。これによって、太陽電池素子10の変換効率を向上させることができる。
 実施形態3では、実施形態1のステップS5において、真空プロセスとマスクパターニングを組み合わせることで、第1拡散低減部102の第1部分A1と第2部分A2とを形成してもよい。例えば、第1キャリア輸送部1031上の全面に第1拡散低減部102の材料を堆積させた状態で、第2部分A2となる部分をエッチングすることで、第1拡散低減部102の第2部分A2を形成してもよい。エッチングは、プラズマガスを用いたエッチング、レーザーによるエッチング、又は薬液によるエッチング等が用いられてもよい。
 [実施形態4]
 以下において、実施形態4について説明する。以下においては、実施形態3に対する相違点について主として説明する。
 図14は、実施形態4に係る太陽電池素子40の受光面F1を上面視した場合における電極の長手方向に垂直な断面図である。実施形態4に係る太陽電池素子40は、第1拡散低減部102と太陽電池部103(第1キャリア輸送部1031)との間に、第2拡散低減部106をさらに備える。つまり、第2拡散低減部106は第1拡散低減部102と太陽電池部103との間に位置する。別の見方をすると、実施形態4に係る太陽電池素子40は、実施形態1に係る太陽電池素子10において、第1拡散低減部102と太陽電池部103(第1キャリア輸送部1031)との間に第2拡散低減部106が挿入されて得られた構成を有すると考えてもよい。また、別の見方をすると、実施形態4に係る太陽電池素子40は、実施形態3に係る太陽電池素子30において、第2面F4と第3面F5との間の第1拡散低減部102と、第3面F5と第1面F3との間の第1拡散低減部102とを異なせて得られた構成を有すると考えてもよい。
 実施形態4に係る太陽電池素子40の構成を詳しく説明する。第2拡散低減部106は、太陽電池部103の受光面F1の上に位置している。ここで、第2拡散低減部106は、太陽電池部103の受光面F1と接する面である第5面F7と、第5面F7と反対側の面である第6面F8とを備える。第1拡散低減部102は、第2拡散低減部106の第6面F8の上に備えられる。ここで、第1拡散低減部102の第1面F3は、第2拡散低減部106の第6面F8と接する。
 第2拡散低減部106は、太陽電池部103の受光面F1の全体を覆ってもよい。この場合、太陽電池素子40を受光面F1側から上面視した場合、第1拡散低減部102の第1部分A1では、第1拡散低減部102又は第1電極部101が観察される。一方で、太陽電池素子10を受光面F1側から上面視した場合、第1拡散低減部102の第2部分A2では、第2拡散低減部106の第6面F8が観察される。つまり、太陽電池素子40を受光面F1側から上面視した場合、第1拡散低減部102の第2部分A2では、第2拡散低減部106の第6面F8が暴露している。
 第4実施形態に係る太陽電池素子40において、第1拡散低減部102の比抵抗の値と第2拡散低減部106の比抵抗の値とが異なってもよい。例えば、第2拡散低減部106の比抵抗の値は第1拡散低減部102の比抵抗の値以上であってもよい。第2拡散低減部106の比抵抗の値は第1拡散低減部102の比抵抗の値よりも大きくてもよい。この構造を採用することで、第2拡散低減部106から第1拡散低減部102に向けて、キャリア密度が段階的に変化するため、バンド不整合による抵抗の増加を低減することができる。この場合、第1拡散低減部102の比抵抗の値及び第2拡散低減部106の比抵抗の値は、第1拡散低減部102及び第2拡散低減部106の材料の選択、又は第1拡散低減部102及び第2拡散低減部106の成膜条件の調整によって実現されてもよい。
 第1拡散低減部102及び第2拡散低減部106が同種の材料から構成されてもよい。この場合、第1拡散低減部102及び第2拡散低減部106が同種の元素又はそれらの組合せから構成されてもよい。つまり、第1拡散低減部102の構成元素と第2拡散低減部106の構成元素が同じであってもよい。第1拡散低減部102の材料及び第2拡散低減部106の材料としては、例えば、ITO、FTO又はZnO等のTCOが適用される。この場合、第1拡散低減部102及び第2拡散低減部106は、キャリア密度が異なるように形成されてもよい。具体的には、第1拡散低減部102のキャリア密度は第2拡散低減部106のキャリア密度よりも大きくてもよい。一般的に、TCOでは、導電性(キャリア密度)と透過性とがトレードオフの関係にあることが多い。第1電極部101の下に存在する第1拡散低減部102には光が入射しないため、透過性が低下しても太陽電池素子40の変換効率に与える影響が小さい。一方で、第1拡散低減部102の導電性を向上させて第1拡散低減部102での抵抗損失を低減することで、太陽電池素子40の変換効率を向上させることができる。この場合、第1拡散低減部102のキャリア密度及び第2拡散低減部106のキャリア密度は、第1拡散低減部102及び第2拡散低減部106の成膜条件の調整によって実現されてもよい。
 第1拡散低減部102及び第2拡散低減部106が異なる種類の材料から構成されてもよい。つまり、第1拡散低減部102の構成元素と第2拡散低減部106の構成元素が異なってもよい。例えば、第2拡散低減部106の材料としてはITO、FTO又はZnO等のTCOが適用されてもよく、第1拡散低減部102の材料としてはTCOに加えて、導電性酸化物等の導電性の無機材料が適用されてもよい。第1電極部101の下に存在する第1拡散低減部102には光が入射しないため、透過性が低下しても太陽電池素子40の変換効率に与える影響が小さい。したがって、第2拡散低減部106の材料には、太陽電池部103の吸収波長に対する透過性が要求されるが、第1拡散低減部102の材料には、太陽電池部103の吸収波長に対する透過性が要求されない。つまり、第1拡散低減部102及び第2拡散低減部106が異なる種類の材料から構成されるようにすることで、第1拡散低減部102に使用できる材料の選択肢を広げることができる。
 実施形態4では、実施形態1のステップS4とステップS5との間に、第2拡散低減部106を形成するステップを行う。
 このステップでは、太陽電池部103の第1キャリア輸送部1031上に第2拡散低減部106を形成する。ここでは、例えば、スパッタリング等の真空プロセスによって、第1キャリア輸送部1031上に第2拡散低減部106の材料を堆積させることで、第1キャリア輸送部1031上に第2拡散低減部106を形成することができる。
 [実施形態5]
 以下において、実施形態5について説明する。以下においては、実施形態1に対する相違点について主として説明する。実施形態5に係る太陽電池素子50は、多接合型太陽電池、タンデム型太陽電池、積層型太陽電池、又はスタック型太陽電池等である。より具体的には、実施形態5に係る多接合型太陽電池の太陽電池素子は、薄膜系太陽電池同士を接合した太陽電池素子である。薄膜系太陽電池同士の組み合わせは、ペロブスカイト型太陽電池同士の組合せであってもよく、ペロブスカイト型太陽電池とシリコン系薄膜太陽電池等の他の薄膜系太陽電池との組合せであってもよい。
 図15は、実施形態5に係る太陽電池素子50の受光面F1を上面視した場合における第1電極部101の長手方向に垂直な断面図である。実施形態5に係る太陽電池素子50は、第1太陽電池部107に加えて、第2太陽電池部108をさらに備える。実施形態5では、基板部105の上に、第2電極部104と、第2太陽電池部108と、第1太陽電池部107と、第1拡散低減部102と、第1電極部101と、がこの記載の順に積層されている。なお、実施形態5においても、第1拡散低減部102は、実施形態3又は実施形態4で説明された構成をとってもよい。
 第1太陽電池部107は、外部から入射された光(例えば太陽光)を電力に変換する。例えば、太陽電池部103は、光の照射に応じて光電変換によって、キャリアを生じてもよい。キャリアは、電子又は正孔の少なくとも一方を含む。第1太陽電池部107は、ペロブスカイト型太陽電池であってもよく、他の方式の太陽電池が適用されてもよい。例えば、太陽電池の方式は、無機系太陽電池であってもよく、有機系太陽電池であってもよい。無機系太陽電池は、シリコン系太陽電池であってもよく、化合物太陽電池であってもよい。有機系太陽電池は、色素増感太陽電池であってもよく、有機薄膜太陽電池であってもよい。第1太陽電池部107は、実施形態1と同じく、第1キャリア輸送部1031と、光電変換部1032と、第2キャリア輸送部1033とを備えている。
 ここで、第1太陽電池部107を構成する材料は、第2太陽電池部108の吸収波長の光に対して、透光性を有する。この構造を採用することで、第2太陽電池部108の吸収波長の光が、第2太陽電池部108に入射し得る。
 第2太陽電池部108は、外部から入射された光(例えば太陽光)を電力に変換する。第2太陽電池部108は、第1太陽電池部107の吸収波長とは異なる吸収波長を有する。第2太陽電池部108の吸収波長は、第1太陽電池部107の吸収波長よりも大きくてもよい。なお、吸収波長は、1つの波長だけでなく、一定の波長帯を含み得る。例えば、吸収波長は可視光領域等の波長帯であってもよく、第1波長から第2波長までの波長帯であってもよい。
 第2太陽電池部108は、ペロブスカイト型太陽電池であってもよく、他の方式の太陽電池が適用されてもよい。例えば、太陽電池の方式は、無機系太陽電池であってもよく、有機系太陽電池であってもよい。無機系太陽電池は、シリコン系太陽電池であってもよく、化合物太陽電池であってもよい。有機系太陽電池は、色素増感太陽電池であってもよく、有機薄膜太陽電池であってもよい。第2太陽電池部108は、実施形態1と同じく、第1キャリア輸送部1031と、光電変換部1032と、第2キャリア輸送部1033とを備えている。
 この構成を採用することで、第1太陽電池部107および第2太陽電池部108等の複数の太陽電池部103を積層することで、複数の太陽電池部103が直列接続されることになる。このため、太陽電池素子50の出力電力を大きくすることができるため、太陽電池素子50の変換効率を向上させることができる。
 図15には示していないが、実施形態5に係る太陽電池素子50は、第1太陽電池部107と第2太陽電池部108との間にさらにバッファ部(図示していない)を備えてもよい。バッファ部は、第1太陽電池部107と第2太陽電池部108とを接続するために用いられる。バッファ部は、第2太陽電池部108の吸収波長に対して透過性を有する。
 なお、図15では、2層の多接合型太陽電池素子を例示したが、太陽電池素子50はこれに限られない。例えば、太陽電池素子50は、2層以上の多接合型太陽電池素子であってもよい。
 [実施形態6]
 以下において、実施形態6について説明する。以下においては、実施形態1に対する相違点について主として説明する。実施形態6に係る太陽電池素子60において、太陽電池部103は結晶系太陽電池である。言い換えると、実施形態6に係る太陽電池素子60は、実施形態1に係る太陽電池素子10のうち、太陽電池部103が結晶系太陽電池であるものと考えてもよい。
 <6-1.太陽電池素子60>
 図16は、実施形態6に係る太陽電池素子60の受光面F1を上面視した場合における第1電極部101の長手方向に垂直な断面図である。実施形態6に係る太陽電池素子60は、第3太陽電池部110を備える。実施形態6では、第2電極部104と、第3太陽電池部110と、第1拡散低減部102と、第1電極部101と、がこの記載の順に積層されている。なお、実施形態6においても、第1拡散低減部102は、実施形態2又は実施形態3で説明された構成をとってもよい。
 第3太陽電池部110は、シリコン結晶を含む太陽電池である。第3太陽電池部110はシリコン結晶に入射された光を用いて光電変換をすることで発電することができる。シリコン結晶は、シリコンの単結晶であってもよく、シリコンの多結晶であってもよい。第3太陽電池部110は、PN接合型太陽電池であってもよく、PIN接合型太陽電池であってもよい。
 なお、第3太陽電池部110は、シリコン結晶からなり、剛性を有するため、基板部105としての機能を果たすことができる。したがって、太陽電池素子60においては、基板部105を備えなくてもよい。
 図17で示されるように、複数の太陽電池素子60は、第1保護部材61と第2保護部材63との間に位置している。また、複数の太陽電池素子60は、第1保護部材61のモジュール表面F9に沿って平面的に配列された状態にある。図17の例では、複数の太陽電池素子60は、仮想的なXY平面に沿って2次元状に並んでいる。
 <6-2.太陽電池モジュール6>
 図17で示されるように、太陽電池モジュール6は、例えば、主に太陽光が入射するモジュール表面F9と、このモジュール表面F9の逆側に位置しているモジュール裏面F10と、を有する。モジュール表面F9は、太陽電池素子60の受光面F1が向いている側の太陽電池モジュール6の面である。モジュール裏面F10は、太陽電池素子60の裏面F2が向いている側の太陽電池モジュール6の面である。
 例えば、モジュール表面F9は、+Z方向を向いている状態にある。例えば、モジュール裏面F10は、-Z方向を向いている状態にある。屋外等において太陽電池モジュール6を発電に使用する際には、+Z方向は、例えば、南中している太陽に向く方向に設定される。
 図17で示されるように、例えば、太陽電池モジュール6は、複数の太陽電池素子60と、第1保護部材61と、封止材62と、を備えている。太陽電池モジュール6は、さらに、第2保護部材63を備えている。
 太陽電池モジュール6は、例えば、発電された電力を外部に取り出すための端子ボックス65をさらに備えていてもよい。端子ボックス65は、例えば、モジュール裏面F10上等に位置している。
 太陽電池モジュール6は、例えば、太陽電池モジュール6の外周部を保護するためのフレーム66をさらに備えていてもよい。フレーム66は、例えば、太陽電池モジュール6の外周部に沿って位置している。この場合には、例えば、太陽電池モジュール6の外周部とフレーム66との間に、さらにブチル系の樹脂等の透湿度が低い封止材62が充填されていてもよい。
 <6-2-1.第1保護部材61>
 第1保護部材61は、例えば、太陽電池素子60をモジュール表面F9側から保護するための部材である。第1保護部材61は、例えば、モジュール表面F9を構成している状態にある。第1保護部材61は、例えば、透光性を有する。具体的には、第1保護部材61は、例えば、特定範囲の波長の光に対する透光性を有する。特定範囲の波長は、例えば、太陽電池素子60が光電変換し得る光の波長を含む。特定範囲の波長に、太陽光のうちの照射強度の高い光の波長が含まれていれば、太陽電池モジュール6の変換効率が向上し得る。第1保護部材61には、例えば、シート状又はフィルム状の部材が適用される。第1保護部材61の素材には、例えば、耐候性を有するフッ素系の樹脂等の樹脂が適用される。耐候性を有するフッ素系の樹脂は、例えば、フッ化エチレンプロピレン共重合体(Fluorinated Ethylene Propylene:FEP)、エチレン・テトラフルオロエチレン共重合体(Ethylene Tetrafluoroethylene:ETFE)及びエチレン・クロロトリフルオロエチレン共重合体(Ethylene Chlorotrifluoroethylene:ECTFE)等を含む。
 <6-2-2.封止材62>
 封止材62は、例えば、太陽電池素子60を覆っている状態にある。例えば、封止材62は、第1保護部材61と第2保護部材63との間の領域に充填されているとともに、第1保護部材61と第2保護部材63との間において太陽電池素子60を覆っている状態にある。封止材62は、例えば、モジュール表面F9側に位置している封止材62(第1封止材621ともいう)と、モジュール裏面F10側に位置している封止材62(第2封止材622ともいう)と、を含む。第1封止材621は、例えば、太陽電池素子60の第1保護部材61側の全面を覆っている状態にある。換言すれば、第1封止材621は、例えば、第1保護部材61と太陽電池素子60との間において、太陽電池素子60を覆っている状態にある。第2封止材622は、例えば、太陽電池部103の第2保護部材63側の全面を覆っている状態にある。換言すれば、第2封止材622は、例えば、第2保護部材63と太陽電池素子60との間において、太陽電池素子60を覆っている状態にある。このため、太陽電池素子60は、例えば、第1封止材621と第2封止材622とによって挟み込まれ且つ囲まれた状態にある。これにより、例えば、封止材62によって太陽電池素子60の姿勢が保たれ得る。
 また、封止材62は、例えば、透光性を有する。ここで、封止材62は、例えば、上述した特定範囲の波長の光に対する透光性を有する。例えば、封止材62を構成している第1封止材621及び第2封止材622のうち、少なくとも第1封止材621が透光性を有していれば、モジュール表面F9側からの入射光が、太陽電池素子60まで到達し得る。例えば、第1封止材621及び第2封止材622のそれぞれの素材には、樹脂が適用される。より具体的には、第1封止材621の素材には、例えば、エチレン酢酸ビニル共重合体(EVA:Ethylene―Vinyl Acetate)、ポリビニルブチラール(PVB:Poly―Vinyl Butyral)等のポリビニルアセタール又は酸変性樹脂等が適用される。ここで、例えば、第1封止材621の素材に比較的安価なEVAが適用されれば、複数の太陽電池素子60を保護する性能を容易に実現することができる。酸変性樹脂には、例えば、ポリオレフィン等の樹脂に対する酸によるグラフト変性等で形成することができる変性ポリオレフィン樹脂等が適用される。第2封止材622の素材には、例えば、第1封止材621と同様に、EVA、PVB等のポリビニルアセタール又は酸変性樹脂等が適用される。第1封止材621及び第2封止材622のそれぞれは、例えば、2種類以上の素材によって構成されていてもよい。
 また、太陽電池パネルは、第1保護部材61と第2保護部材63との間の領域のうちの外部空間に対して開口している環状の部分に沿って位置しているパッキング部(不図示)をさらに備えていてもよい。この場合には、パッキング部は、例えば、第1保護部材61と第2保護部材63との間の領域のうちの太陽電池素子60及び封止材62を含む領域の外周部分を囲んでいる。ここでは、パッキング部は、例えば、第1保護部材61から第2保護部材63に至る領域を埋めるように位置している。ここで、例えば、パッキング部が、封止材62よりも低い透湿度を有していれば、パッキング部は、第1保護部材61と第2保護部材63との間の領域のうちの外周部に沿った部分を封止することができる。これにより、パッキング部は、例えば、太陽電池モジュール6の外部から太陽電池素子60に向けた水分等の侵入を低減することができる。パッキング部の素材には、例えば、ブチル系の樹脂、ポリイソプロピレン系の樹脂又はアクリル系の樹脂等が適用される。パッキング部の素材は、例えば、透湿度が低い素材であれば、銅若しくは半田等の金属あるいはガラス等の非金属を含み得る。
 <6-2―3.第2保護部材63>
 第2保護部材63は、例えば、太陽電池素子60をモジュール裏面F10から保護するための部材である。第2保護部材63は、例えば、モジュール裏面F10を構成している状態にある。第2保護部材63は、例えば、透光性を有していてもよいし、透光性を有していなくてもよい。第2保護部材63には、例えば、シート状又は平板状の部材が適用される。シート状の部材には、例えば、モジュール裏面F10を構成するバックシートが適用される。バックシートの素材には、例えば、樹脂が適用される。
 <6-2-4.集電部64>
 集電部64は、取出電極として機能する。集電部64は、例えばアルミニウム又は銅の配線である。集電部64は、太陽電池モジュール6で発電した電気を取り出す端子と接続する。
 [実施形態7]
 以下において、実施形態7について説明する。以下においては、実施形態6に対する相違点について主として説明する。実施形態7に係る太陽電池素子70は、多接合型太陽電池、タンデム型太陽電池、積層型太陽電池、又はスタック型太陽電池等である。例えば、実施形態7に係る太陽電池素子70は、結晶系太陽電池と薄膜系太陽電池とを積層した太陽電池素子であってもよい。より具体的には、実施形態7に係る太陽電池素子70は、シリコン結晶系太陽電池とペロブスカイト型太陽電池とを接合した太陽電池素子である。例えば、実施形態7に係る多接合型太陽電池の太陽電池素子70は、シリコン結晶系太陽電池の上にペロブスカイト型太陽電池を接合した太陽電池素子70であってもよい。
 別の見方をすると、実施形態7に係る太陽電池素子70は、実施形態1に係る太陽電池素子10において、太陽電池部103と第2電極部104との間に第3太陽電池部110を挿入して得られた構成を有すると考えてもよい。また、実施形態7に係る太陽電池素子70は、実施形態5に係る太陽電池素子50において、第2太陽電池部108を第3太陽電池部110に置換して得られた構成を有すると考えてもよい。また、実施形態7に係る太陽電池素子70は、実施形態6に係る太陽電池素子60において、第1拡散低減部102と第3太陽電池部110との間に第1太陽電池部107を挿入して得られた構成を有すると考えてもよい。
 図18は、実施形態7に係る太陽電池素子70の受光面F1を上面視した場合における第1電極部101の長手方向に垂直な断面図である。実施形態7に係る太陽電池素子70は、第1太陽電池部107に加えて、第3太陽電池部110をさらに備える。言い換えると、実施形態7に係る太陽電池素子70では、第2電極部104と、第3太陽電池部110と、第1太陽電池部107と、第1拡散低減部102と、第1電極部101と、がこの記載の順に積層されている。なお、実施形態7においても、第1拡散低減部102は、実施形態2又は実施形態3で説明された構成をとってもよい。
 また、実施形態7においても、第1太陽電池部107と第3太陽電池部110の間にバッファ部(図示していない)をさらに備えてもよい。
 図19で示されるように、実施形態7に係る太陽電池モジュール7は、実施形態6に係る太陽電池モジュール6において太陽電池素子60を実施形態7に係る太陽電池素子70に置換して得られた構成を有してもよい。
 [その他の実施形態]
 本開示を諸図面及び実施形態に基づき説明してきたが、当業者であれば本開示に基づいた種々の変形及び修正を行うことが可能であることに留意されたい。したがって、これらの変形及び修正は本開示の範囲に含まれることに留意されたい。例えば、各機能部、各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の機能部及びステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。また、前述した本開示の各実施形態は、それぞれ説明した各実施形態に忠実に実施することに限定されるものではなく、適宜、各特徴を組み合わせたり、一部を省略したりして実施することも可能である。
 [本開示のまとめ]
 本開示には、以下の内容が含まれる。
 一実施形態において、(1)太陽電池素子は、受光面を有する太陽電池部と、電極部と、前記太陽電池部と前記電極部との間に位置する第1拡散低減部と、を備えることができ、前記第1拡散低減部は、前記受光面側の第1面と、前記電極部側の第2面と、を有することができ、前記第1拡散低減部は、前記受光面を上面視した場合において前記電極部と重ならない領域の少なくとも一部を避けて位置することができる。
 一実施形態において、(2)太陽電池素子は、受光面を有する太陽電池部と、電極部と、前記太陽電池部と前記電極部との間に位置する第1拡散低減部と、を備え、前記第1拡散低減部は、前記受光面側の第1面と、前記電極部側の第2面と、前記受光面を上面視した場合において前記電極部と重ならない領域の少なくとも一部に位置する前記第1面とは逆側の第3面とを有し、前記第1面と前記第3面との間の厚みは、前記第1面と前記第2面との間の厚みよりも小さくてもよい。
 (3)上記(1)から(2)のいずれかの太陽電池素子において、前記受光面を上面視した場合における、前記電極部の長手方向に直交する方向において、前記第2面の幅は、前記電極部の幅よりも大きくてもよい。
 (4)上記(1)から(3)のいずれかの太陽電池素子において、前記受光面を上面視した場合における前記電極部の長手方向に直交する断面から断面視した場合において、前記第1拡散低減部のうちの前記第1面から前記第2面に向かって厚みを有する第1部分の前記第1面側の幅は、前記第1部分の前記第2面側の幅よりも大きくてもよい。
 (5)上記(1)から(4)のいずれかの太陽電池素子において、前記第1拡散低減部は、前記第1拡散低減部と、前記太陽電池部の間に位置する第2拡散低減部をさらに備えることができる。
 (6)上記(1)から(5)のいずれかの太陽電池素子において、前記第2拡散低減部の比抵抗の値は、前記第1拡散低減部の比抵抗の値以上であってもよい。
 (7)上記(1)から(6)のいずれかの太陽電池素子において、前記第2拡散低減部の構成元素と前記第1拡散低減部の構成元素とが同じ場合、前記第2拡散低減部のキャリア密度は、前記第1拡散低減部のキャリア密度よりも小さくてもよい。
 (8)上記(1)から(7)のいずれかの太陽電池素子において、前記太陽電池部は、ペロブスカイト構造を有する半導体を含むことができる。
 一実施形態において、(9)太陽電池モジュールは、受光面を有する太陽電池部と、前記受光面と接する第1面と、前記第1面の反対側の面である第2面と、前記第2面と異なる面である第3面とを備えることができ、かつ、前記受光面の上に位置する第1拡散低減部と、前記第2面の上に位置する電極部と、を備えることができ、前記第1拡散低減部は、前記第1面から前記第2面に向かって厚みを有する第1部分と、前記第1面から前記第3面に向かって厚みを有する第2部分とを備えることができ、前記第2部分の厚みは、前記第1部分の厚みよりも小さくてもよい。
 (10)上記(9)の太陽電池モジュールにおいて、前記第3面が前記第1面と平行であることに代えて、前記第3面が前記第1面と一致することができる。
 (11)上記(9)から(10)のいずれかの太陽電池モジュールにおいて、前記受光面を上面視した場合における、前記電極部の長手方向に直交する方向において、前記第1部分の幅は、前記電極部の幅よりも大きくてもよい。
 (12)上記(9)から(11)のいずれかの太陽電池モジュールにおいて、前記受光面を上面視した場合における前記電極部の長手方向に直交する断面から断面視した場合において、前記第1部分の前記第1面側の幅は、前記第1部分の前記第2面側の幅よりも大きくてもよい。
 (13)上記(9)から(12)のいずれかの太陽電池モジュールにおいて、前記第1拡散低減部は、前記第1拡散低減部と、前記太陽電池部の間に第2拡散低減部をさらに備えることができる。
 (14)上記(9)から(13)のいずれかの太陽電池モジュールにおいて、前記第2拡散低減部の比抵抗の値は、前記第1拡散低減部の比抵抗の値以上であってもよい。
 (15)上記(9)から(14)のいずれかの太陽電池モジュールにおいて、前記第2拡散低減部の構成元素と前記第1拡散低減部の構成元素とが同じ場合、前記第2拡散低減部のキャリア密度は、前記第1拡散低減部のキャリア密度よりも小さくてもよい。
 (16)上記(9)から(15)のいずれかの太陽電池モジュールにおいて、前記太陽電池部は、ペロブスカイト構造を有する半導体を含むことができる。
1   :太陽電池モジュール
10  :太陽電池素子
101 :第1電極部
102 :第1拡散低減部
103 :太陽電池部
1031:第1キャリア輸送部
1032:光電変換部
1033:第2キャリア輸送部
104 :第2電極部
105 :基板部
106 :第2拡散低減部
107 ;第1太陽電池部
108 :第2太陽電池部
109 :バッファ部
110 :第3太陽電池部
111 :第1太陽電池素子
112 :第2太陽電池素子
113 :第3太陽電池素子
114 :第4太陽電池素子
115 :第5太陽電池素子
12  :接続部
121 :第1接続部
122 :第2接続部
123 :第3接続部
124 :第4接続部
2   :太陽電池モジュール
20  :太陽電池素子
3   :太陽電池モジュール
30  :太陽電池素子
4   :太陽電池モジュール
40  :太陽電池素子
5   :太陽電池モジュール
50  :太陽電池素子
6   :太陽電池モジュール
60  :太陽電池素子
61  ;第1保護部材
62  ;封止材
621 :第1封止材
622 :第2封止材
63  ;第2保護部材
64  :集電部
65  :端子ボックス
66  :フレーム
7   :太陽電池モジュール
70  :太陽電池素子
F1  :受光面
F2  :裏面
F3  :第1面
F4  :第2面
F5  :第3面
F6  ;第4面
F7  :第5面
F8  :第6面
F9  :モジュール表面
F10 :モジュール裏面
A1  :第1部分
A2  :第2部分
G1  :第1間隙
G2  :第2間隙
P1  :第1溝部
P2  :第2溝部
P3  :第3溝部
T1  :第1の厚み
T2  :第2の厚み
T3  :第3の厚み
T4  :第4の厚み

Claims (9)

  1.  受光面を有する太陽電池部と、
     電極部と、
     前記太陽電池部と前記電極部との間に位置する第1拡散低減部と、を備え、
     前記第1拡散低減部は、前記受光面側の第1面と、前記電極部側の第2面と、を有し、
     前記第1拡散低減部は、前記受光面を上面視した場合において前記電極部と重ならない領域の少なくとも一部を避けて位置する、太陽電池素子。
  2.  受光面を有する太陽電池部と、
     電極部と、
     前記太陽電池部と前記電極部との間に位置する第1拡散低減部と、を備え、
     前記第1拡散低減部は、
     前記受光面側の第1面と、
     前記電極部側の第2面と、
     前記受光面を上面視した場合において前記電極部と重ならない領域の少なくとも一部に位置する前記第1面とは逆側の第3面と
    を有し、
     前記第1面と前記第3面との間の厚みは、前記第1面と前記第2面との間の厚みよりも小さい、太陽電池素子。
  3.  前記受光面を上面視した場合における、前記電極部の長手方向に直交する方向において、前記第2面の幅は、前記電極部の幅よりも大きい、請求項1または請求項2に記載の太陽電池素子。
  4.  前記受光面を上面視した場合における前記電極部の長手方向に直交する断面から断面視した場合において、
     前記第1拡散低減部のうちの前記第1面から前記第2面に向かって厚みを有する第1部分の前記第1面側の幅は、前記第1部分の前記第2面側の幅よりも大きい、請求項1から請求項3のいずれか1項に記載の太陽電池素子。
  5.  前記第1拡散低減部と、前記太陽電池部の間に位置する第2拡散低減部をさらに備える、請求項1から請求項4のいずれか1項に記載の太陽電池素子。
  6.  前記第2拡散低減部の比抵抗の値は、前記第1拡散低減部の比抵抗の値以上である、請求項5に記載の太陽電池素子。
  7.  前記第2拡散低減部の構成元素と前記第1拡散低減部の構成元素とが同じ場合、
     前記第2拡散低減部のキャリア密度は、前記第1拡散低減部のキャリア密度よりも小さい、請求項5または請求項6に記載の太陽電池素子。
  8.  前記太陽電池部は、ペロブスカイト構造を有する半導体を含む、請求項1から請求項7のいずれか1項に記載の太陽電池素子。
  9.  受光面を含む太陽電池部と、
     前記受光面と接する第1面と、前記第1面の反対側の面である第2面と、前記第2面と異なる第3面とを備え、かつ、前記受光面の上に位置する第1拡散低減部と、
     前記第2面の上に位置する電極部と、を備え、
     前記第1拡散低減部は、前記第1面から前記第2面に向かって厚みを有する第1部分と、前記第1面から前記第3面に向かって厚みを有する第2部分と、を備え、
     前記第2部分の厚みは、前記第1部分の厚みよりも小さい、太陽電池モジュール。
PCT/JP2023/032490 2022-09-13 2023-09-06 太陽電池素子及び太陽電池モジュール WO2024058021A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-145444 2022-09-13
JP2022145444 2022-09-13

Publications (1)

Publication Number Publication Date
WO2024058021A1 true WO2024058021A1 (ja) 2024-03-21

Family

ID=90274804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032490 WO2024058021A1 (ja) 2022-09-13 2023-09-06 太陽電池素子及び太陽電池モジュール

Country Status (1)

Country Link
WO (1) WO2024058021A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192739A1 (ja) * 2013-05-29 2014-12-04 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュールおよびその製造方法
JP2017045754A (ja) * 2015-08-24 2017-03-02 株式会社東芝 太陽光発電モジュール
WO2018056295A1 (ja) * 2016-09-21 2018-03-29 積水化学工業株式会社 太陽電池
WO2020189615A1 (ja) * 2019-03-19 2020-09-24 積水化学工業株式会社 太陽電池
WO2021039764A1 (ja) * 2019-08-30 2021-03-04 京浜ラムテック株式会社 積層構造体、及び積層構造体の製造方法
CN112582543A (zh) * 2019-09-30 2021-03-30 上海黎元新能源科技有限公司 一种钙钛矿太阳能电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192739A1 (ja) * 2013-05-29 2014-12-04 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュールおよびその製造方法
JP2017045754A (ja) * 2015-08-24 2017-03-02 株式会社東芝 太陽光発電モジュール
WO2018056295A1 (ja) * 2016-09-21 2018-03-29 積水化学工業株式会社 太陽電池
WO2020189615A1 (ja) * 2019-03-19 2020-09-24 積水化学工業株式会社 太陽電池
WO2021039764A1 (ja) * 2019-08-30 2021-03-04 京浜ラムテック株式会社 積層構造体、及び積層構造体の製造方法
CN112582543A (zh) * 2019-09-30 2021-03-30 上海黎元新能源科技有限公司 一种钙钛矿太阳能电池

Similar Documents

Publication Publication Date Title
US8586855B2 (en) Solar cell module
US11251319B2 (en) Solar cell
US9691919B2 (en) Solar cell and solar cell module
US20100078057A1 (en) Solar module
US8779281B2 (en) Solar cell
KR101895025B1 (ko) 태양 전지 모듈 및 그의 제조 방법
US20110155210A1 (en) Solar cell module
US9337357B2 (en) Bifacial solar cell module
JP6688230B2 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP7170831B2 (ja) 太陽電池素子、および太陽電池素子の製造方法
KR101146734B1 (ko) 태양 전지 셀 및 이를 구비한 태양 전지 모듈
KR20140095658A (ko) 태양 전지
US20230231065A1 (en) Tandem solar cell
WO2024058021A1 (ja) 太陽電池素子及び太陽電池モジュール
US20110132425A1 (en) Solar cell module
US20150364627A1 (en) Solar cell, solar cell module, and production method for solar cell
US20120211060A1 (en) Thin-film solar cell module and method for manufacturing the same
JP7381594B2 (ja) 太陽電池モジュール
WO2023127382A1 (ja) 太陽電池デバイスおよび太陽電池モジュール
WO2024053603A1 (ja) 太陽電池素子、太陽電池モジュールおよび太陽電池素子の製造方法
EP4318604A1 (en) Thin film photovoltaic devices and method of manufacturing them
US20240072181A1 (en) A solar cell assembly
JP2024122155A (ja) 太陽電池モジュールおよび太陽電池システム
KR20150006941A (ko) 태양전지 모듈
WO2019044810A1 (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865376

Country of ref document: EP

Kind code of ref document: A1