WO2024057616A1 - 残留農薬の分析用試料調製方法 - Google Patents

残留農薬の分析用試料調製方法 Download PDF

Info

Publication number
WO2024057616A1
WO2024057616A1 PCT/JP2023/018550 JP2023018550W WO2024057616A1 WO 2024057616 A1 WO2024057616 A1 WO 2024057616A1 JP 2023018550 W JP2023018550 W JP 2023018550W WO 2024057616 A1 WO2024057616 A1 WO 2024057616A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
silica gel
containing silica
powdered
analysis
Prior art date
Application number
PCT/JP2023/018550
Other languages
English (en)
French (fr)
Inventor
祐子 松平
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Publication of WO2024057616A1 publication Critical patent/WO2024057616A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food

Definitions

  • the present invention relates to a method for preparing samples for analysis of pesticide residues, and in particular to a method for preparing samples for simultaneous analysis of pesticide residues in foods using a mass spectrometer.
  • Non-Patent Document 1 The so-called positive list system was implemented in Japan in 2006, which in principle prohibits the sale of food products containing residual amounts of pesticides, etc. in excess of the specified amount. Residue standard values have now been set for all approximately 800 types of agricultural chemicals, excluding those in the Ministry of Health, Labor and Welfare. Therefore, simultaneous analysis of approximately 800 types of pesticides is required for food products to be sold, and the Ministry of Health, Labor and Welfare has notified a test method for this purpose (Non-Patent Document 1).
  • the simultaneous testing method notified by the Ministry of Health, Labor and Welfare basically involves a sample preparation process in which food samples are homogenized by crushing them, and residual pesticides are extracted from the prepared samples. It consists of an extraction step to remove contaminants from the extract obtained in the extraction step, a purification step to remove contaminants from the extract obtained in the extraction step, and a measurement/analysis step to analyze the test solution obtained in the purification step.
  • a solvent acetonitrile
  • the solvent is removed, and the resulting residue is dissolved in a solvent (acetonitrile) to prepare an extract.
  • a solvent acetonitrile
  • the extract obtained in the extraction step and a mixed solvent of acetonitrile and toluene are injected in this order into a graphite carbon/aminopropyl silylated silica gel laminated minicolumn to obtain an eluate from the minicolumn.
  • a predetermined amount of a test solution is prepared by removing the solvent from this eluate and dissolving the obtained residue in a predetermined solvent.
  • the prepared test solution is analyzed using a mass spectrometer, specifically GC-MS or GC-MS/MS or LC-MS or LC-MS/MS to determine the pesticides contained in the food sample. Evaluate all at once.
  • the notification method involves preparing a versatile test solution compatible with both GC-MS and LC-MS, which requires many operations in the purification process and is complicated. For example, since a mini-column is used, a large amount of organic solvent is required, and the solvent removal operation is also required repeatedly. In particular, since the operations in the purification process are complicated, it not only takes a long time to prepare the required test solution, but also the reliability of the test solution may vary depending on the proficiency and skill of the operator.
  • an improved method (hereinafter referred to as the "improved method") that combines the QuEChERS method (catcher's method) and the dispersive solid-phase extraction method has been proposed as a method for obtaining samples for analysis for simultaneous testing in a relatively short time using simple operations. ) has been proposed (Non-Patent Document 2).
  • the improved method has also been adopted in the EU standards (Non-Patent Document 3), and is being adopted by food business operators in Japan as a simultaneous testing method for pesticide residues in place of the notification method.
  • the improved method consists of an extraction step for extracting residual pesticides from food samples, a purification step for the extract obtained in the extraction step, and a measurement/analysis step for analyzing the extract after the purification step.
  • acetonitrile is added to the food sample to extract residual pesticides by shaking, and salt is added to the resulting extract and shaken to separate water and acetonitrile.
  • salt is added to the resulting extract and shaken to separate water and acetonitrile.
  • residual pesticides are transferred to the acetonitrile layer, and highly polar contaminants are transferred to the water layer.
  • the extract is transferred to a powdery or granular solid phase containing ethylenediamine-N-propyl silylated silica gel, graphite carbon, and magnesium sulfate that can adsorb contaminants contained in the extracted liquid obtained and processed in the extraction process.
  • the supernatant solution obtained by centrifugation in the purification step is analyzed using a mass spectrometer, similar to the notification method, to evaluate all the pesticides contained in the food sample.
  • the improved method removes contaminants contained in the extract by adding and dispersing the extract to the solid phase, so it is easier to operate than the notification method that uses a mini column, and can be used for analysis in a short time.
  • a sample test solution
  • the purification process is a dispersion solid-phase extraction, contaminants such as food matrices, especially caffeine and catechins contained in tea, tend to remain in the test solution. Substances can significantly contaminate mass spectrometer columns and detectors. Therefore, the improved method requires frequent maintenance such as cleaning of the mass spectrometer.
  • the present invention aims to make it possible to easily prepare samples for analysis with less contamination of the mass spectrometer when simultaneously analyzing pesticide residues in foods using a mass spectrometer.
  • the present invention relates to a method for preparing samples for simultaneous analysis of pesticide residues in foods using a mass spectrometer.
  • This preparation method involves extracting residual pesticides from foods using an organic water-soluble extraction solvent to obtain an extract, a processing agent containing powdered ion-exchange group-modified carbon material-containing silica gel, an extract, and residual pesticides.
  • the method includes the steps of obtaining a mixture of purified organic solvents capable of dissolving , and separating a portion of the liquid from the mixture.
  • the ion exchange group of the powdered ion exchange group-modified carbon material-containing silica gel contained in the treatment agent used here is an amine functional group having anion exchange ability.
  • the amine functional group having anion exchange ability is, for example, a 3-(2-aminoethylamino)propyl group or a 3-aminopropyl group.
  • the powdered ion-exchange group-modified carbon material-containing silica gel contained in the treatment agent used in the present invention is usually produced by adding hydrochloric acid to a sodium silicate aqueous solution containing a carbon material to form a gel, and then adjusting the pH of the gelled reaction system.
  • a method comprising the step of further treating the carbon material-containing silica gel prepared by the method comprising the step of further adding hydrochloric acid until the value of It is prepared.
  • the powdered ion exchange group-modified carbon material-containing silica gel contained in the treatment agent used in the present invention contains, for example, a first carbon material with a specific surface area of 700 to 1,700 m 2 /g, and a specific surface area of 100 to 1,700 m 2 /g. 300 m 2 /g, and when 1 g of it is added to 5 mL of purified water, the pH of the purified water changes to an alkaline region.
  • the content of the first carbon material in the powdered ion-exchange group-modified carbon material-containing silica gel is usually 5 to 50% by mass.
  • the processing agent may further contain powdered carbon material-containing silica gel.
  • the powdered carbon material-containing silica gel used in this case is usually produced by adding hydrochloric acid to an aqueous solution of sodium silicate containing the carbon material to gel it, and then adding hydrochloric acid until the pH of the gelled reaction system becomes less than 2. It is prepared by a method including the step of adding.
  • the powdered carbon material-containing silica gel contained in the treatment agent used in this embodiment contains, for example, a second carbon material with a specific surface area of 700 to 1,700 m 2 /g, and a specific surface area of 700 to 900 m 2 /g. g, and when 1 g thereof is added to 5 mL of purified water, the pH of the purified water changes to the acidic region.
  • the content of the second carbon material in the powdered carbon material-containing silica gel is usually 0.5 to 10% by mass.
  • the food when the food is a food other than a caffeine-containing food, it is preferable to use acetonitrile as the water-soluble extraction solvent and to use a mixed solvent of toluene and acetonitrile or acetonitrile as the purification solvent. .
  • a treatment agent that further contains powdered ion exchange group-modified carbon material-containing silica gel in addition to powdered ion exchange group-modified carbon material-containing silica gel; It is preferable to use acetonitrile as the water-soluble extraction solvent and to use a mixed solvent of acetone and hexane as the purification solvent.
  • the present invention according to another aspect relates to a processing agent for purifying an organic water-soluble solvent containing residual agricultural chemicals extracted from foods.
  • This treatment agent contains a powdery ion-exchange group-modified carbon material-containing silica gel, and the ion-exchange group of the powdery ion-exchange group-modified carbon material-containing silica gel is an amine functional group having an anion exchange ability.
  • the amine functional group that is the ion exchange group of the powdered ion exchange group-modified carbon material-containing silica gel is, for example, a 3-(2-aminoethylamino)propyl group or a 3-aminopropyl group.
  • the powdered ion-exchange group-modified carbon material-containing silica gel contained in the purification treatment agent of the present invention contains, for example, a first carbon material with a specific surface area of 700 to 1,700 m 2 /g, and has a specific surface area of 100 to 1,700 m 2 /g. 300 m 2 /g, and when 1 g of it is added to 5 mL of purified water, the pH of the purified water changes to an alkaline region.
  • the powdered ion-exchange group-modified carbon material-containing silica gel When the powdered ion-exchange group-modified carbon material-containing silica gel is in such a form, the powdered ion-exchange group-modified carbon material-containing silica gel usually has a first carbon material content of 5 to 50% by mass.
  • One form of the purification treatment agent of the present invention may further contain powdered carbon material-containing silica gel.
  • the powdered carbon material-containing silica gel contained in this form of purification treatment agent contains, for example, a second carbon material with a specific surface area of 700 to 1,700 m 2 /g, and a specific surface area of 700 to 900 m 2 /g.
  • a second carbon material with a specific surface area of 700 to 1,700 m 2 /g, and a specific surface area of 700 to 900 m 2 /g.
  • the pH of the purified water changes to the acidic region.
  • the content of the second carbon material in the powdered carbon material-containing silica gel is usually 0.5 to 10% by mass.
  • the method for preparing a sample for analysis of pesticide residues according to the present invention is to extract residual pesticides from foods using an organic water-soluble extraction solvent, and then extract a solution containing a specific ion exchange group called an amine functional group having anion exchange ability. Because it is mixed with a processing agent containing a powdered carbon-containing silica gel modified by silica gel and an organic purified solvent that can dissolve pesticide residues, it is an analytical sample for simultaneous testing of pesticide residues on foods. It is possible to easily prepare a product that can suppress contamination of a mass spectrometer.
  • the purification treatment agent for organic solvents containing pesticide residues according to the present invention contains powdered carbon material-containing silica gel modified with a specific ion exchange group called an amine functional group having anion exchange ability.
  • an analysis sample preparation method it is possible to easily prepare an analysis sample for simultaneous testing of pesticide residues in foods, which can suppress contamination of a mass spectrometer.
  • FIG. 2 is a graph showing the removal rate of each contaminant compound when nine types of contaminant compounds are mixed in Experimental Example A.
  • 3 is a graph showing the removal rate of each contaminant compound when nine types of contaminant compounds are added to carbon material-containing silica gel I in Experimental Example E.
  • 3 is a graph showing the removal rate of each contaminant compound when nine types of contaminant compounds were added to the ion-exchange group-modified carbon material-containing silica gel in Experimental Example E.
  • a method for preparing samples for simultaneous analysis of pesticide residues in foods is to analyze the pesticide residues in foods using a mass spectrometer, for example, a gas chromatograph mass spectrometer such as GC-MS or GC-MS/MS, or LC-MS or LC.
  • a mass spectrometer for example, a gas chromatograph mass spectrometer such as GC-MS or GC-MS/MS, or LC-MS or LC.
  • Step 1 residual pesticides are extracted from foods using an organic water-soluble extraction solvent to obtain an extract.
  • Foods from which pesticide residues can be extracted are not particularly limited in type, such as various agricultural products, meat, seafood, or processed products thereof, and the required amount is usually reduced to a fine state in order to extract pesticide residues. Homogenize by grinding or chopping.
  • Extraction of pesticide residues from foods can usually be carried out according to the methods adopted in the notification method or the QuEChERS method. That is, in these methods, first, an extraction solvent is added to a required amount of a homogenized food sample and homogenized to prepare a slurry.
  • a highly polar water-soluble organic solvent such as acetonitrile, methanol or acetone, which can dissolve residual pesticides and is easily soluble in water, is usually used as the extraction solvent.
  • a water-soluble organic solvent can be similarly used as an extraction solvent, but since the dissolved amount of lipids, which become contaminant components in simultaneous analysis of residual pesticides, is small, it is used as an extraction solvent in simultaneous analysis of residual pesticides. It is preferable to select acetonitrile, which is often used.
  • the obtained slurry is filtered by suction to obtain a filtrate, that is, an extract of residual pesticides.
  • This extract is usually pH-adjusted by adding a phosphate buffer and sodium chloride, salted out, and separated into an organic solvent layer and an aqueous layer. The separated organic solvent layer is then used as an extract of residual agricultural chemicals.
  • salt is added to the obtained slurry to separate it into an organic solvent layer and an aqueous layer.
  • the salts used here include sodium chloride, trisodium citrate or its hydrate, disodium hydrogen citrate or its hydrate, anhydrous magnesium sulfate, magnesium sulfate, anhydrous sodium sulfate, sodium sulfate, anhydrous sodium acetate or acetic acid. Sodium etc. These salts can also be used in combination. Then, the separated organic solvent layer is centrifuged to separate it into a solid content and a liquid content, and the liquid content is used as an extract of residual agricultural chemicals.
  • Step 2 the extract obtained in step 1 is mixed with an organic purified solvent capable of dissolving the processing agent and residual agricultural chemicals to obtain a mixture.
  • the treatment agent used here contains a powdered ion exchange group-modified carbon material-containing silica gel.
  • the ion exchange group-modified carbon material-containing silica gel contained in the treatment agent has an amine functional group having an anion exchange ability as an ion exchange group.
  • the amine functional group having anion exchange ability is not particularly limited, but is, for example, a 3-(2-aminoethylamino)propyl group or a 3-aminopropyl group.
  • Two or more types of ion exchange group-modified carbon material-containing silica gels having different amine functional groups having anion exchange ability may be used in combination.
  • Such ion-exchange group-modified carbon material-containing silica gel is obtained by preparing a powdered carbon material-containing silica gel, and treating this carbon material-containing silica gel with a silane coupling agent having an amine functional group having anion exchange ability. It can be prepared by
  • the powdered carbon material-containing silica gel is produced by a step A in which hydrochloric acid is added to a sodium silicate aqueous solution containing a carbon material to form a gel, and further hydrochloric acid is added until the pH of the gelled reaction system becomes less than 2. It is a powder prepared by a method including step B of adding.
  • the carbon material-containing silica gel prepared by this method is preferably one that is left for a predetermined period of time after adding hydrochloric acid in Step B, and then washed with purified water and dried. It will be done.
  • the powdered carbon material-containing silica gel is added to the aqueous solution of the silane coupling agent, stirred, dehydrated, and the residue is dried to obtain the desired ion-exchange group-modified carbon material-containing silica gel.
  • the silane coupling agent for example, 3-(2-aminoethylamino)propyltrimethoxysilane, which can modify carbon material-containing silica gel with a 3-(2-aminoethylamino)propyl group, or carbon material-containing silica gel with 3-(2-aminoethylamino)propyl 3-aminopropyltriethoxysilane which can be modified with an aminopropyl group can be used.
  • the carbon material used in the preparation of carbon material-containing silica gel (hereinafter referred to as the "first carbon material") is in powder form, and it is important to select one with an appropriate specific surface area in light of the impurities contained in the food. is preferred.
  • first carbon material When it is necessary to prevent food-derived impurities that easily put a load on the mass spectrometer, such as caffeine and catechin contained in tea, from entering the analysis sample, use a carbon material with a relatively large specific surface area as the first carbon material. It is preferable to select one.
  • the first carbon material is usually preferably one having a specific surface area of 700 to 1,700 m 2 /g, particularly 1,000 to 1,600 m 2 /g.
  • the ion exchange group-modified carbon material-containing silica gel prepared by the above method using a first carbon material having a specific surface area of 700 to 1,700 m 2 /g contains the first carbon material and has a specific surface area of 700 to 1,700 m 2 /g. It is obtained as a powder with an area of 100 to 300 m 2 /g.
  • This powdered ion-exchange group-modified carbon material-containing silica gel has the property of changing the pH of the purified water to an alkaline region, usually pH 8 to 10, when 1 g of it is added to 5 mL of purified water.
  • the purified water used to confirm this property is usually distilled water, pure water prepared by reverse osmosis membrane treatment, or ion-exchanged water, and has a pH of approximately 5 to 7.
  • the amount of the first carbon material used is usually 5 to 50% by mass of the sodium silicate contained in the sodium silicate aqueous solution, from the viewpoint of suppressing the contamination of contaminants in the analysis sample and increasing the recovery rate of residual pesticides. It is preferable to set it to 5 to 20% by mass, and more preferably to set it to 5 to 20% by mass.
  • the treatment agent usually contains a powdered dehydrating agent.
  • the dehydrating agent is for removing water contained in the extract obtained in step 1, and examples thereof include magnesium sulfate, sodium sulfate, calcium sulfate, potassium carbonate, and calcium chloride, including magnesium sulfate. is preferred. Note that if water remains in the extract, the effect of purifying the extract using the processing agent may be reduced, and analysis with a mass spectrometer may become unstable.
  • the content of the dehydrating agent is usually preferably set appropriately depending on the amount of water contained in the extract.
  • the treatment agent may further contain powdered ion-exchange group-modified carbon material-containing silica gel as well as powdered carbon material-containing silica gel. If such a processing agent is used when the food contains caffeine as a contaminant, such as tea, it will be easier to prevent caffeine from contaminating the analysis sample.
  • the carbon material-containing silica gel used here is produced by a step A in which hydrochloric acid is added to a sodium silicate aqueous solution containing a carbon material to form a gel, and a step B in which hydrochloric acid is further added until the pH of the gelled reaction system becomes less than 2. It is a powder prepared by a method including.
  • the carbon material-containing silica gel prepared by this method is preferably one that is left for a predetermined period of time after adding hydrochloric acid in Step B, and then washed with purified water and dried. It will be done.
  • the carbon material (hereinafter referred to as "second carbon material") used in the preparation of the carbon material-containing silica gel is in powder form, and one with an appropriate specific surface area is selected from the same viewpoint as the first carbon material. be done. Therefore, the second carbon material should have a specific surface area similar to that of the first carbon material, that is, a material with a specific surface area of 700 to 1,700 m 2 /g, particularly 1,000 to 1,600 m 2 /g. It is preferable to use
  • the second carbon material may be of a different type having a specific surface area different from that of the first carbon material, or may be the same material as the first carbon material.
  • a carbon material-containing silica gel prepared by the above method using a second carbon material having a specific surface area of 700 to 1,700 m 2 /g contains the second carbon material and has a specific surface area of 700 to 900 m 2 /g of powder.
  • This powdered carbon material-containing silica gel has a property of changing the pH of the purified water to an acidic range, usually from 3 to 5.5, when 1 g thereof is added to 5 mL of purified water.
  • the purified water used to confirm this property is usually distilled water, pure water prepared by reverse osmosis membrane treatment, or ion-exchanged water, and has a pH of approximately 5 to 7.
  • the amount of the first carbon material used is usually 0.5 to 10 mass of the sodium silicate contained in the sodium silicate aqueous solution, from the viewpoint of suppressing the contamination of contaminants in the analysis sample and increasing the recovery rate of residual agricultural chemicals. %, more preferably 0.5 to 2% by mass.
  • the blending ratio (A:B) of the powdered carbon material-containing silica gel (A) and the powdered ion exchange group-modified carbon material-containing silica gel (B) is not limited to a specific ratio. However, it is usually preferable to set the mass ratio to 3:2 to 1:1.
  • the purification solvent used in this step can be any organic solvent that can dissolve residual agricultural chemicals.
  • acetonitrile, acetone, etc. can be used, but it is preferable to use different purification solvents depending on the type of food.
  • different purified solvents it may be possible to suppress the contamination of food-derived contaminants that pose a contamination load to the mass spectrometer in analytical samples without impairing the recovery rate of residual agricultural chemicals in the food.
  • the food is a caffeine-containing food such as tea and acetonitrile is used as the extraction solvent in step 1
  • it is preferable to use a mixed solvent of acetone and hexane as the purification solvent.
  • this mixed solvent it is possible to suppress the content of caffeine that causes contamination load on the mass spectrometer while maintaining the recovery rate of residual pesticides at the required level in analytical samples prepared from caffeine-containing foods. can.
  • the proportion of acetone is preferably set to 20 to 50% by mass, more preferably 20 to 30% by mass. If this ratio is less than 20% by mass, it will be difficult to recover residual pesticides, and if this ratio exceeds 50% by mass, residual pesticides will be easily recovered, but caffeine, a contaminant, will be mixed in the analysis sample. It becomes easier to do.
  • acetonitrile is used as the extraction solvent in Step 1 for foods other than caffeine-containing foods
  • these solvents it may be easier to suppress the contamination of contaminants in samples for analysis.
  • the proportion of toluene is preferably set to less than 40% by mass, more preferably less than 30% by mass. If this ratio exceeds 40% by mass, it may become difficult to prevent contaminants from being mixed into the sample for analysis.
  • the specific operation in this step is, for example, adding the extract obtained in step 1 to a test tube containing the processing agent and purified solvent, and shaking the test tube by hand to remove the processing agent and purified solvent. and mix the extract.
  • impurities contained in the extract are removed by the ion-exchange group-modified carbon material-containing silica gel in the processing agent, and if the processing agent contains carbon-containing silica gel, the carbon material-containing silica gel and the ion-exchange group-modified silica gel are removed. Since it is easily captured by the carbon material-containing silica gel, it moves to the solid phase, while the residual pesticide contained in the extract is difficult to capture by the processing agent and remains in the liquid phase. That is, residual agricultural chemicals and impurities contained in the extract are separated by a processing agent, and the extract is purified.
  • the amount of the processing agent to be used is not particularly limited, but it is usually preferably set to 300 to 700 mg per 1 mL of the extract.
  • the amount of the purification solvent to be used is not particularly limited, but for example, if the food is a food other than a caffeine-containing food and acetonitrile or a mixed solvent of toluene and acetonitrile is used as the purification solvent, the extract 4 mL for 1 mL, and the food is a caffeine-containing food, the processing agent is a powdered ion exchange group-modified carbon material-containing silica gel, and the powdered carbon material-containing silica gel is used, and the purification solvent is When using a mixed solvent of acetone and toluene, it is preferable to set the amount to about 9 mL per 1 mL of the extract.
  • Step 3 a portion of the liquid is separated from the mixture obtained by mixing the processing agent, extract and purified solvent in step 2.
  • a test tube in which the processing agent, extract liquid, and purified solvent are mixed is applied to a centrifuge to centrifugally separate the liquid and solid contents in the test tube, and a portion of the liquid is separated.
  • the separated liquid fraction can be applied to a mass spectrometer as a sample for analysis of residual pesticides, either as it is or after being appropriately concentrated.
  • the analytical sample preparation method of the present invention includes the above-mentioned steps 1 to 3, compared to the notification method, it is possible to prepare analytical samples of residual pesticides from food extracts in a short time and easily. be able to.
  • the prepared analysis sample is separated by trapping impurities in the treatment layer in step 2, it is more difficult to use the mass spectrometer column or detector than the analysis sample prepared using the improved method. It is difficult to contaminate the mass spectrometer, and the maintenance burden on the mass spectrometer can be reduced.
  • the analytical sample preparation method of the present invention can be used to prepare analytical samples for simultaneous testing of pesticide residues on a wide variety of foods. and powdered carbon material-containing silica gel, especially when preparing analytical samples for simultaneous testing of pesticide residues in foods containing caffeine and catechin as impurities, typically tea. Useful.
  • the amount of the second carbon material added to the sodium silicate was changed, and as shown in Table 2, four types (Ia, Ib, Ic, Id) was prepared. Table 2 also shows the properties of the prepared carbon material-containing silica gels Ia to Id.
  • Silica gel containing ion exchange group-modified carbon material An aqueous sodium silicate solution was prepared, and a first carbon material (specific surface area: 1,680 m 2 /g) containing 10% by mass of sodium silicate was added thereto and stirred. Hydrochloric acid was added to this to form a gel, and further hydrochloric acid was added until the pH of the reaction system became less than 2. After the reaction system was allowed to stand for a certain period of time, the product was washed with purified water and dried to obtain a powdery carbon material-containing silica gel.
  • test tube was then centrifuged to collect the supernatant, which was used as a sample for analysis.
  • two mixed liquids were prepared: 1 mL of acetonitrile solution containing 0.2 g of green tea (caffeine content: 4 mg) and 0.1 mL of acetonitrile solution containing 0.2 ⁇ g of each of 35 types of pesticides. Then, these mixed liquids were treated as extracts of residual pesticides from foods, and samples for analysis were prepared by processing them individually according to the notified method and the improved method.
  • the mixed treatment agent of powdered carbon material-containing silica gel I and powdered ion exchange group-modified carbon material-containing silica gel can recover most of the 35 types of agricultural chemicals with a high recovery rate of 70 to 120%.
  • This method is comparable to the notified method and improved method in terms of recovery rate of pesticides, while the removal rate of caffeine is higher than the notified method and improved method, making it possible to prepare samples for analysis that are less likely to contaminate the mass spectrometer. It is.
  • Example D> Put 500 mg each of carbon material-containing silica gels I, Ia, Ib, Ic, and Id into test tubes individually, and add 10 ⁇ g of caffeine and 1 ⁇ g of Furacide, a type of pesticide that exhibits strong adsorption power to carbon materials, into each test tube. 1 mL of an acetonitrile solution and 9 mL of a mixed solvent of 1 part by mass of acetone and 3 parts by mass of hexane were added, and the mixture was shaken by hand for 1 minute. Then, the test tube was centrifuged to collect the supernatant liquid, which was analyzed by GC-MS to examine the caffeine removal rate and Furacide recovery rate in the supernatant liquid. The results are shown in Table 6.
  • Example E> For 500 mg of powdered carbon-containing silica gel I placed in a test tube, add 1 mL of acetonitrile containing 10 ⁇ g each of 9 types of contaminant compounds (same as those used in Experiment A) that are similar to contaminants in food. 1 mL of acetonitrile solution containing 0.2 ⁇ g of each of the solutions or 35 types of pesticides (same as those used in Experimental Example A) and 9 mL of the solvent shown in Table 7 were added, and the mixture was shaken by hand for 1 minute.
  • test tube was centrifuged to collect the supernatant liquid, which was analyzed by GC-MS to examine the removal rate of each contaminant compound and the recovery rate of each pesticide in the supernatant liquid.
  • carbon material-containing silica gel I was changed to an ion exchange group-modified carbon material-containing silica gel, and the same procedure was performed to examine the removal rate of each contaminant compound and the recovery rate of each pesticide.
  • Table 7 Results of pesticide recovery rate when 35 types of pesticides were added
  • Figure 4 Results of removal rate of each contaminant compound when 9 types of contaminant compounds were added using carbon material-containing silica gel I
  • FIG. 5 results of the removal rate of each contaminant compound when nine types of contaminant compounds were added using ion exchange group-modified carbon material-containing silica gel).
  • ⁇ Experiment example F> Put 500 mg of powdered carbon-containing silica gel Ib into a test tube, and add 1 mL of acetonitrile solution containing 10 ⁇ g of caffeine and 1 ⁇ g each of six types of pesticides (same as those used in Experimental Example C) as shown in Table 8. 9 mL of a mixed solvent of acetone and hexane was added, and the mixture was shaken by hand for 1 minute. Then, the test tube was centrifuged to collect the supernatant liquid, which was analyzed by GC-MS to examine the caffeine removal rate and the recovery rate of each pesticide in the supernatant liquid. The results are shown in Table 8.
  • ⁇ Experiment example G > 200 mg of ion-exchange group-modified carbon material-containing silica gel was placed in a test tube, and 1 mL of acetonitrile solution containing 1 ⁇ g of each of six types of pesticides (same as those used in Experimental Example C) was used to simulate contaminants in food. 1 mL of acetonitrile solution containing 10 ⁇ g each of 9 types of contaminant compounds (same as those used in Experimental Example A) and 9 mL of a mixed solvent of toluene and acetonitrile shown in Table 9 were added, and the mixture was shaken by hand for 1 minute. .
  • test tube was centrifuged to collect the supernatant liquid, which was analyzed by GC-MS to examine the removal rate of contaminant compounds and the recovery rate of each pesticide in the supernatant liquid.
  • the results are shown in FIG. 6 and Table 9, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Hydrology & Water Resources (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

茶等のカフェインを含む食品の残留農薬の分析用試料の調製では、有機系の水溶性抽出溶媒を用いて食品から残留農薬を抽出し、抽出液を得る工程と、粉末状イオン交換基修飾炭素材含有シリカゲルおよび粉末状炭素材含有シリカゲルを含む処理剤、抽出液および残留農薬を溶解可能な有機系の精製溶媒の混合物を得る工程と、混合物から液分の一部を分取する工程とを含む。粉末状イオン交換基修飾炭素材含有シリカゲルのイオン交換基は、陰イオン交換能を有するアミン系官能基、例えば、3-(2-アミノエチルアミノ)プロピル基または3-アミノプロピル基である。

Description

残留農薬の分析用試料調製方法
 本願は、2022年9月12日に日本に出願された特願2022-144699号に基づき優先権を主張し、その内容をここに援用する。
 本発明は、残留農薬の分析用試料調製方法、特に、質量分析計を用いて食品の残留農薬を一斉分析するための試料の調製方法に関する。
 農薬等が規定量を超えて残留する食品の販売を原則禁止するいわゆるポジティブリスト制度が日本国において2006年に施行され、多数の農薬のうち、人の健康を損なうおそれのないことが明らかな一部の農薬を除く約800種類の農薬の全てについて残留基準値が設定されるに至っている。そこで、販売される食品については約800種類の農薬の一斉分析が求められ、厚生労働省はそのための試験法を通知している(非特許文献1)。
 厚生労働省が通知する一斉試験法(以下、「通知法」と称する。)は、基本的に、食品試料を粉砕することで均一化するための試料調製工程、調製された試料から残留農薬を抽出するための抽出工程、抽出工程で得られた抽出液から夾雑物質を除去するための精製工程および精製工程により得られた試験溶液を分析するための測定・解析工程からなる。抽出工程では、試料調製工程において均一化された試料に溶媒(アセトニトリル)を加えてホモジナイズした後に吸引ろ過する。そして、このろ液を塩析した後に溶媒を除去することで得られた残留物を溶媒(アセトニトリル)に溶解し、抽出液を調製する。精製工程では、グラファイトカーボン/アミノプロピルシリル化シリカゲル積層ミニカラムに対して抽出工程で得られた抽出液およびアセトニトリルとトルエンとの混合溶媒をこの順に注入し、ミニカラムからの溶出液を得る。そして、この溶出液から溶媒を除去して得られた残留物を所定の溶媒に溶解することで所定量の試験溶液を調製する。測定・解析工程では、調製された試験溶液を質量分析計、具体的にはGC-MS若しくはGC-MS/MSまたはLC-MS若しくはLC-MS/MSにより分析することで食品試料に含まれる農薬を一斉に評価する。
 しかし、通知法は、GC-MSおよびLC-MSの両方に対応可能な汎用性を有する試験溶液を調製することから、精製工程での操作が多く複雑である。例えば、ミニカラムを用いることから多量の有機溶媒を必要とし、溶媒の除去操作も繰り返し必要になる。特に、精製工程での操作が煩雑であることから、所要の試験溶液を調製するために長時間を要するばかりではなく、試験溶液の信頼性が操作者の熟度や技量により変動し得る。
 そこで、簡単な操作により比較的短時間で一斉試験用の分析用の試料を得る方法として、QuEChERS法(キャッチャーズ法)と分散固相抽出法とを組合わせた改良法(以下、「改良法」という。)が提案されている(非特許文献2)。改良法は、EU規格においても採用されており(非特許文献3)、通知法に替わる残留農薬の一斉試験法として本邦でも食品事業者等において採用されつつある。
 改良法は、食品試料から残留農薬を抽出するための抽出工程、抽出工程で得られた抽出液の精製工程および精製工程を経た抽出液を分析するための測定・解析工程からなる。抽出工程では、食品試料にアセトニトリルを加えて残留農薬を振とう抽出し、それにより得られた抽出液に塩を加えて振とうすることで水とアセトニトリルとを分離させ、抽出液に含まれている残留農薬をアセトニトリル層へ移行させるとともに、高極性の夾雑物質を水層へ移行させる。精製工程では、抽出工程において取得されかつ処理された抽出液に含まれる夾雑物質を吸着可能なエチレンジアミン-N-プロピルシリル化シリカゲルおよびグラファイトカーボン並びに硫酸マグネシウムを含む粉末状または粒状の固相に抽出液を添加・分散して振とうした後に遠心分離する。そして、測定・解析工程では、精製工程での遠心分離により得られた上澄み溶液を通知法と同様に質量分析計を用いて分析し、食品試料に含まれる農薬を一斉に評価する。
 改良法は、固相に抽出液を添加・分散することで抽出液に含まれる夾雑物質を除去していることから、ミニカラムを用いる通知法に比べて操作が簡単であり、短時間で分析用の試料(試験溶液)を調製することができる。しかし、その精製工程は、分散固相抽出であることから、試験溶液中に食品マトリックス等の夾雑物質、特に、茶に含まれるカフェインやカテキンが残留しやすく、得られた試験溶液は、夾雑物質によって質量分析計のカラムや検出器を著しく汚染してしまうことがある。このため、改良法によれば、質量分析計の洗浄等の頻繁な保守作業が必要である。
平成17年1月24日付け食安発第0124001号 厚生労働省医薬食品食品局食品安全部長通知「食品に残留する農薬、飼料添加物又は動物用医薬品の成分である物質の試験法」
一般財団法人 食品分析開発センターSUNATEC、「QuEChERS法について」、[2022年8月19日検索]、インターネット(URL:http://www.mac.or.jp/mail/140401/03.shtml)
European standard EN 15662,Foods of Plant Origin - Multimethod for the determination of pesticide residues using GC- and LC-based analysis following acetonitrile extraction/partitioning and clean-up by dispersive SPE - Modular QuEChERS-method
 本発明は、質量分析計を用いた食品の残留農薬の一斉分析に当たり、質量分析計の汚染を抑えた分析用試料を簡単に調製できるようにしようとするものである。
 本発明は、質量分析計を用いて食品の残留農薬を一斉分析するための試料の調製方法に関するものである。この調製方法は、有機系の水溶性抽出溶媒を用いて食品から残留農薬を抽出し、抽出液を得る工程と、粉末状イオン交換基修飾炭素材含有シリカゲルを含む処理剤、抽出液および残留農薬を溶解可能な有機系の精製溶媒の混合物を得る工程と、混合物から液分の一部を分取する工程とを含む。ここで用いる処理剤に含まれる粉末状イオン交換基修飾炭素材含有シリカゲルのイオン交換基は、陰イオン交換能を有するアミン系官能基である。
 陰イオン交換能を有するアミン系官能基は、例えば、3-(2-アミノエチルアミノ)プロピル基または3-アミノプロピル基である。
 本発明において用いる処理剤に含まれる粉末状イオン交換基修飾炭素材含有シリカゲルは、通常、炭素材を添加したケイ酸ナトリウム水溶液に塩酸を加えてゲル化させる工程と、ゲル化した反応系のpHが2未満になるまでさらに塩酸を加える工程とを含む方法により調製された炭素材含有シリカゲルを陰イオン交換能を有するアミン系官能基を備えたシランカップリング剤によりさらに処理する工程を含む方法により調製されるものである。
 本発明において用いる処理剤に含まれる粉末状イオン交換基修飾炭素材含有シリカゲルは、例えば、比表面積が700~1,700m/gの第1炭素材を含有し、かつ、比表面積が100~300m/gであってその1gを5mLの精製水に添加したときに当該精製水のpHをアルカリ性領域へ変動させるものである。粉末状イオン交換基修飾炭素材含有シリカゲルがこのような形態の場合、粉末状イオン交換基修飾炭素材含有シリカゲルにおける第1炭素材の含有割合は、通常、5~50質量%である。
 本発明に係る残留農薬の分析用試料調製方法の一形態において、処理剤は粉末状炭素材含有シリカゲルをさらに含んでいてもよい。
 この場合に用いられる粉末状炭素材含有シリカゲルは、通常、炭素材を添加したケイ酸ナトリウム水溶液に塩酸を加えてゲル化させる工程と、ゲル化した反応系のpHが2未満になるまでさらに塩酸を加える工程とを含む方法により調製されるものである。
 この形態において用いられる処理剤に含まれる粉末状炭素材含有シリカゲルは、例えば、比表面積が700~1,700m/gの第2炭素材を含有し、かつ、比表面積が700~900m/gであってその1gを5mLの精製水に添加したときに当該精製水のpHを酸性領域へ変動させるものである。粉末状炭素材含有シリカゲルがこのような形態の場合、粉末状炭素材含有シリカゲルにおける第2炭素材の含有割合は、通常、0.5~10質量%である。
 本発明の分析用試料調製方法では、食品がカフェイン含有食品以外の食品のとき、水溶性抽出溶媒としてアセトニトリルを用い、かつ、精製溶媒としてトルエンとアセトニトリルとの混合溶媒またはアセトニトリルを用いるのが好ましい。
 また、本発明の分析用試料調製方法では、食品がカフェイン含有食品のとき、処理剤として粉末状イオン交換基修飾炭素材含有シリカゲルに加えて粉末状炭素材含有シリカゲルをさらに含むものを用いるとともに水溶性抽出溶媒としてアセトニトリルを用い、かつ、精製溶媒としてアセトンとヘキサンとの混合溶媒を用いるのが好ましい。
 他の観点に係る本発明は、食品から抽出した残留農薬を含む有機系の水溶性溶媒を精製するための処理剤に関するものである。この処理剤は、粉末状イオン交換基修飾炭素材含有シリカゲルを含み、粉末状イオン交換基修飾炭素材含有シリカゲルのイオン交換基が陰イオン交換能を有するアミン系官能基である。
 粉末状イオン交換基修飾炭素材含有シリカゲルのイオン交換基であるアミン系官能基は、例えば、3-(2-アミノエチルアミノ)プロピル基または3-アミノプロピル基である。
 本発明の精製処理剤に含まれる粉末状イオン交換基修飾炭素材含有シリカゲルは、例えば、比表面積が700~1,700m/gの第1炭素材を含有し、かつ、比表面積が100~300m/gであってその1gを5mLの精製水に添加したときに当該精製水のpHをアルカリ性領域へ変動させるものである。粉末状イオン交換基修飾炭素材含有シリカゲルがこのような形態の場合、粉末状イオン交換基修飾炭素材含有シリカゲルは、通常、第1炭素材の含有割合が5~50質量%である。
 本発明の精製処理剤の一形態は、粉末状炭素材含有シリカゲルをさらに含んでいてもよい。
 この形態の精製処理剤に含まれる粉末状炭素材含有シリカゲルは、例えば、比表面積が700~1,700m/gの第2炭素材を含有し、かつ、比表面積が700~900m/gであってその1gを5mLの精製水に添加したときに当該精製水のpHを酸性領域へ変動させるものである。粉末状炭素材含有シリカゲルがこのような形態の場合、粉末状炭素材含有シリカゲルにおける第2炭素材の含有割合は、通常、0.5~10質量%である。
 本発明に係る残留農薬の分析用試料調製方法は、有機系の水溶性抽出溶媒を用いて食品から残留農薬を抽出した抽出液を陰イオン交換能を有するアミン系官能基という特定のイオン交換基により修飾された粉末状の炭素材含有シリカゲルを含む処理剤および残留農薬を溶解可能な有機系の精製溶媒と混合していることから、食品の残留農薬の一斉試験のための分析用試料であって質量分析計の汚染を抑制可能なものを簡単に調製することができる。
 本発明に係る残留農薬含有有機溶媒の精製処理剤は、陰イオン交換能を有するアミン系官能基という特定のイオン交換基により修飾された粉末状の炭素材含有シリカゲルを含むことから、本発明の分析用試料調製方法において用いると、食品の残留農薬の一斉試験のための分析用試料であって質量分析計の汚染を抑制可能なものを簡単に調製することができる。
実験例Aにおいて、9種類の夾雑化合物を混合した場合の各夾雑化合物の除去率を示すグラフ。 実験例Aにおいて、緑茶を混合した場合のGC-MSスキャンクロマトグラフ。 実験例Bに関するGC-MSスキャンクロマトグラフ。 実験例Eにおいて炭素材含有シリカゲルIに9種類の夾雑化合物を加えた場合の各夾雑化合物の除去率を示すグラフ。 実験例Eにおいてイオン交換基修飾炭素材含有シリカゲルに9種類の夾雑化合物を加えた場合の各夾雑化合物の除去率を示すグラフ。 実験例Gについて各夾雑化合物の除去率を示すグラフ。
 食品の残留農薬を一斉分析するための試料の調製方法は、食品の残留農薬を質量分析計、例えば、GC-MS若しくはGC-MS/MSのようなガスクロマトグラフ質量分析計またはLC-MS若しくはLC-MS/MSのような液体クロマトグラフ質量分析計を用いて一斉に評価するために用いられる分析用試料を調製するものであり、主に、以下の工程1~3を含む。
(工程1)
 この工程では、有機系の水溶性抽出溶媒を用いて食品から残留農薬を抽出し、抽出液を得る。残留農薬の抽出対象となる食品は、各種の農作物、食肉、魚介類またはこれらの加工品など、種類が特に限定されるものではなく、通常、所要量を残留農薬の抽出のために微細な状態に粉砕するか、或いは切り刻むことで均一化する。
 食品からの残留農薬の抽出は、通常、通知法またはQuEChERS法において採用されている方法に従って実行することができる。すなわち、これらの方法では、先ず、均一化された所要量の食品試料に抽出溶媒を加えてホモジナイズし、スラリーを調製する。通知法またはQuEChERS法においては、抽出溶媒として、通常、残留農薬を溶解可能であるとともに水に溶解しやすい高極性の水溶性有機溶媒、例えば、アセトニトリル、メタノールまたはアセトンが用いられる。本発明では、抽出溶媒として同様に水溶性の有機溶媒を用いることができるが、残留農薬を一斉分析する上での夾雑成分となる脂質溶解量が少ないことから残留農薬の一斉分析において抽出溶媒として用いられることの多いアセトニトリルを選択するのが好ましい。
 次に、通知法では、得られたスラリーを吸引ろ過し、ろ液、すなわち残留農薬の抽出液を得る。この抽出液は、通常、リン酸緩衝液と塩化ナトリウムとを添加することでpHを調整するとともに塩析し、有機溶媒層と水層とに分離する。そして、分離した有機溶媒層を残留農薬の抽出液とする。一方、QuEChERS法では、得られたスラリーに塩を添加することで有機溶媒層と水層とに分離する。ここで用いられる塩は、塩化ナトリウム、クエン酸三ナトリウム若しくはその水和物、クエン酸水素二ナトリウム若しくはその水和物、無水硫酸マグネシウム、硫酸マグネシウム、無水硫酸ナトリウム、硫酸ナトリウム、無水酢酸ナトリウムまたは酢酸ナトリウム等である。これらの塩は、併用することもできる。そして、分離した有機溶媒層を遠心分離して固形分と液分とに分離し、液分を残留農薬の抽出液とする。
(工程2)
 この工程では、工程1で得られた抽出液を処理剤および残留農薬を溶解可能な有機系の精製溶媒と混合し、混合物を得る。ここで用いる処理剤は、粉末状のイオン交換基修飾炭素材含有シリカゲルを含むものである。
 処理剤に含まれるイオン交換基修飾炭素材含有シリカゲルは、イオン交換基として陰イオン交換能を有するアミン系官能基を有するものである。陰イオン交換能を有するアミン系官能基は、特に限定されるものではないが、例えば、3-(2-アミノエチルアミノ)プロピル基または3-アミノプロピル基である。イオン交換基修飾炭素材含有シリカゲルは、陰イオン交換能を有するアミン系官能基が異なる2種以上のものが併用されてもよい。
 このようなイオン交換基修飾炭素材含有シリカゲルは、粉末状の炭素材含有シリカゲルを調製し、この炭素材含有シリカゲルを陰イオン交換能を有するアミン系官能基を備えたシランカップリング剤により処理することで調製することができる。
 具体的には、粉末状の炭素材含有シリカゲルは、炭素材を添加したケイ酸ナトリウム水溶液に塩酸を加えてゲル化させる工程Aと、ゲル化した反応系のpHが2未満になるまでさらに塩酸を加える工程Bとを含む方法により調製される粉末状のものである。この方法により調製される炭素材含有シリカゲルは、通常、工程Bで塩酸を加え終わった後に所定時間放置した後、精製水にて洗浄して乾燥したものが好ましく、それによって粉末状のものとして得られる。そして、シランカップリング剤の水溶液に粉末状の炭素材含有シリカゲルを添加して攪拌した後に脱水し、残渣を乾燥すると、目的のイオン交換基修飾炭素材含有シリカゲルが得られる。シランカップリング剤としては、例えば、炭素材含有シリカゲルを3-(2-アミノエチルアミノ)プロピル基で修飾可能な3-(2-アミノエチルアミノ)プロピルトリメトキシシランまたは炭素材含有シリカゲルを3-アミノプロピル基で修飾可能な3-アミノプロピルトリエトキシシランを用いることができる。
 炭素材含有シリカゲルの調製において用いる炭素材(以下、「第1炭素材」という。)は、粉末状のものであり、食品に含まれる夾雑物に照らして適切な比表面積のものを選択するのが好ましい。質量分析計に負荷を与えやすい食品由来の夾雑物、例えば茶に含まれるカフェインやカテキン等が分析用試料に混入するのを抑える必要が場合、第1炭素材として比表面積が比較的に大きなものを選択するのが好ましい。一方、質量分析計に負荷を与えやすい食品由来の夾雑物が分析用試料に混入しにくい場合、残留農薬の回収率を高めやすいことから、第1炭素材として比表面積が比較的に小さなものを選択するのが好ましい。このような観点から、第1炭素材としては、通常、比表面積が700~1,700m/gのもの、特に1,000~1,600m/gのものが好ましい。
 比表面積が700~1,700m/gの第1炭素材を用いて上述の方法により調製されるイオン交換基修飾炭素材含有シリカゲルは、当該第1炭素材を含有し、かつ、比表面積が100~300m/gの粉末状のものとして得られる。この粉末状のイオン交換基修飾炭素材含有シリカゲルは、その1gを5mLの精製水に添加したときに当該精製水のpHをアルカリ性領域、通常はpH8~10へ変動させる特性を有する。この特性を確認するために用いる精製水は、通常、蒸留水、逆浸透膜処理により調製された純水またはイオン交換水であり、pHが概ね5~7である。
 第1炭素材の使用量は、分析用試料において夾雑物の混入を抑えるとともに、残留農薬の回収率を高める観点から、通常、ケイ酸ナトリウム水溶液に含まれるケイ酸ナトリウムの5~50質量%に設定するのが好ましく、5~20質量%に設定するのがより好ましい。
 処理剤は、粉末状のイオン交換基修飾炭素材含有シリカゲルに加え、通常、粉末状の脱水剤を含む。脱水剤は、工程1で得られた抽出液に含まれる水分を除去するためのものであり、例えば、硫酸マグネシウム、硫酸ナトリウム、硫酸カルシウム、炭酸カリウムおよび塩化カルシウムを挙げることができるが、硫酸マグネシウムが好ましい。なお、抽出液に水分が残留すると、処理剤による抽出液の精製効果が低下する可能性があり、また、質量分析計での分析が不安定になる可能性がある。処理剤において、脱水剤の含有量は、通常、抽出液に含まれる水分量に応じて適宜設定するのが好ましい。
 処理剤は、粉末状のイオン交換基修飾炭素材含有シリカゲルとともに、粉末状の炭素材含有シリカゲルをさらに含んでいてもよい。食品がカフェインを夾雑物として含む茶のようなものの場合にこのような処理剤を用いると、カフェインが分析用試料に混入するのを抑制しやすくなる。
 ここで用いられる炭素材含有シリカゲルは、炭素材を添加したケイ酸ナトリウム水溶液に塩酸を加えてゲル化させる工程Aと、ゲル化した反応系のpHが2未満になるまでさらに塩酸を加える工程Bとを含む方法により調製される粉末状のものである。この方法により調製される炭素材含有シリカゲルは、通常、工程Bで塩酸を加え終わった後に所定時間放置した後、精製水にて洗浄して乾燥したものが好ましく、それによって粉末状のものとして得られる。
 炭素材含有シリカゲルの調製において用いる炭素材(以下、「第2炭素材」という。)は、粉末状のものであり、第1炭素材と同様の観点に照らして適切な比表面積のものが選択される。したがって、第2炭素材としては、第1炭素材と同様の比表面積のもの、すなわち、比表面積が700~1,700m/gのもの、特に1,000~1,600m/gのものを用いるのが好ましい。第2炭素材は、第1炭素材と比表面積が異なる別種のものであってもよいし、第1炭素材と同じものであってもよい。
 比表面積が700~1,700m/gの第2炭素材を用いて上述の方法により調製される炭素材含有シリカゲルは、当該第2炭素材を含有し、かつ、比表面積が700~900m/gの粉末状のものとして得られる。この粉末状の炭素材含有シリカゲルは、その1gを5mLの精製水に添加したときに当該精製水のpHを酸性領域、通常はpH3~5.5へ変動させる特性を有する。この特性を確認するために用いる精製水は、通常、蒸留水、逆浸透膜処理により調製された純水またはイオン交換水であり、pHが概ね5~7である。
 第1炭素材の使用量は、分析用試料において夾雑物の混入を抑えるとともに、残留農薬の回収率を高める観点から、通常、ケイ酸ナトリウム水溶液に含まれるケイ酸ナトリウムの0.5~10質量%に設定するのが好ましく、0.5~2質量%に設定するのがより好ましい。
 処理剤において、粉末状の炭素材含有シリカゲル(A)と粉末状のイオン交換基修飾炭素材含有シリカゲル(B)との配合比率(A:B)は、特定の比率に限定されるものではないが、通常、質量比で3:2~1:1に設定するのが好ましい。
 この工程において用いられる精製溶媒は、残留農薬を溶解可能な有機系の溶媒であれば種々のものを用いることができる。例えば、アセトニトリルやアセトンなどを用いることができるが、精製溶媒は、食品の種類により使い分けるのが好ましい。精製溶媒を使い分けることで、分析用試料において、食品の残留農薬の回収率を損なわずに質量分析計に汚染負荷を与える食品由来の夾雑物の混入を抑えることのできることがある。例えば、食品が茶のようなカフェイン含有食品であって工程1の抽出溶媒としてアセトニトリルを用いたとき、精製溶媒としてアセトンとヘキサンとの混合溶媒を用いるのが好ましい。この混合溶媒を用いると、カフェイン含有食品から調製される分析用試料において、残留農薬の回収率を必要な程度に維持しながら質量分析計に汚染負荷を与えるカフェインの含有量を抑えることができる。
 アセトンとヘキサンとの混合溶媒において、アセトンの割合は20~50質量%に設定するのが好ましく、20~30質量%に設定するのがより好ましい。この割合が20質量%未満の場合は残留農薬が回収されにくくなり、また、この割合が50質量%を超える場合は残留農薬は回収されやすいものの、分析用試料において夾雑物であるカフェインが混入しやすくなる。
 一方、カフェイン含有食品以外の食品であって工程1の抽出溶媒としてアセトニトリルを用いたとき、精製溶媒として、抽出溶媒と同じくアセトニトリルを用いるか、或いは、トルエンとアセトニトリルとの混合溶媒を用いるのが好ましい。これらの溶媒を用いると、分析用試料において、夾雑物の混入を抑えやすくなることがある。トルエンとアセトニトリルとの混合溶媒において、トルエンの割合は40質量%未満に設定するのが好ましく、30質量%未満に設定するのがより好ましい。この割合が40質量%を超えると、分析用試料に夾雑物が混入するのを抑えにくくなることがある。
 本工程での具体的な操作は、例えば、処理剤と精製溶媒とを入れた試験管に工程1で得られた抽出液を添加し、試験管を手振りで振盪することで処理剤、精製溶媒および抽出液を混合する。これらを混合すると、抽出液に含まれる夾雑物が処理剤中のイオン交換基修飾炭素材含有シリカゲルにより、また、処理剤が炭素材含有シリカゲルを含む場合は当該炭素材含有シリカゲルおよびイオン交換基修飾炭素材含有シリカゲルにより捕捉されやすいことから固相へ移動する一方、抽出液に含まれる残留農薬は処理剤に捕捉されにくく、液相中に残留する。すなわち、抽出液に含まれる残留農薬と夾雑物とは処理剤により分離され、抽出液は精製される。
 処理剤の使用量は、特に限定されるものではないが、通常、抽出液1mLに対して300~700mgに設定するのが好ましい。また、精製溶媒の使用量は、特に限定されるものではないが、例えば、食品がカフェイン含有食品以外の食品であって精製溶媒としてアセトニトリルまたはトルエンとアセトニトリルとの混合溶媒を用いる場合は抽出液1mLに対して4mLに、また、食品がカフェイン含有食品であって処理剤として粉末状イオン交換基修飾炭素材含有シリカゲルと粉末状炭素材含有シリカゲルとを含むものを用い、かつ、精製溶媒としてアセトンとトルエンとの混合溶媒を用いる場合は抽出液1mLに対して9mL程度に設定するのが好ましい。
(工程3)
 この工程では、工程2において処理剤、抽出液および精製溶媒を混合することで得られた混合物から液分の一部を分取する。例えば、工程2において処理剤、抽出液および精製溶媒を混合した試験管を遠心分離機に適用して試験管内の液分と固形分とを遠心分離し、液分の一部を分取する。分取した液分は残留農薬の分析用試料として、そのままで、或いは、適宜濃縮することで、質量分析計に適用することができる。
 本発明の分析用試料調製方法は、上述の工程1~3を含むものであることから、通知法に比べ、食品からの残留農薬の抽出液から残留農薬の分析用試料を短時間で簡単に調製することができる。また、調製される分析用試料は、工程2において夾雑物が処理層に捕捉されることで分離されていることから、改良法により調製された分析用試料よりも質量分析計のカラムや検出器を汚染しにくく、質量分析計の保守負担を軽減することができる。
 本発明の分析用試料調製方法は、多種多様な食品について残留農薬を一斉試験するための分析用試料を調製するために用いることができるが、処理剤として粉末状イオン交換基修飾炭素材含有シリカゲルと粉末状炭素材含有シリカゲルとを含むものを用いた場合、カフェインやカテキンを夾雑物として含む食品、典型的には茶の残留農薬を一斉試験するための分析用試料を調製する場合において特に有用である。
[実験例]
<処理剤の調製>
 以下の実験例において用いた炭素材含有シリカゲルおよびイオン交換基修飾炭素材含有シリカゲルは、次のとおりである。
炭素材含有シリカゲル:
 ケイ酸ナトリウム水溶液を調製し、これに対してケイ酸ナトリウムの10質量%の第1炭素材を添加して攪拌した。これに塩酸を加えてゲル化させ、反応系のpHが2未満になるまでさらに塩酸を添加した。このときの反応式は次のとおりである。
Figure JPOXMLDOC01-appb-C000001
 反応系を一定時間放置した後に生成物を精製水にて洗浄し、これを乾燥することで粉末状の炭素材含有シリカゲルを得た。ここでは、表1に示す6種類の比表面積の第2炭素材を個別に用い、6種類の炭素材含有シリカゲルI~VIを得た。調製した炭素材含有シリカゲルI~VIの特性を併せて表1に示す。
Figure JPOXMLDOC01-appb-T000002
 また、炭素材含有シリカゲルIについては、ケイ酸ナトリウムに対する第2炭素材の添加量を変え、表2に示すように第2炭素材の含有量が異なる4種類のもの(Ia、Ib、Ic、Id)を調製した。調製した炭素材含有シリカゲルIa~Idの特性を併せて表2に示す。
Figure JPOXMLDOC01-appb-T000003
イオン交換基修飾炭素材含有シリカゲル:
 ケイ酸ナトリウム水溶液を調製し、これに対してケイ酸ナトリウムの10質量%の第1炭素材(比表面積1,680m/g)を添加して攪拌した。これに塩酸を加えてゲル化させ、反応系のpHが2未満になるまでさらに塩酸を添加した。反応系を一定時間放置した後に生成物を精製水にて洗浄し、これを乾燥することで粉末状の炭素材含有シリカゲルを得た。3-(2-アミノエチルアミノ)プロピルトリメトキシシラン水溶液(濃度5質量%)200mLに得られた炭素材含有シリカゲル10gを添加して攪拌後に脱水し、残渣を乾燥することでイオン交換基修飾炭素材含有シリカゲル(比表面積180m/g)を得た。このイオン交換基修飾炭素材含有シリカゲルは、その1gを5mLの蒸留水に添加したときに当該蒸留水のpHを9.6に変動させた。
<実験例A>
 試験管に入れた粉末状の炭素材含有シリカゲルIの500mgに対し、食品中の夾雑物に見立てた9種類の夾雑化合物(リノール酸、モノパルミチン、β-シトステロール、スクアレン、カフェイン、モノミリスチン酸グリセロール、スチグマステロール、フィトールおよびdl-α-トコフェロール)をそれぞれ10μg含む1mLのアセトニトリル溶液、35種類の農薬をそれぞれ0.2μg含む1mLのアセトニトリル溶液または緑茶0.2gを含む1mLのアセトニトリル溶液(カフェイン含有量4mg)、および、アセトン1質量部に対してヘキサン3質量部を混合した混合溶媒9mLを加え、手振りにて1分間振盪した。そして、試験管を遠心分離して上澄み液を分取し、これをGC-MSにて分析することで、上澄み液における各夾雑化合物の除去率と各農薬の回収率とを調べた。また、炭素材含有シリカゲルIをイオン交換基修飾炭素材含有シリカゲルに変更し、同様に操作して各夾雑化合物の除去率と各農薬の回収率とを調べた。結果を表3(35種類の農薬を加えた場合の農薬回収率の結果および緑茶を加えた場合のカフェイン除去率の結果)および図1(9種類の夾雑化合物を加えた場合における各夾雑化合物の除去率の結果)に示す。また、緑茶を混合した場合について、質量分析計により得られたスキャンクロマトグラフを図2に示す。
Figure JPOXMLDOC01-appb-T000004
 表3によると、炭素材含有シリカゲルIおよびイオン交換基修飾炭素材含有シリカゲルのいずれを用いた場合も、35種類の農薬の殆どの種類のものが70~120%の高い回収率で回収されている。また、図1および図2によると、炭素材含有シリカゲルIとイオン交換基修飾炭素材含有シリカゲルとは、併用することで多くの夾雑物を除去可能なことがわかる。特に、図2によると、茶の残留農薬を一斉試験する場合、炭素材含有シリカゲルIとイオン交換基修飾炭素材含有シリカゲルとを併用することで茶に特徴的な夾雑物であるカフェインおよびカテキンを除去しやすくなるものと考えられる。
<実験例B>
 粉末状の炭素材含有シリカゲルI650mg、粉末状のイオン交換基修飾炭素材含有シリカゲル400mgおよび粉末状の硫酸マグネシウム800mgを均一に混合して試験管に入れ、これに緑茶0.2gを含む1mLのアセトニトリル溶液(カフェイン含有量4mg)、35種類の農薬をそれぞれ0.2μg含む0.1mLのアセトニトリル溶液、および、アセトン1質量部に対してヘキサン3質量部を混合した混合溶媒9mLを加え、手振りにて1分間振盪した。そして、試験管を遠心分離して上澄み液を分取し、これを分析用試料とした。また、緑茶0.2gを含む1mLのアセトニトリル溶液(カフェイン含有量4mg)と35種類の農薬をそれぞれ0.2μg含む0.1mLのアセトニトリル溶液との混合液を二つ調製した。そして、これらの混合液を食品から残留農薬を抽出した抽出液とみなし、通知法および改良法のそれぞれに従って個別に処理することで分析用試料を調製した。
 各分析用試料をGC-MSにて分析することで、各分析用試料におけるカフェインの除去率と各農薬の回収率とを調べた。結果を表4に示す。また、GC-MSにより得られたスキャンクロマトグラフを図3に示す。
Figure JPOXMLDOC01-appb-T000005
 粉末状の炭素材含有シリカゲルIと粉末状のイオン交換基修飾炭素材含有シリカゲルとの混合処理剤は、35種類の農薬の殆どの種類のものを70~120%の高回収率で回収可能であり、農薬の回収率の点において通知法および改良法に対して遜色がない一方、カフェインの除去率が通知法および改良法よりも高く、質量分析計を汚染しにくい分析用試料を調製可能である。
<実験例C>
 粉末状の炭素材含有シリカゲルI~VIのそれぞれ500mgを個別に試験管に入れ、各試験管にカフェイン10μg、6種類の農薬(ブプロフェジン、フェナミホス、ビンクロゾリン、フサライド、シマジンおよびヘキサジノン)をそれぞれ1μg含む1mLのアセトニトリル溶液およびアセトン1質量部に対してヘキサン3質量部を混合した混合溶媒9mLを加え、手振りにて1分間振盪した。そして、試験管を遠心分離して上澄み液を分取し、これをGC-MSにて分析することで、上澄み液におけるカフェインの除去率と各農薬の回収率とを調べた。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000006
 表5によると、炭素材含有シリカゲルは、使用する炭素材の比表面積が大きいと、カフェイン除去率が高くなるのに対して一部の農薬の回収率が低くなる傾向が認められ、使用する炭素材の比表面積が小さいと、カフェイン除去率が低くなるのに対して農薬の回収率が高くなる傾向が認められる。
<実験例D>
 炭素材含有シリカゲルI、Ia、Ib、Ic、Idのそれぞれ500mgを個別に試験管に入れ、各試験管にカフェイン10μg、炭素材に対して強い吸着力を示す農薬の一種であるフラサイドを1μg含む1mLのアセトニトリル溶液およびアセトン1質量部に対してヘキサン3質量部を混合した混合溶媒9mLを加え、手振りにて1分間振盪した。そして、試験管を遠心分離して上澄み液を分取し、これをGC-MSにて分析することで、上澄み液におけるカフェインの除去率とフラサイドの回収率とを調べた。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000007
<実験例E>
 試験管に入れた粉末状の炭素材含有シリカゲルIの500mgに対し、食品中の夾雑物に見立てた9種類の夾雑化合物(実験例Aで用いたものと同じもの)をそれぞれ10μg含む1mLのアセトニトリル溶液または35種類の農薬(実験例Aで用いたものと同じもの)をそれぞれ0.2μg含む1mLのアセトニトリル溶液、および、表7に示す溶媒9mLを加え、手振りにて1分間振盪した。そして、試験管を遠心分離して上澄み液を分取し、これをGC-MSにて分析することで、上澄み液における各夾雑化合物の除去率と各農薬の回収率とを調べた。また、炭素材含有シリカゲルIをイオン交換基修飾炭素材含有シリカゲルに変更し、同様に操作して各夾雑化合物の除去率と各農薬の回収率とを調べた。結果を表7(35種類の農薬を加えた場合の農薬回収率の結果)並びに図4(炭素材含有シリカゲルIを用い、9種類の夾雑化合物を加えた場合における各夾雑化合物の除去率の結果)および図5(イオン交換基修飾炭素材含有シリカゲルを用い、9種類の夾雑化合物を加えた場合における各夾雑化合物の除去率の結果)に示す。
Figure JPOXMLDOC01-appb-T000008
<実験例F>
 粉末状の炭素材含有シリカゲルIbの500mgを試験管に入れ、これにカフェイン10μg、6種類の農薬(実験例Cで用いたものと同じ)をそれぞれ1μg含む1mLのアセトニトリル溶液、表8に示すアセトンとヘキサンとの混合溶媒9mLを加え、手振りにて1分間振盪した。そして、試験管を遠心分離して上澄み液を分取し、これをGC-MSにて分析することで、上澄み液におけるカフェインの除去率と各農薬の回収率とを調べた。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000009
<実験例G>
 イオン交換基修飾炭素材含有シリカゲル200mgを試験管に入れ、これに6種類の農薬(実験例Cで用いたものと同じもの)をそれぞれ1μg含む1mLのアセトニトリル溶液および食品中の夾雑物に見立てた9種類の夾雑化合物(実験例Aで用いたものと同じもの)をそれぞれ10μg含む1mLのアセトニトリル溶液、並びに、表9に示すトルエンとアセトニトリルとの混合溶媒9mLを加え、手振りにて1分間振盪した。そして、試験管を遠心分離して上澄み液を分取し、これをGC-MSにて分析することで、上澄み液における夾雑化合物の除去率と各農薬の回収率とを調べた。結果をそれぞれ図6および表9に示す。
Figure JPOXMLDOC01-appb-T000010

Claims (18)

  1.  質量分析計を用いて食品の残留農薬を一斉分析するための試料の調製方法であって、
     有機系の水溶性抽出溶媒を用いて前記食品から前記残留農薬を抽出し、抽出液を得る工程と、
     粉末状イオン交換基修飾炭素材含有シリカゲルを含む処理剤、前記抽出液および前記残留農薬を溶解可能な有機系の精製溶媒の混合物を得る工程と、
     前記混合物から液分の一部を分取する工程と、
    を含み、
     前記粉末状イオン交換基修飾炭素材含有シリカゲルのイオン交換基が陰イオン交換能を有するアミン系官能基である、
    残留農薬の分析用試料調製方法。
  2.  前記アミン系官能基が3-(2-アミノエチルアミノ)プロピル基または3-アミノプロピル基である、請求項1に記載の残留農薬の分析用試料調製方法。
  3.  前記粉末状イオン交換基修飾炭素材含有シリカゲルは、炭素材を添加したケイ酸ナトリウム水溶液に塩酸を加えてゲル化させる工程と、ゲル化した反応系のpHが2未満になるまでさらに塩酸を加える工程とを含む方法により調製された炭素材含有シリカゲルを陰イオン交換能を有するアミン系官能基を備えたシランカップリング剤によりさらに処理する工程を含む方法により調製されるものである、請求項1に記載の残留農薬の分析用試料調製方法。
  4.  前記粉末状イオン交換基修飾炭素材含有シリカゲルは、比表面積が700~1,700m/gの第1炭素材を含有し、かつ、比表面積が100~300m/gであってその1gを5mLの精製水に添加したときに前記精製水のpHをアルカリ性領域へ変動させるものである、請求項1に記載の残留農薬の分析用試料調製方法。
  5.  前記粉末状イオン交換基修飾炭素材含有シリカゲルは第1炭素材の含有割合が5~50質量%である、請求項4に記載の残留農薬の分析用試料調製方法。
  6.  前記処理剤が粉末状炭素材含有シリカゲルをさらに含む、請求項1に記載の残留農薬の分析用試料調製方法。
  7.  前記粉末状炭素材含有シリカゲルは、炭素材を添加したケイ酸ナトリウム水溶液に塩酸を加えてゲル化させる工程と、ゲル化した反応系のpHが2未満になるまでさらに塩酸を加える工程とを含む方法により調製されるものである、請求項6に記載の残留農薬の分析用試料調製方法。
  8.  前記粉末状炭素材含有シリカゲルは、比表面積が700~1,700m/gの第2炭素材を含有し、かつ、比表面積が700~900m/gであってその1gを5mLの精製水に添加したときに前記精製水のpHを酸性領域へ変動させるものである、請求項6に記載の残留農薬の分析用試料調製方法。
  9.  前記粉末状炭素材含有シリカゲルは第2炭素材の含有割合が0.5~10質量%である、請求項8に記載の残留農薬の分析用試料調製方法。
  10.  前記食品がカフェイン含有食品以外の食品のとき、前記水溶性抽出溶媒としてアセトニトリルを用い、かつ、前記精製溶媒としてトルエンとアセトニトリルとの混合溶媒またはアセトニトリルを用いる、請求項1から5のいずれかに記載の残留農薬の分析用試料調製方法。
  11.  前記食品がカフェイン含有食品のとき、前記水溶性抽出溶媒としてアセトニトリルを用い、かつ、前記精製溶媒としてアセトンとヘキサンとの混合溶媒を用いる、請求項6から9のいずれかに記載の残留農薬の分析用試料調製方法。
  12.  食品から抽出した残留農薬を含む有機系の水溶性溶媒を精製するための処理剤であって、
     粉末状イオン交換基修飾炭素材含有シリカゲルを含み、
     前記粉末状イオン交換基修飾炭素材含有シリカゲルのイオン交換基が陰イオン交換能を有するアミン系官能基である、
    残留農薬含有有機溶媒の精製処理剤。
  13.  前記アミン系官能基が3-(2-アミノエチルアミノ)プロピル基または3-アミノプロピル基である、請求項12に記載の残留農薬含有有機溶媒の精製処理剤。
  14.  前記粉末状イオン交換基修飾炭素材含有シリカゲルは、比表面積が700~1,700m/gの第1炭素材を含有し、かつ、比表面積が100~300m/gであってその1gを5mLの精製水に添加したときに前記精製水のpHをアルカリ性領域へ変動させるものである、請求項12に記載の残留農薬含有有機溶媒の精製処理剤。
  15.  前記粉末状イオン交換基修飾炭素材含有シリカゲルは第1炭素材の含有割合が5~50質量%である、請求項14に記載の残留農薬含有有機溶媒の精製処理剤。
  16.  粉末状炭素材含有シリカゲルをさらに含む、請求項12から15のいずれかに記載の残留農薬含有有機溶媒の精製処理剤。
  17.  前記粉末状炭素材含有シリカゲルは、比表面積が700~1,700m/gの第2炭素材を含有し、かつ、比表面積が700~900m/gであってその1gを5mLの精製水に添加したときに前記精製水のpHを酸性領域へ変動させるものである、請求項16に記載の残留農薬含有有機溶媒の精製処理剤。
  18.  前記粉末状炭素材含有シリカゲルは第2炭素材の含有割合が0.5~10質量%である、請求項17に記載の残留農薬含有有機溶媒の精製処理剤。
PCT/JP2023/018550 2022-09-12 2023-05-18 残留農薬の分析用試料調製方法 WO2024057616A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022144699A JP2024039938A (ja) 2022-09-12 2022-09-12 残留農薬の分析用試料調製方法
JP2022-144699 2022-09-12

Publications (1)

Publication Number Publication Date
WO2024057616A1 true WO2024057616A1 (ja) 2024-03-21

Family

ID=90274473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018550 WO2024057616A1 (ja) 2022-09-12 2023-05-18 残留農薬の分析用試料調製方法

Country Status (2)

Country Link
JP (1) JP2024039938A (ja)
WO (1) WO2024057616A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7508682B1 (ja) 2023-08-16 2024-07-01 アグリカルチュラル ケミカルズ リサーチ インスティテュート,ミニストリー オブ アグリカルチャー 農産物に適用する残留農薬抽出溶液及び残留農薬抽出溶液を用いた農産物試料原液の迅速抽出方法及び農産物残留農薬検査方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230577A (ja) * 2009-03-27 2010-10-14 Shimadzu Corp 農産物の残留農薬分析用試料の調整方法ならび農産物の残留農薬分析方法
CN103111091A (zh) * 2012-03-31 2013-05-22 天津博纳艾杰尔科技有限公司 茶叶固相萃取柱及检测茶叶农药残留物的样品前处理方法
JP2017003527A (ja) * 2015-06-15 2017-01-05 富士シリシア化学株式会社 親水性相互作用クロマトグラフィー用充填剤、及び親水性化合物の分離方法
CN115015433A (zh) * 2022-06-29 2022-09-06 江南大学 一种自动化检测茶叶中农药残留的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230577A (ja) * 2009-03-27 2010-10-14 Shimadzu Corp 農産物の残留農薬分析用試料の調整方法ならび農産物の残留農薬分析方法
CN103111091A (zh) * 2012-03-31 2013-05-22 天津博纳艾杰尔科技有限公司 茶叶固相萃取柱及检测茶叶农药残留物的样品前处理方法
JP2017003527A (ja) * 2015-06-15 2017-01-05 富士シリシア化学株式会社 親水性相互作用クロマトグラフィー用充填剤、及び親水性化合物の分離方法
CN115015433A (zh) * 2022-06-29 2022-09-06 江南大学 一种自动化检测茶叶中农药残留的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IWAYA, AMANE: "Consideration of purification method for simultaneous analysis of pesticide residues in tea", ANNUAL REPORT OF KAGOSHIMA PREFECTURAL INSTITUTE FOR ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, KAGOSHIMA, JP, no. 11, 1 January 2010 (2010-01-01), Kagoshima, JP, pages 102 - 108, XP009553606, ISSN: 1346-2393 *
UEDA YUKO, HONDA KATSUHISA: "Development of Rapid Cleanup Method Using New Cleanup Agents for Analysis of Pesticide Residues in Tea", JOURNAL OF THE FOOD HYGIENIC SOCIETY OF JAPAN, vol. 58, no. 4, 1 August 2017 (2017-08-01), pages 188 - 194, XP093146240, DOI: 10.3358/shokueishi.58.188 *

Also Published As

Publication number Publication date
JP2024039938A (ja) 2024-03-25

Similar Documents

Publication Publication Date Title
Hoff et al. Combining extraction and purification steps in sample preparation for environmental matrices: A review of matrix solid phase dispersion (MSPD) and pressurized liquid extraction (PLE) applications
Santana-Mayor et al. Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis
WO2024057616A1 (ja) 残留農薬の分析用試料調製方法
Russo et al. Extraction and GC-MS analysis of phthalate esters in food matrices: a review
Tadeo et al. Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples
Korn et al. Separation and preconcentration procedures for the determination of lead using spectrometric techniques: a review
JP6866256B2 (ja) 残留農薬の分析用試料の調製方法
JP4275633B2 (ja) 残留農薬の抽出方法及び抽出キット
CN102980961B (zh) 鳗鱼中孔雀石绿、结晶紫及其残留物检测的前处理方法
JP5140304B2 (ja) フコキサンチンとフコイダンの同時製造方法
KR102152310B1 (ko) 사료 내 잔류농약, 동물용 의약품 및 곰팡이 독소의 동시분석법
Cavaliere et al. Aflatoxin M1 determination in cheese by liquid chromatography–tandem mass spectrometry
Vinhal et al. Speciation of inorganic antimony (III & V) employing polyurethane foam loaded with bromopyrogallol red
US20210053902A1 (en) Water-based extraction and purification processes for cannabinoid acids
CN102596348A (zh) 供固相提取应用的坚实等份的多残留方法用盐
WO2018043465A1 (ja) 残留農薬の分析用試料の調製方法
JP2006300907A (ja) 残留農薬の抽出方法及び抽出キット
JP2011045313A (ja) 残留農薬測定方法
WO2024057617A1 (ja) 残留農薬の分析用試料調製方法
JP2009092404A (ja) 香辛料中の残留農薬分析方法
CN108020626B (zh) 一种分析牛肉中残留抗生素的方法
US20230278010A1 (en) Columns and Methods of Use for Analytical Standards and Compounds
WO2019087278A1 (ja) ビサクロン抽出方法
JP6312767B2 (ja) ビサクロン抽出方法
JP7508682B1 (ja) 農産物に適用する残留農薬抽出溶液及び残留農薬抽出溶液を用いた農産物試料原液の迅速抽出方法及び農産物残留農薬検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864981

Country of ref document: EP

Kind code of ref document: A1