WO2024057432A1 - Semiconductor device and semiconductor device manufacturing method - Google Patents

Semiconductor device and semiconductor device manufacturing method Download PDF

Info

Publication number
WO2024057432A1
WO2024057432A1 PCT/JP2022/034364 JP2022034364W WO2024057432A1 WO 2024057432 A1 WO2024057432 A1 WO 2024057432A1 JP 2022034364 W JP2022034364 W JP 2022034364W WO 2024057432 A1 WO2024057432 A1 WO 2024057432A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat spreader
electrode plate
frame
semiconductor element
semiconductor device
Prior art date
Application number
PCT/JP2022/034364
Other languages
French (fr)
Japanese (ja)
Inventor
亮弥 白▲濱▼
誠一郎 猪ノ口
省二 斉藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/034364 priority Critical patent/WO2024057432A1/en
Publication of WO2024057432A1 publication Critical patent/WO2024057432A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present disclosure relates to a semiconductor device, and particularly to a semiconductor device with a direct lead bonding structure in which a semiconductor element and an electrode are directly bonded.
  • the direct lead bonding (DLB) structure in which semiconductor elements and electrodes are directly bonded is used with transfer mold resin.
  • a sealed semiconductor device module is used.
  • Patent Document 1 discloses a DLB structure in which a semiconductor element is bonded to a die pad of a lead frame using a bonding member such as solder, and then an upper surface electrode of the semiconductor element and a DLB frame are bonded by a bonding member. .
  • the present disclosure has been made to solve the above problems, and aims to provide a semiconductor device with reduced manufacturing costs by reducing the number of parts and manufacturing steps.
  • a semiconductor device includes a first heat spreader on which a first semiconductor element is mounted, a first electrode plate connected to the first heat spreader through an inclined bent part, and a second semiconductor element mounted thereon. a second heat spreader, and a second electrode plate provided with a step on the second heat spreader, the first electrode plate being located at a higher position than the first heat spreader.
  • the second electrode plate is placed at a higher position than the second heat spreader, the first electrode plate and the second electrode plate are placed at the same height, and the second electrode plate is placed at a higher position than the second heat spreader; and the second heat spreader are arranged at the same height, the second electrode plate is arranged above the first heat spreader, and the first electrode plate is arranged above the second heat spreader.
  • the first semiconductor element is bonded to the first heat spreader and the second electrode plate, and the second semiconductor element is bonded to the second heat spreader and the first electrode plate. be done.
  • the frame is provided such that the first heat spreader and the first electrode plate have a step difference
  • the frame is provided such that the second heat spreader and the second heat spreader have a step difference.
  • FIG. 1 is a plan view showing the configuration of a semiconductor device according to a first embodiment;
  • FIG. 1 is a plan view showing a frame for manufacturing the semiconductor device of Embodiment 1.
  • FIG. 1 is a plan view showing a frame for manufacturing the semiconductor device of Embodiment 1.
  • FIG. 2 is a plan view showing a state in which two frames for manufacturing the semiconductor device of the first embodiment are combined.
  • 1 is a cross-sectional view of a frame for manufacturing the semiconductor device of Embodiment 1.
  • FIG. 1 is a cross-sectional view of a frame for manufacturing the semiconductor device of Embodiment 1.
  • FIG. 3 is a plan view showing a state in the middle of overlapping two frames for manufacturing the semiconductor device of the first embodiment.
  • FIG. 7 is a plan view showing a state in which two frames are combined for manufacturing a semiconductor device according to a second embodiment.
  • FIG. 3 is a schematic cross-sectional view of a semiconductor device according to a second embodiment.
  • FIG. FIG. 12 is a plan view showing a state in the middle of superimposing two frames for manufacturing a semiconductor device according to a third embodiment.
  • FIG. 7 is a plan view showing a state in which two frames are combined for manufacturing a semiconductor device according to a third embodiment.
  • 7 is a plan view showing a frame for manufacturing a semiconductor device according to a fourth embodiment.
  • FIG. 7 is a plan view showing a frame for manufacturing a semiconductor device according to a fourth embodiment.
  • FIG. 7 is a plan view showing a state in which two frames are combined for manufacturing a semiconductor device according to a fourth embodiment.
  • FIG. 7 is a cross-sectional view of a frame for manufacturing a semiconductor device according to a fourth embodiment.
  • FIG. 7 is a cross-sectional view of a frame for manufacturing a semiconductor device according to a fourth embodiment.
  • 7 is a cross-sectional view of a frame for manufacturing a semiconductor device according to a fifth embodiment.
  • FIG. 7 is a cross-sectional view of a frame for manufacturing a semiconductor device according to a fifth embodiment.
  • FIG. 12 is a flowchart illustrating a method for manufacturing a semiconductor device according to a sixth embodiment.
  • FIG. 2 is a plan view illustrating a manufacturing process of a semiconductor device.
  • FIG. 1 is a plan view showing a manufacturing process of a semiconductor device.
  • FIG. 2 is a plan view illustrating a manufacturing process of a semiconductor device.
  • FIG. 2 is a plan view illustrating a manufacturing process of a semiconductor device.
  • FIG. 2 is a plan view illustrating a manufacturing process of a semiconductor device.
  • FIG. 2 is a plan view illustrating a manufacturing process of a semiconductor device.
  • FIG. 12 is a plan view showing a state in the middle of overlapping two frames for manufacturing a semiconductor device according to a seventh embodiment.
  • FIG. 9 is a plan view showing a state in which two frames for manufacturing a semiconductor device according to a seventh embodiment are combined.
  • FIG. 12 is a plan view showing a state in the middle of overlapping two frames in the method for manufacturing a semiconductor device according to the eighth embodiment.
  • FIG. 12 is a plan view showing a state in which two frames are combined in a method for manufacturing a semiconductor device according to an eighth embodiment.
  • FIG. 12 is a plan view showing a state in the middle of overlapping two frames in a method for manufacturing a semiconductor device according to a ninth embodiment.
  • FIG. 12 is a plan view showing a state in which two frames are combined in a method for manufacturing a semiconductor device according to an eighth embodiment.
  • 10 is a cross-sectional view illustrating a method for manufacturing a semiconductor device according to a tenth embodiment.
  • FIG. 10 is a plan view illustrating a method for manufacturing a semiconductor device according to a tenth embodiment.
  • FIG. 1 is a plan view showing the configuration of a single-phase power inverter 100, which is a semiconductor device according to a first embodiment of the present disclosure.
  • the single-phase inverter 100 shown in FIG. 1 is resin-sealed with a molded resin, but for convenience, the molded resin on the upper surface is omitted and only the molded resin RG on the lower surface is shown. Further, for convenience, only the power semiconductor element 1a (first semiconductor element) and the power semiconductor element 1b (second semiconductor element) are shown, but if these are IGBTs or MOSFETs connected in series, then a single-phase It can be thought of as the basic circuit of an inverter.
  • an electrode plate 4a1 is arranged parallel to a heat spreader 4a2 (first heat spreader) on which power semiconductor elements 1a such as IGBTs, MOSFETs, and high voltage diodes are mounted. (first electrode plate) are connected and have the same electrical potential.
  • the heat spreader 4a2 and the electrode plate 4a1 are connected at a bent portion BP1.
  • the bent portion BP1 has a slope that is higher on the electrode plate 4a1 side and lower on the heat spreader 4a2 side. Therefore, a step exists between the heat spreader 4a2 and the electrode plate 4a1.
  • bent portion BP1 is provided along one entire long side of the heat spreader 4a2, and the electrode plate 4a1 and the heat spreader 4a2 are firmly engaged, and the shape of the electrode plate 4a1 is It can be stabilized.
  • a first main electrode provided on the lower surface side is joined to the upper surface of the heat spreader 4a2 with a brazing material (not shown) such as solder, and a second main electrode provided on the upper surface side is bonded to the upper surface of the heat spreader 4a2.
  • a brazing material such as solder
  • a brazing material such as solder
  • a heat spreader 4b2 on which the power semiconductor element 1b is mounted is arranged below the electrode plate 4a1.
  • a first main electrode provided on the lower surface side is joined to the upper surface of the heat spreader 4b2 with a brazing material (not shown) such as solder
  • a second main electrode provided on the upper surface side is bonded to the upper surface of the heat spreader 4b2.
  • the heat spreader 4a2 and the heat spreader 4b2 are arranged in parallel in a plan view, and there is no step between them.
  • the electrode plate 4b1 and the heat spreader 4b2 are arranged in parallel in a plan view, but the electrode plate 4b1 is located at a higher position and the heat spreader 4b2 is located at a lower position, and there is a step between them. Existing.
  • the electrode plate 4b1 has a rectangular shape in plan view, and a main terminal plate T2 is joined to one end thereof, and the main terminal plate T2 protrudes to the outside of the molded resin RG. Note that one end to which the main terminal plate T2 is joined is opposite to the end on which the power semiconductor element 1a of the heat spreader 4a2 is mounted. Further, a bent portion BP2 is provided at one end of the electrode plate 4b1. The bent portion BP2 has an inclination that is higher on the electrode plate 4b1 side and lower on the main terminal plate T2 side. As a result, a step exists between the electrode plate 4b1 and the heat spreader 4b2.
  • the heat spreader 4a2 has a rectangular shape in plan view, the power semiconductor element 1a is mounted on one end, and is connected to the relay terminal RT1 via the wire WR, and the relay terminal RT1 protrudes to the outside of the molded resin RG. ing.
  • the heat spreader 4b2 has a rectangular shape in plan view, and a main terminal plate T3 is joined to one end thereof, and the main terminal plate T3 protrudes to the outside of the molded resin RG. Note that one end to which the main terminal plate T3 is joined is on the same side as the end on which the power semiconductor element 1b is mounted. Power semiconductor element 1b is connected to relay terminal RT2 via wire WR, and relay terminal RT2 protrudes to the outside of mold resin RG.
  • the electrode plate 4a1 has a rectangular shape in plan view, and a main terminal plate T1 is joined to one end thereof, and the main terminal plate T1 protrudes to the outside of the molded resin RG. Note that one end to which the main terminal plate T1 is joined is opposite to the end on which the power semiconductor element 1b of the heat spreader 4b2 is mounted.
  • the single-phase inverter 100 shown in FIG. 1 has a step between the heat spreader 4a2 and the electrode plate 4a1, a step between the electrode plate 4b1 and the heat spreader 4b2, and
  • the power semiconductor element 1a between the heat spreader 4a2 and the electrode plate 4b1 and the power semiconductor element 1b can be connected in series. Can be connected.
  • 2 and 3 are plan views showing a frame 4b and a frame 4a, respectively, for manufacturing the single-phase inverter 100
  • FIG. 4 is a plan view showing a frame 4a (first frame) and a frame 4b (second frame).
  • FIG. 3 is a plan view showing a state in which the
  • the frame 4b includes a frame body 4b0 that defines the outline of the frame 4b, an electrode plate 4b1, and a heat spreader 4b2.
  • the frame body 4b0 is a frame having a rectangular shape in plan view, and an electrode plate 4b1 and a heat spreader 4b2 are provided to extend inward from one side of the frame body 4b0.
  • the electrode plate 4b1 and the heat spreader 4b2 are arranged parallel to each other with a gap between them in plan view, and a bent portion BP2 is provided at one end of the electrode plate 4b1.
  • the bent portion BP2 has an inclination that is high on one end side and low on the frame main body 4b0 side. As a result, a step exists between the electrode plate 4b1 and the heat spreader 4b2.
  • the heat spreader 4b2 is equipped with the power semiconductor element 1b and the power semiconductor element 11b, and the end portion on the side where the power semiconductor element 1b is mounted has a partially narrow width and is integrated with the frame body 4b0. .
  • the frame 4a includes a frame body 4a0 that defines the outline of the frame 4a, an electrode plate 4a1, and a heat spreader 4a2.
  • the frame body 4a0 is a frame having a rectangular shape in plan view, and an electrode plate 4a1 is provided so as to extend inward from one side of the frame body 4a0.
  • the electrode plate 4a1 is connected to a heat spreader 4a2, which is arranged in parallel in a plan view, at a bent portion BP1.
  • the bent portion BP1 has a slope that is higher on the electrode plate 4a1 side and lower on the heat spreader 4a2 side. Therefore, a step exists between the heat spreader 4a2 and the electrode plate 4a1.
  • the heat spreader 4a2 is equipped with a power semiconductor element 1a and a power semiconductor element 11a. Note that the frames 4a and 4b can be formed of aluminum (Al) or copper (Cu).
  • one side of the frame main body 4b0 on which the electrode plate 4b1 and the heat spreader 4b2 of the frame 4b extend and one side on which the electrode plate 4a1 of the frame 4a extends have an opposing positional relationship.
  • the frame 4b and the frame 4a are arranged so as to overlap each other, a configuration as shown in FIG. 4 is obtained.
  • FIG. 4 shows the configuration of a region sealed with mold resin RG of the single-phase inverter 100 shown in FIG. 1, in which power semiconductor elements 1a and 11a are arranged between a heat spreader 4a2 and an electrode plate 4b1, Power semiconductor elements 1b and 11b are arranged between heat spreader 4b2 and electrode plate 4a1.
  • FIG. 5 A cross-sectional view taken along line AA in FIG. 4 in the direction of the arrow is shown in FIG. 5, and a cross-sectional view taken along line BB in the direction of the arrow is shown in FIG.
  • the power semiconductor elements 1a and 11a are joined to the heat spreader 4a2 by a brazing material 2a, and the upper electrode plate 4b1 is joined by a brazing material (first brazing material).
  • the power semiconductor elements 1b and 11b are bonded to a heat spreader 4b2 by a brazing material 2b, and the upper electrode plate 4a1 is bonded to a brazing material 3b (second brazing material). Ru.
  • solder can be used as the brazing materials 2a, 3a, 2b, and 3b.
  • the frame 4a is provided with the electrode plate 4a1 and the heat spreader 4a2
  • the frame 4b is provided with the electrode plate 4b1 and the heat spreader 4b2
  • the brazing materials 3a and 3b are joined with the frames 4a and 4b stacked on top of each other, the number of manufacturing steps can be reduced.
  • the frame shape can be freely designed, the degree of freedom in inductance design increases. Moreover, heat dissipation can also be improved.
  • the power semiconductor element 1a is an IGBT
  • the power semiconductor element 11a is a high voltage diode
  • the power semiconductor element 11a is connected in antiparallel to the power semiconductor element 1a. shall be taken as a thing.
  • the power semiconductor element 1b is an IGBT
  • the power semiconductor element 11b is a high voltage diode
  • the power semiconductor element 11b is connected in antiparallel to the power semiconductor element 1b. shall be.
  • the power semiconductor elements 11b and 11a can configure an inverter that operates as a free wheeling diode.
  • FIG. 7 is a plan view showing a state in which frames 4b and 4a are overlapped
  • FIG. 8 is a plan view showing a state in which frames 4a and 4b are combined. Main parts of a phase inverter 200 are shown.
  • the frame 4b has the same shape as the first embodiment shown in FIG. Rather than being provided along the electrode plate 4a1, it is provided so as to connect a part of one long side with a part of one long side of the electrode plate 4a1. Therefore, it can be said that the bent portion BP1 is provided so as to form a slit between the electrode plate four a1 and the heat spreader four a2.
  • FIG. 9 is a schematic cross-sectional view of the single-phase inverter 200 configured by combining the frame 4a and the frame 4b shown in FIG. Corresponds to a directional cross-sectional view.
  • cooling fins 6 are attached to the single-phase inverter 200 resin-sealed with mold resin RG, but by forming slits between the electrode plate 4a1 and the heat spreader 4a2, the electrode plate 4b1 and A through hole TH penetrating the mold resin RG in the thickness direction can be provided between the electrode plate four a1 and between the heat spreader four a2 and the heat spreader four b2.
  • the single-phase inverter 200 can be attached to the cooling fins 6 by passing the screws 7 through the through holes TH. In this way, in the single-phase inverter 200, the threading position of the screw 7 can be secured.
  • FIG. 10 is a plan view showing a state in which frames 4b and 4a are being overlapped
  • FIG. 11 is a plan view showing a state in which frames 4a and 4b are combined. Main parts of phase inverter 300 are shown.
  • the frame 4b has the same shape as the first embodiment shown in FIG. Rather than being provided along the electrode plate 4a1, it is provided so as to connect two portions separated from each other on one long side and two portions separated from each other on one long side of the electrode plate 4a1. Therefore, it can be said that the bent portion BP1 is provided so as to form an opening between the electrode plate four a1 and the heat spreader four a2.
  • the mode of use is the screw insertion position when attaching the cooling fin to the single-phase inverter 300. Moreover, compared to the case where a slit is formed between the electrode plate 4a1 and the heat spreader 4a2, the engagement between the electrode plate 4a1 and the heat spreader 4a2 becomes stronger, and the shape of the electrode plate 4a1 can be stabilized.
  • FIGS. 12 and 13 are plan views showing a frame 4b and a frame 4a, respectively, for manufacturing the single-phase inverter 400 of the fourth embodiment, and FIG. 14 shows a state in which the frame 4a and the frame 4b are combined.
  • 3 is a plan view showing main parts of a single-phase inverter 400 according to a fourth embodiment.
  • FIG. 12 to 16 the same components as those in FIGS. 2 to 6 of the first embodiment are denoted by the same reference numerals, and redundant explanations will be omitted.
  • the frame 4b includes a frame main body 4b0 that defines the outline of the frame 4b, an electrode plate 4b1, a heat spreader 4b2, and a relay terminal 4b3 (second relay terminal).
  • the frame body 4b0 is a frame having a rectangular shape in plan view, and an electrode plate 4b1, a heat spreader 4b2, and a plurality of relay terminals 4b3 are provided so as to extend inward from one side thereof.
  • a terminal hole 4bh is provided at one end of the electrode plate 4b1 at a position closer to the frame body 4b0 than the bent portion BP2.
  • the end of the heat spreader 4b2 on the side where the power semiconductor element 1b is mounted has a partially narrow width and is integrated with the frame body 4b0, and a terminal hole 4bh is provided at a position on the frame body 4b0 side.
  • the portion provided with the terminal hole 4bh functions as a so-called main terminal of the single-phase inverter 400, and the terminal hole 4bh functions as a mounting hole for connecting wiring with the outside.
  • the plurality of relay terminals 4b3 extend to the vicinity of the power semiconductor element 1b on the heat spreader 4b2 in plan view.
  • the frame 4a includes a frame main body 4a0 that defines the outline of the frame 4a, an electrode plate 4a1, a heat spreader 4a2, and a plurality of relay terminals 4a3 (first relay terminals).
  • the frame body 4a0 is a frame having a rectangular shape in plan view, and an electrode plate 4a1 and a plurality of relay terminals 4a3 are provided to extend inward from one side of the frame body 4a0.
  • a terminal hole 4ah is provided at one end of the electrode plate 4a1 at a position on the frame body 4a0 side.
  • the portion provided with the terminal hole 4ah functions as a so-called main terminal of the single-phase inverter 400, and the terminal hole 4ah functions as a mounting hole for connecting wiring to the outside.
  • the plurality of relay terminals 4b3 extend to the vicinity of the power semiconductor element 1a on the heat spreader 4a2 in plan view.
  • the plurality of relay terminals 4a3 function as terminals for wire connection with the control terminals on the upper surface of the power semiconductor element 1a.
  • the extending sides have a positional relationship that opposes each other, and when the frame 4b and the frame 4a are arranged so as to overlap, a configuration as shown in FIG. 14 is obtained.
  • FIG. 14 shows the configuration of a region sealed with mold resin RG of the single-phase inverter 100 shown in FIG. 1, in which power semiconductor elements 1a and 11a are arranged between a heat spreader 4a2 and an electrode plate 4b1, Power semiconductor elements 1b and 11b are arranged between heat spreader 4b2 and electrode plate 4a1.
  • FIG. 15 shows a sectional view taken along the line AA in FIG. 14 in the direction of the arrow
  • FIG. 16 shows a sectional view taken along the line BB in the direction of the arrow.
  • the power semiconductor elements 1a and 11a are joined to the heat spreader 4a2 by a brazing material 2a, and the upper electrode plate 4b1 is joined by a brazing material 3a.
  • the power semiconductor elements 1b and 11b are bonded to the heat spreader 4b2 by a brazing material 2b, and the upper electrode plate 4a1 is bonded to the brazing material 3b.
  • the frame 4a is provided with a plurality of relay terminals 4a3 and a portion that functions as a main terminal
  • the frame 4b is provided with a plurality of relay terminals 4b3 and a portion that functions as a main terminal.
  • the number of parts required for assembling inverter 400 can be reduced, and productivity can be improved.
  • the frame 4b has a configuration in which the plurality of relay terminals 4b3 extend to the vicinity of the power semiconductor element 1b on the heat spreader 4b2 in plan view.
  • the power semiconductor element 1b near the terminal 4b3 as an IGBT or MOSFET
  • the plurality of relay terminals 4b3 as terminals for wire bonding with the control terminal of the IGBT or MOSFET
  • wire bonding becomes easy and productivity is increased. can be improved.
  • the power semiconductor element 11b is a high voltage diode.
  • the frame 4a has a configuration in which the plurality of relay terminals 4a3 extend to the vicinity of the power semiconductor element 1a on the heat spreader 4a2 in plan view;
  • the power semiconductor element 1a near the relay terminal 4a3 as an IGBT or MOSFET
  • the plurality of relay terminals 4a3 as terminals for wire bonding with the control terminal of the IGBT or MOSFET
  • wire bonding becomes easy and productivity is increased. can be improved.
  • the power semiconductor element 11b is a high voltage diode.
  • FIG. 17 is a cross-sectional view showing the cross-sectional configuration of a heat spreader 4a2 constituting a single-phase inverter 500 according to the fifth embodiment. Grooves for positioning the power semiconductor elements 1a and 11a are formed on the mounting surface of the semiconductor elements of the heat spreader 4a2. A GR (first groove) is provided.
  • the groove GR is formed to have a depth and size that prevents the power semiconductor elements 1a and 11a placed on the brazing material 2a from shifting from above the brazing material 2a.
  • the groove GR is provided in a direction perpendicular to the arrangement direction of the power semiconductor elements 1a and 11a, and has a depth capable of accommodating the brazing filler metal 2a and also a portion of the power semiconductor elements 1a and 11a.
  • the positioning accuracy when arranging the power semiconductor elements 1a and 11a on the brazing material 2a is improved, and it is possible to prevent the power semiconductor elements 1a and 11a from shifting from the brazing material 2a. can.
  • FIG. 17 shows an example in which the heat spreader 4a2 is provided with the groove GR
  • the heat spreader 4b2 is also provided with the groove GR (second groove) to improve the positioning accuracy of the power semiconductor elements 1b and 11b and to improve the positioning accuracy of the power semiconductor elements. 1b and 11b can be prevented from shifting.
  • FIG. 18 is a cross-sectional view showing a configuration in which a protrusion PJ is provided in place of the groove GR on the mounting surface of the semiconductor element of the heat spreader 4a2.
  • the protrusion PJ is formed at a height that prevents the power semiconductor elements 1a and 11a placed on the brazing material 2a from shifting from above the brazing material 2a.
  • the protrusion PJ is provided on the outside of each of the power semiconductor elements 1a and 11a in a plan view, and has a height that exceeds the thickness of the brazing filler metal 2a and extends to a part of the thickness of the power semiconductor elements 1a and 11a.
  • FIG. 18 is a cross-sectional view showing a configuration in which a protrusion PJ is provided in place of the groove GR on the mounting surface of the semiconductor element of the heat spreader 4a2.
  • the protrusion PJ is formed at a height that prevents the power semiconductor elements 1a and 11a placed on the brazing material 2a from shifting from above
  • the protrusions PJ are provided at the front and rear of each of the power semiconductor elements 1a and 11a, but they can also be provided at the left and right sides of each of the power semiconductor elements 1a and 11a, and they can also be provided at the front and rear, left and right sides.
  • Providing the protrusion PJ improves the positioning accuracy when arranging the power semiconductor elements 1a and 11a on the brazing material 2a, and prevents the power semiconductor elements 1a and 11a from shifting from the brazing material 2a. Can be done.
  • FIG. 18 shows an example in which the heat spreader 4a2 is provided with the protrusion PJ
  • the heat spreader 4b2 is also provided with the protrusion PJ to improve the positioning accuracy of the power semiconductor elements 1b and 11b and to improve the positioning accuracy of the power semiconductor elements 1b and 11b. It can prevent slippage.
  • a frame is molded in step S1 shown in FIG. This is a step of preparing frames 4a and 4b, as shown in FIG. 20, and frames 4a and 4b are formed by punching and bending.
  • Frames 4a and 4b shown in FIG. 20 are in a state before power semiconductor elements are mounted on frame 4a shown in FIG. 3 and frame 4b shown in FIG. 2, respectively.
  • step S2 the power semiconductor element is bonded to the heat spreader using a brazing material.
  • power semiconductor elements 1a and 11a are bonded to a heat spreader 4a2 of a frame 4a via a brazing material 2a (not shown), and power semiconductor elements 1b and 11b are bonded to a heat spreader 4b2 of a frame 4b.
  • This is a process of joining through a brazing filler metal 2b (not shown), and is a process of melting the brazing filler metal.
  • the frames 4a and 4b shown in 21 are in the state of the frame 4a shown in FIG. 3 and the frame 4b shown in FIG.
  • a brazing material 3b is placed on the power semiconductor elements 1b and 11b for the next process.
  • step S3 the two frames are overlapped and the electrode plates are joined using the brazing material on the power semiconductor element.
  • this is done by overlapping frames 4a and 4b and joining the brazing material 3a (not shown) on the power semiconductor elements 1a and 11a of frame 4a to the electrode plate 4b1 of frame 4b.
  • This is a step of joining the brazing material 3b (not shown) on the power semiconductor elements 1b and 11b of the frame 4b and the electrode plate 4a1 of the frame 4a, and is a step of melting the brazing material.
  • the state in which the frames 4a and 4b shown in FIG. 22 are superimposed corresponds to the state shown in FIG. 4.
  • step S4 the main terminal board and the external frame provided with the relay terminals are joined. This is a process of joining the external frame OF to the frames 4a and 4b in which the power semiconductor element and the electrode plate have been joined, as shown in FIG. 23.
  • the external frame OF is joined to the superimposed frames 4a and 4b so as to be further superimposed, and includes a frame main body OF0 defining the outline of the external frame OF, main terminal plates T1, T2, and T3, and a relay. It is configured with terminals RT1 and RT2.
  • the frame body OF0 is a frame having a rectangular shape in plan view, and the main terminal plate T1 and the relay terminal RT1 are provided so as to extend inward from one side thereof.
  • the main terminal plate T1 is provided at a position to be joined to the end of the electrode plate 4a1, and the relay terminal RT1 is provided at a position facing the power semiconductor element 1a.
  • main terminal plates T2, T3 and the relay terminal RT2 are provided so as to extend inward from one side of the frame body OF0 opposite to the side on which the main terminal plate T1 and the relay terminal RT1 extend. There is.
  • the main terminal plate T2 is provided at a position where it is joined to the end of the electrode plate 4b1
  • the main terminal board T3 is provided at a position where it is joined to the end of the heat spreader 4b2, and the relay terminal RT2 is connected to the power semiconductor element 1b. It is located opposite to the
  • ultrasonic (US) bonding can be used to bond the external frame OF and the frames 4a and 4b. Furthermore, joining via a brazing material can also be used.
  • step S5 the relay terminal and the power semiconductor element are connected by wire bonding.
  • This is a step in which the relay terminal RT1 and the control terminal of the power semiconductor element 1a are connected by a wire WR, and the relay terminal RT2 and the control terminal of the power semiconductor element 1b are connected by a wire WR, as shown in FIG. .
  • FIG. 25 is a plan view showing a state where frames 4b and 4a are being overlapped
  • FIG. 26 is a plan view showing a state where frames 4a and 4b are combined. Main parts of a phase inverter 600 are shown.
  • the frame 4b has the same shape as the first embodiment shown in FIG. 2, but the frame 4a has a notch NP in which a part of the frame body 4a0 is cut out.
  • the notch NP is provided at a position where the end of the electrode plate 4b1 of the frame 4b engages with the frame body 4a0 when the frame 4a and the frame 4b are combined. Therefore, when the frame 4a and the frame 4b are overlapped and joined together, the end portions of the frame main body 4a0 and the electrode plate 4b1 do not overlap, which facilitates joining.
  • FIG. 27 is a plan view showing a state in which frames 4b and 4a are being overlapped
  • FIG. 28 is a plan view showing a state in which frames 4a and 4b are combined.
  • the frame main body 4b0 of the frame 4b has convex portions CV on two sides in the left and right direction parallel to the arrangement of the electrode plate 4b1 and the heat spreader 4b2.
  • the convex portions CV are provided at four corner portions of the frame main body 4b0, and protrude toward the side where the frame 4a is overlapped.
  • the frame main body 4a0 of the frame 4a has openings OP on two sides in the left-right direction parallel to the arrangement of the electrode plate 4a1 and the heat spreader 4a2.
  • the openings OP are provided at four corners of the frame main body 4a0, and as shown in FIG. 28, the convex portions CV are inserted into the openings OP when the frame 4a is stacked on the frame 4b. It is set in. Therefore, the positioning accuracy when overlapping the frames 4a and 4b is improved.
  • FIG. 29 is a plan view showing a state in which frames 4b and 4a are being overlapped
  • FIG. 30 is a plan view showing a state in which frames 4a and 4b are combined.
  • the frame main body 4b0 of the frame 4b has a plurality of dimples DP2 (second dimples) on two sides in the left-right direction parallel to the arrangement of the electrode plate 4b1 and the heat spreader 4b2.
  • the plurality of dimples DP2 are provided in one row along the extending direction of each side on the two sides in the left-right direction.
  • the frame main body 4a0 of the frame 4a also has a plurality of dimples DP1 (first dimples) on two sides in the left and right direction parallel to the arrangement of the electrode plate 4a1 and the heat spreader 4a2.
  • the plurality of dimples DP1 are provided in one row along the extending direction of each side on the two sides in the left-right direction.
  • the plurality of dimples DP1 and DP2 of the frames 4a and 4b are provided so as to be recessed in the same direction at the positions where they overlap with each other, as shown in FIG. 30, when the frame 4a is stacked on the frame 4b. Therefore, the positioning accuracy when overlapping the frames 4a and 4b is improved.
  • FIG. 31 is a sectional view illustrating a state in which frames 4a and 4b are overlapped and electrode plates are bonded using a brazing material on a power semiconductor element, and is a sectional view corresponding to FIG. 5 described in Embodiment 1.
  • This is a diagram illustrating an improvement in step S3 of the flowchart shown in FIG. 19 in the sixth embodiment.
  • the overlapping frames 4a and 4b are fixed by the fixing jig JG, and the step of melting the brazing material is carried out.
  • the fixing jig JG is a lower fixing jig JD arranged below the superimposed frames 4a and 4b, that is, on the heat spreader 4a2 side, and the lower fixing jig JD is arranged above the superimposed frames 4a and 4b, that is, on the electrode plate 4b1 side. It consists of an upper fixing jig JU.
  • the frames 4a and 4b are prevented from shifting when the brazing material is melted. At the same time, the positioning accuracy of the electrode plate is improved.
  • FIG. 31 shows a configuration in which the entire superimposed frames 4a and 4b are sandwiched between the fixing jigs JG, the structure is not limited to this, and a configuration in which only part of the frames is sandwiched is also possible.
  • FIG. 32 is a plan view showing a fixing jig JG that holds only part of the frame.
  • FIG. 32 shows a configuration in which the left and right frame bodies of the superimposed frames 4a and 4b are sandwiched between a lower fixing jig JD and an upper fixing jig JU.
  • the upper fixing jig JU is arranged only on the left and right frame bodies of the superimposed frames 4a and 4b.
  • the material of the fixing jig JG includes carbon, which can withstand the temperature during melting of the brazing filler metal and has little deformation.
  • the power semiconductor devices 1a, 1b, 11a and 11b are not limited to silicon semiconductor devices using silicon (Si), but include silicon carbide semiconductor devices using silicon carbide (SiC) and gallium nitride using gallium nitride (GaN). Wide bandgap semiconductor devices such as semiconductor devices can be used. Compared to silicon semiconductor devices, wide bandgap semiconductor devices can be made smaller, have superior voltage resistance, have a higher allowable current density, and have high heat resistance, so they can operate at high temperatures and are expected to be highly efficient. .
  • the present disclosure is applied to a single-phase inverter, but the present disclosure is not limited to this, and the present disclosure can also be applied to a three-phase inverter that combines three phases of a single-phase inverter. , it can also be applied to converters for power regeneration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

This disclosure relates to a semiconductor device comprising: a first heat spreader mounting a first semiconductor element; a first electrode plate coupled to the first heat spreader via a bent portion having an inclination; a second heat spreader mounting a second semiconductor element; and a second electrode plate provided so as to have a step with respect to the second heat spreader. The first electrode plate is arranged at a position higher than that of the first heat spreader. The second electrode plate is arranged at a position higher than that of the second heat spreader. The first and second electrode plates are arranged at the same height. The first and second heat spreaders are arranged at the same height. The second electrode plate is arranged above the first heat spreader. The first electrode plate is arranged above the second heat spreader. The first semiconductor element is joined to the first heat spreader and the second electrode plate. The second semiconductor element is joined to the second heat spreader and the first electrode plate.

Description

半導体装置、半導体装置の製造方法Semiconductor devices and semiconductor device manufacturing methods
 本開示は半導体装置に関し、特に半導体素子と電極を直接接合するダイレクトリードボンディング構造の半導体装置に関する。 The present disclosure relates to a semiconductor device, and particularly to a semiconductor device with a direct lead bonding structure in which a semiconductor element and an electrode are directly bonded.
 IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)および高耐圧ダイオードなどの電力用半導体装置では、半導体素子と電極を直接接合したダイレクトリードボンディング(DLB)構造を、トランスファーモールド樹脂で封止した半導体装置モジュールが採用されている。 In power semiconductor devices such as IGBTs (Insulated Gate Bipolar Transistors), MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), and high voltage diodes, the direct lead bonding (DLB) structure in which semiconductor elements and electrodes are directly bonded is used with transfer mold resin. A sealed semiconductor device module is used.
 例えば、特許文献1では、リードフレームのダイパッド上に、はんだなどの接合部材によって半導体素子を接合し、その後、半導体素子の上面電極とDLBフレームとを接合部材によって接合したDLB構造が開示されている。 For example, Patent Document 1 discloses a DLB structure in which a semiconductor element is bonded to a die pad of a lead frame using a bonding member such as solder, and then an upper surface electrode of the semiconductor element and a DLB frame are bonded by a bonding member. .
特開2018-081947号公報JP2018-081947A
 従来技術では、リードフレームとDLBフレームとを準備し、それぞれに半導体素子との接合工程が必要であったので、部品点数および製造工程数が増え、製造コストが増加するという問題があった。 In the conventional technology, it was necessary to prepare a lead frame and a DLB frame, and to join each with a semiconductor element, which resulted in an increase in the number of parts and manufacturing steps, leading to an increase in manufacturing costs.
 本開示は上記のような問題を解決するためになされたものであり、部品点数および製造工程数を削減して、製造コストを低減した半導体装置を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a semiconductor device with reduced manufacturing costs by reducing the number of parts and manufacturing steps.
 本開示に係る半導体装置は、第1の半導体素子を搭載する第1のヒートスプレッダと、前記第1のヒートスプレッダとは傾斜を有する屈曲部で繋がる第1の電極板と、第2の半導体素子を搭載する第2のヒートスプレッダと、前記第2のヒートスプレッダとは段差を有して設けられた第2の電極板と、を備え、前記第1の電極板は、前記第1のヒートスプレッダよりも高い位置に配置され、 前記第2の電極板は、前記第2のヒートスプレッダよりも高い位置に配置され、前記第1の電極板と前記第2の電極板は同じ高さに配置され、前記第1のヒートスプレッダと前記第2のヒートスプレッダは同じ高さに配置され、前記第2の電極板は、前記第1のヒートスプレッダの上方に配置され、前記第1の電極板は、前記第2のヒートスプレッダの上方に配置され、前記第1の半導体素子は、前記第1のヒートスプレッダと前記第2の電極板とに接合され、前記第2の半導体素子は、前記第2のヒートスプレッダと前記第1の電極板とに接合される。 A semiconductor device according to the present disclosure includes a first heat spreader on which a first semiconductor element is mounted, a first electrode plate connected to the first heat spreader through an inclined bent part, and a second semiconductor element mounted thereon. a second heat spreader, and a second electrode plate provided with a step on the second heat spreader, the first electrode plate being located at a higher position than the first heat spreader. the second electrode plate is placed at a higher position than the second heat spreader, the first electrode plate and the second electrode plate are placed at the same height, and the second electrode plate is placed at a higher position than the second heat spreader; and the second heat spreader are arranged at the same height, the second electrode plate is arranged above the first heat spreader, and the first electrode plate is arranged above the second heat spreader. The first semiconductor element is bonded to the first heat spreader and the second electrode plate, and the second semiconductor element is bonded to the second heat spreader and the first electrode plate. be done.
 本開示に係る半導体装置によれば、第1のヒートスプレッダと第1の電極板とが段差を有するように設けられたフレームと、第2のヒートスプレッダと第2のヒートスプレッダとが段差を有するように設けられたフレームを準備することで、第1の半導体素子が第1のヒートスプレッダと第2の電極板とに接合され、第2の半導体素子が、第2のヒートスプレッダと第1の電極板とに接合された半導体装置を得ることができるので、ヒートスプレッダと電極板とを別個に設ける必要がなくなり部品点数が削減される。また、2つのフレームを重ね合わせた状態で第1および第2の半導体素子を接合することで、製造工程数を削減できる。 According to the semiconductor device according to the present disclosure, the frame is provided such that the first heat spreader and the first electrode plate have a step difference, and the frame is provided such that the second heat spreader and the second heat spreader have a step difference. By preparing the frame, the first semiconductor element is bonded to the first heat spreader and the second electrode plate, and the second semiconductor element is bonded to the second heat spreader and the first electrode plate. Since it is possible to obtain a semiconductor device with a high temperature, there is no need to separately provide a heat spreader and an electrode plate, and the number of parts can be reduced. Furthermore, the number of manufacturing steps can be reduced by bonding the first and second semiconductor elements with the two frames superimposed.
実施の形態1の半導体装置の構成を示す平面図である。1 is a plan view showing the configuration of a semiconductor device according to a first embodiment; FIG. 実施の形態1の半導体装置を製造するためのフレームを示す平面図である。1 is a plan view showing a frame for manufacturing the semiconductor device of Embodiment 1. FIG. 実施の形態1の半導体装置を製造するためのフレームを示す平面図である。1 is a plan view showing a frame for manufacturing the semiconductor device of Embodiment 1. FIG. 実施の形態1の半導体装置を製造するための2つのフレームを組み合わせた状態を示す平面図である。FIG. 2 is a plan view showing a state in which two frames for manufacturing the semiconductor device of the first embodiment are combined. 実施の形態1の半導体装置を製造するためのフレームの断面図である。1 is a cross-sectional view of a frame for manufacturing the semiconductor device of Embodiment 1. FIG. 実施の形態1の半導体装置を製造するためのフレームの断面図である。1 is a cross-sectional view of a frame for manufacturing the semiconductor device of Embodiment 1. FIG. 実施の形態1の半導体装置を製造するための2つのフレームを重ね合わせる途中の状態を示す平面図である。FIG. 3 is a plan view showing a state in the middle of overlapping two frames for manufacturing the semiconductor device of the first embodiment. 実施の形態2の半導体装置を製造するための2つのフレームを組み合わせた状態を示す平面図である。7 is a plan view showing a state in which two frames are combined for manufacturing a semiconductor device according to a second embodiment. FIG. 実施の形態2の半導体装置の概略の断面図である。3 is a schematic cross-sectional view of a semiconductor device according to a second embodiment. FIG. 実施の形態3の半導体装置を製造するための2つのフレームを重ね合わせる途中の状態を示す平面図である。FIG. 12 is a plan view showing a state in the middle of superimposing two frames for manufacturing a semiconductor device according to a third embodiment. 実施の形態3の半導体装置を製造するための2つのフレームを組み合わせた状態を示す平面図である。FIG. 7 is a plan view showing a state in which two frames are combined for manufacturing a semiconductor device according to a third embodiment. 実施の形態4の半導体装置を製造するためのフレームを示す平面図である。7 is a plan view showing a frame for manufacturing a semiconductor device according to a fourth embodiment. FIG. 実施の形態4の半導体装置を製造するためのフレームを示す平面図である。7 is a plan view showing a frame for manufacturing a semiconductor device according to a fourth embodiment. FIG. 実施の形態4の半導体装置を製造するための2つのフレームを組み合わせた状態を示す平面図である。FIG. 7 is a plan view showing a state in which two frames are combined for manufacturing a semiconductor device according to a fourth embodiment. 実施の形態4の半導体装置を製造するためのフレームの断面図である。FIG. 7 is a cross-sectional view of a frame for manufacturing a semiconductor device according to a fourth embodiment. 実施の形態4の半導体装置を製造するためのフレームの断面図である。FIG. 7 is a cross-sectional view of a frame for manufacturing a semiconductor device according to a fourth embodiment. 実施の形態5の半導体装置を製造するためのフレームの断面図である。7 is a cross-sectional view of a frame for manufacturing a semiconductor device according to a fifth embodiment. FIG. 実施の形態5の半導体装置を製造するためのフレームの断面図である。7 is a cross-sectional view of a frame for manufacturing a semiconductor device according to a fifth embodiment. FIG. 実施の形態6の半導体装置の製造方法を説明するフローチャートである。12 is a flowchart illustrating a method for manufacturing a semiconductor device according to a sixth embodiment. 半導体装置の製造工程を説明する平面図である。FIG. 2 is a plan view illustrating a manufacturing process of a semiconductor device. 半導体装置の製造工程を説明する平面図である。FIG. 2 is a plan view illustrating a manufacturing process of a semiconductor device. 半導体装置の製造工程を説明する平面図である。FIG. 2 is a plan view illustrating a manufacturing process of a semiconductor device. 半導体装置の製造工程を説明する平面図である。FIG. 2 is a plan view illustrating a manufacturing process of a semiconductor device. 半導体装置の製造工程を説明する平面図である。FIG. 2 is a plan view illustrating a manufacturing process of a semiconductor device. 実施の形態7の半導体装置を製造するための2つのフレームを重ね合わせる途中の状態を示す平面図である。FIG. 12 is a plan view showing a state in the middle of overlapping two frames for manufacturing a semiconductor device according to a seventh embodiment. 実施の形態7の半導体装置を製造するための2つのフレームを組み合わせた状態を示す平面図である。FIG. 9 is a plan view showing a state in which two frames for manufacturing a semiconductor device according to a seventh embodiment are combined. 実施の形態8の半導体装置の製造方法において2つのフレームを重ね合わせる途中の状態を示す平面図である。FIG. 12 is a plan view showing a state in the middle of overlapping two frames in the method for manufacturing a semiconductor device according to the eighth embodiment. 実施の形態8の半導体装置の製造方法において2つのフレームを組み合わせた状態を示す平面図である。FIG. 12 is a plan view showing a state in which two frames are combined in a method for manufacturing a semiconductor device according to an eighth embodiment. 実施の形態9の半導体装置の製造方法において2つのフレームを重ね合わせる途中の状態を示す平面図である。FIG. 12 is a plan view showing a state in the middle of overlapping two frames in a method for manufacturing a semiconductor device according to a ninth embodiment. 実施の形態8の半導体装置の製造方法において2つのフレームを組み合わせた状態を示す平面図である。FIG. 12 is a plan view showing a state in which two frames are combined in a method for manufacturing a semiconductor device according to an eighth embodiment. 実施の形態10の半導体装置の製造方法を説明する断面図である。10 is a cross-sectional view illustrating a method for manufacturing a semiconductor device according to a tenth embodiment. FIG. 実施の形態10の半導体装置の製造方法を説明する平面図である。10 is a plan view illustrating a method for manufacturing a semiconductor device according to a tenth embodiment. FIG.
 <実施の形態1>
 図1は、本開示に係る実施の形態1の半導体装置である電力用の単相インバータ100の構成を示す平面図である。図1に示す単相インバータ100は、モールド樹脂で樹脂封止されているが、便宜的に、上面のモールド樹脂を省略し、下面のモールド樹脂RGのみを示している。また、便宜的に、パワー半導体素子1a(第1の半導体素子)およびパワー半導体素子1b(第2の半導体素子)のみを示すが、これらを直列に接続されたIGBTまたはMOSFETとすれば、単相インバータの基本的な回路と考えることができる。
<Embodiment 1>
FIG. 1 is a plan view showing the configuration of a single-phase power inverter 100, which is a semiconductor device according to a first embodiment of the present disclosure. The single-phase inverter 100 shown in FIG. 1 is resin-sealed with a molded resin, but for convenience, the molded resin on the upper surface is omitted and only the molded resin RG on the lower surface is shown. Further, for convenience, only the power semiconductor element 1a (first semiconductor element) and the power semiconductor element 1b (second semiconductor element) are shown, but if these are IGBTs or MOSFETs connected in series, then a single-phase It can be thought of as the basic circuit of an inverter.
 図1に示すように、単相インバータ100においては、IGBT、MOSFETおよび高耐圧ダイオードなどのパワー半導体素子1aを搭載するヒートスプレッダ4a2(第1のヒートスプレッダ)と平面視で平行に配置された電極板4a1(第1の電極板)とが接続され、電気的に同電位となる構成である。ヒートスプレッダ4a2と電極板4a1とは屈曲部BP1で繋がっている。屈曲部BP1は、電極板4a1側で高く、ヒートスプレッダ4a2側で低くなった傾斜を有している。従って、ヒートスプレッダ4a2と電極板4a1との間には段差が存在している。 As shown in FIG. 1, in the single-phase inverter 100, an electrode plate 4a1 is arranged parallel to a heat spreader 4a2 (first heat spreader) on which power semiconductor elements 1a such as IGBTs, MOSFETs, and high voltage diodes are mounted. (first electrode plate) are connected and have the same electrical potential. The heat spreader 4a2 and the electrode plate 4a1 are connected at a bent portion BP1. The bent portion BP1 has a slope that is higher on the electrode plate 4a1 side and lower on the heat spreader 4a2 side. Therefore, a step exists between the heat spreader 4a2 and the electrode plate 4a1.
 また、屈曲部BP1は、屈曲部BP1が、ヒートスプレッダ4a2の1つの長辺全体に沿って設けられており、電極板4a1とヒートスプレッダ4a2とが強固に係合しており、電極板4a1の形状を安定させることができる。 Further, the bent portion BP1 is provided along one entire long side of the heat spreader 4a2, and the electrode plate 4a1 and the heat spreader 4a2 are firmly engaged, and the shape of the electrode plate 4a1 is It can be stabilized.
 パワー半導体素子1aは、下面側に設けられた第1の主電極がヒートスプレッダ4a2の上面に、はんだ等のろう材(図示せず)で接合され、上面側に設けられた第2の主電極が、ヒートスプレッダ4a2(第2のヒートスプレッダ)の上方に配置された電極板4b1(第2の電極板)の下面に、はんだ等のろう材(図示せず)で接合されている。 In the power semiconductor element 1a, a first main electrode provided on the lower surface side is joined to the upper surface of the heat spreader 4a2 with a brazing material (not shown) such as solder, and a second main electrode provided on the upper surface side is bonded to the upper surface of the heat spreader 4a2. , is bonded to the lower surface of an electrode plate 4b1 (second electrode plate) disposed above the heat spreader 4a2 (second heat spreader) with a brazing material (not shown) such as solder.
 また、電極板4a1の下方には、パワー半導体素子1bを搭載するヒートスプレッダ4b2が配置されている。パワー半導体素子1bは、下面側に設けられた第1の主電極がヒートスプレッダ4b2の上面に、はんだ等のろう材(図示せず)で接合され、上面側に設けられた第2の主電極が、電極板4a1の下面に、はんだ等のろう材(図示せず)で接合されている。 Furthermore, a heat spreader 4b2 on which the power semiconductor element 1b is mounted is arranged below the electrode plate 4a1. In the power semiconductor element 1b, a first main electrode provided on the lower surface side is joined to the upper surface of the heat spreader 4b2 with a brazing material (not shown) such as solder, and a second main electrode provided on the upper surface side is bonded to the upper surface of the heat spreader 4b2. , is bonded to the lower surface of the electrode plate 4a1 with a brazing material (not shown) such as solder.
 ヒートスプレッダ4a2とヒートスプレッダ4b2とは、平面視で平行に配置されており、かつ、両者の間には段差は存在しない。一方、電極板4b1とヒートスプレッダ4b2とは、平面視で平行に配置されているが、電極板4b1の方が高い位置にあり、ヒートスプレッダ4b2の方が低い位置にあり、両者の間には段差が存在している。 The heat spreader 4a2 and the heat spreader 4b2 are arranged in parallel in a plan view, and there is no step between them. On the other hand, the electrode plate 4b1 and the heat spreader 4b2 are arranged in parallel in a plan view, but the electrode plate 4b1 is located at a higher position and the heat spreader 4b2 is located at a lower position, and there is a step between them. Existing.
 電極板4b1は、平面視形状が長方形であり、一方の端部には主端子板T2が接合されており、主端子板T2はモールド樹脂RGの外部に突出している。なお、主端子板T2が接合されている一方の端部は、ヒートスプレッダ4a2のパワー半導体素子1aが搭載された端部とは反対側である。また、電極板4b1の一方の端部には、屈曲部BP2が設けられている。屈曲部BP2は電極板4b1側で高く、主端子板T2側で低くなった傾斜を有している。これにより電極板4b1とヒートスプレッダ4b2との間に段差が存在することになる。 The electrode plate 4b1 has a rectangular shape in plan view, and a main terminal plate T2 is joined to one end thereof, and the main terminal plate T2 protrudes to the outside of the molded resin RG. Note that one end to which the main terminal plate T2 is joined is opposite to the end on which the power semiconductor element 1a of the heat spreader 4a2 is mounted. Further, a bent portion BP2 is provided at one end of the electrode plate 4b1. The bent portion BP2 has an inclination that is higher on the electrode plate 4b1 side and lower on the main terminal plate T2 side. As a result, a step exists between the electrode plate 4b1 and the heat spreader 4b2.
 ヒートスプレッダ4a2は、平面視形状が長方形であり、パワー半導体素子1aは一方の端部に搭載されており、ワイヤWRを介して中継端子RT1に接続され、中継端子RT1はモールド樹脂RGの外部に突出している。 The heat spreader 4a2 has a rectangular shape in plan view, the power semiconductor element 1a is mounted on one end, and is connected to the relay terminal RT1 via the wire WR, and the relay terminal RT1 protrudes to the outside of the molded resin RG. ing.
 ヒートスプレッダ4b2は、平面視形状が長方形であり、一方の端部には主端子板T3が接合されており、主端子板T3はモールド樹脂RGの外部に突出している。なお、主端子板T3が接合されている一方の端部は、パワー半導体素子1bが搭載された端部と同じ側である。パワー半導体素子1bは、ワイヤWRを介して中継端子RT2に接続され、中継端子RT2はモールド樹脂RGの外部に突出している。 The heat spreader 4b2 has a rectangular shape in plan view, and a main terminal plate T3 is joined to one end thereof, and the main terminal plate T3 protrudes to the outside of the molded resin RG. Note that one end to which the main terminal plate T3 is joined is on the same side as the end on which the power semiconductor element 1b is mounted. Power semiconductor element 1b is connected to relay terminal RT2 via wire WR, and relay terminal RT2 protrudes to the outside of mold resin RG.
 電極板4a1は、平面視形状が長方形であり、一方の端部には主端子板T1が接合されており、主端子板T1はモールド樹脂RGの外部に突出している。なお、主端子板T1が接合されている一方の端部は、ヒートスプレッダ4b2のパワー半導体素子1bが搭載された端部とは反対側である。 The electrode plate 4a1 has a rectangular shape in plan view, and a main terminal plate T1 is joined to one end thereof, and the main terminal plate T1 protrudes to the outside of the molded resin RG. Note that one end to which the main terminal plate T1 is joined is opposite to the end on which the power semiconductor element 1b of the heat spreader 4b2 is mounted.
 以上説明したように、図1に示す単相インバータ100においては、ヒートスプレッダ4a2と電極板4a1との間に段差を有し、電極板4b1とヒートスプレッダ4b2との間に段差を有しており、ヒートスプレッダ4a2と電極板4b1との間にパワー半導体素子1aを配置し、ヒートスプレッダ4b2と電極板4a1との間にパワー半導体素子1bを配置することで、パワー半導体素子1aとパワー半導体素子1bとを直列に接続することができる。 As explained above, the single-phase inverter 100 shown in FIG. 1 has a step between the heat spreader 4a2 and the electrode plate 4a1, a step between the electrode plate 4b1 and the heat spreader 4b2, and By arranging the power semiconductor element 1a between the heat spreader 4a2 and the electrode plate 4b1, and arranging the power semiconductor element 1b between the heat spreader 4b2 and the electrode plate 4a1, the power semiconductor element 1a and the power semiconductor element 1b can be connected in series. Can be connected.
 次に、単相インバータ100の主要部分の製造方法について、図2~図6を用いて説明する。図2および図3は、それぞれ単相インバータ100を製造するためのフレーム4bおよびフレーム4aを示す平面図であり、図4は、フレーム4a(第1のフレーム)とフレーム4b(第2のフレーム)とを組み合わせた状態を示す平面図である。 Next, a method for manufacturing the main parts of the single-phase inverter 100 will be explained using FIGS. 2 to 6. 2 and 3 are plan views showing a frame 4b and a frame 4a, respectively, for manufacturing the single-phase inverter 100, and FIG. 4 is a plan view showing a frame 4a (first frame) and a frame 4b (second frame). FIG. 3 is a plan view showing a state in which the
 図2に示すように、フレーム4bは、フレーム4bの輪郭を規定するフレーム本体4b0と、電極板4b1およびヒートスプレッダ4b2を有して構成される。フレーム本体4b0は、平面視形状が矩形をなす枠組みであり、その一辺から内側に向けて、電極板4b1およびヒートスプレッダ4b2が延在するように設けられている。電極板4b1およびヒートスプレッダ4b2は、互いに間を開けて平面視で平行に配置されているが、電極板4b1の一方の端部には、屈曲部BP2が設けられている。屈曲部BP2は一方の端部側で高く、フレーム本体4b0側で低くなった傾斜を有している。これにより電極板4b1とヒートスプレッダ4b2との間に段差が存在することになる。 As shown in FIG. 2, the frame 4b includes a frame body 4b0 that defines the outline of the frame 4b, an electrode plate 4b1, and a heat spreader 4b2. The frame body 4b0 is a frame having a rectangular shape in plan view, and an electrode plate 4b1 and a heat spreader 4b2 are provided to extend inward from one side of the frame body 4b0. The electrode plate 4b1 and the heat spreader 4b2 are arranged parallel to each other with a gap between them in plan view, and a bent portion BP2 is provided at one end of the electrode plate 4b1. The bent portion BP2 has an inclination that is high on one end side and low on the frame main body 4b0 side. As a result, a step exists between the electrode plate 4b1 and the heat spreader 4b2.
 ヒートスプレッダ4b2は、パワー半導体素子1bおよびパワー半導体素子11bを搭載しており、パワー半導体素子1bが搭載された側の端部は、部分的に幅が狭くなってフレーム本体4b0と一体となっている。 The heat spreader 4b2 is equipped with the power semiconductor element 1b and the power semiconductor element 11b, and the end portion on the side where the power semiconductor element 1b is mounted has a partially narrow width and is integrated with the frame body 4b0. .
 図3に示すように、フレーム4aは、フレーム4aの輪郭を規定するフレーム本体4a0と、電極板4a1およびヒートスプレッダ4a2を有して構成される。フレーム本体4a0は、平面視形状が矩形をなす枠組みであり、その一辺から内側に向けて、電極板4a1が延在するように設けられている。電極板4a1は、平面視で平行に配置されたヒートスプレッダ4a2と屈曲部BP1で繋がっている。 As shown in FIG. 3, the frame 4a includes a frame body 4a0 that defines the outline of the frame 4a, an electrode plate 4a1, and a heat spreader 4a2. The frame body 4a0 is a frame having a rectangular shape in plan view, and an electrode plate 4a1 is provided so as to extend inward from one side of the frame body 4a0. The electrode plate 4a1 is connected to a heat spreader 4a2, which is arranged in parallel in a plan view, at a bent portion BP1.
 屈曲部BP1は、電極板4a1側で高く、ヒートスプレッダ4a2側で低くなった傾斜を有している。従って、ヒートスプレッダ4a2と電極板4a1との間には段差が存在している。ヒートスプレッダ4a2は、パワー半導体素子1aおよびパワー半導体素子11aを搭載している。なお、フレーム4aおよび4bは、アルミニウム(Al)または銅(Cu)で形成することができる。 The bent portion BP1 has a slope that is higher on the electrode plate 4a1 side and lower on the heat spreader 4a2 side. Therefore, a step exists between the heat spreader 4a2 and the electrode plate 4a1. The heat spreader 4a2 is equipped with a power semiconductor element 1a and a power semiconductor element 11a. Note that the frames 4a and 4b can be formed of aluminum (Al) or copper (Cu).
 図2および図3に示されるように、フレーム4bの電極板4b1およびヒートスプレッダ4b2が延在するフレーム本体4b0の一辺と、フレーム4aの電極板4a1が延在する一辺とは、対向する位置関係を有し、フレーム4bとフレーム4aとを重ね合わせるように配置すると、図4に示されるような構成となる。 As shown in FIGS. 2 and 3, one side of the frame main body 4b0 on which the electrode plate 4b1 and the heat spreader 4b2 of the frame 4b extend and one side on which the electrode plate 4a1 of the frame 4a extends have an opposing positional relationship. When the frame 4b and the frame 4a are arranged so as to overlap each other, a configuration as shown in FIG. 4 is obtained.
 図4は、図1に示した単相インバータ100のモールド樹脂RGで封止される領域の構成を示しており、ヒートスプレッダ4a2と電極板4b1との間にパワー半導体素子1aおよび11aが配置され、ヒートスプレッダ4b2と電極板4a1との間にパワー半導体素子1bおよび11bが配置された構成となる。 FIG. 4 shows the configuration of a region sealed with mold resin RG of the single-phase inverter 100 shown in FIG. 1, in which power semiconductor elements 1a and 11a are arranged between a heat spreader 4a2 and an electrode plate 4b1, Power semiconductor elements 1b and 11b are arranged between heat spreader 4b2 and electrode plate 4a1.
 図4におけるA-A線での矢示方向断面図を図5に示し、B-B線での矢示方向断面図を図6に示す。 A cross-sectional view taken along line AA in FIG. 4 in the direction of the arrow is shown in FIG. 5, and a cross-sectional view taken along line BB in the direction of the arrow is shown in FIG.
 図5に示されるように、パワー半導体素子1aおよび11aは、ヒートスプレッダ4a2と、ろう材2aによって接合され、上方の電極板4b1とは、ろう材(第1のろう材)によって接合される。 As shown in FIG. 5, the power semiconductor elements 1a and 11a are joined to the heat spreader 4a2 by a brazing material 2a, and the upper electrode plate 4b1 is joined by a brazing material (first brazing material).
 また、図6に示されるように、パワー半導体素子1bおよび11bは、ヒートスプレッダ4b2と、ろう材2bによって接合され、上方の電極板4a1とは、ろう材3b(第2のろう材)によって接合される。ろう材2a、3a、2bおよび3bは、例えば、はんだを用いることができる。 Further, as shown in FIG. 6, the power semiconductor elements 1b and 11b are bonded to a heat spreader 4b2 by a brazing material 2b, and the upper electrode plate 4a1 is bonded to a brazing material 3b (second brazing material). Ru. For example, solder can be used as the brazing materials 2a, 3a, 2b, and 3b.
 以上説明したように、フレーム4aには電極板4a1およびヒートスプレッダ4a2を設け、フレーム4bには電極板4b1およびヒートスプレッダ4b2を設け、フレーム4aとフレーム4bとを重ね合わせるように配置することで、ヒートスプレッダと電極板とを別個に設ける必要がなくなり部品点数が削減される。また、フレーム4aとフレーム4bとを重ね合わせた状態でろう材3aおよび3bを接合するので、製造工程数を削減することができる。 As explained above, the frame 4a is provided with the electrode plate 4a1 and the heat spreader 4a2, the frame 4b is provided with the electrode plate 4b1 and the heat spreader 4b2, and by arranging the frames 4a and 4b so as to overlap, the heat spreader and There is no need to provide a separate electrode plate, and the number of parts can be reduced. Furthermore, since the brazing materials 3a and 3b are joined with the frames 4a and 4b stacked on top of each other, the number of manufacturing steps can be reduced.
 また、フレーム形状を自由にデザインできるためインダクタンス設計の自由度が増す。また、放熱性の向上させることもできる。 Additionally, since the frame shape can be freely designed, the degree of freedom in inductance design increases. Moreover, heat dissipation can also be improved.
 また、フレーム4aのフレーム本体4a0およびフレーム4bのフレーム本体4b0で規定される外形を同じサイズとすることで、両者を重ね合わせる際のフレームの位置合わせが容易となり、位置合わせ精度も向上する。 Furthermore, by making the outer shapes defined by the frame main body 4a0 of the frame 4a and the frame main body 4b0 of the frame 4b the same size, it becomes easy to align the frames when overlapping them, and the alignment accuracy is also improved.
 ここで、パワー半導体素子1aおよび11aの種類としては、例えば、パワー半導体素子1aをIGBTとし、パワー半導体素子11aを高耐圧ダイオードとし、パワー半導体素子11aはパワー半導体素子1aに逆並列に接続されるものとする。 Here, as for the types of the power semiconductor elements 1a and 11a, for example, the power semiconductor element 1a is an IGBT, the power semiconductor element 11a is a high voltage diode, and the power semiconductor element 11a is connected in antiparallel to the power semiconductor element 1a. shall be taken as a thing.
 また、パワー半導体素子1bおよび11bの種類としては、例えば、パワー半導体素子1bをIGBTとし、パワー半導体素子11bを高耐圧ダイオードとし、パワー半導体素子11bはパワー半導体素子1bに逆並列に接続されるものとする。 Further, as the types of the power semiconductor elements 1b and 11b, for example, the power semiconductor element 1b is an IGBT, the power semiconductor element 11b is a high voltage diode, and the power semiconductor element 11b is connected in antiparallel to the power semiconductor element 1b. shall be.
 そして、パワー半導体素子1bとパワー半導体素子1aとを直列に接続することで、パワー半導体素子11bおよび11aが、還流ダイオード(Free Wheeling Diode)として動作するインバータを構成することができる。 By connecting the power semiconductor element 1b and the power semiconductor element 1a in series, the power semiconductor elements 11b and 11a can configure an inverter that operates as a free wheeling diode.
 <実施の形態2>
 次に、図7および図8を用いて、本開示に係る実施の形態2について説明する。図7は、フレーム4bとフレーム4aとを重ね合わせる途中の状態を示す平面図であり、図8は、フレーム4aとフレーム4bとを組み合わせた状態を示す平面図であり、実施の形態2の単相インバータ200の主要部を示している。
<Embodiment 2>
Next, a second embodiment of the present disclosure will be described using FIGS. 7 and 8. FIG. 7 is a plan view showing a state in which frames 4b and 4a are overlapped, and FIG. 8 is a plan view showing a state in which frames 4a and 4b are combined. Main parts of a phase inverter 200 are shown.
 図7において、フレーム4bは図2に示した実施の形態1と同じ形状であるが、フレーム4aは、電極板4a1とヒートスプレッダ4a2とを接合する屈曲部BP1が、ヒートスプレッダ4a2の1つの長辺全体に沿って設けられるのではなく、1つの長辺の一部と電極板4a1の1つの長辺の一部とを繋ぐように設けられている。このため、屈曲部BP1は、電極板4a1とヒートスプレッダ4a2との間にスリットを形成するように設けられていると言える。 In FIG. 7, the frame 4b has the same shape as the first embodiment shown in FIG. Rather than being provided along the electrode plate 4a1, it is provided so as to connect a part of one long side with a part of one long side of the electrode plate 4a1. Therefore, it can be said that the bent portion BP1 is provided so as to form a slit between the electrode plate four a1 and the heat spreader four a2.
 図8に示されるように、電極板4a1とヒートスプレッダ4a2との間にスリットが形成されることで、ヒートスプレッダ4b2とヒートスプレッダ4a2との間の隙間を利用することが可能となる。 As shown in FIG. 8, by forming a slit between the electrode plate 4a1 and the heat spreader 4a2, it becomes possible to utilize the gap between the heat spreader 4b2 and the heat spreader 4a2.
 図9は、図8に示されるフレーム4aとフレーム4bとを組み合わせて構成される単相インバータ200を樹脂封止した場合の概略の断面図であり、図8におけるC-C線での矢示方向断面図に該当する。 FIG. 9 is a schematic cross-sectional view of the single-phase inverter 200 configured by combining the frame 4a and the frame 4b shown in FIG. Corresponds to a directional cross-sectional view.
 図8において、モールド樹脂RGで樹脂封止された単相インバータ200には、冷却フィン6が取り付けられるが、電極板4a1とヒートスプレッダ4a2との間にスリットが形成されることで、電極板4b1と電極板4a1との間、ヒートスプレッダ4a2とヒートスプレッダ4b2との間に、モールド樹脂RGを厚み方向に貫通する貫通孔THを設けることができる。この貫通孔THにネジ7を通して、単相インバータ200を冷却フィン6に取り付けることが可能となる。このように、単相インバータ200においては、ネジ7の通し位置を確保することができる。 In FIG. 8, cooling fins 6 are attached to the single-phase inverter 200 resin-sealed with mold resin RG, but by forming slits between the electrode plate 4a1 and the heat spreader 4a2, the electrode plate 4b1 and A through hole TH penetrating the mold resin RG in the thickness direction can be provided between the electrode plate four a1 and between the heat spreader four a2 and the heat spreader four b2. The single-phase inverter 200 can be attached to the cooling fins 6 by passing the screws 7 through the through holes TH. In this way, in the single-phase inverter 200, the threading position of the screw 7 can be secured.
 <実施の形態3>
 次に、図10および図11を用いて、本開示に係る実施の形態3について説明する。図10は、フレーム4bとフレーム4aとを重ね合わせる途中の状態を示す平面図であり、図11は、フレーム4aとフレーム4bとを組み合わせた状態を示す平面図であり、実施の形態2の単相インバータ300の主要部を示している。
<Embodiment 3>
Next, Embodiment 3 according to the present disclosure will be described using FIGS. 10 and 11. FIG. 10 is a plan view showing a state in which frames 4b and 4a are being overlapped, and FIG. 11 is a plan view showing a state in which frames 4a and 4b are combined. Main parts of phase inverter 300 are shown.
 図10において、フレーム4bは図2に示した実施の形態1と同じ形状であるが、フレーム4aは、電極板4a1とヒートスプレッダ4a2とを繋ぐ屈曲部BP1が、ヒートスプレッダ4a2の1つの長辺全体に沿って設けられるのではなく、1つの長辺の互いに離れた2つの部分と電極板4a1の1つの長辺の互いに離れた2つの部分とを繋ぐように設けられている。このため、屈曲部BP1は、電極板4a1とヒートスプレッダ4a2との間に開口部を形成するように設けられていると言える。 In FIG. 10, the frame 4b has the same shape as the first embodiment shown in FIG. Rather than being provided along the electrode plate 4a1, it is provided so as to connect two portions separated from each other on one long side and two portions separated from each other on one long side of the electrode plate 4a1. Therefore, it can be said that the bent portion BP1 is provided so as to form an opening between the electrode plate four a1 and the heat spreader four a2.
 図11に示されるように、電極板4a1とヒートスプレッダ4a2との間に開口部が形成されることで、ヒートスプレッダ4b2とヒートスプレッダ4a2との間の隙間を利用することが可能となる。 As shown in FIG. 11, by forming an opening between the electrode plate 4a1 and the heat spreader 4a2, it becomes possible to utilize the gap between the heat spreader 4b2 and the heat spreader 4a2.
 利用の態様は、実施の形態2において図9を用いて説明したように、単相インバータ300に冷却フィンを取り付ける際のネジの通し位置とする。また、電極板4a1とヒートスプレッダ4a2との間にスリットが形成される場合に比べて、電極板4a1とヒートスプレッダ4a2との係合がより強力となり、電極板4a1の形状を安定させることができる。 As explained using FIG. 9 in Embodiment 2, the mode of use is the screw insertion position when attaching the cooling fin to the single-phase inverter 300. Moreover, compared to the case where a slit is formed between the electrode plate 4a1 and the heat spreader 4a2, the engagement between the electrode plate 4a1 and the heat spreader 4a2 becomes stronger, and the shape of the electrode plate 4a1 can be stabilized.
 <実施の形態4>
 次に、図12~図16を用いて、本開示に係る実施の形態4について説明する。図12および図13は、それぞれ実施の形態4の単相インバータ400を製造するためのフレーム4bおよびフレーム4aを示す平面図であり、図14は、フレーム4aとフレーム4bとを組み合わせた状態を示す平面図であり、実施の形態4の単相インバータ400の主要部を示している。なお、図12~図16においては、実施の形態1の図2~図6と同じ構成には同じ符号を付し、重複する説明は省略する。
<Embodiment 4>
Next, a fourth embodiment of the present disclosure will be described using FIGS. 12 to 16. 12 and 13 are plan views showing a frame 4b and a frame 4a, respectively, for manufacturing the single-phase inverter 400 of the fourth embodiment, and FIG. 14 shows a state in which the frame 4a and the frame 4b are combined. 3 is a plan view showing main parts of a single-phase inverter 400 according to a fourth embodiment. FIG. Note that in FIGS. 12 to 16, the same components as those in FIGS. 2 to 6 of the first embodiment are denoted by the same reference numerals, and redundant explanations will be omitted.
 図12に示すように、フレーム4bは、フレーム4bの輪郭を規定するフレーム本体4b0と、電極板4b1、ヒートスプレッダ4b2および中継端子4b3(第2の中継端子)を有して構成される。 As shown in FIG. 12, the frame 4b includes a frame main body 4b0 that defines the outline of the frame 4b, an electrode plate 4b1, a heat spreader 4b2, and a relay terminal 4b3 (second relay terminal).
 フレーム本体4b0は、平面視形状が矩形をなす枠組みであり、その一辺から内側に向けて、電極板4b1、ヒートスプレッダ4b2および複数の中継端子4b3が延在するように設けられている。電極板4b1の一方の端部には、屈曲部BP2よりもフレーム本体4b0側の位置に端子穴4bhが設けられている。また、ヒートスプレッダ4b2は、パワー半導体素子1bが搭載された側の端部は、部分的に幅が狭くなってフレーム本体4b0と一体となっており、フレーム本体4b0側の位置に端子穴4bhが設けられている。端子穴4bhが設けられた部分は、いわゆる単相インバータ400の主端子として機能し、端子穴4bhは外部との配線を接続するための取り付け穴として機能する。複数の中継端子4b3は、平面視でヒートスプレッダ4b2上のパワー半導体素子1bの近傍まで延在している。 The frame body 4b0 is a frame having a rectangular shape in plan view, and an electrode plate 4b1, a heat spreader 4b2, and a plurality of relay terminals 4b3 are provided so as to extend inward from one side thereof. A terminal hole 4bh is provided at one end of the electrode plate 4b1 at a position closer to the frame body 4b0 than the bent portion BP2. Further, the end of the heat spreader 4b2 on the side where the power semiconductor element 1b is mounted has a partially narrow width and is integrated with the frame body 4b0, and a terminal hole 4bh is provided at a position on the frame body 4b0 side. It is being The portion provided with the terminal hole 4bh functions as a so-called main terminal of the single-phase inverter 400, and the terminal hole 4bh functions as a mounting hole for connecting wiring with the outside. The plurality of relay terminals 4b3 extend to the vicinity of the power semiconductor element 1b on the heat spreader 4b2 in plan view.
 図13に示すように、フレーム4aは、フレーム4aの輪郭を規定するフレーム本体4a0と、電極板4a1、ヒートスプレッダ4a2および複数の中継端子4a3(第1の中継端子)を有して構成される。 As shown in FIG. 13, the frame 4a includes a frame main body 4a0 that defines the outline of the frame 4a, an electrode plate 4a1, a heat spreader 4a2, and a plurality of relay terminals 4a3 (first relay terminals).
 フレーム本体4a0は、平面視形状が矩形をなす枠組みであり、その一辺から内側に向けて、電極板4a1および複数の中継端子4a3が延在するように設けられている。電極板4a1の一方の端部には、フレーム本体4a0側の位置に端子穴4ahが設けられている。端子穴4ahが設けられた部分は、いわゆる単相インバータ400の主端子として機能し、端子穴4ahは外部との配線を接続するための取り付け穴として機能する。複数の中継端子4b3は、平面視でヒートスプレッダ4a2上のパワー半導体素子1aの近傍まで延在している。複数の中継端子4a3は、パワー半導体素子1aの上面の制御端子とのワイヤ接続のための端子として機能する。 The frame body 4a0 is a frame having a rectangular shape in plan view, and an electrode plate 4a1 and a plurality of relay terminals 4a3 are provided to extend inward from one side of the frame body 4a0. A terminal hole 4ah is provided at one end of the electrode plate 4a1 at a position on the frame body 4a0 side. The portion provided with the terminal hole 4ah functions as a so-called main terminal of the single-phase inverter 400, and the terminal hole 4ah functions as a mounting hole for connecting wiring to the outside. The plurality of relay terminals 4b3 extend to the vicinity of the power semiconductor element 1a on the heat spreader 4a2 in plan view. The plurality of relay terminals 4a3 function as terminals for wire connection with the control terminals on the upper surface of the power semiconductor element 1a.
 図12および図13に示されるように、フレーム4bの電極板4b1、ヒートスプレッダ4b2および複数の中継端子4b3が延在するフレーム本体4b0の一辺と、フレーム4aの電極板4a1および複数の中継端子4a3が延在する一辺とは、対向する位置関係を有し、フレーム4bとフレーム4aとを重ね合わせるように配置すると、図14に示されるような構成となる。 As shown in FIGS. 12 and 13, one side of the frame body 4b0 on which the electrode plate 4b1, the heat spreader 4b2, and the plurality of relay terminals 4b3 of the frame 4b extend, and the electrode plate 4a1 and the plurality of relay terminals 4a3 of the frame 4a extend. The extending sides have a positional relationship that opposes each other, and when the frame 4b and the frame 4a are arranged so as to overlap, a configuration as shown in FIG. 14 is obtained.
 図14は、図1に示した単相インバータ100のモールド樹脂RGで封止される領域の構成を示しており、ヒートスプレッダ4a2と電極板4b1との間にパワー半導体素子1aおよび11aが配置され、ヒートスプレッダ4b2と電極板4a1との間にパワー半導体素子1bおよび11bが配置された構成となる。 FIG. 14 shows the configuration of a region sealed with mold resin RG of the single-phase inverter 100 shown in FIG. 1, in which power semiconductor elements 1a and 11a are arranged between a heat spreader 4a2 and an electrode plate 4b1, Power semiconductor elements 1b and 11b are arranged between heat spreader 4b2 and electrode plate 4a1.
 図14におけるA-A線での矢示方向断面図を図15に示し、B-B線での矢示方向断面図を図16に示す。 FIG. 15 shows a sectional view taken along the line AA in FIG. 14 in the direction of the arrow, and FIG. 16 shows a sectional view taken along the line BB in the direction of the arrow.
 図15に示されるように、パワー半導体素子1aおよび11aは、ヒートスプレッダ4a2と、ろう材2aによって接合され、上方の電極板4b1とは、ろう材3aによって接合される。 As shown in FIG. 15, the power semiconductor elements 1a and 11a are joined to the heat spreader 4a2 by a brazing material 2a, and the upper electrode plate 4b1 is joined by a brazing material 3a.
 また、図16に示されるように、パワー半導体素子1bおよび11bは、ヒートスプレッダ4b2と、ろう材2bによって接合され、上方の電極板4a1とは、ろう材3bによって接合される。 Further, as shown in FIG. 16, the power semiconductor elements 1b and 11b are bonded to the heat spreader 4b2 by a brazing material 2b, and the upper electrode plate 4a1 is bonded to the brazing material 3b.
 以上説明したように、フレーム4aには複数の中継端子4a3と、主端子として機能する部分を設け、フレーム4bには複数の中継端子4b3と、主端子として機能する部分を設けることで、単相インバータ400の組み立てに必要な部品点数を削減することができ、生産性を向上することができる。 As explained above, the frame 4a is provided with a plurality of relay terminals 4a3 and a portion that functions as a main terminal, and the frame 4b is provided with a plurality of relay terminals 4b3 and a portion that functions as a main terminal. The number of parts required for assembling inverter 400 can be reduced, and productivity can be improved.
 また、図12に示したように、フレーム4bでは、複数の中継端子4b3を平面視でヒートスプレッダ4b2上のパワー半導体素子1bの近傍まで延在させた構成を示したが、この場合、複数の中継端子4b3に近いパワー半導体素子1bをIGBTまたはMOSFETとし、複数の中継端子4b3を、IGBTまたはMOSFETの制御端子とのワイヤボンディングのための端子として利用することで、ワイヤボンディングが容易となり、生産性を向上することができる。なお、パワー半導体素子11bは、高耐圧ダイオードとなる。 Further, as shown in FIG. 12, the frame 4b has a configuration in which the plurality of relay terminals 4b3 extend to the vicinity of the power semiconductor element 1b on the heat spreader 4b2 in plan view. By using the power semiconductor element 1b near the terminal 4b3 as an IGBT or MOSFET, and using the plurality of relay terminals 4b3 as terminals for wire bonding with the control terminal of the IGBT or MOSFET, wire bonding becomes easy and productivity is increased. can be improved. Note that the power semiconductor element 11b is a high voltage diode.
 同様に、図13に示したように、フレーム4aでは、複数の中継端子4a3を平面視でヒートスプレッダ4a2上のパワー半導体素子1aの近傍まで延在させた構成を示したが、この場合、複数の中継端子4a3に近いパワー半導体素子1aをIGBTまたはMOSFETとし、複数の中継端子4a3を、IGBTまたはMOSFETの制御端子とのワイヤボンディングのための端子として利用することで、ワイヤボンディングが容易となり、生産性を向上することができる。なお、パワー半導体素子11bは、高耐圧ダイオードとなる。 Similarly, as shown in FIG. 13, the frame 4a has a configuration in which the plurality of relay terminals 4a3 extend to the vicinity of the power semiconductor element 1a on the heat spreader 4a2 in plan view; By using the power semiconductor element 1a near the relay terminal 4a3 as an IGBT or MOSFET, and using the plurality of relay terminals 4a3 as terminals for wire bonding with the control terminal of the IGBT or MOSFET, wire bonding becomes easy and productivity is increased. can be improved. Note that the power semiconductor element 11b is a high voltage diode.
 <実施の形態5>
 次に、図17および図18を用いて、本開示に係る実施の形態5について説明する。図17は、実施の形態5の単相インバータ500を構成するヒートスプレッダ4a2の断面構成を示す断面図であり、ヒートスプレッダ4a2の半導体素子に搭載面に、パワー半導体素子1aおよび11aの位置決めのための溝GR(第1の溝)が設けられている。
<Embodiment 5>
Next, Embodiment 5 according to the present disclosure will be described using FIGS. 17 and 18. FIG. 17 is a cross-sectional view showing the cross-sectional configuration of a heat spreader 4a2 constituting a single-phase inverter 500 according to the fifth embodiment. Grooves for positioning the power semiconductor elements 1a and 11a are formed on the mounting surface of the semiconductor elements of the heat spreader 4a2. A GR (first groove) is provided.
 溝GRは、ろう材2a上に配置されたパワー半導体素子1aおよび11aが、ろう材2a上からずれることを防止する深さと大きさに形成されている。溝GRは、パワー半導体素子1aおよび11aの配列方向とは直交する方向に設けられ、ろう材2aを収容し、パワー半導体素子1aおよび11aの一部も収容できる深さとなっている。 The groove GR is formed to have a depth and size that prevents the power semiconductor elements 1a and 11a placed on the brazing material 2a from shifting from above the brazing material 2a. The groove GR is provided in a direction perpendicular to the arrangement direction of the power semiconductor elements 1a and 11a, and has a depth capable of accommodating the brazing filler metal 2a and also a portion of the power semiconductor elements 1a and 11a.
 溝GRを設けることで、パワー半導体素子1aおよび11aを、ろう材2a上に配置する際の位置決め精度が向上すると共に、パワー半導体素子1aおよび11aがろう材2a上からずれることを防止することができる。 By providing the groove GR, the positioning accuracy when arranging the power semiconductor elements 1a and 11a on the brazing material 2a is improved, and it is possible to prevent the power semiconductor elements 1a and 11a from shifting from the brazing material 2a. can.
 なお、図17では、ヒートスプレッダ4a2に溝GRを設けた例を示したが、ヒートスプレッダ4b2にも溝GR(第2の溝)を設け、パワー半導体素子1bおよび11bの位置決め精度の向上およびパワー半導体素子1bおよび11bのずれ防止をすることができる。 Although FIG. 17 shows an example in which the heat spreader 4a2 is provided with the groove GR, the heat spreader 4b2 is also provided with the groove GR (second groove) to improve the positioning accuracy of the power semiconductor elements 1b and 11b and to improve the positioning accuracy of the power semiconductor elements. 1b and 11b can be prevented from shifting.
 図18は、ヒートスプレッダ4a2の半導体素子に搭載面に、溝GRの代わりに、突起部PJを設けた構成を示す断面図である。図18に示すように、突起部PJは、ろう材2a上に配置されたパワー半導体素子1aおよび11aが、ろう材2a上からずれることを防止する高さに形成されている。突起部PJは、パワー半導体素子1aおよび11aのそれぞれにおいて平面視で外側に設けられ、ろう材2aの厚みを超え、パワー半導体素子1aおよび11aの厚みの一部に及ぶ高さとなっている。なお。図18では、突起部PJは、パワー半導体素子1aおよび11aのそれぞれの前後に設けたが、パワー半導体素子1aおよび11aのそれぞれの左右に設けることもでき、前後、左右に設けることもできる。 FIG. 18 is a cross-sectional view showing a configuration in which a protrusion PJ is provided in place of the groove GR on the mounting surface of the semiconductor element of the heat spreader 4a2. As shown in FIG. 18, the protrusion PJ is formed at a height that prevents the power semiconductor elements 1a and 11a placed on the brazing material 2a from shifting from above the brazing material 2a. The protrusion PJ is provided on the outside of each of the power semiconductor elements 1a and 11a in a plan view, and has a height that exceeds the thickness of the brazing filler metal 2a and extends to a part of the thickness of the power semiconductor elements 1a and 11a. In addition. In FIG. 18, the protrusions PJ are provided at the front and rear of each of the power semiconductor elements 1a and 11a, but they can also be provided at the left and right sides of each of the power semiconductor elements 1a and 11a, and they can also be provided at the front and rear, left and right sides.
 突起部PJを設けることで、パワー半導体素子1aおよび11aを、ろう材2a上に配置する際の位置決め精度が向上すると共に、パワー半導体素子1aおよび11aがろう材2a上からずれることを防止することができる。 Providing the protrusion PJ improves the positioning accuracy when arranging the power semiconductor elements 1a and 11a on the brazing material 2a, and prevents the power semiconductor elements 1a and 11a from shifting from the brazing material 2a. Can be done.
 なお、図18では、ヒートスプレッダ4a2に突起部PJを設けた例を示したが、ヒートスプレッダ4b2にも突起部PJを設け、パワー半導体素子1bおよび11bの位置決め精度の向上およびパワー半導体素子1bおよび11bのずれ防止をすることができる。 Although FIG. 18 shows an example in which the heat spreader 4a2 is provided with the protrusion PJ, the heat spreader 4b2 is also provided with the protrusion PJ to improve the positioning accuracy of the power semiconductor elements 1b and 11b and to improve the positioning accuracy of the power semiconductor elements 1b and 11b. It can prevent slippage.
 <実施の形態6>
 次に、本開示に係る実施の形態6として、図19に示すフローチャートを参照しつつ、図20~図24を用いて図1に示した単相インバータ100の製造方法について説明する。
<Embodiment 6>
Next, as a sixth embodiment of the present disclosure, a method for manufacturing the single-phase inverter 100 shown in FIG. 1 will be described using FIGS. 20 to 24 while referring to the flowchart shown in FIG. 19.
 図19に示すステップS1においてフレームを成形する。これは、図20に示すように、フレーム4aおよび4bを準備する工程であり、フレーム4aおよび4bを打ち抜き加工と曲げ加工により成形する。図20に示すフレーム4aおよび4bは、それぞれ図3に示したフレーム4aおよび図2に示したフレーム4bに、パワー半導体素子を搭載する前の状態である。 A frame is molded in step S1 shown in FIG. This is a step of preparing frames 4a and 4b, as shown in FIG. 20, and frames 4a and 4b are formed by punching and bending. Frames 4a and 4b shown in FIG. 20 are in a state before power semiconductor elements are mounted on frame 4a shown in FIG. 3 and frame 4b shown in FIG. 2, respectively.
 次に、ステップS2においてヒートスプレッダにろう材でパワー半導体素子を接合する。これは、図21に示すように、フレーム4aのヒートスプレッダ4a2にパワー半導体素子1aおよび11aをろう材2a(図示せず)を介して接合し、フレーム4bのヒートスプレッダ4b2にパワー半導体素子1bおよび11bをろう材2b(図示せず)を介して接合する工程であり、ろう材を溶融させる工程である。なお、21に示すフレーム4aおよび4bは、それぞれ図3に示したフレーム4aおよび図2に示したフレーム4bの状態であり、次の工程のために、パワー半導体素子1aおよび11a上にはろう材3aが配置され、パワー半導体素子1bおよび11b上には、次の工程のためにろう材3bが配置されている。 Next, in step S2, the power semiconductor element is bonded to the heat spreader using a brazing material. As shown in FIG. 21, power semiconductor elements 1a and 11a are bonded to a heat spreader 4a2 of a frame 4a via a brazing material 2a (not shown), and power semiconductor elements 1b and 11b are bonded to a heat spreader 4b2 of a frame 4b. This is a process of joining through a brazing filler metal 2b (not shown), and is a process of melting the brazing filler metal. Note that the frames 4a and 4b shown in 21 are in the state of the frame 4a shown in FIG. 3 and the frame 4b shown in FIG. A brazing material 3b is placed on the power semiconductor elements 1b and 11b for the next process.
 次に、ステップS3において、2つのフレームを重ね合わせ、パワー半導体素子上のろう材で電極板を接合する。これは、図22に示すように、フレーム4aとフレーム4bとを重ね合わせ、フレーム4aのパワー半導体素子1aおよび11a上のろう材3a(図示せず)とフレーム4bの電極板4b1とを接合し、フレーム4bのパワー半導体素子1bおよび11b上のろう材3b(図示せず)とフレーム4aの電極板4a1とを接合する工程であり、ろう材を溶融させる工程である。なお、図22に示すフレーム4aとフレーム4bとを重ね合わせた状態は、図4に示した状態に相当する。 Next, in step S3, the two frames are overlapped and the electrode plates are joined using the brazing material on the power semiconductor element. As shown in FIG. 22, this is done by overlapping frames 4a and 4b and joining the brazing material 3a (not shown) on the power semiconductor elements 1a and 11a of frame 4a to the electrode plate 4b1 of frame 4b. This is a step of joining the brazing material 3b (not shown) on the power semiconductor elements 1b and 11b of the frame 4b and the electrode plate 4a1 of the frame 4a, and is a step of melting the brazing material. Note that the state in which the frames 4a and 4b shown in FIG. 22 are superimposed corresponds to the state shown in FIG. 4.
 次に、ステップS4において、主端子板と中継端子を設けた外付けフレームとを接合する。これは、図23に示すように、パワー半導体素子と電極板との接合が終わった状態のフレーム4aおよび4bに対して、外付けフレームOFを接合する工程である。 Next, in step S4, the main terminal board and the external frame provided with the relay terminals are joined. This is a process of joining the external frame OF to the frames 4a and 4b in which the power semiconductor element and the electrode plate have been joined, as shown in FIG. 23.
 外付けフレームOFは、重ね合わされたフレーム4aおよび4bの上にさらに重ね合わせられるように接合され、外付けフレームOFの輪郭を規定するフレーム本体OF0と、主端子板T1、T2およびT3と、中継端子RT1およびRT2を有して構成される。 The external frame OF is joined to the superimposed frames 4a and 4b so as to be further superimposed, and includes a frame main body OF0 defining the outline of the external frame OF, main terminal plates T1, T2, and T3, and a relay. It is configured with terminals RT1 and RT2.
 フレーム本体OF0は、平面視形状が矩形をなす枠組みであり、その一辺から内側に向けて、主端子板T1および中継端子RT1が延在するように設けられている。主端子板T1は電極板4a1の端部に接合される位置に設けられ、中継端子RT1は、パワー半導体素子1aに対向する位置に設けられている。 The frame body OF0 is a frame having a rectangular shape in plan view, and the main terminal plate T1 and the relay terminal RT1 are provided so as to extend inward from one side thereof. The main terminal plate T1 is provided at a position to be joined to the end of the electrode plate 4a1, and the relay terminal RT1 is provided at a position facing the power semiconductor element 1a.
 また、フレーム本体OF0の主端子板T1および中継端子RT1が延在する一辺とは反対側の一辺から内側に向けて、主端子板T2、T3および中継端子RT2が延在するように設けられている。主端子板T2は、電極板4b1の端部に接合される位置に設けられ、主端子板T3は、ヒートスプレッダ4b2の端部に接合される位置に設けられ、中継端子RT2は、パワー半導体素子1bに対向する位置に設けられている。 Further, the main terminal plates T2, T3 and the relay terminal RT2 are provided so as to extend inward from one side of the frame body OF0 opposite to the side on which the main terminal plate T1 and the relay terminal RT1 extend. There is. The main terminal plate T2 is provided at a position where it is joined to the end of the electrode plate 4b1, the main terminal board T3 is provided at a position where it is joined to the end of the heat spreader 4b2, and the relay terminal RT2 is connected to the power semiconductor element 1b. It is located opposite to the
 なお、外付けフレームOFと、フレーム4aおよび4bとの接合には、超音波(Ultrasonic:US)接合を用いることができる。また、ろう材を介した接合を用いることもできる。 Note that ultrasonic (US) bonding can be used to bond the external frame OF and the frames 4a and 4b. Furthermore, joining via a brazing material can also be used.
 次に、ステップS5において、ワイヤボンディングにより、中継端子とパワー半導体素子とを接続する。これは、図24に示すように、中継端子RT1とパワー半導体素子1aの制御端子とをワイヤWRにより接続し、 中継端子RT2とパワー半導体素子1bの制御端子とをワイヤWRにより接続する工程である。 Next, in step S5, the relay terminal and the power semiconductor element are connected by wire bonding. This is a step in which the relay terminal RT1 and the control terminal of the power semiconductor element 1a are connected by a wire WR, and the relay terminal RT2 and the control terminal of the power semiconductor element 1b are connected by a wire WR, as shown in FIG. .
 この後に、フレーム本体OF0およびフレーム本体4a0および4b0の不要部分をカットし、単相インバータ100の主要部分をモールド樹脂RGで封止することで、図1に示した単相インバータ100が得られる。 After this, unnecessary parts of the frame body OF0 and frame bodies 4a0 and 4b0 are cut, and the main parts of the single-phase inverter 100 are sealed with mold resin RG, thereby obtaining the single-phase inverter 100 shown in FIG. 1.
 <実施の形態7>
 次に、図25および図26を用いて、本開示に係る実施の形態7について説明する。図25は、フレーム4bとフレーム4aとを重ね合わせる途中の状態を示す平面図であり、図26は、フレーム4aとフレーム4bとを組み合わせた状態を示す平面図であり、実施の形態7の単相インバータ600の主要部を示している。
<Embodiment 7>
Next, Embodiment 7 according to the present disclosure will be described using FIGS. 25 and 26. FIG. 25 is a plan view showing a state where frames 4b and 4a are being overlapped, and FIG. 26 is a plan view showing a state where frames 4a and 4b are combined. Main parts of a phase inverter 600 are shown.
 図25において、フレーム4bは図2に示した実施の形態1と同じ形状であるが、フレーム4aは、フレーム本体4a0の一部が切欠かかれた切欠き部NPを有している。切欠き部NPは、フレーム4aとフレーム4bとを組み合わせた場合に、フレーム4bの電極板4b1の端部がフレーム本体4a0と係合する位置に設けられている。このため、フレーム4aとフレーム4bとを重ね合わせて接合する際に、フレーム本体4a0と電極板4b1の端部とが重ならずに接合が容易となる。 In FIG. 25, the frame 4b has the same shape as the first embodiment shown in FIG. 2, but the frame 4a has a notch NP in which a part of the frame body 4a0 is cut out. The notch NP is provided at a position where the end of the electrode plate 4b1 of the frame 4b engages with the frame body 4a0 when the frame 4a and the frame 4b are combined. Therefore, when the frame 4a and the frame 4b are overlapped and joined together, the end portions of the frame main body 4a0 and the electrode plate 4b1 do not overlap, which facilitates joining.
 <実施の形態8>
 次に、図27および図28を用いて、本開示に係る実施の形態8について説明する。図27は、フレーム4bとフレーム4aとを重ね合わせる途中の状態を示す平面図であり、図28は、フレーム4aとフレーム4bとを組み合わせた状態を示す平面図である。
<Embodiment 8>
Next, Embodiment 8 according to the present disclosure will be described using FIGS. 27 and 28. FIG. 27 is a plan view showing a state in which frames 4b and 4a are being overlapped, and FIG. 28 is a plan view showing a state in which frames 4a and 4b are combined.
 図27に示すように、フレーム4bのフレーム本体4b0は、電極板4b1とヒートスプレッダ4b2の配列に平行な左右方向の二辺に凸部CVを有している。凸部CVは、フレーム本体4b0の4箇所の角部に設けられ、フレーム4aが重ねられる側に突出している。 As shown in FIG. 27, the frame main body 4b0 of the frame 4b has convex portions CV on two sides in the left and right direction parallel to the arrangement of the electrode plate 4b1 and the heat spreader 4b2. The convex portions CV are provided at four corner portions of the frame main body 4b0, and protrude toward the side where the frame 4a is overlapped.
 一方、図27に示すように、フレーム4aのフレーム本体4a0は、電極板4a1とヒートスプレッダ4a2の配列に平行な左右方向の二辺に開口部OPを有している。開口部OPは、フレーム本体4a0の4箇所の角部に設けられ、図28に示されるように、フレーム4aをフレーム4b上に重ねた際に、凸部CVが開口部OPに挿入される位置に設けられている。このため、フレーム4aとフレーム4bとを重ね合わせる際の位置決め精度が向上する。 On the other hand, as shown in FIG. 27, the frame main body 4a0 of the frame 4a has openings OP on two sides in the left-right direction parallel to the arrangement of the electrode plate 4a1 and the heat spreader 4a2. The openings OP are provided at four corners of the frame main body 4a0, and as shown in FIG. 28, the convex portions CV are inserted into the openings OP when the frame 4a is stacked on the frame 4b. It is set in. Therefore, the positioning accuracy when overlapping the frames 4a and 4b is improved.
 <実施の形態9>
 次に、図29および図30用いて、本開示に係る実施の形態9について説明する。図29は、フレーム4bとフレーム4aとを重ね合わせる途中の状態を示す平面図であり、図30は、フレーム4aとフレーム4bとを組み合わせた状態を示す平面図である。
<Embodiment 9>
Next, a ninth embodiment of the present disclosure will be described using FIGS. 29 and 30. FIG. 29 is a plan view showing a state in which frames 4b and 4a are being overlapped, and FIG. 30 is a plan view showing a state in which frames 4a and 4b are combined.
 図29に示すように、フレーム4bのフレーム本体4b0は、電極板4b1とヒートスプレッダ4b2の配列に平行な左右方向の二辺に複数のディンプルDP2(第2のディンプル)を有している。複数のディンプルDP2は、左右方向の二辺において、各辺の延在方向に沿って1列に設けられている。 As shown in FIG. 29, the frame main body 4b0 of the frame 4b has a plurality of dimples DP2 (second dimples) on two sides in the left-right direction parallel to the arrangement of the electrode plate 4b1 and the heat spreader 4b2. The plurality of dimples DP2 are provided in one row along the extending direction of each side on the two sides in the left-right direction.
 同様に、フレーム4aのフレーム本体4a0においても、電極板4a1とヒートスプレッダ4a2の配列に平行な左右方向の二辺に複数のディンプルDP1(第1のディンプル)を有している。複数のディンプルDP1は、左右方向の二辺において、各辺の延在方向に沿って1列に設けられている。 Similarly, the frame main body 4a0 of the frame 4a also has a plurality of dimples DP1 (first dimples) on two sides in the left and right direction parallel to the arrangement of the electrode plate 4a1 and the heat spreader 4a2. The plurality of dimples DP1 are provided in one row along the extending direction of each side on the two sides in the left-right direction.
 フレーム4aおよび4bの複数のディンプルDP1およびDP2は、フレーム4aをフレーム4b上に重ねた際に、図30に示されるように、互いに重なり合う位置に同じ方向に凹むように設けられている。このため、フレーム4aとフレーム4bとを重ね合わせる際の位置決め精度が向上する。 The plurality of dimples DP1 and DP2 of the frames 4a and 4b are provided so as to be recessed in the same direction at the positions where they overlap with each other, as shown in FIG. 30, when the frame 4a is stacked on the frame 4b. Therefore, the positioning accuracy when overlapping the frames 4a and 4b is improved.
 <実施の形態10>
 次に、図31および図32を用いて、本開示に係る実施の形態10について説明する。図31は、フレーム4aとフレーム4bとを重ね合わされ、パワー半導体素子上のろう材で電極板を接合する状態を説明する断面図であり、実施の形態1で説明した図5に相当する断面図であり、実施の形態6において図19に示したフローチャートのステップS3における工夫を説明する図である。
<Embodiment 10>
Next, Embodiment 10 according to the present disclosure will be described using FIGS. 31 and 32. FIG. 31 is a sectional view illustrating a state in which frames 4a and 4b are overlapped and electrode plates are bonded using a brazing material on a power semiconductor element, and is a sectional view corresponding to FIG. 5 described in Embodiment 1. This is a diagram illustrating an improvement in step S3 of the flowchart shown in FIG. 19 in the sixth embodiment.
 図31に示されるように、重ね合わされたフレーム4aおよび4bは、固定治具JGにより固定された状態で、ろう材を溶融させる工程が実施される。固定治具JGは、重ね合わされたフレーム4aおよび4bの下側、すなわちヒートスプレッダ4a2側に配置される下側固定治具JDと、重ね合わされたフレーム4aおよび4bの上側、すなわち電極板4b1側に配置される上側固定治具JUとで構成される。 As shown in FIG. 31, the overlapping frames 4a and 4b are fixed by the fixing jig JG, and the step of melting the brazing material is carried out. The fixing jig JG is a lower fixing jig JD arranged below the superimposed frames 4a and 4b, that is, on the heat spreader 4a2 side, and the lower fixing jig JD is arranged above the superimposed frames 4a and 4b, that is, on the electrode plate 4b1 side. It consists of an upper fixing jig JU.
 図31に示されるように、下側固定治具JDと上側固定治具JUとで、重ね合わされたフレーム4aおよび4bを挟み込むことで、ろう材の溶融時にフレーム4aおよび4bがずれることを防止すると共に、電極板の位置決め精度が向上する。 As shown in FIG. 31, by sandwiching the overlapping frames 4a and 4b between the lower fixing jig JD and the upper fixing jig JU, the frames 4a and 4b are prevented from shifting when the brazing material is melted. At the same time, the positioning accuracy of the electrode plate is improved.
 図31では、重ね合わされたフレーム4aおよび4bの全体が固定治具JGで挟み込まれる構成を示したが、これに限定されるものではなく、フレームの一部だけを挟み込む構成とすることもできる。 Although FIG. 31 shows a configuration in which the entire superimposed frames 4a and 4b are sandwiched between the fixing jigs JG, the structure is not limited to this, and a configuration in which only part of the frames is sandwiched is also possible.
 図32は、フレームの一部だけを挟み込む固定治具JGを示す平面図である。図32においては、重ね合わされたフレーム4aおよび4bの左右のフレーム本体が下側固定治具JDと上側固定治具JUとで挟み込まれる構成を示している。上側固定治具JUは、重ね合わされたフレーム4aおよび4bの左右のフレーム本体の上だけに配置されている。このような固定治具JGを用いる場合は、固定治具JGで重ね合わされたフレーム4aおよび4bを挟んだまま、次のワイヤボンディング工程に進むことも可能となる。 FIG. 32 is a plan view showing a fixing jig JG that holds only part of the frame. FIG. 32 shows a configuration in which the left and right frame bodies of the superimposed frames 4a and 4b are sandwiched between a lower fixing jig JD and an upper fixing jig JU. The upper fixing jig JU is arranged only on the left and right frame bodies of the superimposed frames 4a and 4b. When such a fixing jig JG is used, it is also possible to proceed to the next wire bonding step with the overlapping frames 4a and 4b sandwiched between the fixing jig JG.
 なお、固定治具JGの材質としては、ろう材の溶融時の温度に耐えられ、変形の少ないカーボン等が挙げられる。 Note that the material of the fixing jig JG includes carbon, which can withstand the temperature during melting of the brazing filler metal and has little deformation.
 <パワー半導体素子の半導体材料>
 パワー半導体素子1a、1b、11aおよび11bは、珪素(Si)を用いた珪素半導体素子に限定されず、炭化珪素(SiC)を用いた炭化珪素半導体素子および窒化ガリウム(GaN)を用いた窒化ガリウム半導体素子などのワイドバンドギャップ半導体素子を用いることができる。ワイドバンドギャップ半導体素子は、珪素半導体素子と比較して、小型化が可能で、耐圧性に優れ、許容電流密度も高く、また耐熱性も高いため高温動作も可能であり、高効率化も見込める。
<Semiconductor materials for power semiconductor devices>
The power semiconductor devices 1a, 1b, 11a and 11b are not limited to silicon semiconductor devices using silicon (Si), but include silicon carbide semiconductor devices using silicon carbide (SiC) and gallium nitride using gallium nitride (GaN). Wide bandgap semiconductor devices such as semiconductor devices can be used. Compared to silicon semiconductor devices, wide bandgap semiconductor devices can be made smaller, have superior voltage resistance, have a higher allowable current density, and have high heat resistance, so they can operate at high temperatures and are expected to be highly efficient. .
 <変形例>
 以上説明した実施の形態1~10では、単相インバータに本開示を適用する構成を示したが、これに限定されず、単相インバータを3相分組み合わせた3相インバータに適用することもでき、電力回生用のコンバータに適用することもできる。
<Modified example>
In the first to tenth embodiments described above, the present disclosure is applied to a single-phase inverter, but the present disclosure is not limited to this, and the present disclosure can also be applied to a three-phase inverter that combines three phases of a single-phase inverter. , it can also be applied to converters for power regeneration.
 なお、本開示は、その開示の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 Note that within the scope of the disclosure, the embodiments of the present disclosure can be freely combined, or the embodiments can be modified or omitted as appropriate.
 本開示は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、この開示がそれに限定されるものではない。例示されていない無数の変形例が、この開示の範囲から外れることなく想定され得るものと解される。 Although the present disclosure has been described in detail, the above description is illustrative in all aspects, and this disclosure is not limited thereto. It is understood that countless variations not illustrated can be envisioned without departing from the scope of this disclosure.

Claims (15)

  1.  第1の半導体素子を搭載する第1のヒートスプレッダと、
     前記第1のヒートスプレッダとは傾斜を有する屈曲部で繋がる第1の電極板と、
     第2の半導体素子を搭載する第2のヒートスプレッダと、
     前記第2のヒートスプレッダとは段差を有して設けられた第2の電極板と、を備え、
     前記第1の電極板は、前記第1のヒートスプレッダよりも高い位置に配置され、
     前記第2の電極板は、前記第2のヒートスプレッダよりも高い位置に配置され、
     前記第1の電極板と前記第2の電極板は同じ高さに配置され、
     前記第1のヒートスプレッダと前記第2のヒートスプレッダは同じ高さに配置され、
     前記第2の電極板は、前記第1のヒートスプレッダの上方に配置され、
     前記第1の電極板は、前記第2のヒートスプレッダの上方に配置され、
     前記第1の半導体素子は、前記第1のヒートスプレッダと前記第2の電極板とに接合され、
     前記第2の半導体素子は、前記第2のヒートスプレッダと前記第1の電極板とに接合される、半導体装置。
    a first heat spreader mounting a first semiconductor element;
    The first heat spreader includes a first electrode plate connected to the first heat spreader by a bent portion having an inclination;
    a second heat spreader mounting a second semiconductor element;
    The second heat spreader includes a second electrode plate provided with a step,
    the first electrode plate is located at a higher position than the first heat spreader,
    the second electrode plate is arranged at a higher position than the second heat spreader,
    the first electrode plate and the second electrode plate are arranged at the same height,
    the first heat spreader and the second heat spreader are arranged at the same height;
    the second electrode plate is arranged above the first heat spreader,
    the first electrode plate is arranged above the second heat spreader,
    the first semiconductor element is joined to the first heat spreader and the second electrode plate,
    In the semiconductor device, the second semiconductor element is joined to the second heat spreader and the first electrode plate.
  2.  前記第1のヒートスプレッダと前記第1の電極板とは平面視で並列な位置関係にあり、 前記屈曲部は、前記第1のヒートスプレッダの前記第1の電極板に対向する一辺の全体に沿って設けられる、請求項1記載の半導体装置。 The first heat spreader and the first electrode plate are in a parallel positional relationship in a plan view, and the bent portion extends along the entire side of the first heat spreader facing the first electrode plate. The semiconductor device according to claim 1 , wherein the semiconductor device is provided with a semiconductor device.
  3.  前記第1のヒートスプレッダと前記第1の電極板とは平面視で並列な位置関係にあり、 前記屈曲部は、前記第1のヒートスプレッダの前記第1の電極板に対向する一辺の一部に設けられ、前記第1のヒートスプレッダと前記第1の電極板との間にスリットを形成する、請求項1記載の半導体装置。 The first heat spreader and the first electrode plate are in a parallel positional relationship in a plan view, and the bent portion is provided on a part of one side of the first heat spreader facing the first electrode plate. 2. The semiconductor device according to claim 1, wherein a slit is formed between the first heat spreader and the first electrode plate.
  4.  前記第1のヒートスプレッダと前記第1の電極板とは平面視で並列な位置関係にあり、 前記屈曲部は、前記第1のヒートスプレッダの前記第1の電極板に対向する一辺の互いに離れた第1の部分と第2の部分とに設けられ、前記第1のヒートスプレッダと前記第1の電極板との間に開口部を形成する、請求項1記載の半導体装置。 The first heat spreader and the first electrode plate are in a parallel positional relationship in a plan view, and the bent portion is located at a second portion of the first heat spreader that is spaced apart from one another on one side facing the first electrode plate. 2. The semiconductor device according to claim 1, wherein an opening is provided in a first portion and a second portion, and an opening is formed between the first heat spreader and the first electrode plate.
  5.  前記第1のヒートスプレッダと前記第1の電極板とは平面視で並列な位置関係にあり、 前記第1のヒートスプレッダに平面視で並列するように設けられた複数の第1の中継端子をさらに備え、
     前記第1の半導体素子は、前記第1のヒートスプレッダ上において、前記複数の第1の中継端子寄りの位置に配置され、
     前記第2のヒートスプレッダと前記第2の電極板とは平面視で並列な位置関係にあり、 前記第2のヒートスプレッダに平面視で並列するように設けられた複数の第2の中継端子をさらに備え、
     前記第2の半導体素子は、前記第2のヒートスプレッダ上において、前記複数の第2の中継端子寄りの位置に配置される、請求項1記載の半導体装置。
    The first heat spreader and the first electrode plate are in a parallel positional relationship in a plan view, and further includes a plurality of first relay terminals provided in parallel to the first heat spreader in a plan view. ,
    The first semiconductor element is arranged on the first heat spreader at a position closer to the plurality of first relay terminals,
    The second heat spreader and the second electrode plate are in a parallel positional relationship in a plan view, and further includes a plurality of second relay terminals provided in parallel to the second heat spreader in a plan view. ,
    2. The semiconductor device according to claim 1, wherein the second semiconductor element is arranged on the second heat spreader at a position closer to the plurality of second relay terminals.
  6.  前記第1および第2の半導体素子は、IGBTまたはMOSFETである、請求項5記載の半導体装置。 The semiconductor device according to claim 5, wherein the first and second semiconductor elements are IGBTs or MOSFETs.
  7.  前記第1のヒートスプレッダは、
     前記第1の半導体素子を搭載する部分に、前記第1の半導体素子の平面視での大きさに合わせた第1の溝を有し、
     前記第2のヒートスプレッダは、
     前記第2の半導体素子を搭載する部分に、前記第2の半導体素子の平面視での大きさに合わせた第2の溝を有する、請求項1記載の半導体装置。
    The first heat spreader is
    having a first groove matching the size of the first semiconductor element in a plan view in a portion where the first semiconductor element is mounted;
    The second heat spreader is
    2. The semiconductor device according to claim 1, wherein a portion on which the second semiconductor element is mounted has a second groove that matches the size of the second semiconductor element in a plan view.
  8.  前記第1のヒートスプレッダは、
     前記第1の半導体素子を搭載する部分に、平面視で前記第1の半導体素子の外側となる位置に設けた複数の第1の突起部を有し、
     前記第2のヒートスプレッダは、
     前記第2の半導体素子を搭載する部分に、平面視で前記第1の半導体素子の外側となる位置に設けた複数の第2の突起部を有する、請求項1記載の半導体装置。
    The first heat spreader is
    A portion on which the first semiconductor element is mounted has a plurality of first protrusions provided at positions outside the first semiconductor element in a plan view,
    The second heat spreader is
    2. The semiconductor device according to claim 1, wherein the portion on which the second semiconductor element is mounted has a plurality of second protrusions provided at positions outside the first semiconductor element in plan view.
  9.  前記第1の半導体素子は、炭化珪素半導体素子である、請求項1記載の半導体装置。 The semiconductor device according to claim 1, wherein the first semiconductor element is a silicon carbide semiconductor element.
  10.  第1の半導体素子が接合された第1のヒートスプレッダと、
     前記第1のヒートスプレッダとは傾斜を有する屈曲部で繋がる第1の電極板とを有する第1のフレームと、
     第2の半導体素子が接合された第2のヒートスプレッダと、前記第2のヒートスプレッダとは段差を有して設けられた第2の電極板とを有する第2のフレームと、を用いた半導体装置の製造方法であって、
     前記第1の電極板は、前記第1のヒートスプレッダよりも高い位置に配置され、
     前記第2の電極板は、前記第2のヒートスプレッダよりも高い位置に配置され、
     前記第1の電極板と前記第2の電極板は同じ高さに配置され、
     前記第1のヒートスプレッダと前記第2のヒートスプレッダは同じ高さに配置され、
     前記第2の電極板は、前記第1のヒートスプレッダの上方に配置され、
     前記第1の電極板は、前記第2のヒートスプレッダの上方に配置され、
     (a)前記第1の半導体素子が、前記第1のヒートスプレッダと前記第2の電極板との間に挟まれ、前記第2の半導体素子が、前記第2のヒートスプレッダと前記第1の電極板との間に挟まれるように前記第1のフレームと前記第2のフレームとを重ね合わせる工程と、
     (b)前記第1の半導体素子と前記第2の電極板との間に配置した第1のろう材と、 前記第2の半導体素子と前記第1の電極板との間に配置した第2のろう材と、を溶融させて、前記第1の半導体素子を前記第2の電極板に接合し、前記第2の半導体素子を前記第1の電極板に接合する工程と、を備える、半導体装置の製造方法。
    a first heat spreader to which a first semiconductor element is bonded;
    a first frame having a first electrode plate connected to the first heat spreader by an inclined bent portion;
    A semiconductor device using a second frame having a second heat spreader to which a second semiconductor element is bonded, and a second electrode plate provided with a step on the second heat spreader. A manufacturing method,
    the first electrode plate is located at a higher position than the first heat spreader,
    the second electrode plate is arranged at a higher position than the second heat spreader,
    the first electrode plate and the second electrode plate are arranged at the same height,
    the first heat spreader and the second heat spreader are arranged at the same height;
    the second electrode plate is arranged above the first heat spreader,
    the first electrode plate is arranged above the second heat spreader,
    (a) The first semiconductor element is sandwiched between the first heat spreader and the second electrode plate, and the second semiconductor element is sandwiched between the second heat spreader and the first electrode plate. overlapping the first frame and the second frame so as to be sandwiched between them;
    (b) a first brazing material disposed between the first semiconductor element and the second electrode plate; and a second brazing material disposed between the second semiconductor element and the first electrode plate. melting a brazing material, joining the first semiconductor element to the second electrode plate, and joining the second semiconductor element to the first electrode plate. Method of manufacturing the device.
  11.  前記第1のフレームは、
     前記第1のフレームと前記第2のフレームとを重ね合わせた場合に、前記第2の電極板と接触する部分に切欠き部を有する、請求項10記載の半導体装置の製造方法。
    The first frame is
    11. The method of manufacturing a semiconductor device according to claim 10, further comprising a cutout portion in a portion that contacts the second electrode plate when the first frame and the second frame are overlapped.
  12.  前記第2のフレームは、複数の凸部を有し、
     前記第1のフレームは、
     前記第2のフレームの前記複数の凸部に対応する位置に設けられた複数の開口部を有し、
     前記工程(a)は、
     前記複数の開口部に前記複数の凸部が挿入されるように前記第1のフレームと前記第2のフレームとを重ね合わせる、請求項10記載の半導体装置の製造方法。
    The second frame has a plurality of protrusions,
    The first frame is
    a plurality of openings provided at positions corresponding to the plurality of convex portions of the second frame;
    The step (a) includes:
    11. The method of manufacturing a semiconductor device according to claim 10, wherein the first frame and the second frame are overlapped so that the plurality of convex portions are inserted into the plurality of openings.
  13.  前記第2のフレームは、複数の第2のディンプルを有し、
     前記第1のフレームは、
     前記第2のフレームの前記複数の第2のディンプルに対応する位置に設けられた複数の第1のディンプルを有し
     前記工程(a)は、
     前記複数の第1のディンプルと前記複数の第2のディンプルとが重なり合うように前記第1のフレームと前記第2のフレームとを重ね合わせる、請求項10記載の半導体装置の製造方法。
    the second frame has a plurality of second dimples;
    The first frame includes:
    The second frame has a plurality of first dimples provided at positions corresponding to the plurality of second dimples, and the step (a)
    The method for manufacturing a semiconductor device according to claim 10 , further comprising overlapping said first frame and said second frame so that said plurality of first dimples and said plurality of second dimples overlap each other.
  14.  前記工程(b)は、
     重ね合わされた前記第1および第2のフレームの上下を固定治具を用いて押さえる工程を含む、請求項10記載の半導体装置の製造方法。
    The step (b) includes:
    11. The method of manufacturing a semiconductor device according to claim 10, further comprising the step of pressing the top and bottom of the superimposed first and second frames using a fixing jig.
  15.  前記第1および第2のフレームは、
     外形サイズが同じサイズで構成される、請求項10記載の半導体装置の製造方法。
    The first and second frames are
    11. The method of manufacturing a semiconductor device according to claim 10, wherein the semiconductor devices have the same external size.
PCT/JP2022/034364 2022-09-14 2022-09-14 Semiconductor device and semiconductor device manufacturing method WO2024057432A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034364 WO2024057432A1 (en) 2022-09-14 2022-09-14 Semiconductor device and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034364 WO2024057432A1 (en) 2022-09-14 2022-09-14 Semiconductor device and semiconductor device manufacturing method

Publications (1)

Publication Number Publication Date
WO2024057432A1 true WO2024057432A1 (en) 2024-03-21

Family

ID=90274572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034364 WO2024057432A1 (en) 2022-09-14 2022-09-14 Semiconductor device and semiconductor device manufacturing method

Country Status (1)

Country Link
WO (1) WO2024057432A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274309A (en) * 2000-03-24 2001-10-05 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP2004079760A (en) * 2002-08-19 2004-03-11 Nec Electronics Corp Semiconductor device and its assembling method
JP2005228825A (en) * 2004-02-10 2005-08-25 Sumitomo Electric Ind Ltd Power semiconductor device
JP2011100855A (en) * 2009-11-06 2011-05-19 Mitsubishi Electric Corp Power semiconductor device
JP2015130465A (en) * 2013-12-06 2015-07-16 トヨタ自動車株式会社 semiconductor device
JP2017028105A (en) * 2015-07-22 2017-02-02 トヨタ自動車株式会社 Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274309A (en) * 2000-03-24 2001-10-05 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP2004079760A (en) * 2002-08-19 2004-03-11 Nec Electronics Corp Semiconductor device and its assembling method
JP2005228825A (en) * 2004-02-10 2005-08-25 Sumitomo Electric Ind Ltd Power semiconductor device
JP2011100855A (en) * 2009-11-06 2011-05-19 Mitsubishi Electric Corp Power semiconductor device
JP2015130465A (en) * 2013-12-06 2015-07-16 トヨタ自動車株式会社 semiconductor device
JP2017028105A (en) * 2015-07-22 2017-02-02 トヨタ自動車株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
US9312192B2 (en) Semiconductor device
JP7204770B2 (en) Double-sided cooling power module and manufacturing method thereof
JP4192396B2 (en) Semiconductor switching module and semiconductor device using the same
JP6750514B2 (en) Semiconductor device
US20140367736A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP5895933B2 (en) Power module
US9431326B2 (en) Semiconductor device and manufacturing method thereof
WO2013021647A1 (en) Semiconductor module, semiconductor device provided with semiconductor module, and method for manufacturing semiconductor module
JP7159620B2 (en) Semiconductor devices, cooling modules, power converters and electric vehicles
US20150223339A1 (en) Semiconductor device
US10720383B2 (en) Semiconductor device configuring upper and lower arms including auxiliary terminals
US9437508B2 (en) Method for manufacturing semiconductor device and semiconductor device
CN111146160A (en) Semiconductor module and vehicle
US11335660B2 (en) Semiconductor module
WO2024057432A1 (en) Semiconductor device and semiconductor device manufacturing method
JP2019083292A (en) Semiconductor device
US10903138B2 (en) Semiconductor device and method of manufacturing the same
US20240170454A1 (en) Semiconductor device
US11417634B2 (en) Semiconductor module having an N terminal, A P terminal and an output terminal and method of fabricating the semiconductor module
US20240071876A1 (en) Semiconductor module, power converter, and power converter manufacturing method
WO2023100980A1 (en) Semiconductor module, power conversion device, and method for producing power conversion device
JP6647187B2 (en) Power module and method of manufacturing the same
CN116913904A (en) Semiconductor module
JP2014183150A (en) Semiconductor device
JP2024018064A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958761

Country of ref document: EP

Kind code of ref document: A1