WO2024057426A1 - Specimen analysis device - Google Patents

Specimen analysis device Download PDF

Info

Publication number
WO2024057426A1
WO2024057426A1 PCT/JP2022/034311 JP2022034311W WO2024057426A1 WO 2024057426 A1 WO2024057426 A1 WO 2024057426A1 JP 2022034311 W JP2022034311 W JP 2022034311W WO 2024057426 A1 WO2024057426 A1 WO 2024057426A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sample container
sample
cold air
air
Prior art date
Application number
PCT/JP2022/034311
Other languages
French (fr)
Japanese (ja)
Inventor
忠雄 藪原
仁 松村
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2022/034311 priority Critical patent/WO2024057426A1/en
Publication of WO2024057426A1 publication Critical patent/WO2024057426A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control

Definitions

  • the present invention relates to a sample analyzer that analyzes a sample.
  • the state of culture of cells or bacteria is tested based on the turbidity of samples containing cells or bacteria.
  • cell culture and bacterial culture microwell plates, petri dishes, etc. are used as sample containers.
  • a pretreated specimen, nutrients, etc. are dispensed or applied into a specimen container, and the specimen is cultured (for example, in a 35° C. environment).
  • the specimen in the specimen container is repeatedly cultured and observed over a long period of time, and during observation, morphological changes in the specimen are quantified by image analysis or turbidity, and results are output according to the quantitative value or the amount of change over time.
  • the sample container will be placed inside the device for a long time. Since the inside of the sample container becomes saturated due to evaporation of the culture solution, there is a possibility that condensation may occur on the interface between the sample container and the sample container lid.
  • an inspection device transmission observation
  • optical observation that performs optical observation of a specimen inside a specimen container from outside the specimen container, if condensation occurs on the intervening surface of a transparent member such as a lid on the top of the specimen container, light refraction may occur. This leads to deterioration of contrast and decrease in light intensity, making it difficult to accurately observe changes in the state of the specimen, leading to erroneous determination of measurement results.
  • Patent Document 1 describes temperature control when observing a specimen with a microscope. This document discloses a technique for blowing warm air onto the upper part of the observation plate in order to prevent dew condensation from occurring on the inner surface of the observation plate lid.
  • the sample analyzer places sample containers containing samples (cells, bacteria, etc.) in each of a plurality of storage chambers, and periodically observes the samples while cultivating them. If condensation occurs on the inside of the lid of the sample container, the amount of observation light may decrease due to the condensation, and measurement accuracy may decrease. Therefore, a mechanism to prevent condensation is necessary. For example, as in Patent Document 1, it is conceivable to supply warm air to the sample container.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to accurately control the temperature inside each storage chamber in a sample analyzer in which a plurality of storage chambers each store a sample container.
  • the sample analyzer according to the present invention generates cold air so that the temperature of the lower part of the sample container is lower than the temperature of the sample container lid.
  • the temperature of each storage chamber can be controlled with high accuracy.
  • Other configurations, problems, effects, etc. of the present invention will become clear from the description of the embodiments below.
  • FIG. 1 shows a schematic diagram of the overall configuration of an analyzer 0001 according to Embodiment 1.
  • FIG. An example of the configuration of the storage section 0003 is shown.
  • An example of the shape of the air volume adjusting member 2116 and the air outlet 2113 is shown.
  • Another example of the configuration of the air volume adjustment material 2116 is shown.
  • An example of the configuration of a storage unit 0003 included in the analysis device 0001 according to the second embodiment is shown.
  • Another example of the configuration of the storage section 0003 is shown.
  • Another example of the configuration of the storage section 0003 is shown.
  • Another example of the configuration of the storage section 0003 is shown.
  • Another example of the configuration of the storage section 0003 is shown.
  • 2 is a flowchart illustrating a procedure in which the calculation unit 11 controls the temperature of each part of the analyzer 0001.
  • 2 is a flowchart illustrating a procedure in which the calculation unit 11 controls the temperature of each part of the analyzer 0001.
  • FIG. 1 shows a schematic diagram of the overall configuration of an analyzer 0001 according to Embodiment 1 of the present invention.
  • the analyzer 0001 includes a carry-in/out section 0002, a storage section 0003, a transport section 0004, a detection section 0005, and a temperature control section 0006.
  • the calculation unit 11, the storage unit 12, and the monitor 13 can be provided outside the analysis device 0001, or can be provided inside the analysis device 0001.
  • the sample container 0007 has two parts: a sample container lower part 2110 and a sample container lid 2112, which will be described later.
  • the lower part of the sample container 2110 is a container having a plurality of wells such as 96 wells and 384 wells, and a sample 2111 is placed in each well. Examples of specimens include biological specimens such as cells, blood, urine, bacteria, and tissue pieces.
  • the sample container lid 2112 may be a seal, and the sample container lower portion 2110 may be a single well.
  • the storage unit 0003 has multiple stages of sample container storage chambers 2003 that accommodate sample containers 0007.
  • the analyzer 0001 may have a plurality of storage units 0003. Details of the storage section 0003 will be described later.
  • the transport unit 0004 includes an actuator 1001, an actuator 1002, a sample container holding unit 1003, and a ball screw or belt mechanism (not shown).
  • the sample container holder 1003 is moved in the vertical direction by an actuator 1001 and moved in the depth direction by an actuator 1002 via a ball screw or a belt mechanism.
  • the sample container holding section 1003 can receive and deliver sample containers 0007 from the loading/unloading section 0002, the storage section 0003, and the measuring section 1005.
  • the measurement unit 1005 in the measurement unit 1004 receives the sample container 0007 from the sample container holding unit 1003, and measures the culture state of the sample 2111 in each well of the sample container 0007.
  • Measurement methods include turbidity measurement, absorbance measurement, fluorescence measurement, and image analysis.
  • the temperature control unit 0006 includes a heat source 1006, a heat sink 1007, and a fan 1008. Heat from a heat source 1006 via a heat sink 1007 is supplied into the apparatus by air from a fan 1008. As a heat source, a heater, Peltier, or the like is used to heat or cool the temperature inside the analyzer 0001. Aluminum, copper, iron, stainless steel, etc. can be used for the heat sink (radiator). The temperature control unit 0006 has the role of warming the entire analyzer 0001 so that dew condensation, which will be described later, does not occur when the sample container 0007 is removed from the storage unit 0003.
  • the analyzer 0001 When the analyzer 0001 is started, the user can install the sample container 0007 in the loading/unloading section 0002. After installation, the sample container 0007 in the loading/unloading section 0002 is transported to the measurement section 1005 of the measurement unit 1004 via the transportation section 0004. The measurement unit 1005 measures the culture state of the specimen 2111 in the specimen container 0007. The sample container 0007 after measurement is transported to the storage section 0003 via the transport section 0004. The sample measurement cycle is repeated, for example, at intervals of 20 to 30 minutes for a maximum of 18 hours. The analyzer 0001 sends the amount of change in the culture state of the specimen 2111 over time to the calculation unit 11. The calculation unit 11 outputs the measurement result estimated from the amount of change to the monitor 13 or the like.
  • the sample container 0007 is transported to the carry-in/out section 0002 via the transport section 0004.
  • the user installs the sample container 0007 in the carry-in/out section 0002, but the structure may be such that the carry-in/out section 0002 is eliminated and the user directly installs the sample container 0007 in the storage section 0003.
  • the sample container 0007 includes the sample container lower part 2110 and the sample container lid 2112. A sample 2111 is placed in each well in the lower part 2110 of the sample container.
  • the thermal energy supplied to the specimen 2111 in the specimen container lower part 2110 from the material, air, etc. on the lower surface of the specimen container lower part 2110 is higher than the thermal energy supplied to the specimen container lid 2112.
  • the height increases, it causes dew condensation to occur on the interface between the sample container lower part 2110 and the sample container lid 2112.
  • FIG. 2 shows an example of the configuration of the storage section 0003.
  • the storage section 0003 includes a storage unit 2001 and a temperature control section 2002.
  • the storage unit 2001 includes a sample container storage chamber 2003, a fan 2107, a duct 2108, and an air volume adjustment member 2116.
  • the storage unit 0003 has multiple stages of sample container storage chambers 2003, and each sample container storage chamber 2003 stores a sample container 0007, respectively.
  • the sample container storage chambers 2003 have six stages, but the number of stages may be increased or decreased, or the storage chambers may be arranged horizontally.
  • the sample container storage chamber 2003 is surrounded by a heat insulating material 2109, an air volume adjusting material 2116, a heat insulating material 2114, a metal material 2115 on the side surface, a metal material 2117 on the top surface, and a metal material 2118 on the bottom surface.
  • the air volume adjusting member 2116 includes an air outlet 2113.
  • Metal materials include aluminum, stainless steel, copper, iron, titanium, etc.
  • insulation materials include glass wool, cellulose fiber, insulation board, wool insulation, rock wool, rigid urethane foam, beaded polystyrene foam, and phenol. Examples include, but are not limited to, forms.
  • Resin may be used as the heat insulating material. Examples of the resin include, but are not limited to, nylon, POM, PEEK, PPS, PTFE, PVC, PE, PP, PS, and ABS.
  • the temperature control unit 2002 includes a cold source 2101, a heat sink 2102, a temperature sensor 2104, a fan 2103, a heat sink 2105, and a fan 2106. Thermal energy of the cold source 2101 via the heat sink 2102 is supplied to the storage unit 2001 by wind from the fan 2103.
  • a heater, chiller, Peltier, etc. can be used as the cold heat source 2101.
  • a temperature sensor 2104 attached to a heat sink 2102 controls the heating or cooling temperature.
  • the heat sink heat sink, heat sink
  • aluminum, copper, iron, stainless steel, etc. can be used as the heat sink (heat sink, heat sink), aluminum, copper, iron, stainless steel, etc. can be used.
  • the temperature sensor 2104 uses a thermistor, a platinum resistor, an IC chip, a thermocouple, or the like, and may be installed not only in the heat sink 2102 but also in the installation space of the temperature control section, inside the duct 2108, etc.
  • the heat sink 2105 and the fan 2106 are configured assuming a Peltier, and serve as the heat radiation side of the Peltier.
  • the heat sink 2105 on the heat radiation side may be installed inside the casing of the analyzer 0001 and used as an auxiliary heat source for controlling the temperature inside the apparatus. If temperature control is difficult, a heat sink 2105 may be installed in an external space (examination room, laboratory, etc.) of the analyzer 0001 to discharge heat to the outside of the apparatus.
  • the cold air controlled by the temperature controller 2002 is supplied into the duct 2108 via the fan 2107.
  • the cold air supplied to the duct 2108 is supplied to the lower surface of the lower part of the sample container 2110 through the outlet 2113 of the sample container storage chamber 2003.
  • the specimen 2111 is, for example, a bacterium, its growth is affected at temperatures above 36°C, and for some bacterial species, culture slows down at temperatures below 34°C. According to this configuration, it is possible to control the temperatures of the temperature control section 0006 and the temperature control section 2002 at a temperature at which the temperature of the storage unit 2001 does not affect the culture of the specimen 2111 (for example, 35 ⁇ 1° C.).
  • the air outlet 2113 is located between the bottom surface of the lower sample container 2110 and the top surface of the heat insulating material 2114 in the vertical direction, so that the temperature of the bottom surface of the lower sample container 2110 can reach the target temperature, and in the horizontal direction. It is desirable to arrange it between the left and right heat insulators 2109.
  • the cold air supplied from the duct 2108 at each stage is not supplied from above the sample container lower part 2110 of each stage.
  • the relationship may be such that "air volume at the bottom of the sample container 0007>air volume at the top ⁇ 0" such that "temperature of the sample container lid 2112>temperature of the lower part of the sample container 2110". Warm air may flow from the bottom of the sample container 0007 to the top.
  • the temperature sensor 1009 that controls the temperature control unit 0006 is preferably located at a position where it can relatively measure the temperature of the sample container lid 2112 or the space in its vicinity. Further, the temperature sensor 1009 may be placed at any position as long as a correlation with the temperature of the sample container lid 2112 in the storage section can be obtained. For example, it may be located in or near the heat sink 1007 or near the sample container lid 2112. The position and number of temperature sensors 1009 are not limited.
  • the temperature sensor 2104 that controls the temperature control unit 2002 is preferably located at a position where it can relatively measure the temperature of the lower part of the sample container 2110 or the space in its vicinity. Further, the temperature sensor 2104 may be placed at any position as long as a correlation with the temperature of the lower part of the sample container 2110 in the storage section can be obtained. For example, it may be located within or near the heat sink 2102 or near the lower portion of the sample container 2110. It may be located inside the temperature control unit 2002, inside the duct 2108, in a space near the air volume adjustment member 2119 (described later), etc. The position and number of temperature sensors 2104 are not limited.
  • FIG. 3 shows an example of the shape of the air volume adjusting member 2116 and the air outlet 2113.
  • the air volume adjusting member 2116 has an air outlet 2113.
  • the air outlet 2113 may be a square hole, an oval or circular hole, a porous hole, or the like. In other words, it is only necessary to limit the amount of air flowing into the storage chamber.
  • the air volume adjustment material 2116 makes the air volume blown from the lower air outlet 2113 and the air volume blown from the upper air outlet 2113 uniform, and the sample 2111 in the sample container 0007 installed in the sample container storage chamber 2003 is evaporated.
  • the amount becomes uniform from the upper stage to the lower stage (variations in the amount of evaporation are suppressed).
  • By suppressing fluctuations in the amount of evaporation it is possible to suppress changes in the concentration of culture fluids, drugs, etc., and fluctuations in the culture state of specimens, thereby reducing the risk of misjudgment of test results.
  • FIG. 4 shows another example of the configuration of the air volume adjusting member 2116.
  • the air volume adjusting material 2116 may have a circular punched metal or a mesh-like part, but if the aperture ratio can be controlled, it may be a continuous porous material, a honeycomb structure, a material cut out in a square shape, etc. But that's fine.
  • each stage is set so that the air volume at the bottom > the air volume at the top ⁇ 0 within the range where the temperature of the sample container lid 2112 > the temperature of the lower sample container 2110 is satisfied. It is desirable that the upper part has no or few holes.
  • the air volume adjusting material 2116 in each stage may be the same or may have a different shape for each stage.
  • a member having holes may be combined with another member having holes. That is, the combination of size/number/arrangement of the openings may be adjusted so that the air volume below the sample container lid 2112 is larger than the air volume above the specimen container lid 2112.
  • the purpose of the heat insulating material 2114 is to reduce the loss of thermal energy of the cold air supplied to the entire bottom surface of the lower sample container 2110 and to prevent the temperature of the metal material 2118 near the lower sample container lid 2112 from decreasing. However, if there is a sufficient temperature difference between the upper and lower surfaces of the sample container 0007, the heat insulating material 2114 may be omitted.
  • the analyzer 0001 adjusts the air volume so that cold air that makes the temperature of the sample container lid 2112 higher than the temperature of the lower part 2110 of the sample container is uniformly supplied to each sample container storage chamber 2003.
  • a material 2116 is provided.
  • the analyzer 0001 can accurately control the temperature of the specimen 2111 by combining the warm air supplied by the temperature control unit 0006 and the cold air supplied by the temperature control unit 2002. That is, since it is possible to both increase the temperature with hot air and decrease the temperature with cold air, it is possible to control the temperature more accurately than with a configuration that only supplies hot air.
  • FIG. 5 shows an example of the configuration of a storage section 0003 included in an analysis apparatus 0001 according to Embodiment 2 of the present invention.
  • an air volume adjusting member 2119 is provided near the outlet 2113 in order to uniformly supply cold air from the upper stage to the lower stage in the storage section 0003.
  • the other configurations are the same as in the first embodiment.
  • the air volume adjustment material 2119 can reduce this risk by making the volume of cold air more uniform from the upper stage to the lower stage than in the first embodiment.
  • the air volume control material 2119 is generally a circular punched metal or mesh-like material, but if the aperture ratio can be controlled, it may be a continuous porous material, a honeycomb structure, a rectangular shape, or other material cut out in a certain shape. But that's fine.
  • FIG. 6 shows another configuration example of the storage section 0003.
  • a duct 2120 is provided within the duct 2108.
  • An air volume adjusting member 2121 is arranged at the interface between the duct 2108 and the duct 2120. Similar to the first embodiment, an air volume adjusting member 2116 is arranged at the entrance of each stage of the storage chamber.
  • the air volume adjusting members 2116 and 2121 may have similar configurations, or may have different aperture ratios (eg, the air volume adjusting member 2121 has a larger aperture ratio). The other configurations are the same as in the first embodiment.
  • the duct 2120 has the function of adjusting the pressure of the cold air.
  • the duct 2120 By providing the duct 2120, the influence of the axial flow of the fan 2107 can be suppressed, and the flow rate from the outlet 2113 can be made more uniform from the upper stage to the lower stage. Thereby, the amount of evaporation of the sample 2111 in the sample container 0007 can be made constant from the upper stage to the lower stage.
  • the temperature sensor 2104 may be disposed on the surface of the air volume adjusting member 2121, and may be used to control the temperature of the cold air.
  • FIG. 7 shows another configuration example of the storage section 0003.
  • the configuration example shown in FIG. 7 in addition to the configuration described in FIG.
  • the other configurations are the same as in the first embodiment.
  • FIG. 8 shows another example of the configuration of the storage section 0003.
  • a heat insulating material 2123 is attached to at least a portion of the inner surface (and/or at least a portion of the outer surface) of the duct 2108, thereby improving robustness against temperatures from outside the storage unit 2001. I'm letting you do it.
  • the other configurations are the same as in the first embodiment. With this structure, it is possible to supply cold air with minimal heat loss from the temperature control section 2002 to the bottom surface of the sample container lower part 2110 from the blow-off port 2113. may be combined.
  • FIG. 9 shows another configuration example of the storage section 0003.
  • a heat source 2124, a temperature sensor 2125 for controlling the temperature of the heat source 2124, a heat source 2126, and a temperature sensor 2127 for controlling the temperature of the heat source 2126 are provided on the left and right side surfaces of the sample container storage chamber 2003.
  • a heater, Peltier, or the like is used as the heat source 2124 and the heat source 2126.
  • the other configurations are the same as in the first embodiment. This configuration may be combined with the configurations shown in FIGS. 5 to 8.
  • the side surface here refers to a surface that is not at least orthogonal to the path through which the cold air passes through the sample container storage chamber 2003.
  • the specimen container 0007 kept warm by the storage section 0003 needs to be kept warm at about 35° C. ⁇ 1° C. for culturing the specimen 2111, for example, if the specimen 2111 is bacteria.
  • the heat source 2124 and the heat source 2126 are used to assist in the heating and improve temperature control accuracy. In order to suppress condensation, the control temperature of the heat source 2124 and the heat source 2126 is greater than the control temperature of the cold heat source 2101, and the temperature of the cold air blown to the bottom of the sample container lower part 2110 is set to be lower than the heat retention temperature of the sample container 0007. .
  • the temperature of the heat source 2124 and the heat source 2126 is also controlled so that the temperature of the storage unit 2001 is at a temperature that does not affect the culture of the specimen 2111.
  • the temperature sensors 2125 and 2127 are preferably positioned so that they can relatively measure the temperature of the sample container lid 2112 or the space in its vicinity.
  • the temperature sensors 2125 and 2127 may be located at any position as long as a correlation with the temperature of the sample container lid 2112 in the storage section 0003 can be obtained.
  • it may be a metal surface inside the sample container storage chamber 2003 or a cover surface of the heat source 2124 and the heat source 2126. That is, it is sufficient if the temperature of the specimen 2111 can be measured directly or indirectly.
  • the temperature control unit 2002 may be placed inside the duct 2108. However, if a heat exchange mechanism such as Peltier is used as the temperature control unit 2002, the position of the storage unit 0003 etc. should be adjusted as appropriate so that the low heat side (heat sink 2105, etc.) can be easily placed outside the analyzer 0001. It is desirable to do so.
  • a heat exchange mechanism such as Peltier
  • FIG. 10 is a flowchart illustrating a procedure in which the calculation unit 11 controls the temperature of each part of the analyzer 0001. This flowchart can be used in any of the configurations of FIG. 2 and FIGS. 5 to 8. This flowchart is executed by the calculation unit 11 controlling each temperature control unit.
  • the temperature control of the entire analyzer 0001 by the temperature control unit 0006 (left half of the flowchart) and the temperature control by the temperature control unit 2002 (right half of the flowchart) can be performed simultaneously.
  • the temperature control by the temperature control unit 0006 is the temperature control of the entire apparatus, and in particular, the temperature control of the sample container lid 2112 in the storage unit 0003 is aimed at suppressing the occurrence of dew condensation on the lid.
  • the temperature control by the temperature control unit 2002 is mainly control of the temperature of the sample by controlling the temperature of the lower part 2110 of the sample container.
  • the target temperature, upper limit temperature, and lower limit temperature of the sample container lid 2112 in the storage section 0003 are set, and the temperature control section 0006 heats it.
  • the upper temperature limit and lower temperature limit may be set based on the upper and lower temperature limits that affect the growth or reaction of the specimen, or may be set based on the measurement conditions for specimen measurement determined by the measurer.
  • the target temperature of the sample container lid 2112 needs to be set higher than the target temperature of the sample container lower part 2110, and it is sufficient that the temperature of the specimen container lid 2112>the temperature of the sample container lower part 2110.
  • the upper limit temperature and lower limit temperature may be set as an allowable temperature range. There may be temperatures that are not set.
  • heating is turned off when the sample container lid 2112 reaches or exceeds the target temperature.
  • overshoot after heating is turned off is below the upper limit temperature, and undershoot is above the lower limit temperature.
  • the sample container lid 2112 becomes lower than the target temperature, it is heated by the temperature control section 0006.
  • the temperature near the sample container lid 2112 from which a correlation can be obtained may be measured. That is, it is sufficient if the temperature of the sample container lid 2112 can be measured directly or indirectly.
  • a target temperature, upper limit temperature, and lower limit temperature of the lower part of the sample container 2110 are set, and the temperature is controlled by the temperature control unit 2002.
  • the upper temperature limit and lower temperature limit may be set based on the upper and lower temperature limits that have no effect on the specimen, or may be set based on the measurement conditions for specimen measurement determined by the measurer.
  • the sample temperature needs to be set lower than the temperature of the sample container lid 2112. In this flow, the temperature of the entire apparatus is set via the temperature of the sample container lid 2112, so the lower part 2110 of the specimen container is cooler than the temperature of the specimen container lid 2112. Therefore, in the flow, it is expressed as cooling by the temperature control section 2002.
  • the temperature control unit 2002 In the cooling procedure performed by the temperature control unit 2002, when the lower part 2110 of the sample container falls below the target temperature, cooling is turned off. However, the undershoot after cooling off should be above the lower limit temperature, and the overshoot should be below the upper limit temperature. Furthermore, when the sample container lower part 2110 reaches a target temperature or higher, it is cooled by the temperature control section 2002. If there is a possibility that the temperature of the sample container lower part 2110 will be higher than the temperature of the sample container lid 2112 depending on the temperature to be set, the temperature of the specimen container lid 2112 > the temperature of the specimen container lower part 2110 will be adjusted by cooling by the temperature controller 2002. It is necessary to control it so that
  • Examples of settings for each temperature include the following: target temperature of sample container lid 2112 35.5°C, upper limit temperature 36.0°C, lower limit temperature 35.0°C; target temperature 34 of sample container lower part 2110 .5°C, upper limit temperature 35.0°C, lower limit temperature 34.0°C.
  • the lower limit temperature of the sample container lid 2112 can be used, for example, when determining control parameters. For example, when determining the interval of one loop cycle on the left side of FIG. 11, the lower limit temperature of the sample container lid 2112 may be used as a reference.
  • FIG. 11 is a flowchart illustrating a procedure in which the calculation unit 11 controls the temperature of each part of the analyzer 0001. This flowchart can be used in the configuration of FIG. This flowchart is executed by the calculation unit 11 controlling each temperature control unit.
  • Temperature control of the entire analyzer 0001 by the temperature control section 0006 (left in FIG. 11), temperature control by the temperature control section 2002 (center in FIG. 11), and temperature control by the heat sources 2124 and 2126 (right in FIG. 11) can be performed simultaneously.
  • the temperature control by the temperature control unit 0006 can be mainly performed to control the temperature of the analyzer 0001 as a whole.
  • the temperature control by the temperature control unit 2002 is mainly a control of the temperature of the lower part of the sample container 2110 (sample) in the storage unit 0003.
  • the temperature control by the heat sources 2124 and 2126 is temperature control that mainly suppresses the occurrence of condensation on the lid by controlling the temperature of the specimen container lid 2112. By controlling the temperature in this manner, it is possible to achieve higher temperature control accuracy than the temperature control shown in FIG.
  • the target temperature, upper limit temperature, and lower limit temperature of the analyzer 0001 are set, and the temperature control unit 0006 heats it.
  • the upper temperature limit and lower temperature limit may be set based on the upper and lower limits of temperatures that affect the specimen, or may be set based on the measurement conditions for specimen measurement determined by the measurer.
  • the upper limit temperature and lower limit temperature may be set as an allowable temperature range.
  • the temperature controller 0006 In the heating procedure by the temperature controller 0006, when the target temperature of the analyzer 0001 is reached or higher, the heating is turned off. When the lower temperature of the sample container 2110 reaches the lower limit temperature or lower, the temperature control section 0006 heats it. When considering the influence of the internal temperature of the apparatus during transport and measurement of the specimen, it is preferable to set the heating when the temperature reaches the lower limit temperature of the lower part 2110 of the specimen container. If the influence of temperature during transportation and measurement of the specimen is not taken into account, heating may be performed at a temperature lower than the target temperature of the analyzer 0001. Therefore, depending on the user's condition setting, the step at the bottom left in FIG. 11 may be "below the lower limit temperature of the lower part of the sample container" or "below the target temperature of the analyzer".
  • the target temperature target temperature of the sample
  • upper limit temperature upper limit temperature
  • the upper temperature limit and lower temperature limit may be set based on the upper and lower temperature limits that have no effect on the specimen, or may be set based on the measurement conditions for specimen measurement determined by the measurer.
  • the temperature of the lower part of the sample container 2110 (sample temperature) needs to be lower than the temperature of the sample container lid 2112. In this flow, the sample container lower part 2110 is cooled down to a temperature lower than the temperature of the sample container lid 2112, so in the flow, it is expressed as cooling by the temperature control unit 2002.
  • the temperature controller 2002 In the temperature control by the temperature controller 2002, when the lower part 2110 of the sample container falls below the target temperature, cooling is turned off. However, when the cooling is turned off, the undershoot is equal to or higher than the lower limit temperature, and the overshoot is lower than the upper limit temperature. Furthermore, when the sample container lower part 2110 reaches a target temperature or higher, it is cooled by the temperature control section 2002.
  • a target temperature of the sample container lid 2112 (target temperature of the sample container lower part 2110), an upper limit temperature, and a lower limit temperature are set, and the sample container lid 2112 is heated by heat sources 2124 and 2126.
  • the lower limit temperature of the sample container lid 2112 is set so that it can be controlled higher than the temperature of the lower portion 2110 of the sample container. That is, it is only necessary to realize that the temperature of the sample container lid 2112>the sample container lower part 2110.
  • Examples of settings for each temperature include the following: target temperature of analyzer 0001: 35.0°C, upper limit temperature: 35.3°C, lower limit temperature: 34.5°C; target temperature of sample container lower part 2110: 35.0°C. 0°C, upper limit temperature 35.3°C, lower limit temperature 34.5°C; target temperature of sample container lid 2112 35.5°C, upper limit temperature 36.0°C, lower limit temperature 35.3°C.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the above-described embodiments have been described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
  • the air outlet 2113 is configured by opening the entire surface of the sample container storage chamber 2003, and the size and position of the opening of the air volume adjusting material (2116, etc.) are adjusted to open the sample container lid 2112.
  • the temperature can also be higher than the temperature of the sample container lower part 2110. That is, the combination of the air outlet 2113 and the air volume adjusting material (2116, etc.) may provide the same effect as the above embodiment.
  • the calculation unit 11 may display the temperature measured by each temperature sensor, the air volume (and/or wind pressure) of each part, etc. on the monitor 13. Other information useful to the user may also be presented.
  • the arithmetic unit 11 can be configured by hardware such as a circuit device that implements the function, or software that implements the function is executed by an arithmetic unit such as a CPU (Central Processing Unit). It can also be configured by

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

The purpose of the present invention is to precisely control the temperature in each storage chamber of a specimen analysis device in which a plurality of storage chambers store specimen containers, respectively. The specimen analysis device according to the present invention generates cold air (see fig. 2) such that the temperature at the bottom of the specimen container is lower than the temperature at a lid of the specimen container.

Description

検体分析装置Sample analyzer
 本発明は、検体を分析する検体分析装置に関する。 The present invention relates to a sample analyzer that analyzes a sample.
 医療研究機関や病院などにおいては、細胞または細菌などを含む検体の濁度に基づき、細胞または細菌の培養状態を検査する。細胞培養や細菌培養においては、検体容器としてマイクロウェルプレート、シャーレなどを用いる。検体容器内に前処理した検体および栄養素などを分注あるいは塗布し、検体の培養(例えば35℃環境下)を実施する。検体容器内の検体は、長時間にわたって、培養、観察を繰り返し、観察時に検体の形態変化を画像解析あるいは濁度により定量化し、その定量値あるいは経時的な変化量に応じて結果を出力する。 At medical research institutions, hospitals, etc., the state of culture of cells or bacteria is tested based on the turbidity of samples containing cells or bacteria. In cell culture and bacterial culture, microwell plates, petri dishes, etc. are used as sample containers. A pretreated specimen, nutrients, etc. are dispensed or applied into a specimen container, and the specimen is cultured (for example, in a 35° C. environment). The specimen in the specimen container is repeatedly cultured and observed over a long period of time, and during observation, morphological changes in the specimen are quantified by image analysis or turbidity, and results are output according to the quantitative value or the amount of change over time.
 この検査において、検体容器は装置内に長時間設置することとなる。検体容器内は培養液などの蒸発により飽和状態となるので、検体容器と検体容器蓋との間の境界面に結露が発生する可能性がある。検体容器外部から、検体容器内部の検体に対して光学的観察を実施する検査装置(透過観察)において、介在する検体容器上面の蓋などの透過部材面上に結露が発生すると、光の屈折が生じ、コントラスト悪化、光量低下へと繋がり検体の状態変化を正確に観察することが困難となり、測定結果の誤判定へと繋がる。 In this test, the sample container will be placed inside the device for a long time. Since the inside of the sample container becomes saturated due to evaporation of the culture solution, there is a possibility that condensation may occur on the interface between the sample container and the sample container lid. In an inspection device (transmission observation) that performs optical observation of a specimen inside a specimen container from outside the specimen container, if condensation occurs on the intervening surface of a transparent member such as a lid on the top of the specimen container, light refraction may occur. This leads to deterioration of contrast and decrease in light intensity, making it difficult to accurately observe changes in the state of the specimen, leading to erroneous determination of measurement results.
 特許文献1は、検体を顕微鏡によって観察する際の温度制御について記載している。同文献は、観察皿蓋内面における結露発生を防止するべく観察皿上部に対して温風を吹きかける技術を開示している。 Patent Document 1 describes temperature control when observing a specimen with a microscope. This document discloses a technique for blowing warm air onto the upper part of the observation plate in order to prevent dew condensation from occurring on the inner surface of the observation plate lid.
特許第4116780号公報Patent No. 4116780
 検体分析装置は例えば、検体(細胞、細菌など)を収容した検体容器を複数の収納室それぞれに載置し、検体を培養しながら定期的に観察する。検体容器の蓋の内側に結露が発生すると、その結露によって観察光の光量が低下し、測定精度が低下する可能性がある。したがって結露を防止するための仕組みが必要である。例えば特許文献1のように、検体容器に対して温風を供給することが考えられる。 For example, the sample analyzer places sample containers containing samples (cells, bacteria, etc.) in each of a plurality of storage chambers, and periodically observes the samples while cultivating them. If condensation occurs on the inside of the lid of the sample container, the amount of observation light may decrease due to the condensation, and measurement accuracy may decrease. Therefore, a mechanism to prevent condensation is necessary. For example, as in Patent Document 1, it is conceivable to supply warm air to the sample container.
 ただし各収納室に対するその温風の影響がばらつくと、結露を抑制する効果も収納室ごとにばらつくことになる。これに起因して、収納室ごとに温度制御の精度が低下し、測定結果のばらつきが発生する可能性がある。 However, if the influence of the warm air on each storage room varies, the effect of suppressing dew condensation will also vary from storage room to storage room. Due to this, the accuracy of temperature control may be reduced for each storage chamber, and variations in measurement results may occur.
 本発明は、上記のような課題に鑑みてなされたものであり、複数の収納室がそれぞれ検体容器を格納する検体分析装置において、各収納室内の温度を精度よく制御することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to accurately control the temperature inside each storage chamber in a sample analyzer in which a plurality of storage chambers each store a sample container.
 本発明に係る検体分析装置は、検体容器下部の温度が検体容器蓋の温度よりも低くなるように、冷風を生成する。 The sample analyzer according to the present invention generates cold air so that the temperature of the lower part of the sample container is lower than the temperature of the sample container lid.
 本発明に係る検体分析装置によれば、複数の収納室がそれぞれ検体容器を格納する場合において、各収納室の温度を精度よく制御することができる。本発明のその他の構成、課題、効果などについては、以下の実施形態の説明によって明らかとなる。 According to the sample analyzer according to the present invention, when a plurality of storage chambers each store a sample container, the temperature of each storage chamber can be controlled with high accuracy. Other configurations, problems, effects, etc. of the present invention will become clear from the description of the embodiments below.
実施形態1に係る分析装置0001の全体構成の概略図を示す。1 shows a schematic diagram of the overall configuration of an analyzer 0001 according to Embodiment 1. FIG. 収納部0003の構成例を示す。An example of the configuration of the storage section 0003 is shown. 風量調節材2116と吹き出し口2113の形状例を示す。An example of the shape of the air volume adjusting member 2116 and the air outlet 2113 is shown. 風量調節材2116の別構成例を示す。Another example of the configuration of the air volume adjustment material 2116 is shown. 実施形態2に係る分析装置0001が備える収納部0003の構成例を示す。An example of the configuration of a storage unit 0003 included in the analysis device 0001 according to the second embodiment is shown. 収納部0003の別構成例を示す。Another example of the configuration of the storage section 0003 is shown. 収納部0003の別構成例を示す。Another example of the configuration of the storage section 0003 is shown. 収納部0003の別構成例を示す。Another example of the configuration of the storage section 0003 is shown. 収納部0003の別構成例を示す。Another example of the configuration of the storage section 0003 is shown. 演算部11が分析装置0001の各部温度を制御する手順を説明するフローチャートである。2 is a flowchart illustrating a procedure in which the calculation unit 11 controls the temperature of each part of the analyzer 0001. 演算部11が分析装置0001の各部温度を制御する手順を説明するフローチャートである。2 is a flowchart illustrating a procedure in which the calculation unit 11 controls the temperature of each part of the analyzer 0001.
<実施の形態1>
 図1は、本発明の実施形態1に係る分析装置0001の全体構成の概略図を示す。分析装置0001は、搬入出部0002、収納部0003、搬送部0004、検出部0005、温調部0006を備える。演算部11、記憶部12、モニタ13は、分析装置0001の外部に備えることもできるし、分析装置0001内に備えることもできる。
<Embodiment 1>
FIG. 1 shows a schematic diagram of the overall configuration of an analyzer 0001 according to Embodiment 1 of the present invention. The analyzer 0001 includes a carry-in/out section 0002, a storage section 0003, a transport section 0004, a detection section 0005, and a temperature control section 0006. The calculation unit 11, the storage unit 12, and the monitor 13 can be provided outside the analysis device 0001, or can be provided inside the analysis device 0001.
 ユーザは搬入出部0002において、検体容器0007を図示されてない扉から取り入れ・取り出すことが可能である。検体容器0007は、後述する検体容器下部2110と検体容器蓋2112の2パーツを有する。検体容器下部2110は、96ウェル、384ウェルなどの複数のウェルを有する容器であり、各ウェルに検体2111を接取する。検体としては、細胞、血液、尿、細菌、組織片などの生体検体が挙げられる。検体容器蓋2112はシール状のものでもよく、検体容器下部2110は単一ウェルのものでもよい。 In the loading/unloading section 0002, the user can take in/take out the sample container 0007 through a door (not shown). The sample container 0007 has two parts: a sample container lower part 2110 and a sample container lid 2112, which will be described later. The lower part of the sample container 2110 is a container having a plurality of wells such as 96 wells and 384 wells, and a sample 2111 is placed in each well. Examples of specimens include biological specimens such as cells, blood, urine, bacteria, and tissue pieces. The sample container lid 2112 may be a seal, and the sample container lower portion 2110 may be a single well.
 収納部0003は、検体容器0007を収納する検体容器収納室2003を複数段有する。分析装置0001内に収納部0003を複数個有してもよい。収納部0003の詳細については後述する。 The storage unit 0003 has multiple stages of sample container storage chambers 2003 that accommodate sample containers 0007. The analyzer 0001 may have a plurality of storage units 0003. Details of the storage section 0003 will be described later.
 搬送部0004は、アクチュエータ1001、アクチュエータ1002、検体容器保持部1003、図示しないボールねじあるいはベルト機構を備える。検体容器保持部1003は、ボールねじあるいはベルト機構を介して、アクチュエータ1001により鉛直方向に移動し、アクチュエータ1002により奥行き方向に移動する。検体容器保持部1003は、搬入出部0002、収納部0003、測定部1005から検体容器0007の受け取り、受け渡しが可能である。 The transport unit 0004 includes an actuator 1001, an actuator 1002, a sample container holding unit 1003, and a ball screw or belt mechanism (not shown). The sample container holder 1003 is moved in the vertical direction by an actuator 1001 and moved in the depth direction by an actuator 1002 via a ball screw or a belt mechanism. The sample container holding section 1003 can receive and deliver sample containers 0007 from the loading/unloading section 0002, the storage section 0003, and the measuring section 1005.
 検出部0005において、測定ユニット1004内の測定部1005は、検体容器保持部1003から検体容器0007を受け取り、検体容器0007の各ウェル内の検体2111の培養状態を測定する。測定方法としては、濁度測定、吸光度測定、蛍光測定、画像解析などがある。 In the detection unit 0005, the measurement unit 1005 in the measurement unit 1004 receives the sample container 0007 from the sample container holding unit 1003, and measures the culture state of the sample 2111 in each well of the sample container 0007. Measurement methods include turbidity measurement, absorbance measurement, fluorescence measurement, and image analysis.
 温調部0006は、熱源1006、ヒートシンク1007、ファン1008を備える。ヒートシンク1007を介した熱源1006の熱をファン1008からの風により装置内へ供給する。熱源としては、ヒータ、ペルチェなどを使用し、分析装置0001内の温度の加熱あるいは冷却を実施する。ヒートシンク(放熱器)には、アルミ、銅、鉄、ステンレスなどを用いることができる。温調部0006は、検体容器0007を収納部0003から出したとき、後述する結露が発生しないように、分析装置0001全体を温めておく役割を有する。 The temperature control unit 0006 includes a heat source 1006, a heat sink 1007, and a fan 1008. Heat from a heat source 1006 via a heat sink 1007 is supplied into the apparatus by air from a fan 1008. As a heat source, a heater, Peltier, or the like is used to heat or cool the temperature inside the analyzer 0001. Aluminum, copper, iron, stainless steel, etc. can be used for the heat sink (radiator). The temperature control unit 0006 has the role of warming the entire analyzer 0001 so that dew condensation, which will be described later, does not occur when the sample container 0007 is removed from the storage unit 0003.
 分析装置0001をスタートさせると、ユーザは検体容器0007を搬入出部0002へ設置することが可能となる。設置後、搬入出部0002の検体容器0007は搬送部0004を介し、測定ユニット1004の測定部1005まで搬送される。測定部1005は、検体容器0007内の検体2111の培養状態を測定する。測定後の検体容器0007は搬送部0004を介して収納部0003へ搬送される。検体の測定サイクルは、例えば20~30分の間隔で最大18時間繰り返す。分析装置0001は、経時的な検体2111の培養状態の変化量などを演算部11へ送る。演算部11は、その変化量から推測される測定結果をモニタ13などに出力する。測定終了後の検体容器0007は搬送部0004を介し、搬入出部0002へ搬出される。本実施形態においては、ユーザが搬入出部0002に検体容器0007を設置しているが、搬入出部0002をなくし、ユーザが収納部0003に対して検体容器0007を直接設置する構造としてもよい。 When the analyzer 0001 is started, the user can install the sample container 0007 in the loading/unloading section 0002. After installation, the sample container 0007 in the loading/unloading section 0002 is transported to the measurement section 1005 of the measurement unit 1004 via the transportation section 0004. The measurement unit 1005 measures the culture state of the specimen 2111 in the specimen container 0007. The sample container 0007 after measurement is transported to the storage section 0003 via the transport section 0004. The sample measurement cycle is repeated, for example, at intervals of 20 to 30 minutes for a maximum of 18 hours. The analyzer 0001 sends the amount of change in the culture state of the specimen 2111 over time to the calculation unit 11. The calculation unit 11 outputs the measurement result estimated from the amount of change to the monitor 13 or the like. After the measurement is completed, the sample container 0007 is transported to the carry-in/out section 0002 via the transport section 0004. In this embodiment, the user installs the sample container 0007 in the carry-in/out section 0002, but the structure may be such that the carry-in/out section 0002 is eliminated and the user directly installs the sample container 0007 in the storage section 0003.
 前記のとおり検体容器0007は、検体容器下部2110と検体容器蓋2112を備える。検体2111を検体容器下部2110内の各ウェルに接取する。収納部0003内に検体容器0007を設置すると、検体容器下部2110下面の材料、空気などから検体容器下部2110内の検体2111へ供給される熱エネルギーが検体容器蓋2112へ供給される熱エネルギーよりも高くなったとき、検体容器下部2110と検体容器蓋2112との間の境界面に結露が発生する原因となる。 As described above, the sample container 0007 includes the sample container lower part 2110 and the sample container lid 2112. A sample 2111 is placed in each well in the lower part 2110 of the sample container. When the specimen container 0007 is installed in the storage section 0003, the thermal energy supplied to the specimen 2111 in the specimen container lower part 2110 from the material, air, etc. on the lower surface of the specimen container lower part 2110 is higher than the thermal energy supplied to the specimen container lid 2112. When the height increases, it causes dew condensation to occur on the interface between the sample container lower part 2110 and the sample container lid 2112.
 図2は、収納部0003の構成例を示す。収納部0003は、収納ユニット2001、温調部2002、を備える。収納ユニット2001は、検体容器収納室2003、ファン2107、ダクト2108、風量調節材2116を有する。収納部0003は、検体容器収納室2003を複数段有し、各検体容器収納室2003はそれぞれ検体容器0007を収納する。図中では検体容器収納室2003を6段としているが、この限りではなく段数を増減してもよいし、収納室を水平方向に配列してもよい。 FIG. 2 shows an example of the configuration of the storage section 0003. The storage section 0003 includes a storage unit 2001 and a temperature control section 2002. The storage unit 2001 includes a sample container storage chamber 2003, a fan 2107, a duct 2108, and an air volume adjustment member 2116. The storage unit 0003 has multiple stages of sample container storage chambers 2003, and each sample container storage chamber 2003 stores a sample container 0007, respectively. In the figure, the sample container storage chambers 2003 have six stages, but the number of stages may be increased or decreased, or the storage chambers may be arranged horizontally.
 検体容器収納室2003は、断熱材2109、風量調節材2116、断熱材2114、側面の金属材2115、上面の金属材2117、下面の金属材2118で囲われている。風量調節材2116は吹き出し口2113を備える。金属材としては、アルミ、ステンレス、銅、鉄、チタンなどが挙げられ、断熱材としては、グラスウール、セルローズファイバー、インシュレーションボード、羊毛断熱材、ロックウール、硬質ウレタンフォーム、ビーズ法ポリスチレンフォーム、フェノールフォームなどが挙げられるがこれに限るものではない。断熱材として樹脂を用いてもよい。樹脂としてはナイロン、POM、PEEK、PPS、PTFE、PVC、PE、PP、PS、ABSなどがあげられるがこれに限るものではない。 The sample container storage chamber 2003 is surrounded by a heat insulating material 2109, an air volume adjusting material 2116, a heat insulating material 2114, a metal material 2115 on the side surface, a metal material 2117 on the top surface, and a metal material 2118 on the bottom surface. The air volume adjusting member 2116 includes an air outlet 2113. Metal materials include aluminum, stainless steel, copper, iron, titanium, etc., and insulation materials include glass wool, cellulose fiber, insulation board, wool insulation, rock wool, rigid urethane foam, beaded polystyrene foam, and phenol. Examples include, but are not limited to, forms. Resin may be used as the heat insulating material. Examples of the resin include, but are not limited to, nylon, POM, PEEK, PPS, PTFE, PVC, PE, PP, PS, and ABS.
 温調部2002は、冷熱源2101、ヒートシンク2102、温度センサ2104、ファン2103、ヒートシンク2105、ファン2106を備える。ヒートシンク2102を介した冷熱源2101の熱エネルギーをファン2103からの風により収納ユニット2001へ供給する。冷熱源2101としては、ヒータ、チラー、ペルチェなどを使用することができる。ヒートシンク2102に取り付けられた温度センサ2104により加熱あるいは冷却温度を制御する。ヒートシンク(放熱器、放熱板)としては、アルミ、銅、鉄、ステンレスなどを用いることができる。温度センサ2104はサーミスタ、白金抵抗体、ICチップ、熱電対などを用い、設置場所は、ヒートシンク2102以外にも、温調部の設置空間、ダクト2108内などでもよい。 The temperature control unit 2002 includes a cold source 2101, a heat sink 2102, a temperature sensor 2104, a fan 2103, a heat sink 2105, and a fan 2106. Thermal energy of the cold source 2101 via the heat sink 2102 is supplied to the storage unit 2001 by wind from the fan 2103. As the cold heat source 2101, a heater, chiller, Peltier, etc. can be used. A temperature sensor 2104 attached to a heat sink 2102 controls the heating or cooling temperature. As the heat sink (heat sink, heat sink), aluminum, copper, iron, stainless steel, etc. can be used. The temperature sensor 2104 uses a thermistor, a platinum resistor, an IC chip, a thermocouple, or the like, and may be installed not only in the heat sink 2102 but also in the installation space of the temperature control section, inside the duct 2108, etc.
 ヒートシンク2105およびファン2106はペルチェを想定した場合の構成であり、ペルチェの放熱側となる。放熱側のヒートシンク2105は分析装置0001の筐体内に設置し、これを装置内温度のための補助熱源として利用してもよい。温度制御が難しい場合、分析装置0001の外部空間(検査室あるいは実験室など)にヒートシンク2105を設置し、装置外へ熱を排出する構造としてもよい。 The heat sink 2105 and the fan 2106 are configured assuming a Peltier, and serve as the heat radiation side of the Peltier. The heat sink 2105 on the heat radiation side may be installed inside the casing of the analyzer 0001 and used as an auxiliary heat source for controlling the temperature inside the apparatus. If temperature control is difficult, a heat sink 2105 may be installed in an external space (examination room, laboratory, etc.) of the analyzer 0001 to discharge heat to the outside of the apparatus.
 温調部2002により制御された冷風は、ファン2107を介しダクト2108内へ供給される。ダクト2108へ供給された冷風は、検体容器収納室2003の吹き出し口2113を介し、検体容器下部2110下面へ供給される。搬送部0004周辺の温度>温調部2002からの冷風温度となるように温度制御することにより、検体容器蓋2112の温度>検体容器下部2110内の検体2111の温度となり、検体容器下部2110と検体容器蓋2112との間の境界面の結露を防止する。 The cold air controlled by the temperature controller 2002 is supplied into the duct 2108 via the fan 2107. The cold air supplied to the duct 2108 is supplied to the lower surface of the lower part of the sample container 2110 through the outlet 2113 of the sample container storage chamber 2003. By controlling the temperature so that the temperature around the transport section 0004 > the temperature of the cold air from the temperature control section 2002, the temperature of the specimen container lid 2112 > the temperature of the specimen 2111 in the lower part 2110 of the specimen container, and the lower part 2110 of the specimen container and the specimen Prevents condensation on the interface with the container lid 2112.
 検体2111が例えば細菌の場合、36℃以上で生育に影響があり、34℃以下では培養が遅くなる菌種もある。本構成によれば、収納ユニット2001の温度が検体2111の培養へ影響しない温度(例えば、35±1℃)で温調部0006、温調部2002の温度を制御することが可能である。 If the specimen 2111 is, for example, a bacterium, its growth is affected at temperatures above 36°C, and for some bacterial species, culture slows down at temperatures below 34°C. According to this configuration, it is possible to control the temperatures of the temperature control section 0006 and the temperature control section 2002 at a temperature at which the temperature of the storage unit 2001 does not affect the culture of the specimen 2111 (for example, 35±1° C.).
 吹き出し口2113の位置は、検体容器下部2110底面の温度を目標温度にすることができるように、上下方向においては検体容器下部2110底面と断熱材2114上面との間に配置し、左右方向においては左右の断熱材2109間に配置することが望ましい。 The air outlet 2113 is located between the bottom surface of the lower sample container 2110 and the top surface of the heat insulating material 2114 in the vertical direction, so that the temperature of the bottom surface of the lower sample container 2110 can reach the target temperature, and in the horizontal direction. It is desirable to arrange it between the left and right heat insulators 2109.
 各段においてダクト2108から供給される冷風は、各段の検体容器下部2110よりも上方から供給されないことが望ましい。または、『検体容器蓋2112の温度>検体容器下部2110の温度』となるように、『検体容器0007の下部の風量>上部の風量≧0』の関係であってもよい。検体容器0007の下部から上部に流れ込む温風はあってよい。 It is desirable that the cold air supplied from the duct 2108 at each stage is not supplied from above the sample container lower part 2110 of each stage. Alternatively, the relationship may be such that "air volume at the bottom of the sample container 0007>air volume at the top ≧0" such that "temperature of the sample container lid 2112>temperature of the lower part of the sample container 2110". Warm air may flow from the bottom of the sample container 0007 to the top.
 温調部0006を制御する温度センサ1009の位置は、検体容器蓋2112あるいはその近傍の空間の温度を相対的に測れる位置が好ましい。また、収納部内の検体容器蓋2112の温度との相関が得られるのであれば、どの位置に温度センサ1009があってもよい。例えば、ヒートシンク1007内およびその近傍や、検体容器蓋2112の近傍にあってもよい。温度センサ1009の位置や数は限定するものではない。 The temperature sensor 1009 that controls the temperature control unit 0006 is preferably located at a position where it can relatively measure the temperature of the sample container lid 2112 or the space in its vicinity. Further, the temperature sensor 1009 may be placed at any position as long as a correlation with the temperature of the sample container lid 2112 in the storage section can be obtained. For example, it may be located in or near the heat sink 1007 or near the sample container lid 2112. The position and number of temperature sensors 1009 are not limited.
 温調部2002を制御する温度センサ2104の位置は、検体容器下部2110あるいはその近傍の空間の温度を相対的に測れる位置が好ましい。また、収納部内の検体容器下部2110の温度との相関が得られるのであれば、どの位置に温度センサ2104があってもよい。例えば、ヒートシンク2102内およびその近傍や検体容器下部2110の近傍にあってもよい。温調部2002内、 ダクト2108内、風量調節材2119(後述)近傍の空間、などにあってもよい。温度センサ2104の位置や数は限定するものではない。 The temperature sensor 2104 that controls the temperature control unit 2002 is preferably located at a position where it can relatively measure the temperature of the lower part of the sample container 2110 or the space in its vicinity. Further, the temperature sensor 2104 may be placed at any position as long as a correlation with the temperature of the lower part of the sample container 2110 in the storage section can be obtained. For example, it may be located within or near the heat sink 2102 or near the lower portion of the sample container 2110. It may be located inside the temperature control unit 2002, inside the duct 2108, in a space near the air volume adjustment member 2119 (described later), etc. The position and number of temperature sensors 2104 are not limited.
 図3は、風量調節材2116と吹き出し口2113の形状例を示す。検体容器収納室2003の上段から下段まで均一に冷風を供給するために、風量調節材2116は吹き出し口2113を有する。吹き出し口2113は、角穴、楕円や円等の穴、多孔質の穴、などでもよい。すなわち収納室に対して流れ込む風量を制限できればよい。風量調節材2116によって、下段の吹き出し口2113から吹き出される風量と上段の吹き出し口2113から吹き出される風量が均一になり、検体容器収納室2003内に設置した検体容器0007内の検体2111の蒸発量が、上段から下段にわたって均一となる(蒸発量の変動が抑制される)。蒸発量の変動を抑えることによって、培養液、薬剤などの濃度変化、検体の培養状態の変動を抑え、検査結果の誤判定リスクを下げることが可能になる。 FIG. 3 shows an example of the shape of the air volume adjusting member 2116 and the air outlet 2113. In order to uniformly supply cold air from the upper stage to the lower stage of the sample container storage chamber 2003, the air volume adjusting member 2116 has an air outlet 2113. The air outlet 2113 may be a square hole, an oval or circular hole, a porous hole, or the like. In other words, it is only necessary to limit the amount of air flowing into the storage chamber. The air volume adjustment material 2116 makes the air volume blown from the lower air outlet 2113 and the air volume blown from the upper air outlet 2113 uniform, and the sample 2111 in the sample container 0007 installed in the sample container storage chamber 2003 is evaporated. The amount becomes uniform from the upper stage to the lower stage (variations in the amount of evaporation are suppressed). By suppressing fluctuations in the amount of evaporation, it is possible to suppress changes in the concentration of culture fluids, drugs, etc., and fluctuations in the culture state of specimens, thereby reducing the risk of misjudgment of test results.
 図4は、風量調節材2116の別構成例を示す。風量調節材2116は、円形のパンチングメタル、メッシュ状の部分を備えている場合もあるが、開口率を制御できれば、連続多孔質体のもの、ハニカム構造、四角形状などの形状にきり抜いた物でもよい。各段のプレート上部と下部に対する風量の供給量について、上述した検体容器蓋2112の温度>検体容器下部2110の温度が成り立つ範囲で、下部の風量>上部の風量≧0となるように、各段の上部は孔が無いか少ないものが望ましい。各段の風量調節材2116は同一でもよいし段毎に異なる形状であってもよい。また、風量を調節するために、孔のある部材と他の孔のある部材とを組み合わせてもよい。すなわち、検体容器蓋2112の下方の風量が検体容器蓋2112の上方の風量よりも大きくなるように、開口のサイズ/個数/配置の組み合わせが調整されていればよい。 FIG. 4 shows another example of the configuration of the air volume adjusting member 2116. The air volume adjusting material 2116 may have a circular punched metal or a mesh-like part, but if the aperture ratio can be controlled, it may be a continuous porous material, a honeycomb structure, a material cut out in a square shape, etc. But that's fine. Regarding the amount of air supplied to the upper and lower plates of each stage, each stage is set so that the air volume at the bottom > the air volume at the top ≧0 within the range where the temperature of the sample container lid 2112 > the temperature of the lower sample container 2110 is satisfied. It is desirable that the upper part has no or few holes. The air volume adjusting material 2116 in each stage may be the same or may have a different shape for each stage. Further, in order to adjust the air volume, a member having holes may be combined with another member having holes. That is, the combination of size/number/arrangement of the openings may be adjusted so that the air volume below the sample container lid 2112 is larger than the air volume above the specimen container lid 2112.
 断熱材2114は、検体容器下部2110底面全体へ供給する冷風の熱エネルギーのロス低減および下段の検体容器蓋2112近傍の金属材2118の温度低下を防ぐことを目的とする。ただし、検体容器0007上下面間において十分な温度差がある場合については、断熱材2114がなくともよい。 The purpose of the heat insulating material 2114 is to reduce the loss of thermal energy of the cold air supplied to the entire bottom surface of the lower sample container 2110 and to prevent the temperature of the metal material 2118 near the lower sample container lid 2112 from decreasing. However, if there is a sufficient temperature difference between the upper and lower surfaces of the sample container 0007, the heat insulating material 2114 may be omitted.
<実施の形態1:まとめ>
 本実施形態に係る分析装置0001は、検体容器蓋2112の温度が検体容器下部2110の温度よりも高くなるような冷風を、検体容器収納室2003それぞれに対して均一に供給するように、風量調節材2116を備える。これにより、簡易な構成を用いつつ、各収納室における結露抑制効果を均一に揃えることができる。したがって、各収納室における測定結果のばらつきを抑制することができる。また、複数の検体容器0007を収容・培養することが可能となり、装置の処理能力向上およびユーザ負担軽減を実現する。さらに、検体容器0007を収納部0003へ集約することにより、装置サイズの小型化が可能となる。
<Embodiment 1: Summary>
The analyzer 0001 according to the present embodiment adjusts the air volume so that cold air that makes the temperature of the sample container lid 2112 higher than the temperature of the lower part 2110 of the sample container is uniformly supplied to each sample container storage chamber 2003. A material 2116 is provided. Thereby, it is possible to make the dew condensation suppressing effect uniform in each storage chamber while using a simple configuration. Therefore, variations in measurement results in each storage chamber can be suppressed. Furthermore, it becomes possible to accommodate and culture a plurality of sample containers 0007, thereby improving the processing capacity of the apparatus and reducing the burden on the user. Furthermore, by consolidating the sample containers 0007 into the storage section 0003, it is possible to reduce the size of the apparatus.
 本実施形態に係る分析装置0001は、温調部0006が供給する温風と温調部2002が供給する冷風を組み合わせることにより、検体2111の温度を精度よく制御することができる。すなわち、温風による温度上昇と冷風による温度低下いずれも可能であるので、温風のみを供給する構成と比較してより精度よく温度制御が可能である。 The analyzer 0001 according to this embodiment can accurately control the temperature of the specimen 2111 by combining the warm air supplied by the temperature control unit 0006 and the cold air supplied by the temperature control unit 2002. That is, since it is possible to both increase the temperature with hot air and decrease the temperature with cold air, it is possible to control the temperature more accurately than with a configuration that only supplies hot air.
<実施の形態2>
 図5は、本発明の実施形態2に係る分析装置0001が備える収納部0003の構成例を示す。図5に示す構成例においては、収納部0003内の上段から下段までにわたって均一に冷風を供給するために、吹き出し口2113近傍に風量調節材2119を備える。その他の構成は実施形態1と同様である。
<Embodiment 2>
FIG. 5 shows an example of the configuration of a storage section 0003 included in an analysis apparatus 0001 according to Embodiment 2 of the present invention. In the configuration example shown in FIG. 5, an air volume adjusting member 2119 is provided near the outlet 2113 in order to uniformly supply cold air from the upper stage to the lower stage in the storage section 0003. The other configurations are the same as in the first embodiment.
 仮に風量調節材2119を用いない場合、下段の吹き出し口2113の風量>上段の吹き出し口2113の風量となる可能性があり、これにより、検体容器収納室2003内に設置した検体容器0007内の検体2111の蒸発量が上段と下段との間で変動する。すなわち、培養液、薬剤などの濃度が変わり、検体の培養状態も変動するので、検査結果の誤判定へと繋がるリスクがある。風量調節材2119は冷風の風量を上段から下段にわたって実施形態1よりもさらに均一化することにより、かかるリスクを低減することができる。風量調節材2119としては、円形のパンチングメタルやメッシュ状の物が一般的であるが、開口率を制御できれば、連続多孔質体のもの、ハニカム構造、四角形状など、ある形状にきり抜いた物でもよい。 If the air volume adjustment material 2119 is not used, there is a possibility that the air volume of the lower air outlet 2113 is greater than the air volume of the upper air outlet 2113, and as a result, the sample in the sample container 0007 installed in the sample container storage chamber 2003 The amount of evaporation of 2111 varies between the upper and lower stages. That is, the concentration of the culture solution, drugs, etc. changes, and the culture state of the specimen also changes, so there is a risk of erroneous test results. The air volume adjustment material 2119 can reduce this risk by making the volume of cold air more uniform from the upper stage to the lower stage than in the first embodiment. The air volume control material 2119 is generally a circular punched metal or mesh-like material, but if the aperture ratio can be controlled, it may be a continuous porous material, a honeycomb structure, a rectangular shape, or other material cut out in a certain shape. But that's fine.
 図6は、収納部0003の別構成例を示す。図6に示す構成例においては、ダクト2108内にダクト2120を備える。ダクト2108とダクト2120との間の境界面には、風量調節材2121が配置されている。各段の収納室の入口部分には、実施形態1と同様に風量調節材2116が配置されている。風量調節材2116と2121は同様の構成を有してもよいし、開口率が異なってもよい(例:風量調節材2121のほうが開口率が大きい)。その他の構成は実施形態1と同様である。 FIG. 6 shows another configuration example of the storage section 0003. In the configuration example shown in FIG. 6, a duct 2120 is provided within the duct 2108. An air volume adjusting member 2121 is arranged at the interface between the duct 2108 and the duct 2120. Similar to the first embodiment, an air volume adjusting member 2116 is arranged at the entrance of each stage of the storage chamber. The air volume adjusting members 2116 and 2121 may have similar configurations, or may have different aperture ratios (eg, the air volume adjusting member 2121 has a larger aperture ratio). The other configurations are the same as in the first embodiment.
 ダクト2120は、冷風の圧力を調整する作用を有する。ダクト2120を設けることにより、ファン2107の軸流などの影響を抑え、上段から下段にわたって、吹き出し口2113からの流量をより均一化することができる。これにより、上段から下段までにわたって、検体容器内0007内の検体2111の蒸発量を一定にすることができる。温度センサ2104を風量調節材2121の表面などに配置し、これを用いて冷風温度を制御してもよい。 The duct 2120 has the function of adjusting the pressure of the cold air. By providing the duct 2120, the influence of the axial flow of the fan 2107 can be suppressed, and the flow rate from the outlet 2113 can be made more uniform from the upper stage to the lower stage. Thereby, the amount of evaporation of the sample 2111 in the sample container 0007 can be made constant from the upper stage to the lower stage. The temperature sensor 2104 may be disposed on the surface of the air volume adjusting member 2121, and may be used to control the temperature of the cold air.
 図7は、収納部0003の別構成例を示す。図7に示す構成例においては、図6で説明した構成に加えて、ダクト2120と吹き出し口2113との間の境界面に風量調節材2122を備える。その他の構成は実施形態1と同様である。風量調節材2122の開口率<風量調節材2121の開口率とすることにより、上段から下段にわたって、吹き出し口2113から供給する流量を図6よりもさらに均一に供給することが可能となる。 FIG. 7 shows another configuration example of the storage section 0003. In the configuration example shown in FIG. 7, in addition to the configuration described in FIG. The other configurations are the same as in the first embodiment. By setting the opening ratio of the air volume adjusting member 2122<the opening ratio of the air volume adjusting member 2121, it becomes possible to supply the flow rate from the air outlet 2113 more uniformly from the upper stage to the lower stage than in FIG. 6.
 図8は、収納部0003の別構成例を示す。図8に示す構成例においては、ダクト2108内面のうち少なくとも一部(および/または外面のうち少なくとも一部)に断熱材2123を貼付し、これにより収納ユニット2001外からの温度に対するロバスト性を向上させている。その他の構成は実施形態1と同様である。本構造により、温調部2002からの熱量損失を最小限に抑えた冷風を吹き出し口2113から検体容器下部2110底面へ供給することが可能となる図5~図6いずれかの構造において断熱材2123を組み合わせてもよい。 FIG. 8 shows another example of the configuration of the storage section 0003. In the configuration example shown in FIG. 8, a heat insulating material 2123 is attached to at least a portion of the inner surface (and/or at least a portion of the outer surface) of the duct 2108, thereby improving robustness against temperatures from outside the storage unit 2001. I'm letting you do it. The other configurations are the same as in the first embodiment. With this structure, it is possible to supply cold air with minimal heat loss from the temperature control section 2002 to the bottom surface of the sample container lower part 2110 from the blow-off port 2113. may be combined.
 図9は、収納部0003の別構成例を示す。図9に示す構成例においては、検体容器収納室2003の左右側面に、熱源2124、熱源2124の温度制御用の温度センサ2125、熱源2126、熱源2126の温度制御用の温度センサ2127を有する。熱源2124と熱源2126としてはヒータやペルチェなどを用いる。その他の構成は実施形態1と同様である。図5~図8の構成において本構成を組み合わせてもよい。ここでいう側面とは、冷風が検体容器収納室2003内を通過する経路に対して少なくとも直交しない面のことである。 FIG. 9 shows another configuration example of the storage section 0003. In the configuration example shown in FIG. 9, a heat source 2124, a temperature sensor 2125 for controlling the temperature of the heat source 2124, a heat source 2126, and a temperature sensor 2127 for controlling the temperature of the heat source 2126 are provided on the left and right side surfaces of the sample container storage chamber 2003. A heater, Peltier, or the like is used as the heat source 2124 and the heat source 2126. The other configurations are the same as in the first embodiment. This configuration may be combined with the configurations shown in FIGS. 5 to 8. The side surface here refers to a surface that is not at least orthogonal to the path through which the cold air passes through the sample container storage chamber 2003.
 収納部0003が保温する検体容器0007は、検体2111の培養のため、例えば検体2111が細菌の場合、35℃±1℃程度に保温する必要がある。熱源2124および熱源2126は、その加温を補助し、温調精度を上げるために用いられる。結露を抑制するために、熱源2124および熱源2126の制御温度>冷熱源2101の制御温度とし、検体容器下部2110底面へ吹きかかる冷風の温度の方が検体容器0007の保温温度より低くなるようにする。熱源2124と熱源2126の温度制御についても収納ユニット2001の温度が検体2111の培養へ影響しない温度となるように制御する。 The specimen container 0007 kept warm by the storage section 0003 needs to be kept warm at about 35° C.±1° C. for culturing the specimen 2111, for example, if the specimen 2111 is bacteria. The heat source 2124 and the heat source 2126 are used to assist in the heating and improve temperature control accuracy. In order to suppress condensation, the control temperature of the heat source 2124 and the heat source 2126 is greater than the control temperature of the cold heat source 2101, and the temperature of the cold air blown to the bottom of the sample container lower part 2110 is set to be lower than the heat retention temperature of the sample container 0007. . The temperature of the heat source 2124 and the heat source 2126 is also controlled so that the temperature of the storage unit 2001 is at a temperature that does not affect the culture of the specimen 2111.
 温度センサ2125と2127の位置は、検体容器蓋2112あるいはその近傍の空間の温度を相対的に測れる位置が好ましい。収納部0003内の検体容器蓋2112の温度との相関が得られるのであれば、どの位置に温度センサ2125と2127があってもよい。例えば検体容器収納室2003内部の金属表面あるいは、熱源2124と熱源2126のカバー表面であってもよい。すなわち、検体2111の温度を直接または間接に測定することができればよい。 The temperature sensors 2125 and 2127 are preferably positioned so that they can relatively measure the temperature of the sample container lid 2112 or the space in its vicinity. The temperature sensors 2125 and 2127 may be located at any position as long as a correlation with the temperature of the sample container lid 2112 in the storage section 0003 can be obtained. For example, it may be a metal surface inside the sample container storage chamber 2003 or a cover surface of the heat source 2124 and the heat source 2126. That is, it is sufficient if the temperature of the specimen 2111 can be measured directly or indirectly.
 以上の実施形態において、温調部2002をダクト2108内に配置してもよい。ただし温調部2002としてペルチェなどのように熱交換機構を用いる場合、低熱側(ヒートシンク2105など)を分析装置0001外へ容易に配置することができるように、収納部0003の位置などを適宜調整することが望ましい。 In the above embodiments, the temperature control unit 2002 may be placed inside the duct 2108. However, if a heat exchange mechanism such as Peltier is used as the temperature control unit 2002, the position of the storage unit 0003 etc. should be adjusted as appropriate so that the low heat side (heat sink 2105, etc.) can be easily placed outside the analyzer 0001. It is desirable to do so.
<実施の形態3>
 図10は、演算部11が分析装置0001の各部温度を制御する手順を説明するフローチャートである。本フローチャートは、図2、図5~図8のうちいずれかの構成において用いることができる。本フローチャートは、演算部11が各温調部を制御することにより実施される。
<Embodiment 3>
FIG. 10 is a flowchart illustrating a procedure in which the calculation unit 11 controls the temperature of each part of the analyzer 0001. This flowchart can be used in any of the configurations of FIG. 2 and FIGS. 5 to 8. This flowchart is executed by the calculation unit 11 controlling each temperature control unit.
 温調部0006による分析装置0001全体の温調(フローチャート左半分)と温調部2002による温調(フローチャート右半分)は同時に実施することができる。温調部0006による温調は、装置全体の温調であり、特に収納部0003内の検体容器蓋2112の温調により、蓋の結露発生抑制を目的とした温度制御である。温調部2002による温調は、検体容器下部2110の温度制御により、検体の温調を主とした制御である。 The temperature control of the entire analyzer 0001 by the temperature control unit 0006 (left half of the flowchart) and the temperature control by the temperature control unit 2002 (right half of the flowchart) can be performed simultaneously. The temperature control by the temperature control unit 0006 is the temperature control of the entire apparatus, and in particular, the temperature control of the sample container lid 2112 in the storage unit 0003 is aimed at suppressing the occurrence of dew condensation on the lid. The temperature control by the temperature control unit 2002 is mainly control of the temperature of the sample by controlling the temperature of the lower part 2110 of the sample container.
 装置全体の温調手順においては、収納部0003内の検体容器蓋2112の目標温度、上限温度、下限温度を設定し、温調部0006により加熱する。上限温度や下限温度は、検体の生育や反応に影響がある温度の上限、下限を基に設定する場合や、測定者が決定する検体測定の測定条件によって設定する場合がある。ただし、検体容器蓋2112の目標温度は、検体容器下部2110の目標温度より高く設定される必要があり、検体容器蓋2112の温度>検体容器下部2110の温度となればよい。上限温度、下限温度は許容温度範囲として設定する場合があってもよい。設定しない温度があってもよい。 In the temperature control procedure for the entire apparatus, the target temperature, upper limit temperature, and lower limit temperature of the sample container lid 2112 in the storage section 0003 are set, and the temperature control section 0006 heats it. The upper temperature limit and lower temperature limit may be set based on the upper and lower temperature limits that affect the growth or reaction of the specimen, or may be set based on the measurement conditions for specimen measurement determined by the measurer. However, the target temperature of the sample container lid 2112 needs to be set higher than the target temperature of the sample container lower part 2110, and it is sufficient that the temperature of the specimen container lid 2112>the temperature of the sample container lower part 2110. The upper limit temperature and lower limit temperature may be set as an allowable temperature range. There may be temperatures that are not set.
 温調部0006による加熱手順においては、検体容器蓋2112が目標温度以上になると、加熱がオフとなる。ただし、加熱オフ後のオーバーシュートは上限温度未満、アンダーシュートは下限温度以上とする。さらに検体容器蓋2112が目標温度以下となると、温調部0006により加熱される。検体容器蓋2112の温度そのものを測定することに代えて、相関が得られる検体容器蓋2112の近傍の温度を測定してもよい。すなわち、検体容器蓋2112の温度を直接または間接に測定することができればよい。 In the heating procedure by the temperature control unit 0006, heating is turned off when the sample container lid 2112 reaches or exceeds the target temperature. However, overshoot after heating is turned off is below the upper limit temperature, and undershoot is above the lower limit temperature. Furthermore, when the sample container lid 2112 becomes lower than the target temperature, it is heated by the temperature control section 0006. Instead of measuring the temperature of the sample container lid 2112 itself, the temperature near the sample container lid 2112 from which a correlation can be obtained may be measured. That is, it is sufficient if the temperature of the sample container lid 2112 can be measured directly or indirectly.
 検体容器下部2110の温度制御においては、検体容器下部2110の目標温度、上限温度、下限温度を設定し、温調部2002により温調する。上限温度や下限温度は、検体に影響がない温度の上限、下限を基に設定する場合や、測定者が決定する検体測定の測定条件によって設定する場合がある。ただし、検体温度は検体容器蓋2112の温度よりも低い温度に設定することが必要である。このフローでは、装置全体の温度は検体容器蓋2112の温度を介して設定されるので、検体容器下部2110は検体容器蓋2112の温度よりも冷却される。したがってフロー上では温調部2002による冷却と表記した。 In controlling the temperature of the lower part of the sample container 2110, a target temperature, upper limit temperature, and lower limit temperature of the lower part of the sample container 2110 are set, and the temperature is controlled by the temperature control unit 2002. The upper temperature limit and lower temperature limit may be set based on the upper and lower temperature limits that have no effect on the specimen, or may be set based on the measurement conditions for specimen measurement determined by the measurer. However, the sample temperature needs to be set lower than the temperature of the sample container lid 2112. In this flow, the temperature of the entire apparatus is set via the temperature of the sample container lid 2112, so the lower part 2110 of the specimen container is cooler than the temperature of the specimen container lid 2112. Therefore, in the flow, it is expressed as cooling by the temperature control section 2002.
 温調部2002による冷却手順においては、検体容器下部2110が目標温度以下になると、冷却がオフとなる。ただし、冷却オフ後のアンダーシュートは下限温度以上、オーバーシュートは上限温度未満とする。さらに検体容器下部2110が目標温度以上となると、温調部2002により冷却される。設定する温度によって、検体容器蓋2112の温度より検体容器下部2110の温度が高くなる可能性がある場合は、温調部2002による冷却によって、検体容器蓋2112の温度>検体容器下部2110の温度となるように制御する必要がある。 In the cooling procedure performed by the temperature control unit 2002, when the lower part 2110 of the sample container falls below the target temperature, cooling is turned off. However, the undershoot after cooling off should be above the lower limit temperature, and the overshoot should be below the upper limit temperature. Furthermore, when the sample container lower part 2110 reaches a target temperature or higher, it is cooled by the temperature control section 2002. If there is a possibility that the temperature of the sample container lower part 2110 will be higher than the temperature of the sample container lid 2112 depending on the temperature to be set, the temperature of the specimen container lid 2112 > the temperature of the specimen container lower part 2110 will be adjusted by cooling by the temperature controller 2002. It is necessary to control it so that
 各温度の設定例としては、例えば以下のものが挙げられる:検体容器蓋2112の目標温度35.5℃、上限温度36.0℃、下限温度35.0℃;検体容器下部2110の目標温度34.5℃、上限温度35.0℃、下限温度34.0℃。 Examples of settings for each temperature include the following: target temperature of sample container lid 2112 35.5°C, upper limit temperature 36.0°C, lower limit temperature 35.0°C; target temperature 34 of sample container lower part 2110 .5℃, upper limit temperature 35.0℃, lower limit temperature 34.0℃.
 検体容器蓋2112の下限温度は、例えば制御パラメータを定める際に用いることができる。例えば図11左側のループサイクル1回のインターバルを定める際に、検体容器蓋2112の下限温度を参考としてもよい。 The lower limit temperature of the sample container lid 2112 can be used, for example, when determining control parameters. For example, when determining the interval of one loop cycle on the left side of FIG. 11, the lower limit temperature of the sample container lid 2112 may be used as a reference.
 図11は、演算部11が分析装置0001の各部温度を制御する手順を説明するフローチャートである。本フローチャートは、図9の構成において用いることができる。本フローチャートは、演算部11が各温調部を制御することにより実施される。 FIG. 11 is a flowchart illustrating a procedure in which the calculation unit 11 controls the temperature of each part of the analyzer 0001. This flowchart can be used in the configuration of FIG. This flowchart is executed by the calculation unit 11 controlling each temperature control unit.
 温調部0006による分析装置0001全体の温調(図11左)、温調部2002による温調(図11中央)、熱源2124と2126による温調(図11右)、は同時に実施することができる。温調部0006による温調は、分析装置0001全体としての温調を主とすることが可能である。温調部2002による温調は、収納部0003内の検体容器下部2110(検体)の温調を主とした制御である。熱源2124と2126による温調は、検体容器蓋2112の温度制御により、蓋の結露発生抑制を主とした温度制御である。このような温調をすることにより、図10の温度制御に比べ、より高い温調精度を実現することが可能である。 Temperature control of the entire analyzer 0001 by the temperature control section 0006 (left in FIG. 11), temperature control by the temperature control section 2002 (center in FIG. 11), and temperature control by the heat sources 2124 and 2126 (right in FIG. 11) can be performed simultaneously. can. The temperature control by the temperature control unit 0006 can be mainly performed to control the temperature of the analyzer 0001 as a whole. The temperature control by the temperature control unit 2002 is mainly a control of the temperature of the lower part of the sample container 2110 (sample) in the storage unit 0003. The temperature control by the heat sources 2124 and 2126 is temperature control that mainly suppresses the occurrence of condensation on the lid by controlling the temperature of the specimen container lid 2112. By controlling the temperature in this manner, it is possible to achieve higher temperature control accuracy than the temperature control shown in FIG.
 装置全体の温調手順においては、分析装置0001の目標温度、上限温度、下限温度を設定し、温調部0006により加熱する。上限温度や下限温度は、検体に影響がある温度の上限、下限を基に設定する場合や、測定者が決定する検体測定の測定条件によって設定する場合がある。上限温度、下限温度は許容温度範囲として設定する場合があってもよい。 In the temperature control procedure for the entire device, the target temperature, upper limit temperature, and lower limit temperature of the analyzer 0001 are set, and the temperature control unit 0006 heats it. The upper temperature limit and lower temperature limit may be set based on the upper and lower limits of temperatures that affect the specimen, or may be set based on the measurement conditions for specimen measurement determined by the measurer. The upper limit temperature and lower limit temperature may be set as an allowable temperature range.
 温調部0006による加熱手順においては、分析装置0001の目標温度以上に達すると、加熱がオフとなる。検体容器下部2110の下限温度以下に達すると、温調部0006により加熱される。検体の搬送や測定時における装置内温度による影響を考慮した場合、検体容器下部2110の下限温度以下に達した場合の加熱設定が好ましい。検体の搬送や測定時における温度影響を考慮しないのであれば、分析装置0001の目標温度以下で加熱するようにしてもよい。したがって、使用者の条件設定により、図11最下段左のステップは、「検体容器下部の下限温度以下」でもよいし「分析装置の目標温度以下」でもよい。 In the heating procedure by the temperature controller 0006, when the target temperature of the analyzer 0001 is reached or higher, the heating is turned off. When the lower temperature of the sample container 2110 reaches the lower limit temperature or lower, the temperature control section 0006 heats it. When considering the influence of the internal temperature of the apparatus during transport and measurement of the specimen, it is preferable to set the heating when the temperature reaches the lower limit temperature of the lower part 2110 of the specimen container. If the influence of temperature during transportation and measurement of the specimen is not taken into account, heating may be performed at a temperature lower than the target temperature of the analyzer 0001. Therefore, depending on the user's condition setting, the step at the bottom left in FIG. 11 may be "below the lower limit temperature of the lower part of the sample container" or "below the target temperature of the analyzer".
 温調部2002による温調手順においては、検体容器下部2110の目標温度(検体の目標温度)、上限温度、下限温度を設定し、温調部2002により温調する。上限温度や下限温度は、検体に影響がない温度の上限、下限を基に設定する場合や、測定者が決定する検体測定の測定条件によって設定する場合がある。ただし、検体容器下部2110の温度(検体温度)は検体容器蓋2112の温度よりも低い温度とすることが必要である。このフローでは、検体容器下部2110は検体容器蓋2112の温度よりも冷却されることになるので、フロー上では温調部2002による冷却と表記した。 In the temperature control procedure by the temperature control unit 2002, the target temperature (target temperature of the sample), upper limit temperature, and lower limit temperature of the sample container lower part 2110 are set, and the temperature is controlled by the temperature control unit 2002. The upper temperature limit and lower temperature limit may be set based on the upper and lower temperature limits that have no effect on the specimen, or may be set based on the measurement conditions for specimen measurement determined by the measurer. However, the temperature of the lower part of the sample container 2110 (sample temperature) needs to be lower than the temperature of the sample container lid 2112. In this flow, the sample container lower part 2110 is cooled down to a temperature lower than the temperature of the sample container lid 2112, so in the flow, it is expressed as cooling by the temperature control unit 2002.
 温調部2002による温度制御においては、検体容器下部2110が目標温度以下になると、冷却がオフとなる。ただし、冷却のOFF時のアンダーシュートは下限温度以上、オーバーシュートは上限温度未満とする。さらに検体容器下部2110が目標温度以上となると、温調部2002により冷却される。 In the temperature control by the temperature controller 2002, when the lower part 2110 of the sample container falls below the target temperature, cooling is turned off. However, when the cooling is turned off, the undershoot is equal to or higher than the lower limit temperature, and the overshoot is lower than the upper limit temperature. Furthermore, when the sample container lower part 2110 reaches a target temperature or higher, it is cooled by the temperature control section 2002.
 検体容器蓋2112の温度制御においては、検体容器蓋2112の目標温度(検体容器下部2110の目標温度)、上限温度、下限温度を設定し、熱源2124と2126により加熱する。検体容器蓋2112の下限温度は、検体容器下部2110の温度より高く制御できるように、設定する。すなわち、検体容器蓋2112の温度>検体容器下部2110であることが実現できれば良い。 In controlling the temperature of the sample container lid 2112, a target temperature of the sample container lid 2112 (target temperature of the sample container lower part 2110), an upper limit temperature, and a lower limit temperature are set, and the sample container lid 2112 is heated by heat sources 2124 and 2126. The lower limit temperature of the sample container lid 2112 is set so that it can be controlled higher than the temperature of the lower portion 2110 of the sample container. That is, it is only necessary to realize that the temperature of the sample container lid 2112>the sample container lower part 2110.
 熱源2124と2126による温調手順においては、検体容器蓋2112が目標温度以上になると、加熱がオフとなる。ただし、加熱オフ後のオーバーシュートは上限温度未満、アンダーシュートは下限温度以上とする。さらに、検体容器蓋2112の目標温度以下になると、熱源2124と2126により加熱される。熱源が検体容器0007の近傍に位置しているので、温度調整を高精度に実施できる。したがって、温調部0006による温度影響や温調部2002による温度影響を加味した温度調整が可能である。設定する温度によって、検体容器蓋2112の温度より検体容器下部2110の温度が高くなる場合は、検体容器蓋2112の温度>検体容器下部2110の温度になるように、熱源2124と2126によって加熱することが必要である。 In the temperature control procedure using the heat sources 2124 and 2126, when the sample container lid 2112 reaches or exceeds the target temperature, heating is turned off. However, overshoot after heating is turned off is below the upper limit temperature, and undershoot is above the lower limit temperature. Furthermore, when the temperature of the sample container lid 2112 falls below the target temperature, it is heated by heat sources 2124 and 2126. Since the heat source is located near the sample container 0007, temperature adjustment can be performed with high precision. Therefore, it is possible to adjust the temperature while taking into account the temperature influence caused by the temperature control section 0006 and the temperature influence caused by the temperature control section 2002. If the temperature of the sample container lower part 2110 is higher than the temperature of the sample container lid 2112 depending on the set temperature, heat the sample container with the heat sources 2124 and 2126 so that the temperature of the specimen container lid 2112 > the temperature of the specimen container lower part 2110. is necessary.
 各温度の設定例としては、例えば以下のものが挙げられる:分析装置0001の目標温度35.0℃、上限温度35.3℃、下限温度34.5℃;検体容器下部2110の目標温度35.0℃、上限温度35.3℃、下限温度34.5℃;検体容器蓋2112の目標温度35.5℃、上限温度36.0℃、下限温度35.3℃。 Examples of settings for each temperature include the following: target temperature of analyzer 0001: 35.0°C, upper limit temperature: 35.3°C, lower limit temperature: 34.5°C; target temperature of sample container lower part 2110: 35.0°C. 0°C, upper limit temperature 35.3°C, lower limit temperature 34.5°C; target temperature of sample container lid 2112 35.5°C, upper limit temperature 36.0°C, lower limit temperature 35.3°C.
<本発明の変形例について>
 本発明は、前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
<About modifications of the present invention>
The present invention is not limited to the embodiments described above, and includes various modifications. For example, the above-described embodiments have been described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is possible to add, delete, or replace some of the configurations of each embodiment with other configurations.
 以上の実施形態において、検体容器収納室2003を全面開口とすることによって吹き出し口2113を構成するとともに、風量調節材(2116など)の開口のサイズと位置を調整することにより、検体容器蓋2112の温度を検体容器下部2110の温度よりも高くすることもできる。すなわち、吹き出し口2113と風量調節材(2116など)の組み合わせによって、以上の実施形態と同等の効果を発揮できればよい。 In the above embodiment, the air outlet 2113 is configured by opening the entire surface of the sample container storage chamber 2003, and the size and position of the opening of the air volume adjusting material (2116, etc.) are adjusted to open the sample container lid 2112. The temperature can also be higher than the temperature of the sample container lower part 2110. That is, the combination of the air outlet 2113 and the air volume adjusting material (2116, etc.) may provide the same effect as the above embodiment.
 以上の実施形態において、演算部11は、各温度センサが計測した温度、各部の風量(および/または風圧)、などをモニタ13上に提示してもよい。ユーザにとって有用なその他情報を提示してもよい。 In the above embodiment, the calculation unit 11 may display the temperature measured by each temperature sensor, the air volume (and/or wind pressure) of each part, etc. on the monitor 13. Other information useful to the user may also be presented.
 以上の実施形態において、演算部11は、その機能を実装した回路デバイスなどのハードウェアによって構成することもできるし、その機能を実装したソフトウェアをCPU(Central Processing Unit)などの演算装置が実行することによって構成することもできる。 In the above embodiments, the arithmetic unit 11 can be configured by hardware such as a circuit device that implements the function, or software that implements the function is executed by an arithmetic unit such as a CPU (Central Processing Unit). It can also be configured by
0001 分析装置
0002 搬入出部
0003 収納部
0004 搬送部
0005 検出部
0006 温調部
0007 検体容器
1001 アクチュエータ
1002 アクチュエータ
1003 検体容器保持部
1004 測定ユニット
1005 測定部
1006 熱源
1007 ヒートシンク
1008 ファン
1009 温度センサ
2001 収納ユニット
2002 温調部
2003 検体容器収納室
2101 冷熱源
2102 ヒートシンク
2103 ファン
2104 温度センサ
2105 ヒートシンク
2106 ファン
2107 ファン
2108 ダクト
2109 断熱材
2110 検体容器下部
2111 検体
2112 検体容器蓋
2113 吹き出し口
2114 断熱材
2115 金属材
2116 風量調節材
2117 金属材
2118 金属材
2119 風量調節材
2120 ダクト
2121 風量調節材
2122 風量調節材
2123 断熱材
2124 熱源
2125 温度センサ
2126 熱源
2127 温度センサ
0001 Analyzer 0002 Loading/unloading section 0003 Storage section 0004 Transport section 0005 Detection section 0006 Temperature control section 0007 Sample container 1001 Actuator 1002 Actuator 1003 Sample container holding section 1004 Measurement unit 1005 Measurement section 1006 Heat source 1007 Heat sink 1008 Fan 1009 Temperature sensor 20 01 Storage unit 2002 Temperature control unit 2003 Sample container storage chamber 2101 Cold source 2102 Heat sink 2103 Fan 2104 Temperature sensor 2105 Heat sink 2106 Fan 2107 Fan 2108 Duct 2109 Insulating material 2110 Sample container lower part 2111 Sample 2112 Sample container lid 2113 Air outlet 2114 Insulating material 2115 Metal material 2 116 Air volume adjustment material 2117 Metal material 2118 Metal material 2119 Air volume adjustment material 2120 Duct 2121 Air volume adjustment material 2122 Air volume adjustment material 2123 Insulation material 2124 Heat source 2125 Temperature sensor 2126 Heat source 2127 Temperature sensor

Claims (16)

  1.  検体を分析する検体分析装置であって、
     前記検体を収容する検体容器を格納する収納部、
     冷風を生成する温調部、
     前記冷風が通過する第1ダクト、
     前記第1ダクトを通過する前記冷風を前記収納部内の前記検体容器の下方に対して供給する吹出口、
     を備え、
     前記検体容器は、検体容器下部と、前記検体容器下部の上面を覆う検体容器蓋とを有し、
     前記温調部は、前記検体容器下部の温度が前記検体容器蓋の温度よりも低くなるように、前記冷風を生成する
     ことを特徴とする検体分析装置。
    A sample analyzer that analyzes a sample,
    a storage unit that stores a sample container containing the sample;
    A temperature control unit that generates cold air;
    a first duct through which the cold air passes;
    an air outlet that supplies the cold air passing through the first duct to a region below the sample container in the storage section;
    Equipped with
    The sample container has a lower portion of the sample container and a sample container lid that covers the upper surface of the lower portion of the sample container,
    The sample analyzer is characterized in that the temperature control section generates the cold air so that the temperature of the lower part of the sample container is lower than the temperature of the sample container lid.
  2.  前記検体分析装置はさらに、前記吹出口が前記収納部に対して供給する前記冷風の風量を調整する第1風量調節材を備える
     ことを特徴とする請求項1記載の検体分析装置。
    The sample analyzer according to claim 1, further comprising a first air volume adjusting member that adjusts the volume of the cold air that the blower outlet supplies to the storage section.
  3.  前記収納部の内部には、前記検体容器を格納する2つ以上の収納室が隣接して配置されており、
     前記吹出口は、各前記収納室に対してそれぞれ前記冷風を供給する2つ以上の開口によって構成されており、
     前記第1風量調節材は、各前記開口が供給する前記風量を均一化するように構成されている
     ことを特徴とする請求項2記載の検体分析装置。
    Inside the storage section, two or more storage chambers for storing the sample containers are arranged adjacently,
    The air outlet is constituted by two or more openings that respectively supply the cold air to each of the storage chambers,
    The sample analyzer according to claim 2, wherein the first air volume adjusting member is configured to equalize the air volume supplied by each of the openings.
  4.  前記吹出口は、前記検体容器下部の下方を前記冷風が通過するように構成されている
     ことを特徴とする請求項1記載の検体分析装置。
    The sample analyzer according to claim 1, wherein the blower outlet is configured so that the cold air passes below a lower portion of the sample container.
  5.  前記吹出口は、
      前記冷風が前記収納室に対して、前記検体容器下部よりも下方の位置から導入される、
      または、
      前記検体容器下部の下方を通過する前記冷風の風量が、前記検体容器下部の上方を通過する前記冷風の風量よりも大きい、
     のうち少なくともいずれかとなるように構成されている
     ことを特徴とする請求項3記載の検体分析装置。
    The air outlet is
    The cold air is introduced into the storage chamber from a position below the lower part of the sample container.
    or
    The volume of the cold air passing below the lower part of the sample container is larger than the volume of the cold air passing above the lower part of the sample container.
    The sample analyzer according to claim 3, wherein the sample analyzer is configured to be at least one of the following.
  6.  前記開口は、
      前記収納室に対して前記冷風が導入される入口面のうち、前記検体容器下部よりも下方の部分においてのみ設けられている、
      または、
      前記収納室に対して前記冷風が導入される入口面のうち、前記検体容器下部よりも下方の部分において設けられている前記開口の総面積が、前記検体容器下部よりも上方の部分において設けられている前記開口の総面積よりも大きい、
     のうち少なくともいずれかとなるように構成されている
     ことを特徴とする請求項3記載の検体分析装置。
    The opening is
    Provided only at a portion of the entrance surface through which the cold air is introduced into the storage chamber, below the lower portion of the sample container;
    or
    Of the entrance surface through which the cold air is introduced into the storage chamber, the total area of the openings provided in a part below the lower part of the sample container is equal to the total area of the openings provided in a part above the lower part of the sample container. larger than the total area of the openings,
    The sample analyzer according to claim 3, wherein the sample analyzer is configured to be at least one of the following.
  7.  前記収納室の内部には、前記検体容器が載置される箇所の下方に、断熱材が配置されている
     ことを特徴とする請求項3記載の検体分析装置。
    The sample analyzer according to claim 3, wherein inside the storage chamber, a heat insulating material is arranged below a location where the sample container is placed.
  8.  前記検体分析装置はさらに、
      前記第1ダクトが前記収納部に対して供給する前記冷風の圧力を調整する第2ダクト、
      前記第1ダクトと前記第2ダクトとの間に配置され、前記冷風の風量を調整する、第2風量調節材、
     を備える
     ことを特徴とする請求項1記載の検体分析装置。
    The sample analyzer further includes:
    a second duct that adjusts the pressure of the cold air that the first duct supplies to the storage section;
    a second air volume adjusting material disposed between the first duct and the second duct and adjusting the air volume of the cold air;
    The sample analyzer according to claim 1, comprising:
  9.  前記検体分析装置はさらに、
      前記第1ダクトが前記収納部に対して供給する前記冷風の圧力を調整する第2ダクト、
      前記第1ダクトと前記第2ダクトとの間に配置され、前記冷風の風量を調整する、第2風量調節材、
     を備え、
     前記第1風量調節材の開口率は、前記第2風量調節材の開口率とは異なる
     ことを特徴とする請求項2記載の検体分析装置。
    The sample analyzer further includes:
    a second duct that adjusts the pressure of the cold air that the first duct supplies to the storage section;
    a second air volume adjusting member disposed between the first duct and the second duct and adjusting the air volume of the cold air;
    Equipped with
    The sample analyzer according to claim 2, wherein an aperture ratio of the first air volume adjustment material is different from an aperture ratio of the second air volume adjustment material.
  10.  前記検体分析装置はさらに、前記第2ダクトと前記吹出口との間に配置され、前記冷風の風量を調整する、第3風量調節材を備え、
     前記第2風量調節材の開口率は、前記第3風量調節材の開口率よりも大きい
     ことを特徴とする請求項8記載の検体分析装置。
    The sample analyzer further includes a third air volume adjusting member disposed between the second duct and the air outlet and adjusting the air volume of the cold air,
    The sample analyzer according to claim 8, wherein an aperture ratio of the second air volume adjustment material is larger than an aperture ratio of the third air volume adjustment material.
  11.  前記第1ダクトの内面のうち少なくとも一部または前記第1ダクトの外面のうち少なくとも一部は、断熱材によって覆われている
     ことを特徴とする請求項1記載の検体分析装置。
    The sample analyzer according to claim 1, wherein at least a portion of the inner surface of the first duct or at least a portion of the outer surface of the first duct is covered with a heat insulating material.
  12.  前記収納部は、前記冷風が前記吹出口から導入される方向に対して直交しない側面上に、熱源および前記熱源の温度を測定する温度センサを備え、
     前記熱源の制御温度は、前記温調部の制御温度よりも高い
     ことを特徴とする請求項1記載の検体分析装置。
    The storage unit includes a heat source and a temperature sensor that measures the temperature of the heat source on a side surface that is not perpendicular to the direction in which the cold air is introduced from the outlet,
    The sample analyzer according to claim 1, wherein the control temperature of the heat source is higher than the control temperature of the temperature control section.
  13.  前記検体分析装置はさらに、各前記収納室にわたる風流を前記第1ダクト内に発生させる風流発生装置を備え、
     前記温調部は、前記第1ダクト内に配置されている
     ことを特徴とする請求項3記載の検体分析装置。
    The sample analyzer further includes an air current generation device that generates an air current in the first duct that spans each of the storage chambers,
    The sample analyzer according to claim 3, wherein the temperature control section is arranged within the first duct.
  14.  前記温調部は、
      前記検体分析装置の筐体内に対して温風を供給することにより前記検体容器蓋の温度を制御する第1温調装置、
      前記収納部に対して前記冷風を供給することにより前記検体容器下部の温度を制御する第2温調装置、
     を備え、
     前記検体分析装置はさらに、前記温調部を制御する演算部を備え、
     前記演算部は、前記検体容器蓋の温度が前記検体容器下部の温度よりも高くなるように前記温調部を制御する
     ことを特徴とする請求項4記載の検体分析装置。
    The temperature control section is
    a first temperature controller that controls the temperature of the sample container lid by supplying warm air into the housing of the sample analyzer;
    a second temperature control device that controls the temperature of the lower part of the sample container by supplying the cold air to the storage section;
    Equipped with
    The sample analyzer further includes a calculation unit that controls the temperature control unit,
    The sample analyzer according to claim 4, wherein the calculation section controls the temperature adjustment section so that the temperature of the sample container lid is higher than the temperature of the lower part of the sample container.
  15.  前記温調部は、
      前記収納部に対して前記冷風を供給することにより前記検体容器下部の温度を制御する第1温調装置、
      前記熱源を用いて前記収納部に対して温風を供給することにより前記検体容器蓋の温度を制御する第2温調装置、
     を備え、
     前記検体分析装置はさらに、前記温調部と前記熱源を制御する演算部を備え、
     前記演算部は、前記検体容器蓋の温度が前記検体容器下部の温度よりも高くなるように前記温調部と前記熱源を制御する
     ことを特徴とする請求項12記載の検体分析装置。
    The temperature control section is
    a first temperature control device that controls the temperature of the lower part of the sample container by supplying the cold air to the storage section;
    a second temperature control device that controls the temperature of the sample container lid by supplying warm air to the storage section using the heat source;
    Equipped with
    The sample analyzer further includes a calculation unit that controls the temperature control unit and the heat source,
    The sample analyzer according to claim 12, wherein the calculation unit controls the temperature adjustment unit and the heat source so that the temperature of the sample container lid is higher than the temperature of the lower part of the sample container.
  16.  前記検体は生体検体であり、
     前記温調部は、前記生体検体を生育可能な温度を有する前記冷風を供給する
     ことを特徴とする請求項1記載の検体分析装置。
    The specimen is a biological specimen,
    The sample analyzer according to claim 1, wherein the temperature control unit supplies the cold air having a temperature at which the biological sample can grow.
PCT/JP2022/034311 2022-09-14 2022-09-14 Specimen analysis device WO2024057426A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034311 WO2024057426A1 (en) 2022-09-14 2022-09-14 Specimen analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034311 WO2024057426A1 (en) 2022-09-14 2022-09-14 Specimen analysis device

Publications (1)

Publication Number Publication Date
WO2024057426A1 true WO2024057426A1 (en) 2024-03-21

Family

ID=90274567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034311 WO2024057426A1 (en) 2022-09-14 2022-09-14 Specimen analysis device

Country Status (1)

Country Link
WO (1) WO2024057426A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501676A (en) * 2008-09-09 2012-01-26 バイオメリュー・インコーポレイテッド Cultivation system in cryogenic enclosure
JP2013185980A (en) * 2012-03-08 2013-09-19 Hitachi High-Technologies Corp Automatic analyzer
WO2020110600A1 (en) * 2018-11-29 2020-06-04 Phcホールディングス株式会社 Culture device
WO2021182068A1 (en) * 2020-03-11 2021-09-16 株式会社日立ハイテク Automated analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501676A (en) * 2008-09-09 2012-01-26 バイオメリュー・インコーポレイテッド Cultivation system in cryogenic enclosure
JP2013185980A (en) * 2012-03-08 2013-09-19 Hitachi High-Technologies Corp Automatic analyzer
WO2020110600A1 (en) * 2018-11-29 2020-06-04 Phcホールディングス株式会社 Culture device
WO2021182068A1 (en) * 2020-03-11 2021-09-16 株式会社日立ハイテク Automated analyzer

Similar Documents

Publication Publication Date Title
JP6713344B2 (en) incubator
EP3626813A1 (en) Incubator
US8080412B2 (en) Multiwell incubation apparatus and method of analysis using the same
US20060023299A1 (en) Biological sample observation system and biological sample observation method
US8393234B2 (en) Apparatus, device and method for arranging at least one sample container
JP5084187B2 (en) Incubator and humidifier dish for incubator
WO2005095576A2 (en) Controlled temperature water (or other fluid)-jacket co2 microscope stage incubator
US3553426A (en) Temperature control apparatus
JP7411751B2 (en) Culture vessel rack and analysis equipment
JP7148517B2 (en) Measuring device for measuring the concentration of gaseous substances
WO2024057426A1 (en) Specimen analysis device
WO2024057425A1 (en) Specimen analysis device
JP3581840B2 (en) Culture equipment for microscopy
WO2012098380A1 (en) Incubators
EP2906680A1 (en) Embryo incubator incorporating gas control
JP2005323509A (en) Cell culture-observing device for measuring gene expression
JP2547970B2 (en) Constant temperature bath device
GB2250581A (en) Temperature control for sample incubator
Chen et al. An Inexpensive Imaging Platform to Record and Quantitate Bacterial Swarming
JP6239759B2 (en) Temperature control container
JP2003061641A (en) Incubator for minute culture
KR100745110B1 (en) Culture chamber for a microscope
JP2005331862A (en) Cultivation apparatus for microscope observation
JP6870873B2 (en) incubator
JP3202619B2 (en) Constant temperature bath equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958756

Country of ref document: EP

Kind code of ref document: A1