JP3581840B2 - Culture equipment for microscopy - Google Patents

Culture equipment for microscopy Download PDF

Info

Publication number
JP3581840B2
JP3581840B2 JP2001213470A JP2001213470A JP3581840B2 JP 3581840 B2 JP3581840 B2 JP 3581840B2 JP 2001213470 A JP2001213470 A JP 2001213470A JP 2001213470 A JP2001213470 A JP 2001213470A JP 3581840 B2 JP3581840 B2 JP 3581840B2
Authority
JP
Japan
Prior art keywords
concentration
chamber
gas
oxygen gas
mixed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001213470A
Other languages
Japanese (ja)
Other versions
JP2003029164A (en
Inventor
登久 松江
Original Assignee
有限会社トッケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社トッケン filed Critical 有限会社トッケン
Priority to JP2001213470A priority Critical patent/JP3581840B2/en
Publication of JP2003029164A publication Critical patent/JP2003029164A/en
Application granted granted Critical
Publication of JP3581840B2 publication Critical patent/JP3581840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/24Recirculation of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/26Conditioning fluids entering or exiting the reaction vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Microscoopes, Condenser (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PROBLEM TO BE SOLVED: To circulate mixed air between a gas mixing chamber and a chamber and disposing a humidifier in the chamber. SOLUTION: The respective gaseous components from a CO2 gas cylinder 3, N2 gas cylinder 4 and other gas cylinders 5 are introduced into a gas mixing chamber 2 via a solenoid valve 31 for CO2 , a solenoid valve 41 for N2 and other solenoid valves 51 and are mixed uniformly by a mixed air stirring fan 21. The mixed air in the gas mixing chamber 2 is delivered through a forward pipeline 2a toward the chamber 1 by an air pump 6, heated by a heater 7, removed of impurities by an air filter 8 and supplied into the chamber 1. When the mixed air is fed into the chamber 1 through the forward pipeline 2a, the mixed air which already exists in the chamber 1 is refluxed through a backward pipeline 2b into the gas mixing chamber 2. As a result, the mixed air is circulated between the gas mixing chamber 2 and the chamber 1. Furthermore, the mixed air is humidified by the humidifier 11 in the chamber 1, by which high humidity is obtained.

Description

【0001】
【発明の属する技術分野】
本発明は顕微鏡観察用培養装置に関し、特に顕微鏡にて細胞,組織,細菌,微生物等の生体系試料を長時間生存状態のまま観察および撮影するための顕微鏡観察用培養装置に関する。
【0002】
【従来の技術】
顕微鏡にて観察対象である生体系試料(以下、単に試料という)を長時間生存状態のまま観察および撮影する場合、透明箱体でなるチャンバを用意し、その中に試料を入れたまま保温し、高湿度状態でO(酸素)やCO(二酸化炭素)の濃度が常に一定に制御された環境を形成して、これを顕微鏡ステージに設置する必要がある。
【0003】
図5は、従来の顕微鏡観察用培養装置の一例を示すシステム構成図である。この顕微鏡観察用培養装置は、観察対象となる試料Sを培養する試料容器Rを収納し顕微鏡ステージ115上に載置されるチャンバ101と、チャンバ101内に供給される大気,COガスおよびN(窒素)ガスを混合エア攪拌ファン121により混ぜ合せて混合エアとするガス混合室102と、ガス混合室102にバルブ131および141を介して接続されたCOガスボンベ103およびNガスボンベ104と、大気をバルブ162および流量計161を通じて取り込んでガス混合室102に供給するエアポンプ106と、顕微鏡ステージ115に組み込まれたヒータ107と、逆流防止用の安全トラップ110を介してガス混合室102に接続され加湿用水を収容するバブラ111と、ガス混合室102に設けられたCOセンサ122およびOセンサ123に接続されているとともにヒータ107およびその温度センサ(図示せず)に接続された制御器109と、培地容器116から培地を試料容器Rに補充するポンプ117とから、その主要部が構成されている。
【0004】
このような従来の顕微鏡観察用培養装置では、ヒータ107により所定温度に制御された顕微鏡ステージ115の上に、試料Sを培養する試料容器Rを収納したチャンバ101を設置し、ガス混合室102で大気とCOガスおよびNガスとを混合し、所定濃度に調整された混合エアを常時あるいは定期的にチャンバ1に供給する方式がとられていた。このため、混合エアは、チャンバ101等のすきまから垂れ流し状態となっていた。
【0005】
また、チャンバ101内の湿度調整のために、チャンバ101に供給する混合エアをバブラ111により純水などの加湿用水の中を一度通すなどして加湿を行っていた。
【0006】
さらに、ヒータ107による加熱によって試料Sから培地(水分)が蒸発するため、ポンプ117により培地容器116から培地を試料Sに適時補充していた。なお、試料Sに培地を補充すると、試料容器Rの培地の位置が変動してしまうため、試料Sの同じ場所を顕微鏡で観察し続けることができなくなるおそれがあった。
【0007】
【発明が解決しようとする課題】
上述した従来の顕微鏡観察用培養装置では、前記混合エアの垂れ流している分の補充のために混合エアをチャンバに常時あるいは定期的に注入しているために、COガスおよびNガス等の各成分ガスの消費量が大きく、無駄が多いという問題点があった。
【0008】
また、チャンバ内で混合エア中の各成分ガスの濃度が測定されておらず、チャンバ内の各成分ガスが正確に所定濃度になっているかどうかがわからないという問題点があった。
【0009】
さらに、チャンバの底部をヒータで温めているため、試料近傍の温度がもっとも高くなり、均一の温度環境が得られないのみか、試料からの水分蒸発のため、長時間の実験では試料が乾燥して死んでしまう場合があるという問題点があった。
【0010】
さらにまた、加湿に関して、加温調節しているのがチャンバのみであるため、加湿用のバブラを用い、チャンバ直前で加湿してもエアが加温されたチャンバに入ることにより気温が上昇して飽和水蒸気量が増加して結果的に湿度が下がってしまい、チャンバ内の湿度を十分に高くすることができないという問題点があった。
【0011】
本発明の第1の目的は、従来、垂れ流しであった混合エアを、ガス混合室とチャンバ間で循環させるようにした顕微鏡観察用培養装置を提供することにある。
【0012】
また、本発明の第2の目的は、混合エア中の各成分ガスの濃度を測定制御し、混合エア中の各成分ガスの濃度を一定に保つことができるようにした顕微鏡観察用培養装置を提供することにある。
【0013】
さらに、本発明の第3の目的は、直接加熱した混合エアを供給するようにして、試料の乾燥を防止できるようにした顕微鏡観察用培養装置を提供することにある。
【0014】
さらにまた、本発明の第4の目的は、チャンバ内に加湿装置を設けることにより、混合エアの湿度を十分に高くすることができるようにした顕微鏡観察用培養装置を提供することにある。
【0015】
【課題を解決するための手段】
本発明の顕微鏡観察用培養装置は、観察対象となる試料を収納し顕微鏡ステージ上に載置されるチャンバと、前記チャンバ内に供給される混合エアを混合するガス混合室と、前記ガス混合室に電磁バルブを介して接続された二酸化炭素ガス供給源と、前記ガス混合室と前記チャンバ間を接続する往管路および復管路と、前記ガス混合室内の混合エアを前記往管路を通じて前記チャンバに供給し、前記チャンバ内の混合エアを前記復管路を通じて前記ガス混合室に還流させるエア循環手段と、前記チャンバ内の二酸化炭素ガスの濃度を設定するための二酸化炭素ガス濃度調節手段と、前記チャンバ内の二酸化炭素ガスの濃度を測定する二酸化炭素ガス濃度検出手段と、前記二酸化炭素ガス濃度検出手段により測定される二酸化炭素ガスの濃度を前記電磁バルブを開閉することによって前記二酸化炭素ガス濃度調節手段で設定された濃度に保つ濃度制御手段とを有することを特徴とする。
【0016】
また、本発明の顕微鏡観察用培養装置は、観察対象となる試料を収納し顕微鏡ステージ上に載置されるチャンバと、前記チャンバ内に供給される混合エアを混合するガス混合室と、前記ガス混合室に第1の電磁バルブを介して接続された酸素ガス供給源と、前記ガス混合室に第2の電磁バルブを介して接続された窒素ガス供給源と、前記ガス混合室と前記チャンバ間を接続する往管路および復管路と、前記ガス混合室内の混合エアを前記往管路を通じて前記チャンバに供給し、前記チャンバ内の混合エアを前記復管路を通じて前記ガス混合室に還流させるエア循環手段と、前記チャンバ内酸素ガスの濃度を設定するための酸素ガス濃度調節手段と、前記チャンバ内の酸素ガスの濃度を測定する酸素ガス濃度検出手段と、前記酸素ガス濃度調節手段で設定された酸素ガスの濃度が大気濃度以上であった場合に前記第1の電磁バルブを開閉して前記酸素ガス濃度検出手段により測定される酸素ガスの濃度を前記酸素ガス濃度調節手段で設定された酸素ガスの濃度に保ち、前記酸素ガス濃度調節手段で設定された酸素ガスの濃度が大気濃度未満であった場合に前記第2の電磁バルブを開閉して前記酸素ガス濃度検出手段により測定される酸素ガスの濃度を前記酸素ガス濃度調節手段で設定された酸素ガスの濃度に保つ濃度制御手段とを有することを特徴とする。
加えて、本発明の顕微鏡観察用培養装置は、観察対象となる試料を収納し顕微鏡ステージ上に載置されるチャンバと、前記チャンバ内に供給される混合エアを混合するガス混合室と、前記ガス混合室に第1の電磁バルブを介して接続された二酸化炭素ガス供給源と、前記ガス混合室に第2の電磁バルブを介して接続された酸素ガス供給源と、前記ガス混合室に第3の電磁バルブを介して接続された窒素ガス供給源と、前記ガス混合室と前記チャンバ間を接続する往管路および復管路と、前記ガス混合室内の混合エアを前記往管路を通じて前記チャンバに供給し、前記チャンバ内の混合エアを前記復管路を通じて前記ガス混合室に還流させるエア循環手段と、前記チャンバ内の二酸化炭素ガスの濃度を設定するための二酸化炭素ガス濃度調節手段と、前記チャンバ内の酸素ガスの濃度を設定するための酸素ガス濃度調節手段と、前記チャンバ内の二酸化炭素ガスの濃度を測定する二酸化炭素ガス濃度検出手段と、前記チャンバ内の酸素ガスの濃度を測定する酸素ガス濃度検出手段と、前記二酸化炭素ガス濃度検出手段により測定される二酸化炭素ガスの濃度を前記第1の電磁バルブを開閉することによって前記二酸化炭素ガス濃度調節手段で設定された二酸化炭素ガスの濃度に保つとともに、前記酸素ガス濃度調節手段で設定された酸素ガスの濃度が大気濃度以上であった場合に前記第2の電磁バルブを開閉して前記酸素ガス濃度検出手段により測定される酸素ガスの濃度を前記酸素ガス濃度調節手段で設定された酸素ガスの濃度に保ち、前記酸素ガス濃度調節手段で設定された酸素ガスの濃度が大気濃度未満であった場合に前記第3の電磁バルブを開閉して前記酸素ガス濃度検出手段により測定される酸素ガスの濃度を前記酸素ガス濃度調節手段で設定された酸素ガスの濃度に保つ濃度制御手段とを有することを特徴とする。
【0017】
さらに、本発明の顕微鏡観察用培養装置は、前記混合エアを加熱する加熱手段と、前記混合エアの温度を設定するための温度調節手段と、前記混合エアの温度を測定する温度検出手段と、前記温度検出手段により測定される温度を前記加熱手段を制御して前記温度調節手段により設定された温度に保つ温度制御手段とを備えることを特徴とする。
【0018】
さらにまた、本発明の顕微鏡観察用培養装置は、前記混合エアを加湿する加湿手段と、前記混合エアの湿度を設定するための湿度調節手段と、前記混合エアの湿度を測定する湿度検出手段と、前記湿度検出手段により測定される湿度を前記加湿手段を制御して前記湿度調節手段により設定された湿度に保つ湿度制御手段とを備えることを特徴とする。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0021】
(1) 第1の実施の形態
図1は、本発明の第1の実施の形態に係る顕微鏡観察用培養装置を示すシステム構成図である。本実施の形態に係る顕微鏡観察用培養装置は、観察対象となる試料Sを培養する試料容器Rを収納し顕微鏡ステージ15上に載置されるチャンバ1と、チャンバ1内に供給される各成分ガスを混ぜ合わせて混合エアとするガス混合室2と、ガス混合室2とチャンバ1間を接続する往管路2aおよび復管路2bと、ガス混合室2にCO用電磁バルブ31,N用電磁バルブ41およびその他のガス用電磁バルブ51を介して接続されたCOガスボンベ3,Nガスボンベ4およびその他のガスボンベ5と、ガス混合室2内の混合エアをチャンバ1に供給するエアポンプ6と、混合エアを加熱するヒータ7と、混合エア中の不純物を取り除くエアフィルタ8と、顕微鏡観察用培養装置全体を制御する制御器9とから、その主要部が構成されている。さらに、本装置は、入出力装置91に接続され、各条件の設定および監視が可能となっている。
【0022】
チャンバ1は、ガラス,プラスチック等の透明箱体で半気密的に形成され、試料Sを培養するシャーレ等の試料容器Rを収納するとともに、加湿器11,温度センサ12,湿度センサ13および気圧計14を備えている。
【0023】
加湿器11は、チャンバ1内の湿度を通常70%以上にするために、たとえば超音波発生器により蒸留水のミストを飛ばすタイプのものなどが使用され、制御器9に制御可能に接続されている。
【0024】
温度センサ12は、白金薄膜抵抗体,サーミスタ,熱電対等を用いて温度を測定するセンサであり、制御器9に接続されている。
【0025】
湿度センサ13は、高分子膜,セラミックス,電解質等を用いて湿度を測定するセンサであり、制御器9に接続されている。
【0026】
気圧計14は、静電容量の変化等を利用して気圧を計測するものであり、制御器9に接続されている。
【0027】
ガス混合室2は、CO用電磁バルブ31,N用電磁バルブ41およびその他のガス用電磁バルブ51を介してCOガスボンベ3,Nガスボンベ4およびその他のガスボンベ5に接続されているとともに、往管路2aおよび復管路2bを通じてチャンバ1に接続されている。また、ガス混合室2は、混合エア攪拌ファン21を備えている。ガス混合室2は、混合ガスの循環経路中でもっとも温度が低くなる部分である復管路2b近辺で冷却され過飽和のために生じる復管路2b内側の露滴を除去するための集滴装置としても働く。チャンバ1は、COセンサ22およびOセンサ23を備えており、COセンサ22およびOセンサ23は制御器9に接続されている。
【0028】
その他のガスボンベ5のガスとしては、実験に応じていろいろ使用されるが、もっとも多いのはOガスである。その場合は、チャンバ1内のO濃度を大気濃度以上にする実験である。
【0029】
エアポンプ6は、電動式の送風ポンプでなり、往管路2a中に配置され、ガス混合室2からチャンバ1へ向けて混合エアを送り出す。エアポンプ6は、制御器9に接続され、制御器9から制御可能になっている。なお、エアポンプ6は、復管路2b中にもチャンバ1からガス混合室2へ向けて混合エアを還流させるように対向して複数配置することもできる。
【0030】
ヒータ7は、たとえば、ニッケルクロム合金等を加熱体とするシリコンラバーヒータでなり、往管路2a中に配置され、混合エアを直接加熱する。ヒータ7は、ガス混合室2内の露滴を乾燥させる乾燥装置としても働く。
【0031】
エアフィルタ8は、雑菌やごみを通さないために、アルミナ等の金属酸化物を焼結させた多孔質材料,スポンジ,ろ紙等の適切なものが使用され、往管路2a中の、チャンバ1の手前に配置される。
【0032】
制御器9は、マイクロコンピュータ(図示せず)を含む電気制御装置であり、温度センサ12,湿度センサ13,気圧計14,COセンサ22およびOセンサ23の出力信号を入力し、エアポンプ6,ヒータ7,加湿器11,CO用電磁バルブ31,N用電磁バルブ41およびその他のガス用電磁バルブ51の制御信号を出力する。また、制御器9は、モニタ,キーボード等からなる入出力装置91に接続されていて、温度センサ12,湿度センサ13,気圧計14,COセンサ22およびOセンサ23の出力信号を観察したり、エアポンプ6,ヒータ7,加湿器11,CO用電磁バルブ31,N用電磁バルブ41およびその他のガス用電磁バルブ51の制御条件を設定したりすることができるようになっている。
【0033】
図2を参照すると、制御器9によるCO濃度の制御処理は、タイマ判定ステップA01と、CO濃度測定ステップA02と、CO用電磁バルブ開ステップA03とからなる。
【0034】
図3を参照すると、制御器9によるO濃度の制御処理は、タイマ判定ステップB01と、O濃度測定ステップB02と、N用電磁バルブ開ステップB03とからなる。
【0035】
次に、このように構成された第1の実施の形態に係る顕微鏡観察用培養装置の動作について説明する。
【0036】
なお、ここでは、試料Sの生体の嫌気性の観察実験のために、混合エアのO濃度を減らす実験を例にとって説明する。また、COガスおよびNガスのみを使用し、その他のガスは使用しないものとする。
【0037】
顕微鏡観察用培養装置の立ち上げ時に、入出力装置91から制御器9に、混合エアの温度,湿度および気圧が設定されるとともに、混合エアのCO濃度設定値D(図2参照)およびO濃度設定値D(図3参照)が設定される。標準では、CO濃度設定値Dは0〜10%に、O濃度設定値Dは0%〜大気濃度(最大で30%未満)に設定される。
【0038】
初期状態では、チャンバ1およびガス混合室2には元々大気が充満しており、COセンサ22およびOセンサ23の出力信号が、CO濃度がほぼ0%、O濃度がほぼ21%程度となっているので、制御器9は、電磁バルブ31および41を開にしてCOガスおよびNガスをガス混合室2に導入する。COガスおよびNガスのガス混合室2への導入に伴って、ガス混合室2およびチャンバ1に元々あった大気の大部分は復管路2bの途中に設けたドレインバルブ53を介して放出され、混合エアと交換される。また、その一部分は、COガスおよびNガスと混ざり合いながらチャンバ1の窓等のすきまを通じて次第に外部へ排出される。なお、実際のO濃度dを一定に保つために、Nガスをガス混合室2に導入しているのは、嫌気性の実験のために、O濃度を減らす実験だからである。エア交換後にも混合エアは若干のもれのために補充を必要とするが、大部分が還流されるため、いわゆるたれ流しの状態ではなく、わずかの量の補充で事足りる。
【0039】
ガス混合室2内では、混合エア攪拌ファン21が回転して、COガスおよびNガスの各成分ガスが均一に混ざり合うように混合エアを攪拌する。チャンバ1内のCO濃度およびO濃度は、COセンサ22およびOセンサ23により常時あるいは定期的に測定され、制御器9に入力される。
【0040】
制御器9は、タイマ(図示せず)によって所定のCO濃度調整間隔T(たとえば、10秒)が経過する毎に(ステップA01)、COセンサ22によりチャンバ1内の混合エア中の実際のCO濃度dを測定し(ステップA02)、CO濃度設定値DとCO濃度dとの差分Δに比例した時間τだけCO用電磁バルブ31を開にして(ステップA03)、混合エア中のCO濃度dをCO濃度設定値Dに保つ。
【0041】
同様に、制御器9は、タイマ(図示せず)によって所定のO濃度調整間隔T(たとえば、10秒)が経過する毎に(ステップB01)、Oセンサ23によりチャンバ1内の混合エア中のO濃度dを測定し(ステップB02)、O濃度設定値DとO濃度dとの差分Δに比例した時間τだけN用電磁バルブ41を開にして(ステップB03)、混合エア中のO濃度dをO濃度設定値Dに保つ。
【0042】
また、エアポンプ6の運転により、ガス混合室2内の混合エアは往管路2aを通じてチャンバ1へ向けて送り出される。
【0043】
チャンバ1では、温度センサ12,湿度センサ13および気圧計14が、チャンバ1内の混合エアの温度,湿度および気圧を測定し、制御器9に入力している。
【0044】
制御器9は、温度センサ12の出力信号に応じて、チャンバ1内の温度が所定範囲となるように、往管路2a途中のヒータ7により混合エアを直接加熱する。
【0045】
ヒータ7で加熱された混合エアは、エアフィルタ8により不純物を取り除かれてチャンバ1内に送り込まれる。
【0046】
往管路2aを通じてチャンバ1内に混合エアが送り込まれると、すでにチャンバ1内にあった混合エアは、復管路2bを通じてガス混合室2に還流される。
【0047】
また、制御器9は、湿度センサ13の出力信号に応じて、チャンバ1内の混合エアの湿度が所定範囲となるように、加湿器11を駆動する。
【0048】
ところで、混合エアの循環経路中では、ガス混合室2の温度がもっとも低くなるため、その部分に加湿した混合エア中の水蒸気が結露することになるが、エアポンプ6によりその水分が混合エアと一緒に吸い出され、ヒータ7に送り込まれることにより、すべて再蒸発されるので、内部の湿度が保たれやすくなる。
【0049】
このようにして、ガス混合室2とチャンバ1間で混合エアが循環されるとともに、チャンバ1内の混合エア中のCO濃度dおよびO濃度dが一定に保たれる。また、混合エアが所定の気圧,温度および湿度に保たれる。
【0050】
なお、上記第1の実施の形態では、嫌気性のためにO濃度を減らす実験を例に用いて説明したが、研究用のための特殊な用途では大気濃度よりも高いO濃度dで使用することがあり、たとえば過酸素雰囲気実験ではO濃度dが70%以上の状態での実験もある。このような実験の場合には、その他のガスボンベ5としてOガスボンベを接続し、その他のガス用電磁バルブ51をO濃度dに応じたその他のガス用電磁バルブ開時間だけ開にして、混合エア中のO濃度dを高濃度に保つようにすることができる。
【0051】
また、上記第1の実施の形態では、制御器9から制御可能な加湿器11をチャンバ1内に設置して加湿器11により混合エアを加湿するようにしたが、加湿器11の代わりに、単に水を張った水槽をチャンバ1内に置くだけにしてもよい。このようにしても、所定の温度気圧環境下での加湿であるために、加湿効果に問題が起こることはほとんどない。
【0052】
(2) 第2の実施の形態
図4は、本発明の第2の実施の形態に係る顕微鏡観察用培養装置を示すシステム構成図である。本実施の形態に係る顕微鏡観察用培養装置は、混合ガスが危険性ガス等を含み大気中に排出不可能な場合を考慮して気密系として構成されたものであり、図1に示した第1の実施の形態に係る顕微鏡観察用培養装置に対して、ガス排出用の電磁バルブ24,エアポンプ25および排気タンク26がこの順にガス混合室2に連結されて構成されている。気密系である以上、チャンバ1の窓等にすきまがないように構成されることはいうまでもない。また、その他のガスボンベ5は、上記危険性ガス等を貯蔵するものとなる。なお、特に言及しない部分については、第1の実施の形態に係る顕微鏡観察用培養装置と同様に構成されているので、対応する部分には同一符号を付してそれらの詳しい説明は省略する。
【0053】
このように構成された第2の実施の形態に係る顕微鏡観察用培養装置では、気圧計14によりチャンバ1内の気圧を常時あるいは定期的に測定し、チャンバ1内の気圧が所定範囲より高い場合には、電磁バルブ24を開き、エアポンプ25を駆動して、ガス混合室2内の混合エアを排気タンク26に排出することによって、チャンバ1内の気圧を所定範囲内に調整する。ガス混合室2,往管路2aおよびチャンバ1に元々存在する大気等と混合ガスとの初期エア交換の場合には、切換バルブ52を切り換えて排気を行い、迅速なエア交換を可能とする。
【0054】
また、チャンバ1内の気圧が所定範囲内であったとしても、COセンサ22およびOセンサ23により常時あるいは定期的に測定される混合エア中の各成分ガスの濃度が所定範囲外であれば、一旦、電磁バルブ24を開き、エアポンプ25を駆動して、ガス混合室2内の混合エアを排気タンク26に排出し、しかる後に電磁バルブ31,41および51を開閉して、混合エア中の各成分ガスの濃度を所定範囲内に保つ。
【0055】
【発明の効果】
以上説明したように本発明の顕微鏡観察用培養装置によれば、混合エアを循環させ、混合エアを垂れ流しにしないようにしたので、混合エアに含まれる各成分ガスの消費が少なくて済むという効果がある。
【0056】
また、混合エア中の各成分ガスの濃度を常時または定期的に測定し、チャンバ内で消費された分だけの成分ガスを補充するようにしたので、混合エア中の各成分ガスの濃度を効率的かつ経済的に一定に保つことができるという効果がある。
【0057】
さらに、混合エアの温度を測定し、混合エア自体を温度制御するようにしたので、チャンバ内全体の温度管理が可能となり、安定した温度管理環境が築けるとともに、試料だけが高い温度になることがないため、試料の乾燥を未然に防止することができるという効果がある。
【0058】
さらにまた、混合エアの湿度を測定し、加湿器によりチャンバ内で混合エアを加湿するようにしたので、湿度を所定温度での飽和水蒸気濃度まで容易に高くすることができるという効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る顕微鏡観察用培養装置を示すシステム構成図である。
【図2】図1中の制御器によるCO濃度の制御処理を示すフローチャートである。
【図3】図1中の制御器によるO濃度の制御処理を示すフローチャートである。
【図4】本発明の第2の実施の形態に係る顕微鏡観察用培養装置を示すシステム構成図である。
【図5】従来の顕微鏡観察用培養装置の一例を示すシステム構成図である。
【符号の説明】
1 チャンバ
2 ガス混合室
2a 往管路
2b 復管路
3 COガスボンベ
4 Nガスボンベ
5 その他のガスボンベ
6 エアポンプ
7 ヒータ
8 エアフィルタ
9 制御器
11 加湿器
12 温度センサ
13 湿度センサ
14 気圧計
21 混合エア攪拌ファン
22 COセンサ
23 Oセンサ
24 電磁バルブ
25 エアポンプ
26 排気タンク
31 CO用電磁バルブ
41 N用電磁バルブ
51 その他のガス用電磁バルブ
52 切換バルブ
53 ドレインバルブ
91 入出力装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a culture apparatus for microscopic observation, and more particularly to a culture apparatus for microscopic observation for observing and photographing a biological sample such as cells, tissues, bacteria, and microorganisms in a living state for a long time with a microscope.
[0002]
[Prior art]
When observing and photographing a biological sample (hereinafter, simply referred to as a sample) in a living state for a long time with a microscope, prepare a chamber made of a transparent box and keep the sample in the chamber and keep it warm. It is necessary to form an environment in which the concentrations of O 2 (oxygen) and CO 2 (carbon dioxide) are always controlled to be constant in a high humidity state, and to set the environment on a microscope stage.
[0003]
FIG. 5 is a system configuration diagram showing an example of a conventional culture device for microscopic observation. The culture apparatus for microscopic observation includes a chamber 101 that accommodates a sample container R for culturing a sample S to be observed and is mounted on a microscope stage 115, and the atmosphere, CO 2 gas, and N 2 supplied into the chamber 101. 2 A gas mixing chamber 102 which mixes (nitrogen) gas with a mixing air stirring fan 121 to obtain mixed air; a CO 2 gas cylinder 103 and an N 2 gas cylinder 104 connected to the gas mixing chamber 102 via valves 131 and 141; And an air pump 106 that takes in the atmosphere through a valve 162 and a flow meter 161 and supplies the gas to the gas mixing chamber 102, a heater 107 incorporated in a microscope stage 115, and a safety trap 110 for preventing backflow, and is connected to the gas mixing chamber 102. a bubbler 111 for accommodating the humidifying water is, CO which is provided in the gas mixing chamber 102 The sensor 122 and the O 2 sensor heater 107 with is connected to 123 and a controller 109 that is connected to a temperature sensor (not shown), the medium from the pump 117. replenishing the sample container R from the medium vessel 116, Its main part is configured.
[0004]
In such a conventional culture apparatus for microscopic observation, a chamber 101 containing a sample container R for culturing a sample S is installed on a microscope stage 115 controlled to a predetermined temperature by a heater 107, and a gas mixing chamber 102 is provided. A method has been adopted in which the atmosphere is mixed with a CO 2 gas and a N 2 gas, and mixed air adjusted to a predetermined concentration is constantly or periodically supplied to the chamber 1. For this reason, the mixed air was in a state of flowing down from a clearance such as the chamber 101.
[0005]
Further, in order to adjust the humidity in the chamber 101, the mixed air supplied to the chamber 101 is humidified by, for example, passing once through humidifying water such as pure water by a bubbler 111.
[0006]
Further, since the medium (water) evaporates from the sample S by heating by the heater 107, the medium was replenished to the sample S from the medium container 116 by the pump 117 as needed. When the medium is replenished to the sample S, the position of the medium in the sample container R fluctuates, so that it may not be possible to continue observing the same place of the sample S with a microscope.
[0007]
[Problems to be solved by the invention]
In the above-mentioned conventional culture apparatus for microscopic observation, since the mixed air is constantly or periodically injected into the chamber in order to supplement the amount of the mixed air flowing down, CO 2 gas and N 2 gas and the like are used. There is a problem that the consumption of each component gas is large and wasteful.
[0008]
Further, the concentration of each component gas in the mixed air is not measured in the chamber, and it is not known whether each component gas in the chamber has a predetermined concentration accurately.
[0009]
Furthermore, since the bottom of the chamber is heated by the heater, the temperature near the sample becomes the highest, and a uniform temperature environment cannot be obtained. There is a problem that it may die.
[0010]
Furthermore, with respect to humidification, since only the chamber is heated and adjusted, the temperature rises by using a humidifier bubbler and entering the heated chamber even if humidification occurs immediately before the chamber. As a result, the amount of saturated water vapor increases, resulting in a decrease in humidity, and there is a problem that the humidity in the chamber cannot be sufficiently increased.
[0011]
A first object of the present invention is to provide a culture apparatus for microscopic observation in which mixed air, which has conventionally been dripping, is circulated between a gas mixing chamber and a chamber.
[0012]
A second object of the present invention is to provide a culture apparatus for microscopic observation, which measures and controls the concentration of each component gas in the mixed air so that the concentration of each component gas in the mixed air can be kept constant. To provide.
[0013]
Further, a third object of the present invention is to provide a culture apparatus for microscopic observation, in which a heated air mixture is directly supplied to prevent drying of a sample.
[0014]
Still another object of the present invention is to provide a culture apparatus for microscopic observation, in which a humidifier is provided in a chamber so that the humidity of mixed air can be sufficiently increased.
[0015]
[Means for Solving the Problems]
The culture apparatus for microscopic observation of the present invention includes a chamber containing a sample to be observed and placed on a microscope stage, a gas mixing chamber for mixing mixed air supplied into the chamber, and a gas mixing chamber. A carbon dioxide gas supply source connected via an electromagnetic valve, an outgoing line and a return line connecting between the gas mixing chamber and the chamber, and mixing air in the gas mixing chamber through the outgoing line. Air circulation means for supplying the mixed air in the chamber to the gas mixing chamber through the return line to supply the mixed air to the chamber, and carbon dioxide gas concentration adjusting means for setting the concentration of the carbon dioxide gas in the chamber. A carbon dioxide gas concentration detector for measuring the concentration of carbon dioxide gas in the chamber, and a concentration of carbon dioxide gas measured by the carbon dioxide gas concentration detector. Serial and having a density control means for maintaining the concentration set by the carbon dioxide gas concentration adjusting means by opening and closing the electromagnetic valve.
[0016]
Further, the culture apparatus for microscopic observation of the present invention includes a chamber containing a sample to be observed and mounted on a microscope stage, a gas mixing chamber for mixing mixed air supplied into the chamber, and the gas mixing chamber. and connected to an oxygen gas supply source into the mixing chamber via the first solenoid valve, and a nitrogen gas supply source connected through a second solenoid valve to the gas mixing chamber, between the said gas mixing chamber chamber And the mixed air in the gas mixing chamber is supplied to the chamber through the outgoing pipe, and the mixed air in the chamber is returned to the gas mixing chamber through the return pipe. and air circulation means, and an oxygen gas concentration adjusting means for setting the concentration of oxygen gas in the chamber, and an oxygen gas concentration detection means for measuring the concentration of oxygen gas in the chamber, the oxygen gas concentration regulating When the concentration of the oxygen gas set by the means is equal to or higher than the atmospheric concentration, the first electromagnetic valve is opened and closed and the concentration of the oxygen gas measured by the oxygen gas concentration detecting means is adjusted by the oxygen gas concentration adjusting means. Keeping the oxygen gas concentration set, the second electromagnetic valve is opened and closed by the oxygen gas concentration detecting means when the oxygen gas concentration set by the oxygen gas concentration adjusting means is lower than the atmospheric concentration. And a concentration control means for maintaining the concentration of the oxygen gas to be measured at the concentration of the oxygen gas set by the oxygen gas concentration control means.
In addition, the culture apparatus for microscopic observation of the present invention is a chamber that accommodates a sample to be observed and is mounted on a microscope stage, a gas mixing chamber that mixes mixed air supplied into the chamber, A carbon dioxide gas supply source connected to the gas mixing chamber via a first electromagnetic valve, an oxygen gas supply source connected to the gas mixing chamber via a second electromagnetic valve, and a carbon dioxide gas supply source connected to the gas mixing chamber. A nitrogen gas supply source connected via the electromagnetic valve of No. 3, an outgoing line and a return line connecting the gas mixing chamber and the chamber, and mixing air in the gas mixing chamber through the outgoing line. An air circulating means for supplying the mixed air in the chamber to the gas mixing chamber through the return line to supply the mixed air to the chamber, and a carbon dioxide gas concentration adjusting means for setting the concentration of the carbon dioxide gas in the chamber. Oxygen gas concentration adjusting means for setting the concentration of oxygen gas in the chamber; carbon dioxide gas concentration detecting means for measuring the concentration of carbon dioxide gas in the chamber; and the concentration of oxygen gas in the chamber. And a carbon dioxide gas concentration measured by the carbon dioxide gas concentration detecting means by opening and closing the first electromagnetic valve. While maintaining the concentration of carbon gas, when the concentration of oxygen gas set by the oxygen gas concentration adjusting means is equal to or higher than the atmospheric concentration, the second electromagnetic valve is opened and closed and measured by the oxygen gas concentration detecting means. The oxygen gas concentration is maintained at the oxygen gas concentration set by the oxygen gas concentration adjusting means, and the oxygen gas set by the oxygen gas concentration adjusting means is maintained. When the concentration of the oxygen gas is lower than the atmospheric concentration, the third electromagnetic valve is opened and closed to adjust the concentration of the oxygen gas measured by the oxygen gas concentration detecting means to the oxygen gas concentration set by the oxygen gas concentration adjusting means. And a density control means for maintaining the density.
[0017]
Further, the culture device for microscopic observation of the present invention, a heating means for heating the mixed air, a temperature adjusting means for setting the temperature of the mixed air, and a temperature detecting means for measuring the temperature of the mixed air , Temperature control means for controlling the heating means to maintain the temperature measured by the temperature detection means at a temperature set by the temperature adjustment means.
[0018]
Furthermore, the culture device for microscopic observation of the present invention is a humidifying unit for humidifying the mixed air, a humidity adjusting unit for setting the humidity of the mixed air, and a humidity detecting unit for measuring the humidity of the mixed air. And a humidity control unit that controls the humidification unit to keep the humidity measured by the humidity detection unit at the humidity set by the humidity adjustment unit.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0021]
(1) First Embodiment FIG. 1 is a system configuration diagram showing a culture apparatus for microscopic observation according to a first embodiment of the present invention. The culture apparatus for microscopic observation according to the present embodiment includes a chamber 1 that houses a sample container R for culturing a sample S to be observed and is mounted on a microscope stage 15 and components supplied to the chamber 1. a gas mixing chamber 2, mixing the air by mixing gas, and往管path 2a and Fukukanro 2b connecting the gas mixing chamber 2 and the chamber 1, an electromagnetic valve 31 for CO 2 in the gas mixing chamber 2, N An air pump for supplying the mixed air in the gas mixing chamber 2 to the chamber 1 and the CO 2 gas cylinder 3, the N 2 gas cylinder 4 and the other gas cylinder 5 connected via the electromagnetic valve 41 for 2 and the electromagnetic valve 51 for other gas 6, a heater 7 for heating the mixed air, an air filter 8 for removing impurities in the mixed air, and a controller 9 for controlling the entire culture apparatus for microscopic observation, the main parts of which are constituted. ing. Further, this apparatus is connected to the input / output device 91, and can set and monitor each condition.
[0022]
The chamber 1 is formed of a transparent box made of glass, plastic or the like in a semi-hermetic manner, accommodates a sample container R such as a petri dish for culturing the sample S, and has a humidifier 11, a temperature sensor 12, a humidity sensor 13, and a barometer. 14 is provided.
[0023]
The humidifier 11 is, for example, a type that blows mist of distilled water by an ultrasonic generator in order to make the humidity in the chamber 1 usually 70% or more, and is connected to the controller 9 in a controllable manner. I have.
[0024]
The temperature sensor 12 is a sensor that measures temperature using a platinum thin film resistor, a thermistor, a thermocouple, or the like, and is connected to the controller 9.
[0025]
The humidity sensor 13 is a sensor that measures humidity using a polymer film, ceramics, electrolyte, or the like, and is connected to the controller 9.
[0026]
The barometer 14 measures the atmospheric pressure by using a change in capacitance or the like, and is connected to the controller 9.
[0027]
Gas mixing chamber 2, along with being connected to the CO 2 gas cylinder 3, N 2 gas cylinder 4 and the other of the gas cylinder 5 through the CO 2 electromagnetic valve 31, N 2 electromagnetic valve 41 and the other gas solenoid valve 51 , Is connected to the chamber 1 through the outgoing line 2a and the return line 2b. Further, the gas mixing chamber 2 includes a mixed air stirring fan 21. The gas mixing chamber 2 is a droplet collecting device for cooling the vicinity of the return line 2b, which is the lowest temperature in the circulation path of the mixed gas, and removing dewdrops inside the return line 2b generated due to supersaturation. Works as well. The chamber 1 includes a CO 2 sensor 22 and an O 2 sensor 23, and the CO 2 sensor 22 and the O 2 sensor 23 are connected to the controller 9.
[0028]
Various other gases for the gas cylinder 5 are used depending on experiments, but the most common gas is O 2 gas. In that case, the experiment is to make the O 2 concentration in the chamber 1 equal to or higher than the atmospheric concentration.
[0029]
The air pump 6 is an electric blower pump, is disposed in the outgoing line 2 a, and sends out mixed air from the gas mixing chamber 2 to the chamber 1. The air pump 6 is connected to the controller 9 and can be controlled from the controller 9. It should be noted that a plurality of air pumps 6 may be arranged in the return pipe 2b so as to face each other so as to recirculate the mixed air from the chamber 1 to the gas mixing chamber 2.
[0030]
The heater 7 is, for example, a silicon rubber heater using a nickel chromium alloy or the like as a heating element, and is disposed in the outward pipe 2a to directly heat the mixed air. The heater 7 also functions as a drying device for drying dew drops in the gas mixing chamber 2.
[0031]
The air filter 8 is made of an appropriate material such as a porous material obtained by sintering a metal oxide such as alumina, sponge, filter paper or the like in order to prevent bacteria and dirt from passing therethrough. Placed in front of the
[0032]
The controller 9 is an electric control device including a microcomputer (not shown). The controller 9 receives output signals of the temperature sensor 12, the humidity sensor 13, the barometer 14, the CO 2 sensor 22 and the O 2 sensor 23, and , The heater 7, the humidifier 11, the CO 2 electromagnetic valve 31, the N 2 electromagnetic valve 41, and other gas electromagnetic valves 51. The controller 9 is connected to an input / output device 91 including a monitor, a keyboard, and the like, and observes output signals of the temperature sensor 12, the humidity sensor 13, the barometer 14, the CO 2 sensor 22, and the O 2 sensor 23. Also, the control conditions of the air pump 6, the heater 7, the humidifier 11, the CO 2 electromagnetic valve 31, the N 2 electromagnetic valve 41 and the other gas electromagnetic valves 51 can be set.
[0033]
Referring to FIG. 2, the control process of the CO 2 concentration by the controller 9 includes a timer determination step A01, a CO 2 concentration measurement step A02, and a CO 2 electromagnetic valve opening step A03.
[0034]
Referring to FIG. 3, the control process of the O 2 concentration by the controller 9, a timer determination step B01, the O 2 concentration measuring step B02, an electromagnetic valve opening step B03 Metropolitan for N 2.
[0035]
Next, the operation of the culture apparatus for microscopic observation according to the first embodiment thus configured will be described.
[0036]
Here, an experiment for reducing the O 2 concentration of the mixed air will be described as an example for an experiment for observing the anaerobic property of the living body of the sample S. Further, only the CO 2 gas and the N 2 gas are used, and other gases are not used.
[0037]
When the culture device for microscopic observation is started, the temperature, humidity and pressure of the mixed air are set from the input / output device 91 to the controller 9, and the CO 2 concentration set value D 1 of the mixed air (see FIG. 2) and The O 2 concentration set value D 2 (see FIG. 3) is set. In the standard, the CO 2 concentration setting D 1 is 0%, O 2 concentration setting D 2 is set to 0% to atmospheric concentrations (up to less than 30%).
[0038]
In the initial state, the chamber 1 and the gas mixing chamber 2 are originally filled with the atmosphere, and the output signals of the CO 2 sensor 22 and the O 2 sensor 23 indicate that the CO 2 concentration is approximately 0% and the O 2 concentration is approximately 21%. Therefore, the controller 9 opens the electromagnetic valves 31 and 41 and introduces CO 2 gas and N 2 gas into the gas mixing chamber 2. With the introduction of the CO 2 gas and the N 2 gas into the gas mixing chamber 2, most of the air originally in the gas mixing chamber 2 and the chamber 1 passes through a drain valve 53 provided in the middle of the return line 2 b. Released and exchanged for mixed air. Further, a part thereof is gradually discharged to the outside through a gap such as a window of the chamber 1 while being mixed with the CO 2 gas and the N 2 gas. The reason that the N 2 gas is introduced into the gas mixing chamber 2 in order to keep the actual O 2 concentration d 2 constant is because the O 2 concentration is reduced for the purpose of anaerobic experiments. Even after the air exchange, the mixed air needs to be replenished due to some leakage. However, since most of the air is recirculated, a small amount of replenishment is sufficient instead of a so-called flowing state.
[0039]
In the gas mixing chamber 2, the mixed air stirring fan 21 rotates to stir the mixed air so that the component gases of CO 2 gas and N 2 gas are uniformly mixed. The CO 2 concentration and the O 2 concentration in the chamber 1 are constantly or periodically measured by the CO 2 sensor 22 and the O 2 sensor 23 and input to the controller 9.
[0040]
Whenever a predetermined CO 2 concentration adjustment interval T 1 (for example, 10 seconds) elapses by a timer (not shown) (step A01) (step A01), the controller 9 uses the CO 2 sensor 22 to control the air in the mixed air in the chamber 1. the actual CO 2 concentration d 1 measured (step A02), and the CO 2 concentration setting D 1 and the CO 2 concentration d difference Δ time tau 1 only CO 2 electromagnetic valve 31 which is proportional to 1 with 1 in the open (Step A03), the CO 2 concentration d 1 in the mixed air is kept at the CO 2 concentration set value D 1 .
[0041]
Similarly, every time a predetermined O 2 concentration adjustment interval T 2 (for example, 10 seconds) elapses by a timer (not shown) (step B01), the controller 9 controls the mixing in the chamber 1 by the O 2 sensor 23. The O 2 concentration d 2 in the air is measured (step B02), and the N 2 electromagnetic valve 41 is opened for a time τ 2 proportional to the difference Δ 2 between the O 2 concentration set value D 2 and the O 2 concentration d 2. Te maintain (step B03), the O 2 concentration d 2 in the mixed air to the O 2 concentration setting D 2.
[0042]
The operation of the air pump 6 causes the mixed air in the gas mixing chamber 2 to be sent out toward the chamber 1 through the outward pipe 2a.
[0043]
In the chamber 1, the temperature sensor 12, the humidity sensor 13, and the barometer 14 measure the temperature, humidity, and pressure of the mixed air in the chamber 1 and input the measured values to the controller 9.
[0044]
The controller 9 directly heats the mixed air by the heater 7 in the middle of the outgoing line 2a according to the output signal of the temperature sensor 12 so that the temperature in the chamber 1 falls within a predetermined range.
[0045]
The mixed air heated by the heater 7 is sent into the chamber 1 after removing impurities by the air filter 8.
[0046]
When the mixed air is sent into the chamber 1 through the outgoing line 2a, the mixed air already in the chamber 1 is returned to the gas mixing chamber 2 through the return line 2b.
[0047]
The controller 9 drives the humidifier 11 in accordance with the output signal of the humidity sensor 13 so that the humidity of the mixed air in the chamber 1 falls within a predetermined range.
[0048]
By the way, in the circulation path of the mixed air, the temperature of the gas mixing chamber 2 becomes the lowest, so that the water vapor in the humidified mixed air is condensed at that portion. Is sucked into the heater 7 and sent to the heater 7, so that all of them are re-evaporated, so that the internal humidity is easily maintained.
[0049]
In this way, the mixed air is circulated between the gas mixing chamber 2 and the chamber 1, and the CO 2 concentration d 1 and the O 2 concentration d 2 in the mixed air in the chamber 1 are kept constant. Further, the mixed air is maintained at a predetermined pressure, temperature and humidity.
[0050]
In the first embodiment, an example in which the O 2 concentration is reduced due to anaerobic property is described as an example. However, in a special use for research, the O 2 concentration d 2 higher than the atmospheric concentration is used. For example, in an experiment in a peroxygen atmosphere, there is an experiment in which the O 2 concentration d 2 is 70% or more. In this case the experiment connects the O 2 gas cylinder Other gas cylinder 5, the other gas electromagnetic valve 51 and only opens the O 2 concentration d electromagnetic valve open time for other gases in accordance with 2, the O 2 concentration d 2 in the mixed air can be kept at a high concentration.
[0051]
In the first embodiment, the humidifier 11 that can be controlled by the controller 9 is installed in the chamber 1 and the mixed air is humidified by the humidifier 11, but instead of the humidifier 11, A water tank filled with water may simply be placed in the chamber 1. Even in this case, since the humidification is performed under a predetermined temperature and pressure environment, there is almost no problem in the humidification effect.
[0052]
(2) Second Embodiment FIG. 4 is a system configuration diagram showing a culture device for microscopic observation according to a second embodiment of the present invention. The culture apparatus for microscopic observation according to the present embodiment is configured as an airtight system in consideration of the case where the mixed gas contains a dangerous gas or the like and cannot be discharged into the atmosphere. In the culture apparatus for microscopic observation according to the first embodiment, a gas discharge electromagnetic valve 24, an air pump 25, and an exhaust tank 26 are connected to the gas mixing chamber 2 in this order. Needless to say, as long as it is an airtight system, there is no gap in the windows and the like of the chamber 1. The other gas cylinders 5 store the dangerous gas and the like. Note that parts that are not particularly mentioned are configured in the same manner as the culture apparatus for microscopic observation according to the first embodiment, and corresponding parts are denoted by the same reference numerals and detailed description thereof is omitted.
[0053]
In the culture apparatus for microscopic observation according to the second embodiment configured as described above, the pressure in the chamber 1 is constantly or periodically measured by the barometer 14, and the pressure in the chamber 1 is higher than a predetermined range. Then, the air pressure in the chamber 1 is adjusted within a predetermined range by opening the electromagnetic valve 24 and driving the air pump 25 to discharge the mixed air in the gas mixing chamber 2 to the exhaust tank 26. In the case of the initial air exchange between the mixed gas and the atmosphere or the like originally present in the gas mixing chamber 2, the outgoing line 2 a and the chamber 1, the switching valve 52 is switched to evacuate, thereby enabling quick air exchange.
[0054]
Further, even if the pressure in the chamber 1 is within the predetermined range, the concentration of each component gas in the mixed air constantly or periodically measured by the CO 2 sensor 22 and the O 2 sensor 23 is out of the predetermined range. For example, once the electromagnetic valve 24 is opened, the air pump 25 is driven to discharge the mixed air in the gas mixing chamber 2 to the exhaust tank 26, and then the electromagnetic valves 31, 41 and 51 are opened and closed, and Is maintained within a predetermined range.
[0055]
【The invention's effect】
As described above, according to the culture device for microscopic observation of the present invention, since the mixed air is circulated and the mixed air is prevented from flowing down, the consumption of each component gas contained in the mixed air can be reduced. There is.
[0056]
In addition, since the concentration of each component gas in the mixed air is measured constantly or periodically, and only the component gas consumed in the chamber is replenished, the concentration of each component gas in the mixed air is efficiently reduced. This has the effect that it can be kept consistently and economically.
[0057]
Furthermore, since the temperature of the mixed air itself is measured and the temperature of the mixed air itself is controlled, it is possible to control the temperature of the entire chamber, and a stable temperature control environment can be established, and the temperature of only the sample can be increased. Therefore, there is an effect that drying of the sample can be prevented beforehand.
[0058]
Furthermore, since the humidity of the mixed air is measured and the mixed air is humidified in the chamber by the humidifier, there is an effect that the humidity can be easily increased to the saturated water vapor concentration at a predetermined temperature.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing a culture device for microscopic observation according to a first embodiment of the present invention.
FIG. 2 is a flowchart showing a control process of a CO 2 concentration by a controller in FIG. 1;
FIG. 3 is a flowchart showing a control process of the O 2 concentration by the controller in FIG. 1;
FIG. 4 is a system configuration diagram showing a culture apparatus for microscopic observation according to a second embodiment of the present invention.
FIG. 5 is a system configuration diagram showing an example of a conventional culture device for microscopic observation.
[Explanation of symbols]
1 Chamber 2 Gas mixing chamber 2a Outgoing line 2b Return line 3 CO 2 gas cylinder 4 N 2 gas cylinder 5 Other gas cylinder 6 Air pump 7 Heater 8 Air filter 9 Controller 11 Humidifier 12 Temperature sensor 13 Humidity sensor 14 Barometer 21 Mixing Air stirring fan 22 CO 2 sensor 23 O 2 sensor 24 Electromagnetic valve 25 Air pump 26 Exhaust tank 31 CO 2 electromagnetic valve 41 N 2 electromagnetic valve 51 Other gas electromagnetic valve 52 Switching valve 53 Drain valve 91 I / O device

Claims (5)

観察対象となる試料を収納し顕微鏡ステージ上に載置されるチャンバと、
前記チャンバ内に供給される混合エアを混合するガス混合室と、
前記ガス混合室に電磁バルブを介して接続された二酸化炭素ガス供給源と、
前記ガス混合室と前記チャンバ間を接続する往管路および復管路と、
前記ガス混合室内の混合エアを前記往管路を通じて前記チャンバに供給し、前記チャンバ内の混合エアを前記復管路を通じて前記ガス混合室に還流させるエア循環手段と
前記チャンバ内の二酸化炭素ガスの濃度を設定するための二酸化炭素ガス濃度調節手段と、
前記チャンバ内の二酸化炭素ガスの濃度を測定する二酸化炭素ガス濃度検出手段と、
前記二酸化炭素ガス濃度検出手段により測定される二酸化炭素ガスの濃度を前記電磁バルブを開閉することによって前記二酸化炭素ガス濃度調節手段で設定された濃度に保つ濃度制御手段と
を有することを特徴とする顕微鏡観察用培養装置。
A chamber for storing a sample to be observed and placed on a microscope stage,
A gas mixing chamber for mixing the mixed air supplied into the chamber,
A carbon dioxide gas supply source connected to the gas mixing chamber via an electromagnetic valve,
An outgoing line and a return line connecting between the gas mixing chamber and the chamber,
Air circulating means for supplying the mixed air in the gas mixing chamber to the chamber through the outward pipe, and for returning the mixed air in the chamber to the gas mixing chamber through the return pipe ;
Carbon dioxide gas concentration adjusting means for setting the concentration of carbon dioxide gas in the chamber,
Carbon dioxide gas concentration detecting means for measuring the concentration of carbon dioxide gas in the chamber,
Concentration control means for keeping the concentration of carbon dioxide gas measured by the carbon dioxide gas concentration detection means at the concentration set by the carbon dioxide gas concentration adjustment means by opening and closing the electromagnetic valve. A culture device for microscopic observation characterized by the above-mentioned.
観察対象となる試料を収納し顕微鏡ステージ上に載置されるチャンバと、
前記チャンバ内に供給される混合エアを混合するガス混合室と、
前記ガス混合室に第1の電磁バルブを介して接続された酸素ガス供給源と、
前記ガス混合室に第2の電磁バルブを介して接続された窒素ガス供給源と、
前記ガス混合室と前記チャンバ間を接続する往管路および復管路と、
前記ガス混合室内の混合エアを前記往管路を通じて前記チャンバに供給し、前記チャンバ内の混合エアを前記復管路を通じて前記ガス混合室に還流させるエア循環手段と、
前記チャンバ内酸素ガスの濃度を設定するための酸素ガス濃度調節手段と、
前記チャンバ内の酸素ガスの濃度を測定する酸素ガス濃度検出手段と、
前記酸素ガス濃度調節手段で設定された酸素ガスの濃度が大気濃度以上であった場合に前記第1の電磁バルブを開閉して前記酸素ガス濃度検出手段により測定される酸素ガスの濃度を前記酸素ガス濃度調節手段で設定された酸素ガスの濃度に保ち、前記酸素ガス濃度調節手段で設定された酸素ガスの濃度が大気濃度未満であった場合に前記第2の電磁バルブを開閉して前記酸素ガス濃度検出手段により測定される酸素ガスの濃度を前記酸素ガス濃度調節手段で設定された酸素ガスの濃度に保つ濃度制御手段と
を有することを特徴とする顕微鏡観察用培養装置。
A chamber for storing a sample to be observed and placed on a microscope stage,
A gas mixing chamber for mixing the mixed air supplied into the chamber,
An oxygen gas supply source connected to the gas mixing chamber via a first electromagnetic valve;
A nitrogen gas supply source connected to the gas mixing chamber via a second electromagnetic valve;
An outgoing line and a return line connecting between the gas mixing chamber and the chamber,
Air circulating means for supplying the mixed air in the gas mixing chamber to the chamber through the outward pipe, and for returning the mixed air in the chamber to the gas mixing chamber through the return pipe;
Oxygen gas concentration adjusting means for setting the concentration of oxygen gas in the chamber ,
Oxygen gas concentration detecting means for measuring the concentration of oxygen gas in the chamber,
When the oxygen gas concentration set by the oxygen gas concentration adjusting means is equal to or higher than the atmospheric concentration, the first electromagnetic valve is opened and closed to change the oxygen gas concentration measured by the oxygen gas concentration detecting means to the oxygen concentration. Maintaining the oxygen gas concentration set by the gas concentration adjusting means, and opening and closing the second electromagnetic valve when the oxygen gas concentration set by the oxygen gas concentration adjusting means is lower than the atmospheric concentration to open and close the oxygen gas. A culture apparatus for microscopic observation, comprising: a concentration control means for maintaining the concentration of oxygen gas measured by the gas concentration detection means at the concentration of oxygen gas set by the oxygen gas concentration adjustment means .
観察対象となる試料を収納し顕微鏡ステージ上に載置されるチャンバと、A chamber for storing a sample to be observed and placed on a microscope stage,
前記チャンバ内に供給される混合エアを混合するガス混合室と、A gas mixing chamber for mixing the mixed air supplied into the chamber,
前記ガス混合室に第1の電磁バルブを介して接続された二酸化炭素ガス供給源と、A carbon dioxide gas supply source connected to the gas mixing chamber via a first electromagnetic valve;
前記ガス混合室に第2の電磁バルブを介して接続された酸素ガス供給源と、An oxygen gas supply source connected to the gas mixing chamber via a second electromagnetic valve;
前記ガス混合室に第3の電磁バルブを介して接続された窒素ガス供給源と、A nitrogen gas supply source connected to the gas mixing chamber via a third electromagnetic valve;
前記ガス混合室と前記チャンバ間を接続する往管路および復管路と、An outgoing line and a return line connecting between the gas mixing chamber and the chamber,
前記ガス混合室内の混合エアを前記往管路を通じて前記チャンバに供給し、前記チャンバ内の混合エアを前記復管路を通じて前記ガス混合室に還流させるエア循環手段と、Air circulating means for supplying the mixed air in the gas mixing chamber to the chamber through the outward pipe, and for returning the mixed air in the chamber to the gas mixing chamber through the return pipe;
前記チャンバ内の二酸化炭素ガスの濃度を設定するための二酸化炭素ガス濃度調節手段と、Carbon dioxide gas concentration adjusting means for setting the concentration of carbon dioxide gas in the chamber,
前記チャンバ内の酸素ガスの濃度を設定するための酸素ガス濃度調節手段と、Oxygen gas concentration adjusting means for setting the concentration of oxygen gas in the chamber,
前記チャンバ内の二酸化炭素ガスの濃度を測定する二酸化炭素ガス濃度検出手段と、Carbon dioxide gas concentration detecting means for measuring the concentration of carbon dioxide gas in the chamber,
前記チャンバ内の酸素ガスの濃度を測定する酸素ガス濃度検出手段と、Oxygen gas concentration detecting means for measuring the concentration of oxygen gas in the chamber,
前記二酸化炭素ガス濃度検出手段により測定される二酸化炭素ガスの濃度を前記第1の電磁バルブを開閉することによって前記二酸化炭素ガス濃度調節手段で設定された二酸化炭素ガスの濃度に保つとともに、前記酸素ガス濃度調節手段で設定された酸素ガスの濃度が大気濃度以上であった場合に前記第2の電磁バルブを開閉して前記酸素ガス濃度検出手段The carbon dioxide gas concentration measured by the carbon dioxide gas concentration detecting means is maintained at the carbon dioxide gas concentration set by the carbon dioxide gas concentration adjusting means by opening and closing the first electromagnetic valve, and the oxygen When the oxygen gas concentration set by the gas concentration adjusting means is equal to or higher than the atmospheric concentration, the second electromagnetic valve is opened and closed to open the oxygen gas concentration detecting means. により測定される酸素ガスの濃度を前記酸素ガス濃度調節手段で設定された酸素ガスの濃度に保ち、前記酸素ガス濃度調節手段で設定された酸素ガスの濃度が大気濃度未満であった場合に前記第3の電磁バルブを開閉して前記酸素ガス濃度検出手段により測定される酸素ガスの濃度を前記酸素ガス濃度調節手段で設定された酸素ガスの濃度に保つ濃度制御手段とIs maintained at the concentration of oxygen gas set by the oxygen gas concentration adjusting means, and when the concentration of oxygen gas set by the oxygen gas concentration adjusting means is lower than the atmospheric concentration, Concentration control means for opening and closing a third electromagnetic valve to keep the oxygen gas concentration measured by the oxygen gas concentration detection means at the oxygen gas concentration set by the oxygen gas concentration adjustment means;
を有することを特徴とする顕微鏡観察用培養装置。A culture device for microscopic observation, comprising:
前記顕微鏡観察用培養装置が、前記混合エアを加熱する加熱手段と、前記混合エアの温度を設定するための温度調節手段と、前記混合エアの温度を測定する温度検出手段と、前記温度検出手段により測定される温度を前記加熱手段を制御して前記温度調節手段により設定された温度に保つ温度制御手段とを備えることを特徴とする請求項1ないしは請求項3のいずれかに記載の顕微鏡観察用培養装置。The culture device for microscopic observation, heating means for heating the mixed air, temperature adjusting means for setting the temperature of the mixed air, temperature detecting means for measuring the temperature of the mixed air , the temperature detecting means 4. The microscope observation according to claim 1, further comprising a temperature control unit that controls the heating unit to maintain the temperature measured by the temperature control unit at a temperature set by the temperature adjustment unit. Culture equipment. 前記顕微鏡観察用培養装置が、前記混合エアを加湿する加湿手段と、前記混合エアの湿度を設定するための湿度調節手段と、前記混合エアの湿度を測定する湿度検出手段と、前記湿度検出手段により測定される湿度を前記加湿手段を制御して前記湿度調節手段により設定された湿度に保つ湿度制御手段とを備えることを特徴とする請求項1ないしは請求項3のいずれかに記載の顕微鏡観察用培養装置。The culture device for microscopic observation, humidifying means for humidifying the mixed air, humidity adjusting means for setting the humidity of the mixed air, humidity detecting means for measuring the humidity of the mixed air, and the humidity detecting means 4. A microscope according to claim 1, further comprising a humidity control unit that controls the humidification unit to maintain the humidity measured by the humidity control unit at a humidity set by the humidity adjustment unit. Culture equipment.
JP2001213470A 2001-07-13 2001-07-13 Culture equipment for microscopy Expired - Fee Related JP3581840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001213470A JP3581840B2 (en) 2001-07-13 2001-07-13 Culture equipment for microscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001213470A JP3581840B2 (en) 2001-07-13 2001-07-13 Culture equipment for microscopy

Publications (2)

Publication Number Publication Date
JP2003029164A JP2003029164A (en) 2003-01-29
JP3581840B2 true JP3581840B2 (en) 2004-10-27

Family

ID=19048438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001213470A Expired - Fee Related JP3581840B2 (en) 2001-07-13 2001-07-13 Culture equipment for microscopy

Country Status (1)

Country Link
JP (1) JP3581840B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1575706B1 (en) * 2003-09-23 2006-08-23 Evotec Technologies GmbH Climatic chamber for microscopes
JP4819383B2 (en) * 2004-03-26 2011-11-24 オリンパス株式会社 Optical microscope and optical observation method
JP2005331862A (en) * 2004-05-21 2005-12-02 Inst Of Research & Innovation Cultivation apparatus for microscope observation
JP2006201605A (en) * 2005-01-21 2006-08-03 Nikon Corp Microscopic observation apparatus
JP5307539B2 (en) 2006-05-31 2013-10-02 オリンパス株式会社 Biological sample imaging method and biological sample imaging apparatus
CN109337804B (en) * 2013-07-05 2022-07-08 爱特医疗有限公司 A equipment for monitoring biomaterial is developed
JPWO2016110980A1 (en) * 2015-01-08 2017-10-12 オリンパス株式会社 Image acquisition apparatus and image acquisition method
KR102159373B1 (en) * 2018-08-10 2020-09-29 정수정 none
JP7269258B2 (en) * 2018-11-29 2023-05-08 Phcホールディングス株式会社 Incubation device
JP6847431B2 (en) * 2019-06-20 2021-03-24 ヤマト科学株式会社 Growth equipment

Also Published As

Publication number Publication date
JP2003029164A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
US11142742B2 (en) Incubator
JP3581840B2 (en) Culture equipment for microscopy
US20070023536A1 (en) Methods and apparatus for optimizing environmental humidity
US4336329A (en) Method and apparatus for treatment of biological substances, particularly for cultivation of biological cells and tissues, or of microorganisms
WO2011048985A1 (en) Gas temperature/humidity regulation method and gas supply device
US6936434B2 (en) Vapor phase decontamination process biological indicator evaluator resistomer (BIER) vessel
US7765868B2 (en) Climate chamber for microscopes
US4833089A (en) Pressure incubator
US20230132065A1 (en) Incubator
US20080057568A1 (en) Culture apparatus
US20140120610A1 (en) Sensor unit and constant-temperature device
JP2010124703A (en) Cell culture apparatus
KR102503827B1 (en) Gas sensor performance evaluation system
JP2005331862A (en) Cultivation apparatus for microscope observation
US6975967B2 (en) CO2/O2 incubator predictive failure for CO2 and O2 sensors
JP4457670B2 (en) microscope
JP2005323509A (en) Cell culture-observing device for measuring gene expression
JP4250099B2 (en) Gas partial pressure adjusting device, culture device, and culture method
US6482637B1 (en) Rapid gas recovery in an incubator system
US20180066221A1 (en) Buffer tank and culture system
JP2017063618A (en) incubator
JP2017063617A (en) Culture apparatus
WO2024057425A1 (en) Specimen analysis device
JPS6215195B2 (en)
JP4357870B2 (en) Incubator for microscope stage

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040415

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees