WO2024056975A1 - Dispositif de guidage d'un arbre de turbomachine d'aeronef - Google Patents

Dispositif de guidage d'un arbre de turbomachine d'aeronef Download PDF

Info

Publication number
WO2024056975A1
WO2024056975A1 PCT/FR2023/051392 FR2023051392W WO2024056975A1 WO 2024056975 A1 WO2024056975 A1 WO 2024056975A1 FR 2023051392 W FR2023051392 W FR 2023051392W WO 2024056975 A1 WO2024056975 A1 WO 2024056975A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
oil
annular
clock
space
Prior art date
Application number
PCT/FR2023/051392
Other languages
English (en)
Inventor
Olivier Formica
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Publication of WO2024056975A1 publication Critical patent/WO2024056975A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • F01D25/164Flexible supports; Vibration damping means associated with the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/10Anti- vibration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/54Radial bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/36Arrangement of components in inner-outer relationship, e.g. shaft-bearing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/98Lubrication

Definitions

  • TITLE GUIDANCE DEVICE FOR AN AIRCRAFT TURBOMACHINE SHAFT
  • the present invention relates to a device for guiding an aircraft turbomachine shaft as well as an aircraft turbomachine comprising such a device.
  • the state of the art includes in particular documents FR-A1 -2 876 758, FRAI -3 085 242, FR-A1 -3 088 680, US-A1 -202/284298, FR-A1 -3 093 531, FRAI -2,664,330, US-A1 -2017/248033 and US-A1 -2016/369652.
  • a turbomachine comprises rotating members such as shafts which are guided by guide bearings relative to a fixed structure of the turbomachine.
  • Each of these guide bearings comprises an internal ring and an external ring enclosing rolling elements, for example rollers or balls.
  • the outer ring is mounted integrally on a bearing support of the turbomachine and the inner ring is mounted integrally on a rotating shaft of the turbomachine.
  • Certain guide bearings can be associated with oil film compression damping systems, known by the English designation “squeeze film damper”.
  • a film of oil is more or less trapped in an annular space which extends around the bearing so as to damp the movements of the rotating shaft and to reduce the vibrations of the latter which are transmitted to the bearing support and to the structure fixed to the turbomachine and to the aircraft.
  • These damping systems also make it possible to reduce, by damping the rotor modes, the consumption of rotor/stator clearances at the level of each stage of compressor and turbine, and consequently, to gain engine performance.
  • damping systems reduce the risk of non-synchronous vibrations or NSV (acronym for Non Synchronous Vibrations), which can damage the engine, particularly when the shaft on which the damping system is placed is a supercritical rotor (having its first bending mode in the operating range of the engine).
  • NSV cronym for Non Synchronous Vibrations
  • the oil film makes it possible to improve the dynamic response of the turbomachine at a given operating speed and consequently the performance of the turbomachine.
  • the annular space for forming the oil film is delimited on the one hand, radially between the outer ring of the guide bearing (which is blocked in rotation) and the bearing support and on the other hand, axially by annular segments sealing. These segments keep the oil film under pressure (which provides the desired damping), while ensuring the evacuation of the oil.
  • sealing segments are metallic annular elements, elastically deformable, resistant to high temperatures and have a straight or overlapping slot or cut in the tangential direction of the segment. This cut allows the oil to be evacuated, with an oil flow specified by the overall dynamics. This flow rate must be sufficient to evacuate the calories generated by damping in the oil film, but not so great that the oil film remains under pressure.
  • this flow rate can be of the order of a few tens of liters per hour, and the clearance at the cut of each segment of a few tenths of a millimeter to a few millimeters.
  • these segments rest radially on the bearing support or a ring mounted in this support, as well as axially on the walls of the grooves which are formed in the outer ring of the bearing (corresponding to the inner ring of the oil film) and which accommodate these segments.
  • the oil can therefore only pass through the tangential clearance at the cut of each segment.
  • the clearance at the cut of the segments varies in operation, due to the thermal gradient between the segment (which can first be considered at the temperature of the oil) and the bearing support or the ring on which it rests. This thermal gradient changes during operation, due to the temperature conditions of the oil and parts during the different phases of the engine's mission:
  • the oil is hotter than the bearing support: the gradient between the oil (and therefore the segment, directly in contact with the oil), and the bearing support on which the segment rests, is negative.
  • the segment being hotter than the support (because in contact with the oil), it will want to expand axially which will cause the cutting clearance to close due to contact with the colder support;
  • the bearing support is hotter than the oil arriving in the film and therefore this gradient is positive.
  • the segment being colder than the support (because in contact with the oil), it will want to compress axially which will lead to an opening of the cutting clearance due to contact with the hotter support.
  • the objective of the present invention is to provide an optimized damping device making it possible to reduce the thermal gradient between the sealing segments and the bearing support or the ring with which they are in contact in the case of sealing segments straight cut.
  • Document FR-A1-2 876 758 describes an overlap-cut sealing segment, which has oil passage notches at its outer periphery.
  • the invention relates to a device for guiding an aircraft turbomachine shaft, this device comprising:
  • a rolling bearing comprising two rings, respectively first ring and second ring, between which rolling elements are mounted
  • this damping system comprising:
  • annular sealing segments respectively upstream and downstream, which are housed in annular grooves formed in an external cylindrical surface of the second ring and which are able to bear radially on an internal cylindrical surface of the hoop, these external surfaces and internal defining between them an annular space for forming an oil film which is delimited axially by the sealing segments, each of these segments being split by a straight cut to allow the evacuation of the oil from this space, and
  • the damping system further comprises:
  • this second circuit being connected to at least one annular heating groove which is independent of said supply groove and which extends around the space and to the right of the one of the sealing segments.
  • the invention thus proposes to equip the guiding device with at least one temperature-setting groove, which is independent of the supply groove, and which is dedicated to reducing the aforementioned thermal gradient.
  • the device comprises two oil circuits having different functions, compared to only one in the prior art. In the present application, we therefore distinguish the grooves by their functions.
  • An oil supply throat has the function of supplying oil, while a temperature-setting throat has the function of regulating the temperature and therefore providing or removing calories, with the aim of limiting the appearance of a thermal gradient in particular.
  • the device according to the invention may comprise one or more of the following characteristics, taken in isolation from each other, or in combination with each other:
  • the feed groove is formed in the annular support or in the hoop
  • the or each heating groove is formed in the annular support and/or in the hoop; - the supply groove has an axial extent greater than an axial extent of said orifices;
  • the or each heating groove has an axial extent greater than an axial extent of the sealing segment around which it extends;
  • the second oil supply circuit is connected to two heating grooves, respectively upstream and downstream, which are located respectively in line with said sealing segments;
  • the or each heating groove is connected to at least one oil outlet orifice which is formed in the hoop;
  • said at least one oil outlet orifice is axially offset from said space to prevent the oil leaving this orifice from penetrating into the space;
  • the oil outlet orifice connected to the upstream heating groove opens upstream of the upstream sealing segment, or even upstream of the second ring;
  • the oil inlet and outlet orifices of the or each heating groove are located at an angle from one another which is less than or equal to 30°, and preferably less than or equal to 20 ° ; this angle is measured relative to the axis of the bearing;
  • the oil inlet orifice of the or each heating groove is located in an angular zone extending between 12 o'clock and 1 o'clock around a main axis of the device by analogy with the dial of a clock according to a first configuration, or between 11 o'clock and 12 o'clock around the axis according to a second configuration, and the oil outlet orifice of the or each heating groove is located in an angular zone extending between 11 h and 12 o'clock around the axis according to the first configuration, or between 12 o'clock and 1 o'clock around the axis according to the second configuration;
  • the first and second rings are respectively internal and external rings, or conversely external and internal rings;
  • the device comprises a main axis around which the bearing extends;
  • each segment extends in a plane parallel to said axis
  • the second ring of the guide device is associated with a flexible cage and comprises a perforated annular web connected to an annular fixing flange;
  • the oil pressure in the heating groove(s) is between 1.5 and 10 bars;
  • each of the segments defines a cutting clearance which is between 0.05 and 5mm in the mounting position in the device;
  • the or each heating groove has an axial extent which represents one to five times an axial extent of the segment associated with this groove;
  • the oil film or the space where this oil film is formed has a radial thickness of between 0.05 and 1 mm;
  • the axial distance between the segments or the length of the oil film or the oil film formation space is between 10 and 50mm;
  • the oil film or the oil film formation space has a diameter of between 100 and 500 mm;
  • each supply groove is of the centered type and is located halfway from the sealing segments;
  • the or each supply groove is of the off-center type and is located near one of the sealing segments; - when the supply groove is of the centered type, the device comprises exactly two temperature-setting grooves;
  • the device when the supply throat is of the off-center type, the device includes a single warming groove.
  • the invention further relates to an aircraft turbomachine, comprising a device as described above.
  • Figure 1 is a half schematic view in axial section of an aircraft turbomachine
  • Figure 2 is a schematic view in axial section and perspective of a guiding device according to the prior technique
  • FIG.3 Figure 3 is a schematic cross-sectional view of the guide device of Figure 2,
  • Figure 4 is a schematic view in axial section of the guide device of Figure 2,
  • Figure 5 is a schematic perspective view of a straight-cut sealing segment
  • Figure 6 is a schematic perspective view of a sealing segment with overlapping cut
  • Figure 7 is a schematic view in axial section similar to that of Figure 4 and illustrates an embodiment of a guiding device according to the invention
  • Figure 8 is a view similar to that of Figure 7 and illustrates a variant embodiment of the invention.
  • Figure 9 is a view similar to that of Figure 7 and illustrates another alternative embodiment of the invention
  • Figure 10 is a very schematic view of a heating groove of a guiding device according to the invention, and shows the positions of oil inlet and outlet orifices of this throat.
  • FIG. 1 is an axial and partial sectional view of a turbomachine 1 of longitudinal axis X to which the invention applies.
  • the turbomachine 1 shown is a dual-flow turbomachine intended to be mounted on an aircraft.
  • the turbomachine 1 comprises a rotating shaft which is guided in rotation via one or more guide bearings relative to a fixed part of the turbomachine.
  • the rotating shaft can be a low pressure shaft of the turbomachine.
  • the rotating shaft can also be a high pressure shaft or any shaft driven in rotation using a guide bearing within the turbomachine.
  • the low pressure shaft 2 drives for example a fan 3 placed upstream of the turbomachine 1.
  • the turbomachine 1 comprises downstream of the fan 3 and successively, a compressor assembly (low pressure compressor 4a and high pressure compressor 4b), a combustion chamber 5, and a turbine assembly (high pressure turbine 6a and low pressure turbine 6b ), which form a gas generator.
  • upstream and downstream are defined in relation to the circulation of gases in the turbomachine and here along the longitudinal axis X.
  • the low pressure shaft 2 connects the low pressure compressor 4a of the compressor assembly and the low pressure turbine 6b of the turbine assembly, to form a low pressure body.
  • the turbomachine 1 can also include a high pressure body which includes the high pressure compressor 4b of the compressor assembly connecting the high pressure turbine 6a of the turbine assembly via a high pressure shaft 7.
  • the low pressure shaft 2 is centered on the longitudinal axis X and is guided at its upstream end by an upstream guide bearing 10 and at its downstream end by a downstream guide bearing 11.
  • the guide bearings 10, 11 are each housed in an enclosure of a fixed casing 12 relative to which the low pressure shaft 2 rotates.
  • each bearing 10, 11 comprises an annular internal ring 13 mounted on the rotating shaft (low pressure shaft 2) and an annular external ring 14 connected to a fixed structure secured to the fixed casing 12 of the turbomachine 1.
  • the internal ring 13 is for example shrink-fitted onto the low pressure shaft 2 so as to prevent any translation and any rotation of the internal ring 13 relative to the low pressure shaft 2.
  • the external ring 14 is advantageously fixed to the fixed structure using an anti-rotation device to lock it in rotation relative to it.
  • the anti-rotation device is generally formed of a radial spacer 15 which is housed, on the one hand in a notch in the external ring 14 which opens to the outside, and on the other hand in a hole (not shown) of the fixed structure secured to the fixed casing 12.
  • the outer ring 14 surrounds and is arranged at a radial distance from the inner ring 13.
  • radial and radially are defined with respect to a radial axis R perpendicular to the longitudinal axis X.
  • rolling elements 16 such as rollers or balls, which provide the link between the rotating shaft and the fixed structure of the turbomachine.
  • the internal and external rings 13, 14 include internal surfaces 17, 18 which form internal raceways for the rolling elements 16.
  • the bearing 10, 11 is equipped with a damping system.
  • the latter includes a damping film which is an oil film 19 and which circulates between the ring external 14 and the fixed structure of the turbomachine.
  • This oil film 19 makes it possible to limit, dampen or even regulate the vibrations of the turbomachine 1 in operation.
  • the turbomachine 1 is known to vibrate in at least one given vibration mode during the rotation of one or more rotary shaft(s). These vibrations are due for example to balancing faults in the turbomachine 1 and unbalances generated as a result of these balancing faults.
  • the oil film 19 is designed to occupy an annular damping space 20.
  • the space 20 is located radially between the outer ring 14 of the guide bearing and an annular hoop 21 (that is to say a hooped annular part) mounted in an annular bearing support 22 which is part of the fixed structure or which is attached to this fixed structure.
  • the hoop 21 surrounds the outer ring 14 of the bearing 10, 11 and is itself surrounded by the bearing support 22.
  • the bearing support 22 comprises an internal cylindrical surface 22a which faces an external cylindrical surface 21a of the hoop 21.
  • the hoop 21 comprises an internal cylindrical surface 21 b which faces an external cylindrical surface 14a of the external ring 14 of the bearing 10, 11.
  • the surfaces 22a and 21 a are in contact with each other.
  • the surfaces 21 b and 14a are spaced radially from one another and the radial clearance between these surfaces 21 b and 14a is predetermined to define the radial dimension of the space 20 for forming the oil film 19.
  • the damping space 20 is also delimited axially by sealing segments 24 which regulate or allow "leaks" of oil from the damping film towards the outside of the space 20. These segments control the flow rate of leakage of the damping film to ensure effective vibration damping.
  • sealing segments 24 which regulate or allow "leaks" of oil from the damping film towards the outside of the space 20. These segments control the flow rate of leakage of the damping film to ensure effective vibration damping.
  • axial and “axially” are defined with respect to the longitudinal axis X.
  • a first annular segment 26 is located upstream of the space 20 and a second annular segment 27 is located downstream of the space 20.
  • the segments 26, 27 extend radially between the outer ring 14 and the hoop 21.
  • the outer ring 14 comprises a first annular groove 28, upstream, and a second annular groove 29, downstream, intended to respectively receive the segments 26, 27.
  • the grooves 28, 29 are formed in the surface 14a of the outer ring 14 and are arranged axially at a distance from each other.
  • the segments 26, 27 extend radially from their grooves 28, 29 and are able to bear radially on the surface 21 b of the hoop. They are also intended to bear on side walls of the grooves (the upstream segment 26 on the upstream wall of the upstream groove 28, and the downstream segment 27 on the downstream wall of the downstream groove 29) due to the pressure exerted by the film oil in operation.
  • the segments 26, 27 are split and each include a cut or slot 30 which forms ends 31 facing each other (see Figure 5). This cut is called straight cut. Each end 31 is defined in a plane which is parallel to an RX plane.
  • the RX plane is formed of the longitudinal X and radial axes R.
  • the segments 26, 27 have a general square or rectangular section.
  • each end comprises a tongue extending in a circumferential direction (transverse axis T).
  • the transverse axis T is perpendicular to the longitudinal axes
  • the segments 26, 27 can also be provided with notches 32 on their external periphery. These notches are regularly distributed around the axis of the segment (parallel to the longitudinal axis
  • the segments 26, 27 are of the straight-cut type as illustrated in Figure 4.
  • the clearance at the cut J that is to say the distance between the circumferential ends of a segment, when mounted in the device, is preferably between 0.5 and 5mm.
  • the turbomachine 1 is also equipped with a first power circuit
  • This first circuit 33 which is connected to a power source (not shown) so as to supply oil under pressure to the space 20 and to form the oil film 19 in this space.
  • This first circuit 33 can also supply oil to the guide bearings for their lubrication.
  • the bearing support 22 comprises an annular feed groove 34 which extends around the space 19 and which is connected to this space by orifices 35 formed in the hoop 21.
  • the groove 34 is connected to a pipe 36 which is shown schematically here.
  • the orifices 35 are calibrated and their number is between 1 and 12. They are preferably regularly distributed around the axis
  • the groove 34 is of the off-center type or the supply of the oil film 19 is of the off-center type.
  • H a median plane perpendicular to X and passing substantially through the middle of the oil film.
  • the groove 34 is not crossed by this plane H and is on the contrary at a distance from this plane H and here downstream of this plane, close to the downstream segment 27.
  • the feed groove could be of the centered type or the supply of the oil film 19 could be of the centered type.
  • the groove would be crossed by plane H and would therefore be approximately halfway between segments 26, 27.
  • Figure 4 further shows the circulation of the oil in the circuit 33, from the pipe 36 to the groove 34 (arrow F1), through the orifices 35 of the hoop 21, then from the space 20 through the straight cuts of segments 26, 27.
  • the external surface 14a of the ring 14 can comprise an annular groove 37 for recovering the oil leaving the orifices 35 and distributing this oil in the space 20 all around the axis .
  • the thermal gradient between the segments 26, 27 and the hoop 21 on which they rest radially is not measured in operation and is therefore poorly known. It can be between 5 and 100°C for example. This gradient is nevertheless used as a hypothesis for defining the tangential play called “cutting play” of segments 26, 27.
  • the segment In the presence of a negative gradient (the temperature of the segment is similar to the temperature of the oil and is higher than the temperature of the hoop), the segment will want to lengthen by thermal expansion, and its slot will therefore close due to the imposed gradient.
  • NSV non-synchronous vibrations
  • the present invention thus proposes to add a second oil supply circuit, which is dedicated to heating the segments 26, 27.
  • the second circuit is connected to at least one annular heating groove which extends around space 20 and to the right of one of the segments 26, 27.
  • FIGS 7 to 9 illustrate several embodiments of the guiding device according to the invention. The differences between these embodiments are based in particular on the number and position of the heating grooves 40, and on the position of the supply groove 34.
  • the guiding device according to the invention may comprise all or part of the characteristics of a prior art guiding device, such as that illustrated in Figures 2 to 5 and described in the above.
  • its external ring 14 could be associated with a flexible cage C1 or squirrel cage, that is to say a perforated cage connected to an annular fixing flange C2, as illustrated in Figure 2.
  • Figure 7 illustrates a first embodiment of a guiding device according to the invention, in which the temperature-setting grooves 40 are formed in the bearing support 22 and in particular in the internal surface 22a of the support 22.
  • C This is also the case for the feed groove 34 which is formed in the support 22 and in particular in the internal surface 22a of the support 22.
  • the groove 34 here is of the centered type and is therefore crossed by the plane H.
  • the grooves 40 are two in number and are respectively an upstream groove located upstream of the plane H and a downstream groove located downstream of the plane H.
  • the groove 34 has, for example, a rectangular or square shape in section.
  • the groove 34 has an axial extent greater than an axial extent of the orifices 35.
  • the upstream groove 40 extends around the space 20 and around and to the right of the upstream segment 26.
  • the downstream groove 40 extends around the space 20 and around and to the right of the downstream segment 27.
  • Each groove 40 has, for example, a rectangular or square shape in section.
  • the shape and dimensions of the grooves 40 are identical and each define a volume which may be less than the volume defined by the groove 34.
  • each groove 40 has an axial extent greater than an axial extent of the segment 26, 27 around which it extends.
  • Each groove 40 preferably has an axial extent representing one to five times the axial extent of the corresponding segment, and preferably two to five times.
  • the grooves 40 are part of a circuit 41 which comprises one or more oil supply pipes 42 of the grooves 40.
  • Each of the grooves 40 is supplied with oil by a pipe 42 in the example shown, the pipes being independent of driving 36.
  • the number of pipes 42 which supply a groove 40 is for example between 1 and 3.
  • the pipes 42 supplying the same groove 40 are preferably regularly distributed around the axis X.
  • Each pipe 42 has one end which opens into the corresponding groove 40 to form an oil inlet orifice 43.
  • the hoop 21 comprises at least one radial orifice, and preferably a single radial orifice, which forms an outlet orifice of oil 44.
  • the oil outlet orifice 44 communicates with the upstream end of the groove 40 and is located upstream of the segment 26, or also upstream of the ring 14.
  • the arrows show the path of the oil in this area.
  • the oil outlet orifice 44 communicates with the downstream end of the groove 40b and is located downstream of the segment 27.
  • the arrows show the path of the oil in this area.
  • Circuits 33, 41 are preferably independent. This means that the oil which circulates in the first supply circuit 33, and in particular in the annular supply groove 34, in the orifices 35 and in the space 20, does not circulate in the second supply circuit 41, in particular in the heating groove 40 and the oil outlet orifice 44, and vice versa.
  • the groove 34 is of the off-centered type and is distant from the plane H. It is located downstream of the plane H and close to the segment 27. It can be considered as extending partly around and to the right of segment 27. In this case, there is no groove 40 for heating in this zone. Indeed, closing this segment, due to the appearance of a temperature gradient with the hoop, would be less problematic, because this would promote the circulation of oil towards the opposite segment, which would increase damping.
  • the guiding device of Figure 8 thus comprises a single groove 40, 40a which is located upstream of the plane H and around the segment 26.
  • this groove 40 is formed in the hoop 21 and in particular in the external surface 21 of the hoop 21.
  • the supply pipe 42 of this groove 40 is similar to that of the supply pipe of the groove 40a in Figure 7.
  • the circuit 33 is similar to that of Figure 4.
  • the groove 34, the orifices 35 and the pipe 36 of the circuit 33 of Figure 8 are similar to the upstream groove 40a, the orifices 35, and the pipe 36 connected to this groove in Figure 4.
  • the alternative embodiment of Figure 9 differs from the embodiment of Figure 7 in that the grooves 40 are formed in the hoop 21 and not the support 22 and in particular in the external surface 21a of the hoop 21.
  • the circuits 36, 41 are preferably independent and can supply oil, for example from the same oil source, at different pressures.
  • the oil supply pressure of the second circuit 41 is preferably lower than that of the first circuit 36.
  • the circuit 41 can be connected to the oil source by a pump providing a pressure lower than that provided by another pump connecting circuit 36 to the oil source.
  • circuits 36, 41 could be connected to the oil source by the same pump and circuit 41 could be configured to reduce the pressure of the oil supplied by the pump, for example by controlled pressure losses in driving 42.
  • the oil pressure in circuit 41 or the or each groove 40 is preferably between 1.5 and 10 bars.
  • the oil pressure in circuit 36 or throat 34 is preferably greater than 10 bars.
  • Figure 10 very schematically shows one of the heating grooves 40 and the respective positions of its oil inlet and outlet orifices 43, 44.
  • the oil inlet and outlet orifices 43, 44 of the or each heating groove 40 are located at an angle from one another which is less than or equal to 30°, and preferably less than or equal to 20° (measured around the X axis).
  • the oil inlet orifice 43 is formed by the outlet of the pipe 42 into the groove 40 and is for example located close to the 12 o'clock position (12 o'clock) by analogy with the dial. a clock (around the X axis).
  • the oil inlet orifice 43 is located in an angular zone extending between 12 o'clock and 1 o'clock around the axis X.
  • the oil outlet orifice 44 is formed by the The aforementioned orifice and is located at 11 o'clock and 12 o'clock around the X axis.
  • oil outlet orifice 44 which could be located in the angular zone extending between 12 o'clock and 1 o'clock, and the oil inlet orifice 43 could be located in the angular zone s 'extending between 11 o'clock and 12 o'clock around the X axis.
  • the orifices can be located at different azimuths, maintaining the “clockage” (relative azimuthal position) between the oil inlet and oil outlet orifices ( +/- 1 h), with for example inclined orifices (instead of purely radial) to force the direction of circulation of the oil flow between the oil inlet port and the oil outlet port, coupled with the supply pressure imposed on this oil flow.
  • the segments 26, 27 are for example made of a metal alloy.
  • An example of a metal alloy is a mixture of copper or iron.
  • the oil film 19 preferably has a radial thickness of between 0.05 and 1 mm. Segments 26, 27 are separated from each other by a distance of between 10 and 50mm, which corresponds to the length of the oil film.
  • the oil film 19 can be located at an implantation radius (measured relative to the X axis) which is between 100 and 500mm.
  • oil is therefore intended to arrive both in space 20 for the formation of the oil film 19 and in the groove(s) 40 for heating.
  • This oil will therefore increase the temperature of the hoop 21 more quickly, and therefore mathematically reduce the gradient between the segment(s) 26, 27 and the hoop 21.
  • the oil arriving in this groove 40 is then evacuated via the outlet orifice 44, in order to ensure that the oil travels the entire circumference of the groove 40 (arrows in Figure 10).
  • the invention therefore proposes a simple and passive way of reducing the thermal gradient between the segments 26, 27 and the hoop 21 or the bearing support 22 on which the segments rest radially, which will therefore reduce the risk of "on -closure” of the segment in the event of tangential clearance at the cut or thermal gradient underestimated during design.
  • the bearing support 22 and the shaft 13 could have an inverse arrangement, the bearing support 22 being located inside the bearing 10, 11 and the shaft 13 being located outside the level 10, 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Dispositif de guidage d'un arbre de turbomachine d'aéronef, ce dispositif comportant : - un palier à roulement (10, 11), - un support annulaire de palier (22), et - un système d'amortissement à compression de film d'huile (19) comportant : - deux segments annulaires d'étanchéité (26, 27), et - un premier circuit (33) d'alimentation en huile, ce premier circuit étant relié à une gorge annulaire (34) d'alimentation, caractérisé en ce que le système d'amortissement comprend en outre : - un second circuit (41) d'alimentation en huile, ce second circuit étant relié à au moins une gorge annulaire (40) de mise en température qui est indépendante de ladite gorge d'alimentation (34) et qui s'étend autour de l'un des segments d'étanchéité (26, 27).

Description

DESCRIPTION
TITRE : DISPOSITIF DE GUIDAGE D’UN ARBRE DE TURBOMACHINE D’AERONEF
Domaine technique de l'invention
La présente invention concerne un dispositif de guidage d’un arbre de turbomachine d’aéronef ainsi qu’une turbomachine d’aéronef comportant un tel dispositif.
Arrière-plan technique
L’état de l’art comprend notamment les documents FR-A1 -2 876 758, FRAI -3 085 242, FR-A1 -3 088 680, US-A1 -202/284298, FR-A1 -3 093 531 , FRAI -2 664 330, US-A1 -2017/248033 et US-A1 -2016/369652.
De manière générale, une turbomachine comprend des organes rotatifs tels que des arbres qui sont guidés par des paliers de guidage par rapport à une structure fixe de la turbomachine. Chacun de ces paliers de guidage comprend une bague interne et une bague externe enserrant des éléments roulants, par exemple des rouleaux ou des billes. Classiquement, la bague externe est montée de manière solidaire sur un support de palier de la turbomachine et la bague interne est montée de manière solidaire sur un arbre rotatif de la turbomachine.
Certains paliers de guidage peuvent être associés à des systèmes d’amortissement à compression de film d’huile, connu sous la désignation anglaise « squeeze film damper ». Un film d’huile est plus ou moins emprisonné dans un espace annulaire qui s’étend autour du palier de manière à amortir les mouvements de l’arbre rotatif et à réduire les vibrations de ce dernier qui sont transmises au support palier et à la structure fixe de la turbomachine et à l’aéronef. Ces systèmes d’amortissement permettent également de diminuer, par l’amortissement des modes de rotor, les consommations de jeux rotor / stator au niveau de chaque étage de compresseur et de turbine, et par conséquent, de gagner en performance moteur. Enfin, les systèmes d’amortissement permettent de réduire le risque d’apparition de vibrations non synchrones ou NSV (acronyme de Non Synchronous Vibrations), qui peuvent endommager le moteur, notamment lorsque l’arbre sur lequel le système d’amortissement est placé est un rotor supercritique (possédant son premier mode de flexion dans la plage de fonctionnement du moteur). De manière générale, le film d’huile permet d’améliorer la réponse dynamique de la turbomachine à un régime de fonctionnement donné et par conséquent les performances de la turbomachine.
L’espace annulaire de formation du film d’huile est délimité d’une part, radialement entre la bague externe du palier de guidage (qui est bloquée en rotation) et le support de palier et d’autre part, axialement par des segments annulaires d’étanchéité. Ces segments permettent de maintenir le film d’huile sous pression (ce qui permet d’apporter l’amortissement souhaité), tout en assurant l’évacuation de l’huile.
Traditionnellement, les segments d’étanchéité sont des éléments annulaires métalliques, élastiquement déformables, résistant à des températures élevées et possèdent une fente ou coupe droite ou à recouvrement dans la direction tangentielle du segment. Cette coupe permet d’évacuer l’huile, avec un débit d’huile spécifié par la dynamique d’ensemble. Ce débit doit être suffisant pour évacuer les calories générées par amortissement dans le film d’huile, mais pas trop important pour que le film d’huile reste sous pression.
A titre indicatif, ce débit peut être de l’ordre de quelques dizaines de litres par heure, et le jeu à la coupe de chaque segment de quelques dixièmes de millimètres à quelques millimètres. Lorsqu’ils sont montés, ces segments s’appuient radialement sur le support de palier ou une frette montée dans ce support, ainsi qu’axialement sur les parois des gorges qui sont formées dans la bague externe du palier (correspondant à la bague interne du film d’huile) et qui accueillent ces segments. L’huile ne peut donc passer qu’à travers le jeu tangentiel à la coupe de chaque segment.
Le jeu à la coupe des segments varie en fonctionnement, du fait du gradient thermique entre le segment (qu’on peut considérer en première approche à la température de l’huile) et le support palier ou la frette sur lequel il s’appuie. Ce gradient thermique évolue en fonctionnement, du fait des conditions de température de l’huile et des pièces au cours des différentes phases de la mission du moteur :
- du démarrage au décollage, l’huile est plus chaude que le support palier : le gradient entre l’huile (et donc le segment, directement au contact de l’huile), et le support palier sur lequel s’appuie le segment, est négatif. Le segment étant plus chaud que le support (car au contact de l’huile), il va vouloir se dilater axialement ce qui va entraîner la fermeture du jeu à la coupe du fait du contact avec le support plus froid ;
- du décollage à la fin de la mission, le support palier est plus chaud que l’huile arrivant dans le film et donc ce gradient est positif. Le segment étant plus froid que le support (car au contact de l’huile), il va vouloir se comprimer axialement ce qui va entraîner une ouverture du jeu à la coupe du fait du contact avec le support plus chaud.
Au cours d’une mission de vol classique, on peut par exemple constater un gradient thermique entre l’huile et la température du support palier au droit du roulement, de plusieurs dizaines de degrés. Lors de phases très transitoires (accélérations ou décélérations rapides) en dehors de la mission classique, ce gradient peut également être amené à varier de manière importante.
L’objectif de la présente invention est de fournir un dispositif d’amortissement optimisé permettant de réduire le gradient thermique entre les segments d’étanchéité et le support de palier ou la frette avec qui ils sont en contact dans le cas de segments d’étanchéité à coupe droite. Le document FR-A1-2 876 758 décrit un segment d’étanchéité à coupe à recouvrement, qui comporte des encoches de passage d’huile à sa périphérie externe.
Cette solution permet de réduire l’effort statique tournant créé par la fuite unique au niveau de la coupe, mais ne permet pas de réduire le gradient thermique p récité. Par ailleurs, la réalisation des encoches peut s’avérer complexe d’un point de vue industriel, avec un coût deux à trois fois plus élevé que des segments à coupe droite classique. Enfin, la définition de la géométrie de ces encoches (hauteur et largeur) demande des calculs complexes, et des essais de validation pour s’assurer que le débit de fuite généré par ces segments est bien conforme aux attentes.
Résumé de l'invention
L’invention concerne un dispositif de guidage d’un arbre de turbomachine d’aéronef, ce dispositif comportant :
- un palier à roulement comportant deux bagues, respectivement première bague et seconde bague, entre lesquelles sont montés des éléments roulants,
- un support annulaire de palier qui s’étend autour du palier, et
- un système d’amortissement à compression de film d’huile monté entre le support de palier et la seconde bague, ce système d’amortissement comportant :
- une frette annulaire intercalée entre le support de palier et la seconde bague,
- deux segments annulaires d’étanchéité, respectivement amont et aval, qui sont logés dans des rainures annulaires formées dans une surface cylindrique externe de la seconde bague et qui sont aptes à prendre appui radialement sur une surface cylindrique interne de la frette, ces surfaces externe et interne définissant entre elles un espace annulaire de formation d’un film d’huile qui est délimité axialement par les segments d’étanchéité, chacun de ces segments étant fendu par une coupe droite pour permettre l’évacuation de l’huile de cet espace, et
- un premier circuit d’alimentation en huile, ce premier circuit étant relié à une gorge annulaire d’alimentation qui s’étend autour de l’espace et qui est relié à cet espace par des orifices formés dans la frette, caractérisé en ce que le système d’amortissement comprend en outre :
- un second circuit d’alimentation en huile, ce second circuit étant relié à au moins une gorge annulaire de mise en température qui est indépendante de ladite gorge d’alimentation et qui s’étend autour de l’espace et au droit de l’un des segments d’étanchéité.
L’invention propose ainsi d’équiper le dispositif de guidage d’au moins une gorge de mise en température, qui est indépendante de la gorge d’alimentation, et qui est dédiée à la diminution du gradient thermique précité. On comprend donc que le dispositif comprend deux circuits d’huile ayant des fonctions différentes, contre un seul dans la technique antérieure. Dans la présente demande, on distingue donc les gorges par leurs fonctions. Une gorge d’alimentation en huile a pour fonction d’alimenter en huile, alors qu’une gorge de mise en température a pour fonction de réguler la température et donc d’apporter ou de retirer des calories, dans le but de limiter l’apparition d’un gradient thermique en particulier.
L’huile qui circule dans le premier circuit, et en particulier dans la gorge annulaire d’alimentation, dans les orifices et dans l’espace, ne circule ainsi pas dans le second circuit, en particulier dans la gorge de mise en température, et inversement.
Le dispositif selon l’invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres, ou en combinaison les unes avec les autres :
- la gorge d’alimentation est formée dans le support annulaire ou dans la frette ;
- la ou chaque gorge de mise en température est formée dans le support annulaire et/ou dans la frette ; - la gorge d’alimentation a une étendue axiale supérieure à une étendue axiale desdits orifices ;
- la ou chaque gorge de mise en température a une étendue axiale supérieure à une étendue axiale du segment d’étanchéité autour duquel elle s’étend ;
- le second circuit d’alimentation en huile est relié à deux gorges de mise en température, respectivement amont et aval, qui sont situées respectivement au droit desdits segments d’étanchéité ;
- la ou chaque gorge de mise en température est reliée à au moins un orifice de sortie d’huile qui est formé dans la frette ;
- ledit au moins un orifice de sortie d’huile est axialement décalé dudit espace pour éviter que l’huile qui sort de cet orifice pénètre dans l’espace ;
- l’orifice de sortie d’huile relié à la gorge de mise en température amont débouche en amont du segment d’étanchéité amont, voire en amont de la seconde bague ;
- l’orifice de sortie d’huile relié à la gorge de mise en température aval débouche en aval du segment d’étanchéité aval ;
- la ou chaque gorge de mise en température est reliée à au moins un orifice d’entrée d’huile qui est formé dans le support de palier ;
- les orifices d’entrée et de sortie d’huile de la ou chaque gorge de mise en température sont situés à un angle l’un de l’autre qui est inférieur ou égal à 30°, et de préférence inférieur ou égal à 20° ; cet angle est mesuré par rapport à l’axe du palier ;
- l’orifice d’entrée d’huile de la ou chaque gorge de mise en température est situé dans une zone angulaire s’étendant entre 12h et 1 h autour d’un axe principal du dispositif par analogie avec le cadran d’une horloge selon une première configuration, ou entre 11 h et 12h autour de l’axe selon une seconde configuration, et l’orifice de sortie d’huile de la ou chaque gorge de mise en température est situé dans une zone angulaire s’étendant entre 11 h et 12h autour de l’axe selon la première configuration, ou entre 12h et 1 h autour de l’axe selon la seconde configuration ;
- les orifices d’entrée et de sortie d’huile de la ou chaque gorge de mise en température sont inclinés par rapport à des directions radiales ;
-- les première et seconde bagues sont respectivement des bagues interne et externe, ou inversement des bagues externe et interne ;
-- le dispositif comprend un axe principal autour duquel s’étend le palier ;
-- la coupe de chaque segment s’étend dans un plan parallèle audit axe ;
- la seconde bague du dispositif de guidage est associée à une cage souple et comprend un voile annulaire ajouré et relié à une bride annulaire de fixation ;
-- la pression de l’huile dans le premier circuit d’alimentation est supérieure à la pression d’huile dans le second circuit d’alimentation ;
-- la pression d’huile dans la ou les gorges de mise en température est comprise entre 1 ,5 et 10 bars ;
-- chacun des segments définit un jeu à la coupe qui est compris entre 0,05 et 5mm en position de montage dans le dispositif ;
- la ou chaque gorge de mise en température a une étendue axiale qui représente une à cinq fois une étendue axiale du segment associé à cette gorge ;
-- le film d’huile ou l’espace de formation de ce film d’huile a une épaisseur radiale compris entre 0,05 et 1 mm ;
-- la distance axiale entre les segments ou la longueur du film d’huile ou de l’espace de formation du film d’huile, est comprise entre 10 et 50mm ;
-- le film d’huile ou l’espace de formation du film d’huile a un diamètre compris entre 100 et 500 mm ;
-- la ou chaque gorge d’alimentation est du type centré et est située à mi- distance des segments d’étanchéité ;
- la ou chaque gorge d’alimentation est du type décentré et est situé à proximité de l’un des segments d’étanchéité ; - lorsque la gorge d’alimentation est du type centré, le dispositif comprend exactement deux gorges de mise en température ;
- lorsque la gorge d’alimentation est du type décentré, le dispositif comprend une unique gorge de mise en température.
L’invention concerne en outre une turbomachine d’aéronef, comportant un dispositif tel que décrit ci-dessus.
Brève description des figures
D’autres caractéristiques et avantages ressortiront de la description qui suit d’un mode de réalisation non limitatif de l’invention en référence aux dessins annexés sur lesquels :
[Fig.1] la figure 1 est une demi vue schématique en coupe axiale d’une turbomachine d’aéronef,
[Fig.2] la figure 2 est une vue schématique en coupe axiale et en perspective d’un dispositif de guidage selon la technique antérieure,
[Fig.3] la figure 3 est une vue schématique en coupe transversale du dispositif de guidage de la figure 2,
[Fig.4] la figure 4 est une vue schématique en coupe axiale du dispositif de guidage de la figure 2,
[Fig.5] la figure 5 est une vue schématique en perspective d’un segment d’étanchéité à coupe droite,
[Fig.6] la figure 6 est une vue schématique en perspective d’un segment d’étanchéité à coupe à recouvrement,
[Fig.7] la figure 7 est une vue schématique en coupe axiale similaire à celle de la figure 4 et illustre un mode de réalisation d’un dispositif de guidage selon l’invention,
[Fig.8] la figure 8 est une vue similaire à celle de la figure 7 et illustre une variante de réalisation de l’invention,
[Fig.9] la figure 9 est une vue similaire à celle de la figure 7 et illustre une autre variante de réalisation de l’invention, et [Fig.10] la figure 10 est une vue très schématique d’une gorge de mise en température d’un dispositif de guidage selon l’invention, et montre les positions d’orifices d’entrée et de sortie d’huile de cette gorge.
Description détaillée de l'invention
La figure 1 est une vue en coupe axiale et partielle d’une turbomachine 1 d’axe longitudinal X à laquelle s’applique l’invention. La turbomachine 1 représentée est une turbomachine à double flux destinée à être montée sur un aéronef.
Classiquement, la turbomachine 1 comprend un arbre rotatif qui est guidé en rotation via un ou plusieurs paliers de guidage par rapport à une partie fixe de la turbomachine. L’arbre rotatif peut être un arbre basse pression de la turbomachine. L’arbre rotatif peut être également un arbre haute pression ou encore tout arbre entraîné en rotation à l’aide d’un palier de guidage au sein de la turbomachine.
En référence à la figure 1 , l’arbre basse pression 2 entraîne par exemple une soufflante 3 disposée en amont de la turbomachine 1 . La turbomachine 1 comprend en aval de la soufflante 3 et successivement, un ensemble de compresseur (compresseur basse pression 4a et compresseur haute pression 4b), une chambre de combustion 5, et un ensemble de turbine (turbine haute pression 6a et turbine basse pression 6b), qui forment un générateur de gaz.
Dans la présente invention, les termes « amont » et « aval » sont définis par rapport à la circulation des gaz dans la turbomachine et ici suivant l’axe longitudinal X.
L'arbre basse pression 2 relie le compresseur basse pression 4a de l’ensemble de compresseur et la turbine basse pression 6b de l’ensemble de turbine, pour former un corps basse pression. La turbomachine 1 peut comprendre également un corps haute pression qui comprend le compresseur haute pression 4b de l’ensemble de compresseur reliant la turbine haute pression 6a de l’ensemble de turbine via un arbre haute pression 7.
L’arbre basse pression 2 est centré sur l’axe longitudinal X et est guidé à son extrémité amont par un palier de guidage 10 amont et à son extrémité aval par un palier de guidage 11 aval. Les paliers de guidage 10, 11 sont chacun logés dans une enceinte d’un carter fixe 12 par rapport auquel l’arbre basse pression 2 tourne.
En référence aux figures 2 à 4, chaque palier 10, 11 comprend une bague interne 13 annulaire montée sur l’arbre rotatif (arbre basse pression 2) et une bague externe 14 annulaire reliée à une structure fixe solidaire du carter fixe 12 de la turbomachine 1. La bague interne 13 est par exemple frettée sur l'arbre basse pression 2 de manière à empêcher toute translation et toute rotation de la bague interne 13 par rapport à l'arbre basse pression 2. La bague externe 14 est avantageusement fixée à la structure fixe à l’aide d’un dispositif anti-rotation pour la bloquer en rotation par rapport à celle-ci. Le dispositif anti-rotation est généralement formé d’une entretoise 15 radiale qui vient se loger, d’une part dans une encoche de la bague externe 14 qui s’ouvre sur l’extérieur, et d’autre part dans un trou (non représenté) de la structure fixe solidaire du carter fixe 12. La bague externe 14 entoure et est agencée à distance radialement de la bague interne 13.
Dans la présente invention, les termes « radial » et « radialement » sont définis par rapport à un axe radial R perpendiculaire à l’axe longitudinal X.
Entre les bagues interne et externe 13, 14 sont agencés des éléments roulants 16 tels que des rouleaux ou des billes, qui assurent le lien entre l’arbre rotatif et la structure fixe de la turbomachine. Les bagues interne et externe 13, 14 comprennent des surfaces internes 17, 18 qui forment des pistes de roulement interne pour les éléments roulants 16.
Sur les figures 2 à 4, nous voyons également que le palier 10, 11 est équipé d’un système d’amortissement. Ce dernier comprend un film d’amortissement qui est un film d’huile 19 et qui circule entre la bague externe 14 et la structure fixe de la turbomachine. Ce film d’huile 19 permet de limiter, amortir ou encore réguler les vibrations de la turbomachine 1 en fonctionnement. En effet, la turbomachine 1 est connue pour vibrer selon au moins un mode vibratoire donné lors de la rotation d’un ou de plusieur(s) arbre(s) rotatif(s). Ces vibrations sont dues par exemple aux défauts d’équilibrage dans la turbomachine 1 et des balourds générés en conséquence de ces défauts d’équilibrage.
Le film d’huile 19 est prévu pour occuper un espace d’amortissement 20 annulaire. Dans le cas de la figure 4, l’espace 20 est situé radialement entre la bague externe 14 du palier de guidage et une frette annulaire 21 (c’est-à- dire une pièce annulaire frettée) montée dans un support de palier 22 annulaire qui fait partie de la structure fixe ou qui est fixé à cette structure fixe. En d’autres termes, la frette 21 entoure la bague externe 14 du palier 10, 11 et est elle-même entourée par le support de palier 22.
Le support de palier 22 comprend une surface cylindrique interne 22a qui est en regard d’une surface cylindrique externe 21 a de la frette 21 . La frette 21 comprend une surface cylindrique interne 21 b qui est en regard d’une surface cylindrique externe 14a de la bague externe 14 du palier 10, 11. Les surfaces 22a et 21 a sont en contact l’une contre l’autre. Les surfaces 21 b et 14a sont espacées radialement l’une de l’autre et le jeu radial entre ces surfaces 21 b et 14a est prédéterminé pour définir la dimension radiale de l’espace 20 de formation du film d’huile 19.
L’espace d’amortissement 20 est également délimité axialement par des segments d’étanchéité 24 qui régulent ou autorisent les « fuites » d’huile du film d’amortissement vers l’extérieur de l’espace 20. Ces segments maîtrisent le débit de fuite du film d’amortissement afin d’assurer un amortissement efficace des vibrations. Dans la présente invention, les termes « axial » et « axialement » sont définis par rapport à l’axe longitudinal X.
Un premier segment 26 annulaire est situé à l’amont de l’espace 20 et un deuxième segment 27 annulaire est situé à l’aval de l’espace 20. Les segments 26, 27 s’étendent radialement entre la bague externe 14 et la frette 21. La bague externe 14 comprend une première rainure 28 annulaire, à l’amont, et une deuxième gorge 29 annulaire, à l’aval, destinées à recevoir respectivement les segments 26, 27. Les rainures 28, 29 sont formées dans la surface 14a de la bague externe 14 et sont disposées axialement à distance l’une de l’autre. Les segments 26, 27 s’étendent radialement depuis leurs rainures 28, 29 et sont aptes à prendre appui radialement sur la surface 21 b de la frette. Elles sont en outre destinées à prendre appui sur des parois latérales des gorges (le segment amont 26 sur la paroi amont de la rainure amont 28, et le segment aval 27 sur la paroi aval de la rainure aval 29) du fait de la pression exercée par l’huile du film en fonctionnement.
Les segments 26, 27 sont fendus et comprennent chacun une coupe ou fente 30 qui forme des extrémités 31 en regard l’une de l’autre (cf. figure 5). Cette coupe est appelée coupe droite. Chaque extrémité 31 est définie dans un plan qui est parallèle à un plan RX. Le plan RX est formé des axes longitudinal X et radial R. Les segments 26, 27 présentent une section générale carrée ou rectangulaire.
Dans la technique actuelle représentée à la figure 6, les segments 26, 27 peuvent également être fendus et comprendre chacun une coupe 30 à recouvrement. Dans ce cas, chaque extrémité comprend une langue s’étendant suivant une direction circonférentielle (axe transversal T). L’axe transversal T est perpendiculaire aux axes longitudinal X et radial R. Les deux langues présentent chacune une surface destinée à être en appui axial l’une contre l’autre et une surface opposée axialement qui est affleurante avec un côté du segment. Les segments 26, 27 peuvent être également pourvus d’encoches 32 sur leur périphérie externe. Ces encoches sont régulièrement réparties autour de l’axe du segment (parallèle à l’axe longitudinal X en situation d’installation) et permettent d’évacuer la puissance dissipée par amortissement dans le film d’huile 19. Dans la présente invention, les segments 26, 27 sont du type à coupe droite tel qu’illustré à la figure 4. Le jeu à la coupe J, c’est-à-dire la distance entre les extrémités circonférentielles d’un segment, lorsqu’il est monté dans le dispositif, est de préférence compris entre 0,5 et 5mm.
La turbomachine 1 est également équipée d’un premier circuit d’alimentation
33 qui est connecté à une source d’alimentation (non représentée) de manière à alimenter en huile sous pression l’espace 20 et à former le film d’huile 19 dans cet espace. Ce premier circuit 33 peut également alimenter en huile les paliers de guidage en vue de leur lubrification.
Pour cela, comme illustré à la figure 4, le support de palier 22 comprend une gorge d’alimentation 34 annulaire qui s’étend autour de l’espace 19 et qui est relié à cet espace par des orifices 35 formés dans la frette 21 . La gorge 34 est reliée à une conduite 36 qui est ici schématique représentée. La gorge
34 s’étend autour de l’espace 19, entre les segments 26, 27, et à une position axiale prédéterminée vis-à-vis de ces segments 26, 27. La gorge 34, les orifices 35 et la conduite 36 font partie du circuit d’alimentation 33.
Les orifices 35 sont calibrés et leur nombre est compris entre 1 et 12. Ils sont de préférence régulièrement répartis autour de l’axe X
Dans l’exemple représenté à la figure 4, la gorge 34 est du type décentré ou l’alimentation du film d’huile 19 est du type décentré. On définit par H, un plan médian perpendiculaire à X et passant sensiblement par le milieu du film d’huile. On constate que la gorge 34 n’est pas traversée par ce plan H et est au contraire à distance de ce plan H et ici en aval de ce plan, à proximité du segment aval 27.
En variante, la gorge d’alimentation pourrait être du type centré ou l’alimentation du film d’huile 19 pourrait être du type centré. Pour cela, la gorge serait traversée par le plan H et serait donc sensiblement à mi-distance des segments 26, 27.
La figure 4 montre en outre la circulation de l’huile dans le circuit 33, depuis la conduite 36 jusqu’à la gorge 34 (flèche F1 ), à travers les orifices 35 de la frette 21 , puis de l’espace 20 à travers les coupes droites des segments 26, 27. Au droit des orifices 35, la surface externe 14a de la bague 14 peut comprendre une rainure annulaire 37 de récupération de l’huile sortant des orifices 35 et de distribution de cette huile dans l’espace 20 tout autour de l’axe X.
Le gradient thermique entre les segments 26, 27 et la frette 21 sur laquelle ils s’appuient radialement n’est pas mesuré en fonctionnement et est donc mal connu. Il peut être compris entre 5 et 100°C par exemple. Ce gradient est néanmoins utilisé comme hypothèse de définition du jeu tangentiel dit « jeu à la coupe » des segments 26, 27.
En présence d’un gradient négatif (la température du segment est similaire à la température de l’huile et est supérieure à la température de la frette), le segment va vouloir s’allonger par dilatation thermique, et sa fente va donc se fermer du fait du gradient imposé.
On distingue trois cas distincts. Dans le premier cas, on constate un fonctionnement qui ne remet pas en cause le fonctionnement du film, le segment se ferme au niveau du jeu à la coupe, mais le jeu de fermeture imposé par ce gradient est inférieur au jeu à la coupe, et l’évacuation de l’huile peut donc se faire normalement. Ce cas ne remet pas en cause le fonctionnement du film.
Dans un second cas où le jeu à la coupe (jeu tangentiel) est mal défini ou que le gradient thermique utilisé pour définir ce jeu est sous-estimé, le segment va vouloir se fermer au-delà de la valeur du jeu prévu. En conséquence, l’huile du film d’huile 19 ne pourra plus être évacuée, et va donc monter très fortement en température (du fait des calories générées par amortissement du film d’huile), ce qui va réduire sa viscosité, et donc le pouvoir amortissant du film. En cas de gradient beaucoup trop important et de segment fermé de manière prolongé, il peut y avoir un risque également de cokéfaction de l’huile, rendant le film absolument non fonctionnel, et nécessitant alors un démontage pour le nettoyer. Dans le troisième cas où le gradient thermique négatif est encore supérieur en valeur absolue à celui du second cas, le segment va vouloir se fermer encore plus. Du fait de la présence d’un jeu radial entre le segment 26, 27 et la rainure 28, 29 qui accueille le segment, les deux extrémités du segment vont vouloir se plaquer radialement en fond de gorge. En conséquence, l’huile sera évacuée via l’espace laissé entre le diamètre extérieur du segment et la frette, ce qui peut conduire à des fuites très importantes, plus importantes qu’en cas de fonctionnement normal. Si ces fuites sont trop importantes, il ne sera pas possible d’atteindre une pression d’alimentation suffisante dans le film d’huile, ce qui va réduire l’amortissement apporté par celui-ci.
Par ailleurs, dans les deuxième et troisième cas, une fois le retour à un gradient positif, le segment va vouloir retrouver sa position avec un jeu ouvert. Ces deux cas avec ces cycles de compression / décompression du segment, répétés à chaque mission de l’aéronef (ou pour des variations transitoires en dehors de la mission classique de l’aéronef), peuvent donc générer un risque de plastification du segment, qui garderait donc sa forme déformée au lieu de sa forme initiale, et ne serait donc plus fonctionnel.
Les conséquences dans les deuxième et troisième cas sont d’avoir un film non-fonctionnel ou avec un fonctionnement dégradé (voir très dégradé) par rapport à son fonctionnement nominal, avec une diminution voire une perte de l’amortissement apporté par ce film.
Les conséquences sont les suivantes :
- augmentation des vibrations,
- dégradation des consommations de jeux relatives entre le rotor et le stator au droit des différents étages de compresseur et turbine, et dégradations des performances, voire augmentation du risque de pompage,
- apparition de vibrations non-synchrones (NSV), qui peuvent endommager le moteur, notamment si le film est placé sur un rotor supercritique.
Il existe donc un besoin de réduire ou du moins de maîtriser ce gradient thermique, ce qui est proposé par l’invention. La présente invention propose ainsi d’ajouter un second circuit d’alimentation en huile, qui est dédiée à la mise en température des segments 26, 27. Pour cela, le second circuit est relié à au moins une gorge annulaire de mise en température qui s’étend autour de l’espace 20 et au droit de l’un des segments 26, 27.
Les figures 7 à 9 illustrent plusieurs modes de réalisation du dispositif de guidage selon l’invention. Les différences entre ces modes de réalisation reposent notamment sur le nombre et la position des gorges de mise en température 40, et sur la position de la gorge d’alimentation 34.
Bien que cela ne soit pas forcément visible ou décrit dans ce qui suit, le dispositif de guidage selon l’invention peut comprendre tout ou partie des caractéristiques d’un dispositif de guidage de la technique antérieure, tel que celui illustré aux figures 2 à 5 et décrit dans ce qui précède. En particulier, sa bague externe 14 pourrait être associée à une cage souple C1 ou cage d’écureuil, c’est-à-dire une cage ajourée reliée à une bride annulaire de fixation C2, comme illustré à la figure 2.
La figure 7 illustre un premier mode de réalisation d’un dispositif de guidage selon l’invention, dans lequel les gorges 40 de mise en température sont formées dans le support de palier 22 et en particulier dans la surface interne 22a du support 22. C’est également le cas de la gorge d’alimentation 34 qui est formée dans le support 22 et en particulier dans la surface interne 22a du support 22.
La gorge 34 est ici du type centré et est donc traversée par le plan H. Les gorges 40 sont au nombre de deux et sont respectivement une gorge amont située en amont du plan H et une gorge aval située en aval du plan H.
La gorge 34 a par exemple en section une forme rectangulaire ou carrée.
Dans l’exemple représenté, la gorge 34 a une étendue axiale supérieure à une étendue axiale des orifices 35. La gorge amont 40 s’étend autour de l’espace 20 et autour et au droit du segment amont 26. La gorge aval 40 s’étend autour de l’espace 20 et autour et au droit du segment aval 27.
Chaque gorge 40 a par exemple en section une forme rectangulaire ou carrée. La forme et les dimensions des gorges 40 sont identiques et définissent chacune un volume qui peut être inférieur au volume défini par la gorge 34.
Dans l’exemple représenté, chaque gorge 40 a une étendue axiale supérieure à une étendue axiale du segment 26, 27 autour duquel elle s’étend. Chaque gorge 40 a de préférence une étendue axiale représentant une à cinq fois l’étendue axiale du segment correspondant, et de préférence deux à cinq fois.
Les gorges 40 font partie d’un circuit 41 qui comprend en une ou plusieurs conduites 42 d’alimentation en huile des gorges 40. Chacune des gorges 40 est alimentée en huile par une conduite 42 dans l’exemple représenté, les conduites étant indépendantes de la conduite 36.
Le nombre de conduites 42 qui alimentent une gorge 40 est par exemple compris entre 1 et 3. Les conduites 42 d’alimentation d’une même gorge 40 étant de préférence régulièrement réparties autour de l’axe X.
Chaque conduite 42 a une extrémité qui débouche dans la gorge 40 correspondante pour former un orifice d’entrée d’huile 43. La frette 21 comprend au moins un orifice radial, et de préférence un unique orifice radial, qui forme un orifice de sortie d’huile 44.
En ce qui concerne la gorge amont 40a, l’orifice de sortie d’huile 44 communique avec l’extrémité amont de la gorge 40 et est située en amont du segment 26, voire également en amont de la bague 14. Les flèches montrent le cheminement de l’huile dans cette zone.
En ce qui concerne la gorge aval 40b, l’orifice de sortie d’huile 44 communique avec l’extrémité aval de la gorge 40b et est située en aval du segment 27. Les flèches montrent le cheminement de l’huile dans cette zone. Les circuits 33, 41 sont de préférence indépendants. Cela signifie que l’huile qui circule dans le premier circuit d’alimentation 33, et en particulier dans la gorge annulaire 34 d’alimentation, dans les orifices 35 et dans l’espace 20, ne circule pas dans le second circuit d’alimentation 41 , en particulier dans la gorge de mise en température 40 et l’orifice de sortie d’huile 44, et inversement.
Dans la variante de réalisation de la figure 8, la gorge 34 est du type décentré et est éloignée du plan H. Elle est située en aval du plan H et à proximité du segment 27. Elle peut être considérée comme s’étendant en partie autour et au droit du segment 27. Dans ce cas, il n’y a pas de gorge 40 de mise en température dans cette zone. En effet, une fermeture de ce segment, du fait de l’apparition d’un gradient de température avec la frette, serait moins problématique, car cela favoriserait la circulation de l’huile vers le segment opposé, ce qui augmenterait l’amortissement.
Le dispositif de guidage de la figure 8 comprend ainsi une unique gorge 40, 40a qui est située en amont du plan H et autour du segment 26. Dans l’exemple représenté, cette gorge 40 est formée dans la frette 21 et en particulier dans la surface externe 21 de la frette 21. La conduite 42 d’alimentation de cette gorge 40 est similaire à celle la conduite d’alimentation de la gorge 40a dans la figure 7.
Le circuit 33 est similaire à celui de la figure 4. La gorge 34, les orifices 35 et la conduite 36 du circuit 33 de la figure 8 sont similaires à la gorge amont 40a, aux orifices 35, et à la conduite 36 reliée à cette gorge de la figure 4.
La variante de réalisation de la figure 9 diffère du mode de réalisation de la figure 7 en ce que les gorges 40 sont formées dans la frette 21 et non pas le support 22 et en particulier dans la surface externe 21 a de la frette 21 .
Les circuits 36, 41 sont de préférence indépendants et peuvent fournir de l’huile, par exemple d’une même source d’huile, à des pressions différentes. La pression d’alimentation en huile du second circuit 41 est de préférence inférieure à celle du premier circuit 36. Pour cela, le circuit 41 peut être relié à la source d’huile par une pompe fournissant une pression inférieure à celle fournie par une autre pompe reliant le circuit 36 à la source d’huile. En variante, les circuits 36, 41 pourraient être reliés à la source d’huile par une même pompe et le circuit 41 pourrait être configuré pour réduire la pression de l’huile fournie par la pompe, par exemple par des pertes de charge maitrisées dans la conduite 42.
La pression d’huile dans le circuit 41 ou la ou chaque gorge 40 est de préférence comprise entre 1 ,5 et 10 bars. La pression d’huile dans le circuit 36 ou la gorge 34 est de préférence supérieure à 10 bars.
La figure 10 montre de manière très schématique une des gorges 40 de mise en température et les positions respectives de ses orifices d’entrée et de sortie d’huile 43, 44.
Les orifices d’entrée et de sortie d’huile 43, 44 de la ou chaque gorge de mise en température 40 sont situés à un angle l’un de l’autre qui est inférieur ou égal à 30°, et de préférence inférieur ou égal à 20° (mesuré autour de l’axe X).
Dans l’exemple représenté, l’orifice d’entrée d’huile 43 est formé par le débouché de la conduite 42 dans la gorge 40 et est par exemple située proche de la position 12h (12 heures) par analogie avec le cadran d’une horloge (autour de l’axe X). Dans l’exemple représenté, l’orifice d’entrée d’huile 43 est située dans une zone angulaire s’étendant entre 12h et 1 h autour de l’axe X. L’orifice de sortie d’huile 44 est formée par l’orifice précité et est située à 11 h et 12h autour de l’axe X.
En variante, c’est l’orifice de sortie d’huile 44 qui pourrait être située dans la zone angulaire s’étendant entre 12h et 1 h, et l’orifice d’entrée d’huile 43 pourrait être située dans zone angulaire s’étendant entre 11 h et 12h autour de l’axe X.
Comme autre variante possible, en fonction des contraintes d’intégration, les orifices peuvent être situés à des azimuts différents, en conservant le « clockage » (position azimutale relative) entre les orifices d’entrée d’huile et de sortie d’huile (+/- 1 h), avec par exemple des orifices inclinés (au lieu de purement radiaux) pour forcer la direction de la circulation du flux d’huile entre l’orifice d’entrée d’huile et l’orifice de sortie d’huile, couplée à la pression d’alimentation imposée à ce flux d’huile.
Les segments 26, 27 sont par exemple réalisés dans un alliage métallique. Un exemple d’alliage métallique est un mélange de cuivre ou de fer.
Le film d’huile 19 a de préférence une épaisseur radiale comprise entre 0,05 et 1 mm. Les segments 26, 27 sont séparés l’un de l’autre d’une distance comprise entre 10 et 50mm, ce qui correspond à la longueur du film d’huile. Le film d’huile 19 peut être situé à un rayon d’implantation (mesuré par rapport à l’axe X) qui est compris entre 100 et 500mm.
En fonctionnement, en début de mission, de l’huile est donc destinée à arriver à la fois dans l’espace 20 pour la formation du film d’huile 19 et dans la ou les gorges 40 de mise en température. Cette huile va donc augmenter plus rapidement la température de la frette 21 , et donc mathématiquement réduire le gradient entre le ou les segments 26, 27 et la frette 21 .
L’huile arrivant dans cette gorge 40 est ensuite évacuée via l’orifice de sortie 44, afin de s’assurer que l’huile parcourt toute la circonférence de la gorge 40 (flèches à la figure 10).
Les dimensions précitées de la ou des gorges 40, leur forme (rectangulaire ou non), ainsi que des orifices d’entrée et de sortie 43, 44 peuvent être définies via des calculs thermiques standards.
L’invention propose donc une manière simple et passive de réduire le gradient thermique entre les segments 26, 27 et la frette 21 ou le support de palier 22 sur lequel les segments s’appuient radialement, ce qui va donc réduire le risque de « sur-fermeture » du segment en cas de jeu tangentiel à la coupe ou de gradient thermique sous-estimés lors de la conception.
Cela permet de garantir une meilleure maîtrise de l’amortissement du film quelle que soit la phase de fonctionnement du moteur, et cette variation de gradient réduite permet de minimiser l’évolution de ce jeu à la coupe, ce qui garantit une moins grande variation du débit de fuite et donc une meilleure maîtrise / robustesse sur l’amortissement du film d’huile.
Contrairement à ce qui précède, le support de palier 22 et l’arbre 13 pourrait avoir une disposition inverse, le support de palier 22 étant situé à l’intérieur du palier 10, 11 et l’arbre 13 étant situé à l’extérieur du palier 10, 11.

Claims

REVENDICATIONS
1. Dispositif de guidage d’un arbre de turbomachine d’aéronef, ce dispositif comportant :
- un palier à roulement (10, 11 ) comportant deux bagues (13, 14), respectivement première bague et seconde bague, entre lesquelles sont montés des éléments roulants (16),
- un support annulaire de palier (22) qui s’étend autour du palier (10, 11 ), et
- un système d’amortissement à compression de film d’huile (19) monté entre le support de palier (22) et la seconde bague (14), ce système d’amortissement comportant :
- une frette annulaire (21 ) intercalée entre le support de palier (22) et la seconde bague (14),
- deux segments annulaires d’étanchéité (26, 27), respectivement amont et aval, qui sont logés dans des rainures annulaires (28, 29) formées dans une surface cylindrique externe (14a) de la seconde bague (14) et qui sont aptes à prendre appui radialement sur une surface cylindrique interne (21 b) de la frette (21 ), ces surfaces externe et interne (14a, 21 b) définissant entre elles un espace annulaire (20) de formation d’un film d’huile (19) qui est délimité axialement par les segments d’étanchéité (26, 27), chacun de ces segments étant fendu par une coupe droite pour permettre l’évacuation de l’huile de cet espace, et
- un premier circuit (33) d’alimentation en huile, ce premier circuit étant relié à une gorge annulaire (34) d’alimentation qui s’étend autour de l’espace (20) et qui est relié à cet espace par des orifices (35) formés dans la frette (21 ), caractérisé en ce que le système d’amortissement comprend en outre :
- un second circuit (41 ) d’alimentation en huile, ce second circuit étant relié à au moins une gorge annulaire (40) de mise en température qui est indépendante de ladite gorge d’alimentation (34) et qui s’étend autour de l’espace (20) et au droit de l’un des segments d’étanchéité (26, 27).
2. Dispositif selon la revendication 1 , dans lequel la gorge d’alimentation (34) est formée dans le support annulaire (22) ou dans la frette (21).
3. Dispositif selon la revendication 1 ou 2, dans lequel la ou chaque gorge (40) de mise en température est formée dans le support annulaire (22) et/ou dans la frette (21 ).
4. Dispositif selon l’une des revendications précédentes, dans lequel la gorge d’alimentation (34) a une étendue axiale supérieure à une étendue axiale desdits orifices (35).
5. Dispositif selon l’une des revendications précédentes, dans lequel la ou chaque gorge (40) de mise en température a une étendue axiale supérieure à une étendue axiale du segment d’étanchéité (26, 27) autour duquel elle s’étend.
6. Dispositif selon l’une des revendications précédentes, dans lequel le second circuit (41 ) d’alimentation en huile est relié à deux gorges (40a, 40b) de mise en température, respectivement amont et aval, qui sont situées respectivement au droit desdits segments d’étanchéité (26, 27).
7. Dispositif selon l’une des revendications précédentes, dans lequel la ou chaque gorge (40) de mise en température est reliée à au moins un orifice de sortie d’huile (44) qui est formé dans la frette (21 ).
8. Dispositif selon la revendication 7, dans lequel ledit au moins un orifice de sortie d’huile (44) est axialement décalé dudit espace (20) pour éviter que l’huile qui sort de cet orifice (44) pénètre dans l’espace (20).
9. Dispositif selon l’ensemble des revendications 6 et 7, ou 6, 7 et 8, dans lequel l’orifice de sortie d’huile (44) relié à la gorge (40a) de mise en température amont débouche en amont du segment d’étanchéité amont (26), voire en amont de la seconde bague (24).
10. Dispositif selon l’ensemble des revendications 6 et 7, ou 6, 7 et 8, ou la revendication 9, dans lequel l’orifice de sortie d’huile (44) relié à la gorge (40b) de mise en température aval débouche en aval du segment d’étanchéité aval (27).
11. Dispositif selon l’une des revendications 7 à 10, dans lequel la ou chaque gorge (40) de mise en température est reliée à au moins un orifice d’entrée d’huile (43) qui est formé dans le support de palier (22).
12. Dispositif selon la revendication 11 , dans lequel les orifices d’entrée et de sortie d’huile (43, 44) de la ou chaque gorge (40) de mise en température sont situés à un angle l’un de l’autre qui est inférieur ou égal à 30°, et de préférence inférieur ou égal à 20°.
13. Dispositif selon la revendication 11 ou 12, dans lequel l’orifice d’entrée d’huile (43) de la ou chaque gorge (40) de mise en température est situé dans une zone angulaire s’étendant entre 12h et 1 h autour d’un axe principal du dispositif par analogie avec le cadran d’une horloge selon une première configuration, ou entre 11 h et 12h autour de l’axe selon une seconde configuration, et l’orifice de sortie d’huile (44) de la ou chaque gorge (40) de mise en température est situé dans une zone angulaire s’étendant entre 11 h et 12h autour de l’axe selon la première configuration, ou entre 12h et 1 h autour de l’axe selon la seconde configuration.
14. Dispositif selon l’une des revendications précédentes, dans lequel les orifices d’entrée et de sortie d’huile de la ou chaque gorge de mise en température sont inclinés par rapport à des directions radiales.
15. Dispositif selon l’une des revendications précédentes, dans lequel la seconde bague du dispositif de guidage est associée à une cage souple et comprend un voile annulaire ajouré et relié à une bride annulaire de fixation.
16. Dispositif selon l’une des revendications précédentes, dans lequel la ou chaque gorge de mise en température a une étendue axiale qui représente une à cinq fois une étendue axiale du segment associé à cette gorge.
17. Dispositif selon l’une des revendications précédentes, dans lequel lorsque chaque gorge d’alimentation est du type centré, le dispositif comprenant exactement deux gorges de mise en température.
18. Dispositif selon l’une des revendications 1 à 16, dans lequel lorsque la gorge d’alimentation est du type décentré, le dispositif comprend une unique gorge de mise en température.
19. Turbomachine d’aéronef, comportant un arbre guidé en rotation par un dispositif selon l’une des revendications précédentes.
PCT/FR2023/051392 2022-09-16 2023-09-13 Dispositif de guidage d'un arbre de turbomachine d'aeronef WO2024056975A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2209344 2022-09-16
FR2209344A FR3139862A1 (fr) 2022-09-16 2022-09-16 Dispositif de guidage d’un arbre de turbomachine d’aeronef

Publications (1)

Publication Number Publication Date
WO2024056975A1 true WO2024056975A1 (fr) 2024-03-21

Family

ID=84362632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/051392 WO2024056975A1 (fr) 2022-09-16 2023-09-13 Dispositif de guidage d'un arbre de turbomachine d'aeronef

Country Status (2)

Country Link
FR (1) FR3139862A1 (fr)
WO (1) WO2024056975A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664330A1 (fr) 1990-07-04 1992-01-10 Mtu Friedrichshafen Gmbh Lubrification de turbocompresseur a gaz d'echappement dont le rotor est monte sur des roulements.
FR2876758A1 (fr) 2004-10-19 2006-04-21 Snecma Moteurs Sa Dispositif de support et de guidage d'un arbre en rotation
US20160369652A1 (en) 2015-06-18 2016-12-22 United Technologies Corporation Bearing support damping
US20170248033A1 (en) 2016-02-25 2017-08-31 General Electric Company Core Differential Bearing With Centering Spring and Squeeze Film Damper
FR3085242A1 (fr) 2018-08-22 2020-02-28 Sagemcom Broadband Sas Circuit de connexion d'un reseau local a une fibre optique sur laquelle sont susceptibles de cheminer des signaux lumineux conformes a des standards de communication optique differents
FR3088680A1 (fr) 2018-11-16 2020-05-22 Safran Aircraft Engines Module de turbomachine equipe d'un systeme de regulation de temperature d'un film fluide d'amortissement et procede de regulation active de temperature d'un film d'amortissement des vibrations de la turbomachine
US20200284298A1 (en) 2019-03-04 2020-09-10 Pratt & Whitney Canada Corp. Method to seal damper cavity of multi-film oil damper
FR3093531A1 (fr) 2019-03-07 2020-09-11 Safran Aircraft Engines Dispositif pour le centrage et le guidage en rotation d'une pièce rotative avec un circuit d'alimentation en huile

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664330A1 (fr) 1990-07-04 1992-01-10 Mtu Friedrichshafen Gmbh Lubrification de turbocompresseur a gaz d'echappement dont le rotor est monte sur des roulements.
FR2876758A1 (fr) 2004-10-19 2006-04-21 Snecma Moteurs Sa Dispositif de support et de guidage d'un arbre en rotation
US20160369652A1 (en) 2015-06-18 2016-12-22 United Technologies Corporation Bearing support damping
US20170248033A1 (en) 2016-02-25 2017-08-31 General Electric Company Core Differential Bearing With Centering Spring and Squeeze Film Damper
FR3085242A1 (fr) 2018-08-22 2020-02-28 Sagemcom Broadband Sas Circuit de connexion d'un reseau local a une fibre optique sur laquelle sont susceptibles de cheminer des signaux lumineux conformes a des standards de communication optique differents
FR3088680A1 (fr) 2018-11-16 2020-05-22 Safran Aircraft Engines Module de turbomachine equipe d'un systeme de regulation de temperature d'un film fluide d'amortissement et procede de regulation active de temperature d'un film d'amortissement des vibrations de la turbomachine
US20200284298A1 (en) 2019-03-04 2020-09-10 Pratt & Whitney Canada Corp. Method to seal damper cavity of multi-film oil damper
FR3093531A1 (fr) 2019-03-07 2020-09-11 Safran Aircraft Engines Dispositif pour le centrage et le guidage en rotation d'une pièce rotative avec un circuit d'alimentation en huile

Also Published As

Publication number Publication date
FR3139862A1 (fr) 2024-03-22

Similar Documents

Publication Publication Date Title
EP1650449B1 (fr) Dispositif de support et de guidage d'un arbre en rotation
EP3011142B1 (fr) Carter intermédiaire amélioré de turbomachine et ensemble d'entrainement de boitier d'accessoire
CA2951196C (fr) Turbomachine comprenant un systeme d'entrainement d'un equipement tel qu'un boitier d'accessoires
EP1965027B1 (fr) Turbine haute-pression d'une turbomachine
EP3042105B1 (fr) Ensemble rotatif comprenant un organe de transmission et un systeme de distribution d'huile
EP2834475B1 (fr) Système de transmission de puissance pour une turbomachine et procédé correspondant
WO2010119115A1 (fr) Moteur a turbine a gaz a double corps pourvu d ' un palier inter-arbres
EP3256698B1 (fr) Ecrou pour le blocage axial d'une bague de palier dans une turbomachine
FR3071546B1 (fr) Retention axiale de l'arbre de soufflante dans un moteur a turbine a gaz
WO2010103054A1 (fr) Element de rotor avec un passage de fluide et un element d'obturation du passage, turbomachine comportant l'element de rotor
WO2019166742A1 (fr) Ensemble pour une turbomachine
WO2024056975A1 (fr) Dispositif de guidage d'un arbre de turbomachine d'aeronef
EP3710679B1 (fr) Dispositif de maintien d'un organe de prelevement d'air radial centripete
FR3036441B1 (fr) Gicleur d'huile capote
EP4127415B1 (fr) Dispositif de distribution d'huile d'un palier a roulement de turbomachine d'aeronef
FR2983909A1 (fr) Enceinte lubrifiee logeant un palier inter-turbine et fermee par un joint a labyrinthe a faible usure
FR3075252A1 (fr) Ensemble d'etancheite
FR3097907A1 (fr) Contrôle actif du débit de refroidissement du compresseur haute pression
EP3803062A1 (fr) Dispositif de refroidissement d'un carter de turbomachine
FR3061739A1 (fr) Ensemble pour turbomachine
FR3136505A1 (fr) Dispositif de ventilation amélioré de turbine de turbomachine
FR3026776A1 (fr) Dispositif de transmission de puissance pour une turbomachine d'aeronef
WO2024084150A1 (fr) Turbomachine a cycle recupere equipee d'un echangeur de chaleur
FR3108934A1 (fr) Dispositif de drainage pour une turbomachine d’aeronef
FR3095242A1 (fr) Module de turbomachine equipe d’un dispositif d’amortissement pour palier de guidage de turbomachine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23793417

Country of ref document: EP

Kind code of ref document: A1