WO2019166742A1 - Ensemble pour une turbomachine - Google Patents

Ensemble pour une turbomachine Download PDF

Info

Publication number
WO2019166742A1
WO2019166742A1 PCT/FR2019/050462 FR2019050462W WO2019166742A1 WO 2019166742 A1 WO2019166742 A1 WO 2019166742A1 FR 2019050462 W FR2019050462 W FR 2019050462W WO 2019166742 A1 WO2019166742 A1 WO 2019166742A1
Authority
WO
WIPO (PCT)
Prior art keywords
radially
support
turbomachine
annular
annular channel
Prior art date
Application number
PCT/FR2019/050462
Other languages
English (en)
Inventor
Baptiste HALLOUIN
Alexandre Montpellaz
Sylvain Pierre Votie
Fabrice Iparaguirre
Yann DANIS
Original Assignee
Safran Helicopter Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Helicopter Engines filed Critical Safran Helicopter Engines
Priority to US16/976,156 priority Critical patent/US11181009B2/en
Priority to CN201980013185.0A priority patent/CN111801487B/zh
Priority to CA3091499A priority patent/CA3091499A1/fr
Priority to PL19717517T priority patent/PL3759319T3/pl
Priority to EP19717517.7A priority patent/EP3759319B1/fr
Publication of WO2019166742A1 publication Critical patent/WO2019166742A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • F01D25/164Flexible supports; Vibration damping means associated with the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/24Rotors for turbines

Definitions

  • the present invention relates to an assembly for a turbomachine, such as for example a turbojet engine or a turboprop aircraft.
  • Figure 1 illustrates a portion of a turbomachine 1 according to a first embodiment in accordance with the prior art.
  • upstream and downstream are defined with respect to the direction of gas flow within the turbomachine 1.
  • the turbomachine 1 comprises an upstream turbine 2 and a downstream turbine
  • the upstream turbine 2 is for example a high-pressure turbine and the downstream turbine 3 is for example a low-pressure turbine or a free turbine.
  • Each turbine 2, 3 comprises a rotor comprising blades 4.
  • the turbomachine 1 further comprises a radially inner shaft 5 extending along the axis A of the turbomachine 1.
  • the turbomachine 1 further comprises an annular channel 6 for forming a flow vein of the gas flow between two turbine stages 2, 3 of the turbomachine 1, said channel 6 being delimited by a radially inner annular wall 7 and a radially outer annular wall 8.
  • a radially outer support 9 connects the outer annular wall and a turbine casing 10.
  • the external support 9 comprises a flexible or elastically deformable zone 11, able to allow the radial and / or axial displacement of the outer annular wall 8 with respect to the casing 10.
  • a radially inner support 12 extends radially inwardly from the radially inner wall 7.
  • the radially inner portion 13 of the inner support 11 surrounds two bearings 14 mounted around the shaft 5.
  • the internal support 12 comprises in addition to a zone 15 flexible or elastically deformable, able to allow the radial and / or axial displacement of the inner annular wall 7 with respect to the bearings 14 and to the shaft 5.
  • the assembly formed by the annular channel 6 and the inner and outer supports 9, 12 is made in one piece, for example by casting.
  • the inner and outer annular walls 7, 8 of the annular channel 6 are subjected to high temperatures, while the inner 12 and outer supports 9 may be subjected to lower temperatures.
  • the difference in temperature is particularly important during the so-called transition phase, at the start of the turbomachine. This difference in temperature generates differential expansions between the different parts of the same set.
  • the flexible zones 11, 15 of the supports 9, 12 make it possible to compensate for such differential expansions, by allowing a radial and / or axial displacement of the inner and outer annular walls 7, 8 of the annular channel 6 with respect to the other parts of the assembly. .
  • the supports 9, 12 penalize the guiding of the shaft 5, through the bearings 14. Indeed, the supports 9, 12 provide a so-called structural function since they have particular function to support the shaft 5 radially, that is to say to bind to the housing 10, and to avoid the radial displacement of the shaft 5, in particular under load.
  • the assembly is made for example of nickel-based alloy Inconel type 738, such a material being expensive and not being repairable by reloading material by welding.
  • FIG. 2 A second known embodiment of the prior art is shown in Figure 2.
  • the assembly comprises an annular channel 6 for forming a flow vein of a gas flow between the two turbine stages 2, 3 of the turbomachine 1, said channel 6 being delimited by a radially inner annular wall 7 and a radially outer annular wall 8, said walls 7, 8 being connected by radially extending hollow arms 16.
  • the assembly further comprises a support 17, distinct from the annular channel 6, and having a radially outer annular portion 9, located radially outside the outer annular wall 8 of the annular channel 6, and a radially annular portion.
  • the invention aims to remedy these disadvantages in a simple, reliable and inexpensive way.
  • the invention relates to an assembly for a turbomachine, comprising: an annular channel intended to form a flow vein of a gas flow between two turbine stages of the turbomachine, said channel being delimited by a radially inner annular wall and a radially outer annular wall, said walls being connected by means of hollow arm extending radially,
  • a support having a radially outer annular portion located radially outside the annular outer wall of the annular channel, and a radially inner annular portion located radially inside the annular inner wall of the annular channel, the outer parts; and internal of the support being connected by radially extending connecting portions, each connecting portion passing through one of the hollow arms of the annular channel,
  • connecting portions of the support and the corresponding hollow arm are connected to each other by at least one connecting wall, said connecting wall comprising a breakable part capable of breaking when the mechanical stresses in said connecting wall are greater than a determined value.
  • the assembly can be made in one piece, for example by additive manufacturing or foundry, which reduces the manufacturing costs. After breaking the breakable portion, the annular channel and the support form two separate parts, so as to avoid conduction or thermal bridges by contact between said parts.
  • the breakable portion may be sized to break when the shear stresses in the connecting wall at the breakable portion are greater than 200 MPa.
  • the aforementioned stress value is for example the value when the connecting wall is at a temperature between 500 and 900 ° C, this value may change with temperature.
  • the assembly is made of a single piece of nickel-based alloy, for example a C263 type alloy.
  • the alloy used can be recharged by welding. This is particularly the case of a C263 type alloy.
  • the breakable portion may be formed by a thinned area of the connecting wall.
  • the breakable portion may include removal of material, such as localized holes or hollow areas.
  • connection portions of the support may comprise an internal conduit for the supply of a lubricating fluid from an area located radially outside the annular channel into an area inside. of the annular channel.
  • the radially inner portion of the support may be intended to support at least one bearing.
  • the conduit may thus allow the lubrication of said bearing.
  • the lubricating fluid is for example grease or oil.
  • the radially inner portion and / or the radially outer portion of the support may comprise at least one flexible zone for radial deformation of said radially inner or outer portion.
  • the radially inner portion and / or the radially outer portion of the support may comprise a radially fixed periphery portion, connected to each connecting portion by the corresponding flexible zone.
  • the flexible zone may be formed by tabs or elastically deformable pins.
  • Said tabs or pins can be oriented obliquely, that is to say can form a non-zero angle with the axial direction and with the radial direction.
  • Said angle with the axial direction is for example between 30 and 60 °, for example of the order of 45 °.
  • the invention relates to a turbomachine, such as for example a turbojet engine or a turboprop engine, comprising an upstream turbine, for example a high-pressure turbine, and a downstream turbine, for example a low-pressure turbine or a free turbine.
  • said turbines each comprising a rotor
  • the turbomachine comprising a radially inner shaft, characterized in that it comprises an assembly of the aforementioned type, the annular channel forming a gas flow stream between the upstream turbine and the downstream turbine, the radially inner portion of the support supporting at least one bearing for guiding the shaft, the radially outer portion of the support being fixed to a fixed part of the turbomachine, for example a turbine casing.
  • the invention also relates to a method for mounting and operating a turbomachine of the aforementioned type, characterized in that it comprises the steps of:
  • the temperature differential for breaking the breakable zone is for example between 200 and 500 ° C.
  • the breakable portion can be broken cold, that is to say without heating a part of the assembly, before mounting the annular channel and the support in the turbomachine.
  • the breakable portion can be broken cold, that is to say without heating a part of the assembly, after mounting the annular channel and the support in the turbomachine.
  • a stress can be generated mechanically at the connecting wall, for example by an operator, in particular by applying a shock or a sufficient force on said partition.
  • FIGURES is a schematic half-view in axial section of a portion of a turbine of a turbomachine according to a first embodiment of the prior art
  • FIG. 2 is a view corresponding to FIG. 1, illustrating a second embodiment of the prior art
  • Figure 3 is a view corresponding to Figure 1, illustrating an embodiment of the invention
  • Figure 4 is a perspective view and in axial section, of a portion of an assembly according to the invention.
  • Figure 5 is a perspective view of a portion of the assembly of Figure 4, some elements having been removed to improve the visibility of the elements shown;
  • Figure 6 is a perspective view of a portion of the connecting wall.
  • FIG. 3 shows a portion of a turbomachine 1 according to one embodiment of the invention.
  • This comprises an upstream turbine 2 and a downstream turbine 3.
  • the upstream turbine 2 is for example a high-pressure turbine and the downstream turbine 3 is for example a low-pressure turbine or a free turbine.
  • Each turbine 2, 3 comprises a rotor comprising blades 4.
  • the turbine engine 1 also comprises a radially inner shaft 5, extending along the axis A of the turbomachine.
  • the turbomachine 1 further comprises an assembly comprising an annular channel 6 intended to form a flow vein of a gas flow between the two turbine stages 2, 3 of the turbomachine 1, said channel 6 being delimited by a radially inner annular wall 7 and a radially outer annular wall 8, said walls 7, 8 being connected by radially extending hollow arms 16.
  • the assembly also visible in Figure 4, further comprises a support 17 having a radially outer annular portion 9, located radially outside the outer annular wall 8 of the annular channel 6, and a radially annular portion.
  • each connecting portion 18 passing through one of the hollow arms 16 of the annular channel 6.
  • the hollow arms 16 and the connecting portions 18 are regularly distributed on the periphery.
  • the radially inner portion 12 and the radially outer portion 9 of the support 17 each comprise a flexible zone 11, 15 allowing radial deformation of said radially inner or outer portion 12, 9.
  • the radially inner portion 12 comprises a radially outer annular flange 19, extending radially, and fixed to the housing 10 by means of screws or rivets for example.
  • Said flange 19 is connected to each connecting portion 18 by the corresponding flexible zone 11.
  • This flexible zone 11 is formed by lugs or by pins 20 elastically deformable.
  • Said tabs or pins 20 may be oriented obliquely, that is to say can form a non-zero angle with the axial direction and with the radial direction.
  • Said angle with the axial direction is for example between 30 and 60 °, for example of the order of 45 °.
  • the radially inner portion 12 of the support 17 comprises axially extending annular portions 13a, 13b, each intended to surround one of the bearings 14.
  • Each annular portion 13a, 13b is connected to the connecting portions 18 by flexible zones 15a, 15b oblique or frustoconical.
  • Each oblique or frustoconical flexible zone 15a, 15b forms a non-zero angle with the axial and radial directions.
  • At least one of the connecting portions 18 of the support 17 comprises an internal conduit 21 for the supply of a lubricating fluid from a zone located radially outside the annular channel 6 into a zone situated opposite the bearings 14.
  • the lubricating fluid is, for example, grease or oil.
  • Each connecting portion may have two rectilinear portions 18a, 18b forming an angle relative to each other.
  • other forms are also possible.
  • At least one of the connecting portions 18 and the corresponding hollow arm 16 are connected to each other by at least one connecting wall 22, said partition wall.
  • link 22 having a breakable portion 23 capable of breaking when the mechanical stresses in said connecting wall 22 are greater than a determined value.
  • the breakable portion 23 may be dimensioned to break when the shear stresses in the connecting wall 22, at the breakable portion 23, are greater than 200 MPa. This value can change with the temperature and can for example be defined at a temperature between 500 ° C and 900 ° C.
  • the assembly formed by the channel 6 and the support 17 can be made in one piece, for example by additive manufacturing or foundry, which reduces the manufacturing costs. After rupture of the breakable portion 23, the annular channel 6 and the support 17 form two distinct parts, so as to avoid conduction or thermal bridges by contact between said parts 6, 17.
  • the assembly is made of a single piece of nickel-based alloy, for example a C263 type alloy.
  • the breakable portion 23 of the connecting wall 22 is formed by a thinned area of the connecting wall 22.
  • the breakable portion 23 may optionally include removal of material, such as localized holes or hollow areas.
  • the assembly is mounted in one piece or in a single block in the turbomachine 1, then, during the first start of the turbomachine 1, a temperature differential is created between the arm 16 of the annular channel 6, on the one hand, and the connecting portions 18 of the support 17, on the other hand, which has the effect of breaking the breakable portion 23 of the connecting partition 22 due to the stresses generated in said breakable portion 23.
  • the temperature differential for breaking the breakable zone is for example between 200 and 500 ° C.
  • the breakable portion 23 may be broken cold, that is to say without heating a part of the assembly, before mounting the annular channel 6 and the support 17 in the turbomachine 1.
  • the breakable portion 23 can be broken cold, that is to say without heating a part of the assembly, after mounting the annular channel 6 and the support 17, a alone, in the turbomachine 1.
  • a stress can be generated mechanically at the connecting wall 22, for example by an operator, in particular by applying a shock or a sufficient force on said partition 22.

Abstract

Ensemble pour une turbomachine (1), comportant un canal annulaire (6) destiné à former une veine d'écoulement d'un flux de gaz entre deux étages (2, 3) de turbine de la turbomachine (1), ledit canal (6) étant délimité par une paroi annulaire radialement interne (7) et une paroi annulaire radialement externe (8), lesdites parois (7, 8) étant reliées par des bras creux (16) s'étendant radialement, un support (17) comportant une partie annulaire radialement externe (9), située radialement à l'extérieur de la paroi annulaire externe (8) du canal annulaire (6), et une partie annulaire radialement interne (12), située radialement à l'intérieur de la paroi annulaire interne (7) du canal annulaire (6), les parties externe et interne (9, 12) du support (17) étant reliées par des parties de liaison (18) s'étendant radialement, chaque partie de liaison (18) traversant l'un des bras creux (16) du canal annulaire (6), dans lequel l'une au moins des parties de liaison (18) du support (17) et le bras creux (16) correspondant sont reliés l'un à l'autre par au moins une cloison de liaison (22), ladite cloison de liaison (22) comportant une partie sécable (23) apte à rompre lorsque les contraintes mécaniques dans ladite cloison de liaison (22) sont supérieures à une valeur déterminée.

Description

ENSEMBLE POUR UNE TURBOMACHINE
DOMAINE
[001] La présente invention concerne un ensemble pour une turbomachine, telle par exemple qu’un turboréacteur ou un turbopropulseur d’aéronef. CONTEXTE
[002] La figure 1 illustre une partie d’une turbomachine 1 selon une première forme de réalisation conformément à l’art antérieur.
[003] Dans ce qui suit, les termes amont et aval sont définis par rapport au sens de circulation des gaz au sein de la turbomachine 1.
[004] La turbomachine 1 comporte une turbine amont 2 et une turbine aval
3. La turbine amont 2 est par exemple une turbine haute-pression et la turbine aval 3 est par exemple une turbine basse-pression ou une turbine libre. Chaque turbine 2, 3 comporte un rotor comprenant des pales 4. La turbomachine 1 comporte en outre un arbre 5 radialement interne, s’étendant selon l’axe A de la turbomachine 1.
[005] La turbomachine 1 comporte de plus un canal annulaire 6 destiné à former une veine d’écoulement du flux de gaz entre deux étages de turbine 2, 3 de la turbomachine 1 , ledit canal 6 étant délimité par une paroi annulaire radialement interne 7 et une paroi annulaire radialement externe 8.
[006] Un support radialement externe 9 relie la paroi annulaire externe et un carter 10 de turbine. Le support externe 9 comporte une zone 11 souple ou élastiquement déformable, apte à autoriser le déplacement radial et/ou axial de la paroi annulaire externe 8 par rapport au carter 10.
[007] Un support radialement interne 12 s’étend radialement vers l’intérieur depuis la paroi radialement interne 7. La partie radialement interne 13 du support interne 11 entoure deux paliers 14 montés autour de l’arbre 5. Le support interne 12 comporte en outre une zone 15 souple ou élastiquement déformable, apte à autoriser le déplacement radial et/ou axial de la paroi annulaire interne 7 par rapport aux paliers 14 et à l’arbre 5.
[008] L’ensemble formé par le canal annulaire 6 et les supports interne et externe 9, 12 est réalisé d’une pièce, par exemple par fonderie.
[009] En fonctionnement, les parois annulaires interne et externe 7, 8 du canal annulaire 6 sont soumises à des températures importantes, tandis que les supports interne 12 et externe 9 peuvent être soumis à des températures plus faibles. La différence de température est notamment très importante lors de la phase dite de transition, au démarrage de la turbomachine. Cette différence de température génère des dilatations différentielles entre les différentes parties du même ensemble. Les zones souples 11 , 15 des supports 9, 12 permettent de compenser de telles dilatations différentielles, en autorisant un déplacement radial et/ou axial des parois annulaires interne et externe 7, 8 du canal annulaire 6 par rapport aux autres parties de l’ensemble.
[010] Cependant, une trop grande souplesse accordée aux supports 9, 12 pénaliserait le guidage de l’arbre 5, au travers des paliers 14. En effet, les supports 9, 12 assurent une fonction dite structurelle puisqu’ils ont notamment pour fonction de supporter radialement l’arbre 5, c’est-à-dire de le lier au carter 10, et d’éviter le débattement radial de l’arbre 5, en particulier sous charge.
[011] Il convient donc de trouver un compromis entre les aspects de souplesse pour autoriser les dilatations différentielles et de rigidité pour réaliser la fonction de support de l’arbre 5. Par ailleurs, les contraintes mécaniques et thermiques appliquées aux différentes parties sont importantes et pénalisent la durée de vie de l’ensemble.
[012] Pour pouvoir répondre aux spécifications, l’ensemble est réalisé par exemple en alliage à base de nickel de type Inconel 738, un tel matériau étant coûteux et n’étant pas réparable par rechargement de matière par soudage. [013] Une seconde forme de réalisation connue de l’art antérieur est représentée à la figure 2. Dans cette forme de réalisation, l’ensemble comporte un canal annulaire 6 destiné à former une veine d’écoulement d’un flux de gaz entre les deux étages de turbine 2, 3 de la turbomachine 1 , ledit canal 6 étant délimité par une paroi annulaire radialement interne 7 et une paroi annulaire radialement externe 8, lesdites parois 7, 8 étant reliées par des bras creux 16 s’étendant radialement.
[014] L’ensemble comporte en outre un support 17, distinct du canal annulaire 6, et comportant une partie annulaire radialement externe 9, située radialement à l’extérieur de la paroi annulaire externe 8 du canal annulaire 6, et une partie annulaire radialement interne 12, située radialement à l’intérieur de la paroi annulaire interne 7 du canal annulaire 6, les parties externe 9 et interne 12 du support 17 étant reliées par des parties de liaison 18 s’étendant radialement, chaque partie de liaison 18 traversant un bras creux 16 du canal annulaire 6.
[015] De cette manière, il est possible de réaliser le support 17 et le canal annulaire 6 en deux matériaux différents, ce qui permet de choisir plus aisément le matériau répondant aux contraintes thermiques et mécaniques de chaque partie.
[016] Une telle solution reste cependant coûteuse car elle nécessite la fabrication et le montage de plusieurs pièces distinctes. En effet, une telle solution nécessite de sectoriser le support 17, l’interface et l’étanchéité entre les différents secteurs générant des contraintes supplémentaires.
RESUME DE L’INVENTION [017] L’invention vise à remédier à ces inconvénients, de manière simple, fiable et peu onéreuse.
[018] A cet effet, l’invention concerne un ensemble pour une turbomachine, comportant : - un canal annulaire destiné à former une veine d’écoulement d’un flux de gaz entre deux étages de turbine de la turbomachine, ledit canal étant délimité par une paroi annulaire radialement interne et une paroi annulaire radialement externe, lesdites parois étant reliées par des bras creux s’étendant radialement,
- un support comportant une partie annulaire radialement externe, située radialement à l’extérieur de la paroi annulaire externe du canal annulaire, et une partie annulaire radialement interne, située radialement à l’intérieur de la paroi annulaire interne du canal annulaire, les parties externe et interne du support étant reliées par des parties de liaison s’étendant radialement, chaque partie de liaison traversant l’un des bras creux du canal annulaire,
caractérisé en ce que l’une au moins des parties de liaison du support et le bras creux correspondant sont reliés l’un à l’autre par au moins une cloison de liaison, ladite cloison de liaison comportant une partie sécable apte à rompre lorsque les contraintes mécaniques dans ladite cloison de liaison sont supérieures à une valeur déterminée.
[019] L’ensemble peut ainsi être réalisé en une seule pièce, par exemple par fabrication additive ou par fonderie, ce qui permet de réduire les coûts de fabrication. Après rupture de la partie sécable, le canal annulaire et le support forment deux pièces distinctes, de manière à éviter la conduction ou les ponts thermiques par contact entre lesdites pièces.
[020] La partie sécable peut être dimensionnée pour rompre lorsque les contraintes de cisaillement dans la cloison de liaison, au niveau de la partie sécable, sont supérieures à 200 Mpa.
[021] La valeur de contrainte précitée est par exemple la valeur lorsque la cloison de liaison est à une température comprise entre 500 et 900°C, cette valeur pouvant changer avec la température.
[022] L’ensemble est réalisé d’une seule pièce en alliage à base de nickel, par exemple en un alliage de type C263. [023] De préférence, l’alliage utilisé peut être rechargé par soudage. Ceci est notamment le cas d’un alliage de type C263.
[024] La partie sécable peut être formée par une zone amincie de la cloison de liaison.
[025] La partie sécable peut comporter des enlèvements de matière, tels par exemple que des trous ou des zones en creux localisées.
[026] L’une au moins des parties de liaison du support peut comporter un conduit interne permettant l’amenée d’un fluide de lubrification depuis une zone située radialement à l’extérieur du canal annulaire jusque dans une zone située à l’intérieur du canal annulaire.
[027] La partie radialement interne du support peut être destinée à supporter au moins un palier. Le conduit peut ainsi permettre la lubrification dudit palier.
[028] Le fluide de lubrification est par exemple de la graisse ou de l’huile.
[029] La partie radialement interne et/ou la partie radialement externe du support peuvent comporter au moins une zone souple permettant une déformation radiale de ladite partie radialement interne ou externe.
[030] La partie radialement interne et/ou la partie radialement externe du support peuvent comporter une partie périphérie radialement fixe, reliée à chaque partie de liaison par la zone souple correspondante.
[031] La zone souple peut être formée par des pattes ou des épingles élastiquement déformables.
[032] Lesdites pattes ou épingles peuvent être orientées de façon oblique, c’est-à-dire peuvent former un angle non nul avec la direction axiale et avec la direction radiale. Ledit angle avec la direction axiale est par exemple compris entre 30 et 60°, par exemple de l’ordre de 45°.
[033] L’ invention concerne une turbomachine, telle par exemple qu’un turboréacteur ou un turbopropulseur, comportant une turbine amont, par exemple une turbine haute-pression, et une turbine aval, par exemple une turbine basse-pression ou une turbine libre, lesdites turbines comportant chacune un rotor, la turbomachine comportant un arbre radialement interne, caractérisée en ce qu’elle comporte un ensemble du type précité, le canal annulaire formant une veine d’écoulement de gaz entre la turbine amont et la turbine aval, la partie radialement interne du support supportant au moins un palier servant au guidage de l’arbre, la partie radialement externe du support étant fixée à une partie fixe de la turbomachine, par exemple un carter de turbine.
[034] L’ invention concerne également un procédé de montage et de fonctionnement d’une turbomachine du type précité, caractérisé en ce qu’il comporte les étapes consistant à :
- monter le canal annulaire et le support dans la turbomachine,
- effectuer un premier démarrage de la turbomachine de manière à créer un différentiel de température entre les bras du canal annulaire, d’une part, et les parties de liaison du support, d’autre part, et générer une rupture de la partie sécable de la cloison de liaison du fait des contraintes générées dans ladite partie sécable.
[035] Le différentiel de température permettant une rupture de la zone sécable est par exemple compris entre 200 et 500 °C.
[036] En variante, la partie sécable peut être rompue à froid, c’est-à-dire sans échauffement d’une partie de l’ensemble, avant montage du canal annulaire et du support dans la turbomachine.
[037] Selon une autre variante, la partie sécable peut être rompue à froid, c’est-à-dire sans échauffement d’une partie de l’ensemble, après montage du canal annulaire et du support dans la turbomachine.
[038] Pour cela, une contrainte peut être générée mécaniquement au niveau de la cloison de liaison, par exemple par un opérateur, notamment par application d’un choc ou d’un effort suffisant sur ladite cloison.
[039] L’ invention sera mieux comprise et d’autres détails, caractéristiques et avantages de l’invention apparaîtront à la lecture de la description suivante faite à titre d’exemple non limitatif en référence aux dessins annexés. BREVE DESCRIPTION DES FIGURES la figure 1 est demie-vue schématique en coupe axiale d’une partie d’une turbine d’une turbomachine selon une première forme de réalisation de l’art antérieur ;
- la figure 2 est une vue correspondant à la figure 1 , illustrant une seconde forme de réalisation de l’art antérieur ;
la figure 3 est une vue correspondant à la figure 1 , illustrant une forme de réalisation de l’invention ;
la figure 4 est vue en perspective et en coupe axiale, d’une partie d’un ensemble selon l’invention ;
la figure 5 est une vue en perspective d’une partie de l’ensemble de la figure 4, certains éléments ayant été retirés afin d’améliorer la visibilité des éléments représentés ;
la figure 6 est une vue en perspective d’une partie de la cloison de liaison.
DESCRIPTION DETAILLEE
[040] La figure 3 représente une partie d’une turbomachine 1 selon une forme de réalisation de l’invention. Celle-ci comporte une turbine amont 2 et une turbine aval 3. La turbine amont 2 est par exemple une turbine haute- pression et la turbine aval 3 est par exemple une turbine basse-pression ou une turbine libre. Chaque turbine 2, 3 comporte un rotor comportant des pales 4. La turbomachine 1 comporte également un arbre 5 radialement interne, s’étendant selon l’axe A de la turbomachine.
[041] La turbomachine 1 comporte de plus un ensemble comprenant un canal annulaire 6 destiné à former une veine d’écoulement d’un flux de gaz entre les deux étages 2, 3 de turbine de la turbomachine 1 , ledit canal 6 étant délimité par une paroi annulaire radialement interne 7 et une paroi annulaire radialement externe 8, lesdites parois 7, 8 étant reliées par des bras creux 16 s’étendant radialement. [042] L’ensemble, également visible à la figure 4, comporte en outre un support 17 comportant une partie annulaire radialement externe 9, située radialement à l’extérieur de la paroi annulaire externe 8 du canal annulaire 6, et une partie annulaire radialement interne 12, située radialement à l’intérieur de la paroi annulaire interne 7 du canal annulaire 6, les parties externe et interne 9, 12 du support 17 étant reliées par des parties de liaison 18 s’étendant radialement, chaque partie de liaison 18 traversant l’un des bras creux 16 du canal annulaire 6. Les bras creux 16 et les parties de liaison 18 sont régulièrement répartis sur la périphérie.
[043] La partie radialement interne 12 et la partie radialement externe 9 du support 17 comportent chacune une zone souple 11 , 15 permettant une déformation radiale de ladite partie radialement interne ou externe 12, 9.
[044] La partie radialement interne 12 comporte une bride annulaire 19 radialement externe, s’étendant radialement, et fixée au carter 10 par l’intermédiaire de vis ou de rivets par exemple. Ladite bride 19 est reliée à chaque partie de liaison 18 par la zone souple 11 correspondante. Cette zone souple 11 est formée par des pattes ou par des épingles 20 élastiquement déformables.
[045] Lesdites pattes ou épingles 20 peuvent être orientées de façon oblique, c’est-à-dire peuvent former un angle non nul avec la direction axiale et avec la direction radiale. Ledit angle avec la direction axiale est par exemple compris entre 30 et 60°, par exemple de l’ordre de 45°.
[046] Par ailleurs, la partie radialement interne 12 du support 17 comporte des parties annulaires 13a, 13b s’étendant axialement, destinées à entourer chacune l’un des paliers 14. Chaque partie annulaire 13a, 13b est reliée aux parties de liaison 18 par des zones souples 15a, 15b obliques ou tronconiques. Chaque zone souple oblique ou tronconique 15a, 15b forme un angle non nul avec les directions axiale et radiale.
[047] L’une au moins des parties de liaison 18 du support 17 comporte un conduit interne 21 permettant l’amenée d’un fluide de lubrification depuis une zone située radialement à l’extérieur du canal annulaire 6 jusque dans une zone située en regard des paliers 14. Le fluide de lubrification est par exemple de la graisse ou de l’huile.
[048] Chaque partie de liaison peut présenter deux parties rectilignes 18a, 18b formant un angle l’une par rapport à l’autre. Bien entendu, d’autres formes sont également possibles.
[049] Comme cela est mieux visible à la figure 5, l’une au moins des parties de liaison 18 et le bras creux 16 correspondant sont reliés l’un à l’autre par au moins une cloison de liaison 22, ladite cloison de liaison 22 comportant une partie sécable 23 apte à rompre lorsque les contraintes mécaniques dans ladite cloison de liaison 22 sont supérieures à une valeur déterminée.
[050] On notera, que, mis à part par l’intermédiaire de la cloison de liaison 22, la partie de liaison 18 n’est pas en contact avec la surface du bras de liaison 16, de façon à limiter les échanges thermiques.
[051] La partie sécable 23 peut être dimensionnée pour rompre lorsque les contraintes de cisaillement dans la cloison de liaison 22, au niveau de la partie sécable 23, sont supérieures à 200 Mpa. Cette valeur peut changer avec la température et peut par exemple être définie à une température comprise entre 500°C et 900°C.
[052] L’ensemble formé par le canal 6 et le support 17 peut ainsi être réalisé en une seule pièce, par exemple par fabrication additive ou par fonderie, ce qui permet de réduire les coûts de fabrication. Après rupture de la partie sécable 23, le canal annulaire 6 et le support 17 forment deux pièces distinctes, de manière à éviter la conduction ou les ponts thermiques par contact entre lesdites pièces 6, 17.
[053] L’ensemble est réalisé d’une seule pièce en alliage à base de nickel, par exemple en un alliage de type C263.
[054] Comme cela est mieux visible à la figure 6, la partie sécable 23 de la cloison de liaison 22 est formée par une zone amincie de la cloison de liaison 22.
[055] La partie sécable 23 peut éventuellement comporter des enlèvements de matière, tels par exemple que des trous ou des zones en creux localisées. [056] Selon une première forme de réalisation, l’ensemble est monté d’un seul tenant ou d’un seul bloc dans la turbomachine 1 , puis, lors du premier démarrage de la turbomachine 1 , un différentiel de température se créé entre les bras 16 du canal annulaire 6, d’une part, et les parties de liaison 18 du support 17, d’autre part, ce qui a pour effet de rompre la partie sécable 23 de la cloison de liaison 22 du fait des contraintes générées dans ladite partie sécable 23.
[057] Le différentiel de température permettant une rupture de la zone sécable est par exemple compris entre 200 et 500 °C.
[058] En variante, la partie sécable 23 peut être rompue à froid, c’est-à-dire sans échauffement d’une partie de l’ensemble, avant montage du canal annulaire 6 et du support 17 dans la turbomachine 1.
[059] Selon une autre variante, la partie sécable 23 peut être rompue à froid, c’est-à-dire sans échauffement d’une partie de l’ensemble, après montage du canal annulaire 6 et du support 17, d’un seul tenant, dans la turbomachine 1 .
[060] Pour cela, une contrainte peut être générée mécaniquement au niveau de la cloison de liaison 22, par exemple par un opérateur, notamment par application d’un choc ou d’un effort suffisant sur ladite cloison 22.

Claims

REVENDICATIONS
1. Ensemble pour une turbomachine (1 ), comportant :
- un canal annulaire (6) destiné à former une veine d’écoulement d’un flux de gaz entre deux étages (2, 3) de turbine de la turbomachine (1 ), ledit canal (6) étant délimité par une paroi annulaire radialement interne (7) et une paroi annulaire radialement externe (8), lesdites parois (7, 8) étant reliées par des bras creux (16) s’étendant radialement,
- un support (17) comportant une partie annulaire radialement externe (9), située radialement à l’extérieur de la paroi annulaire externe (8) du canal annulaire (6), et une partie annulaire radialement interne (12), située radialement à l’intérieur de la paroi annulaire interne (7) du canal annulaire (6), les parties externe et interne (9, 12) du support (17) étant reliées par des parties de liaison (18) s’étendant radialement, chaque partie de liaison (18) traversant l’un des bras creux (16) du canal annulaire (6),
caractérisé en ce que l’une au moins des parties de liaison (18) du support (17) et le bras creux (16) correspondant sont reliés l’un à l’autre par au moins une cloison de liaison (22), ladite cloison de liaison (22) comportant une partie sécable (23) apte à rompre lorsque les contraintes mécaniques dans ladite cloison de liaison (22) sont supérieures à une valeur déterminée.
2. Ensemble selon la revendication 1 , caractérisé en ce que la partie sécable (23) est dimensionnée pour rompre lorsque les contraintes de cisaillement dans la cloison de liaison (22), au niveau de la partie sécable (23), sont supérieures à 200 Mpa.
3. Ensemble selon la revendication 1 ou 2, caractérisé en ce que l’ensemble est réalisé d’une seule pièce en alliage à base de nickel, par exemple en un alliage de type C263.
4. Ensemble selon l’une des revendications 1 à 3, caractérisé en ce que la partie sécable (23) est formée par une zone amincie de la cloison de liaison (22).
5. Ensemble selon l’une des revendications 1 à 4, caractérisé en ce que la partie sécable (23) comporte des enlèvements de matière, tels par exemple que des trous ou des zones en creux localisées.
6. Ensemble selon l’une des revendications 1 à 5, caractérisé en ce que l’une au moins des parties de liaison (18) du support (17) comporte un conduit interne (21 ) permettant l’amenée d’un fluide de lubrification depuis une zone située radialement à l’extérieur du canal annulaire (6) jusque dans une zone située à l’intérieur du canal annulaire (6).
7. Ensemble selon l’une des revendications 1 à 6, caractérisé en ce que la partie radialement interne (12) et/ou la partie radialement externe
(9) du support (17) comportent au moins une zone souple (15, 11 ) permettant une déformation radiale de ladite partie radialement interne ou externe (9, 12).
8. Ensemble selon la revendications 7, caractérisé en ce que la partie radialement interne (12) et/ou la partie radialement externe (9) du support (17) comporte une partie périphérie (19, 13a, 13b) radialement fixe, reliée à chaque partie de liaison (18) par la zone souple (11 , 15) correspondante.
9. Turbomachine (1 ), telle par exemple qu’un turboréacteur ou un turbopropulseur, comportant une turbine amont (2), par exemple une turbine haute-pression, et une turbine aval (3), par exemple une turbine basse- pression ou une turbine libre, lesdites turbines (2, 3) comportant chacune un rotor, la turbomachine (1 ) comportant un arbre (5) radialement interne, caractérisée en ce qu’elle comporte un ensemble selon l’une des revendications 1 à 8, le canal annulaire (6) formant une veine d’écoulement de gaz entre la turbine amont (2) et la turbine aval (3), la partie radialement interne (12) du support (17) supportant au moins un palier (14) servant au guidage de l’arbre (5), la partie radialement externe (9) du support (17) étant fixée à une partie fixe (10) de la turbomachine (1 ), par exemple un carter (10) de turbine.
10. Procédé de montage et de fonctionnement d’une turbomachine (1 ) selon la revendication 9, caractérisé en ce qu’il comporte les étapes consistant à :
monter le canal annulaire (6) et le support (17) dans la turbomachine (1 ), - effectuer un premier démarrage de la turbomachine (1 ) de manière à créer un différentiel de température entre les bras (16) du canal annulaire (6), d’une part, et les parties de liaison (18) du support (17), d’autre part, et générer une rupture de la partie sécable (23) de la cloison de liaison (22) du fait des contraintes générées dans ladite partie sécable (23).
PCT/FR2019/050462 2018-02-28 2019-02-28 Ensemble pour une turbomachine WO2019166742A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/976,156 US11181009B2 (en) 2018-02-28 2019-02-28 Assembly for a turbomachine
CN201980013185.0A CN111801487B (zh) 2018-02-28 2019-02-28 涡轮机的组件
CA3091499A CA3091499A1 (fr) 2018-02-28 2019-02-28 Ensemble pour une turbomachine
PL19717517T PL3759319T3 (pl) 2018-02-28 2019-02-28 Zespół do maszyny wirowej
EP19717517.7A EP3759319B1 (fr) 2018-02-28 2019-02-28 Ensemble pour une turbomachine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1851776 2018-02-28
FR1851776A FR3078370B1 (fr) 2018-02-28 2018-02-28 Ensemble pour une turbomachine

Publications (1)

Publication Number Publication Date
WO2019166742A1 true WO2019166742A1 (fr) 2019-09-06

Family

ID=62816675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/050462 WO2019166742A1 (fr) 2018-02-28 2019-02-28 Ensemble pour une turbomachine

Country Status (7)

Country Link
US (1) US11181009B2 (fr)
EP (1) EP3759319B1 (fr)
CN (1) CN111801487B (fr)
CA (1) CA3091499A1 (fr)
FR (1) FR3078370B1 (fr)
PL (1) PL3759319T3 (fr)
WO (1) WO2019166742A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3120900B1 (fr) 2021-03-18 2023-02-10 Safran Aircraft Engines Dispositif de centrage et de guidage d’un arbre de turbomachine d’aeronef
FR3120902B1 (fr) 2021-03-18 2023-03-10 Safran Aircraft Engines Dispositif de centrage et de guidage d’un arbre de turbomachine d’aeronef
FR3120904B1 (fr) 2021-03-18 2023-03-24 Safran Aircraft Engines Dispositif de centrage et de guidage d’un arbre de turbomachine d’aeronef
FR3120899B1 (fr) 2021-03-18 2023-05-26 Safran Aircraft Engines Dispositif de centrage et de guidage d’un arbre de turbomachine d’aeronef

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2708681A1 (fr) * 1993-07-30 1995-02-10 Gen Electric Plaque tripode d'assemblage pour ensemble segmenté de circuit d'écoulement de turbine et ensemble segmenté comportant une telle plaque.
US8099962B2 (en) * 2008-11-28 2012-01-24 Pratt & Whitney Canada Corp. Mid turbine frame system and radial locator for radially centering a bearing for gas turbine engine
US20120227371A1 (en) * 2011-03-09 2012-09-13 General Electric Company System for cooling and purging exhaust section of gas turbine engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2326679B (en) * 1997-06-25 2000-07-26 Rolls Royce Plc Ducted fan gas turbine engine
US6240719B1 (en) * 1998-12-09 2001-06-05 General Electric Company Fan decoupler system for a gas turbine engine
GB2360069B (en) * 2000-03-11 2003-11-26 Rolls Royce Plc Ducted fan gas turbine engine
US6402469B1 (en) * 2000-10-20 2002-06-11 General Electric Company Fan decoupling fuse
GB2444935B (en) * 2006-12-06 2009-06-10 Rolls Royce Plc A turbofan gas turbine engine
US9777596B2 (en) * 2013-12-23 2017-10-03 Pratt & Whitney Canada Corp. Double frangible bearing support

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2708681A1 (fr) * 1993-07-30 1995-02-10 Gen Electric Plaque tripode d'assemblage pour ensemble segmenté de circuit d'écoulement de turbine et ensemble segmenté comportant une telle plaque.
US8099962B2 (en) * 2008-11-28 2012-01-24 Pratt & Whitney Canada Corp. Mid turbine frame system and radial locator for radially centering a bearing for gas turbine engine
US20120227371A1 (en) * 2011-03-09 2012-09-13 General Electric Company System for cooling and purging exhaust section of gas turbine engine

Also Published As

Publication number Publication date
EP3759319B1 (fr) 2022-01-12
PL3759319T3 (pl) 2022-03-21
US11181009B2 (en) 2021-11-23
US20200408109A1 (en) 2020-12-31
FR3078370B1 (fr) 2020-02-14
CA3091499A1 (fr) 2019-09-06
EP3759319A1 (fr) 2021-01-06
CN111801487B (zh) 2022-06-28
FR3078370A1 (fr) 2019-08-30
CN111801487A (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
EP3759319B1 (fr) Ensemble pour une turbomachine
EP1840339B1 (fr) Dispositif de fixation de secteurs d'anneau autour d'une roue de turbine dans une turbomachine
EP2085574A1 (fr) Centrage d'une pièce à l'intérieur d'un arbre
EP2917519B1 (fr) Support de tube d'évacuation d'air dans une turbomachine
EP3775501B1 (fr) Dispositif de refroidissement pour une turbine d'une turbomachine
CA2931044C (fr) Dispositif pour le centrage et le guidage en rotation d'un arbre de turbomachine comprenant des moyens de retention de bague exterieure de palier
EP3256698B1 (fr) Ecrou pour le blocage axial d'une bague de palier dans une turbomachine
CA2889751A1 (fr) Moyeu de carter d'echappement pour une turbomachine
FR3077097A1 (fr) Dispositif de refroidissement pour une turbine d'une turbomachine
WO2016146920A1 (fr) Ensemble à plaquettes d'étanchéité pour turbine à gaz
EP3610136A1 (fr) Dispositif pour le centrage et le guidage en rotation d'un arbre de turbomachine comportant des moyens de rétention axiale de bague extérieure de palier
EP2071141B1 (fr) Étanchéité de fixation de support de palier dans une turbomachine
FR2971022A1 (fr) Etage redresseur de compresseur pour une turbomachine
EP2917518B1 (fr) Support de tube d'évacuation d'air dans une turbomachine
EP2071130B1 (fr) Montage des tubes de pressurisation d'une enceinte interne dans une turbomachine
EP4090833B1 (fr) Ensemble pour une turbomachine
FR2852462A1 (fr) Turbomachine incorporant une machine electrique, et comportant des paliers isoles thermiquement
FR3065481A1 (fr) Ensemble pour turbine, notamment pour une turbomachine
FR3081924A1 (fr) Turbomachine pour aeronef comprenant un conduit de fluide pressurise entoure d'une gaine metallique tressee ou tissee
EP3880940B1 (fr) Dispositif pour le centrage et le guidage en rotation d'une piece rotative avec bras entrelaces
EP3853445B1 (fr) Etancheite d'une turbine
FR3096413A1 (fr) Partie d’une turbomachine
FR3095472A1 (fr) Elément de rotor de turbomachine
FR3121473A1 (fr) Fixation de viroles dans une turbomachine
FR3126445A1 (fr) Dispositif de refroidissement pour une turbine d’une turbomachine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19717517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3091499

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019717517

Country of ref document: EP

Effective date: 20200928