WO2024056084A1 - 电芯、电池模组以及电池包 - Google Patents

电芯、电池模组以及电池包 Download PDF

Info

Publication number
WO2024056084A1
WO2024056084A1 PCT/CN2023/119187 CN2023119187W WO2024056084A1 WO 2024056084 A1 WO2024056084 A1 WO 2024056084A1 CN 2023119187 W CN2023119187 W CN 2023119187W WO 2024056084 A1 WO2024056084 A1 WO 2024056084A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery core
optical fiber
battery
temperature measurement
sections
Prior art date
Application number
PCT/CN2023/119187
Other languages
English (en)
French (fr)
Inventor
蔡耀民
钟日军
朱瑞元
冯嘉茂
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2024056084A1 publication Critical patent/WO2024056084A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery cell technology, and in particular, to a battery cell, a battery module and a battery pack.
  • the temperature of the battery is mainly detected through several thermistors. There are few data points for temperature collection and the layout is single. It can only be set at the end of the battery core. The collected data is single and difficult to collect. The maximum temperature and minimum temperature of the battery core are also susceptible to electromagnetic interference, resulting in data drift, low test accuracy and difficult layout.
  • This application aims to solve at least one of the technical problems existing in the prior art.
  • one purpose of this application is to propose a battery core in which grating temperature measurement points are arranged on the battery core body to measure the temperature of the battery core.
  • the temperature measurement accuracy is high, the impact on the environment is small, and the space occupation is reasonable. High convenience.
  • This application further proposes a battery module having the above-mentioned battery core.
  • This application further proposes a battery pack having the above-mentioned battery module.
  • the battery core according to the present application includes: a battery core body and an optical fiber. A plurality of grating temperature measurement points are formed on the optical fiber, and the optical fiber is arranged on the battery core body.
  • the temperature of the battery core is measured by arranging grating temperature measurement points on the battery core body.
  • the number and arrangement of the grating temperature measurement points are more reasonable, the data samples are richer, and the battery core temperature measurement is more accurate.
  • the optical fiber has a small geometric size, is less restricted by the physical structure, and has low layout difficulty. It can be arranged without changing the battery core structure, and will not be affected by electromagnetic interference. The impact is high, the collection accuracy is high, and the data is accurate.
  • the battery module according to the present application includes a plurality of the above-mentioned battery cells.
  • the battery pack according to the present application includes the above-mentioned battery module.
  • Figure 1 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the cooperation between the temperature measurement component and the battery core according to the first embodiment of the present application;
  • FIG. 3 is a schematic diagram of the cooperation between the temperature measurement component and the battery core according to the second embodiment of the present application.
  • Battery pack 1000 battery core 2000;
  • Temperature measuring component 100 battery core body 200
  • Fiber 10 fiber temperature measurement point 11, first section 12, second section 13,
  • Shell 210 bare battery core 220.
  • the following describes the battery cell 2000, battery module, and battery pack 1000 according to the embodiment of the present application with reference to FIGS. 1-3.
  • a battery core 2000 includes: a battery core body 200 and an optical fiber 10.
  • a plurality of grating temperature measurement points 11 are formed on the optical fiber 10 .
  • an optical fiber 10 is provided on the battery core body 200, and a grating is carved on the optical fiber 10 in advance as the grating temperature measurement point 11, and the optical fiber 10 can be connected to a signal of the host 20 set outside the battery core 2000 to form a temperature measurement.
  • the component 100 that is, the temperature measurement component 100 includes: an optical fiber 10 and a host 20, and the optical fiber 10 is arranged on the battery core body 200; the host 20 is connected to the input end and the output end of the optical fiber 10, and the host 20 at least includes: a signal emission source and a solution.
  • a regulator is used to convert the optical signal into a temperature signal to achieve temperature measurement of the battery core body 200 .
  • the battery pack 1000 has multiple cells 2000, and the battery pack 1000 also has a thermal management system for thermally managing the cells 2000, and the host 20 is external to the cells 2000 and is configured as a thermal management system. a part of.
  • a grating is an optical device composed of a large number of parallel slits with regularly changing spacing, for example: an equally spaced grating with the same spacing width of parallel slits.
  • the above large number of parallel slits with regularly changing spacing are made of optical fiber 10 material.
  • the photosensitivity is engraved on the core of the optical fiber 10 to form a grating.
  • the flexible use of the grating is that it can realize multi-point sensing. In theory, countless gratings of different wavelengths can be written in one optical fiber 10 to achieve For distributed monitoring of the same or multiple physical parameters, the optical fiber 10 inscribed with multiple gratings is formed into a fiber grating string.
  • the light wave signal that meets the conditions is reflected by the grating, while other wavelength signals are basically not reflected.
  • the wavelength of the light wave emitted by the signal source can be measured independently. Once the grating is affected by temperature or stress field changes, the grating pitch will change, the wavelength of the reflected wave will also change accordingly, and different wavelengths will be emitted to realize the temperature measurement function of the grating temperature measurement point 11 based on different wavelengths.
  • the grating temperature measurement points 11 can be arranged in areas with severe temperature changes and areas where temperature needs to be collected (for example: in the battery core as shown in Figures 2 and 3 A plurality of grating temperature measurement points 11) are arranged at equal intervals in the height and length directions of the body 200, and the optical fiber 10 has a small geometric size, with a diameter of only one hundred or several hundred microns, which can not only overcome the problems of the busbar and the cell body 200
  • the physical limitations caused by the stacked structure can be reduced, and the layout can be varied to achieve reasonable setting of the grating temperature measurement points 11. The number is larger and the collection data is richer.
  • the maximum and minimum temperatures of the cell body 200 can be collected and determined.
  • the location of the highest temperature point and the lowest temperature point has more abundant samples, and the temperature measurement of the battery core 2000 is more accurate, and it also facilitates the subsequent control of the temperature of the battery core body 200; and the temperature measurement of the fiber optic 10 will not be affected by electromagnetic interference, and the data More accurate and higher collection accuracy.
  • the temperature of the battery core body 200 is measured by arranging grating temperature measurement points 11 on the battery core body 200.
  • the number and arrangement position of the grating temperature measurement points 11 can be more reasonable, and the data
  • the samples can be enriched to facilitate the temperature control of the battery core body 200;
  • the optical fiber 10 has a small geometric size, is less restricted by the physical structure, and is less difficult to arrange.
  • the arrangement can be realized without changing the structure of the battery core body 200, and does not require any changes. It will be affected by electromagnetic interference, and the collection accuracy is high and the data is accurate.
  • the battery core body 200 includes: a shell 210 and a bare battery core 220 disposed in the shell 210, and the optical fiber 10 is disposed in the shell 210 or the bare battery core 220.
  • the battery core body 200 and the optical fiber 10 can be fixed in a variety of ways, for example, using thermally conductive structural glue to achieve fixation, or providing fixing brackets, fixing grooves, etc. to fix the optical fiber 10 on the bare battery core 220 or the outer casing 210 .
  • the optical fiber 10 is disposed on a side surface of the housing 210 facing the bare battery core 220 ; and/or the optical fiber 10 is disposed on a side surface of the housing 210 facing away from the bare battery core 220 .
  • it can be jointly defined by the height direction and the length direction in Figure 1 .
  • the housing 210 has a large surface of the battery core facing or away from the bare battery core 220, and the optical fiber 10 is disposed on the large surface of the battery core.
  • the outer surface of the bare battery core 220 has a large surface of the battery core, and the optical fiber 10 can It is arranged on the large surface of the battery core of the bare battery core 220 .
  • the bare battery core 220, the casing 210 or the battery core body 200 has multiple surfaces.
  • the large surface of the battery core refers to the surface with the largest area among all surfaces of the bare battery core 220, the casing 210 or the battery core body 200. .
  • the temperature on the bare battery core 220 or the housing 210 can be measured through the optical fiber 10 to directly or indirectly achieve
  • the temperature measurement of the battery core body 200 improves the data accuracy, and the optical fiber 10 is set relative to the large surface of the battery core.
  • the number and position of the grating temperature measurement points 11 can be reasonably set according to the thermal field distribution, and the large surface of the battery core generates a larger amount of heat. , the measurement is more accurate.
  • a groove or a fixed bracket can be provided on the housing 210, and the optical fiber 10 is embedded in the groove or provided on the fixed bracket.
  • the groove or the fixed bracket can be provided inside or outside the housing 210, respectively.
  • the optical fiber 10 can be arranged at a groove or a fixed bracket located inside the housing 210
  • the optical fiber 10 can also be arranged at a groove or a fixed bracket located on the surface of the housing 210 facing the bare electric core 220
  • the optical fiber 10 can also be arranged at the housing 210
  • the optical fiber 10 is arranged at the groove or fixed bracket on the surface away from the bare battery core 220 , that is, the optical fiber 10 is arranged outside the housing 210 .
  • the optical fiber 10 can be disposed on the side surface of the outer casing 210 facing the bare electric core 220 or arranged on the bare electric core 220 .
  • the optical fiber 10 and the outer casing 210 or the bare electric core 220 can use thermally conductive structural adhesive. To fix.
  • the optical fiber 10 also has high tolerance to electrolyte, so it can be arranged in the housing 210 and can detect the temperature field more accurately. At the same time, the optical fiber 10 has small geometric size and high scalability, and can be arranged according to the arrangement. requirements, set the location appropriately.
  • the input end and the output end of the optical fiber 10 are at the same end of the cell body 200 and extend out of the cell body 200 to be connected to the host 20. Therefore, the input end and the output end can be routed from the same side, thereby reducing the total length of the optical fiber 10 and further reducing the cost.
  • the optical fiber 10 is disposed on at least one end surface of the cell body 200 in the length direction or the width direction and extends along the width direction or the length direction, and the optical fiber 10 is bent and disposed, and the optical fiber 10 is arranged along the length direction or the width direction as shown in FIG. 1 At least partial overlap of the projections in the height direction.
  • the optical fiber 10 is disposed on at least one end surface of the battery core body 200 in the length direction, the optical fiber 10 extends along the length direction, and the optical fiber 10 is bent; and/or the optical fiber 10 is disposed on at least one end surface of the battery core body 200 in the width direction. , the optical fiber 10 extends along the width direction, and the optical fiber 10 is bent.
  • Such wiring can satisfy the requirement that the optical fiber 10 covers a large area of the bare battery core 220 while reducing the number of bends of the optical fiber 10, thereby reducing the conductivity loss of the optical fiber 10 and reducing the probability of the outlet of the optical fiber 10 being broken to improve light
  • the temperature measurement component 100 composed of 10 components has the measurement accuracy, service life and working stability.
  • the surface of the optical fiber 10 defined in the length direction and height direction of the battery core body 200 is arranged in an arcuate shape.
  • the optical fiber 10 can be arranged along the length shown in FIG. 1 direction in the direction of wiring at one end of the battery core body 200 and extending to the other end of the battery core body 200. Then the optical fiber 10 is bent once along the height direction shown in Figure 1. After bending, the optical fiber 10 continues along the height direction shown in Figure 1. Extend from the other end of the battery core body 200 to one end of the battery core body 200 in the length direction and bend again in the height direction as shown in Figure 1.
  • the above process can be repeated multiple times, so that the optical fiber 10 is extended in the length direction multiple times and Bending in the height direction, so that the projection of the optical fiber 10 in the height direction at least partially overlap, and are arranged in a "bow" shape at the end of the cell body 200, so that more grating temperature measurement points 11 can be arranged in the width direction or length direction of the cell body 200, thereby improving the accuracy of temperature measurement.
  • Accuracy and effect, and the grating temperature measurement point 11 can be reasonably set according to the thermal field distribution, there are no restrictions here.
  • the grating temperature measurement points 11 are arranged in an array, which can be arranged in rows in the length direction as shown in Figure 1 and in columns in the height direction, so that multiple temperature measurement areas are spaced apart. There are multiple grating temperature measurement points 11, which improves the temperature measurement accuracy of each temperature measurement area and makes it easy to obtain the values and locations of the highest and lowest temperature points.
  • the optical fiber 10 includes a first section 12 and a second section 13.
  • the first section 12 is configured as a plurality of sections extending in the first direction and spaced apart in the second direction.
  • Each first section 12 has A plurality of grating temperature measurement points 11 with the same number are provided;
  • the second section 13 is arranged at one end of the same side of two adjacent first sections 12 and connects the two first sections 12, and the first direction is the length or width direction, The second direction is the height direction. It can be that the first segments 12 extend in the length direction shown in FIG.
  • multiple first segments 12 are spread over the large surface of the bare battery core 220 , and the multiple first segments 12 are along the height of the battery core body 200
  • the projections in the direction are overlapped, and multiple grating temperature measurement points 11 are provided on each first section 12, and the number of grating temperature measurement points 11 on each first section 12 is the same, so as to realize the measurement of the bare battery core 220. Temperature detection at multiple heights on the large surface of the battery core.
  • the second section 13 extends in the height direction shown in Figure 1 and is connected to one end of the same side of the two adjacent first sections 12, so that the first sections 12 are connected in sequence and orderly, which facilitates the routing of the optical fiber 10, so that the optical fiber 10
  • the whole wiring is along the length direction shown in Figure 1 at one end of the battery core body 200 and extends to the other end of the battery core body 200.
  • the optical fiber 10 is bent once along the height direction shown in Figure 1.
  • the optical fiber 10 is 10 continues to extend from the other end of the battery body 200 to one end of the battery body 200 along the length direction shown in FIG. 1 and is bent again in the height direction shown in FIG.
  • More grating temperature measurement points 11 are arranged in the width direction or length direction of the core body 200, thereby improving the accuracy and effect of temperature measurement.
  • the distance between two adjacent grating temperature measurement points 11 on the same first section 12 is the same, so that the grating temperature measurement points 11 are evenly distributed in the first section 12 and the temperature measurement is more accurate and precise. high.
  • the distance between two grating temperature measurement points 11 located in two adjacent first sections 12 and facing each other in the second direction is the same. It can be that the distance between every two adjacent first sections 12 is equal, and at the same time, the number of grating temperature measurement points 11 on the same first section 12 and the distance between two adjacent grating temperature measurement points 11 are the same. , therefore, the grating temperature measurement points 11 located in two adjacent first sections 12 can be arranged facing each other in the second direction. At this time, there is a gap between the multiple grating temperature measurement points 11 on the two adjacent first sections 12 . The distances are all the same, so that the grating temperature measurement points 11 can be evenly distributed throughout the optical fiber 10, thereby improving the accuracy and effect of temperature measurement.
  • a battery module according to the second embodiment of the present application includes: a plurality of battery cells 2000 in the above embodiments.
  • the above-mentioned optical fiber 10 can be provided on the battery core body 200 of each battery core 2000, and multiple shorter optical fibers 10 are connected to the host 20 respectively. Alternatively, a longer optical fiber 10 can be used and laid on multiple battery cores in sequence. 2000, in order to realize the arrangement of multiple battery cells 2000 sharing one optical fiber 10, even all the battery core bodies 200 in the entire battery module are laid out through one optical fiber 10, so as to facilitate later demodulation to the entire battery module.
  • the temperature field is used to trigger different thermal management strategies, and can also be used to confirm the position and value of the highest and lowest temperature points of a single cell body 200 and the entire battery pack 1000.
  • the battery module using the above-mentioned battery core 2000, it is possible to realize data detection of a large number of temperature measurement locations, and the measurement data will not produce data drift caused by electromagnetic interference, with higher accuracy, and can realize the entire
  • the temperature field measurement of the battery module monitors the entire battery module in real time, which facilitates the triggering of supporting thermal management strategies and improves the working stability and use safety of the battery module.
  • the battery module further includes a bus bar, in which the output end and the input end of the optical fiber 10 are integrated.
  • one optical fiber 10 can be arranged corresponding to each battery core 2000, and then be led out from the side as a whole, or integrated into the busbar, and the cable can be outleted through the gap of the existing structure or the existing structure itself, which will affect the overall structure of the battery module. Smaller changes can effectively reduce costs.
  • the battery pack 1000 according to the third embodiment of the present application uses the battery module in the above embodiment, and has the same technical effects as the above battery module, which will not be described again here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Secondary Cells (AREA)

Abstract

一种电芯(2000)、电池模组以及电池包(1000),所述电芯(2000)包括:电芯本体(200)以及光纤(10),所述光纤(10)上形成有多个光栅测温点(11),且所述光纤(10)设置于所述电芯本体(200)。

Description

电芯、电池模组以及电池包
相关申请的交叉引用
本申请要求于2022年9月15日提交的申请号为2022224517749、名称为“电芯、电池模组以及电池包”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电芯技术领域,尤其是涉及一种电芯、电池模组以及电池包。
背景技术
现有技术中,电池的温度主要通过若干个热敏电阻进行温度检测,温度采集的数据点较少,布置形式单一,仅能设置在电芯的端部,采集数据单一,且很难采集到电芯的最高温度以及最低温度,同时容易受到电磁干扰,导致数据产生漂移,测试精度低且布置难度大。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出了一种电芯,在电芯本体上布置光栅测温点,进行电芯的温度测量,测温精度高,受环境影响小,且空间占用合理,布置便利性高。
本申请进一步地提出了一种具有上述电芯的电池模组。
本申请进一步地提出了一种具有上述电池模组的电池包。
根据本申请的电芯包括:电芯本体和光纤,所述光纤上形成有多个光栅测温点,且所述光纤设置于所述电芯本体。
根据本申请的电芯,通过在电芯本体上布置光栅测温点,进行电芯的温度测量,一方面,光栅测温点数量、布置位置更加合理,数据样本更加丰富,电芯测温更准确,同时也为后续对电芯的温度调控准备;另一方面,光纤的几何尺寸小,受物理结构限制小,布置难度低,无需变更电芯结构即可实现布置,且不会受到电磁干扰的影响,采集精度高,数据准确。
根据本申请的电池模组,包括多个上述的电芯。
根据本申请的电池包,包括上述的电池模组。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本申请实施例的电池包的示意图;
图2是根据本申请第一实施例的测温组件与电芯的配合示意图;
图3是根据本申请第二实施例的测温组件与电芯的配合示意图。
附图标记:
电池包1000;电芯2000;
测温组件100,电芯本体200,
光纤10,光纤测温点11,第一段12,第二段13,
主机20,
外壳210,裸电芯220。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参考图1-图3描述根据本申请实施例的电芯2000以及电池模组、电池包1000。
如图1、图2和图3所示,根据本申请第一方面实施例的电芯2000,包括:电芯本体200和光纤10。
光纤10上形成有多个光栅测温点11。
本申请通过在电芯本体200上设置光纤10,并在光纤10上提前刻画好光栅,作为光栅测温点11,而光纤10可以与设置在电芯2000外的主机20信号连接以组成测温组件100,即测温组件100包括:光纤10以及主机20,且光纤10设置于电芯本体200;主机20与光纤10的输入端和输出端相连,主机20内至少包括:信号发射源和解调器,以将光信号转变为温度信号,实现对电芯本体200的温度测量。可以理解的是,电池包1000内具有多个电芯2000,而电池包1000还具有对电芯2000进行热管理的热管理系统,而主机20外置于电芯2000,并构造为热管理系统的一部分。
需要指出的是,光栅是由大量间距规律变化的平行狭缝构成的光学器件,例如:呈平行狭缝的间距宽度相同的等间距光栅,将上述大量间距规律变化的平行狭缝利用光纤10材料的光敏性刻画到光纤10的纤芯上,就构成了光栅,而光栅灵活使用的表现就是可以实现多点传感,理论上可以在一根光纤10内刻写无数个不同波长的光栅,实现对同一或者多个物理参数的分布式监测,刻写多个光栅的光纤10形成为光纤光栅串。通 过精准匹配两个反射点距离,符合条件的光波信号被光栅反射,而其他波长信号基本不被反射。通过连接光栅的解调器,可以测定信号源发出的独立发射波的光波波长。一旦光栅遭到温度或者应力场变化影响,光栅栅距就会发生变化,反射波波长也会随之改变,并且发射不同波长,以基于不同波长实现光栅测温点11的测温功能。
基于此,可以根据电芯本体200的尺寸大小以及热场分布,在温度变化剧烈的区域以及需要采集温度的区域布置光栅测温点11(例如:如图2和图3所示的在电芯本体200的高度方向和长度方向上均等间隔布置多个光栅测温点11),且光纤10的几何尺寸小,直径仅在一百或几百微米,不仅可以克服汇流排以及电芯本体200的堆叠结构导致的物理限制,降低局限性,布置形式多样,实现光栅测温点11的合理设置,数量更多,采集数据更加丰富,可以采集到电芯本体200的最高温度和最低温度,并确定最高温度点以及最低温度点所在位置,样本更加丰富,电芯2000测温更准确,同时也便于后续对电芯本体200温度的调控;而且光纤10测温,不会受到电磁干扰的影响,数据更加准确,采集精度更高。
根据本申请实施例的电芯2000,通过在电芯本体200上布置光栅测温点11,进行电芯本体200的温度测量,一方面,光栅测温点11数量、布置位置可以更加合理,数据样本可以更加丰富,便于对电芯本体200的温度调控;另一方面,光纤10的几何尺寸小,受物理结构限制小,布置难度低,无需变更电芯本体200结构即可实现布置,且不会受到电磁干扰的影响,采集精度高,数据准确。
如图2和图3所示,根据本申请的一些实施例,电芯本体200包括:外壳210和设置在外壳210内的裸电芯220,光纤10设置于外壳210或裸电芯220。
电芯本体200与光纤10的固定方式可以为多种,例如:采用导热结构胶实现固定,或设置固定支架、固定槽等实现光纤10在裸电芯220或外壳210上的固定。
示例性地,如图3所示,光纤10设置在外壳210朝向裸电芯220的一侧表面上;和/或,光纤10设置在外壳210背离裸电芯220的一侧表面上。具体地,可以由图1中高度方向与长度方向共同限定出。
在一些实施例中,外壳210具有朝向或背离裸电芯220的电芯大面,光纤10设置在电芯大面,也可以是,裸电芯220外表面具有电芯大面,光纤10可以设置在裸电芯220的电芯大面上。可以理解的是,裸电芯220、外壳210或者电芯本体200有多个表面,电芯大面是指对于裸电芯220、外壳210或者电芯本体200而言所有表面中面积最大的表面。
由此,可以通过光纤10测量裸电芯220或外壳210上的温度,以直接或间接实现 电芯本体200的温度测量,提高数据精度,且光纤10设置相对电芯大面设置,光栅测温点11的数量以及位置可以根据热场分布进行合理设置,并且电芯大面发热量较大,测量更加准确。
在一些实施例中,可以在外壳210上设置凹槽或固定支架,光纤10嵌设于凹槽或设置在固定支架上,这里,凹槽或固定支架可以设置在外壳210内侧或者外侧,相应的,光纤10可以设置在位于外壳210内部的凹槽或固定支架处,光纤10也可以设置在位于外壳210朝向裸电芯220的表面的凹槽或固定支架处,光纤10还可以设置在外壳210背离裸电芯220的表面的凹槽或固定支架处,也即光纤10设置在外壳210的外侧,光纤10的具体设置位置此处不做限制。在另一些实施例中,光纤10可以设置在外壳210朝向裸电芯220的一侧表面上或布置在裸电芯220上,此时光纤10可以与外壳210或裸电芯220采用导热结构胶进行固定。
需要指出的是,光纤10对电解液也具有较高的耐受性,因此可以布置在外壳210内,且可以更加准确的检测温度场,同时光纤10几何尺寸小,扩展性高,可以根据布置需求,合理设置位置。
如图2和图3所示,根据本申请的一些实施例,光纤10的输入端和输出端在电芯本体200的同一端且伸出电芯本体200,以与主机20相连。由此,输入端和输出端可以实现同侧出线,以降低光纤10的总长度,可以进一步降低成本。
在一些实施例中,光纤10设置在电芯本体200的长度方向或宽度方向上的至少一端表面且沿宽度方向或长度方向延伸,并且光纤10弯折设置,光纤10在沿图1中所示高度方向上的投影的至少部分重叠。具体地,光纤10设置在电芯本体200的长度方向至少一端表面,光纤10沿长度方向延伸,并且光纤10弯折设置;和/或,光纤10设置在电芯本体200的宽度方向至少一端表面,光纤10沿宽度方向延伸,并且光纤10弯折设置。这样布线,可以在满足光纤10覆盖裸电芯220的电芯大面的同时减少光纤10的弯折次数,从而实现减少光纤10的传导率损耗,并降低光纤10出线折断的概率,以提高光线10组成的测温组件100的测量精度以及使用寿命、工作稳定性。
这里,如图2和图3所示,示例性地,光纤10在电芯本体200的长度方向和高度方向限定出的表面呈弓字型设置,可以是,光纤10沿图1中所示长度方向上在电芯本体200的一端布线并延伸至电芯本体200的另一端,接着光纤10沿图1中所示高度方向进行一次弯折,弯折后,光纤10继续沿图1中所示长度方向上由电芯本体200的另一端延伸至电芯本体200的一端并再次于图1中所示高度方向弯折,上述过程可多次重复,以令光纤10多次在长度方向延伸并在高度方向弯折,使得光纤10在高度方向上的投影 的至少部分重叠,且在电芯本体200的端部呈“弓”字型设置,以便在电芯本体200的宽度方向或长度方向上布置更多的光栅测温点11,从而提高温度测量的精度以及效果,且光栅测温点11可以针对热场分布进行合理设置,此处不做限制。
在一些实施例中,光栅测温点11呈阵列设置,可以是在图1中所示的长度方向上成排设置,并在高度方向上成列设置,以使多个测温区域上间隔分布有多个光栅测温点11,提高各个测温区域的温度测量精度,并便于获取温度最高点和温度最低点的数值以及所在位置。
在一些实施例中,光纤10包括第一段12及第二段13,第一段12构造为在第一方向上延伸且在第二方向上间隔设置的多个,每个第一段12上设置有数量相同的多个光栅测温点11;第二段13设置于相邻两个第一段12的同侧一端并将两个第一段12连接,第一方向为长度或宽度方向,第二方向为高度方向。可以是,第一段12在图1中所示长度方向延伸,多个第一段12遍布于裸电芯220的电芯大面,并且多个第一段12在沿电芯本体200的高度方向上的投影重叠设置,每个第一段12上均设置有多个光栅测温点11,且每个第一段12上的光栅测温点11数量相同,以实现对裸电芯220的电芯大面多个高度的温度检测。同时,第二段13在图1中所示高度方向延伸并连接于相邻两个第一段12的同侧一端,以便第一段12依次且有序连接,便于光纤10布线,使得光纤10整体沿图1中所示长度方向上在电芯本体200的一端布线并延伸至电芯本体200的另一端,接着光纤10沿图1中所示高度方向进行一次弯折,弯折后,光纤10继续沿图1中所示长度方向上由电芯本体200的另一端延伸至电芯本体200的一端并再次于图1中所示高度方向弯折,上述过程可多次重复,以便在电芯本体200的宽度方向或长度方向上布置更多的光栅测温点11,从而提高温度测量的精度以及效果。
在一些实施例中,在同一第一段12上相邻两个光栅测温点11之间的距离相同,使得光栅测温点11均匀分布于第一段12,温度测量更为准确、精度更高。
在一些实施例中,位于相邻两个第一段12且在第二方向上正对的两个光栅测温点11之间的距离相同。可以是,每两个相邻第一段12之间的距离均相等,且同时同一第一段12上光栅测温点11的数量及相邻两个光栅测温点11之间的距离均相同,因此可将位于相邻两个第一段12的光栅测温点11在第二方向上正对设置,此时上述两个相邻第一段12上的多个光栅测温点11之间的距离均相同,可令光栅测温点11均匀分布于光纤10整体,从而提高温度测量的精度以及效果。
如图1所示,根据本申请第二方面实施例的电池模组包括:多个上述实施例中的电芯2000。
可以在每个电芯2000的电芯本体200上均设置上述光纤10,多个较短的光纤10分别与主机20相连,也可以采用一根较长的光纤10,依次布设在多个电芯2000上,以实现多个电芯2000共用一个光纤10的布置形式,甚至整个电池模组内的全部电芯本体200,均通过一根光纤10布设,以便于后期解调到整个电池模组的温度场,并用于触发不同的热管理策略,也可以实现对单个电芯本体200以及整个电池包1000的温度最高点、温度最低点的位置确认以及数值确认等。
根据本申请实施例的电池模组,采用上述电芯2000,可以实现大量需要进行温度测量位置的数据检测,且测量数据不会产生电磁干扰导致的数据漂移,准确度更高,并可以实现整个电池模组的温度场测量,实时监测整个电池模组,便于配套的热管理策略的触发,提高电池模组的工作稳定性以及使用安全性。
在一些实施例中,电池模组还包括:汇流排,光纤10的输出端和输入端集成于汇流排。
示例性地,可以每一个电芯2000对应布置一条光纤10,再一体从侧面引出,或集成到汇流排中,通过现有结构的间隙或现有结构本身实现出线,对电池模组整体结构的变更更小,可以有效降低成本。
根据本申请第三方面实施例的电池包1000,采用上述实施例中的电池模组,所具有的技术效果与上述电池模组一致,在此不再赘述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (16)

  1. 一种电芯(2000),其特征在于,包括:
    电芯本体(200)以及光纤(10),所述光纤(10)上形成有多个光栅测温点(11),且所述光纤(10)设置于所述电芯本体(200)。
  2. 根据权利要求1所述的电芯(2000),其特征在于,所述电芯本体(200)包括:外壳(210)和设置在所述外壳(210)内的裸电芯(220),所述光纤(10)设置于所述外壳(210)或所述裸电芯(220)。
  3. 根据权利要求1或2所述的电芯(2000),其特征在于,所述光纤(10)设置在所述外壳(210)朝向所述裸电芯(220)的一侧表面上,所述表面为所述外壳的电芯大面;
    和/或,所述光纤(10)设置在所述外壳(210)背离所述裸电芯(220)的一侧表面上,所述表面为所述外壳的电芯大面。
  4. 根据权利要求2-3中任意一项所述的电芯(2000),其特征在于,所述裸电芯(220)外表面具有电芯大面,所述光纤(10)设置在所述电芯大面上。
  5. 根据权利要求2-4中任意一项所述的电芯(2000),其特征在于,所述外壳(210)上设置凹槽,所述光纤(10)嵌设于所述凹槽。
  6. 根据权利要求1-5中任意一项所述的电芯(2000),其特征在于,所述光纤(10)的输入端和输出端在所述电芯本体(200)的同一端且伸出所述电芯本体(200)。
  7. 根据权利要求1-6中任意一项所述的电芯(2000),其特征在于,所述光纤(10)设置在所述电芯本体(200)的长度方向至少一端表面,所述光纤(10)沿所述长度方向延伸,并且所述光纤(10)弯折设置;和/或
    所述光纤(10)设置在所述电芯本体(200)的宽度方向至少一端表面,所述光纤(10)沿所述宽度方向延伸,并且所述光纤(10)弯折设置。
  8. 根据权利要求1-7中任意一项所述的电芯(2000),其特征在于,所述光纤(10)在所述电芯本体(200)的长度方向和高度方向限定出的表面呈弓字型设置。
  9. 根据权利要求1-8中任意一项的电芯(2000),其特征在于,所述光栅测温点(11)呈阵列设置。
  10. 根据权利要求9所述的电芯(2000),其特征在于,所述光纤(10)包括:
    第一段(12),所述第一段(12)构造为在第一方向上延伸且在第二方向上间隔设置的多个,每个所述第一段(12)上设置有数量相同的多个所述光栅测温点(11);
    第二段(13),所述第二段(13)设置于相邻两个所述第一段(12)的同侧一端并将两个所述第一段(12)连接,所述第一方向为长度方向或宽度方向,所述第二方向为高度方向。
  11. 根据权利要求10所述的电芯(2000),其特征在于,在同一第一段上相邻两个所述光栅测温点(11)之间的距离相同。
  12. 根据权利要求10所述的电芯(2000),其特征在于,位于相邻两个所述第一段且在第二方向上正对的两个所述光栅测温点(11)之间的距离相同。
  13. 一种电池模组,其特征在于,包括:多个如权利要求1-12中任意一项所述的电芯(2000)。
  14. 根据权利要求13所述的电池模组,其特征在于,还包括:汇流排,所述光纤(10)的输出端和输入端集成于所述汇流排。
  15. 一种电池包(1000),其特征在于,包括:权利要求13或14所述的电池模组。
  16. 根据权利要求15所述的电池包(1000),其特征在于,还包括:主机(20),所述主机(20)适于与所述光纤(10)的输出端和输入端相连。
PCT/CN2023/119187 2022-09-15 2023-09-15 电芯、电池模组以及电池包 WO2024056084A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222451774.9U CN218472050U (zh) 2022-09-15 2022-09-15 电芯、电池模组以及电池包
CN202222451774.9 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024056084A1 true WO2024056084A1 (zh) 2024-03-21

Family

ID=85141548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119187 WO2024056084A1 (zh) 2022-09-15 2023-09-15 电芯、电池模组以及电池包

Country Status (2)

Country Link
CN (1) CN218472050U (zh)
WO (1) WO2024056084A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218472050U (zh) * 2022-09-15 2023-02-10 比亚迪股份有限公司 电芯、电池模组以及电池包
CN116826219A (zh) * 2023-08-28 2023-09-29 宁德时代新能源科技股份有限公司 电池、用电装置和电池的装配方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050213867A1 (en) * 2004-03-29 2005-09-29 Rajendran Veera P Optical battery temperature monitoring system and method
CN105841843A (zh) * 2016-05-18 2016-08-10 小牛动力(武汉)新能源技术有限公司 电池组内部的光纤光栅网络布置结构
CN207351583U (zh) * 2017-07-03 2018-05-11 奥动新能源汽车科技有限公司 应用在蓄电池包内的光纤测温装置及包含其的蓄电池包
CN112067155A (zh) * 2020-11-11 2020-12-11 武汉昊衡科技有限公司 基于ofdr锂电池温度动态监测方法
DE102020112135A1 (de) * 2020-05-05 2021-11-11 fos4X GmbH Batterie mit faseroptischem Sensor
JP2022052827A (ja) * 2020-09-24 2022-04-05 マツダ株式会社 車両用電池の状態検出方法及び検出制御装置
CN218472050U (zh) * 2022-09-15 2023-02-10 比亚迪股份有限公司 电芯、电池模组以及电池包
CN116466234A (zh) * 2023-04-23 2023-07-21 上海纤传科技有限公司 一种基于多参量光纤光栅阵列的动力电池内部状态测量方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050213867A1 (en) * 2004-03-29 2005-09-29 Rajendran Veera P Optical battery temperature monitoring system and method
CN105841843A (zh) * 2016-05-18 2016-08-10 小牛动力(武汉)新能源技术有限公司 电池组内部的光纤光栅网络布置结构
CN207351583U (zh) * 2017-07-03 2018-05-11 奥动新能源汽车科技有限公司 应用在蓄电池包内的光纤测温装置及包含其的蓄电池包
DE102020112135A1 (de) * 2020-05-05 2021-11-11 fos4X GmbH Batterie mit faseroptischem Sensor
JP2022052827A (ja) * 2020-09-24 2022-04-05 マツダ株式会社 車両用電池の状態検出方法及び検出制御装置
CN112067155A (zh) * 2020-11-11 2020-12-11 武汉昊衡科技有限公司 基于ofdr锂电池温度动态监测方法
CN218472050U (zh) * 2022-09-15 2023-02-10 比亚迪股份有限公司 电芯、电池模组以及电池包
CN116466234A (zh) * 2023-04-23 2023-07-21 上海纤传科技有限公司 一种基于多参量光纤光栅阵列的动力电池内部状态测量方法

Also Published As

Publication number Publication date
CN218472050U (zh) 2023-02-10

Similar Documents

Publication Publication Date Title
WO2024056084A1 (zh) 电芯、电池模组以及电池包
CN101957244A (zh) 高空间分辨力分布式光纤传感系统
CN109632131B (zh) 一种锂电池组温度测量用的光纤光栅传感器及其测温方法
CN110567598A (zh) 高温超导线圈温度传感结构及高温超导线圈温度监测方法
KR101309952B1 (ko) 연료 전지 스택 및 그 내부 온도 측정 방법
CN115248064A (zh) 一种电池模组检测方法及检测系统
CN200952964Y (zh) 无外力影响光纤光栅温度传感器
CN114166374A (zh) 一种动力电池Pack内部温度检测装置及系统
CN106092367A (zh) 内置于智能电缆的准分布式测温光缆
CN103604495B (zh) 一种高能激光束杂散光能量测量系统
CN2651704Y (zh) 光纤光栅应变传感器
CN116337787A (zh) 光纤光栅传感器和锂离子电池内部氢气监测系统
CN211013294U (zh) 一种拉曼测温仪
KR102326331B1 (ko) 패널형 다단 온도측정 장치
KR102437164B1 (ko) 온도측정 장치의 제조용 지그 및 온도측정 장치의 제조 방법
CN109540284B (zh) 一种光功率探测器及其测量方法与制备方法
CN220627959U (zh) 冷板组件、温度监测系统、电池包及用电设备
CN205280240U (zh) 一种电池组温度测量装置
CN2869788Y (zh) 基于长周期光纤光栅对传感器的复用和解调装置
CN115326232B (zh) 温度传感器、无源多点温度测量装置和多点温度测量方法
CN207351584U (zh) 蓄电池箱
CN112331945B (zh) 一种具有测温装置的锂电池及锂电池组
US20220412810A1 (en) Optical fiber cable temperature measurement device
CN218765688U (zh) 一种用于超导电力低温环境的光纤光栅多点温度传感器
CN118050090A (zh) 一种基于超弱光纤光栅的储能电池感温监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864812

Country of ref document: EP

Kind code of ref document: A1