WO2024055913A1 - 浪涌防护方法及电路 - Google Patents

浪涌防护方法及电路 Download PDF

Info

Publication number
WO2024055913A1
WO2024055913A1 PCT/CN2023/117871 CN2023117871W WO2024055913A1 WO 2024055913 A1 WO2024055913 A1 WO 2024055913A1 CN 2023117871 W CN2023117871 W CN 2023117871W WO 2024055913 A1 WO2024055913 A1 WO 2024055913A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
bridgeless pfc
input terminal
pfc circuit
Prior art date
Application number
PCT/CN2023/117871
Other languages
English (en)
French (fr)
Inventor
王一娉
杨鹏
邵云露
李文杰
毛鹏
高成
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024055913A1 publication Critical patent/WO2024055913A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to the field of circuit technology, and in particular, to a surge protection method and circuit.
  • Power supply equipment is an important part of electronic equipment. When the power supply equipment of electronic equipment fails, the power supply equipment will be damaged and unable to provide power, causing the electronic equipment to be paralyzed. When electronic equipment is used for communications, if the power supply equipment is damaged by uncontrollable natural phenomena such as lightning surges, the current intensity of the switching power supply circuit in the power supply equipment may far exceed the safe range, posing a great risk of damage and causing communication problems. Interrupt.
  • inventions of the present disclosure provide a surge protection circuit.
  • the circuit includes: a totem bridgeless power factor correction PFC circuit, a first element, a second element, a first voltage detection circuit and a control circuit;
  • the totem bridgeless PFC circuit includes a first power input end, a first output end and a grounded third Two output terminals;
  • the first element is coupled between the first power input terminal and the first output terminal, and the second element is coupled between the first power input terminal and the second output terminal;
  • the first voltage detection circuit is used to detect the first The first pair of ground voltage between the power input terminal and the second output terminal of the totem bridgeless PFC circuit sends the first pair of ground voltage to the control circuit;
  • the control circuit is used to control the totem bridgeless PFC circuit according to the first pair of ground voltage.
  • the switch tube in is turned off.
  • the first component and the second component are diodes; or the first component and the second component are a rectifier bridge.
  • the input terminal of the first voltage detection circuit is coupled to the first power input terminal
  • the first output terminal of the first voltage detection circuit is coupled to the second output terminal of the totem bridgeless PFC circuit
  • the first voltage detection circuit The second output terminal is coupled with the first input terminal of the control circuit.
  • the surge protection circuit further includes a control circuit configured to: when the first voltage to ground is greater than or equal to the first preset threshold, control the switching tube in the totem bridgeless PFC circuit to turn off.
  • the first voltage to ground is the sum of the first output terminal voltage and the conduction voltage drop of the first component; corresponding to the first voltage to ground being less than or equal to the second preset threshold, the switch in the totem bridgeless PFC circuit is controlled When the tube is turned off, the voltage between the first and ground is the conduction voltage drop of the second component.
  • the surge protection circuit further includes a first current limiting device coupled between the first power input terminal and the first terminal of the first voltage detection circuit; the first current limiting device is To divide the voltage at the first power input terminal.
  • the surge protection circuit further includes a neutral terminal and a ground terminal, and a third component and a fourth component; the third component is coupled between the neutral terminal and the first output terminal of the totem bridgeless PFC circuit. During the period, the fourth element is coupled between the neutral terminal and the second output terminal of the totem bridgeless PFC circuit.
  • the totem bridgeless PFC circuit is a three-phase totem bridgeless PFC circuit; the three-phase totem bridgeless PFC circuit also includes a second power input terminal and a third power input terminal, and the surge protection circuit further includes a fifth component. , the sixth element, the seventh element and the eighth element; the fifth element is coupled between the second power input terminal and the first output terminal of the totem bridgeless PFC circuit, and the sixth element is coupled between the second power input terminal and the totem bridgeless PFC circuit.
  • the seventh element is coupled between the third power input terminal and the first output terminal of the totem bridgeless PFC circuit
  • the eighth element is coupled between the third power input terminal and the totem bridgeless PFC circuit between the second output terminals of the circuit.
  • the surge protection circuit further includes: a second voltage detection circuit and a third voltage detection circuit; a second The input terminal of the voltage detection circuit is coupled to the second power input terminal, the first output terminal of the second voltage detection circuit is coupled to the second output terminal of the totem bridgeless PFC circuit, and the second output terminal of the second voltage detection circuit is coupled to the control circuit
  • the second input terminal is coupled; the input terminal of the third voltage detection circuit is coupled with the third power input terminal, the first output terminal of the third voltage detection circuit is coupled with the second output terminal of the totem bridgeless PFC circuit, and the third voltage detection circuit
  • the second output of the circuit is coupled to the third input of the control circuit.
  • the control circuit includes a comparator circuit and an AND gate circuit, the input terminal of the comparator circuit is coupled to the second output terminal of the first voltage detection circuit, and the output terminal of the comparator circuit is coupled to the first input of the AND gate circuit. terminal coupling; the comparator circuit is used to compare the first pair of ground voltage and the preset voltage threshold, and output the flip signal to the first input terminal of the AND gate circuit; the second input terminal of the AND gate circuit is used to receive the drive signal, The output terminal of the AND gate circuit is used to output a driving signal to the totem bridgeless PFC circuit to drive the switch tube in the totem bridgeless PFC circuit to turn off.
  • control circuit includes a digital signal controller DSC.
  • the digital signal controller DSC is used to generate a flip signal according to the first pair of ground voltages.
  • the flip signal is used to cooperate with the software program to control the switch tube in the totem bridgeless PFC circuit. Shut down.
  • inventions of the present disclosure provide a surge protection method, which is applied to a surge protection circuit.
  • the surge protection circuit includes a totem bridgeless power factor correction PFC circuit, a first component, a second component, a first voltage detection circuit and a control circuit;
  • the totem bridgeless PFC circuit includes a first power input terminal, a first output terminal and a grounded a second output terminal;
  • the first component is coupled between the first power input terminal and the first output terminal, and the second component is coupled between the first power input terminal and the second output terminal;
  • the method includes: detecting the first power supply The first pair of ground voltage between the input terminal and the second output terminal of the totem bridgeless PFC circuit; controlling the switching tube in the totem bridgeless PFC circuit to turn off according to the first pair of ground voltage.
  • the first component and the second component are diodes; or the first component and the second component are a rectifier bridge.
  • controlling the switch transistor in the totem bridgeless PFC circuit to turn off according to the first voltage to ground includes: corresponding to the first voltage to ground being greater than or equal to the first preset threshold, controlling the switch in the totem bridgeless PFC circuit.
  • the switch tube is turned off, and the first pair-to-ground voltage is the sum of the first output terminal voltage and the conduction voltage drop of the first component; corresponding to the first pair-to-ground voltage being less than or equal to the second preset threshold, the control totem has no bridge.
  • the switch tube in the PFC circuit is turned off, and the voltage between the first and ground is the conduction voltage drop of the second component.
  • the surge protection method further includes: dividing the voltage at the first input terminal of the totem bridgeless PFC circuit.
  • the surge protection circuit further includes a neutral terminal and a ground terminal, and a third component and a fourth component; the third component is coupled between the neutral terminal and the first output terminal of the totem bridgeless PFC circuit , the fourth element is coupled between the neutral terminal and the second output terminal of the totem bridgeless PFC circuit.
  • the totem bridgeless PFC circuit is a three-phase totem bridgeless PFC circuit; the three-phase totem bridgeless PFC circuit also includes a second power input terminal and a third power input terminal, and the surge protection circuit further includes a fifth component , the sixth element, the seventh element and the eighth element; the fifth element is coupled between the second power input terminal and the first output terminal of the totem bridgeless PFC circuit, and the sixth element is coupled between the second power input terminal and the totem bridgeless PFC circuit.
  • the seventh element is coupled between the third power input terminal and the first output terminal of the totem bridgeless PFC circuit
  • the eighth element is coupled between the third power input terminal and the totem bridgeless PFC circuit between the second output terminals of the circuit.
  • the surge protection method further includes: detecting the second ground voltage between the second power input terminal and the second output terminal of the totem bridgeless PFC circuit; and controlling the totem bridgeless according to the second ground voltage.
  • the switch tube in the PFC circuit is turned off.
  • the surge protection method further includes: detecting the connection between the third power input terminal and the totem bridgeless PFC circuit.
  • the third pair of ground voltages between the second output terminals; the switching tube in the totem bridgeless PFC circuit is controlled to turn off according to the third pair of ground voltages.
  • embodiments of the present disclosure provide a computer-readable storage medium. Instructions are stored in the computer-readable storage medium. When the instructions in the computer-readable storage medium are executed by the processor of the electronic device, the electronic device is caused to perform any of the above aspects and the surge protection method in any possible implementation. .
  • Figure 1 is a totem bridgeless PFC circuit diagram according to some embodiments.
  • Figure 2 is a surge voltage spike diagram according to some embodiments.
  • Figure 3 is a schematic diagram of a single-phase surge protection circuit according to some embodiments.
  • Figure 4 is a schematic diagram of another single-phase surge protection circuit according to some embodiments.
  • Figure 5 is a schematic diagram of yet another single-phase surge protection circuit according to some embodiments.
  • FIG6 is a schematic diagram of a circuit for implementing surge protection in hardware according to some embodiments.
  • Figure 7 is a schematic diagram of a circuit for implementing surge protection in software according to some embodiments.
  • Figure 8 is a surge protection circuit diagram of a three-phase totem bridgeless PFC circuit according to some embodiments.
  • Figure 9 is a surge protection circuit diagram of another three-phase totem bridgeless PFC circuit according to some embodiments.
  • Figure 10 is a schematic diagram of steps of a surge protection method according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this embodiment, unless otherwise specified, “plurality” means two or more.
  • references to the terms “including” and “having” and any variations thereof in the description of the present disclosure are intended to cover non-exclusive inclusion.
  • a process, method, system, product or device that includes a series of steps or units is not limited to the listed steps or units, but optionally also includes other unlisted steps or units, or optionally also Includes other steps or units that are inherent to such processes, methods, products, or devices.
  • FIG. 1 shows a totem bridgeless PFC circuit.
  • the totem bridgeless PFC circuit includes switches S1 to S4, PFC capacitors, live wire L, neutral wire N, output terminal PFCOUT (first output terminal), and grounded output terminal (second output terminal).
  • the switch transistors S1-S4 can be any fully controlled switch transistors, used to control the on-off of the current in the totem bridgeless PFC circuit, and the PFC capacitor is used to absorb the energy in the switching circuit.
  • PFC circuit surge protection technology one solution is to add diodes between the AC L line, N line and the PFC capacitor to discharge energy.
  • the disadvantage of this method is that when the energy rushes to the PFC capacitor quickly, , the PFC capacitor cannot absorb energy quickly and will still have an impact on the totem bridgeless PFC circuit.
  • Another solution is to optimize on this basis and add a current limiting device between the AC L line and the positive electrode of the PFC capacitor to limit the impact of instantaneous energy to protect the totem bridgeless PFC circuit.
  • this solution cannot protect the switching tube when the surge voltage causes the input voltage to reverse.
  • the third solution is to protect the totem bridgeless PFC circuit by detecting the input voltage between the AC L line and N line in Figure 1.
  • a fast flip signal can be generated through the comparator in the detection circuit outside the totem bridgeless PFC circuit, thereby turning off the switch tube.
  • the circuit's action delay is too large and it may not be able to turn off the switch tube in time, causing the current flowing through the switch tube to far exceed the safe working area.
  • the totem bridgeless PFC circuit has a great risk of damage.
  • the surge protection circuit provided by the embodiments of the present disclosure can be used in power supply equipment of various electronic equipment, and can greatly reduce the risk of damage to the switching circuit in the power supply equipment caused by surges generated when the electronic equipment is struck by lightning.
  • conductive elements are added between the power input terminal of the switching circuit and the two output terminals of the totem bridgeless PFC circuit, and the power input terminal is detected by a voltage detection circuit. voltage to ground.
  • the switch tube in the Totem bridgeless PFC circuit can be turned off through the control circuit to quickly and effectively implement surge protection and avoid damage to the power supply equipment.
  • the surge protection circuit of the embodiment of the present disclosure is introduced below.
  • FIG. 3 is a schematic diagram of a surge protection circuit provided by the present disclosure.
  • the surge protection circuit 30 includes a first power input terminal L1, a totem bridgeless PFC circuit, a first component 301, a second component 302, a first voltage detection circuit 303 and a control circuit 304.
  • the totem bridgeless PFC circuit includes a first output terminal PFCOUT and a grounded second output terminal A.
  • the first component 301 is coupled between the first power input terminal L1 and the first output terminal PFCOUT of the totem bridgeless PFC circuit.
  • the second component 302 is coupled between the first power input terminal L1 and the second output terminal A.
  • the first voltage detection circuit 303 is used to detect the first ground voltage between the first power input terminal L1 and the second output terminal A of the totem bridgeless PFC circuit, and send the first ground voltage to the control circuit 304 .
  • the control circuit 304 is used to control the switching tube in the totem bridgeless PFC circuit to turn off according to the first voltage to ground.
  • the first terminal B1 (for example, the input terminal B1) of the first voltage detection circuit 303 is coupled to the first power input terminal L1, and the second terminal C1 (for example, the first output terminal C1) of the first voltage detection circuit 303 is connected to the totem.
  • the second output terminal A of the bridge PFC circuit is coupled, and the third terminal D1 (eg, the second output terminal D1) of the first voltage detection circuit 303 is coupled with the first terminal M1 (eg, the first input terminal M1) of the control circuit.
  • the surge protection circuit 30 also includes a third component 305 and a fourth component 306.
  • the third component 305 is coupled between the neutral terminal N and the first output terminal PFCOUT of the totem bridgeless PFC circuit.
  • Four elements 306 are coupled between the neutral terminal N and the second output terminal A of the totem bridgeless PFC circuit.
  • the third component 305 and the fourth component 306 here are used to form a current loop between the first power input terminal L1 and the neutral terminal N.
  • the current loop is: the first power input terminal L1 ⁇ the first component 301 ⁇ the first output terminal PFCOUT of the totem bridgeless PFC circuit ⁇ the capacitor (the two output terminals of the totem bridgeless PFC circuit The capacitance between) ⁇ the second output terminal A of the totem bridgeless PFC circuit ⁇ the fourth component 306 ⁇ the neutral terminal N.
  • the current loop is: neutral terminal N ⁇ third component 305 ⁇ first output terminal PFCOUT of the totem bridgeless PFC circuit ⁇ capacitor (the capacitance between the two output terminals of the totem bridgeless PFC circuit ) ⁇ the second output terminal A of the totem bridgeless PFC circuit ⁇ the second component 302 ⁇ the first power input terminal L1.
  • the first power input terminal L1 is the live terminal L.
  • the first voltage to ground of the first power input terminal L1 is equal to the input voltage of the first power input terminal L1 during the positive half cycle of the power frequency, and the first voltage of the first power input terminal L1 The voltage to ground is equal to the sum of the voltages of the first output terminal PFCOUT of the totem bridgeless PFC circuit and the first power input terminal L1 during the negative half cycle of the power frequency.
  • the positive half cycle of power frequency can be understood as the positive half cycle of power frequency alternating current.
  • the negative half cycle of power frequency can be understood as the negative half cycle of power frequency alternating current.
  • the energy of the forward surge will cause the first element 301 to be turned on.
  • the first voltage to ground of the first power input terminal L1 is the first output terminal PFCOUT of the totem bridgeless PFC circuit.
  • the energy of the negative surge will cause the second element 302 to turn on, and the first voltage to ground at the first power input terminal L1 is the turn-on voltage drop of the second element 302 .
  • the first voltage detection circuit 303 can detect the first voltage to ground and transmit the first voltage to ground to the control circuit 304 .
  • the control circuit 304 determines that a positive surge or a negative surge occurs based on the first voltage to ground, the switch tube in the totem bridgeless PFC circuit can be turned off.
  • This embodiment of the present disclosure controls the driving signal of the switch tube in the totem bridgeless PFC circuit by detecting the change in the ground voltage caused by the surge current. Once the control circuit 304 determines that a surge occurs, the totem can be turned off in time. For switching tubes in bridgeless PFC circuits, compared with problems such as insufficient protection capabilities and untimely protective actions of surge protection circuits in some technologies, the surge protection circuit in the embodiment of the present disclosure has a smaller action delay and can be quickly and effectively Provide surge protection.
  • the first voltage detection circuit 303 can detect the first component 301 and the second component 302 .
  • the totem bridgeless PFC circuit shown in Figure 3 is a single-phase totem bridgeless PFC circuit.
  • the totem bridgeless PFC circuit can also be a three-phase totem bridgeless PFC circuit. The description of the three-phase totem bridgeless PFC circuit will be introduced later.
  • first element 301 and second element 302 are diodes.
  • third element 305 and the fourth element 306 are also diodes.
  • the first component 301 and the second component 302 are rectifier bridges.
  • the third component 305 and the fourth component 306 are also rectifier bridges.
  • the rectifier bridge and the diode have similar functions, and are used to form a conduction voltage drop between the first power input terminal L1 of the totem bridgeless PFC circuit and the first output terminal PFCOUT of the totem bridgeless PFC circuit.
  • the surge protection circuit 30 shown in FIG. 3 may also be the surge protection circuit 40 shown in FIG. 4 .
  • the first component 301 is a diode D1
  • the second component 302 is a diode D2
  • the third component 305 is a diode D3
  • the fourth component 306 is a diode D4.
  • the first terminal a of the diode D1 is coupled to the first terminal B1 of the first voltage detection circuit 303 and the first terminal c of the diode D2, and the second terminal b of the diode D1 is coupled to the first output terminal PFCOUT of the totem bridgeless PFC circuit,
  • the second terminal d of the diode D2 is coupled to the second output terminal A of the totem bridgeless PFC circuit.
  • the first terminal e of diode D3 is coupled to the neutral terminal N and the first terminal g of diode D4, the second terminal f of diode D3 is coupled to the first output terminal PFCOUT of the totem bridgeless PFC circuit, and the second terminal h of diode D4 Coupled with the second output terminal A of the Totem bridgeless PFC circuit.
  • the first terminal a of the diode D1, the second terminal d of the diode D2, the first terminal e of the diode D3 and the second terminal h of the diode D4 can be understood as the anodes of the diodes.
  • the second terminal b of the diode D1, the first terminal c of the diode D2, the second terminal f of the diode D3 and the first terminal g of the diode D4 can be understood as cathodes of the diodes.
  • the totem bridgeless PFC circuit in the present disclosure may be a single-channel PFC as shown in Figure 3 or Figure 4, that is, the totem bridgeless PFC circuit is coupled to the first power input terminal L1.
  • the totem bridgeless PFC circuit is a single-channel PFC
  • the totem bridgeless PFC circuit can be a single-phase totem bridgeless PFC circuit.
  • the totem bridgeless PFC circuit in the present disclosure may also be a multi-channel interleaved PFC.
  • the totem bridgeless PFC circuit can be a three-phase totem bridgeless PFC circuit. The implementation method when the surge protection circuit of the present disclosure is applied to a three-phase totem bridgeless PFC circuit will be described later.
  • control circuit 304 is used to:
  • the first voltage to ground is compared with the first preset threshold, and if the first voltage to ground is greater than or equal to the first preset threshold, the switch tube in the totem bridgeless PFC circuit is controlled to turn off.
  • the surge is a forward surge, the first component 301 is turned on, and the first voltage to ground is the sum of the first output terminal voltage PFCOUT and the turn-on voltage drop of the first component 301; or,
  • the first voltage to ground is compared with the second preset threshold, and if the first voltage to ground is less than or equal to the second preset threshold, the switch tube in the totem bridgeless PFC circuit is controlled to turn off.
  • the surge is a negative surge, the second element 302 is turned on, and the first voltage to ground is the turn-on voltage drop of the second element 302 .
  • the first preset threshold is greater than the second preset threshold.
  • the diode D1 when a forward surge occurs, the diode D1 is turned on. Assuming that the conduction voltage drop of diode D1 is 0.7V, the first voltage to ground detected by the first voltage detection circuit 303 is the sum of the first output terminal voltage PFCOUT of the totem bridgeless PFC circuit and 0.7V. If the control circuit 304 determines that the first voltage to ground (PFCOUT plus 0.7V) is greater than or equal to the first preset threshold, the switch tube in the totem bridgeless PFC circuit can be controlled to turn off.
  • diode D2 When a negative surge occurs, diode D2 is turned on, and the first voltage to ground detected by the first voltage detection circuit 303 is -0.7V. If the control circuit 304 determines that -0.7V is less than or equal to the second preset threshold, the switch tube in the totem bridgeless PFC circuit can be controlled to turn off.
  • the anode of the capacitor is coupled to the first output terminal PFCOUT of the totem bridgeless PFC circuit, and the cathode of the capacitor is coupled to the totem bridgeless PFC circuit.
  • the second output terminal A is coupled.
  • the negative electrode of the capacitor and the ground level port of the totem bridgeless PFC circuit are both coupled to the second output terminal A of the totem bridgeless PFC circuit.
  • the surge protection circuit 50 further includes a first current limiting device 501 coupled between the first power input terminal L1 and the first voltage detection circuit 303 . between terminals B1.
  • the first current limiting device 501 is used to divide the voltage of the first power input terminal L1.
  • the first current limiting device 501 is used to withstand part of the surge voltage, which can prevent the current of the first output terminal PFCOUT of the totem bridgeless PFC circuit from overshooting from being too high.
  • the first current limiting device 501 may be a thermistor, a varistor, a constant resistor, an inductor or a transient diode (Transient Voltage Suppressor, TVS).
  • the first voltage detection circuit 303 is usually implemented using a resistor voltage dividing circuit or an operational amplifier sampling circuit. Of course, it can also be implemented using other circuits, which is not limited by this disclosure.
  • control circuit 304 can control the switch tube drive in the single-phase totem bridgeless PFC circuit through hardware or software to turn off the switch tube in the single-phase totem bridgeless PFC circuit when surge protection is required.
  • the first voltage detection circuit 303 inputs the detected first voltage value to ground into two hardware comparators with different thresholds. When a positive surge or negative surge comes, the comparator will generate a flip signal, and the flip signal is combined with the drive signal from the Dynamic Stability Control (DSC) system to drive the switch tube. Realize the protective effect of surge switch drive.
  • DSC Dynamic Stability Control
  • FIG. 6 is a circuit schematic diagram of a control circuit 304 implemented in hardware.
  • the control circuit 304 includes a comparator circuit 3041 and an AND gate circuit 3042.
  • the input terminal M1 of the comparator circuit 3041 is coupled to the third terminal D1 of the first voltage detection circuit 303.
  • the output terminal N of the AND gate circuit 3041 is coupled to the first input terminal E of the AND gate circuit 3042.
  • the second input terminal F of the AND gate circuit 3042 is used to receive a driving signal, and the output terminal G of the AND gate circuit 3042 is used to output a driving signal to the totem bridgeless PFC circuit to drive the switch tube in the totem bridgeless PFC circuit to turn off. .
  • the comparator circuit 3041 stores the above-mentioned first preset threshold and second preset threshold.
  • the first flip signal is output to the AND gate circuit 3042 .
  • the AND gate circuit 3042 ANDs the first flip signal with the signal sent by the DSC chip 601, and outputs the driving signal pulse width modulation (Pulse Width Modulation1, PWM1) through the output terminal G.
  • the drive signal PWM1 can be understood as high level/low level, and is used to control the switch tube turn off in the totem bridgeless PFC circuit.
  • the comparator circuit 3041 determines that the first voltage to ground is less than or equal to the second preset threshold, it outputs a second flip signal to the AND gate circuit 3042 .
  • the AND gate circuit 3042 ANDs the second flip signal with the signal sent by the DSC chip 601, and outputs the driving signal PWM1 through the output terminal G.
  • the drive signal PWM1 can be understood as high level/low level, and is used to control the switch tube turn off in the totem bridgeless PFC circuit.
  • the signal sent by the DSC chip can be a high-level/low-level square wave signal.
  • the following is an example of the surge protection circuit 60 shown in FIG. 6 .
  • the voltage of the first output terminal PFCOUT of the totem bridgeless PFC circuit is 400V when there is no surge
  • the first preset threshold in the comparator circuit 3041 is 450V
  • the second preset threshold is 50V.
  • the first voltage to ground of the first power input terminal L1 detected by the first voltage detection circuit 303 is greater than or equal to the first preset threshold, that is, when the first voltage to ground is greater than or equal to 450V, a positive voltage occurs at this time.
  • the voltage of the first output terminal PFCOUT of the totem bridgeless PFC circuit will be rushed to 500V or even higher, and at this time, the diode D1 is turned on. Assuming that the conduction voltage drop of diode D1 is 0.7V, the first voltage to ground is 500.7V, which is greater than the first preset threshold of 450V.
  • First voltage check The detection circuit 303 inputs the detected first voltage to ground 500.7V to the comparator circuit 3041.
  • the comparator circuit 3041 generates a high/low level square wave signal and outputs it to the AND gate circuit 3042 .
  • the AND gate circuit 3042 ANDs the square wave signal output by the comparator circuit 3041 and the driving signal sent by the DSC chip 601 to generate a driving signal PWM1, thereby controlling the switching tube in the totem bridgeless PFC circuit to turn off.
  • the first voltage to ground of the first power input terminal L1 detected by the first voltage detection circuit 303 is less than or equal to the second preset threshold, that is, when the first voltage to ground is less than or equal to 50V, a negative voltage occurs at this time. surge, diode D2 conducts. Assuming that the conduction voltage drop of diode D2 is -0.7V, the first voltage to ground is -0.7V, which is lower than the second preset threshold of 50V.
  • the first voltage detection circuit 303 inputs the detected first voltage to ground -0.7V into the comparator circuit 3041.
  • the comparator circuit 3041 generates a high-level/low-level square wave signal and outputs it to the AND gate circuit 3042.
  • the AND gate circuit 3042 ANDs the square wave signal output by the comparator circuit 3041 and the driving signal sent by the DSC chip 601 to generate a driving signal PWM1, thereby controlling the switching tube in the totem bridgeless PFC circuit to turn off.
  • FIG. 7 is a circuit schematic diagram of a control circuit 304 implemented in software.
  • the control circuit 304 includes a DSC chip 701.
  • the DSC chip 701 is used to generate a flip signal according to the first pair of ground voltages.
  • the flip signal is used to cooperate with the software program to control the totem bridgeless PFC circuit.
  • the switch tube is turned off.
  • the first voltage detection circuit 303 outputs the first voltage to ground to the DSC chip 701, and the comparator inside the DSC chip 701 can compare the first voltage to ground with the first preset threshold and the second preset threshold respectively. , when it is determined that surge protection is required, a flip signal is generated, and the switch tube in the totem bridgeless PFC circuit is controlled through software to turn off.
  • the switch tube is turned off through an interrupt or timer (Time Meter, TIM) within the software.
  • an interrupt or timer Time Meter, TIM
  • the first voltage detection circuit 303 inputs the detected first ground voltage 500.7V to the DSC chip 701 .
  • the DSC chip 701 determines that the first ground-to-ground voltage 500.7V is greater than the first preset threshold 450V, it generates a flip signal and controls the turn-off of the switch tube in the totem bridgeless PFC circuit through an interrupt or TIM within the software.
  • the first voltage detection circuit 303 inputs the detected first voltage to ground -0.7V to the DSC chip 701 .
  • the DSC chip 701 determines that the first to ground voltage -0.7V is less than the second preset threshold of 50V, it generates a flip signal and controls the turn-off of the switch tube in the totem bridgeless PFC circuit through an interrupt or TIM within the software.
  • the voltage of the first power input terminal L1 can be divided by the first current limiting device 501, which improves the ability of the capacitor to fail when energy rushes to the PFC capacitor quickly. It’s a matter of absorbing that energy quickly.
  • the diodes D1 and D2 are turned on, the voltage of the first power input terminal L1 to ground will change.
  • the control circuit 304 can compare the detected voltage with the saved preset voltage. The threshold value is set for phase AND, thereby outputting a driving signal and controlling the switch tube to turn off, which improves the problem that the protective circuit has a large action delay and cannot turn off the switch tube in time.
  • the totem bridgeless PFC circuit in the surge protection circuit provided by the embodiment of the present disclosure is a single-phase totem bridgeless PFC circuit
  • the totem bridgeless PFC circuit can have a circuit structure as shown in Figure 1; of course, The totem bridgeless PFC circuit can also have other circuit structures, which is not limited by this disclosure.
  • the totem bridgeless PFC circuit may be a three-phase totem bridgeless PFC circuit, for example, as shown in FIG. 8 .
  • Figure 8 shows a surge protection circuit 80 based on a three-phase totem bridgeless PFC circuit.
  • the surge protection circuit 80 also includes a second power input terminal L2, a third power input terminal L3, a fifth element 801, a sixth element 802, a seventh element 803 and eighth element 804.
  • the fifth component 801 is coupled between the second power input terminal L2 and the first output terminal PFCOUT of the totem bridgeless PFC circuit
  • the sixth component 802 is coupled between the second power input terminal L2 and the second output terminal of the totem bridgeless PFC circuit. between A.
  • the seventh component 803 is coupled between the third power input terminal L3 and the first output terminal PFCOUT of the totem bridgeless PFC circuit, and the eighth component 804 is coupled between the third power input terminal L3 and the second output terminal of the totem bridgeless PFC circuit. between A.
  • the surge protection circuit 80 also includes a second voltage detection circuit 805 and a third voltage detection circuit 806 .
  • the first terminal B2 (for example, the input terminal B2) of the second voltage detection circuit 805 is coupled to the second power input terminal L2, and the second terminal C2 (for example, the first output terminal C2) of the second voltage detection circuit 805 is connected to the totem.
  • the second output terminal A of the bridge PFC circuit is coupled, and the third terminal D2 (for example, the second output terminal D2) of the second voltage detection circuit 805 is coupled with the second terminal M2 (for example, the second input terminal M2) of the control circuit 304. .
  • the first terminal B3 (for example, the input terminal B3) of the third voltage detection circuit 806 is coupled to the third power input terminal L3, and the second terminal C3 (for example, the first output terminal C3) of the third voltage detection circuit 806 is connected to the totem.
  • the second output terminal A of the bridge PFC circuit is coupled, and the third terminal D3 (for example, the second output terminal D3) of the third voltage detection circuit 806 is coupled with the third terminal M3 (for example, the third input terminal M3) of the control circuit 304. .
  • the second voltage detection circuit 805 is used to detect the second ground voltage between the second power input terminal L2 and the second output terminal A of the totem bridgeless PFC circuit, and The second voltage to ground is sent to control circuit 304 .
  • the control circuit 304 is also used to control the switching tube in the totem bridgeless PFC circuit to turn off according to the second voltage to ground.
  • control circuit 304 can be used for:
  • the second voltage to ground is compared with the first preset threshold. If the second voltage to ground is greater than or equal to the first preset threshold, the switch tube in the totem bridgeless PFC circuit is controlled to turn off.
  • the surge is a forward surge, the fifth element 801 is turned on, and the second ground voltage is the sum of the voltage at the first output terminal PFCOUT of the totem bridgeless PFC circuit and the conduction voltage drop of the fifth element 801; or,
  • the second voltage to ground is compared with the second preset threshold. If the second voltage to ground is less than or equal to the second preset threshold, the switch tube in the totem bridgeless PFC circuit is controlled to turn off.
  • the surge is a negative surge, the sixth element 802 is turned on, and the second voltage to ground is the turn-on voltage drop of the sixth element 802 .
  • the control circuit 304 controls the switch tube in the totem bridgeless PFC circuit to turn off according to the second voltage to ground. You can refer to the above description of the control circuit 304 controlling the switch tube in the totem bridgeless PFC circuit to turn off according to the first voltage to ground. way of implementation.
  • the third voltage detection circuit 806 is used to detect the third pair of ground between the third power input terminal L3 and the second output terminal A of the totem bridgeless PFC circuit. voltage, sending the third voltage to ground to the control circuit 304 .
  • the control circuit 304 is also used to control the switch tube in the totem bridgeless PFC circuit to turn off according to the third ground voltage.
  • control circuit 304 can be used for:
  • the third pair-to-ground voltage is compared with the first preset threshold. If the third pair-to-ground voltage is greater than or equal to the first preset threshold, the switch tube in the totem bridgeless PFC circuit is controlled to turn off.
  • the surge is a forward surge, the seventh element 803 is turned on, and the third pair-to-ground voltage is the sum of the conduction voltage drops of the first output terminal PFCOUT of the totem bridgeless PFC circuit and the seventh element 803; or,
  • the third pair-to-ground voltage is compared with the second preset threshold. If the third pair-to-ground voltage is less than or equal to the second preset threshold, the switch tube in the totem bridgeless PFC circuit is controlled to turn off.
  • the surge is a negative surge, the eighth element 804 is turned on, and the third voltage to ground is the turn-on voltage drop of the eighth element 804 .
  • control circuit 304 controlling the switch tube in the totem bridgeless PFC circuit to turn off according to the third ground voltage
  • the surge protection circuit 90 includes a second current limiting device 901 and a third current limiting device 902 .
  • the fifth element 801, the sixth element 802, the seventh element 803 and the eighth element 804 in Figure 8 are all shown as diodes in Figure 9 .
  • the fifth element 801 is shown as a diode D5
  • the sixth element 802 is shown as a diode D6
  • the seventh element 803 is shown as a diode D7
  • the eighth element 804 is shown as a diode D8.
  • the second current limiting device 901 is coupled between the second power input terminal L2 and the first terminal B2 of the second voltage detection circuit 805 .
  • the second current limiting device 901 is used to divide the voltage of the second power input terminal L2.
  • the second current limiting device 901 is used to withstand part of the surge voltage, which can prevent the current of the first output terminal PFCOUT of the totem bridgeless PFC circuit from overshooting from being too high.
  • the third current limiting device 902 is coupled between the third power input terminal L3 and the first terminal B3 of the third voltage detection circuit 806 .
  • the third current limiting device 902 is used to divide the voltage of the third power input terminal L3.
  • the third current limiting device 902 is used to withstand part of the surge voltage, which can prevent the current of the first output terminal PFCOUT of the totem bridgeless PFC circuit from overshooting from being too high.
  • the second current limiting device 901 and the third current limiting device 902 may adopt devices such as thermistors, varistors, constant resistors, inductors or TVS.
  • the technical solution provided by the embodiments of the present disclosure is not only suitable for surge protection of single-phase totem bridgeless PFC circuits, but is also applicable to surge protection of three-phase totem bridgeless PFC circuits.
  • FIG. 10 is a schematic diagram of the steps of a surge protection method provided by an embodiment of the present disclosure, which includes the following steps.
  • Step 101 The electronic device detects the first ground voltage between the first power input terminal L1 and the second output terminal A of the totem bridgeless PFC circuit.
  • Step 102 The electronic device controls the switching tube in the totem bridgeless PFC circuit to turn off according to the first pair of ground voltages.
  • the electronic device may include any surge protection circuit corresponding to Figures 3 to 7.
  • the electronic device may be a communication device.
  • step 101 can be performed by the above-mentioned first voltage detection circuit 303.
  • first voltage detection circuit 303 please refer to the above description of the first voltage detection circuit 303.
  • step 102 can be performed by the above-mentioned control circuit 304.
  • control circuit 304 For detailed implementation, please refer to the above description of the control circuit 304.
  • the surge protection method of the embodiment of the present disclosure may also include the following steps.
  • Step 1) The electronic device detects the third voltage between the second power input terminal L2 and the second output terminal A of the totem bridgeless PFC circuit. Two to ground voltage.
  • step 1) can be performed by the above-mentioned second voltage detection circuit 805.
  • Step 2) The electronic device controls the switching tube in the totem bridgeless PFC circuit to turn off according to the second ground voltage.
  • step 2) can be performed by the above-mentioned control circuit 304.
  • control circuit 304 For detailed implementation, please refer to the above description of the control circuit 304.
  • step 3 the electronic device detects the third ground voltage between the third power input terminal L3 and the second output terminal A of the totem bridgeless PFC circuit.
  • step 3 can be performed by the above-mentioned third voltage detection circuit 806.
  • the third voltage detection circuit 806 please refer to the above description of the third voltage detection circuit 806.
  • Step 4) The electronic device controls the switching tube in the totem bridgeless PFC circuit to turn off according to the third ground voltage.
  • step 4 can be performed by the above control circuit 304.
  • control circuit 304 For detailed implementation, please refer to the above description of the control circuit 304.
  • the electronic device turns off the switching tube through the control circuit based on the detected voltage to ground between one or more power input terminals and the second output terminal A of the totem bridgeless PFC circuit, thereby improving the existing surge.
  • Some embodiments of the present disclosure provide a computer-readable storage medium (for example, a non-transitory computer-readable storage medium).
  • the computer-readable storage medium stores computer program instructions.
  • the computer-readable storage medium may include, but is not limited to: magnetic storage devices (such as hard disks, floppy disks or magnetic tapes, etc.), optical disks (such as compact disks (Compact Disk, CD), Digital Versatile Disk, DVD), etc.), smart cards and flash memory devices (e.g., Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drives, etc.).
  • the various computer-readable storage media described in this disclosure may represent one or more devices and/or other machine-readable storage media for storing information.
  • the term "machine-readable storage medium" may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

一种浪涌防护方法及电路(30)。电路(30)包括:第一电源输入端(L1)、图腾无桥PFC电路、第一元件(301)、第二元件(302)、第一电压检测电路(303)和控制电路(304),图腾无桥PFC电路包括第一输出端(PFCOUT)和接地的第二输出端(A),第一元件(301)耦合在第一电源输入端(L1)和第一输出端(PFCOUT)间,第二元件(302)耦合在第一电源输入端(L1)和第二输出端(A)间,第一电压检测电路(303)用于检测第一电源输入端(L1)与图腾无桥PFC电路的第二输出端(A)间的第一对地电压,将第一对地电压发送给控制电路(304);控制电路(304)用于根据第一对地电压控制图腾无桥PFC电路中的开关管关断。

Description

浪涌防护方法及电路
本公开要求于2022年09月13日提交的、申请号为202211110070.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及电路技术领域,尤其涉及一种浪涌防护方法及电路。
背景技术
电源设备是构成电子设备的重要组成部分,电子设备的电源设备发生故障时,电源设备会受到破坏而无法供电,导致电子设备瘫痪。当电子设备用于通信时,如果电源设备受到雷击浪涌等不可控的自然现象破坏时,电源设备中的开关电源电路的电流强度可能会远超安全范围,存在很大损坏风险,进而导致通信中断。
发明内容
第一方面,本公开实施例提供一种浪涌防护电路。该电路包括:图腾无桥功率因数校正PFC电路、第一元件、第二元件、第一电压检测电路和控制电路;图腾无桥PFC电路包括第一电源输入端、第一输出端和接地的第二输出端;第一元件耦合在第一电源输入端和第一输出端之间,第二元件耦合在第一电源输入端和第二输出端之间;第一电压检测电路用于检测第一电源输入端与图腾无桥PFC电路的第二输出端之间的第一对地电压,将第一对地电压发送给控制电路;控制电路用于根据第一对地电压控制图腾无桥PFC电路中的开关管关断。
在一些实施例中,第一元件和第二元件为二极管;或,第一元件和第二元件为整流桥。
在一些实施例中,第一电压检测电路的输入端与第一电源输入端耦合,第一电压检测电路的第一输出端与图腾无桥PFC电路的第二输出端耦合,第一电压检测电路的第二输出端与控制电路的第一输入端耦合。
在一些实施例中,该浪涌防护电路还包括控制电路,控制电路用于:与第一对地电压大于或等于第一预设阈值相应的,控制图腾无桥PFC电路中的开关管关断,第一对地电压为第一输出端电压和第一元件的导通压降之和;与第一对地电压小于或等于第二预设阈值相应的,控制图腾无桥PFC电路中的开关管关断,第一对地电压为第二元件的导通压降。
在一些实施例中,该浪涌防护电路还包括第一限流装置,第一限流装置耦合在第一电源输入端和第一电压检测电路的第一端之间;第一限流装置用于对第一电源输入端的电压进行分压。
在一些实施例中,该浪涌防护电路还包括零线端和地线端、以及第三元件和第四元件;第三元件耦合在零线端和图腾无桥PFC电路的第一输出端之间,第四元件耦合在零线端和图腾无桥PFC电路的第二输出端之间。
在一些实施例中,图腾无桥PFC电路为三相图腾无桥PFC电路;三相图腾无桥PFC电还包括第二电源输入端和第三电源输入端,浪涌防护电路还包括第五元件、第六元件、第七元件和第八元件;第五元件耦合在第二电源输入端和图腾无桥PFC电路的第一输出端之间,第六元件耦合在第二电源输入端和图腾无桥PFC电路的第二输出端之间;第七元件耦合在第三电源输入端和图腾无桥PFC电路的第一输出端之间,第八元件耦合在第三电源输入端和图腾无桥PFC电路的第二输出端之间。
在一些实施例中,该浪涌防护电路还包括:第二电压检测电路和第三电压检测电路;第二 电压检测电路的输入端与第二电源输入端耦合,第二电压检测电路的第一输出端与图腾无桥PFC电路的第二输出端耦合,第二电压检测电路的第二输出端与控制电路的第二输入端耦合;第三电压检测电路的输入端与第三电源输入端耦合,第三电压检测电路的第一输出端与图腾无桥PFC电路的第二输出端耦合,第三电压检测电路的第二输出端与控制电路的第三输入端耦合。
在一些实施例中,控制电路包括比较器电路和与门电路,比较器电路的输入端与第一电压检测电路的第二输出端耦合,比较器电路的输出端与与门电路的第一输入端耦合;比较器电路用于对第一对地电压和预设的电压阈值进行比较,输出翻转信号至与门电路的第一输入端;与门电路的第二输入端用于接收驱动信号,与门电路的输出端用于向图腾无桥PFC电路输出驱动信号,以驱动图腾无桥PFC电路中的开关管的关断。
在一些实施例中,控制电路包括数字信号控制器DSC,数字信号控制器DSC用于根据第一对地电压产生翻转信号,翻转信号用于配合软件程序控制图腾无桥PFC电路中的开关管的关断。
第二方面,本公开实施例提供一种浪涌防护方法,该方法应用于浪涌防护电路。浪涌防护电路包括图腾无桥功率因数校正PFC电路、第一元件、第二元件、第一电压检测电路和控制电路;图腾无桥PFC电路包括第一电源输入端、第一输出端和接地的第二输出端;第一元件耦合在第一电源输入端和第一输出端之间,第二元件耦合在第一电源输入端和第二输出端之间;所述方法包括:检测第一电源输入端与图腾无桥PFC电路的第二输出端之间的第一对地电压;根据第一对地电压控制图腾无桥PFC电路中的开关管关断。
在一些实施例中,第一元件和第二元件为二极管;或,第一元件和第二元件为整流桥。
在一些实施例中,根据第一对地电压控制图腾无桥PFC电路中的开关管关断包括:与第一对地电压大于或等于第一预设阈值相应的,控制图腾无桥PFC电路中的开关管关断,第一对地电压为第一输出端电压和第一元件的导通压降之和;与第一对地电压小于或等于第二预设阈值相应的,控制图腾无桥PFC电路中的开关管关断,第一对地电压为第二元件的导通压降。
在一些实施例中,该浪涌防护方法还包括:对图腾无桥PFC电路的第一输入端的电压进行分压。
在一些实施例中,浪涌防护电路还包括零线端和地线端、以及第三元件和第四元件;第三元件耦合在零线端和图腾无桥PFC电路的第一输出端之间,第四元件耦合在零线端和图腾无桥PFC电路的第二输出端之间。
在一些实施例中,图腾无桥PFC电路为三相图腾无桥PFC电路;三相图腾无桥PFC电路还包括第二电源输入端和第三电源输入端,浪涌防护电路还包括第五元件、第六元件、第七元件和第八元件;第五元件耦合在第二电源输入端和图腾无桥PFC电路的第一输出端之间,第六元件耦合在第二电源输入端和图腾无桥PFC电路的第二输出端之间;第七元件耦合在第三电源输入端和图腾无桥PFC电路的第一输出端之间,第八元件耦合在第三电源输入端和图腾无桥PFC电路的第二输出端之间。
在一些实施例中,该浪涌防护方法还包括:检测第二电源输入端与图腾无桥PFC电路的第二输出端之间的第二对地电压;根据第二对地电压控制图腾无桥PFC电路中的开关管关断。
在一些实施例中,该浪涌防护方法还包括:检测第三电源输入端与图腾无桥PFC电路的 第二输出端之间的第三对地电压;根据第三对地电压控制图腾无桥PFC电路中的开关管关断。
第三方面,本公开实施例提供一种计算机可读存储介质。计算机可读存储介质中存储有指令,当计算机可读存储介质中的指令由电子设备的处理器执行时,使得电子设备执行上述任一方面及任一项可能的实现方式中的浪涌防护方法。
附图说明
图1为根据一些实施例的一种图腾无桥PFC电路图;
图2为根据一些实施例的一种浪涌电压尖峰图;
图3为根据一些实施例的一种单相浪涌防护电路示意图;
图4为根据一些实施例的另一种单相浪涌防护电路示意图;
图5为根据一些实施例的又一种单相浪涌防护电路示意图;
图6为根据一些实施例的一种用硬件方式实现浪涌防护的电路示意图;
图7为根据一些实施例的一种用软件方式实现浪涌防护的电路示意图;
图8为根据一些实施例的一种三相图腾无桥PFC电路的浪涌防护电路图;
图9为根据一些实施例的另一种三相图腾无桥PFC电路的浪涌防护电路图;
图10为根据一些实施例的一种浪涌防护方法的步骤示意图。
具体实施方式
为使本领域的技术人员更好地理解本公开实施例的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行描述。在本公开实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:仅A,仅B,以及A和B。另外,在本公开实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本公开的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,本公开实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性地”或者“例如”等词旨在以详细方式呈现相关概念。
随着现代社会的高速发展,大众对生活和工作效率的要求越来越高,各式各样的用于通信的电子设备出现在大众的视野中。然而在日常生活中,经常会出现通讯突然中断的情况,尤其是在自然条件突然发生变化的时候,比如雷击浪涌这种现象就会导致电子设备出现故障,电子设备中电源设备的开关电路往往会受到损坏,进而导致通讯中断,给用户带来不好的体验。
在开关电源领域,开关电路的输入端通常采用图腾无桥PFC电路来实现功率因数校正。 图1示出的是一种图腾无桥PFC电路。如图1所示,该图腾无桥PFC电路包括开关管S1至S4、PFC电容、火线L、零线N、输出端PFCOUT(第一输出端)、接地输出端(第二输出端)。开关管S1-S4可以是任何全控型开关管,用于控制图腾无桥PFC电路中电流的通断,PFC电容用于吸收开关电路中的能量。
一些技术中,关于PFC电路浪涌防护技术,一种方案是在交流L线、N线与PFC电容之间增加二极管进行能量泄放,但是这种方法的缺点是当能量快速涌向PFC电容时,PFC电容无法快速吸收能量,仍会对图腾无桥PFC电路造成冲击。
另一种方案则是在此基础上进行优化,在交流L线与PFC电容正极之间增加限流装置,限制瞬时能量的冲击以保护图腾无桥PFC电路。但在浪涌电压导致输入电压反向的情况下,该方案无法保护开关管。
第三种方案则是通过检测图1中交流L线、N线之间的输入电压对图腾无桥PFC电路进行保护。当输入电压出现图2所示电压尖峰时,可通过图腾无桥PFC电路外的检测电路中的比较器产生一个快速的翻转信号,进而关断开关管。但是在实际应用场景中,该电路动作延时过大、有可能无法及时关断开关管,导致流经开关管的电流远超安全工作区,图腾无桥PFC电路存在很大损坏风险。
因此,有必要在电源设备的开关电路中添加一种新的防护技术,降低电源设备在受到雷击破坏时产生的浪涌对开关电路造成损坏的风险,从而给用户带来更好的用户体验。
本公开实施例提供的浪涌防护电路可应用在多种电子设备的电源设备中,可很大程度上降低电子设备在遭受雷击时产生的浪涌对电源设备中的开关电路造成损坏的风险。
基于此,本公开实施例提供的浪涌防护电路中,通过在开关电路的电源输入端和图腾无桥PFC电路的两个输出端间分别增加导通元件,并通过电压检测电路检测电源输入端对地电压。当电源输入端对地电压确定发生浪涌时,可通过控制电路对图腾无桥PFC电路中的开关管进行关断,以快速有效地实现浪涌防护,避免对电源设备造成损坏。
下面对本公开实施例的浪涌防护电路进行介绍。
图3为本公开提供的一种浪涌防护电路示意图。浪涌防护电路30包括第一电源输入端L1、图腾无桥PFC电路、第一元件301、第二元件302、第一电压检测电路303和控制电路304。图腾无桥PFC电路包括第一输出端PFCOUT和接地的第二输出端A,第一元件301耦合在第一电源输入端L1和图腾无桥PFC电路的第一输出端PFCOUT之间,第二元件302耦合在第一电源输入端L1和第二输出端间A之间。
第一电压检测电路303,用于检测第一电源输入端L1与图腾无桥PFC电路的第二输出端A之间的第一对地电压,并将第一对地电压发送给控制电路304。
控制电路304,用于根据第一对地电压控制图腾无桥PFC电路中的开关管关断。
第一电压检测电路303的第一端B1(例如,输入端B1)与第一电源输入端L1耦合,第一电压检测电路303的第二端C1(例如,第一输出端C1)与图腾无桥PFC电路的第二输出端A耦合,第一电压检测电路303的第三端D1(例如,第二输出端D1)与控制电路的第一端M1(例如,第一输入端M1)耦合。
图3中还示出了零线端N和地线端PE。浪涌防护电路30还包括第三元件305和第四元件306,第三元件305耦合在零线端N和图腾无桥PFC电路的第一输出端PFCOUT之间,第 四元件306耦合在零线端N和图腾无桥PFC电路的第二输出端A之间。
这里的第三元件305和第四元件306用于形成第一电源输入端L1与零线端N之间的电流回路。
例如,当发生正向浪涌时,电流回路为:第一电源输入端L1→第一元件301→图腾无桥PFC电路的第一输出端PFCOUT→电容(图腾无桥PFC电路的两个输出端之间的电容)→图腾无桥PFC电路的第二输出端A→第四元件306→零线端N。
当发生负向浪涌时,电流回路为:零线端N→第三元件305→图腾无桥PFC电路的第一输出端PFCOUT→电容(图腾无桥PFC电路的两个输出端之间的电容)→图腾无桥PFC电路的第二输出端A→第二元件302→第一电源输入端L1。
在本公开一些实施例中,第一电源输入端L1为火线端L。
在一些实施例中,当无浪涌时,第一电源输入端L1的第一对地电压在工频正半周时等于第一电源输入端L1的输入电压,第一电源输入端L1的第一对地电压在工频负半周时等于图腾无桥PFC电路的第一输出端PFCOUT与第一电源输入端L1的电压和。工频正半周可理解为工频交流电的正半周。工频负半周可理解为工频交流电的负半周。
当发生正向浪涌时,正向浪涌的能量会使得第一元件301导通,此时,第一电源输入端L1的第一对地电压为图腾无桥PFC电路的第一输出端PFCOUT的电压与第一元件301的导通压降之和。当发生负向浪涌时,负向浪涌的能量会使得第二元件302导通,第一电源输入端L1的第一对地电压为第二元件302的导通压降。
因此,第一电压检测电路303可以通过检测第一对地电压,并将第一对地电压传输至控制电路304。当控制电路304根据第一对地电压确定发生正向浪涌或负向浪涌时,可对图腾无桥PFC电路中的开关管实行关断。
本公开实施例这种通过检测浪涌电流引起的对地电压的变化来控制图腾无桥PFC电路中的开关管的驱动信号的方式,一旦控制电路304确定发生浪涌时,可及时关断图腾无桥PFC电路中的开关管,相对于一些技术中的浪涌防护电路防护能力不足、防护动作不及时等问题,本公开实施例的浪涌防护电路的动作延时较小,可快速有效的实现浪涌防护。本公开实施例这种在第一电源输入端L1和图腾无桥PFC电路的输出端之间耦合第一元件301和第二元件302的情况下,可通过第一电压检测电路303检测到第一电源输入端L1与图腾无桥PFC电路的第二输出端A之间的第一对地电压。
可以理解的是,图3示出的图腾无桥PFC电路是单相图腾无桥PFC电路。当然,图腾无桥PFC电路也可以是三相图腾无桥PFC电路,关于三相图腾无桥PFC电路的说明将在后文中介绍。
在一些实施例中,第一元件301和第二元件302为二极管。类似地,第三元件305和第四元件306也为二极管。
在一些实施例中,第一元件301和第二元件302为整流桥。类似地,第三元件305和第四元件306也为整流桥。
整流桥和二极管的作用类似,都是用于在图腾无桥PFC电路的第一电源输入端L1和图腾无桥PFC电路的第一输出端PFCOUT之间形成导通压降。
示例性地,当第一元件301、第二元件302、第三元件305和第四元件306为二极管时, 图3示出的浪涌防护电路30还可为如图4所示的浪涌防护电路40。
第一元件301为二极管D1,第二元件302为二极管D2,第三元件305为二极管D3,第四元件306为二极管D4。
二极管D1的第一端a与第一电压检测电路303的第一端B1和二极管D2的第一端c耦合,二极管D1的第二端b与图腾无桥PFC电路的第一输出端PFCOUT耦合,二极管D2的第二端d与图腾无桥PFC电路的第二输出端A耦合。
二极管D3的第一端e与零线端N和二极管D4的第一端g耦合,二极管D3的第二端f与图腾无桥PFC电路的第一输出端PFCOUT耦合,二极管D4的第二端h与图腾无桥PFC电路的第二输出端A耦合。
二极管D1的第一端a、二极管D2的第二端d、二极管D3的第一端e和二极管D4的第二端h可以理解为二极管的阳极。二极管D1的第二端b、二极管D2的第一端c、二极管D3的第二端f和二极管D4的第一端g可以理解为二极管的阴极。
在一些实施例中,本公开中的图腾无桥PFC电路可以是图3或图4所示的单路PFC,即图腾无桥PFC电路与第一电源输入端L1耦合。当图腾无桥PFC电路为单路PFC时,图腾无桥PFC电路可以为单相图腾无桥PFC电路。
在一些实施例中,本公开中的图腾无桥PFC电路也可以是多路交错PFC。当图腾无桥PFC电路为多路交错PFC时,图腾无桥PFC电路可以为三相图腾无桥PFC电路。关于本公开的浪涌防护电路应用在三相图腾无桥PFC电路时的实现方式将在后文中进行说明。
在一些实施例中,控制电路304,用于:
将第一对地电压与第一预设阈值进行比较,如果第一对地电压大于或等于第一预设阈值则控制图腾无桥PFC电路中的开关管关断。浪涌为正向浪涌,第一元件301导通,第一对地电压为第一输出端电压PFCOUT与第一元件301的导通压降之和;或者,
将第一对地电压与第二预设阈值进行比较,如果第一对地电压小于或等于第二预设阈值则控制图腾无桥PFC电路中的开关管关断。浪涌为负向浪涌,第二元件302导通,第一对地电压为第二元件302的导通压降。
第一预设阈值大于第二预设阈值。
示例性地,假设第一元件301和第二元件302为二极管,参考图4,以单相图腾无桥PFC电路为例,当发生正向浪涌时,二极管D1导通。假设二极管D1的导通压降为0.7V,则第一电压检测电路303检测到的第一对地电压为图腾无桥PFC电路的第一输出端电压PFCOUT与0.7V的和。如果控制电路304确定第一对地电压(PFCOUT加0.7V)大于或等于第一预设阈值,可控制图腾无桥PFC电路中的开关管关断。
当发生负向浪涌时,二极管D2导通,第一电压检测电路303检测到的第一对地电压为-0.7V。如果控制电路304确定-0.7V小于或等于第二预设阈值,可控制图腾无桥PFC电路中的开关管关断。
在一些实施例中,在上述图腾无桥PFC电路包括多个开关管和电容的情况下,电容的正极与图腾无桥PFC电路的第一输出端PFCOUT耦合,电容的负极与图腾无桥PFC电路的第二输出端A耦合。电容的负极与图腾无桥PFC电路的地电平端口均耦合至图腾无桥PFC电路的第二输出端A。
在一些实施例中,如图5所示,浪涌防护电路50还包括第一限流装置501,第一限流装置501耦合在第一电源输入端L1和第一电压检测电路303的第一端B1之间。
第一限流装置501,用于对第一电源输入端L1的电压进行分压。
也就是说,在本公开实施例中,第一限流装置501用于承受部分浪涌电压,这样可防止图腾无桥PFC电路的第一输出端PFCOUT的电流过冲太高。
示例性地,通常第一限流装置501可采用热敏电阻、压敏电阻、恒定电阻、电感或瞬态二极管(Transient Voltage Suppressor,TVS)等装置。
在一些实施例中,第一电压检测电路303通常采用电阻分压电路或者运放采样电路来实现,当然也可以采用其他电路实现,本公开不进行限定。
在一些实施例中,控制电路304可以通过硬件或软件方式控制单相图腾无桥PFC电路中的开关管驱动,以在要进行浪涌防护时关断单相图腾无桥PFC电路中的开关管。
如果采用硬件方式实现,第一电压检测电路303将检测到的第一对地电压值输入两个不同阈值的硬件比较器。当正向浪涌或负向浪涌来临时,比较器会产生一个翻转信号,将该翻转信号与动态稳定控制(Dynamic Stability Control,DSC)系统发出的驱动信号相与作为开关管驱动,即可实现浪涌关驱动的保护作用。
图6是一种控制电路304采用硬件方式实现的电路示意图。在图6所示的浪涌防护电路60中,控制电路304包括比较器电路3041和与门电路3042,比较器电路3041的输入端M1与第一电压检测电路303的第三端D1耦合,比较器电路3041的输出端N和与门电路3042的第一输入端E耦合。
与门电路3042的第二输入端F用于接收驱动信号,与门电路3042的输出端G用于向图腾无桥PFC电路输出驱动信号,以驱动图腾无桥PFC电路中的开关管的关断。
示例性地,比较器电路3041中保存有上述第一预设阈值和第二预设阈值。当发生正向浪涌时,如果比较器电路3041确定第一对地电压大于或等于第一预设阈值,则输出第一翻转信号至与门电路3042。与门电路3042将第一翻转信号与DSC芯片601发送的信号相与,通过输出端G输出驱动信号脉冲宽度调制(Pulse Width Modulation1,PWM1)。驱动信号PWM1可理解为高电平/低电平,用于控制图腾无桥PFC电路中的开关管关断。
类似地,当发生负向浪涌时,如果比较器电路3041确定第一对地电压小于或等于第二预设阈值,则输出第二翻转信号至与门电路3042。与门电路3042将第二翻转信号与DSC芯片601发送的信号相与,通过输出端G输出驱动信号PWM1。驱动信号PWM1可理解为高电平/低电平,用于控制图腾无桥PFC电路中的开关管关断。
DSC芯片发送的信号可以是高电平/低电平的方波信号。
下面结合图6示出的浪涌防护电路60,示例如下。
假设无浪涌时图腾无桥PFC电路的第一输出端PFCOUT的电压为400V,比较器电路3041中的第一预设阈值为450V,第二预设阈值为50V。
在第一电压检测电路303检测到的第一电源输入端L1的第一对地电压大于或等于第一预设阈值时,即第一对地电压大于或等于450V的情况下,此时发生正向浪涌。例如图腾无桥PFC电路的第一输出端PFCOUT的电压会被冲至500V甚至更高,此时二极管D1导通。假设二极管D1的导通压降为0.7V,则第一对地电压为500.7V,大于第一预设阈值450V。第一电压检 测电路303将检测到的第一对地电压500.7V输入到比较器电路3041。比较器电路3041产生一个高/低电平的方波信号输出至与门电路3042。与门电路3042将比较器电路3041输出的方波信号和DSC芯片601发出的驱动信号进行相与,产生一个驱动信号PWM1,进而控制图腾无桥PFC电路中的开关管关断。
在第一电压检测电路303检测到的第一电源输入端L1的第一对地电压小于或等于第二预设阈值时,即第一对地电压小于或等于50V情况下,此时发生负向浪涌,二极管D2导通。假设二极管D2导通压降为-0.7V,则第一对地电压为-0.7V,低于第二预设阈值50V。第一电压检测电路303将检测到的第一对地电压-0.7V输入到比较器电路3041中。比较器电路3041产生一个高电平/低电平的方波信号,输出至与门电路3042。与门电路3042将比较器电路3041输出的方波信号和DSC芯片601发出的驱动信号进行相与,产生一个驱动信号PWM1,进而控制图腾无桥PFC电路中的开关管关断。
图7是一种控制电路304采用软件方式实现的电路示意图。在图7所示的浪涌防护电路70中,控制电路304包括DSC芯片701,DSC芯片701用于根据第一对地电压产生翻转信号,翻转信号用于配合软件程序控制图腾无桥PFC电路中的开关管的关断。
示例性地,第一电压检测电路303输出第一对地电压至DSC芯片701,DSC芯片701内部的比较器可分别将第一对地电压和第一预设阈值、第二预设阈值进行比较,在确定需进行浪涌防护时,产生翻转信号,并通过软件控制图腾无桥PFC电路中的开关管的关断。
例如,通过软件内部的中断或计时器(Time Meter,TIM)控制开关管关断。
按照图6中控制电路304采用硬件方式实现的举例,如果采用软件方式实现,当发生正向浪涌时,第一电压检测电路303将检测到的第一对地电压500.7V输入到DSC芯片701。DSC芯片701确定第一对地电压500.7V大于第一预设阈值450V时,产生翻转信号,并通过软件内部的中断或TIM控制图腾无桥PFC电路中的开关管的关断。
当发生负向浪涌时,第一电压检测电路303将检测到的第一对地电压-0.7V输入到DSC芯片701。DSC芯片701确定第一对地电压-0.7V小于第二预设阈值50V时,产生翻转信号,并通过软件内部的中断或TIM控制图腾无桥PFC电路中的开关管的关断。
由此,本公开实施例中,当浪涌来临时,可通过第一限流装置501对第一电源输入端L1的电压进行分压,改善了当能量快速涌向PFC电容时,该电容无法快速吸收该能量的问题。并且,在二极管D1和D2的导通情况下,第一电源输入端L1的对地电压会发生变化。当通过电压检测装置(例如,第一电压检测电路303)检测到的变化电压判断出是否发生了正向浪涌或负向浪涌时,控制电路304可通过将检测到的电压与保存的预设阈值进行相与,从而输出驱动信号,控制开关管关断,改善了防护电路动作延时大、无法及时关断开关管的问题。
需要理解的是,本公开实施例提供的浪涌防护电路中的图腾无桥PFC电路为单相图腾无桥PFC电路时,图腾无桥PFC电路可以是如图1所示的电路结构;当然,图腾无桥PFC电路也可以为其他的电路结构,本公开不进行限定。在一些实施例中,前文已经说明,图腾无桥PFC电路可以为三相图腾无桥PFC电路,例如,如图8所示。图8示出了一种基于三相图腾无桥PFC电路的浪涌防护电路80。
在包括图3示出的浪涌防护电路30的基础上,浪涌防护电路80还包括第二电源输入端L2、第三电源输入端L3、第五元件801、第六元件802、第七元件803和第八元件804。
第五元件801耦合在第二电源输入端L2和图腾无桥PFC电路的第一输出端PFCOUT之间,第六元件802耦合在第二电源输入端L2和图腾无桥PFC电路的第二输出端A之间。
第七元件803耦合在第三电源输入端L3和图腾无桥PFC电路的第一输出端PFCOUT之间,第八元件804耦合在第三电源输入端L3和图腾无桥PFC电路的第二输出端A之间。
与第一电压检测电路303类似,考虑到正向浪涌和负向浪涌也有可能发生在第二电源输入端L2与零线端N之间的电流回路中,以及发生在第三电源输入端L3与零线端N之间的电流回路中,如图8所示,浪涌防护电路80还包括第二电压检测电路805和第三电压检测电路806。
第二电压检测电路805的第一端B2(例如,输入端B2)与第二电源输入端L2耦合,第二电压检测电路805的第二端C2(例如,第一输出端C2)与图腾无桥PFC电路的第二输出端A耦合,第二电压检测电路805的第三端D2(例如,第二输出端D2)与控制电路304的第二端M2(例如,第二输入端M2)耦合。
第三电压检测电路806的第一端B3(例如,输入端B3)与第三电源输入端L3耦合,第三电压检测电路806的第二端C3(例如,第一输出端C3)与图腾无桥PFC电路的第二输出端A耦合,第三电压检测电路806的第三端D3(例如,第二输出端D3)与控制电路304的第三端M3(例如,第三输入端M3)耦合。
基于图8中的浪涌防护电路80的示例,第二电压检测电路805用于检测第二电源输入端L2与图腾无桥PFC电路的第二输出端A之间的第二对地电压,将第二对地电压发送给控制电路304。
控制电路304,还用于根据第二对地电压控制图腾无桥PFC电路中的开关管关断。
相应地,控制电路304,可以用于:
将第二对地电压与第一预设阈值进行比较,如果第二对地电压大于或等于第一预设阈值,则控制图腾无桥PFC电路中的开关管关断。浪涌为正向浪涌,第五元件801导通,第二对地电压为图腾无桥PFC电路的第一输出端PFCOUT电压与第五元件801的导通压降之和;或者,
将第二对地电压与第二预设阈值进行比较,如果第二对地电压小于或等于第二预设阈值,则控制图腾无桥PFC电路中的开关管关断。浪涌为负向浪涌,第六元件802导通,第二对地电压为第六元件802的导通压降。
控制电路304根据第二对地电压控制图腾无桥PFC电路中的开关管关断的实现方式,可以参考上文中控制电路304根据第一对地电压控制图腾无桥PFC电路中的开关管关断的实现方式。
类似地,基于图8中的浪涌防护电路80的示例,第三电压检测电路806用于检测第三电源输入端L3与图腾无桥PFC电路的第二输出端A之间的第三对地电压,将第三对地电压发送给控制电路304。
控制电路304,还用于根据第三对地电压控制图腾无桥PFC电路中的开关管关断。
相应地,控制电路304,可以用于:
将第三对地电压与第一预设阈值进行比较,如果第三对地电压大于或等于第一预设阈值,则控制图腾无桥PFC电路中的开关管关断。浪涌为正向浪涌,第七元件803导通,第三对地电压为图腾无桥PFC电路第一输出端PFCOUT和第七元件803的导通压降之和;或者,
将第三对地电压与第二预设阈值进行比较,如果第三对地电压小于或等于第二预设阈值,则控制图腾无桥PFC电路中的开关管关断。浪涌为负向浪涌,第八元件804导通,第三对地电压为第八元件804的导通压降。
控制电路304根据第三对地电压控制图腾无桥PFC电路中的开关管关断的实现方式,可以参考上文中控制电路304根据第一对地电压控制图腾无桥PFC电路中的开关管关断的实现方式。
在图8示例的浪涌防护电路80的基础上,与第一限流装置501类似,图9示出的一种浪涌防护电路90。浪涌防护电路90包括第二限流装置901和第三限流装置902。图8中的第五元件801、第六元件802、第七元件803和第八元件804在图9中均以二极管示出。第五元件801示为二极管D5,第六元件802示为二极管D6,第七元件803示为二极管D7,第八元件804示为二极管D8。
第二限流装置901耦合在第二电源输入端L2和第二电压检测电路805的第一端B2之间。
第二限流装置901,用于对第二电源输入端L2的电压进行分压。
也就是说,在本公开中,第二限流装置901用于承受部分浪涌电压,这样可防止图腾无桥PFC电路的第一输出端PFCOUT的电流过冲太高。
类似地,第三限流装置902耦合在第三电源输入端L3和第三电压检测电路806的第一端B3之间。
第三限流装置902,用于对第三电源输入端L3的电压进行分压。
也就是说,在本公开中,第三限流装置902用于承受部分浪涌电压,这样可防止图腾无桥PFC电路的第一输出端PFCOUT的电流过冲太高。
与第一限流装置501类似,第二限流装置901和第三限流装置902可采用热敏电阻、压敏电阻、恒定电阻、电感或TVS等装置。
由此,本公开实施例提供的技术方案,不仅适用于单相图腾无桥PFC电路的浪涌防护也同样适用于三相图腾无桥PFC电路的浪涌防护。
结合图3至图7对应的任一种浪涌防护电路,本公开实施例还提供一种浪涌防护方法。该方法应用于图3至图7对应的任一种浪涌防护电路。图10为本公开实施例提供的一种浪涌防护方法的步骤示意图,包括以下步骤。
步骤101、电子设备检测第一电源输入端L1与图腾无桥PFC电路的第二输出端A之间的第一对地电压。
步骤102、电子设备根据第一对地电压控制图腾无桥PFC电路中的开关管关断。
电子设备可包括图3至图7对应的任一种浪涌防护电路。例如电子设备可以为通信设备。
步骤101的实现方式可通过上述第一电压检测电路303执行。详细的实现方式可参见上文中对第一电压检测电路303的说明。
步骤102的实现方式可通过上述控制电路304执行。详细的实现方式可参见上文中对控制电路304的说明。
结合图8至图9对应的任一种浪涌防护电路,在图10对应的方法实施例的基础上,本公开实施例的浪涌防护方法还可以包括以下步骤。
步骤1)电子设备检测第二电源输入端L2与图腾无桥PFC电路的第二输出端A之间的第 二对地电压。
步骤1)的实现方式可通过上述第二电压检测电路805执行。详细的实现方式可参见上文中对第二电压检测电路805的说明。
步骤2)电子设备根据第二对地电压控制图腾无桥PFC电路中的开关管关断。
步骤2)的实现方式可通过上述控制电路304执行。详细的实现方式可参见上文中对控制电路304的说明。
以及,步骤3)电子设备检测第三电源输入端L3与图腾无桥PFC电路的第二输出端A之间的第三对地电压。
步骤3)的实现方式可通过上述第三电压检测电路806执行。详细的实现方式可参见上文中对第三电压检测电路806说明。
步骤4)电子设备根据第三对地电压控制图腾无桥PFC电路中的开关管关断。
步骤4)的实现方式可通过上述控制电路304执行。详细的实现方式可参见上文中对控制电路304的说明。
由此,电子设备根据检测到的一个或多个电源输入端与图腾无桥PFC电路的第二输出端A之间的对地电压,通过控制电路来关断开关管,改善了现有浪涌防护电路防护能力不足、防护动作不及时的问题。
本公开一些实施例提供了一种计算机可读存储介质(例如,非暂态计算机可读存储介质),该计算机可读存储介质中存储有计算机程序指令,计算机程序指令在计算机上运行时,使得计算机执行如上述实施例中任一实施例所述的电源的雷击防护方法。
示例性地,上述计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disk,CD)、数字通用盘(Digital Versatile Disk,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。本公开描述的各种计算机可读存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读存储介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何在本公开揭露的技术范围内的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应该以权利要求的保护范围为准。

Claims (20)

  1. 一种浪涌防护电路,包括:
    图腾无桥功率因数校正PFC电路,所述图腾无桥PFC电路包括第一电源输入端、第一输出端和接地的第二输出端;
    第一元件,所述第一元件耦合在所述第一电源输入端和所述第一输出端之间;
    第二元件,所述第二元件耦合在所述第一电源输入端和所述第二输出端之间;
    第一电压检测电路,用于检测所述第一电源输入端与所述图腾无桥PFC电路的第二输出端之间的第一对地电压,将所述第一对地电压发送给控制电路;以及,
    所述控制电路,用于根据所述第一对地电压控制所述图腾无桥PFC电路中的开关管关断。
  2. 根据权利要求1所述的浪涌防护电路,其中,
    所述第一元件和所述第二元件为二极管;
    或,所述第一元件和所述第二元件为整流桥。
  3. 根据权利要求1所述的浪涌防护电路,其中,所述第一电压检测电路的输入端与所述第一电源输入端耦合,所述第一电压检测电路的第一输出端与所述图腾无桥PFC电路的第二输出端耦合,所述第一电压检测电路的第二输出端与所述控制电路的第一输入端耦合。
  4. 根据权利要求1所述的浪涌防护电路,其中,所述控制电路,用于:
    与所述第一对地电压大于或等于第一预设阈值相应的,控制所述图腾无桥PFC电路中的开关管关断,其中,所述第一对地电压为所述第一输出端电压和所述第一元件的导通压降之和;
    与所述第一对地电压小于或等于第二预设阈值相应的,控制所述图腾无桥PFC电路中的开关管关断,其中,所述第一对地电压为所述第二元件的导通压降。
  5. 根据权利要求4所述的浪涌防护电路,其中,所述第一预设阈值大于所述第二预设阈值。
  6. 根据权利要求1所述的浪涌防护电路,其中,所述浪涌防护电路还包括第一限流装置,所述第一限流装置耦合在所述第一电源输入端和所述第一电压检测电路的输入端之间;
    所述第一限流装置,用于对所述第一电源输入端的电压进行分压。
  7. 根据权利要求1所述的浪涌防护电路,还包括:
    零线端和地线端;以及
    第三元件和第四元件,所述第三元件耦合在所述零线端和所述图腾无桥PFC电路的第一输出端之间,所述第四元件耦合在所述零线端和所述图腾无桥PFC电路的第二输出端之间。
  8. 根据权利要求1至7任一项所述的浪涌防护电路,其中,所述图腾无桥PFC电路为三相图腾无桥PFC电路;
    所述三相图腾无桥PFC电还包括第二电源输入端和第三电源输入端,所述浪涌防护电路还包括第五元件、第六元件、第七元件和第八元件;
    所述第五元件耦合在所述第二电源输入端和所述图腾无桥PFC电路的第一输出端之间,所述第六元件耦合在所述第二电源输入端和所述图腾无桥PFC电路的第二输出端之间;
    所述第七元件耦合在所述第三电源输入端和所述图腾无桥PFC电路的第一输出端之间,所述第八元件耦合在所述第三电源输入端和所述图腾无桥PFC电路的第二输出端之 间。
  9. 根据权利要求8所述的浪涌防护电路,还包括第二电压检测电路和第三电压检测电路;
    所述第二电压检测电路的输入端与所述第二电源输入端耦合,所述第二电压检测电路的第一输出端与所述图腾无桥PFC电路的第二输出端耦合,所述第二电压检测电路的第二输出端与所述控制电路的第二输入端耦合;
    所述第三电压检测电路的输入端与所述第三电源输入端耦合,所述第三电压检测电路的第一输出端与所述图腾无桥PFC电路的第二输出端耦合,所述第三电压检测电路的第二输出端与所述控制电路的第三输入端耦合。
  10. 根据权利要求1至9任一项所述的浪涌防护电路,其中,
    所述控制电路包括比较器电路和与门电路;
    所述比较器电路的输入端与第一电压检测电路的第二输出端耦合,所述比较器电路的输出端与所述与门电路的第一输入端耦合;所述比较器电路用于对所述第一对地电压和预设的电压阈值进行比较,输出翻转信号至所述与门电路的第一输入端;
    所述与门电路的第二输入端用于接收驱动信号,所述与门电路的输出端用于向所述图腾无桥PFC电路输出驱动信号,以驱动所述图腾无桥PFC电路中的开关管的关断。
  11. 根据权利要求1至9任一项所述的浪涌防护电路,其中,所述控制电路包括数字信号控制器DSC,所述数字信号控制器DSC用于根据所述第一对地电压产生翻转信号,所述翻转信号用于配合软件程序控制所述图腾无桥PFC电路中的开关管的关断。
  12. 一种浪涌防护方法,其中,所述方法应用于浪涌防护电路,所述浪涌防护电路包括图腾无桥功率因数校正PFC电路、第一元件、第二元件、第一电压检测电路和控制电路,所述图腾无桥PFC电路包括第一电源输入端、第一输出端和接地的第二输出端,所述第一元件耦合在所述第一电源输入端和所述第一输出端之间,所述第二元件耦合在所述第一电源输入端和所述第二输出端之间,所述方法包括:
    检测所述第一电源输入端与所述图腾无桥PFC电路的第二输出端之间的第一对地电压;
    根据所述第一对地电压控制所述图腾无桥PFC电路中的开关管关断。
  13. 根据权利要求12所述的方法,其中,
    所述第一元件和所述第二元件为二极管;
    或,所述第一元件和所述第二元件为整流桥。
  14. 根据权利要求12所述的方法,其中,根据所述第一对地电压控制所述图腾无桥PFC电路中的开关管关断包括:
    与所述第一对地电压大于或等于第一预设阈值相应的,控制所述图腾无桥PFC电路中的开关管关断,其中,所述第一对地电压为所述第一输出端电压和所述第一元件的导通压降之和;
    与所述第一对地电压小于或等于第二预设阈值相应的,控制所述图腾无桥PFC电路中的开关管关断,其中,所述第一对地电压为所述第二元件的导通压降。
  15. 根据权利要求12所述的方法,还包括:对所述图腾无桥PFC电路的第一输入端的电压进行分压。
  16. 根据权利要求12所述的方法,其中,
    所述浪涌防护电路还包括:零线端和地线端、以及第三元件和第四元件;
    所述第三元件耦合在所述零线端和所述图腾无桥PFC电路的第一输出端间,所述第四元件耦合在所述零线端和所述图腾无桥PFC电路的第二输出端间。
  17. 根据权利要求12所述的方法,其中,所述图腾无桥PFC电路为三相图腾无桥PFC电路;
    所述三相图腾无桥PFC电还包括第二电源输入端和第三电源输入端,所述浪涌防护电路还包括第五元件、第六元件、第七元件和第八元件;
    所述第五元件耦合在所述第二电源输入端和所述图腾无桥PFC电路的第一输出端间,所述第六元件耦合在所述第二电源输入端和所述图腾无桥PFC电路的第二输出端间;
    所述第七元件耦合在所述第三电源输入端和所述图腾无桥PFC电路的第一输出端间,所述第八元件耦合在所述第三电源输入端和所述图腾无桥PFC电路的第二输出端间。
  18. 根据权利要求17所述的方法,还包括:
    检测所述第二电源输入端与所述图腾无桥PFC电路的第二输出端间的第二对地电压;
    根据所述第二对地电压控制所述图腾无桥PFC电路中的开关管关断。
  19. 根据权利要求17所述的方法,还包括:
    检测所述第三电源输入端与所述图腾无桥PFC电路的第二输出端间的第三对地电压;
    根据所述第三对地电压控制所述图腾无桥PFC电路中的开关管关断。
  20. 一种计算机可读存储介质,其中,所述计算机可读存储介质中存储有指令,当计算机可读存储介质中的指令由电子设备的处理器执行时,使得所述电子设备执行权利要求12-19中任一项所述的浪涌防护方法。
PCT/CN2023/117871 2022-09-13 2023-09-08 浪涌防护方法及电路 WO2024055913A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211110070.3A CN117748924A (zh) 2022-09-13 2022-09-13 一种浪涌防护方法及电路
CN202211110070.3 2022-09-13

Publications (1)

Publication Number Publication Date
WO2024055913A1 true WO2024055913A1 (zh) 2024-03-21

Family

ID=90253154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117871 WO2024055913A1 (zh) 2022-09-13 2023-09-08 浪涌防护方法及电路

Country Status (2)

Country Link
CN (1) CN117748924A (zh)
WO (1) WO2024055913A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110134671A1 (en) * 2009-12-03 2011-06-09 Aeg Power Solutions B.V. Ac/dc converter preloading circuit
CN102751861A (zh) * 2011-04-21 2012-10-24 艾默生网络能源系统北美公司 一种无桥功率因数校正电路
US8385032B1 (en) * 2011-08-23 2013-02-26 Futurewei Technologies, Inc. High efficiency bridgeless PFC converter and method
CN103081328A (zh) * 2011-08-26 2013-05-01 华为技术有限公司 用于无桥pfc转换器的保持时间电路和方法
CN104518656A (zh) * 2013-10-08 2015-04-15 中兴通讯股份有限公司 图腾柱无桥功率因数校正软开关控制装置和方法
KR20210015321A (ko) * 2019-08-01 2021-02-10 엘지전자 주식회사 회로 소손 방지 및 토템 폴 역률 보상 기능을 갖는 전력 변환 장치
CN113725817A (zh) * 2021-09-02 2021-11-30 浙江亿邦通联科技有限公司 一种交流输入突变保护电路
CN114337235A (zh) * 2021-11-25 2022-04-12 华为数字能源技术有限公司 防浪涌雷击的电源及电源控制方法
CN114337237A (zh) * 2021-12-21 2022-04-12 海信(山东)空调有限公司 Pfc浪涌保护电路和变频控制器以及家用电器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110134671A1 (en) * 2009-12-03 2011-06-09 Aeg Power Solutions B.V. Ac/dc converter preloading circuit
CN102751861A (zh) * 2011-04-21 2012-10-24 艾默生网络能源系统北美公司 一种无桥功率因数校正电路
US8385032B1 (en) * 2011-08-23 2013-02-26 Futurewei Technologies, Inc. High efficiency bridgeless PFC converter and method
CN103081328A (zh) * 2011-08-26 2013-05-01 华为技术有限公司 用于无桥pfc转换器的保持时间电路和方法
CN104518656A (zh) * 2013-10-08 2015-04-15 中兴通讯股份有限公司 图腾柱无桥功率因数校正软开关控制装置和方法
KR20210015321A (ko) * 2019-08-01 2021-02-10 엘지전자 주식회사 회로 소손 방지 및 토템 폴 역률 보상 기능을 갖는 전력 변환 장치
CN113725817A (zh) * 2021-09-02 2021-11-30 浙江亿邦通联科技有限公司 一种交流输入突变保护电路
CN114337235A (zh) * 2021-11-25 2022-04-12 华为数字能源技术有限公司 防浪涌雷击的电源及电源控制方法
CN114337237A (zh) * 2021-12-21 2022-04-12 海信(山东)空调有限公司 Pfc浪涌保护电路和变频控制器以及家用电器

Also Published As

Publication number Publication date
CN117748924A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
CN102412720B (zh) 开关电源电路及其功率因数校正控制电路
US10224823B2 (en) Integrated circuit for switching converter and method for providing power supply voltage to the same
CN203690884U (zh) 一种过压保护电路及包含其的驱动器和电源
EP3062408B1 (en) Limiting amplitude of electricity delivered to an electrical load
US9906120B2 (en) Overcurrent protection system and method for inverter circuit
JP2022544999A (ja) フライングコンデンサ型npc3レベルトポロジー
US9768607B2 (en) System and method for a multi-phase snubber circuit
CN103904620A (zh) 一种直流电源输入防反灌电路及方法
JP2016189189A (ja) 電子装置の動作データを格納するための記憶装置及びそのシステム
CN105553250A (zh) 一种功率因数校正电路
CN102412721B (zh) 开关电源电路及其功率因数校正控制电路
JP2020174523A (ja) スイッチモード電源装置における入力フィルタコンデンサ制御回路および制御方法ならびにそれを用いた電源装置
WO2024055913A1 (zh) 浪涌防护方法及电路
US8988908B2 (en) Capacitive power supply with surge current limitation
JP2023522521A (ja) 交流モーターのギヤ制御回路とシステム、スイッチコントローラ及び電子デバイス
TWI742817B (zh) 快充系統的感測電路及方法、快充協議電路和快充系統
CN103166199B (zh) 一种开关电源及其电压保护方法
JP3154706U (ja) Ac/dc電源回路
US10666164B2 (en) Bidirectional power conversion circuit and bidirectional power converter
CN110557010A (zh) 一种开关电源及其x电容放电电路
JP2001145371A (ja) スパッタ用電源
CN209748190U (zh) 一种防护电路和电子设备
CN105098705B (zh) 一种漏电保护器
CN109769317B (zh) 一种加热控制电路和具有其的电磁加热装置
WO2024066988A1 (zh) 电源的雷击防护电路和防护方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864645

Country of ref document: EP

Kind code of ref document: A1