WO2024055690A1 - 一种功率变换装置及储能系统 - Google Patents

一种功率变换装置及储能系统 Download PDF

Info

Publication number
WO2024055690A1
WO2024055690A1 PCT/CN2023/103473 CN2023103473W WO2024055690A1 WO 2024055690 A1 WO2024055690 A1 WO 2024055690A1 CN 2023103473 W CN2023103473 W CN 2023103473W WO 2024055690 A1 WO2024055690 A1 WO 2024055690A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
capacitor
power
switching device
negative
Prior art date
Application number
PCT/CN2023/103473
Other languages
English (en)
French (fr)
Inventor
陈保国
盛任
葛瑞
刘玲
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2024055690A1 publication Critical patent/WO2024055690A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present application relates to electronic power systems, and in particular to a power conversion device and energy storage system.
  • This application provides a power conversion device and energy storage system that can make the power current flow through the PCB board as little as possible, thereby reducing the heat generation and flow loss of the PCB board and improving system efficiency and reliability.
  • this application provides a power conversion device, including: a power conversion circuit, a first power terminal, a second power terminal, and a third power terminal;
  • the power conversion circuit includes: a first positive terminal, a first negative terminal, a third Two positive terminals, a second negative terminal and at least one power device, the first negative terminal and the second negative terminal have the same potential;
  • the power conversion circuit is used to convert the first voltage input by the first device into a second voltage and output it to the second Equipment; the first power terminal is connected to the first positive terminal, the first negative terminal and/or the second negative terminal is connected to the second power terminal, and the third power terminal is connected to the second positive terminal.
  • the power current mainly flows through the external power bus, and the power current flowing on the bus connected to the first negative terminal or the second negative terminal can cancel each other, thereby reducing
  • the flow loss on the PCB board improves system efficiency and reliability.
  • the second power terminal specifically includes: a first sub-terminal and a second sub-terminal; the first sub-terminal is connected to the first output negative terminal of the first device, and the second sub-terminal is connected to the second output negative terminal of the second device.
  • the negative terminal of the second input is connected.
  • the first output positive terminal of the first device is connected to the first power terminal, the first negative output terminal of the first device is connected to the second power terminal; the second input positive terminal of the second device is connected to The third power terminal is connected, and the second input negative terminal of the second device is connected to the second power terminal.
  • the first device is connected to the first power terminal and the second power terminal respectively through the first output positive terminal and the first output negative terminal to input the first voltage to the power conversion circuit; the second device is connected through the second input positive terminal and the second power terminal.
  • the two input negative terminals are respectively connected to the third power terminal and the second power terminal to receive the second voltage output by the power conversion circuit.
  • the first negative terminal and the second negative terminal in the power conversion circuit are commonly used, and the power currents flowing on the bus connected to the first negative terminal or the second negative terminal can cancel each other out, thereby reducing the throughput. flow loss.
  • the first output positive terminal of the first device is connected to the second power terminal, the first negative output terminal of the first device is connected to the first power terminal; the second input positive terminal of the second device is connected to The second power terminal is connected, and the second input negative terminal of the second device is connected to the third power terminal.
  • the first device is connected to the second power terminal and the first power terminal respectively through the first positive output terminal and the first negative output terminal to input the first voltage to the power conversion circuit; the second device is connected through the second positive input terminal and the first power terminal.
  • the two input negative terminals are respectively connected to the second power terminal and the third power terminal to receive the second voltage output by the power conversion circuit.
  • the first positive terminal and the second positive terminal in the power conversion circuit use a common power supply, and the power currents flowing on the bus connected to the first negative terminal or the second negative terminal can cancel each other out. Thereby reducing the flow loss.
  • the power conversion circuit specifically includes: a first capacitor, a first switching device, a second switching device, a first inductor, and a second capacitor.
  • the first terminal of the first capacitor is connected to the first switching device.
  • the first end is connected, the second end of the first switching device is connected to the first end of the first inductor and the first end of the second switching device respectively, and the third end of the first switching device is used to input and control the state of the first switching device.
  • the second terminal of the first inductor is connected to the second terminal of the second capacitor; the first positive terminal is connected to the first terminal of the first capacitor, the first negative terminal is connected to the second terminal of the first capacitor, and the second positive terminal is connected to the second terminal of the first capacitor.
  • the first terminal of the second capacitor is connected, and the second negative terminal is connected to the second terminal of the second capacitor; or, the first positive terminal is connected to the first terminal of the second capacitor, and the first negative terminal is connected to the second terminal of the second capacitor.
  • the second positive terminal is connected to the first terminal of the first capacitor, and the second negative terminal is connected to the second terminal of the first capacitor.
  • the output voltage of the power conversion circuit can be adjusted by controlling the off-state of the power devices in the power conversion circuit to change according to specific rules.
  • the first positive terminal is connected to the first terminal of the first capacitor, and the first negative terminal is connected to the second terminal of the first capacitor
  • the second positive terminal is connected to the second terminal of the first capacitor.
  • the first terminal of the capacitor is connected, and the second negative terminal is connected to the second terminal of the second capacitor.
  • it is in the forward buck mode; and the first positive terminal is connected to the first terminal of the second capacitor, and the first negative terminal is connected to the first terminal of the second capacitor.
  • the second positive terminal is connected to the first terminal of the first capacitor, and the second negative terminal is connected to the second terminal of the first capacitor.
  • the power conversion circuit specifically includes: a third capacitor, a second inductor, a third switching device, a fourth switching device and a fourth capacitor.
  • the first end of the third capacitor and the third end of the second inductor One end is connected, the second end of the second inductor is connected to the first end of the third switching device and the first end of the fourth switching device respectively, the second end of the third capacitor is respectively connected to the second end of the third switching device and the first end of the fourth switching device.
  • the second end of the fourth capacitor is connected, and the second end of the fourth switching device is connected to the first end of the fourth capacitor; the third end of the third switching device is used to input a signal that controls the state of the third switching device, and the fourth switch
  • the third terminal of the device is used to input a signal that controls the state of the fourth switching device; the first positive terminal is connected to the first terminal of the third capacitor, the first negative terminal is connected to the second terminal of the third capacitor, and the second positive terminal is connected to the second terminal of the third capacitor.
  • the first terminal of the fourth capacitor is connected, and the second negative terminal is connected to the second terminal of the fourth capacitor; or, the first positive terminal is connected to the first terminal of the fourth capacitor, and the first negative terminal is connected to the second terminal of the fourth capacitor.
  • the second positive terminal is connected to the first terminal of the third capacitor, and the second negative terminal is connected to the second terminal of the third capacitor.
  • the off-state of the power devices in the power conversion circuit is controlled to change according to specific rules, thereby adjusting the output voltage of the power conversion circuit.
  • the first positive terminal is connected to the first terminal of the third capacitor.
  • the second positive terminal is connected to the fourth capacitor.
  • the first terminal is connected, the second negative terminal is connected to the second terminal of the fourth capacitor, at this time, it is in the forward boost mode; the first positive terminal is connected to the first terminal of the fourth capacitor, and the first negative terminal is connected to the first terminal of the fourth capacitor.
  • the second terminals of the four capacitors are connected, the second positive terminal is connected to the first terminal of the third capacitor, and the second negative terminal is connected to the second terminal of the third capacitor. At this time, it is in the reverse buck mode.
  • the power conversion circuit specifically includes: a fifth capacitor, a third inductor, a fifth switching device, a sixth switching device, a seventh switching device, an eighth switching device and a sixth capacitor.
  • the fifth capacitor The first end of the fifth switching device is connected to the first end of the fifth switching device, the second end of the fifth switching device is connected to the first end of the third inductor, the second end of the fifth switching device is connected to the first end of the sixth switching device connection, the second end of the sixth switching device is connected to the second end of the fifth capacitor, the first end of the seventh switching device is connected to the first end of the sixth capacitor, the second end of the seventh switching device is connected to the eighth switch The first end of the device is connected, the second end of the eighth switching device is connected to the second end of the sixth switching device, the second end of the eighth switching device is also connected to the second end of the sixth capacitor, and the third end of the third inductor is connected.
  • the two terminals are connected to the first terminal of the seventh switching device; the third terminal of the fifth switching device is used to input a signal that controls the state of the fifth switching device; and the third terminal of the sixth switching device is used to input a signal that controls the state of the sixth switching device.
  • the third terminal of the seventh switching device is used to input a signal that controls the state of the seventh switching device
  • the third terminal of the eighth switching device is used to input a signal that controls the state of the eighth switching device
  • the first positive terminal and the fifth The first end of the capacitor is connected, the first negative end is connected to the second end of the fifth capacitor, the second positive end is connected to the first end of the sixth capacitor, and the second negative end is connected to the second end of the sixth capacitor; or , the first positive terminal is connected to the first terminal of the sixth capacitor, the first negative terminal is connected to the second terminal of the sixth capacitor, the second positive terminal is connected to the first terminal of the fifth capacitor, and the second negative terminal is connected to the fifth terminal.
  • the second terminal of the capacitor is connected.
  • the power conversion device also includes: a three-wire common mode inductor, which includes: a first winding, a second winding and a third winding, the first winding having the same name The same terminal of the second winding is connected to the second power terminal, the same terminal of the third winding is connected to the third power terminal; the different terminal of the first winding is connected to the first positive terminal, the first The negative terminal and/or the second negative terminal are connected to the opposite terminal of the second winding, and the different terminal of the third winding is connected to the second positive terminal.
  • a three-wire common mode inductor which includes: a first winding, a second winding and a third winding, the first winding having the same name The same terminal of the second winding is connected to the second power terminal, the same terminal of the third winding is connected to the third power terminal; the different terminal of the first winding is connected to the first positive terminal, the first The negative terminal and/or the second negative terminal are connected to the opposite terminal of the second winding, and the different terminal of
  • the power conversion device further includes: a controller configured to control the off-state of the power device in the power conversion circuit to adjust the output voltage of the power conversion circuit.
  • the second power terminal is a copper bar or a connector structure.
  • the first negative output terminal of the first device and The second negative input terminal of the second device may be connected to the first negative terminal or the second negative terminal through a copper cable bar or a connector structure.
  • the first positive output terminal of the first device and the second positive input terminal of the second device may also be connected to the first positive terminal or the second positive terminal through a copper cable bar or a connector structure.
  • At least one of the following devices is included between the first power terminal and the second power terminal, including a fuse, a switching device and a shunt.
  • the fuse can be blown immediately when the current in the circuit increases rapidly due to a short-circuit fault in the line, which can protect the electrical equipment and lines connected to it, thereby avoiding damage and causing accidents.
  • the switching device is used to control the connection state between the first power terminal and the second power terminal, and the shunt is used to measure the current between the first power terminal and the second power terminal, and the current is generated at both ends of the resistor when the current passes through the resistor. Made on the principle of voltage.
  • this application provides an energy storage system, including: a battery pack and a power conversion device as described in the first aspect; the battery pack has a plurality of battery cells connected in series; the power conversion device is connected to the battery pack for converting Convert the DC power input to the battery pack, and/or convert the DC power output from the battery pack.
  • the present application provides an optical storage system, including an inverter, a power conversion device as described in the first aspect, and a battery pack.
  • the power conversion device is used to convert the current from the inverter and convert The converted current is input to the battery pack, and/or is used to convert the current of the battery pack and output the converted current to the grid or load.
  • Figure 1 is a schematic diagram of a four-port non-isolated DC-DC topology
  • Figure 2A is a schematic structural diagram of a power conversion device
  • Figure 2B is a schematic structural diagram 2 of a power conversion device
  • Figure 3A is a schematic diagram of the current flow of an existing power conversion circuit
  • Figure 3B is a schematic diagram of the current flow of the power conversion device of the present application.
  • Figure 3C is a schematic diagram 2 of the current flow of the power conversion device of the present application.
  • Figure 4 is a connection schematic diagram 1 of a power conversion device
  • Figure 5 is a schematic diagram 2 of the connection of a power conversion device
  • Figure 6 is a schematic structural diagram of a power conversion circuit
  • Figure 7 is a schematic structural diagram 2 of a power conversion circuit
  • Figure 8 is a schematic structural diagram 3 of a power conversion circuit
  • Figure 9 is a schematic structural diagram 3 of a power conversion device.
  • connection in the embodiments of this application refers to electrical connection, and the connection between two electrical components may be a direct or indirect connection between two electrical components.
  • a and B can be connected directly, or A and B can be connected through a One or more other electrical components are indirectly connected, for example, A is connected to B, or A is directly connected to C, C is directly connected to B, and A and B are connected through C.
  • the power conversion circuit in the energy storage system mostly adopts a four-port non-isolated DC-DC topology structure, so as to realize the functions of charging and discharging and bucking and lowering the voltage of the battery in the energy storage system.
  • Figure 1 is a schematic diagram of a four-port non-isolated DC-DC topology.
  • One end of the four-port (Vin+, Vin-, Vout+, Vout-) non-isolated DC-DC topology structure can be connected to the energy storage unit, and the other end can be connected to the inverter, so that the inverter converts DC power into AC power and outputs it to the grid or load.
  • all power currents (power input, power output, power ground) are carried by the PCB board. As the device density and power increase rapidly, the heating of the PCB board becomes more and more serious, and the loss caused is also increasing.
  • the present application provides a power conversion device so that the power currents flowing on the bus connected to the first negative terminal or the second negative terminal can cancel each other, so that part of the power current does not flow through the PCB board, thereby reducing the The flow loss on the PCB board improves system efficiency and reliability.
  • FIG. 2A is a schematic structural diagram of a power conversion device.
  • the power conversion device 200 includes: a first power terminal 201, a second power terminal 202, a third power terminal 203 and a power conversion circuit 204;
  • the power conversion circuit 204 includes: a first positive terminal 2041, a first negative terminal 2042, a second positive terminal 2043, a second negative terminal 2044 and at least one power device.
  • the first negative terminal 2042 and the second negative terminal 2044 have the same potential; the power conversion circuit 204 is used to convert the first voltage input by the first device 205 into a second voltage and output it to the second device 206; the first power terminal 201 and the first positive terminal 2041 is connected, the first negative terminal 2042 and/or the second negative terminal 2044 are connected to the second power terminal 202 , and the third power terminal 203 is connected to the second positive terminal 2043 .
  • the power conversion circuit 204 may be a converter circuit that converts DC power with a constant voltage into a DC power with an adjustable voltage. It may also be called a DC chopper. By changing the on-off state of at least one power device in the power conversion circuit 204, Or by changing the on-off time ratio of the switching device, the output voltage can be adjusted.
  • the power conversion circuit 204 may be a BUCK step-down circuit, a BOOST step-up circuit, or a BUCK-BOOST step-down-boost circuit, etc. Persons in the art should be aware of the specific possible circuit types and circuit combinations, and will not be discussed here. Too much elaboration.
  • the power device can be a relay, a metal oxide semiconductor field effect transistor (MOSFET), a bipolar junction transistor (BJT), an insulated gate bipolar transistor (IGBT) ), one or more of various types of switching devices such as silicon carbide (SiC) power tubes, which will not be listed one by one in the embodiments of this application.
  • MOSFET metal oxide semiconductor field effect transistor
  • BJT bipolar junction transistor
  • IGBT insulated gate bipolar transistor
  • SiC silicon carbide
  • the power conversion circuit 204 is used to convert the first voltage input by the first device 205 into a second voltage and output it to the second device 206 .
  • the first device 205 may be an energy storage unit
  • the second device 206 may be a load device or a power grid.
  • the energy storage components in the energy storage unit can provide power to the load equipment when the power generation of the new energy power station is unstable. Since the voltage provided by the energy storage component is difficult to meet the voltage requirements of the load device, the energy storage unit can perform voltage regulation through the power conversion circuit 204 to supply power to the load device.
  • the power conversion circuit 204 may be a buck circuit; if the first voltage is less than the second voltage, the power conversion circuit 204 may be a boost circuit; if the first voltage is equal to the second voltage, the power conversion circuit 204 may be a boost circuit. If the magnitude relationship between the two voltages is difficult to determine in advance, the power conversion circuit 204 may be a boost-step-down circuit or the like.
  • FIG. 2B is a schematic structural diagram 2 of a power conversion device.
  • the second power terminal 202 specifically includes: a first sub-terminal 2021 and a second sub-terminal 2022;
  • the first sub-terminal 2021 is connected to the first negative output terminal 2052 of the first device 205
  • the second sub-terminal 2022 is connected to the second negative input terminal 2062 of the second device 206 .
  • the second power terminal provided by this application may also have two external connection ports, thereby facilitating the connection between the first device 205 and the second device 206 .
  • technicians can connect the first output negative terminal 2052 of the first device 205 to the first sub-terminal 2021, and the second input negative terminal 2062 of the second device 206 to the second sub-terminal 2022, or , the first negative output terminal 2052 of the second device 206 can also be connected to the first sub-terminal 2021, the first negative output terminal 2052 of the first device 205 can be connected to the second sub-terminal 2022, the first sub-terminal 2021 and
  • the second sub-terminal 2022 can be connected using a through-flow busbar inside the module or at the terminal, and connected to the first negative terminal 2042 and/or the second negative terminal 2044 through a cable (or copper bar or connector, etc.).
  • FIG. 3A is a schematic diagram of the current flow of an existing power conversion circuit.
  • the power current input by the first device 205 flows in from the first positive terminal 2041 and from the first positive terminal 2041.
  • a negative terminal 2042 flows out, and the power current output to the second device 206 flows in from the second negative terminal 2044 and flows out from the second positive terminal 2043.
  • the positive/negative busbars connected to the first positive terminal 2041, the first negative terminal 2042, the second positive terminal 2043 and the second negative terminal 2044 all flow through power current, causing the PCB to heat up seriously. And due to the severe heating of the PCB, the power current has a large flow loss when flowing through the PCB board.
  • Figure 3B is a schematic diagram of the current flow of the power conversion device of the present application.
  • the first device 205 is connected to the first power terminal 201 and the second power terminal 202.
  • the first device 205 inputs
  • the power current can flow in from the first positive terminal 2041 and flow out from the first negative terminal 2042.
  • the second device 206 is connected to the second power terminal 202 and the third power terminal 203.
  • the power current output to the second device 206 flows from the first
  • the negative terminal 2042 flows in and the second positive terminal 2043 flows out.
  • Figure 3C is a second schematic diagram of the current flow of the power conversion device of the present application.
  • the first device 205 is connected to the first power terminal 201 and the second power terminal 202.
  • the power current input by the first device 205 can be from the first
  • the positive terminal 2041 flows in and flows out from the second negative terminal 2044.
  • the second device 206 is connected to the second power terminal 202 and the third power terminal 203.
  • the power current output to the second device 206 flows in from the second negative terminal 2044 and flows out from the second negative terminal 2044.
  • the second positive end 2043 flows out.
  • Figure 4 is a connection schematic diagram 1 of a power conversion device; wherein, the first output positive terminal 2051 of the first device 205 and the first power terminal 201 connected, the first negative output terminal 2052 of the first device 205 is connected to the second power terminal 202; the second positive input terminal 2061 of the second device 206 is connected to the third power terminal 203, the The second negative input terminal 2062 of the second device 206 is connected to the second power terminal 202 .
  • the first device 205 is connected to the first power terminal 201 through the first output positive terminal 2051 and is connected to the second power terminal 202 through the first output negative terminal 2052 to input the first voltage to the power conversion circuit 204 .
  • the second device 206 is connected to the third power terminal 203 through the second input positive terminal 2061 and is connected to the second power terminal 202 through the second input negative terminal 2062 to receive the second voltage output by the power conversion circuit 204 .
  • the first negative output terminal 2052 and the second negative input terminal 2062 in the power conversion circuit 204 are commonly used, either on the bus to which the first negative terminal 2042 is connected, or to the second negative terminal 2044
  • the power current flowing out of the first device 205 and the power current flowing into the second device 206 can offset each other, thereby reducing the PCB current loss.
  • Figure 5 is a connection schematic diagram 2 of a power conversion device; the first positive output terminal 2051 of the first device 205 is connected to the second power terminal 202, The first negative output terminal 2052 of the first device 205 is connected to the first power terminal 201; the second positive input terminal 2061 of the second device 206 is connected to the second power terminal 202, and the second The second negative input terminal 2062 of the device 206 is connected to the third power terminal 203 .
  • the first device 205 is connected to the second power terminal 202 through the first output positive terminal 2051, and is connected to the first power terminal 201 through the first output negative terminal 2052 to input the first voltage to the power conversion circuit 204; the second device 206
  • the second input positive terminal 2061 is connected to the second power terminal 202
  • the second input negative terminal 2062 is connected to the third power terminal 203 to receive the second voltage output by the power conversion circuit 204 .
  • the first output positive terminal 2051 and the second input positive terminal 2061 in the power conversion circuit 204 are used in a common power supply, and are connected to the bus bar connected to the second negative terminal 2044, or connected to the second negative terminal 2044.
  • the power current flowing out of the first device 205 and the power current flowing into the second device 206 can offset each other, thereby reducing the PCB current loss.
  • the first output positive terminal 2051 may be the positive terminal of the first device 205
  • the first output negative terminal 2052 may be the negative terminal of the first device 205
  • the second input positive terminal 2061 may be the positive terminal of the second device 206 Terminal
  • second input negative terminal 2062 may serve as the negative terminal of the second device 206 .
  • FIG. 6 is a schematic structural diagram of a power conversion circuit; the power conversion circuit
  • the switching circuit 204 specifically includes: a first capacitor C1, a first switching device Q1, a second switching device Q2, a first inductor L1 and a second capacitor C2.
  • the first end of the first capacitor C1 is connected to the first switching device Q1
  • the first end of the first switching device Q1 is connected to the first end of the first inductor L1 and the first end of the second switching device Q2 respectively.
  • the first switching device Q1 The third terminal is used to input a signal that controls the state of the first switching device Q1.
  • the second terminal of the second switching device Q2 is connected to the second terminal of the first capacitor C1 and the first terminal of the second capacitor C2 respectively.
  • the third terminal of the second switching device Q2 is used to input a signal that controls the state of the second switching device Q2, and the second terminal of the first inductor L1 is connected to the second terminal of the second capacitor C2;
  • the first positive terminal 2041 is connected to the first terminal of the first capacitor C1, the first negative terminal 2042 is connected to the second terminal of the first capacitor C1, and the second positive terminal 2043 is connected to the first terminal of the first capacitor C1.
  • the first terminal of the second capacitor C2 is connected, and the second negative terminal 2044 is connected to the second terminal of the second capacitor C2.
  • the first positive terminal 2041 is connected to the first terminal of the second capacitor C2
  • the first negative terminal 2042 is connected to the second terminal of the second capacitor C2
  • the second positive terminal 2043 is connected to The first terminal of the first capacitor C1 is connected
  • the second negative terminal 2044 is connected to the second terminal of the first capacitor C1.
  • the output voltage of the power conversion circuit 204 can be adjusted by controlling the off-state of the power devices in the power conversion circuit 204 to change according to specific rules. For example, when the first switching device Q1 is turned on, the second switching device Q2 is turned off, and the first inductor L1 stores energy. When the first switching device Q1 is turned off, the second switching device Q2 is turned on for freewheeling. An inductor L1 releases energy to supply power to the load, and the buck/boost amplitude of the power conversion circuit 204 is adjusted by setting different turn-off duty ratios of the first switching device Q1 and the second switching device Q2.
  • the second positive terminal 2041 is connected to the first terminal of the first capacitor C1.
  • Terminal 2043 is connected to the first terminal of the second capacitor C2, and the second negative terminal 2044 is connected to the second terminal of the second capacitor C2.
  • it is in the forward BUCK step-down mode; while the first positive terminal 2041 is connected to the second terminal of the second capacitor C2.
  • the first terminal of the second capacitor C2 is connected.
  • the second positive terminal 2043 is connected to the first terminal of the first capacitor C1
  • the second negative terminal 2044 is connected to the first terminal of the second capacitor C2.
  • the second terminal of a capacitor C1 is connected. At this time, it is in the reverse BOOST boost mode.
  • Figure 7 is a schematic structural diagram 2 of a power conversion circuit; the power conversion circuit specifically includes: a third capacitor C3, a second inductor L2, and a third switching device Q3, the fourth switching device Q4 and the fourth capacitor C4.
  • the first end of the third capacitor C3 is connected to the first end of the second inductor L2.
  • the second end of the second inductor L2 is connected to the first end of the second inductor L2.
  • the first terminal of the third switching device Q3 is connected to the first terminal of the fourth switching device Q4, and the second terminal of the third capacitor C3 is connected to the second terminal of the third switching device Q3 and the second terminal of the third switching device Q3 respectively.
  • the second end of the four capacitors C4 is connected, the second end of the fourth switching device Q4 is connected with the first end of the fourth capacitor C4; the third end of the third switching device Q3 is used for input control.
  • a signal indicating the state of the third switching device Q3, and the third terminal of the fourth switching device Q4 is used to input a signal controlling the state of the fourth switching device Q4.
  • the first positive terminal 2041 is connected to the first terminal of the third capacitor C3, the first negative terminal 2042 is connected to the second terminal of the third capacitor C3, and the second positive terminal 2043 is connected to the first terminal of the third capacitor C3.
  • the first terminal of the fourth capacitor C4 is connected, and the second negative terminal 2044 is connected to the second terminal of the fourth capacitor C4.
  • the first positive terminal 2041 is connected to the first terminal of the fourth capacitor C4
  • the first negative terminal 2042 is connected to the second terminal of the fourth capacitor C4
  • the second positive terminal 2043 is connected to The first terminal of the third capacitor C3 is connected
  • the second negative terminal 2044 is connected to the second terminal of the third capacitor C3.
  • the off-state of the power devices in the power conversion circuit 204 is controlled to change according to specific rules, thereby adjusting the output voltage of the power conversion circuit 204 .
  • the third switching device Q3 is turned on
  • the fourth switching device Q4 is turned off
  • the second inductor L2 stores energy
  • the third switching device Q3 is turned off
  • the second switching device Q2 is turned on for freewheeling
  • the second inductor L2 stores energy.
  • the second inductor L2 releases energy to supply power to the load, and the buck/boost amplitude of the power conversion circuit 204 is adjusted by setting different turn-off duty ratios of the third switching device Q3 and the fourth switching device Q4.
  • the first positive terminal 2041 is connected to the first terminal of the third capacitor C3, and when the first negative terminal 2042 is connected to the second terminal of the third capacitor C3, the second The positive terminal 2043 is connected to the first terminal of the fourth capacitor C4, and the second negative terminal 2044 is connected to the second terminal of the fourth capacitor C4.
  • the first positive terminal 2041 When the first terminal 2042 of the fourth capacitor C4 is connected to the first terminal of the fourth capacitor C4, the second positive terminal 2043 is connected to the first terminal of the third capacitor C3, and the second negative terminal 2044 is connected to the first terminal of the fourth capacitor C4.
  • the second end of the third capacitor C3 is connected, and at this time, it is in the reverse BUCK mode.
  • Figure 8 is a schematic structural diagram 3 of a power conversion circuit; the power conversion circuit specifically includes: a fifth capacitor C5, a third inductor L3, and a fifth switching device. Q5, the sixth switching device Q6, the seventh switching device Q7, the eighth switching device Q8 and the sixth capacitor C6.
  • the first end of the fifth capacitor C5 is connected to the first end of the fifth switching device Q5, so The second end of the fifth switching device Q5 is connected to the first end of the third inductor L3, and the second end of the fifth switching device Q5 is connected to the first end of the sixth switching device Q6.
  • the second terminal of the sixth switching device Q6 and the third terminal of the fifth capacitor C5 Two terminals are connected, the first terminal of the seventh switching device Q7 is connected to the first terminal of the sixth capacitor C6, and the second terminal of the seventh switching device Q7 is connected to the first terminal of the eighth switching device Q8.
  • the second terminal of the eighth switching device Q8 is connected to the second terminal of the sixth switching device Q6.
  • the second terminal of the eighth switching device Q8 is also connected to the second terminal of the sixth capacitor C6.
  • the second end of the third inductor L3 is connected to the first end of the seventh switching device Q7; the third end of the fifth switching device Q5 is used to input and control the state of the fifth switching device Q5 signal, the third terminal of the sixth switching device Q6 is used to input a signal that controls the state of the sixth switching device Q6, and the third terminal of the seventh switching device Q7 is used to input a signal that controls the state of the seventh switching device The third terminal of the eighth switching device Q8 is used to input a signal that controls the state of the eighth switching device Q8.
  • the first positive terminal 2041 is connected to the first terminal of the fifth capacitor C5, the first negative terminal 2042 is connected to the second terminal of the fifth capacitor C5, and the second positive terminal 2043 is connected to the first terminal of the fifth capacitor C5.
  • the first terminal of the sixth capacitor C6 is connected, and the second negative terminal 2044 is connected to the second terminal of the sixth capacitor C6.
  • the first positive terminal 2041 is connected to the first terminal of the sixth capacitor C6, the first negative terminal 2042 is connected to the second terminal of the sixth capacitor C6, and the second positive terminal 2043 is connected to The first terminal of the fifth capacitor C5 is connected, and the second negative terminal 2044 is connected to the second terminal of the fifth capacitor C5.
  • the off-state of the power devices in the power conversion circuit 204 is controlled to change according to specific rules, thereby adjusting the output power of the power conversion circuit 204 .
  • specific shutdown adjustment method please refer to the corresponding descriptions in Figure 6 and Figure 7, and will not be described in detail here.
  • the first switching device Q1 to the eighth switching device Q8 can be either switching transistors or diodes. Those skilled in the art can freely set them according to cost and actual conversion efficiency requirements, and there are no excessive limitations here.
  • the power conversion device 200 further includes: a controller configured to control the off-state of the power device in the power conversion circuit 204 to adjust the output voltage of the power conversion circuit.
  • the controller can be a general central processing unit (CPU), a general processor, a digital signal processing (DSP), an application specific integrated circuit (ASIC), or a field programmable gate array. (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various illustrative logical blocks, modules, and circuits described in connection with this disclosure.
  • Figure 9 is a structural schematic diagram 3 of a power conversion device.
  • the power conversion device 200 also includes: a three-wire common mode inductor 900.
  • the three-wire common mode inductor 900 includes: a first winding 901, a second winding 902 and a third winding 903; the same end of the first winding 901 is connected to the first power terminal 201, and the same end of the second winding 902 is connected to the first power terminal 201.
  • the two power terminals 202 are connected, and the same terminal of the third winding 903 is connected to the third power terminal 203 .
  • the opposite terminal of the first winding 901 is connected to the first positive terminal 2041, and the first negative terminal 2042 and/or the second negative terminal 2044 is connected to the opposite terminal of the second winding 902,
  • the opposite terminal of the third winding 903 is connected to the second positive terminal 2043 .
  • the three-wire common mode inductor 900 is used to suppress the common mode noise in the power conversion circuit 204. After the common mode noise is suppressed at the first negative terminal 2042 or the second negative terminal 2044, it is connected to the first negative terminal 2042 or the second negative terminal 2044. Only ripple current flows through the connected second winding 902, thereby reducing coil losses.
  • the second power terminal may be a copper bar or a connector structure
  • the first negative output terminal 2052 of the first device 205 and the second negative input terminal 2062 of the second device 206 may be connected through a wire.
  • the cable copper bar or connector structure is connected to the first negative terminal 2042 or the second negative terminal 2044.
  • the first output positive terminal 2051 of the first device 205 and the second input positive terminal 2061 of the second device 206 can also be connected to the first positive terminal 2041 or the second positive terminal 2043 through a copper cable bar or a connector structure. .
  • At least one of the following devices may be included between the first power terminal 201 and the second power terminal 202, including a fuse, a switching device, and a shunt.
  • the fuse can be blown immediately when the current in the circuit increases rapidly due to a short-circuit fault in the line, which can protect the electrical equipment and lines connected to it, thereby avoiding damage and causing accidents.
  • the switching device is used to control the connection state between the first power terminal 201 and the second power terminal 202
  • the shunt is used to measure the current between the first power terminal and the second power terminal. When the current passes through the resistor, the current flows between the resistor and the resistor. It is made based on the principle of generating voltage at the terminal.
  • the first power terminal 201 and the third power terminal 203 can also be a cable copper bar or a connector structure, and there are no excessive limitations here.
  • Each terminal in the above embodiment is defined according to function. If multiple terminals are used in parallel for reasons such as flow, terminals with the same function can be regarded as one.
  • the power conversion device provided by this application, through the three power terminal structure, the power currents flowing on the bus connected to the first negative terminal or the second negative terminal can cancel each other, thereby reducing the current loss on the PCB board.
  • ripple current After the common mode noise is filtered by the common mode inductor, ripple current mainly flows through the common mode inductor connected to the first negative terminal or the second negative terminal, thereby reducing the coil loss.
  • this application provides an energy storage system, including: a battery pack and the power conversion device described in the above embodiment, the battery pack has a plurality of battery cells connected in series, the power conversion device and the The battery pack connection is used for converting the DC power input to the battery pack, and/or is used for converting the DC power output from the battery pack.
  • the battery pack includes multiple battery clusters connected in parallel, and each battery cluster includes multiple battery cells connected in series.
  • this application also provides a photovoltaic storage system, including an inverter, a power conversion device as described in the above embodiment, and a battery pack.
  • the power conversion device is used to convert the current from the inverter. Perform conversion and input the converted current to the battery pack, and/or convert the current of the battery pack and output the converted current to the power grid or load.
  • the battery pack includes multiple battery clusters connected in parallel, and each battery cluster includes multiple battery cells connected in series.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请提供一种功率变换装置及储能系统,包括:功率变换电路、第一功率端子、第二功率端子以及第三功率端子;功率变换电路包括:第一正端、第一负端、第二正端、第二负端以及至少一个功率器件,第一负端和第二负端的电位相同;功率变换电路,用于将第一设备输入的第一电压转换为第二电压输出到第二设备;第一功率端子与第一正端连接,第一负端和/或第二负端与第二功率端子连接,第三功率端子与第二正端连接。利用本申请提供的功率变换装置,能使流经功率变换电路单板的功率电流尽量减小,从而降低单板上的发热以及通流损耗,提升系统效率和可靠性。

Description

一种功率变换装置及储能系统
相关申请的交叉引用
本申请要求在2022年09月13日提交中国专利局、申请号为202211111958.9、申请名称为“一种功率变换装置及储能系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子电力系统,特别涉及一种功率变换装置及储能系统。
背景技术
目前新能源发电技术取得了很大的进步,为了维持新能源发电系统的稳定性,往往需要配置一定容量的储能系统。随着新能源发电的占比越来越大,需要配置储能系统的容量也逐渐变大,如何提高储能系统的可靠性及提升系统效率变得至关重要。
储能系统目前大多采用四端口非隔离直流转直流电路(direct current to direct current,DC-DC)拓扑实现储能系统中电池的充放电及升降压功能。在充放电时,所有的功率电流通过印刷电路板(printed circuit board,PCB)进行承载,负载功率越大,PCB板的发热也就越严重,从而引起的损耗也就越来越大,给PCB的设计带来很大的挑战。
有鉴于此,需要设计一种功率变换装置,来使功率电流尽可能少的流经PCB板,从而降低PCB板的发热以及通流损耗,提升系统效率和可靠性。
发明内容
本申请提供了一种功率变换装置及储能系统,能使功率电流尽可能少的流经PCB板,从而降低PCB板的发热以及通流损耗,提升系统效率和可靠性。
第一方面,本申请提供一种功率变换装置,包括:功率变换电路、第一功率端子、第二功率端子以及第三功率端子;功率变换电路包括:第一正端、第一负端、第二正端、第二负端以及至少一个功率器件,第一负端和第二负端的电位相同;功率变换电路,用于将第一设备输入的第一电压转换为第二电压输出到第二设备;第一功率端子与第一正端连接,第一负端和/或第二负端与第二功率端子连接,第三功率端子与第二正端连接。
利用本申请提供的功率变换装置,通过三功率端子结构,使功率电流主要流经外部的功率总线,与第一负端或第二负端连接的母线上流经的功率电流可以相互抵消,从而降低PCB板上的通流损耗,提升了系统效率和可靠性。
作为一种可能的实施方式,第二功率端子具体包括:第一子端子和第二子端子;第一子端子与第一设备的第一输出负端连接,第二子端子与第二设备的第二输入负端连接。
作为一种可能的实施方式,第一设备的第一输出正端与第一功率端子连接,第一设备的第一输出负端与第二功率端子连接;第二设备的第二输入正端与第三功率端子连接,第二设备的第二输入负端与第二功率端子连接。第一设备通过第一输出正端以及第一输出负端,分别与第一功率端子以及第二功率端子连接,以向功率变换电路输入第一电压;第二设备通过第二输入正端以及第二输入负端,分别与第三功率端子以及第二功率端子连接,以接收功率变换电路输出的第二电压。在该种拓扑结构中,功率变换电路中的第一负端以及第二负端共地使用,与第一负端或第二负端连接的母线上流经的功率电流可以相互抵消,从而降低通流损耗。
作为一种可能的实施方式,第一设备的第一输出正端与第二功率端子连接,第一设备的第一输出负端与第一功率端子连接;第二设备的第二输入正端与第二功率端子连接,第二设备的第二输入负端与第三功率端子连接。
第一设备通过第一输出正端以及第一输出负端,分别与第二功率端子以及第一功率端子连接,以向功率变换电路输入第一电压;第二设备通过第二输入正端以及第二输入负端,分别与第二功率端子以及第三功率端子连接,以接收功率变换电路输出的第二电压。在该种拓扑结构中,功率变换电路中的第一正端以及第二正端共电源使用,与第一负端或第二负端连接的母线上流经的功率电流可以相互抵消, 从而降低通流损耗。
作为一种可能的实施方式,功率变换电路,具体包括:第一电容、第一开关器件、第二开关器件、第一电感以及第二电容,第一电容的第一端与第一开关器件的第一端连接,第一开关器件的第二端分别与第一电感的第一端和第二开关器件的第一端连接,第一开关器件的第三端用于输入控制第一开关器件状态的信号,第二开关器件的第二端分别与第一电容的第二端以及第二电容的第一端连接,第二开关器件的第三端用于输入控制第二开关器件状态的信号,第一电感的第二端与第二电容的第二端连接;第一正端与第一电容的第一端连接,第一负端与第一电容的第二端连接,第二正端与第二电容的第一端连接,第二负端与第二电容的第二端连接;或者,第一正端与第二电容的第一端连接,第一负端与第二电容的第二端连接,第二正端与第一电容的第一端连接,第二负端与第一电容的第二端连接。
在功率变换电路满足启动条件时,通过控制功率变换电路中的功率器件的关断状态按照特定规则变化,从而能调整功率变换电路的输出电压。为了不局限于降压或升压等工作模式,第一正端在与第一电容的第一端连接,第一负端与第一电容的第二端连接时,第二正端与第二电容的第一端连接,第二负端与第二电容的第二端连接,此时,处于正向降压模式;而在第一正端与第二电容的第一端连接,第一负端与第二电容的第二端连接时,第二正端与第一电容的第一端连接,第二负端与第一电容的第二端连接,此时,处于反向升压模式。
作为一种可能的实施方式,功率变换电路,具体包括:第三电容、第二电感、第三开关器件、第四开关器件以及第四电容,第三电容的第一端与第二电感的第一端连接,第二电感的第二端分别与第三开关器件的第一端和第四开关器件的第一端连接,第三电容的第二端分别与第三开关器件的第二端以及第四电容的第二端连接,第四开关器件的第二端与第四电容的第一端连接;第三开关器件的第三端用于输入控制第三开关器件状态的信号,第四开关器件的第三端用于输入控制第四开关器件状态的信号;第一正端与第三电容的第一端连接,第一负端与第三电容的第二端连接,第二正端与第四电容的第一端连接,第二负端与第四电容的第二端连接;或者,第一正端与第四电容的第一端连接,第一负端与第四电容的第二端连接,第二正端与第三电容的第一端连接,第二负端与第三电容的第二端连接。
在功率变换电路满足启动条件时,控制功率变换电路中的功率器件的关断状态按照特定规则变化,从而调整功率变换电路的输出电压。为了不局限于降压或升压等工作模式,第一正端与第三电容的第一端连接,第一负端与第三电容的第二端连接时,第二正端与第四电容的第一端连接,第二负端与第四电容的第二端连接,此时,处于正向升压模式;第一正端与第四电容的第一端连接,第一负端与第四电容的第二端连接时,第二正端与第三电容的第一端连接,第二负端与第三电容的第二端连接,此时,处于反向降压模式。
作为一种可能的实施方式,功率变换电路,具体包括:第五电容、第三电感、第五开关器件、第六开关器件、第七开关器件、第八开关器件以及第六电容,第五电容的第一端与第五开关器件的第一端连接,第五开关器件的第二端与第三电感的第一端连接,第五开关器件的第二端与第六开关器件的第一端连接,第六开关器件的第二端与第五电容的第二端连接,第七开关器件的第一端与第六电容的第一端连接,第七开关器件的第二端与第八开关器件的第一端连接,第八开关器件的第二端与第六开关器件的第二端连接,第八开关器件的第二端还与第六电容的第二端连接,第三电感的第二端与第七开关器件的第一端连接;第五开关器件的第三端用于输入控制第五开关器件状态的信号,第六开关器件的第三端用于输入控制第六开关器件状态的信号,第七开关器件的第三端用于输入控制第七开关器件状态的信号,第八开关器件的第三端用于输入控制第八开关器件状态的信号;第一正端与第五电容的第一端连接,第一负端与第五电容的第二端连接,第二正端与第六电容的第一端连接,第二负端与第六电容的第二端连接;或者,第一正端与第六电容的第一端连接,第一负端与第六电容的第二端连接,第二正端与第五电容的第一端连接,第二负端与第五电容的第二端连接。
为了实现抑制功率变换电路的共模噪声,作为一种可能的实施方式,功率变换装置还包括:三线共模电感,其包括:第一绕组、第二绕组以及第三绕组,第一绕组的同名端与第一功率端子连接,第二绕组的同名端与第二功率端子连接,第三绕组的同名端与第三功率端子连接;第一绕组的异名端与第一正端连接,第一负端和/或第二负端与第二绕组的异名端连接,第三绕组的异名端与第二正端连接。
作为一种可能的实施方式,功率变换装置还包括:控制器,其用于控制功率变换电路中的功率器件关断状态,以调整功率变换电路的输出电压。
作为一种可能的实施方式,第二功率端子为铜排或者接插件结构。第一设备的第一输出负端以及 第二设备的第二输入负端,可以通过线缆铜排或者接插件结构与第一负端或第二负端连接。或者,第一设备的第一输出正端以及第二设备的第二输入正端,也可以通过线缆铜排或者接插件结构与第一正端或第二正端连接。
作为一种可能的实施方式,第一功率端子与第二功率端子之间包括如下至少一种器件,熔丝、开关器件以及分流器。其中,熔丝可在线路发生短路故障而造成的回路内的电流迅速增大时立即熔断,可以保护与其连接的电气设备及线路,从而避免损坏引起事故。开关器件用于控制第一功率端子与第二功率端子之间的连接状态,而分流器用于测量第一功率端子与第二功率端子之间的电流大小,根据电流通过电阻时在电阻两端产生电压的原理制成。
第二方面,本申请提供一种储能系统,包括:电池包和如第一方面描述的功率变换装置,电池包多个串联连接的电池单体,功率变换装置与电池包连接,用于对输入电池包的直流电进行转换处理,和/或,用于对从电池包输出的直流电进行转换处理。
第三方面,本申请提供一种光储系统,包括逆变器、如第一方面描述的功率变换装置和电池包,功率转换装置用于对来自所述逆变器的电流进行转换,并将转换后的电流输入至电池包,和/或,用于将电池包的电流进行转换处理,并将转换后的电流输出到电网或负载。
上述第二方面或第三方面可以达到的技术效果描述请参照上述第一方面中任一可能设计可以达到的技术效果描述,重复之处不予论述。
附图说明
图1为一种四端口非隔离DC-DC拓扑示意图;
图2A为一种功率变换装置的结构示意图一;
图2B为一种功率变换装置的结构示意图二;
图3A为一种现有功率变换电路的电流流向示意图;
图3B为本申请功率变换装置的电流流向示意图一;
图3C为本申请功率变换装置的电流流向示意图二;
图4为一种功率变换装置的连接示意图一;
图5为一种功率变换装置的连接示意图二;
图6为一种功率变换电路的结构示意图一;
图7为一种功率变换电路的结构示意图二;
图8为一种功率变换电路的结构示意图三;
图9为一种功率变换装置的结构示意图三。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本申请更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。需要说明的是,在本申请的描述中“至少一个”是指一个或多个,其中,多个是指两个或两个以上。鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
需要指出的是,本申请实施例中“连接”指的是电连接,两个电学元件连接可以是两个电学元件之间的直接或间接连接。例如,A与B连接,既可以是A与B直接连接,也可以是A与B之间通过一 个或多个其它电学元件间接连接,例如A与B连接,也可以是A与C直接连接,C与B直接连接,A与B之间通过C实现了连接。
下面,首先对本申请实施例的应用场景加以介绍。
近年来,风能、太阳能等新能源发电站的发电量越来越多,由于新能源电站自身具有发电不稳定的特性,对电网造成冲击会使电网的频率稳定性变差。为了使电力系统的频率能够维持稳定,往往需要配置一定容量的储能系统,储能系统可通过一定介质存储电能,并在需要时将所存能量释放发电。随着新能源发电的占比增加,储能系统的容量也逐渐变大,因此需要提高储能系统的可靠性及系统效率。
储能系统中的功率变换电路,大多采用四端口非隔离DC-DC拓扑结构,从而实现对储能系统中的电池进行充放电及升降压的功能,参阅图1所示,图1为一种四端口非隔离DC-DC拓扑示意图,四端口(Vin+、Vin-、Vout+、Vout-)非隔离DC-DC拓扑结构的一端可以连接在储能单元中,另一端可以连接在逆变器上,以使逆变器将直流电转换为交流电,输出到电网或负载上。从图1中可以看出,所有的功率电流(功率输入、功率输出、功率地线)均是通过PCB板进行承载的,随着器件密度和功率快速上升,PCB板发热越来越严重,引起的损耗也越来越大。
有鉴于此,本申请提供一种功率变换装置,使与第一负端或第二负端连接的母线上流经的功率电流可以相互抵消,使得功率电流的一部分不流经PCB板,从而减小PCB板上的通流损耗,提升了系统效率和可靠性。
参阅图2A所示,图2A为一种功率变换装置的结构示意图一,功率变换装置200,包括:第一功率端子201、第二功率端子202、第三功率端子203以及功率变换电路204;所述功率变换电路204包括:第一正端2041、第一负端2042、第二正端2043、第二负端2044以及至少一个功率器件,所述第一负端2042和所述第二负端2044的电位相同;所述功率变换电路204,用于将第一设备205输入的第一电压转换为第二电压输出到第二设备206;所述第一功率端子201与所述第一正端2041连接,所述第一负端2042和/或所述第二负端2044与所述第二功率端子202连接,所述第三功率端子203与所述第二正端2043连接。
其中,功率变换电路204可以是将电压恒定的直流电变换为电压可调的直流电的变流电路,又可称为直流斩波器,通过改变功率变换电路204中的至少一个功率器件通断状态,或改变开关器件通断的时间比例,即可以实现输出电压的调节。示例性的,功率变换电路204可以是BUCK降压电路、BOOST升压电路或BUCK-BOOST降压-升压电路等等,具体可以的电路类型和电路组合方式,本领域人员应当知晓,这里不做过多赘述。
功率器件可以是继电器、金属氧化物半导体场效应晶体管(metal oxide semiconductor field effect transistor,MOSFET),双极结型管(bipolar junction transistor,BJT),绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT),碳化硅(SiC)功率管等多种类型的开关器件中的一种或多种,本申请实施例对此不再一一列举。
功率变换电路204,用于将第一设备205输入的第一电压转换为第二电压输出到第二设备206。其中,第一设备205可以为储能单元,第二设备206可以为负载设备或电网。储能单元中的储能部件可以在新能源电站发电不稳定时,为负载设备供电。由于储能部件提供的电压难以满足负载设备对电压的要求,因此,储能单元可通过功率变换电路204进行电压调节从而为负载设备供电。
示例性的,若第一电压大于第二电压,则功率变换电路204可以为降压电路,若第一电压小于第二电压,则功率变换电路204可以为升压电路;若第一电压与第二电压的大小关系难以事先确定,则功率变换电路204可以为升压-降压电路等。
作为一种可能的实施方式,参阅图2B所示,图2B为一种功率变换装置的结构示意图二,第二功率端子202,具体包括:第一子端子2021和第二子端子2022;所述第一子端子2021与所述第一设备205的第一输出负端2052连接,所述第二子端子2022与所述第二设备206的第二输入负端2062连接。
其中,本申请提供的第二功率端子还可以存在两个对外的连接端口,从而便于第一设备205与第二设备206的连接。技术人员在实际连接时,可将第一设备205的第一输出负端2052连接到第一子端子2021上,第二设备206的第二输入负端2062连接到第二子端子2022上,或者,还可将第二设备206的第一输出负端2052连接到第一子端子2021上,第一设备205的第一输出负端2052连接到第二子端子2022上,第一子端子2021和第二子端子2022可在模块内部或端子处使用通流母排连接,并通过线缆(或者铜排或者接插件等)与第一负端2042和/或第二负端2044连接。
参阅图3A所示,图3A为一种现有功率变换电路的电流流向示意图,以功率变换电路204为BUCK电路为例,第一设备205输入的功率电流从第一正端2041流入,从第一负端2042流出,输出到第二设备206的功率电流从第二负端2044流入,从第二正端2043流出。从图3A中可以看出,与第一正端2041、第一负端2042、第二正端2043以及第二负端2044连接的正/负母线全部流经功率电流,导致PCB发热比较严重,并且由于PCB的严重发热情况,导致功率电流在流经PCB板时,通流损耗较大。
仍以BUCK电路为例,参阅图3B所示,图3B为本申请功率变换装置的电流流向示意图一,第一设备205与第一功率端子201、第二功率端子202连接,第一设备205输入的功率电流可以从第一正端2041流入,从第一负端2042流出,第二设备206与第二功率端子202、第三功率端子203连接,输出到第二设备206的功率电流从第一负端2042流入,从第二正端2043流出。
参阅图3C所示,图3C为本申请功率变换装置的电流流向示意图二,第一设备205与第一功率端子201、第二功率端子202连接,第一设备205输入的功率电流可以从第一正端2041流入,从第二负端2044流出,第二设备206与第二功率端子202、第三功率端子203连接,输出到第二设备206的功率电流从第二负端2044流入,从第二正端2043流出。
从图3B中可以看出,由于第二功率端子202与所述第一负端2042连接,第一设备205输入的功率电流从第一负端2042流出,输出到第二设备206的功率电流从第一负端2042流入,因此,这两个流向相反的功率电流在与第一负端2042连接的母线上实现抵消(如果这两个电流值不相等,则对于电流值较大的功率电流来说,至少部分功率电流被另一个电流值较小的功率电流所抵消,从而使得与第一负端2042连接的母线上实际流经的电流变小),从而能减小PCB的通流损耗。
从图3C中可以看出,由于第二功率端子202与所述第二负端2044连接,第一设备205输入的功率电流从第二负端2044流出,输出到第二设备206的功率电流从第二负端2044流入,因此,这两个流向相反的功率电流在与第二负端2044连接的母线上实现抵消(如果这两个电流值不相等,则对于电流值比较大的功率电流来说,至少会有部分功率电流被另一个电流值较小的功率电流所抵消,从而使得与第二负端2044连接的母线上实际流经的电流变小),从而能减小PCB的通流损耗。
作为一种可能的实施方式,参阅图4所示,图4为一种功率变换装置的连接示意图一;其中,所述第一设备205的第一输出正端2051与所述第一功率端子201连接,所述第一设备205的第一输出负端2052与所述第二功率端子202连接;所述第二设备206的第二输入正端2061与所述第三功率端子203连接,所述第二设备206的第二输入负端2062与所述第二功率端子202连接。
第一设备205通过第一输出正端2051与第一功率端子201连接,以及通过第一输出负端2052与第二功率端子202连接,以向功率变换电路204输入第一电压。第二设备206通过第二输入正端2061与第三功率端子203连接,以及通过第二输入负端2062与第二功率端子202连接,以接收功率变换电路204输出的第二电压。在该种拓扑结构中,功率变换电路204中的第一输出负端2052以及第二输入负端2062共地使用,在第一负端2042连接的母线上,或,在第二负端2044连接的母线上,由第一设备205流出的功率电流和由流入到第二设备206的功率电流可以相互抵消,从而能减小PCB的通流损耗。
作为一种可能的实施方式,参阅图5所示,图5为一种功率变换装置的连接示意图二;所述第一设备205的第一输出正端2051与所述第二功率端子202连接,所述第一设备205的第一输出负端2052与所述第一功率端子201连接;所述第二设备206的第二输入正端2061与所述第二功率端子202连接,所述第二设备206的第二输入负端2062与所述第三功率端子203连接。
第一设备205通过第一输出正端2051与第二功率端子202连接,以及通过第一输出负端2052与第一功率端子201连接,以向功率变换电路204输入第一电压;第二设备206通过第二输入正端2061与第二功率端子202连接,以及通过第二输入负端2062与第三功率端子203连接,以接收功率变换电路204输出的第二电压。在该种拓扑结构中,功率变换电路204中的第一输出正端2051以及第二输入正端2061共电源使用,在第二负端2044连接的母线上,或,在第二负端2044连接的母线上,由第一设备205流出的功率电流和由流入到第二设备206的功率电流可以相互抵消,从而能减小PCB的通流损耗。
其中,上述第一输出正端2051可以为第一设备205的正极端子,第一输出负端2052可以为第一设备205的负极端子,而第二输入正端2061可以作为第二设备206的正极端子,第二输入负端2062可以作为第二设备206的负极端子。
作为一种可能的实施方式,参阅图6所示,图6为一种功率变换电路的结构示意图一;所述功率变 换电路204,具体包括:第一电容C1、第一开关器件Q1、第二开关器件Q2、第一电感L1以及第二电容C2,所述第一电容C1的第一端与第一开关器件Q1的第一端连接,所述第一开关器件Q1的第二端分别与所述第一电感L1的第一端和所述第二开关器件Q2的第一端连接,所述第一开关器件Q1的第三端用于输入控制第一开关器件Q1状态的信号,所述第二开关器件Q2的第二端分别与所述第一电容C1的第二端以及第二电容C2的第一端连接,所述第二开关器件Q2的第三端用于输入控制所述第二开关器件Q2状态的信号,所述第一电感L1的第二端与所述第二电容C2的第二端连接;
所述第一正端2041与所述第一电容C1的第一端连接,所述第一负端2042与所述第一电容C1的第二端连接,所述第二正端2043与所述第二电容C2的第一端连接,所述第二负端2044与所述第二电容C2的第二端连接。或者,所述第一正端2041与所述第二电容C2的第一端连接,所述第一负端2042与所述第二电容C2的第二端连接,所述第二正端2043与所述第一电容C1的第一端连接,所述第二负端2044与所述第一电容C1的第二端连接。
在功率变换电路204满足启动条件时,通过控制功率变换电路204中的功率器件的关断状态按照特定规则变化,从而能调整功率变换电路204的输出电压。示例性的,第一开关器件Q1导通时,第二开关器件Q2关断,第一电感L1储能,而在第一开关器件Q1关断时,第二开关器件Q2导通续流,第一电感L1释放能量给负载供电,通过设置第一开关器件Q1以及第二开关器件Q2不同的关断占空比,来调整为功率变换电路204的降压/升压幅度。
为了不局限于降压或升压等工作模式,第一正端2041在与第一电容C1的第一端连接,第一负端2042与第一电容C1的第二端连接时,第二正端2043与第二电容C2的第一端连接,第二负端2044与所述第二电容C2的第二端连接,此时,处于正向BUCK降压模式;而在第一正端2041与第二电容C2的第一端连接,第一负端2042与第二电容C2的第二端连接时,第二正端2043与第一电容C1的第一端连接,第二负端2044与第一电容C1的第二端连接,此时,处于反向BOOST升压模式。
作为一种可能的实施方式,参阅图7所示,图7为一种功率变换电路的结构示意图二;所述功率变换电路,具体包括:第三电容C3、第二电感L2、第三开关器件Q3、第四开关器件Q4以及第四电容C4,所述第三电容C3的第一端与所述第二电感L2的第一端连接,所述第二电感L2的第二端分别与所述第三开关器件Q3的第一端和所述第四开关器件Q4的第一端连接,所述第三电容C3的第二端分别与所述第三开关器件Q3的第二端以及所述第四电容C4的第二端连接,所述第四开关器件Q4的第二端与所述第四电容C4的第一端连接;所述第三开关器件Q3的第三端用于输入控制所述第三开关器件Q3状态的信号,所述第四开关器件Q4的第三端用于输入控制所述第四开关器件Q4状态的信号。
所述第一正端2041与所述第三电容C3的第一端连接,所述第一负端2042与所述第三电容C3的第二端连接,所述第二正端2043与所述第四电容C4的第一端连接,所述第二负端2044与所述第四电容C4的第二端连接。或者,所述第一正端2041与所述第四电容C4的第一端连接,所述第一负端2042与所述第四电容C4的第二端连接,所述第二正端2043与所述第三电容C3的第一端连接,所述第二负端2044与所述第三电容C3的第二端连接。
在功率变换电路204满足启动条件时,控制功率变换电路204中的功率器件的关断状态按照特定规则变化,从而调整功率变换电路204的输出电压。示例性的,第三开关器件Q3导通时,第四开关器件Q4关断,第二电感L2储能;而在第三开关器件Q3关断时,第二开关器件Q2导通续流,第二电感L2释放能量给负载供电,通过设置第三开关器件Q3以及第四开关器件Q4不同的关断占空比,来调整为功率变换电路204的降压/升压幅度。
为了不局限于降压或升压等工作模式,第一正端2041与所述第三电容C3的第一端连接,第一负端2042与第三电容C3的第二端连接时,第二正端2043与所述第四电容C4的第一端连接,第二负端2044与所述第四电容C4的第二端连接,此时,处于正向BOOST升压模式;第一正端2041与第四电容C4的第一端连接,第一负端2042与第四电容C4的第二端连接时,第二正端2043与第三电容C3的第一端连接,第二负端2044与所述第三电容C3的第二端连接,此时,处于反向BUCK降压模式。
作为一种可能的实施方式,参阅图8所示,图8为一种功率变换电路的结构示意图三;所述功率变换电路,具体包括:第五电容C5、第三电感L3、第五开关器件Q5、第六开关器件Q6、第七开关器件Q7、第八开关器件Q8以及第六电容C6,所述第五电容C5的第一端与所述第五开关器件Q5的第一端连接,所述第五开关器件Q5的第二端与所述第三电感L3的第一端连接,所述第五开关器件Q5的第二端与所述第六开关器件Q6的第一端连接,所述第六开关器件Q6的第二端与所述第五电容C5的第 二端连接,所述第七开关器件Q7的第一端与所述第六电容C6的第一端连接,所述第七开关器件Q7的第二端与所述第八开关器件Q8的第一端连接,所述第八开关器件Q8的第二端与所述第六开关器件Q6的第二端连接,所述第八开关器件Q8的第二端还与所述第六电容C6的第二端连接,所述第三电感L3的第二端与所述第七开关器件Q7的第一端连接;所述第五开关器件Q5的第三端用于输入控制所述第五开关器件Q5状态的信号,所述第六开关器件Q6的第三端用于输入控制所述第六开关器件Q6状态的信号,所述第七开关器件Q7的第三端用于输入控制所述第七开关器件Q7状态的信号,所述第八开关器件Q8的第三端用于输入控制所述第八开关器件Q8状态的信号。
所述第一正端2041与所述第五电容C5的第一端连接,所述第一负端2042与所述第五电容C5的第二端连接,所述第二正端2043与所述第六电容C6的第一端连接,所述第二负端2044与所述第六电容C6的第二端连接。或者,所述第一正端2041与所述第六电容C6的第一端连接,所述第一负端2042与所述第六电容C6的第二端连接,所述第二正端2043与所述第五电容C5的第一端连接,所述第二负端2044与所述第五电容C5的第二端连接。
在功率变换电路204满足启动条件时,控制功率变换电路204中的功率器件的关断状态按照特定规则变化,从而调整功率变换电路204的输出功率。具体的关断调整方式可以参见图6以及图7对应的描述,这里不做过多赘述。
第一开关器件Q1-第八开关器件Q8既可以是开关管也可以是二极管,本领域技术人员可以根据成本以及实际转换效率要求自由设定,这里不做过多限定。
作为一种可能的实施方式,所述功率变换装置200还包括:控制器,其用于控制所述功率变换电路204中的功率器件关断状态,以调整功率变换电路的输出电压。
其中,控制器可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。
为了实现抑制功率变换电路204的共模噪声,参阅图9所示,图9为一种功率变换装置的结构示意图三,功率变换装置200还包括:三线共模电感900,所述三线共模电感900包括:第一绕组901、第二绕组902以及第三绕组903;所述第一绕组901的同名端与所述第一功率端子201连接,所述第二绕组902的同名端与所述第二功率端子202连接,所述第三绕组903的同名端与所述第三功率端子203连接。所述第一绕组901的异名端与所述第一正端2041连接,所述第一负端2042和/或所述第二负端2044与所述第二绕组902的异名端连接,所述第三绕组903的异名端与所述第二正端2043连接。
三线共模电感900用于抑制功率变换电路204中的共模噪声,在第一负端2042或第二负端2044处共模噪声被抑制后,与第一负端2042或第二负端2044连接的第二绕组902上仅流经了纹波电流,从而降低了线圈损耗。
作为一种可能的实施方式,所述第二功率端子可以为铜排或者接插件结构,第一设备205的第一输出负端2052以及第二设备206的第二输入负端2062,可以通过线缆铜排或者接插件结构与第一负端2042或第二负端2044连接。或者,第一设备205的第一输出正端2051以及第二设备206的第二输入正端2061,也可以通过线缆铜排或者接插件结构与第一正端2041或第二正端2043连接。
作为一种可能的实施方式,第一功率端子201与第二功率端子202之间可以包括如下至少一种器件,熔丝、开关器件以及分流器。其中,熔丝可在线路发生短路故障而造成的回路内的电流迅速增大时立即熔断,可以保护与其连接的电气设备及线路,从而避免损坏引起事故。开关器件用于控制第一功率端子201与第二功率端子202之间的连接状态,而分流器用于测量第一功率端子与第二功率端子之间的电流大小,根据电流通过电阻时在电阻两端产生电压的原理制成。
本申请实施例中的,第一功率端子201以及第三功率端子203同样可以为线缆铜排或者接插件结构,这里不做过多限定。上述实施例中的各个端子是按照功能定义的,如果因为通流等原因使用了多个端子并联,功能相同的端子则可以视为同一个。
利用本申请提供的功率变换装置,通过三功率端子结构,使与第一负端或第二负端连接的母线上流经的功率电流可以相互抵消,从而降低PCB板上的通流损耗,此外,通过共模电感对共模噪声进行滤波后,与第一负端或第二负端连接的共模电感上流经的主要是纹波电流,从而降低了线圈损耗。
基于相同的构思,本申请提供一种储能系统,包括:电池包和上述实施例所述的功率变换装置,所述电池包多个串联连接的电池单体,所述功率变换装置与所述电池包连接,用于对输入所述电池包的直流电进行转换处理,和/或,用于对从所述电池包输出的直流电进行转换处理。可选的,电池包包括多个并联的电池簇,每个电池簇包括多个串联连接的电池单体。
基于相同的构思,本申请还提供一种光储系统,包括逆变器、如上述实施例所述的功率变换装置和电池包,所述功率转换装置用于对来自所述逆变器的电流进行转换,并将转换后的电流输入至所述电池包,和/或,用于将所述电池包的电流进行转换处理,并将转换后的电流输出到电网或负载。可选的,电池包包括多个并联的电池簇,每个电池簇包括多个串联连接的电池单体。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (11)

  1. 一种功率变换装置,其特征在于,包括:功率变换电路、第一功率端子、第二功率端子以及第三功率端子;
    所述功率变换电路包括:第一正端、第一负端、第二正端、第二负端以及至少一个功率器件,所述第一负端和所述第二负端的电位相同;
    所述功率变换电路,用于将第一设备输入的第一电压转换为第二电压,并将所述第二电压输出到第二设备;
    所述第一功率端子与所述第一正端连接,所述第一负端和/或所述第二负端与所述第二功率端子连接,所述第三功率端子与所述第二正端连接。
  2. 根据权利要求1所述的功率变换装置,其特征在于,所述第二功率端子,具体包括:第一子端子和第二子端子;
    所述第一子端子与所述第一设备的第一输出负端连接,所述第二子端子与所述第二设备的第二输入负端连接。
  3. 根据权利要求1或2所述的功率变换装置,其特征在于,所述第一设备的第一输出正端与所述第一功率端子连接,所述第一设备的第一输出负端与所述第二功率端子连接;
    所述第二设备的第二输入正端与所述第三功率端子连接,所述第二设备的第二输入负端与所述第二功率端子连接。
  4. 根据权利要求1或2所述的功率变换装置,其特征在于,所述第一设备的第一输出正端与所述第二功率端子连接,所述第一设备的第一输出负端与所述第一功率端子连接;
    所述第二设备的第二输入正端与所述第二功率端子连接,所述第二设备的第二输入负端与所述第三功率端子连接。
  5. 根据权利要求1-4任一所述的功率变换装置,其特征在于,所述功率变换电路,具体包括:第一电容、第一开关器件、第二开关器件、第一电感以及第二电容,所述第一电容的第一端与第一开关器件的第一端连接,所述第一开关器件的第二端分别与所述第一电感的第一端和所述第二开关器件的第一端连接,所述第一开关器件的第三端用于输入控制第一开关器件状态的信号,所述第二开关器件的第二端分别与所述第一电容的第二端以及第二电容的第一端连接,所述第二开关器件的第三端用于输入控制所述第二开关器件状态的信号,所述第一电感的第二端与所述第二电容的第二端连接;
    所述第一正端与所述第一电容的第一端连接,所述第一负端与所述第一电容的第二端连接,所述第二正端与所述第二电容的第一端连接,所述第二负端与所述第二电容的第二端连接;或者,所述第一正端与所述第二电容的第一端连接,所述第一负端与所述第二电容的第二端连接,所述第二正端与所述第一电容的第一端连接,所述第二负端与所述第一电容的第二端连接。
  6. 根据权利要求1-4任一所述的功率变换装置,其特征在于,所述功率变换电路,具体包括:第三电容、第二电感、第三开关器件、第四开关器件以及第四电容,所述第三电容的第一端与所述第二电感的第一端连接,所述第二电感的第二端分别与所述第三开关器件的第一端和所述第四开关器件的第一端连接,所述第三电容的第二端分别与所述第三开关器件的第二端以及所述第四电容的第二端连接,所述第四开关器件的第二端与所述第四电容的第一端连接;所述第三开关器件的第三端用于输入控制所述第三开关器件状态的信号,所述第四开关器件的第三端用于输入控制所述第四开关器件状态的信号;
    所述第一正端与所述第三电容的第一端连接,所述第一负端与所述第三电容的第二端连接,所述第二正端与所述第四电容的第一端连接,所述第二负端与所述第四电容的第二端连接;或者,所述第一正端与所述第四电容的第一端连接,所述第一负端与所述第四电容的第二端连接,所述第二正端与所述第三电容的第一端连接,所述第二负端与所述第三电容的第二端连接。
  7. 根据权利要求1-4任一所述的功率变换装置,其特征在于,所述功率变换电路,具体包括:
    第五电容、第三电感、第五开关器件、第六开关器件、第七开关器件、第八开关器件以及第六电容,所述第五电容的第一端与所述第五开关器件的第一端连接,所述第五开关器件的第二端与所述第三电感的第一端连接,所述第五开关器件的第二端与所述第六开关器件的第一端连接,所述第六开关器件的第二端与所述第五电容的第二端连接,所述第七开关器件的第一端与所述第六电容的第一端连接,所述第七开关器件的第二端与所述第八开关器件的第一端连接,所述第八开关器件的第二端与所述第六开关器件的第二端连接,所述第八开关器件的第二端还与所述第六电容的第二端连接,所述第三电感的第二端与所述第七开关器件的第一端连接;所述第五开关器件的第三端用于输入控制所述第五开关器件状态的信号,所述第六开关器件的第三端用于输入控制所述第六开关器件状态的信号,所述第七开关器件的第三端用于输入控制所述第七开关器件状态的信号,所述第八开关器件的第三端用于输入控制所述第八开关器件状态的信号;
    所述第一正端与所述第五电容的第一端连接,所述第一负端与所述第五电容的第二端连接,所述第二正端与所述第六电容的第一端连接,所述第二负端与所述第六电容的第二端连接;或者,所述第一正端与所述第六电容的第一端连接,所述第一负端与所述第六电容的第二端连接,所述第二正端与所述第五电容的第一端连接,所述第二负端与所述第五电容的第二端连接。
  8. 根据权利要求1-7任一所述的功率变换装置,其特征在于,所述功率变换装置还包括:三线共模电感,所述三线共模电感包括:第一绕组、第二绕组以及第三绕组,所述第一绕组的同名端与所述第一功率端子连接,所述第二绕组的同名端与所述第二功率端子连接,所述第三绕组的同名端与所述第三功率端子连接;
    所述第一绕组的异名端与所述第一正端连接,所述第一负端和/或所述第二负端与所述第二绕组的异名端连接,所述第三绕组的异名端与所述第二正端连接。
  9. 根据权利要求1-8任一所述的功率变换装置,其特征在于,所述功率变换装置还包括:控制器,用于控制所述功率变换电路中的功率器件关断状态,以调整所述功率变换电路的输出电压。
  10. 一种储能系统,其特征在于,包括:电池包和如权利要求1-9任一所述的功率变换装置,所述电池包多个串联连接的电池单体,所述功率变换装置与所述电池包连接,用于对输入所述电池包的直流电进行转换处理,和/或,用于对从所述电池包输出的直流电进行转换处理。
  11. 一种光储系统,其特征在于,包括逆变器、如权利要求1-9任一所述的功率变换装置和电池包,所述功率转换装置用于对来自所述逆变器的电流进行转换,并将转换后的电流输入至所述电池包,和/或,用于将所述电池包的电流进行转换处理,并将转换后的电流输出到电网或负载。
PCT/CN2023/103473 2022-09-13 2023-06-28 一种功率变换装置及储能系统 WO2024055690A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211111958.9 2022-09-13
CN202211111958.9A CN115566889A (zh) 2022-09-13 2022-09-13 一种功率变换装置及储能系统

Publications (1)

Publication Number Publication Date
WO2024055690A1 true WO2024055690A1 (zh) 2024-03-21

Family

ID=84741681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103473 WO2024055690A1 (zh) 2022-09-13 2023-06-28 一种功率变换装置及储能系统

Country Status (4)

Country Link
US (1) US20240088775A1 (zh)
EP (1) EP4346047A1 (zh)
CN (1) CN115566889A (zh)
WO (1) WO2024055690A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115566889A (zh) * 2022-09-13 2023-01-03 华为数字能源技术有限公司 一种功率变换装置及储能系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424869A (zh) * 2002-12-19 2003-06-18 台达电子工业股份有限公司 以印刷电路板接地布线消除噪声干扰与噪音的方法
JP2010148218A (ja) * 2008-12-18 2010-07-01 Fuji Electric Systems Co Ltd 複合半導体装置
JP2010207068A (ja) * 2009-02-03 2010-09-16 Kaga Electronics Co Ltd 電源装置および電子機器
CN104519653A (zh) * 2013-09-27 2015-04-15 鸿富锦精密工业(深圳)有限公司 具有驱动电路布线结构的电路板
CN115566889A (zh) * 2022-09-13 2023-01-03 华为数字能源技术有限公司 一种功率变换装置及储能系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105406695B (zh) * 2014-08-27 2018-03-16 华为技术有限公司 一种开关电源滤波电路
US10680520B2 (en) * 2018-05-18 2020-06-09 Ronald S. Davison I/O protected buck then boost or boost then buck converter, with interleaving option

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424869A (zh) * 2002-12-19 2003-06-18 台达电子工业股份有限公司 以印刷电路板接地布线消除噪声干扰与噪音的方法
JP2010148218A (ja) * 2008-12-18 2010-07-01 Fuji Electric Systems Co Ltd 複合半導体装置
JP2010207068A (ja) * 2009-02-03 2010-09-16 Kaga Electronics Co Ltd 電源装置および電子機器
CN104519653A (zh) * 2013-09-27 2015-04-15 鸿富锦精密工业(深圳)有限公司 具有驱动电路布线结构的电路板
CN115566889A (zh) * 2022-09-13 2023-01-03 华为数字能源技术有限公司 一种功率变换装置及储能系统

Also Published As

Publication number Publication date
EP4346047A1 (en) 2024-04-03
CN115566889A (zh) 2023-01-03
US20240088775A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
Ferrera et al. A converter for bipolar DC link based on SEPIC-Cuk combination
JP2020530756A (ja) 変換回路、制御方法、及び電源デバイス
JP2007068385A (ja) トランスレス型系統連係電力変換回路
US9203323B2 (en) Very high efficiency uninterruptible power supply
WO2013082857A1 (zh) 集中-分布混合式新能源发电系统及最大功率点跟踪控制方法
CN206099366U (zh) 双极型光伏发电系统
WO2024055690A1 (zh) 一种功率变换装置及储能系统
CN106712107B (zh) 一种应用于并网变流器并联运行的优化功率分配方法
CN106533173B (zh) 一种输入相数可调的高增益dc/dc变换器
CN108683347B (zh) 基于倍压电路的七电平逆变器拓扑结构及七电平逆变器
Elkhateb et al. The effect of input current ripple on the photovoltaic panel efficiency
CN107888073B (zh) 一种全方位软开关的交直流混合能量路由器
CN112865560B (zh) 一种多二极管串联型的背对背无桥三电平整流器
WO2024032463A1 (zh) Dc/dc变换器及其输出电压控制方法、储能系统
CN107508463A (zh) 光伏直流变换器输出限压方法和装置
JP2019515618A (ja) エネルギー貯蔵システムにおいて使用するための電力変換器トポロジ
Luo Switched-capacitorized DC/DC converters
Kranzer et al. Applications of SiC devices
CN113726136B (zh) 变换装置
CN108270356B (zh) 基于pwm/二极管混合整流结构的直流配电网能量路由器及其控制方法
CN115549462A (zh) 一种电源模组及相关设备
CN113162414B (zh) 用于电能变换器的基本单元、电能变换器及通用功率接口
WO2021103781A1 (zh) 一种光伏系统
WO2022022085A1 (zh) 一种三线dcdc变换器和并机供电系统
CN113726137B (zh) 变换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864429

Country of ref document: EP

Kind code of ref document: A1