WO2021103781A1 - 一种光伏系统 - Google Patents

一种光伏系统 Download PDF

Info

Publication number
WO2021103781A1
WO2021103781A1 PCT/CN2020/116786 CN2020116786W WO2021103781A1 WO 2021103781 A1 WO2021103781 A1 WO 2021103781A1 CN 2020116786 W CN2020116786 W CN 2020116786W WO 2021103781 A1 WO2021103781 A1 WO 2021103781A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
converter
power
port
output
Prior art date
Application number
PCT/CN2020/116786
Other languages
English (en)
French (fr)
Inventor
王勋
张彦忠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021103781A1 publication Critical patent/WO2021103781A1/zh
Priority to US17/826,903 priority Critical patent/US20220294388A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin

Definitions

  • This application relates to the field of photovoltaic power generation technology, and in particular to a photovoltaic system.
  • Photovoltaic systems can convert light energy into electrical energy and supply power to the grid.
  • photovoltaic systems include photovoltaic arrays, power converters, photovoltaic inverters, and energy storage devices.
  • the photovoltaic array converts the received light energy into direct current.
  • the power converter can improve the efficiency of the photovoltaic array’s output of direct current.
  • the DC power is output to the photovoltaic inverter.
  • the photovoltaic inverter can convert the DC power output by the power converter into AC power and then output it to the grid.
  • the energy storage device is used to store the excess power generated by the photovoltaic array (the part that is greater than the grid demand.
  • the ability of the photovoltaic inverter to invert the direct current is equal to the ability of the photovoltaic array to output the direct current.
  • the photovoltaic array is at this time There is more electric energy generated inside, and the electric power demanded by the grid is less.
  • the electric energy output by the photovoltaic array does not need to be transmitted to the grid.
  • the grid demand The electricity generated by the photovoltaic array cannot meet the needs of the grid.
  • energy storage devices are not needed to store electrical energy. Energy storage devices can only be used when there is insufficient light. The cost of energy storage devices is higher. In the case of low device utilization, the installation of energy storage devices undoubtedly increases the cost per kilowatt-hour of the photovoltaic system.
  • the embodiment of the present application provides a photovoltaic system to solve the problem of high cost per kilowatt-hour of the photovoltaic system.
  • An embodiment of the application provides a photovoltaic system, which includes: a first photovoltaic array, a first power converter, a second photovoltaic array, a second power converter, an energy storage converter, a battery, and a photovoltaic inverter; Wherein, the first photovoltaic array is connected to the photovoltaic inverter through the first power converter; the second photovoltaic array is directly connected to the energy storage converter, or at least a part of the second photovoltaic array is connected to the energy storage converter through the second power converter Connection; the energy storage converter is connected to the photovoltaic inverter and the battery; the photovoltaic inverter is connected to the grid.
  • the first photovoltaic array can be used to convert the absorbed light energy into the first direct current, and output the first direct current to the first power converter.
  • the first power converter may be used to convert the received first direct current into a second direct current, and output the second direct current to the photovoltaic inverter.
  • the second photovoltaic array when the second photovoltaic array is connected to the energy storage converter through the second power converter, the second photovoltaic array can be used to convert the absorbed light energy into a third direct current and output the third direct current to the second power conversion
  • the second power converter converts the received third direct current into a fourth direct current
  • the energy storage converter can be used to receive the second direct current and the fourth direct current, convert the voltage value of the received direct current into the charging voltage of the battery, and
  • the converted direct current is output to the battery for storage; the energy storage converter can also be used to obtain direct current from the battery and convert the obtained direct current into alternating current through a photovoltaic inverter and output it to the grid.
  • the second photovoltaic array converts the absorbed light energy into a third direct current , Output a part of the third direct current to the energy storage converter, and output another part of the third direct current to the second power converter.
  • the second power converter can be used to convert another part of the received third direct current into a fourth direct current and output the fourth direct current to the energy storage converter;
  • the energy storage converter can be used to receive the second direct current and the third direct current Part of the DC power and the fourth DC power, convert the voltage value of the received DC power into the charging voltage of the battery, and output the converted DC power to the battery for storage.
  • the energy storage converter can also be used to obtain DC power from the battery and obtain the The direct current is converted to alternating current by a photovoltaic inverter and then output to the grid.
  • the second photovoltaic array When the second photovoltaic array is directly connected to the energy storage converter, the second photovoltaic array can be used to convert the absorbed light energy into a third direct current and output the third direct current to the energy storage converter; the energy storage converter is used to receive The second direct current and the third direct current, and convert the voltage value of the received direct current into the charging voltage of the battery, and output the converted direct current to the battery for storage.
  • the energy storage converter can also be used to obtain direct current from the battery and The obtained direct current is converted into alternating current through a photovoltaic inverter and then output to the grid.
  • the photovoltaic inverter can be used to obtain the DC power output by the first power converter or the DC power output by the energy storage converter, or obtain the DC power output by the first power converter and the DC power output by the energy storage converter, and convert the obtained DC power After being alternating current, it is output to the grid.
  • the energy storage converter can have multiple electric energy acquisition paths.
  • electric energy can be obtained directly from the second photovoltaic array or from the second power converter. Electric energy is obtained, and electric energy can also be obtained from the grid, which improves the utilization rate of energy storage converters and batteries, and improves the utilization rate of electric energy, thereby reducing the cost per kilowatt-hour of the photovoltaic system.
  • the energy storage converter includes: at least one first input port, at least one second input port, and at least one output port; wherein at least one first input port is respectively connected to the photovoltaic inverter; at least One second input port is respectively connected to the second power converter; or at least one second input port is connected to the respective second photovoltaic arrays; or a part of the second input ports of the at least one second input port is connected to the second power converter Another part of the at least one second input port is connected to the second photovoltaic array; at least one output port is respectively connected to the battery.
  • the energy storage converter can be connected to external devices through multiple ports, thereby obtaining multiple power transmission paths, so that the power transmission path can be flexibly selected.
  • the energy storage converter further includes at least one first switch connected in a one-to-one correspondence with the at least one first input port; at least one second switch connected in a one-to-one correspondence with the at least one second input port; At least one third switch connected to the at least one output port in a one-to-one correspondence; a first DC converter; wherein, each of the at least one first input port is connected to the first input port through a correspondingly connected first switch. The input end of the DC converter is connected; each of the at least one second input port is connected to the input end of the first DC converter through a correspondingly connected second switch; each of the at least one output port The output port is connected to the output terminal of the first DC converter through a correspondingly connected third switch.
  • the first DC converter may be used to obtain direct current from at least one first input port, or obtain direct current from at least one second input port, or obtain direct current from at least one first input port and at least one second input port, Step down the voltage value of the obtained DC power, and provide the reduced DC power to the battery through at least one output port; or boost the voltage value of the DC power provided by the battery obtained from the at least one output port, and increase The compressed direct current is output to the photovoltaic inverter through at least one first input port.
  • At least one first input port is connected to at least one first switch in a one-to-one correspondence, and its specific meaning is: the number of first input ports included in the at least one first input port and the number of first input ports included in the at least one first switch The number of switches is equal, each first input port of at least one first input port has a paired first switch, and the first switch paired with each first input port is different, and each first input port Connect with the matched first switch.
  • the at least one second input port is connected to the at least one second switch in a one-to-one correspondence, and its specific meaning is: the number of the second input ports included in the at least one second input port is the same as the number of the second switches included in the at least one second switch.
  • each second input port in the at least one second input port has a paired second switch, and the second switch paired with each second input port is different, and each second input port is paired with The second switch is connected.
  • At least one output port is connected to at least one third switch in a one-to-one correspondence, and the specific meaning is: the number of output ports included in the at least one output port is equal to the number of third switches included in the at least one third switch, and at least one output
  • Each output port in the port has a paired third switch, and the paired third switch for each output port is different, and each output port is connected to the paired third switch.
  • the energy storage converter can obtain electrical energy through multiple input ports and output the obtained electrical energy to the storage battery for storage, so that when the grid requires more electrical energy or the first photovoltaic array generates less electrical energy, the storage battery is The stored electric energy is provided to the power grid to meet the power demand of the power grid.
  • the energy storage converter further includes: at least one first DC converter; at least one second DC converter; at least one first switch connected in a one-to-one correspondence with the at least one first input port, At least one first switch is connected to at least one first DC converter in one-to-one correspondence; at least one second switch is connected to at least one second input port in one-to-one correspondence, at least one second switch is connected to at least one second DC converter One-to-one correspondence connection; at least one third switch connected in one-to-one correspondence with the at least one output port, and each third switch in the at least one third switch is connected to a first DC converter or a second DC converter.
  • each first DC converter of the at least one first DC converter can be used to obtain DC power from the connected first input port, step down the voltage value of the obtained DC power, and reduce the voltage after the step down.
  • the direct current is supplied to the battery through the connected output port; or the voltage value of the direct current provided by the battery obtained from the connected output port is boosted, and the boosted direct current is output to the photovoltaic inverter through the connected first input port .
  • Each second DC converter of the at least one second DC converter may be used to obtain DC power from the connected second input port, step down the voltage value of the obtained DC power, and pass the stepped DC power through the connected
  • the output port is provided to the battery; or the voltage value of the DC power provided by the battery obtained from the connected output port is boosted, and the boosted DC power is output to the photovoltaic inverter through the connected first input port.
  • At least one first switch is connected to at least one first DC converter in one-to-one correspondence, and its specific meaning is: the number of first switches included in the at least one first switch and the number of first switches included in the at least one first DC converter are The number of first DC converters in the at least one first switch is equal, each first switch in the at least one first switch has a paired first DC converter, and each first switch paired with the first DC converter has Not the same, each first switch is connected to the matched first DC converter.
  • the at least one second switch is connected to the at least one second DC converter in one-to-one correspondence, and its specific meaning includes: the number of second switches included in the at least one second switch and the second DC included in the at least one second DC converter. The number of converters is the same, each second switch of the at least one second switch has a paired second DC converter, and the second DC converters of each second switch pair are different, and each second switch is different.
  • the switch is connected to the paired second DC converter.
  • the energy storage converter can obtain electric energy from multiple input ports.
  • each input port (the first input port and the second input port) of the energy storage converter can be used.
  • Two input ports) configure a first DC converter or a second DC converter, so that when a single input port has a problem, electric energy can be obtained through other ports to realize the corresponding function of the energy storage converter.
  • the energy storage converter further includes a controller; the controller is used to control the on or off of at least one first switch, at least one second switch, and at least one third switch.
  • the equipment connected to the energy storage converter can be flexibly selected to control the direction of electric energy transmission.
  • the first photovoltaic array includes a plurality of first photovoltaic sub-arrays;
  • the first power converter includes a plurality of first photovoltaic ports connected to the plurality of first photovoltaic sub-arrays in a one-to-one correspondence;
  • photovoltaic inverter The converter includes a DC port, the first power converter includes an output port; the output port of the first power converter is connected to the DC port.
  • the plurality of first photovoltaic sub-arrays are connected to the plurality of first photovoltaic ports in a one-to-one correspondence, and its specific meaning is: the number of first photovoltaic sub-arrays included in the plurality of first photovoltaic sub-arrays and the plurality of first photovoltaic ports
  • the number of first photovoltaic ports included in the first photovoltaic sub-array is equal, and each first photovoltaic sub-array in the plurality of first photovoltaic sub-arrays has a paired first photovoltaic port, and each first photovoltaic sub-array is paired with the first photovoltaic port.
  • the ports are all different, and each first photovoltaic sub-array is connected to the paired first photovoltaic port.
  • first photovoltaic sub-arrays since the ability of a single first photovoltaic sub-array to output electrical energy is limited, multiple first photovoltaic sub-arrays can be set to output electrical energy at the same time to meet the power demand of the grid.
  • the second photovoltaic array includes a plurality of second photovoltaic sub-arrays, wherein: when the plurality of second photovoltaic sub-arrays are all connected to the energy storage converter through the second power converter, the second power conversion The plurality of second photovoltaic ports included in the power converter are connected to the plurality of second photovoltaic sub-arrays in a one-to-one correspondence, and at least one second input port of the energy storage converter is respectively connected to the output port of the second power converter;
  • the energy storage converter includes at least one second input A part of the second input ports of the ports are connected in a one-to-one correspondence with a part of the second photovoltaic sub-array, and a plurality of second photovoltaic ports included
  • the second power conversion The output port of the energy storage converter is connected to another part of the second input port included in the energy storage converter; when the multiple second photovoltaic sub-arrays are all directly connected to the energy storage converter, at least one second input port included in the energy storage converter is connected to The plurality of second photovoltaic sub-arrays are connected in a one-to-one correspondence.
  • the plurality of second photovoltaic ports are connected to the plurality of second photovoltaic sub-arrays in a one-to-one correspondence, and its specific meaning is: the number of second photovoltaic ports included in the plurality of second photovoltaic ports and the number of second photovoltaic sub-arrays
  • the number of second photovoltaic sub-arrays included is equal, each second photovoltaic port of the plurality of second photovoltaic ports has a paired second photovoltaic sub-array, and each second photovoltaic port is paired with a second photovoltaic sub-array They are all different, and each second photovoltaic port is connected to the paired second photovoltaic sub-array.
  • a part of the second input port in the at least one second input port is connected to a part of the second photovoltaic sub-array in a one-to-one correspondence.
  • the specific meaning is: the number of second input ports included in a part of the second input port and a part of the second photovoltaic sub-array
  • the number of second photovoltaic sub-arrays included in the array is equal, and each second input port in a part of the second input port has a paired second photovoltaic sub-array (one of the part of the second photovoltaic sub-array), and
  • the paired second photovoltaic sub-arrays of each second input port are different, and each second input port is connected to the paired second photovoltaic sub-array.
  • the plurality of second photovoltaic ports are connected to another part of the second photovoltaic sub-array in a one-to-one correspondence, and the specific meaning is: the number of second photovoltaic ports included in the plurality of second photovoltaic ports is the same as that included in another part of the second photovoltaic sub-array
  • the number of the second photovoltaic sub-arrays is equal, and each second photovoltaic port in the multiple second photovoltaic ports has a paired second photovoltaic sub-array (one of the other second photovoltaic sub-arrays), and each The paired second photovoltaic sub-arrays of the second photovoltaic ports are all different, and each second photovoltaic port is connected to the paired second photovoltaic sub-array.
  • the at least one second input port is connected to the plurality of second photovoltaic sub-arrays in a one-to-one correspondence, and the specific meaning is: the number of second input ports included in the at least one second input port and the number of second photovoltaic sub-arrays included
  • the number of the second photovoltaic sub-arrays is equal, each second input port of the at least one second input port has a paired second photovoltaic sub-array, and each second input port is paired with no second photovoltaic sub-array.
  • each second input port is connected to the paired second photovoltaic sub-array.
  • the second photovoltaic array and the energy storage converter have multiple connection methods.
  • the second photovoltaic array can be directly connected to the energy storage converter.
  • the DC power output by the second photovoltaic array does not need to pass through the second power converter, which improves the second The utilization rate of the direct current output from the photovoltaic array.
  • Part or all of the second photovoltaic array can also be connected to the energy storage converter through the second power converter, and most of the direct current received by the energy storage converter is the direct current output by the second power converter, ensuring that the output to the energy storage converter is guaranteed The stability of the voltage value of the direct current.
  • the first power converter includes a plurality of third DC converters connected in a one-to-one correspondence with the plurality of first photovoltaic ports, wherein each third DC converter of the plurality of third DC converters The input end of the converter is connected to the corresponding first photovoltaic port, and the output end of each third DC converter in the plurality of third DC converters is connected to the output port of the first power converter.
  • each of the plurality of third DC converters can be used to receive the DC power output by the first photovoltaic sub-array from the connected first photovoltaic port, convert the voltage value of the received DC power, and convert The converted direct current is output to the photovoltaic inverter through the output port of the connected first power converter.
  • each first photovoltaic sub-array can output direct current, in order to ensure that each first photovoltaic sub-array does not affect each other, a third DC converter can be configured for each first photovoltaic sub-array. To realize that each first sub-photovoltaic array does not affect each other.
  • the second power converter includes a plurality of fourth DC converters connected in a one-to-one correspondence with the plurality of second photovoltaic ports, wherein each fourth DC converter of the plurality of fourth DC converters The input end of the converter is connected to the corresponding second photovoltaic port, and the output end of each fourth DC converter in the plurality of fourth DC converters is connected to the output port of the second power converter.
  • each of the plurality of fourth DC converters can be used to receive the DC power output by the second photovoltaic sub-array from the connected second photovoltaic port, convert the voltage value of the received DC power, and convert The converted direct current is output to the energy storage converter through the output port of the connected second power converter.
  • each second photovoltaic sub-array can output direct current, in order to ensure that each second photovoltaic sub-array does not affect each other, a fourth DC converter can be configured for each second photovoltaic sub-array.
  • the form of each second photovoltaic sub-array does not affect each other.
  • the photovoltaic inverter includes an AC port, a DC bus, and an AC-DC converter; the DC bus is connected between the DC port and the input terminal of the AC-DC converter; the output terminal of the AC-DC converter Connected to the AC port, and the AC port is connected to the grid.
  • the AC-DC converter can be used to receive DC power from a connected DC port, convert the received DC power into AC power and output it to the power grid through the AC port, and convert the AC power output from the power grid received from the connected AC port to DC power after passing it through The DC port is output to the energy storage converter.
  • the excess power transmitted on the grid can be converted into direct current, and the converted direct current can be stored in the battery through an energy storage converter in.
  • the voltage value of the voltage output by the second power converter is greater than or equal to 1500V.
  • the voltage value of the voltage output by the second power converter is greater than or equal to 1500V, which is beneficial to the long-distance transmission of electric energy.
  • the battery includes a plurality of sub-batteries; the plurality of sub-batteries are adjacent to each other, and the positive terminals of any two adjacent sub-batteries are connected, and the negative terminals are connected.
  • the positive terminal connection between each two adjacent sub-batteries and the negative terminal connection can realize the parallel connection of each battery, and both can obtain the direct current output by the energy storage converter, and there is no need for each battery.
  • Each battery has two connecting wires connected to the energy storage device, and the diameter of the connecting wire between the battery and the energy storage converter is saved.
  • the battery includes a lead-carbon battery, a lithium iron phosphate battery, a ternary lithium battery, a sodium-sulfur battery, or a flow battery.
  • Figure 1 is a schematic diagram of the system architecture of a DC-coupled photovoltaic system
  • Figure 2 is one of the schematic diagrams of a photovoltaic system architecture provided by an embodiment of the application.
  • Fig. 3 is a second schematic diagram of a photovoltaic system architecture provided by an embodiment of the application.
  • FIG. 4 is the third schematic diagram of a photovoltaic system architecture provided by an embodiment of this application.
  • Figure 5 is a schematic diagram of a first photovoltaic array structure
  • Figure 6 is a schematic structural diagram of a second DC converter
  • FIG. 7 is a fourth schematic diagram of a possible photovoltaic system architecture provided by an embodiment of this application.
  • FIG. 8 is a fifth schematic diagram of a possible photovoltaic system circuit provided by an embodiment of this application.
  • Fig. 9 is a sixth schematic diagram of a possible photovoltaic system circuit provided by an embodiment of the application.
  • FIG. 1 is a schematic diagram of the system architecture of a DC-coupled photovoltaic system.
  • the photovoltaic system includes a photovoltaic array, a power converter, an energy storage converter, a battery, and a photovoltaic inverter.
  • the photovoltaic array is connected with the power converter to convert the absorbed light energy into direct current and output the converted direct current to the power converter.
  • the power converter is respectively connected with the energy storage converter and the photovoltaic inverter to adjust the power of the direct current output by the photovoltaic array, and when the electrical energy generated by the photovoltaic array per unit time is greater than the electrical energy required by the grid per unit time, it will be adjusted
  • the DC power after the power is output to the energy storage converter and the photovoltaic inverter respectively.
  • the energy storage converter is connected to the photovoltaic inverter and the battery, and is used to convert the direct current received from the power converter into the charging voltage of the battery, thereby providing electric energy for the battery.
  • the photovoltaic inverter is used to convert the received direct current into alternating current and output it to the grid.
  • the photovoltaic system shown in Figure 1 when the light is sufficient, if the electrical energy generated by the photovoltaic array is exactly the electrical energy required by the grid at this time, the electrical energy generated by the photovoltaic array is directly output to the grid through the photovoltaic inverter, and the battery and energy storage are converted
  • the battery can only obtain electric energy when the grid requires less electric energy and sufficient sunlight, and the battery has only one charging path for the photovoltaic inverter, and the cost of the photovoltaic system to configure the battery and energy storage converter is higher, while the battery and storage
  • the low utilization of energy converters undoubtedly increases the cost per kilowatt-hour of the photovoltaic system.
  • the embodiments of the present application provide a photovoltaic system to reduce the cost per kilowatt-hour of the photovoltaic system.
  • the multiple involved in this application refers to two or more than two.
  • the term "or" referred to in this application describes the association relationship of the associated objects, and means that there can be two relationships, for example, A or B, which can mean that there are two situations: A alone and B alone.
  • the connection involved in this application describes the connection relationship between two objects.
  • the connection between A and B can mean that: A and B are directly connected, and A is connected through C and B.
  • words such as “first”, “second”, “third”... are only used for the purpose of distinguishing description, and cannot be understood as indicating or implying relative importance. Nor can it be understood as indicating or implying order.
  • the embodiments of the present application provide three photovoltaic system structures, which are specifically as follows:
  • the photovoltaic system 200 may include: a first photovoltaic array 201, a first power converter 202, a second photovoltaic array 203, a second power converter 204, an energy storage converter 205, a battery 206, and a photovoltaic inverter. ⁇ 207.
  • the first photovoltaic array 201 and the photovoltaic inverter 207 are connected through the first power converter 202; the second photovoltaic array 203 is connected to the energy storage converter 205 through the second power converter 204; the energy storage converter 205 is connected to the photovoltaic
  • the inverter 207 is connected to the battery 206; the photovoltaic inverter 207 is connected to the grid.
  • the first photovoltaic array 201 can be used to convert the absorbed light energy into a first direct current, and output the first direct current to the first power converter 202.
  • the first power converter 202 may be used to convert the received first direct current into a second direct current.
  • the second photovoltaic array 203 can be used to convert the absorbed light energy into a third direct current.
  • the second power converter 204 may be used to receive the third direct current power and convert the third direct current power into the fourth direct current power.
  • the energy storage converter 205 can be used to receive at least one of the second direct current and the fourth direct current, convert the voltage value of the received direct current into the charging voltage of the battery 206 and then store it in the battery 206, and to convert the direct current stored in the battery 206 Output to the photovoltaic inverter 207.
  • the storage battery 206 may be used to store the DC power provided by the energy storage converter 205 or provide DC power for the energy storage converter 205.
  • the photovoltaic inverter 207 can be used to receive at least one of the direct current output from the energy storage converter 205 and the first power converter 202, convert the received direct current into alternating current and then output it to the grid, and convert the alternating current input from the grid into The direct current is output to the energy storage converter 205.
  • the voltage value of the second direct current may be greater than or equal to 1500V.
  • the voltage value of the second direct current is equal to the voltage value of the fourth direct current, and the positive and negative directions of the second direct current and the fourth direct current may be the same.
  • the energy storage converter 205 has multiple paths for obtaining direct current.
  • the first power converter 202 may be connected to the energy storage converter 205
  • the second power converter 204 may also be connected to the energy storage converter 205.
  • the power required by the power grid can be directly provided by the first power converter 202
  • the power generated by the second photovoltaic array 203 can be provided by the second power converter.
  • the voltage value of the fourth direct current is converted into the charging voltage of the battery 206 through the energy storage converter 205 and stored in the battery 206.
  • this operation method improves the utilization rate of the energy storage converter 205 and the storage battery 206, and reduces the cost per kilowatt-hour of the photovoltaic system.
  • the excess electrical energy output by the first power converter 202 (the part of the electrical energy exceeding the electrical energy demand per unit time of the grid) can be stored by the energy storage converter 205. In the storage battery 206, the waste of electric energy is avoided.
  • the excess electric energy transmitted on the grid (the part of the electric energy exceeding the electric energy demanded in the unit time of the grid) can be passed through the photovoltaic system.
  • the inverter 207 After the inverter 207 is converted into direct current, it is stored in the storage battery 206 through the energy storage converter 205, thereby improving the utilization rate of electric energy.
  • the photovoltaic system 300 may include: a first photovoltaic array 301, a first power converter 302, a second photovoltaic array 303, an energy storage converter 304, a battery 305 and a photovoltaic inverter 306.
  • the first photovoltaic array 301 and the photovoltaic inverter 306 are connected through the first power converter 302; the second photovoltaic array 303 is connected to the energy storage converter 304; the energy storage converter 304 is respectively connected to the photovoltaic inverter 306 and the battery 305 Connection; the photovoltaic inverter 306 is connected to the grid.
  • the first photovoltaic array 301 can be used to convert the absorbed light energy into a first direct current, and output the first direct current to the first power converter 302.
  • the first power converter 302 may be used to convert the received first direct current into a second direct current.
  • the second photovoltaic array 303 can be used to convert the absorbed light energy into a third direct current.
  • the energy storage conversion 304 can be used to receive at least one of the second direct current and the third direct current, convert the voltage value of the received direct current into the charging voltage of the battery and store it in the battery 305, and output the direct current stored in the battery 305 to Photovoltaic inverter 306.
  • the battery 305 may be used to store the direct current provided by the energy storage converter 304 or provide direct current for the energy storage converter 304.
  • the photovoltaic inverter 306 may be used to receive at least one of the direct current output from the energy storage converter 304 and the first power converter 302, convert the received direct current into alternating current and then output it to the grid, and convert the alternating current input from the grid into The direct current is output to the energy storage converter 304.
  • the voltage value of the second direct current may be greater than or equal to 1500V.
  • the voltage value of the third direct current and the voltage value of the second direct current are equal, and the positive and negative directions of the third direct current and the second direct current may be the same.
  • the energy storage converter 304 has multiple paths for obtaining direct current.
  • the first power converter 302 can be connected to the energy storage converter 304, and the second photovoltaic array 303 can be directly connected to the energy storage converter 304, because the third direct current generated by the second photovoltaic array 303 is directly output to the energy storage converter.
  • the DC power generated by the second photovoltaic array does not need to pass through the second power converter, and the DC power output by the second photovoltaic array 303 can be output to the energy storage converter 304 with less loss, and the utilization rate of electric energy is improved.
  • the power demanded by the grid can be directly provided through the first power converter 302, and the power generated by the second photovoltaic array 303 can be directly stored in
  • the energy storage converter 304 when the electric energy output by the first power converter cannot meet the electric energy demanded by the grid, at least one of the electric energy generated by the second photovoltaic array 303 and the direct current stored by the battery 305 is converted through the photovoltaic inverter 306 After that, the AC power is provided to the grid for power compensation, which improves the utilization rate of the energy storage converter 304 and the storage battery 305, and reduces the cost per kilowatt-hour of the photovoltaic system 300.
  • the excess electric energy output by the first power converter 302 (the part of the electric energy exceeding the electric energy required per unit time of the grid) can be stored by the energy storage converter 304. In the storage battery 305, the waste of electric energy is avoided.
  • the excess electric energy transmitted on the grid (the part of the electric energy that exceeds the electric energy demanded in the unit time of the grid) can be passed through photovoltaics.
  • the inverter 306 After the inverter 306 is converted into direct current, it is stored in the storage battery 305 through the energy storage converter 304, thereby improving the utilization rate of electric energy.
  • the photovoltaic system 400 may include: a first photovoltaic array 401, a first power converter 402, a second photovoltaic array 403, a second power converter 404, an energy storage converter 405, a battery 406, and a photovoltaic inverter. ⁇ 407.
  • the first photovoltaic array 401 and the photovoltaic inverter 407 are connected through the first power converter 402; a part of the second photovoltaic array 403 is directly connected to the energy storage converter 405, and the other part is connected to the energy storage converter through the second power converter 404.
  • the converter 405 is connected; the energy storage converter 405 is respectively connected to the photovoltaic inverter 407 and the battery 406; the photovoltaic inverter 407 is connected to the grid.
  • the first photovoltaic array 401 can be used to convert the absorbed light energy into a first direct current, and output the first direct current to the first power converter 402.
  • the first power converter 402 may be used to convert the received first direct current into a second direct current.
  • the second photovoltaic array 403 may be used to convert the absorbed light energy into a third direct current, and output a part of the third direct current to the energy storage converter 405, and output another part of the third direct current to the second power converter.
  • the second power converter 404 may be used to convert another part of the received third direct current into a fourth direct current.
  • the energy storage converter 405 can be used to receive at least one of the second direct current, a part of the third direct current, and the fourth direct current, and convert the voltage value of the received direct current into the charging voltage of the battery 406 and store it in the battery 406, and The direct current stored in the storage battery 406 is output to the photovoltaic inverter 407.
  • the battery 406 may be used to store the direct current provided by the energy storage converter 405 or provide direct current for the energy storage converter 405.
  • the photovoltaic inverter 407 can be used to receive at least one of the direct current output from the energy storage converter 405 and the first power converter 402, convert the received direct current into alternating current and then output it to the grid, and convert the alternating current input from the grid into The direct current is output to the energy storage converter 305.
  • the voltage value of the second direct current may be greater than or equal to 1500V.
  • the voltage value of the third direct current and the voltage value of the fourth direct current may be equal to the voltage value of the second direct current, and the positive and negative directions of the third direct current, the fourth direct current and the second direct current may be the same.
  • the energy storage converter 405 has multiple paths for obtaining direct current.
  • the first power converter 402, a part of the second photovoltaic array 403, and the second power converter 404 may all be connected to the energy storage converter 405.
  • most of the direct current received by the energy storage converter 405 is the second direct current and the fourth direct current, thereby reducing the influence of the unstable voltage value of a part of the third direct current on the system, thereby ensuring the working stability of the photovoltaic system 400 .
  • the photovoltaic system 400 provides power to the power grid, in some occasions where the power grid demand is not much, the power demanded by the power grid can be directly provided by the first power converter 402, and the third DC power output from the second photovoltaic array 403 A part of the fourth direct current output from the second power converter 404 can be stored in the storage battery 406 through the energy storage converter 405.
  • the excess electric energy output by the first power converter 402 (the part of the electric energy exceeding the electric energy required per unit time of the grid) can be stored by the energy storage converter 405. In the storage battery 406, the waste of electric energy is avoided.
  • the excess electric energy transmitted on the grid (the part of the electric energy exceeding the electric energy demanded in the unit time of the grid) can be passed through the photovoltaic system.
  • the inverter 407 After the inverter 407 is converted into direct current, it is stored in the storage battery 406 through the energy storage converter 405, thereby improving the utilization rate of electric energy.
  • the first photovoltaic array, the first power converter, the second photovoltaic array, the second power converter, the energy storage converter, the battery and the photovoltaic inverter in the photovoltaic array 200, the photovoltaic array 300, and the photovoltaic array 400 The specific structure is introduced.
  • the first photovoltaic array may include a plurality of first photovoltaic sub-arrays.
  • the function of setting the first photovoltaic sub-array is: each first photovoltaic sub-array has a limited ability to output electric energy, and multiple first photovoltaic sub-arrays are set to work at the same time to output electric energy to meet the power demand of the power grid.
  • FIG. 5 for a schematic structural diagram of a first photovoltaic array provided by an embodiment of the application.
  • each small square represents a photovoltaic cell.
  • a row of photovoltaic cells in the first photovoltaic array are connected in parallel to form a photovoltaic string PV (PV1 to PV18 in Figure 4).
  • the photovoltaic string can be used as the basic unit for adjusting the light conversion efficiency of the first photovoltaic array.
  • any photovoltaic sub-array includes at least one photovoltaic string PV.
  • the first power converter may include: a plurality of first photovoltaic ports connected in a one-to-one correspondence with the plurality of first photovoltaic sub-arrays, a plurality of third DC converters and output ports connected in a one-to-one correspondence with the plurality of first photovoltaic ports .
  • each third DC converter in the plurality of third DC converters is connected to the corresponding first photovoltaic port, and the output terminal of each third DC converter in the plurality of third DC converters Both are connected to the output port of the first power converter.
  • the plurality of first photovoltaic sub-arrays are connected to the plurality of first photovoltaic ports in a one-to-one correspondence, and its specific meaning is: the number of first photovoltaic ports included in the plurality of first photovoltaic ports and the number of first photovoltaic sub-arrays in the plurality of first photovoltaic sub-arrays Including the same number of first photovoltaic sub-arrays, each first photovoltaic sub-array of the plurality of first photovoltaic sub-arrays has a paired first photovoltaic port, and each first photovoltaic sub-array paired first photovoltaic port They are all different, and each first photovoltaic sub-array is connected to the corresponding first photovoltaic port.
  • the plurality of first photovoltaic sub-arrays are connected to the plurality of first photovoltaic ports in a one-to-one correspondence, and the specific meaning is: the number of third DC converters included in the plurality of third DC converters is the same as that of the plurality of first photovoltaic ports The number of first photovoltaic ports included is the same, each third DC converter has a paired first photovoltaic port, and the first photovoltaic port of each third DC converter is different, and each third DC converter has a different first photovoltaic port. The converter is connected to the paired first photovoltaic port.
  • each of the plurality of third DC converters can be used to receive the DC power output by the first photovoltaic sub-array from the connected first photovoltaic port, convert the voltage value of the received DC power, and convert The converted direct current is output to the photovoltaic inverter through the output port of the connected first power converter.
  • the photovoltaic string PV belonging to the same first photovoltaic sub-array and the first photovoltaic corresponding to the first photovoltaic sub-array Port connection when each first photovoltaic port is connected to the corresponding first photovoltaic sub-array, the photovoltaic string PV belonging to the same first photovoltaic sub-array and the first photovoltaic corresponding to the first photovoltaic sub-array Port connection.
  • each of the plurality of third DC converters may include: a first H-bridge rectifier circuit, an isolation transformer, and a second H-bridge rectifier circuit; wherein, the primary winding of the isolation transformer is connected to the first H-bridge rectifier circuit.
  • the bridge rectifier circuit is coupled and connected, and the secondary winding of the isolation transformer is coupled and connected with the second H-bridge rectifier circuit.
  • the third DC converter adopts the existing structure, that is, it is composed of a first H-bridge rectifier circuit, a second H-bridge rectifier circuit, and an isolation transformer.
  • the first bridge arm of the first H-bridge rectifier circuit can be used as the input end of the third DC converter to connect to the corresponding photovoltaic port
  • the second bridge arm of the second H-bridge rectifier circuit can be used as the output of the third DC converter.
  • the terminal is connected to the output port of the first power converter.
  • the first H-bridge rectifier circuit is composed of switch tubes and is used to regulate the voltage of the received direct current; the second H-bridge rectifier circuit is composed of switch tubes and is used to rectify the regulated DC power.
  • the switch tubes in each circuit in the first power converter may be metal oxide semiconductor (MOS) tubes, bipolar junction transistors (BJT), or other types.
  • MOS metal oxide semiconductor
  • BJT bipolar junction transistors
  • the device that realizes the switching function is not limited in this application.
  • the obtained direct current output from the first photovoltaic array can be adjusted and rectified, so that the efficiency of the direct current output from the first photovoltaic array can be adjusted, and the first photovoltaic array and the photovoltaic inverter can also be implemented. Electrical isolation.
  • the structure of the third DC converter can be as shown in Figure 6.
  • a and B are connected to the corresponding first photovoltaic port as the input terminals of the third DC converter, and C and D are used as the output terminals of the third DC converter.
  • MOS transistors Q1/Q2/Q3/Q4 form the first H-bridge rectifier circuit
  • MOS transistors Q5/Q6/Q7/Q8 form the second H-bridge rectifier circuit
  • L, C1 and T Form the isolation transformer.
  • L and T can be a separate structure, or a magnetic integration method can be used.
  • the second photovoltaic array may include a plurality of second photovoltaic sub-arrays.
  • the function of setting the second photovoltaic sub-array is: each second photovoltaic sub-array has a limited ability to output electric energy, and multiple second photovoltaic sub-arrays are set to work at the same time to output electric energy to meet the power demand of the power grid.
  • circuit structure of the second photovoltaic array may be the same as the circuit structure of the first photovoltaic array shown in FIG. 5, which will not be described in detail here in this application.
  • the second power converter may include: a plurality of second photovoltaic ports, an output port, and a plurality of fourth DC converters connected in a one-to-one correspondence with the plurality of second photovoltaic ports.
  • each fourth DC converter in the plurality of fourth DC converters is connected to the corresponding second photovoltaic port, and the output terminal of each fourth DC converter in the plurality of fourth DC converters is Connected to the output port of the second power converter.
  • the plurality of second photovoltaic ports are connected to the plurality of fourth DC converters in a one-to-one correspondence, and the specific meaning is: the number of fourth DC converters included in the plurality of fourth DC converters and the plurality of second photovoltaic ports
  • the number of the second photovoltaic arrays included in the multiple fourth DC converters is equal, each fourth DC converter in the plurality of fourth DC converters has a paired second photovoltaic port, and each fourth DC converter is paired with a second photovoltaic port.
  • the ports are all different.
  • each of the plurality of fourth DC converters can be used to receive the DC power output by the second photovoltaic sub-array from the connected second photovoltaic port, convert the voltage value of the received DC power, and convert The converted direct current is output to the energy storage converter through the output port of the connected second power converter.
  • the multiple second photovoltaic ports and the multiple second photovoltaic sub-arrays included in the second photovoltaic array One-to-one correspondence connection. Specifically, photovoltaic strings PV belonging to the same second photovoltaic sub-array are connected to the second photovoltaic port corresponding to the second photovoltaic sub-array.
  • the plurality of second photovoltaic ports are connected to the plurality of second photovoltaic sub-arrays in a one-to-one correspondence, and its specific meaning is: the number of second photovoltaic ports included in the plurality of second photovoltaic ports and the number of second photovoltaic sub-arrays
  • the number of second photovoltaic sub-arrays included is equal, each second photovoltaic port of the plurality of second photovoltaic ports has a paired second photovoltaic sub-array, and each second photovoltaic port is paired with a second photovoltaic sub-array They are all different, and each second photovoltaic port is connected to the paired second photovoltaic sub-array.
  • the structure of the second power converter is adopted, when a part of the second photovoltaic sub-array of the plurality of second photovoltaic sub-arrays is directly connected to the energy storage converter, and the other part of the second photovoltaic sub-array is connected to the energy storage converter through the second power converter When connected, the plurality of second photovoltaic ports included in the second power converter are connected to another part of the second photovoltaic sub-array in a one-to-one correspondence.
  • the plurality of second photovoltaic ports are connected to another part of the second photovoltaic sub-array in a one-to-one correspondence, and the specific meaning is: the number of second photovoltaic ports included in the plurality of second photovoltaic ports is the same as that in the other part of the second photovoltaic sub-array The number of included second photovoltaic sub-arrays (one of the other part of the second photovoltaic sub-arrays) is equal, each second photovoltaic port in the plurality of second photovoltaic ports has a paired second photovoltaic sub-array, and each The second photovoltaic sub-arrays that are paired with one second photovoltaic port are all different, and the second photovoltaic port is connected to the paired second photovoltaic sub-array.
  • each of the plurality of fourth DC converters can be used to receive the DC power output by the second photovoltaic sub-array from the connected second photovoltaic port, convert the voltage value of the received DC power, and convert The converted direct current is output to the energy storage converter through the output port of the connected second power converter.
  • each of the plurality of fourth DC converters may include: a third H-bridge rectifier circuit, an isolation transformer, and a fourth H-bridge rectifier circuit; wherein, the primary winding of the isolation transformer and the third H-bridge rectifier circuit The bridge rectifier circuit is coupled and connected, and the secondary winding of the isolation transformer is coupled and connected with the fourth H-bridge rectifier circuit.
  • the circuit structure of the fourth DC converter may be the same as the circuit structure of the third DC converter shown in FIG. 6, which will not be described in detail here in this application.
  • the energy storage converter may include: at least one first input port, at least one second input port, and at least one output port.
  • At least one first input port is respectively connected to the photovoltaic inverter; at least one second input port is respectively connected to the second power converter; or at least one second input port is connected to the respective second photovoltaic array; or at least one first input port is connected to the second photovoltaic array.
  • a part of the second input port among the two input ports is connected with the second power converter, and the other part of the second input port among the at least one second input port is connected with the second photovoltaic array; at least one output port is connected with the battery respectively.
  • the energy storage converter With the structure of the energy storage converter, if the second photovoltaic array is connected to the energy storage converter through the second power converter, at least one second input port of the energy storage converter is respectively connected to the output port of the second power converter.
  • the energy storage converter With the structure of the energy storage converter, if the second photovoltaic array is directly connected to the energy storage converter, at least one second input port included in the energy storage converter is connected to the plurality of second photovoltaic sub-arrays in a one-to-one correspondence.
  • At least one second input port is connected to a plurality of second photovoltaic sub-arrays in a one-to-one correspondence, and its specific meaning is: the number of second input ports included in the at least one second input port and the number of second photovoltaic sub-arrays The number is equal, each second input port of the at least one second input port has a paired second photovoltaic sub-array, and the second photovoltaic sub-array paired by each second input port is different, and each second input port is different.
  • the input port is connected to the paired second photovoltaic sub-array.
  • the structure of the energy storage converter is adopted, if a part of the second photovoltaic sub-array of the plurality of second photovoltaic sub-arrays is directly connected to the energy storage converter, and the other part of the second photovoltaic sub-array is connected to the energy storage converter through the second power converter , A part of the at least one second input port included in the energy storage converter is connected to a part of the second photovoltaic sub-array in a one-to-one correspondence, and the output port of the second power converter is connected to another part of the energy storage converter. Two input port connection.
  • a part of the second input port in the at least one second input port is connected to a part of the second photovoltaic sub-array in a one-to-one correspondence, and its specific meaning is: the number of the second input ports included in the at least one second input port and a part of the first
  • the two photovoltaic sub-arrays include the same number of second photovoltaic sub-arrays, and each second input port in at least one second input port has a paired second photovoltaic sub-array (a part of the second photovoltaic sub-array) , And the second photovoltaic sub-array paired with each second input port is different, and each second input port is connected with the paired second photovoltaic sub-array.
  • the energy storage converter may further include: at least one first switch connected in a one-to-one correspondence with the at least one first input port; at least one second switch connected in a one-to-one correspondence with the at least one second input port Switch; at least one third switch connected in a one-to-one correspondence with at least one output port; a first DC converter; wherein each first input port of the at least one first input port is connected to the first switch through a corresponding connection The input end of the first DC converter is connected; each second input port of the at least one second input port is connected to the input end of the first DC converter through a correspondingly connected second switch; Each output port is connected to the output terminal of the first DC converter through a correspondingly connected third switch.
  • the first DC converter may be used to obtain direct current from at least one first input port, or obtain direct current from at least one second input port, or obtain direct current from at least one first input port and at least one second input port, Step down the voltage value of the obtained DC power, and provide the reduced DC power to the battery through at least one output port; or boost the voltage value of the DC power provided by the battery obtained from the at least one output port, and increase The compressed direct current is output to the photovoltaic inverter through at least one first input port.
  • At least one first input port is connected to at least one first switch in a one-to-one correspondence, and its specific meaning is: the number of first input ports included in the at least one first input port and the number of first input ports included in the at least one first switch The number of switches is equal, each first input port of at least one first input port has a paired first switch, and the first switch paired with each first input port is different, and each first input port Connect with the matched first switch.
  • the at least one second input port is connected to the at least one second switch in a one-to-one correspondence, and its specific meaning is: the number of the second input ports included in the at least one second input port is the same as the number of the second switches included in the at least one second switch.
  • each second input port in the at least one second input port has a paired second switch, and the second switch paired with each second input port is different, and each second input port is paired with The second switch is connected.
  • At least one output port is connected to at least one third switch in a one-to-one correspondence, and the specific meaning is: the number of output ports included in the at least one output port is equal to the number of third switches included in the at least one third switch, and at least one output
  • Each output port in the port has a paired third switch, and the paired third switch for each output port is different, and each output port is connected to the paired third switch.
  • the energy storage converter further includes: at least one first DC converter; at least one second DC converter; at least one first switch connected in a one-to-one correspondence with the at least one first input port, At least one first switch is connected to at least one first DC converter in one-to-one correspondence; at least one second switch is connected to at least one second input port in one-to-one correspondence, at least one second switch is connected to at least one second DC converter One-to-one correspondence connection; at least one third switch connected in one-to-one correspondence with the at least one output port, and each third switch in the at least one third switch is connected to a first DC converter or a second DC converter.
  • each first DC converter of the at least one first DC converter can be used to obtain DC power from the connected first input port, step down the voltage value of the obtained DC power, and reduce the voltage after the step down.
  • the direct current is supplied to the battery through the connected output port; or the voltage value of the direct current provided by the battery obtained from the connected output port is boosted, and the boosted direct current is output to the photovoltaic inverter through the connected first input port .
  • Each second DC converter of the at least one second DC converter may be used to obtain DC power from the connected second input port, step down the voltage value of the obtained DC power, and pass the stepped DC power through the connected
  • the output port is provided to the battery; or the voltage value of the DC power provided by the battery obtained from the connected output port is boosted, and the boosted DC power is output to the photovoltaic inverter through the connected first input port.
  • At least one first switch is connected to at least one first DC converter in one-to-one correspondence, and its specific meaning is: the number of first switches included in the at least one first switch and the number of first switches included in the at least one first DC converter are The number of first DC converters in the at least one first switch is equal, each first switch in the at least one first switch has a paired first DC converter, and each first switch paired with the first DC converter has Not the same, each first switch is connected to the matched first DC converter.
  • the at least one second switch is connected to the at least one second DC converter in one-to-one correspondence, and its specific meaning includes: the number of second switches included in the at least one second switch and the second DC included in the at least one second DC converter. The number of converters is the same, each second switch of the at least one second switch has a paired second DC converter, and the second DC converters of each second switch pair are different, and each second switch is different.
  • the switch is connected to the paired second DC converter.
  • each first DC converter in the at least one first DC converter may be the same as the circuit structure of the second DC converter shown in FIG. 6, or BUCK- BOOST circuit structure to realize the unidirectional boost and unidirectional step-down functions of the first DC converter.
  • the structure of the second DC converter may be the same as the structure of the first DC converter.
  • the BUCK-BOOST circuit can be connected in the form of an integrated circuit, of course, it can also be connected in the form of a discrete device, which is not limited in this application.
  • the energy storage converter further includes a controller for controlling the conduction and closure of at least one first switch, at least one second switch, and at least one third switch.
  • the controller may be any of a microcontroller unit (MCU), a central processing unit (CPU), and a digital signal processor (digital signal processor, DSP).
  • MCU microcontroller unit
  • CPU central processing unit
  • DSP digital signal processor
  • the specific form of the controller is not limited to the above examples.
  • the battery may include multiple sub-batteries, where the function of setting the sub-battery is: the energy storage of a single battery is limited, and multiple sub-batteries can be set to store the direct current output by the energy storage converter to avoid the waste of electric energy due to the limited energy storage of a single battery .
  • the plurality of sub-batteries are adjacent to each other in pairs, and the positive terminals of any two adjacent sub-batteries are connected, and the negative terminals are connected.
  • the photovoltaic inverter may include an AC port, a DC bus, and an AC-DC converter; the DC bus is connected between the DC port and the input of the AC-DC converter; the output of the AC-DC converter is connected with the AC port, and the AC port Connect to the grid.
  • the AC-DC converter can be used to receive DC power from a connected DC port, convert the received DC power into AC power and output it to the power grid through the AC port, and convert the AC power output from the power grid received from the connected AC port to DC power after passing it through The DC port is output to the energy storage converter.
  • the AC-DC converter may include: a fifth H-bridge rectifier circuit, wherein the first bridge arm of the fifth H-bridge rectifier circuit may be used as the input end of the AC-DC converter to be connected to the DC port, and the fifth H-bridge rectifier circuit The second bridge arm can be connected to the AC port as the output end of the AC-DC converter.
  • circuit structure of the fifth H-bridge rectifier circuit may be the same as the circuit structures of the first H-bridge rectifier circuit and the second H-bridge rectifier circuit in the third DC converter shown in FIG. 6.
  • the AC-DC converter can also adopt the same structure as the third DC-DC converter shown in FIG. 6, that is, the structure of two H-bridge rectifier circuits and an isolation transformer.
  • the third DC-DC converter shown in FIG. 6 that is, the structure of two H-bridge rectifier circuits and an isolation transformer.
  • Other circuit structures can also be used, which is not limited in this application.
  • the present application provides the following feasible photovoltaic system system architecture on the basis of the photovoltaic system 200 shown in FIG. 2.
  • the first photovoltaic array 701 has a plurality of first photovoltaic sub-arrays 7011, 7012, ...
  • the first power converter 702 includes a plurality of third DC converters 7021, 7022, ..., 702N;
  • the second photovoltaic array 703 has a plurality of second photovoltaic sub-arrays 7031, 7032, ..., 703N;
  • the second power converter 704 includes a plurality of fourth DC converters 7041, 7042, ..., 704N;
  • the energy storage converter 705 includes a first input port 7051, a second input port 7052 and an output port 7053;
  • a photovoltaic inverter 707 includes One DC port 7071 and one AC port 7072.
  • each first photovoltaic array 7011-701N in the first photovoltaic array 701 generates direct current and directly outputs it to the third direct current converter 7021-702 connected to the corresponding third direct current converter.
  • the converters 7021-702N respectively convert the voltage values of the received DC power, and output the converted DC power to the photovoltaic inverter 707.
  • Each second photovoltaic array 7031-703N in the second photovoltaic array 703 generates direct current output.
  • the fourth DC converter 7041-704N converts the received DC power respectively, and the energy storage converter 705 can receive the DC power output from the third DC converter 7021-702N and At least one of the DC power output by the photovoltaic inverter may also receive the DC power output by the second DC converter 7041-704N.
  • the first switch and the second switch when the first switch and the second switch are closed at the same time and a first DC converter is included in the energy storage converter, the first switch and the second switch can be short-circuited into a wire, and the fourth DC converter
  • the direct current output from 7041-704N can be directly output to the photovoltaic inverter 707.
  • the present application provides the following feasible photovoltaic system system architecture based on the photovoltaic system 300 shown in FIG. 3.
  • the first photovoltaic array 801 has a plurality of first photovoltaic sub-arrays 8011, 8012, ...801N;
  • the first power converter 802 includes a plurality of third DC converters 8021, 8022, ..., 802N;
  • the second photovoltaic array 803 has a plurality of second photovoltaic sub-arrays 8031, 8032, ..., 803N;
  • the energy storage converter 804 includes a first input port 8041, a second input port 8042, and an output port 8043;
  • the photovoltaic inverter 806 includes a DC port 8061 and an AC port 8062.
  • each first photovoltaic array 8011-801N in the first photovoltaic array 801 generates direct current and directly outputs it to the corresponding first direct current converter 8021-802N, and the third direct current
  • the converters 8021-802N respectively convert the voltage value of the received DC power, and output the converted DC power to the photovoltaic inverter 806.
  • the second photovoltaic array 8031-803N in the second photovoltaic array 803 generates direct current and outputs it directly through
  • the second input port 8042 is output to the energy storage converter 804, and the energy storage converter 804 can receive at least one of the direct current output from the third direct current converter 8021-802N and the direct current output from the photovoltaic inverter.
  • the energy storage converter includes a first DC converter
  • the first switch and the second switch can be short-circuited into a wire
  • the second photovoltaic sub-array 8031 The direct current output from -803N can be directly output to the photovoltaic inverter 806.
  • the present application provides the following feasible photovoltaic system system architecture on the basis of the photovoltaic system 400 shown in FIG. 4.
  • the third structural schematic diagram of a photovoltaic system provided by this embodiment of the application.
  • the first photovoltaic array 904 has a plurality of first photovoltaic sub-arrays 9011, 9012, ..., 901N;
  • the first power converter 902 includes a plurality of third DC converters 9021, 9022, ..., 902N;
  • the second photovoltaic array 903 has a plurality of second photovoltaic sub-arrays 9031, 9032, ..., 903N, 903N+1,...,903M;
  • the second power converter 904 includes a plurality of fourth DC converters 9041, 9042,...,904N;
  • the energy storage converter 905 includes a first input port 9051, a second input port 9052, and Output port 9054;
  • the photovoltaic inverter 907 includes a DC port 9071 and an AC port 9072.
  • each of the first photovoltaic arrays 9011-901N in the first photovoltaic array 901 generates direct current and directly outputs it to the third direct current converter 9021-902N connected to the corresponding third direct current converter.
  • the inverters 9021-902N respectively convert the voltage values of the received DC power and output the converted DC power to the photovoltaic inverter 907.
  • the second photovoltaic array 9031-903N in the second photovoltaic array 903 generates direct current power and outputs it directly to the photovoltaic inverter 907.
  • the second photovoltaic array 903N+1-903M generates DC power and outputs it to the correspondingly connected energy storage converter 905, and the fourth DC converter 9041-904N respectively adjusts the voltage value of the received DC power Perform conversion and output the converted DC power to the energy storage converter 905.
  • the energy storage converter 905 can receive the electric energy output by the third DC converter 9021-902N and the DC power output by the photovoltaic inverter 907 through the first input port 9051. At least one of them may also receive at least one of the electric energy generated by the second photovoltaic sub-array 9031-903N and the direct current output by the fourth DC converter 9041-904N through the second input port.
  • the energy storage converter includes a first DC converter
  • the first switch and the second switch can be short-circuited as a wire
  • the third DC converter At least one of the direct current output by the 9041-904N and the direct current generated by the second photovoltaic array 9031-903M can be directly output to the photovoltaic inverter 907.
  • the utilization rate of the energy storage converter and the storage battery is improved, and the utilization rate of electric energy is improved, and the cost per kilowatt-hour of the system is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种光伏系统,用以解决光伏系统度电成本高的问题。该光伏系统包括:第一光伏阵列、第一功率变换器、第二光伏阵列、第二功率变换器、储能变换器、蓄电池和光伏逆变器;第一光伏阵列与光伏逆变器通过第一功率变换器连接;第二光伏阵列与储能变换器直接连接,或者第二光伏阵列的至少一部分通过第二功率变换器与储能变换器连接;储能变换器与光伏逆变器和蓄电池连接;光伏逆变器与电网连接。

Description

一种光伏系统
相关申请的交叉引用
本申请要求在2019年11月29日提交中国专利局、申请号为201911205767.7、申请名称为“一种光伏系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光伏发电技术领域,尤其涉及一种光伏系统。
背景技术
光伏发电作为清洁型可再生能源,被广泛的应用。光伏系统能够将光能转化为电能,并为电网供电。一般,光伏系统包括光伏阵列、功率变换器、光伏逆变器和储能装置,光伏阵列将接收的光能转换为直流电,功率变换器可以提高光伏阵列输出直流电的效率,并将转换效率后的直流电输出给光伏逆变器,光伏逆变器可以将功率转换器输出的直流电转换为交流电后输出给电网,储能装置用于存储光伏阵列产生的多余电能(大于电网需求的部分。
由于光伏系统中,在实际应用中,光伏逆变器逆变直流电的能力与光伏阵列输出的直流电的能力相等,对于特定的场合(比如,上午10点-下午3点),光伏阵列在该时刻内产生的电能较多,且电网需求的电能较少,光伏阵列输出的电能无需全部传输给电网,而对于另外一些场合(例如,上午6点-8点,以及晚上5点之后),电网需求的电能较多,光伏阵列产生电能无法满足电网的需求,此时并不需要储能装置存储电能,储能装置只有光照不足的情况下才会使用,储能装置的成本较高,在储能装置利用低的情况下,无疑储能装置的设置增加了光伏系统的度电成本。
发明内容
本申请实施例提供一种光伏系统,用以解决光伏系统度电成本高的问题。
本申请实施例提供了一种光伏系统,该光伏系统包括:第一光伏阵列、第一功率变换器、第二光伏阵列、第二功率变换器、储能变换器、蓄电池和光伏逆变器;其中,第一光伏阵列与光伏逆变器通过第一功率变换器连接;第二光伏阵列与储能变换器直接连接,或者第二光伏阵列的至少一部分通过第二功率变换器与储能变换器连接;储能变换器与光伏逆变器和蓄电池连接;光伏逆变器与电网连接。
其中,第一光伏阵列可以用于将吸收的光能转换为第一直流电,并将第一直流电输出给第一功率变换器。第一功率变换器可以用于将接收的第一直流电转换为第二直流电,并将第二直流电输出给光伏逆变器。其中,当第二光伏阵列通过第二功率变换器与储能变换器连接时,第二光伏阵列可以用于将吸收的光能转换为第三直流电,并将第三直流电输出给第二功率变换器;第二功率变换器将接收的第三直流电转换为第四直流电,储能变换器可以用于接收第二直流电和第四直流电,将接收的直流电的电压值转换为蓄电池的充电电压,并将转换后的直流电输出给蓄电池进行存储;储能变换器还可以用于从蓄电池中获取 直流电并将获取的直流电通过光伏逆变器转换为交流电后输出给电网。当第二光伏阵列的一部分直接与储能变换器连接,第二光伏阵列的另一部分通过第二功率变换器与储能变换器连接时,第二光伏阵列将吸收的光能转换为第三直流电,将第三直流电的一部分输出给储能变换器,将第三直流电的另一部分输出给第二功率变换器。第二功率变换器可以用于将接收的第三直流电的另一部分转换为第四直流电,并将第四直流电输出给储能变换器;储能变换器可以用于接收第二直流电、第三直流电的一部分和第四直流电,将接收的直流电的电压值转换为蓄电池的充电电压,并将转换后的直流电输出给蓄电池进行存储,储能变换器还可以用于从蓄电池中获取直流电并将获取的直流电通过光伏逆变器转换为交流电后输出给电网。当第二光伏阵列直接与储能变换器连接时,第二光伏阵列可以用于将吸收的光能转换为第三直流电,并将第三直流电输出给储能变换器;储能变换器用于接收第二直流电和第三直流电,并将接收的直流电的电压值转换为蓄电池的充电电压,并将转换后的直流电输出给蓄电池进行存储,储能变换器还可以用于从蓄电池中获取直流电并将获取的直流电通过光伏逆变器转换为交流电后输出给电网。光伏逆变器可以用于获取第一功率变换器输出的直流电或者储能变换器输出的直流电,或者获取第一功率变换器输出的直流电和储能变换器输出的直流电,并将获取的直流电转换为交流电后输出给电网。
应理解,当电网上单位时间内传输的电能大于电网单位时间内需求的电能时,为了避免电能的浪费,可以将剩余的电能(超出电网单位时间内需求的电能)通过光伏逆变器转换为直流电后存储至蓄电池中。
采用上述系统架构,储能变换器可以有多个电能获取路径,除现有的从第一功率变换器获取电能外,可以直接从第二光伏阵列中获取电能,或者从第二功率变换器中获取电能,且还可以从电网上获取电能,提高了储能变换器和蓄电池的利用率,且提高了电能的利用率,从而降低了光伏系统的度电成本。
在一种可能的设计中,储能变换器包括:至少一个第一输入端口、至少一个第二输入端口和至少一个输出端口;其中,至少一个第一输入端口分别与光伏逆变器连接;至少一个第二输入端口分别与第二功率变换器连接;或者至少一个第二输入端口与分别第二光伏阵列连接;或者至少一个第二输入端口中的一部分第二输入端口与第二功率变换器连接,至少一个第二输入端口中的另一部分第二输入端口与第二光伏阵列连接;至少一个输出端口分别与蓄电池连接。
采用以上系统架构,可以储能变换器可以通过多个端口与外部装置连接,从而得到多个电能传输路径,从而可以灵活的选择电能的传输路径。
在一种可能的设计中,储能变换器还包括与至少一个第一输入端口一一对应连接的至少一个第一开关;与至少一个第二输入端口一一对应连接的至少一个第二开关;与至少一个输出端口一一对应连接的至少一个第三开关;一个第一直流变换器;其中,至少一个第一输入端口中的每一个第一输入端口通过对应连接的第一开关与第一直流变换器的输入端连接;至少一个第二输入端口中的每一个第二输入端口通过对应连接的第二开关与第一直流变换器的输入端连接;至少一个输出端口中的每一个输出端口通过对应连接的第三开关与第一直流变换器的输出端连接。
其中,第一直流变换器可以用于从至少一个第一输入端口获取直流电,或者从至少一个第二输入端口获取直流电,或者从至少一个第一输入端口和至少一个第二输入端口获取直流电,将获取的直流电的电压值进行降压,并将降压后的直流电通过至少一个输出端口 提供给蓄电池;或者将从至少一个输出端口获取的蓄电池提供的直流电的电压值进行升压,并将升压后的直流电通过至少一个第一输入端口输出给光伏逆变器。
其中,至少一个第一输入端口与至少一个第一开关一一对应连接,其具体含义为:至少一个第一输入端口中包括的第一输入端口的数量与至少一个第一开关中包括的第一开关的数量相等,至少一个第一输入端口中的每一个第一输入端口均存在一个配对的第一开关,且每一个第一输入端口配对的第一开关均不相同,每一个第一输入端口与配对的第一开关连接。至少一个第二输入端口与至少一个第二开关一一对应连接,其具体含义为:至少一个第二输入端口中包括的第二输入端口的数量与至少一个第二开关中包括的第二开关的数量相等,至少一个第二输入端口中的每一个第二输入端口均存在一个配对的第二开关,且每一个第二输入端口配对的第二开关均不相同,每一个第二输入端口与配对的第二开关连接。至少一个输出端口与至少一个第三开关一一对应连接,其具体含义为:至少一个输出端口中包括的输出端口的数量与至少一个第三开关中包括的第三开关的数量相等,至少一个输出端口中的每一个输出端口均存在一个配对的第三开关,且每一个输出端口配对的第三开关均不相同,每一个输出端口与配对的第三开关连接。
采用以上系统架构,储能变换器可以通过多个输入端口获取电能,并将获取的电能输出给蓄电池存储,从而在电网需求电能较多或者第一光伏阵列产生的电能较少时,将蓄电池中存储的电能提供给电网,从而满足电网对电能的需求。
在一种可能的设计中,储能变换器还包括:至少一个第一直流变换器;至少一个第二直流变换器;与至少一个第一输入端口一一对应连接的至少一个第一开关,至少一个第一开关与至少一个第一直流变换器一一对应连接;与至少一个第二输入端口一一对应连接的至少一个第二开关,至少一个第二开关与至少一个第二直流变换器一一对应连接;与至少一个输出端口一一对应连接的至少一个第三开关,至少一个第三开关中的每一个第三开关连接一个第一直流变换器或者一个第二直流变换器。
其中,至少一个第一直流变换器中的每一个第一直流变换器可以用于从连接的第一输入端口获取直流电,将获取的直流电的电压值进行降压,并将降压后的直流电通过连接的输出端口提供给蓄电池;或者将从连接的输出端口获取的蓄电池提供的直流电的电压值进行升压,并将升压后的直流电通过连接的第一输入端口输出给光伏逆变器。至少一个第二直流变换器中的每一个第二直流变换器可以用于从连接的第二输入端口获取直流电,将获取的直流电的电压值进行降压,并将降压后的直流电通过连接的输出端口提供给蓄电池;或者将从连接的输出端口获取的蓄电池提供的直流电的电压值进行升压,并将升压后的直流电通过连接的第一输入端口输出给光伏逆变器。
其中,至少一个第一开关与至少一个第一直流变换器一一对应连接,其具体含义为:至少一个第一开关中包括的第一开关的数量与至少一个第一直流变换器中包括的第一直流变换器的数量相等,至少一个第一开关中的每一个第一开关均存在一个配对的第一直流变换器,且每一个第一开关配对的第一直流变换器均不相同,每一个第一开关与配对的第一直流变换器连接。至少一个第二开关与至少一个第二直流变换器一一对应连接,其具体含义包括:至少一个第二开关中包括的第二开关的数量与至少一个第二直流变换器中包括的第二直流变换器的数量相等,至少一个第二开关中的每一个第二开关均存在一个配对的第二直流变换器,且每一个第二开关配对的第二直流变换器均不相同,每一个第二开关与配对的第二直流变换器连接。
采用以上系统架构,储能变换器可以从多个输入端口获取电能,为了实现多个输入端口之间互不影响,可以将分别为储能变换器的每一个输入端口(第一输入端口和第二输入端口)配置一个第一直流变换器或者第二直流变换器,从而实现当单一输入端口出现问题时,可以通过其它端口获取电能,以实现储能变换器对应的功能。
在一种可能的设计中,储能变换器还包括控制器;该控制器用于控制至少一个第一开关、至少一个第二开关以及至少一个第三开关的导通或截止。
采用以上系统架构,在控制器的控制下,可以灵活的选择与储能变换器连接的设备,从而控制电能的传输方向。
在一种可能的设计中,第一光伏阵列包括多个第一光伏子阵列;第一功率变换器包括与多个第一光伏子阵列一一对应连接的多个第一光伏端口;光伏逆变器包括直流端口,第一功率变换器包括一个输出端口;第一功率变换器的输出端口与直流端口连接。
其中,多个第一光伏子阵列与多个第一光伏端口一一对应连接,其具体含义为:多个第一光伏子阵列中包括的第一光伏子阵列的数量与多个第一光伏端口中包括的第一光伏端口的数量相等,多个第一光伏子阵列中的每一个第一光伏子阵列均存在一个配对的第一光伏端口,且每一个第一光伏子阵列配对的第一光伏端口均不相同,每一个第一光伏子阵列与配对的第一光伏端口连接。
采用以上系统架构,由于单个第一光伏子阵列输出电能的能力有限,可以通过设置多个第一光伏子阵列同时输出电能来满足电网对电能的需求。
在一种可能的设计中,第二光伏阵列包括多个第二光伏子阵列,其中:当多个第二光伏子阵列全部通过第二功率变换器与储能变换器连接时,第二功率变换器包括的多个第二光伏端口与多个第二光伏子阵列一一对应连接,储能变换器的至少一个第二输入端口分别与第二功率变换器的输出端口连接;当多个第二光伏子阵列中的一部分第二光伏子阵列直接储能变换器连接、另一部分第二光伏子阵列通过第二功率变换器与储能变换器连接时,储能变换器包括的至少一个第二输入端口中的一部分第二输入端口与一部分第二光伏子阵列一一对应连接,第二功率变换器包括的多个第二光伏端口与另一部分第二光伏子阵列一一对应连接,第二功率变换器的输出端口与储能变换器包括的另一部分第二输入端口连接;当多个第二光伏子阵列全部直接与储能变换器连接时,储能变换器包括的至少一个第二输入端口与多个第二光伏子阵列一一对应连接。
其中,多个第二光伏端口与多个第二光伏子阵列一一对应连接,其具体含义为:多个第二光伏端口中包括的第二光伏端口的数量与多个第二光伏子阵列中包括的第二光伏子阵列的数量相等,多个第二光伏端口中的每一个第二光伏端口均存在一个配对的第二光伏子阵列,且每一个第二光伏端口配对的第二光伏子阵列均不相同,每一个第二光伏端口与配对的第二光伏子阵列连接。至少一个第二输入端口中的一部分第二输入端口与一部分第二光伏子阵列一一对应连接,其具体含义为:一部分第二输入端口中包括的第二输入端口的数量与一部分第二光伏子阵列中包括的第二光伏子阵列的数量相等,一部分第二输入端口中的每一个第二输入端口均存在一个配对的第二光伏子阵列(一部分第二光伏子阵列中的其中一个),且每一个第二输入端口配对的第二光伏子阵列均不相同,每一个第二输入端口与配对的第二光伏子阵列连接。多个第二光伏端口与另一部分第二光伏子阵列一一对应连接,其具体含义为:多个第二光伏端口中包括的第二光伏端口的数量与另一部分第二光伏子阵列中包括的第二光伏子阵列的数量相等,多个第二光伏端口中的每一个第二光伏 端口均存在一个配对的第二光伏子阵列(另一部分第二光伏子阵列中的其中一个),且每一个第二光伏端口配对的第二光伏子阵列均不相同,每一个第二光伏端口与配对的第二光伏子阵列连接。至少一个第二输入端口与多个第二光伏子阵列一一对应连接,其具体含义为:至少一个第二输入端口中包括的第二输入端口的数量与多个第二光伏子阵列中包括的第二光伏子阵列的数量相等,至少一个第二输入端口中的每一个第二输入端口均存在一个配对的第二光伏子阵列,且每一个第二输入端口配对的第二光伏子阵列均不相同,每一个第二输入端口与配对的第二光伏子阵列连接。
采用以上系统架构,由于单个第二光伏子阵列输出电能的能力有限,可以采用多个第二光伏子阵列同时输出电能来满足电网对电能的需求。其中,第二光伏阵列与储能变换器的具有多种连接方式,第二光伏阵列可以直接与储能变换器连接,第二光伏阵列输出的直流电无需经过第二功率变换器,提高了第二光伏阵列输出的直流电的利用率。第二光伏阵列的部分或者全部还可以通过第二功率变换器与储能变换器连接,储能变换器接收的大部分直流电为第二功率变换器输出的直流电,保证了输出给储能变换器的直流电的电压值的平稳性。
在一种可能的设计中,第一功率变换器包括与多个第一光伏端口一一对应连接的多个第三直流变换器,其中,多个第三直流变换器中的每一个第三直流变换器的输入端与对应的第一光伏端口连接,多个第三直流变换器中的每一个第三直流变换器的输出端均与第一功率变换器的输出端口连接。
其中,多个第三直流变换器中的每一个第三直流变换器可以用于从连接的第一光伏端口接收第一光伏子阵列输出的直流电,将接收的直流电的电压值进行转换,并将转换后的直流电通过连接的第一功率变换器的输出端口输出给光伏逆变器。
采用以上系统架构,由于每一个第一光伏子阵列均能输出直流电,为了保证每一个第一光伏子阵列之间互不影响,可以分别为每一个第一光伏子阵列配置一个第三直流变换器来实现每一个第一子光伏阵列之间互不影响。
在一种可能的设计中,第二功率变换器包括与多个第二光伏端口一一对应连接的多个第四直流变换器,其中,多个第四直流变换器中的每一个第四直流变换器的输入端与对应的第二光伏端口连接,多个第四直流变换器中的每一个第四直流变换器的输出端均与第二功率变换器的输出端口连接。
其中,多个第四直流变换器中的每一个第四直流变换器可以用于从连接的第二光伏端口接收第二光伏子阵列输出的直流电,将接收的直流电的电压值进行转换,并将转换后的直流电通过连接的第二功率变换器的输出端口输出给储能变换器。
采用以上系统架构,由于每一个第二光伏子阵列均能输出直流电,为了保证每一个第二光伏子阵列之间互不影响,可以分别为每一个第二光伏子阵列配置一个第四直流变换器的形式来实现每一个第二光伏子阵列之间互不影响。
在一种可能的设计中,光伏逆变器包括交流端口、直流母线和交直流转换器;其中,直流母线连接在直流端口与交直流转换器的输入端之间;交直流转换器的输出端与交流端口连接,交流端口与电网连接。
其中,交直流转换器可以用于从连接的直流端口接收直流电,将接收的直流电转换为交流电并通过交流端口输出给电网,以及将从连接的交流端口接收的电网输出的交流电转换为直流电后通过直流端口输出给储能变换器。
采用以上系统架构,当电网上单位时间内传输的电能大于电网单位时间内需求的电能时,可以将电网上传输的多余电能转换为直流电,并将转换后的直流电通过储能变换器存储至蓄电池中。
在一种可能的设计中,第二功率变换器输出的电压的电压值大于或等于1500V。
采用以上系统架构,第二功率变换器输出的电压的电压值大于或等于1500V有利于电能的远距离传输。
在一种可能的设计中,蓄电池包括多个子蓄电池;多个子蓄电池两两相邻,任意相邻的两个子蓄电池的正接线端连接,且负接线端连接。
采用以上系统架构,每相邻的两个子蓄电池之间正接线端连接,且负接线端连接的连接方式,可以实现每个蓄电池并联连接,均能获取储能转换器输出的直流电,且无需每个蓄电池均引出两个连接线与储能装置连接,且节约了蓄电池与储能转换器的连接线径。
在一种可能的设计中,蓄电池包括铅碳电池、磷酸铁锂电池、三元锂电池、钠硫电池或液流电池。
附图说明
图1为一种直流耦合光伏系统的系统架构示意图;
图2为本申请实施例提供的一种光伏系统架构示意图之一;
图3为本申请实施例提供的一种光伏系统架构示意图之二;
图4为本申请实施例提供的一种光伏系统架构示意图之三;
图5为一种第一光伏阵列结构示意图;
图6为一种第二直流转换器结构示意图;
图7为本申请实施例提供的一种可能的光伏系统架构示意图之四;
图8为本申请实施例提供的一种可能的光伏系统电路示意图之五;
图9为本申请实施例提供的一种可能的光伏系统电路示意图之六。
具体实施方式
下面将结合附图对本申请实施例作进一步详细描述。
图1为一种直流耦合光伏系统的系统架构示意图,如图1所示,光伏系统包括光伏阵列、功率变换器、储能变换器、蓄电池和光伏逆变器。其中,光伏阵列与功率变换器连接,用于将吸收的光能转换为直流电,并将转换的直流电输出给功率变换器。功率变换器分别与储能变换器和光伏逆变器连接,用于调整光伏阵列输出的直流电的功率,并在光伏阵列单位时间内产生的电能大于电网单位时间内所需的电能时,将调整功率后的直流电分别输出给储能变换器和光伏逆变器。储能变换器与光伏逆变器和蓄电池连接,用于将从功率变换器接收的直流电转化为蓄电池的充电电压,从而为蓄电池提供电能。光伏逆变器用于将接收的直流电转换为交流电后输出给电网。
对于图1所示的光伏系统,在光照充足时,若此时光伏阵列产生的电能正好为电网需求的电能,则光伏阵列产生的电能直接通过光伏逆变器输出给电网,蓄电池和储能变换器只有在电网需求电能较少、光照充足的情况下才能获取到电能,且蓄电池只存在光伏逆变器一条充电路径,而光伏系统配置蓄电池和储能变换器的成本较高,而蓄电池和储能变换 器利用率低,无疑增加了光伏系统的度电成本。
基于此,本申请实施例提供了一种光伏系统,用以降低光伏系统的度电成本。
下述实施例的具体介绍中,需要说明的是,本申请中所涉及的多个,是指两个或两个以上。本申请中所涉及的术语“或”,描述关联对象的关联关系,表示可以存在两种关系,例如,A或B,可以表示:单独存在A和单独存在B这两种情况。本申请中所涉及的连接,描述两个对象的连接关系,可以表示两种连接关系,例如,A和B连接,可以表示:A与B直接连接,A通过C和B连接这两种情况。另外,需要理解的是,在本申请的描述中,“第一”、“第二”“第三”…等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
为了解决上述光伏系统存在的问题,本申请实施例提供了三种光伏系统结构,具体如下:
参见图2,为本申请实施例提供的一种光伏系统架构示意图一。如图2所示,该光伏系统200可以包括:第一光伏阵列201、第一功率变换器202、第二光伏阵列203、第二功率变换器204、储能变换器205、蓄电池206和光伏逆变器207。
其中,第一光伏阵列201与光伏逆变器207通过第一功率变换器202连接;第二光伏阵列203通过第二功率变换器204与储能变换器205连接;储能变换器205分别与光伏逆变器207和蓄电池206连接;光伏逆变器207与电网连接。
其中,第一光伏阵列201可以用于将吸收的光能转换为第一直流电,并将第一直流电输出给第一功率变换器202。第一功率变换器202可以用于将接收的第一直流电转换为第二直流电。第二光伏阵列203可以用于将吸收的光能转换为第三直流电。第二功率转换器204可以用于接收第三直流电,并将第三直流电转换为第四直流电。储能变换器205可以用于接收第二直流电和第四直流电中的至少一个,并将接收的直流电的电压值转化为蓄电池206的充电电压后存入蓄电池206,以及将蓄电池206中存储的直流电输出给光伏逆变器207。蓄电池206可以用于存储储能变换器205提供的直流电或者为储能变换器205提供直流电。光伏逆变器207可以用于接收储能变换器205和第一功率变换器202输出的直流电中的至少一个,并将接收的直流电转换为交流电后输出给电网,以及将电网输入的交流电转换为直流电后输出给储能变换器205。其中,为了实现光伏系统200输出的电能能够远距离传输,第二直流电的电压值可以大于或等于1500V。
其中,第二直流电的电压值与第四直流电的电压值相等,且第二直流电和第四直流电的正负方向可以相同。
在图2所示的光伏系统200中,储能转换器205具有多个获取直流电的路径。具体地,第一功率变换器202可以与储能变换器205连接,同时第二功率变换器204也可以与储能变换器205连接。光伏系统200在向电网提供电能时,在一些对电能需求不多的场合,电网需求的电能可以直接通过第一功率变换器202提供,第二光伏阵列203产生的电能可以通过第二功率变换器转换为第四直流电后,再通过储能变换器205将第四直流电的电压值转换为蓄电池206的充电电压并存储至蓄电池206中。当第一光伏阵列201产生的电能无法满足电网需求的电能时,将第二功率变换器204输出的直流电和蓄电池206存储的直流电中的至少一个通过光伏逆变器207转换后为交流电后提供给电网,这种运行方法提高了储能变换器205和蓄电池206的利用率,降低光伏系统的度电成本。
应理解,当第一光伏阵列201产生的电能大于电网需求的电能时,第一功率变换器202 输出的多余电能(超出电网单位时间内需求的电能的部分)可以通过储能变换器205存储至蓄电池206中,以避免电能的浪费。
应理解,当电网上单位时间内传输的电能大于电网单位时间内需求的电能时,为了避免电能的浪费,可以将电网上传输的多余电能(超出电网单位时间内需求的电能的部分)通过光伏逆变器207转换为直流电后,再通过储能变换器205存储至蓄电池206中,从而提高电能的利用率。
参见图3,为本申请实施例提供的一种光伏系统架构示意图二。如图3所示,该光伏系统300可以包括:第一光伏阵列301、第一功率变换器302、第二光伏阵列303、储能变换器304、蓄电池305和光伏逆变器306。
其中,第一光伏阵列301与光伏逆变器306通过第一功率变换器302连接;第二光伏阵列303与储能变换器304连接;储能变换器304分别与光伏逆变器306和蓄电池305连接;光伏逆变器306与电网连接。
其中,第一光伏阵列301可以用于将吸收的光能转换为第一直流电,并将第一直流电输出给第一功率变换器302。第一功率变换器302可以用于将接收的第一直流电转换为第二直流电。第二光伏阵列303可以用于将吸收的光能转换为第三直流电。储能变换304可以用于接收第二直流电和第三直流电中的至少一个,并将接收的直流电的电压值转换为蓄电池的充电电压后存入蓄电池305,以及将蓄电池305中存储的直流电输出给光伏逆变器306。蓄电池305可以用于存储储能变换器304提供的直流电或为储能变换器304提供直流电。光伏逆变器306可以用于接收储能变换器304和第一功率变换器302输出的直流电中的至少一个,并将接收的直流电转换为交流电后输出给电网,以及将电网输入的交流电转换为直流电后输出给储能变换器304。其中,为了实现光伏系统300输出的电能能够远距离传输,第二直流电的电压值可以大于或等于1500V。
其中,第三直流电的电压值和第二直流电的电压值相等,且第三直流电和第二直流电的正负方向可以相同。
在图3所示的光伏系统300中,储能转换器304具有多个获取直流电的路径。具体地,第一功率变换器302可以与储能变换器304连接,同时第二光伏阵列303可以与储能变换器304直接连接,由于第二光伏阵列303产生的第三直流电直接输出给储能变换器304,第二光伏阵列产生的直流电无需经过第二功率变换器,则第二光伏阵列303输出的直流电的可以更小损耗的输出给储能变换器304,电能的利用率提高。具体地,光伏系统300在向电网提供电能时,在一些电网电能需求不多的场合,电网需求的电能可以直接通过第一功率变换器302提供,第二光伏阵列303产生的电能可以直接存储在储能变换器304中,当第一功率变换器输出的电能无法满足电网需求的电能时,将第二光伏阵列303产生的电能和蓄电池305存储的直流电中的至少一个通过光伏逆变器306转换后为交流电后提供给电网,进行电能补偿,提高了储能变换器304和蓄电池305的利用率,降低光伏系统300的度电成本。
应理解,当第一光伏阵列301产生的电能大于电网需求的电能时,第一功率变换器302输出的多余电能(超出电网单位时间内需求的电能的部分)可以通过储能变换器304存储至蓄电池305中,以避免电能的浪费。
应理解,当电网上单位时间内传输的电能大于电网单位时间内需求的电能时,为了避免电能的浪费,可以将电网上传输的多余电能(超出电网单位时间内需求的电能的部分) 通过光伏逆变器306转换为直流电后,再通过储能变换器304存储至蓄电池305中,从而提高电能的利用率。
参见图4,为本申请实施例提供的一种光伏系统架构示意图三。如图4所示,该光伏系统400可以包括:第一光伏阵列401、第一功率变换器402、第二光伏阵列403、第二功率变换器404、储能变换器405、蓄电池406和光伏逆变器407。
其中,第一光伏阵列401与光伏逆变器407通过第一功率变换器402连接;第二光伏阵列403的一部分直接与储能变换器405连接,另一部分通过第二功率变换器404与储能变换器405连接;储能变换器405分别与光伏逆变器407和蓄电池406连接;光伏逆变器407与电网连接。
其中,第一光伏阵列401可以用于将吸收的光能转换为第一直流电,并将第一直流电输出给第一功率变换器402。第一功率变换器402可以用于将接收的第一直流电,转换为第二直流电。第二光伏阵列403可以用于将吸收的光能转换为第三直流电,并将第三直流电的一部分输出给储能变换器405,将第三直流电的另一部分输出给第二功率变换器。第二功率变换器404可以用于将接收的第三直流电的另一部分转换为第四直流电。储能变换器405可以用于接收第二直流电、第三直流电的一部分和第四直流电中的至少一个,并将接收的直流电的电压值转换为蓄电池406的充电电压后存入蓄电池406,以及将蓄电池406中存储的直流电输出给光伏逆变器407。蓄电池406可以用于存储储能变换器405提供的直流电或为储能变换器405提供直流电。光伏逆变器407可以用于接收储能变换器405和第一功率变换器402输出的直流电中的至少一个,并将接收的直流电转换为交流电后输出给电网,以及将电网输入的交流电转换为直流电后输出给储能变换器305。其中,为了实现光伏系统400输出的电能能够远距离传输,第二直流电的电压值可以大于或等于1500V。
其中,第三直流电的电压值和第四直流电的电压值可以与第二直流电的电压值相等,且第三直流电、第四直流电以及第二直流电的正负方向可以相同。
在图4所示的光伏系统400中,储能转换器405具有多个获取直流电的路径。具体地,第一功率变换器402、第二光伏阵列403的一部分以及第二功率变换器404均可以与储能变换器405连接。其中,储能变换器405接收的直流电大部分为第二直流电以及第四直流电,从而减小了第三直流电的一部分的电压值不稳定对系统的影响,因此保证了光伏系统400的工作稳定性。
具体地,光伏系统400在向电网提供电能时,在一些电网需求电能不多的场合,电网需求的电能可以直接通过第一功率变换器402提供,第二光伏阵列403的输出的第三直流电的一部分和第二功率变换器404输出的第四直流电可以通过储能变换器405存入蓄电池406中。当第一光伏阵列401产生的电能无法满足电网需求的电能时,将第二光伏阵列403输出的第三直流电的一部分、第二功率变换器404输出的第四直流电和蓄电池405存储的直流电中的至少一个通过光伏逆变器407转换为交流电后提供给电网,从而满足电网对电能的需求,同时提高了储能变换器405和蓄电池406的利用率,降低光伏系统400的度电成本。
应理解,当第一光伏阵列401产生的电能大于电网需求的电能时,第一功率变换器402输出的多余电能(超出电网单位时间内需求的电能的部分)可以通过储能变换器405存储至蓄电池406中,以避免电能的浪费。
应理解,当电网上单位时间内传输的电能大于电网单位时间内需求的电能时,为了避 免电能的浪费,可以将电网上传输的多余电能(超出电网单位时间内需求的电能的部分)通过光伏逆变器407转换为直流电后,再通过储能变换器405存储至蓄电池406中,从而提高电能的利用率。
下面,对光伏阵列200、光伏阵列300和光伏阵列400中的第一光伏阵列、第一功率变换器、第二光伏阵列、第二功率变换器、储能变换器、蓄电池和光伏逆变器的具体结构进行介绍。
一、第一光伏阵列
第一光伏阵列可以是包括多个第一光伏子阵列。其中,设置第一光伏子阵列的作用为:每一个第一光伏子阵列输出电能的能力有限,通过采用设置多个第一光伏子阵列同时工作输出电能以满足电网对电能的需求。
为了便于理解,下面给出第一光伏阵列的结构的具体示例。参见图5为本申请实施例提供的一种第一光伏阵列的结构示意图。如图5所示的第一光伏阵列中,每一个小方格代表一个光伏电池。第一光伏阵列中的一行光伏电池并联构成一个光伏组串PV(如图4中PV1~PV18)。一般情况下,光伏组串可以作为调节第一光伏阵列光转化效率的基本单位。在本申请所提供的光伏系统中,任一光伏子阵列包括至少一个光伏组串PV。
二、第一功率变换器
第一功率转换器可以包括:与多个第一光伏子阵列一一对应连接的多个第一光伏端口、与多个第一光伏端口一一对应连接的多个第三直流变换器和输出端口。
具体地,多个第三直流变换器中的每一个第三直流变换器的输入端与对应的第一光伏端口连接,多个第三直流变换器中的每一个第三直流变换器的输出端均与第一功率变换器的输出端口连接。
其中,多个第一光伏子阵列与多个第一光伏端口一一对应连接,其具体含义为:多个第一光伏端口中包括的第一光伏端口的数量与多个第一光伏子阵列中包括第一光伏子阵列的数量相同,多个第一光伏子阵列中的每一个第一光伏子阵列均存在一个配对的第一光伏端口,且每一个第一光伏子阵列配对的第一光伏端口均不相同,每一个第一光伏子阵列与对应的第一光伏端口连接。多个第一光伏子阵列与多个第一光伏端口一一对应连接,其具体含义为:多个第三直流变换器中包括的第三直流变换器的的数量与多个第一光伏端口中包括的第一光伏端口的数量相等,每一个第三直流变换器均存在一个配对的第一光伏端口,且每一个第三直流变换器配对的第一光伏端口均不相同,每一个第三直流变换器与配对的第一光伏端口连接。
其中,多个第三直流变换器中的每一个第三直流变换器可以用于从连接的第一光伏端口接收第一光伏子阵列输出的直流电,将接收的直流电的电压值进行转换,并将转换后的直流电通过连接的第一功率变换器的输出端口输出给光伏逆变器。
采用第一功率变换器的结构,每一个第一光伏端口与对应的第一光伏子阵列连接时,属于同一第一光伏子阵列的光伏组串PV与该第一光伏子阵列对应的第一光伏端口连接。
其中,多个第三直流变换器中的每一个第三直流变换器可以包括:第一H桥整流电路、隔离变压器和第二H桥整流电路;其中,隔离变压器的原边绕组与第一H桥整流电路耦合连接,隔离变压器的副边绕组与第二H桥整流电路耦合连接。
本申请实施例中,第三直流变换器采用现有结构,即由第一H桥整流电路、第二H桥整流电路和隔离变压器组成。其中,第一H桥整流电路的第一桥臂可以作为第三直流转换 器的输入端与对应的光伏端口连接,第二H桥整流电路的第二桥臂可以作为第三直流变换器的输出端与第一功率变换器的输出端口连接。
第一H桥整流电路,由开关管组成,用于对接收的直流电调压;第二H桥整流电路,由开关管组成,用于对调压后的直流电进行整流。其中,第一功率转换器中各电路中的开关管可以为金属氧化物半导体(metal oxide semiconductor,MOS)管,也可以为双极结型晶体管(bipolar junction transistor,BJT),还可以为其它可以实现开关功能的器件,本申请这里不做限定。
采用上述第一功率变换器,可以对获取的第一光伏阵列输出的直流电进行调压和整流处理,实现调整第一光伏阵列输出的直流电的效率,还可以实现第一光伏阵列与光伏逆变器的电气隔离。
为了便于理解,下面给出第三直流变换器的结构的具体示例。第三直流变换器的结构可以如图6,在图6中,A和B作为第三直流变换器的输入端与对应的第一光伏端口连接,C和D作为第三直流变换器的输出端与第一功率变换器的输出端口连接,MOS管Q1/Q2/Q3/Q4组成第一H桥整流电路,MOS管Q5/Q6/Q7/Q8组成第二H桥整流电路,L、C1和T组成隔离变压器。其中,L和T可以是分立结构,也可以采用磁集成方式。
三、第二光伏阵列
第二光伏阵列可以包括多个第二光伏子阵列。其中,设置第二光伏子阵列的作用为:每一个第二光伏子阵列输出电能的能力有限,通过采用设置多个第二光伏子阵列同时工作输出电能以满足电网对电能的需求。
其中,第二光伏阵列的电路结构可以与图5所示的第一光伏阵列的电路结构相同,本申请这里不再做具体介绍。
四、第二功率变换器
第二功率变换器可以包括:多个第二光伏端口、一个输出端口和与多个第二光伏端口一一对应连接的多个第四直流变换器。
其中,多个第四直流变换器中的每一个第四直流变换器的输入端与对应的第二光伏端口连接,多个第四直流变换器中的每一个第四直流变换器的输出端均与第二功率变换器的输出端口连接。
其中,多个第二光伏端口与多个第四直流变换器一一对应连接,其具体含义为:多个第四直流变换器中包括的第四直流变换器的数量与多个第二光伏端口中包括的第二光伏阵列的数量相等,多个第四直流变换器中的每一个第四直流变换器均存在一个配对的第二光伏端口,且每一个第四直流变换器配对的第二光伏端口均不相同。
其中,多个第四直流变换器中的每一个第四直流变换器可以用于从连接的第二光伏端口接收第二光伏子阵列输出的直流电,将接收的直流电的电压值进行转换,并将转换后的直流电通过连接的第二功率变换器的输出端口输出给储能变换器。
采用第二功率变换器的结构,当第二光伏子阵列全部通过第二功率变换器与储能变换器连接时,多个第二光伏端口与第二光伏阵列包括的多个第二光伏子阵列一一对应连接。具体地,属于同一第二光伏子阵列的光伏组串PV与该第二光伏子阵列对应的第二光伏端口连接。其中,多个第二光伏端口与多个第二光伏子阵列一一对应连接,其具体含义为:多个第二光伏端口中包括的第二光伏端口的数量与多个第二光伏子阵列中包括的第二光伏子阵列的数量相等,多个第二光伏端口中的每一个第二光伏端口均存在一个配对的第二 光伏子阵列,且每一个第二光伏端口配对的第二光伏子阵列均不相同,每一个第二光伏端口与配对的第二光伏子阵列连接。
采用第二功率变换器的结构,当多个第二光伏子阵列中的一部分第二光伏子阵列直接储能变换器连接、另一部分第二光伏子阵列通过第二功率变换器与储能变换器连接时,第二功率变换器包括的多个第二光伏端口与另一部分第二光伏子阵列一一对应连接。其中,多个第二光伏端口与另一部分第二光伏子阵列一一对应连接,其具体含义为:多个第二光伏端口中包括的第二光伏端口的数量与另一部分第二光伏子阵列中包括的第二光伏子阵列(另一部分第二光伏子阵列中的一个)的数量相等,多个第二光伏端口中的每一个第二光伏端口均存在一个配对的第二光伏子阵列,且每一个第二光伏端口均配对的第二光伏子阵列均不相同,第二光伏端口与配对的第二光伏子阵列连接。
其中,多个第四直流变换器中的每一个第四直流变换器可以用于从连接的第二光伏端口接收第二光伏子阵列输出的直流电,将接收的直流电的电压值进行转换,并将转换后的直流电通过连接的第二功率变换器的输出端口输出给储能变换器。
其中,多个第四直流变换器中的每一个第四直流变换器可以包括:第三H桥整流电路、隔离变压器和第四H桥整流电路;其中,隔离变压器的原边绕组与第三H桥整流电路耦合连接,隔离变压器的副边绕组与第四H桥整流电路耦合连接。其中,第四直流电变换器的电路结构可以与图6所示的第三直流变换器的电路结构相同,本申请这里不再做详细介绍。
五、储能变换器
储能转换器可以包括:至少一个第一输入端口、至少一个第二输入端口和至少一个输出端口。
其中,至少一个第一输入端口分别与光伏逆变器连接;至少一个第二输入端口分别与第二功率变换器连接;或者至少一个第二输入端口与分别第二光伏阵列连接;或者至少一个第二输入端口中的一部分第二输入端口与第二功率变换器连接,至少一个第二输入端口中的另一部分第二输入端口与第二光伏阵列连接;至少一个输出端口分别与蓄电池连接。
采用储能变换器的结构,若第二光伏阵列通过第二功率变换器与储能变换器连接,则储能变换器的至少一个第二输入端口分别与第二功率变换器的输出端口连接。
采用储能变换器的结构,若第二光伏阵列直接与储能变换器连接,则储能变换器包括的至少一个第二输入端口与多个第二光伏子阵列一一对应连接。其中,至少一个第二输入端口与多个第二光伏子阵列一一对应连接,其具体含义为:至少一个第二输入端口中包括的第二输入端口的数量与多个第二光伏子阵列的数量相等,至少一个第二输入端口中的每一个第二输入端口均存在一个配对的第二光伏子阵列,且每一个第二输入端口配对的第二光伏子阵列均不相同,每一个第二输入端口与配对的第二光伏子阵列连接。
采用储能变换器的结构,若多个第二光伏子阵列中的一部分第二光伏子阵列直接储能变换器连接、另一部分第二光伏子阵列通过第二功率变换器与储能变换器连接,储能变换器包括的至少一个第二输入端口中的一部分第二输入端口与一部分第二光伏子阵列一一对应连接,第二功率变换器的输出端口与储能变换器包括的另一部分第二输入端口连接。其中,至少一个第二输入端口中的一部分第二输入端口与一部分第二光伏子阵列一一对应连接,其具体含义为:至少一个第二输入端口中包括的第二输入端口的数量与一部分第二光伏子阵列中包括第二光伏子阵列的数量相等,至少一个第二输入端口中的每一个第二输入端口均存在一个配对的第二光伏子阵列(一部分第二光伏子阵列中的一个),且每一个 第二输入端口配对的第二光伏子阵列均不相同,每一个第二输入端口与配对的第二光伏子阵列连接。
在一种可能的设计中,储能变换器还可以包括:与至少一个第一输入端口一一对应连接的至少一个第一开关;与至少一个第二输入端口一一对应连接的至少一个第二开关;与至少一个输出端口一一对应连接的至少一个第三开关;一个第一直流变换器;其中,至少一个第一输入端口中的每一个第一输入端口通过对应连接的第一开关与第一直流变换器的输入端连接;至少一个第二输入端口中的每一个第二输入端口通过对应连接的第二开关与第一直流变换器的输入端连接;至少一个输出端口中的每一个输出端口通过对应连接的第三开关与第一直流变换器的输出端连接。
其中,第一直流变换器可以用于从至少一个第一输入端口获取直流电,或者从至少一个第二输入端口获取直流电,或者从至少一个第一输入端口和至少一个第二输入端口获取直流电,将获取的直流电的电压值进行降压,并将降压后的直流电通过至少一个输出端口提供给蓄电池;或者将从至少一个输出端口获取的蓄电池提供的直流电的电压值进行升压,并将升压后的直流电通过至少一个第一输入端口输出给光伏逆变器。
应理解,当至少一个第一开关和至少一个第二开关同时闭合时,至少一个第一输入端口和至少一个第二输入端口之间短路构成一条导通路径,此时第二光伏阵列或第二功率变换器输出的直流电可以直接通过光伏逆变器转为交流电输出给电网。
其中,至少一个第一输入端口与至少一个第一开关一一对应连接,其具体含义为:至少一个第一输入端口中包括的第一输入端口的数量与至少一个第一开关中包括的第一开关的数量相等,至少一个第一输入端口中的每一个第一输入端口均存在一个配对的第一开关,且每一个第一输入端口配对的第一开关均不相同,每一个第一输入端口与配对的第一开关连接。至少一个第二输入端口与至少一个第二开关一一对应连接,其具体含义为:至少一个第二输入端口中包括的第二输入端口的数量与至少一个第二开关中包括的第二开关的数量相等,至少一个第二输入端口中的每一个第二输入端口均存在一个配对的第二开关,且每一个第二输入端口配对的第二开关均不相同,每一个第二输入端口与配对的第二开关连接。至少一个输出端口与至少一个第三开关一一对应连接,其具体含义为:至少一个输出端口中包括的输出端口的数量与至少一个第三开关中包括的第三开关的数量相等,至少一个输出端口中的每一个输出端口均存在一个配对的第三开关,且每一个输出端口配对的第三开关均不相同,每一个输出端口与配对的第三开关连接。
在一种可能的设计中,储能变换器还包括:至少一个第一直流变换器;至少一个第二直流变换器;与至少一个第一输入端口一一对应连接的至少一个第一开关,至少一个第一开关与至少一个第一直流变换器一一对应连接;与至少一个第二输入端口一一对应连接的至少一个第二开关,至少一个第二开关与至少一个第二直流变换器一一对应连接;与至少一个输出端口一一对应连接的至少一个第三开关,至少一个第三开关中的每一个第三开关连接一个第一直流变换器或者一个第二直流变换器。
其中,至少一个第一直流变换器中的每一个第一直流变换器可以用于从连接的第一输入端口获取直流电,将获取的直流电的电压值进行降压,并将降压后的直流电通过连接的输出端口提供给蓄电池;或者将从连接的输出端口获取的蓄电池提供的直流电的电压值进行升压,并将升压后的直流电通过连接的第一输入端口输出给光伏逆变器。至少一个第二直流变换器中的每一个第二直流变换器可以用于从连接的第二输入端口获取直流电,将获 取的直流电的电压值进行降压,并将降压后的直流电通过连接的输出端口提供给蓄电池;或者将从连接的输出端口获取的蓄电池提供的直流电的电压值进行升压,并将升压后的直流电通过连接的第一输入端口输出给光伏逆变器。
其中,至少一个第一开关与至少一个第一直流变换器一一对应连接,其具体含义为:至少一个第一开关中包括的第一开关的数量与至少一个第一直流变换器中包括的第一直流变换器的数量相等,至少一个第一开关中的每一个第一开关均存在一个配对的第一直流变换器,且每一个第一开关配对的第一直流变换器均不相同,每一个第一开关与配对的第一直流变换器连接。至少一个第二开关与至少一个第二直流变换器一一对应连接,其具体含义包括:至少一个第二开关中包括的第二开关的数量与至少一个第二直流变换器中包括的第二直流变换器的数量相等,至少一个第二开关中的每一个第二开关均存在一个配对的第二直流变换器,且每一个第二开关配对的第二直流变换器均不相同,每一个第二开关与配对的第二直流变换器连接。
本申请实施例中,至少一个第一直流变换器中的每一个第一直流变换器的电路结构可以与如图6所示的第二直流转换器的电路结构相同,也可以采用BUCK-BOOST电路结构,以实现第一直流变换器的单向升压和单向降压功能。其中,第二直流变换器的结构可以与第一直流变换器的结构相同。
应理解,BUCK-BOOST电路可以采用集成电路的形式连接,当然也可以以分立器件的形式连接,本申请这里不做限定。
应理解,储能变换器还包括控制器,用于控制至少一个第一开关、至少一个第二开关和至少一个第三开关的导通和闭合。
具体实现时,控制器可以是微控制单元(micro controller unit,MCU)、中央处理器(central processing unit,CPU)、数字信号处理器(digital singnal processor,DSP)中的任一种。当然,控制器的具体形态不限于上述举例。
六、蓄电池
蓄电池可以包括多个子蓄电池,其中,设置子蓄电池的作用为:单个电池的储能有限,可以设置多个子蓄电池存储储能变换器输出的直流电,以避免由于单个电池储能有限造成的电能浪费现象。
具体地,多个子蓄电池两两相邻,任意相邻的两个子蓄电池的正接线端连接,且负接线端连接。
七、光伏逆变器
光伏逆变器可以包括交流端口、直流母线和交直流转换器;其中,直流母线连接在直流端口与交直流转换器的输入端之间;交直流转换器的输出端与交流端口连接,交流端口与电网连接。
其中,交直流转换器可以用于从连接的直流端口接收直流电,将接收的直流电转换为交流电并通过交流端口输出给电网,以及将从连接的交流端口接收的电网输出的交流电转换为直流电后通过直流端口输出给储能变换器。
具体地,交直流转换器可以包括:第五H桥整流电路,其中第五H桥整流电路的第一桥臂可以作为交直流转换器的输入端与直流端口连接,第五H桥整流电路的第二桥臂可以作为交直流转换器的输出端与交流端口连接。
应理解,第五H桥整流电路的电路结构可以与图6所示的第三直流变换器中的第一H 桥整流电路和第二H桥整流电路的电路结构相同。
可选地,为了实现光伏系统与电网的电气隔离,交直流转换器也可以采用图6所示的第三直流变换器相同的结构,即两个H桥整流电路和一个隔离变压器的结构,当然也可以采用其它电路结构,本申请这里不做限定。
为了进一步说明本申请所提供的光伏系统,本申请在图2所示的光伏系统200的基础上,提供了以下一种可行的光伏系统的系统架构。
结合以上描述,示例地,本申请实施例提供的一种光伏系统的结构示意图一,图7所示的光伏系统700中,第一光伏阵列701具有多个第一光伏子阵列7011、7012、……、701N;第一功率转换器702包括多个第三直流变换器7021、7022、……、702N;第二光伏阵列703具有多个第二光伏子阵列7031、7032、……、703N;第二功率变换器704包括多个第四直流变换器7041、7042、……、704N;储能变换器705包括第一输入端口7051和第二输入端口7052以及输出端口7053;光伏逆变器707包括一个直流端口7071和一个交流端口7072。
在图7所示的光伏系统700中,第一光伏阵列701中的每一个第一光伏阵列7011-701N产生直流电直接输出给与对应连接的第三直流变换器7021-702中,第三直流变换器7021-702N分别将接收的直流电的电压值进行转换,并将转换后的直流电输出给光伏逆变器707中,第二光伏阵列703中的每一个第二光伏阵列7031-703N产生直流电直接输出给与对应连接的第四直流变换器7041-704N中,第四直流变换器7041-704N分别将接收的直流电进行转换,储能变换器705可以接收第三直流变换器7021-702N输出的直流电和光伏逆变器输出的直流电中的至少一个,也可以接收第二直流变换器7041-704N输出的直流电。
应理解,当第一开关和第二开关同时闭合、且储能变换器中包含一个第一直流变换器时,第一开关和第二开关可以短路为一条导线,此时第四直流变换器7041-704N输出的直流电可以直接输出给光伏逆变器707。
为了进一步说明本申请所提供的光伏系统,本申请在图3所示的光伏系统300的基础上,提供了以下一种可行的光伏系统的系统架构。
如图8所示,为本申请实施例提供的一种光伏系统的结构示意图二,如图8所示的光伏系统800中,第一光伏阵列801具有多个第一光伏子阵列8011、8012、……、801N;第一功率转换器802包括多个第三直流变换器8021、8022、……、802N;第二光伏阵列803具有多个第二光伏子阵列8031、8032、……、803N;储能变换器804包括第一输入端口8041、第二输入端口8042和以及输出端口8043;光伏逆变器806包括一个直流端口8061和一个交流端口8062。
在图8所示的光伏系统800中,第一光伏阵列801中的每一个第一光伏阵列8011-801N产生直流电直接输出给与对应连接的第一直流变换器8021-802N中,第三直流变换器8021-802N分别将接收的直流电的电压值进行转换,并将转换后的直流电输出给光伏逆变器806中,第二光伏阵列803中的第二光伏阵列8031-803N产生直流电直接输出通过第二输入端口8042输出给储能变换器804,储能变换器804可以接收第三直流变换器8021-802N输出的直流电和光伏逆变器输出的直流电中的至少一个。
应理解,当第一开关和第二开关同时闭合、且储能变换器包括一个第一直流变换器时,第一开关和第二开关可以短路为一条导线,此时第二光伏子阵列8031-803N输出的直流电可以直接输出给光伏逆变器806。
为了进一步说明本申请所提供的光伏系统,本申请在图4所示的光伏系统400的基础上,提供了以下一种可行的光伏系统的系统架构。
如图9所示,为本申请实施例提供的一种光伏系统的结构示意图三,如图9所示的光伏系统900中,第一光伏阵列904具有多个第一光伏子阵列9011、9012、……、901N;第一功率转换器902包括多个第三直流变换器9021、9022、……、902N;第二光伏阵列903具有多个第二光伏子阵列9031、9032、……、903N、903N+1、……、903M;第二功率变换器904包括多个第四直流变换器9041、9042、……、904N;储能变换器905包括第一输入端口9051、第二输入端口9052以及输出端口9054;光伏逆变器907包括一个直流端口9071和一个交流端口9072。
在图9所示的光伏系统900中,第一光伏阵列901中的每一个第一光伏阵列9011-901N产生直流电直接输出给与对应连接的第三直流变换器9021-902N中,第三直流变换器9021-902N分别将接收的直流电的电压值进行转换,并将转换后的直流电输出给光伏逆变器907中,第二光伏阵列903中的第二光伏阵列9031-903N产生直流电直接输出给与对应连接的第四直流变换器9041-904N,第二光伏阵列903N+1-903M产生直流电输出给对应连接的储能变换器905,第四直流变换器9041-904N分别将接收的直流电的电压值进行转换,并将转换后的直流电输出给储能变换器905,储能变换器905可以通过第一输入端口9051接收第三直流变换器9021-902N输出的电能和光伏逆变器907输出的直流电中的至少一个,也可以通过第二输入端口接收第二光伏子阵列9031-903N产生的电能和第四直流变换器9041-904N输出的直流电中的至少一个。
应理解,当第一开关和第二开关同时闭合、且储能变换器中包括一个第一直流变换器时,第一开关和第二开关可以短路为一条导线,此时第三直流变换器9041-904N输出的直流电和第二光伏阵列9031-903M产生的直流电中的至少一个可以直接输出给光伏逆变器907。
采用上述系统架构,实现了提高储能变换器和蓄电池的利用率,且提高了电能的利用率,减小了系统的度电成本。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种光伏系统,其特征在于,包括:第一光伏阵列、第一功率变换器、第二光伏阵列、第二功率变换器、储能变换器、蓄电池和光伏逆变器;
    所述第一光伏阵列与所述光伏逆变器通过所述第一功率变换器连接;
    所述第二光伏阵列与所述储能变换器直接连接,或者所述第二光伏阵列的至少一部分通过所述第二功率变换器与所述储能变换器连接;
    所述储能变换器与所述光伏逆变器和所述蓄电池连接;
    所述光伏逆变器与电网连接。
  2. 根据权利要求1所述的光伏系统,其特征在于,所述储能变换器包括:至少一个第一输入端口、至少一个第二输入端口和至少一个输出端口;
    所述至少一个第一输入端口分别与所述光伏逆变器连接;
    所述至少一个第二输入端口分别与所述第二功率变换器连接;或者所述至少一个第二输入端口与分别所述第二光伏阵列连接;或者所述至少一个第二输入端口中的一部分第二输入端口与所述第二功率变换器连接,所述至少一个第二输入端口中的另一部分第二输入端口与所述第二光伏阵列连接;
    所述至少一个输出端口分别与所述蓄电池连接。
  3. 根据权利要求2所述的光伏系统,其特征在于,所述储能变换器还包括:
    与所述至少一个第一输入端口一一对应连接的至少一个第一开关;
    与所述至少一个第二输入端口一一对应连接的至少一个第二开关;
    与所述至少一个输出端口一一对应连接的至少一个第三开关;
    一个第一直流变换器;
    其中,所述至少一个第一输入端口中的每一个第一输入端口通过对应连接的第一开关与所述第一直流变换器的输入端连接;
    所述至少一个第二输入端口中的每一个第二输入端口通过对应连接的第二开关与所述第一直流变换器的输入端连接;
    所述至少一个输出端口中的每一个输出端口通过对应连接的第三开关与所述第一直流变换器的输出端连接;
    所述第一直流变换器,用于从所述至少一个第一输入端口获取直流电,或者从所述至少一个第二输入端口获取直流电,或者从所述至少一个第一输入端口和所述至少一个第二输入端口获取直流电,将获取的直流电的电压值进行降压,并将降压后的直流电通过所述至少一个输出端口提供给所述蓄电池;或者将从所述至少一个输出端口获取的所述蓄电池提供的直流电的电压值进行升压,并将升压后的直流电通过所述至少一个第一输入端口输出给所述光伏逆变器。
  4. 根据权利要求2所述的光伏系统,其特征在于,所述储能变换器还包括:
    至少一个第一直流变换器;
    至少一个第二直流变换器;
    与所述至少一个第一输入端口一一对应连接的至少一个第一开关,所述至少一个第一开关与所述至少一个第一直流变换器一一对应连接;
    与所述至少一个第二输入端口一一对应连接的至少一个第二开关,所述至少一个第二 开关与所述至少一个第二直流变换器一一对应连接;
    与所述至少一个输出端口一一对应连接的至少一个第三开关,所述至少一个第三开关中的每一个第三开关连接一个所述第一直流变换器或者一个所述第二直流变换器;
    所述至少一个第一直流变换器中的每一个第一直流变换器,用于从连接的第一输入端口获取直流电,将获取的直流电的电压值进行降压,并将降压后的直流电通过连接的输出端口提供给所述蓄电池;或者将从所述连接的输出端口获取的所述蓄电池提供的直流电的电压值进行升压,并将升压后的直流电通过连接的第一输入端口输出给所述光伏逆变器;
    所述至少一个第二直流变换器中的每一个第二直流变换器,用于从连接的第二输入端口获取直流电,将获取的直流电的电压值进行降压,并将降压后的直流电通过连接的输出端口提供给所述蓄电池;或者将从连接的输出端口获取的所述蓄电池提供的直流电的电压值进行升压,并将升压后的直流电通过连接的第一输入端口输出给所述光伏逆变器。
  5. 根据权利要求3或4所述的光伏系统,其特征在于,所述储能变换器还包括控制器;
    所述控制器用于控制所述至少一个第一开关、所述至少一个第二开关以及所述至少一个第三开关的导通或截止。
  6. 根据权利要求1~5中任一项所述的光伏系统,其特征在于,所述第一光伏阵列包括多个第一光伏子阵列,所述第一功率变换器包括与所述多个第一光伏子阵列一一对应连接的多个第一光伏端口;
    所述光伏逆变器包括直流端口,所述第一功率变换器包括输出端口;
    所述第一功率变换器的输出端口与所述直流端口连接。
  7. 根据权利要求2~5中任一项所述的光伏系统,其特征在于,所述第二光伏阵列包括多个第二光伏子阵列,其中:
    当所述多个第二光伏子阵列全部通过所述第二功率变换器与所述储能变换器连接时,所述第二功率变换器包括的所述多个第二光伏端口与所述多个第二光伏子阵列一一对应连接,所述储能变换器的所述至少一个第二输入端口分别与所述第二功率变换器的输出端口连接;
    当所述多个第二光伏子阵列中的一部分第二光伏子阵列直接所述储能变换器连接、另一部分第二光伏子阵列通过所述第二功率变换器与所述储能变换器连接时,所述储能变换器包括的所述至少一个第二输入端口中的一部分第二输入端口与所述一部分第二光伏子阵列一一对应连接,所述第二功率变换器包括的所述多个第二光伏端口与所述另一部分第二光伏子阵列一一对应连接,所述第二功率变换器的输出端口与储能变换器包括的另一部分第二输入端口连接;
    当所述多个第二光伏子阵列全部直接与所述储能变换器连接时,所述储能变换器包括的所述至少一个第二输入端口与所述多个第二光伏子阵列一一对应连接。
  8. 根据权利要求6所述的光伏系统,其特征在于,所述第一功率变换器包括与所述多个第一光伏端口一一对应连接的多个第三直流变换器,其中,所述多个第三直流变换器中的每一个第三直流变换器的输入端与对应的第一光伏端口连接,所述多个第三直流变换器中的每一个第三直流变换器的输出端均与所述第一功率变换器的输出端口连接;
    所述多个第三直流变换器中的每一个第三直流变换器器用于:从连接的第一光伏端口接收第一光伏子阵列输出的直流电,将接收的直流电的电压值进行转换,并将转换后的直 流电通过连接的所述第一功率变换器的输出端口输出给所述光伏逆变器。
  9. 根据权利要求7所述的光伏系统,其特征在于,所述第二功率变换器包括与所述多个第二光伏端口一一对应连接的多个第四直流变换器,其中,所述多个第四直流变换器中的每一个第四直流变换器的输入端与对应的第二光伏端口连接,所述多个第四直流变换器中的每一个第四直流变换器的输出端均与所述第二功率变换器的输出端口连接;
    所述多个第四直流变换器中的每一个第四直流变换器用于:从连接的第二光伏端口接收第二光伏子阵列输出的直流电,将接收的直流电的电压值进行转换,并将转换后的直流电通过连接的所述第二功率变换器的输出端口输出给所述储能变换器。
  10. 根据权利要求6或8所述的光伏系统,其特征在于,所述光伏逆变器包括交流端口、直流母线和交直流转换器;
    所述直流母线连接在所述直流端口与所述交直流转换器的输入端之间;
    所述交直流转换器的输出端与所述交流端口连接,所述交流端口与所述电网连接;
    所述交直流转换器用于:从连接的所述直流端口接收直流电,将接收的直流电转换为交流电并通过所述交流端口输出给所述电网,以及将从连接的所述交流端口接收的所述电网输出的交流电转换为直流电后通过所述直流端口输出给所述储能变换器。
  11. 根据权利要求1~10中任一项所述的光伏系统,其特征在于,所述第二功率变换器输出的电压的电压值大于或等于1500V。
  12. 根据权利要求1~11中任一项所述的光伏系统,其特征在于,所述蓄电池包括多个子蓄电池;所述多个子蓄电池两两相邻,任意相邻的两个子蓄电池的正接线端连接,且负接线端连接。
  13. 根据权利要求1至12中任一项所述的光伏系统,其特征在于,所述蓄电池包括铅碳电池、磷酸铁锂电池、三元锂电池、钠硫电池或液流电池。
PCT/CN2020/116786 2019-11-29 2020-09-22 一种光伏系统 WO2021103781A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/826,903 US20220294388A1 (en) 2019-11-29 2022-05-27 Photovoltaic system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911205767.7 2019-11-29
CN201911205767.7A CN110932318A (zh) 2019-11-29 2019-11-29 一种光伏系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/826,903 Continuation US20220294388A1 (en) 2019-11-29 2022-05-27 Photovoltaic system

Publications (1)

Publication Number Publication Date
WO2021103781A1 true WO2021103781A1 (zh) 2021-06-03

Family

ID=69846998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116786 WO2021103781A1 (zh) 2019-11-29 2020-09-22 一种光伏系统

Country Status (3)

Country Link
US (1) US20220294388A1 (zh)
CN (1) CN110932318A (zh)
WO (1) WO2021103781A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932318A (zh) * 2019-11-29 2020-03-27 华为技术有限公司 一种光伏系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060192435A1 (en) * 2005-02-26 2006-08-31 Parmley Daniel W Renewable energy power systems
CN103441566A (zh) * 2013-09-12 2013-12-11 重庆大学 一种市电、光伏电池和储能电池协同供电系统及方法
CN104882906A (zh) * 2015-05-04 2015-09-02 华电电力科学研究院 一种基于光伏和储能的分布式微网黑启动控制系统及方法
CN108233421A (zh) * 2018-02-05 2018-06-29 华为技术有限公司 光伏发电系统和光伏输电方法
CN109038780A (zh) * 2018-06-29 2018-12-18 华为技术有限公司 一种光伏系统
CN110932318A (zh) * 2019-11-29 2020-03-27 华为技术有限公司 一种光伏系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013112077B4 (de) * 2013-11-04 2020-02-13 Sma Solar Technology Ag Verfahren zum Betrieb einer Photovoltaikanlage mit Energiespeicher und bidirektionaler Wandler für den Anschluss eines Energiespeichers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060192435A1 (en) * 2005-02-26 2006-08-31 Parmley Daniel W Renewable energy power systems
CN103441566A (zh) * 2013-09-12 2013-12-11 重庆大学 一种市电、光伏电池和储能电池协同供电系统及方法
CN104882906A (zh) * 2015-05-04 2015-09-02 华电电力科学研究院 一种基于光伏和储能的分布式微网黑启动控制系统及方法
CN108233421A (zh) * 2018-02-05 2018-06-29 华为技术有限公司 光伏发电系统和光伏输电方法
CN109038780A (zh) * 2018-06-29 2018-12-18 华为技术有限公司 一种光伏系统
CN110932318A (zh) * 2019-11-29 2020-03-27 华为技术有限公司 一种光伏系统

Also Published As

Publication number Publication date
US20220294388A1 (en) 2022-09-15
CN110932318A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
WO2019136576A1 (zh) 串联同时供电正激直流斩波型单级多输入高频环节逆变器
WO2019136577A1 (zh) 多绕组同时/分时供电电流型单级多输入高频环节逆变器
WO2019149118A1 (zh) 光伏发电系统和光伏输电方法
WO2022188117A1 (zh) 一种储能系统、储能系统的控制方法及光伏发电系统
WO2017000910A1 (zh) 光伏发电系统及操作其以进行光伏发电的方法
US9825470B2 (en) Multi-source power converter
WO2020001051A1 (zh) 一种光伏系统
CN105227128B (zh) 一种光伏模块化多电平变换器及其控制方法
CN209217732U (zh) 交直流混合微电网储能系统
WO2013152499A1 (zh) 交流太阳能模块及电能调度方法
CN113193755B (zh) 一种基于拓扑集成的多端口变换器、控制方法及系统
WO2023202411A1 (zh) 一种功率模块、充电桩及供电设备
WO2021103781A1 (zh) 一种光伏系统
CN111146808A (zh) 一种多能源能量路由器电路拓扑结构和供电系统
WO2021208141A1 (zh) 一种电源系统
CN104716680A (zh) 具有可再生能源的离线式不间断电源及其控制方法
WO2024055690A1 (zh) 一种功率变换装置及储能系统
WO2021208142A1 (zh) 一种电源系统
CN202134923U (zh) 深度充放电型电池蓄能并网装置
CN201178315Y (zh) 大型太阳能发电系统电能传输和并网系统
CN101262134B (zh) 大型太阳能发电系统电能传输和并网系统
Zheng et al. Distributed control for modular plug-and-play subpanel photovoltaic converter system
US20240154425A1 (en) Dc-dc converter, power conversion device, and solar power generation system
WO2021120797A1 (zh) 一种供电装置和供电系统
CN215580399U (zh) 一种利用储能倍增的充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893201

Country of ref document: EP

Kind code of ref document: A1