WO2024055594A1 - 一种非线性混合耗能减振阻尼器 - Google Patents
一种非线性混合耗能减振阻尼器 Download PDFInfo
- Publication number
- WO2024055594A1 WO2024055594A1 PCT/CN2023/090667 CN2023090667W WO2024055594A1 WO 2024055594 A1 WO2024055594 A1 WO 2024055594A1 CN 2023090667 W CN2023090667 W CN 2023090667W WO 2024055594 A1 WO2024055594 A1 WO 2024055594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- housing
- connecting rod
- energy
- elastic member
- vibration damper
- Prior art date
Links
- 230000021715 photosynthesis, light harvesting Effects 0.000 title abstract description 8
- 230000009467 reduction Effects 0.000 title abstract description 4
- 239000007788 liquid Substances 0.000 claims abstract description 34
- 239000002245 particle Substances 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 2
- 230000000712 assembly Effects 0.000 abstract description 3
- 238000000429 assembly Methods 0.000 abstract description 3
- 238000013016 damping Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/92—Protection against other undesired influences or dangers
- E04B1/98—Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
- E04H9/0215—Bearing, supporting or connecting constructions specially adapted for such buildings involving active or passive dynamic mass damping systems
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
- E04H9/0235—Anti-seismic devices with hydraulic or pneumatic damping
Definitions
- the present disclosure belongs to the technical field of dampers, and in particular relates to a nonlinear hybrid energy-dissipating vibration damper.
- Damping refers to a function that hinders the relative motion of objects and converts motion energy into heat energy or other energy that can be dissipated.
- a damper is an artificial object movement attenuation tool. When a solid vibrates, the energy of the solid vibration is absorbed as much as possible. The device dissipated in the damping layer is called a damping absorber.
- nonlinear hybrid energy-dissipating vibration dampers have poor vibration damping effects and cannot meet engineering needs.
- the nonlinear hybrid energy-dissipating vibration damper of the embodiment of the present disclosure includes a first housing, a second housing and an energy-dissipating component.
- the first housing is filled with a first filling liquid
- the second housing is slidable.
- the energy-consuming component is connected to the first housing
- the energy-consuming component includes a first connecting rod, a first elastic member and a Fan plate
- the first end of the first connecting rod is rotatably connected to the inner wall of the first housing
- the second end of the first connecting rod is in contact with and opposite to the side wall of the second housing.
- the first end of the first elastic member is connected to the inner wall of the first housing, the second end of the first elastic member is connected to the first connecting rod, and the The first elastic member is used to keep the second end of the first connecting rod in contact with the side wall of the second housing, and the fan plate is connected to the first connecting rod.
- the energy-consuming component further includes a roller, the roller is rotatably connected to the second end of the first link, and the outer wall of the roller is in contact with the side wall of the second housing. And can roll relative to the second housing.
- the cross-sectional shape of the fan plate is arc-shaped, there are multiple fan plates, and the plurality of fan plates are spaced apart along the length direction of the first connecting rod.
- the nonlinear hybrid energy-dissipating vibration damper further includes a plurality of baffle groups, and the plurality of baffle groups are connected to the second housing and spaced apart along the vertical direction, so
- the baffle group includes a plurality of baffles, the baffles are arranged at an angle, and the plurality of baffles are spaced apart along the horizontal direction.
- the nonlinear hybrid energy-dissipating vibration damper further includes a reset component, which includes a fixed rod, a sleeve, a second elastic member, and a second connecting rod.
- the fixed rod is connected to the In the first housing, the sleeve is sleeved on the fixed rod and can slide along the axial direction of the fixed rod.
- Both ends of the second elastic member are connected to the fixed rod and the sleeve respectively.
- the first end of the second connecting rod is rotationally connected to the sleeve, and the second end of the second connecting rod is rotationally connected to the first connecting rod.
- the multiple energy-consuming components there are multiple energy-consuming components, and the multiple energy-consuming components are arranged at intervals; there are multiple reset components, and the multiple reset components correspond to the multiple energy-consuming components one-to-one.
- the second end of the second link is rotatably connected to the corresponding first link.
- the nonlinear hybrid energy-dissipating vibration damper further includes a third housing, the third housing is connected to the first housing, and the third housing is filled with a second Filling fluid.
- the nonlinear hybrid energy-dissipating vibration damper further includes a positioning component, the positioning component includes a positioning member, a sliding member and a third elastic member, and the positioning member is adapted to be connected with the side wall of the building. connection, the first end of the sliding member is connected to the first housing and/or the third housing, the second end of the sliding member is connected to the positioning member and can be moved along the axis direction of the sliding member Sliding, one end of the third elastic member is connected to the positioning member, and the other end of the third elastic member is connected to the first housing and/or the third housing; there are multiple positioning components, A plurality of the positioning assemblies are spaced apart on the first housing and/or the third housing.
- the first filling liquid is a viscous liquid
- the second filling liquid is water
- the nonlinear hybrid energy-dissipating vibration damper further includes a base, the base is connected to the lower end of the first housing, and the base is adapted to be connected to the floor of a building.
- FIG1 is a schematic diagram of the internal structure of a nonlinear hybrid energy dissipation vibration reduction damper according to an embodiment of the present disclosure.
- FIG. 2 is a three-dimensional schematic diagram of an energy-consuming component according to an embodiment of the present disclosure.
- Figure 3 is a partial enlarged view a of Figure 1 of the present disclosure.
- Figure 4 is a partial enlarged view b of Figure 1 of the present disclosure.
- Figure 5 is a perspective view of a reset assembly according to an embodiment of the present disclosure.
- Figure 6 is a schematic diagram of the internal structure of the second housing according to the embodiment of the present disclosure.
- the present disclosure aims to solve one of the technical problems in the related art, at least to a certain extent.
- embodiments of the present disclosure propose a nonlinear hybrid energy-dissipating vibration damper, which re-consumes the mechanical energy in the damper through energy-consuming components, thereby improving the damping effect of the damper. vibration effect.
- the nonlinear hybrid energy-consuming vibration damper of the embodiment of the present disclosure includes a first housing 1, a second housing 2 and an energy-consuming component 3.
- the first housing 1 is filled with a third A filling liquid 11, the second housing 2 can be slidably connected to the first housing 1, the second housing 2 is filled with the particle group 21, the energy-consuming component 3 is connected to the first housing 1, the energy-consuming component 3
- It includes a first connecting rod 31, a first elastic member 32 and a fan plate 33.
- the first end of the first connecting rod 31 is rotatably connected to the inner wall of the first housing 1, and the second end of the first connecting rod 31 is connected to the second
- the side walls of the housing 2 are in contact with each other and can slide relative to the second housing 2.
- the first end of the first elastic member 32 is connected to the inner wall of the first housing 1, and the second end of the first elastic member 32 is connected to the second housing 2.
- a connecting rod 31 , the first elastic member 32 is used to keep the second end of the first connecting rod 31 in contact with the side wall of the second housing 2 , and the fan plate 33 is connected to the first connecting rod 31 .
- the second housing 2 drives the first connecting rod 31 to swing under the action of inertia, and the first connecting rod 31 drives the fan plate 33 to move relative to the first filling liquid 11.
- the connecting rod 31 generates thrust on the first filling liquid 11 to feed back mechanical energy to the first filling liquid 11, thereby causing the first filling liquid 11 to slosh.
- the first filling liquid 11 interacts with the inner wall of the first housing 1 and the second housing 2 respectively.
- the outer wall friction consumes energy, and at the same time, the first filling liquid 11 consumes the mechanical energy generated by the fan plate 33 due to internal friction; the particle group 21 moves side by side with the second housing 2 under the action of inertia, and the particle group 21 and the second housing 2 Friction occurs on the inner wall of the second housing 2 and friction occurs inside the particle group 21 to cause mechanical energy loss.
- the nonlinear hybrid energy-dissipating vibration damper in the embodiment of the present disclosure drives the first connecting rod 31 to swing through the second housing 2 and the first elastic member 32.
- the first connecting rod 31 drives the fan plate 33 and the first filling liquid 11 Relative motion and exerting thrust on the first filling liquid 11 to feed back mechanical energy to the first filling liquid 11.
- the first filling liquid 11 performs friction loss on the feedback mechanical energy, thus accelerating the loss of mechanical energy in the nonlinear hybrid energy-dissipating vibration damper. , which improves the vibration reduction efficiency of the nonlinear hybrid energy-dissipating vibration damper.
- the energy-consuming component 3 includes two first fixed blocks 36, two first connecting rods 31, two first elastic members 32 and a plurality of fan plates 33.
- the two first fixed blocks 36 are fixedly connected to the inner wall of the first housing 1 and are spaced apart along the front and rear directions.
- the two first connecting rods 31 correspond to the two first fixed blocks 36 one by one, and the first connecting rods 31 can Rotatingly connected to the corresponding first fixed block 36, the two first elastic members 32 correspond to the two first connecting rods 31, and one end of the first elastic member 32 is connected to the inner wall of the first housing 1.
- the other end of an elastic member 32 is connected to the corresponding first link 31.
- a plurality of fan plates 33 are connected to the first link 31 and are spaced apart along the length direction of the first link 31. One end of the fan plate 33 is connected to The other end of one of the first connecting rods 31 and the fan plate 33 is connected to the other first connecting rod 31 .
- the first elastic member 32 is a spring.
- the first filling liquid 11 and the second housing 2 occupy 80% of the internal space of the first housing 1 , leaving 20% of the internal space of the first housing 1 for the first filling liquid 11 and the second housing 2 .
- the second shell 2 moves; the particle group 21 is composed of concrete particles with a diameter less than 10 mm, and the particle group 21 occupies 70% of the internal space of the second shell 2 .
- the energy-consuming component 3 further includes a roller 34 , which is rotatably connected to the second end of the first connecting rod 31 , and the outer wall of the roller 34 is connected to the second housing 2
- the side walls are in contact with each other and can be Rolling, the roller 34 changes the sliding friction between the first connecting rod 31 and the second housing 2 into rolling friction to avoid excessive friction between the first connecting rod 31 and the second housing 2 and causing the second housing to collapse. 2 cannot drive the first connecting rod 31 to swing normally.
- the energy-consuming component 3 also includes a mounting block 35.
- One end of the mounting block 35 is connected to the second end of the first connecting rod 31, and the other end of the mounting block 35 is sleeved on
- the drum 34 is rotatable with the axis of the drum 34 as the center of rotation, so that the first connecting rod 31 can be installed on the drum 34 conveniently.
- the cross-sectional shape of the fan plate 33 is arc-shaped, and there are multiple fan plates 33.
- the multiple fan plates 33 are spaced apart along the length direction of the first connecting rod 31 to improve The efficiency of the fan plate 33 in transmitting mechanical energy to the first filling liquid 11 is improved.
- the nonlinear hybrid energy-dissipating vibration damper also includes an upper limit plate 23 and a lower limit plate 24.
- the first housing 1 is provided with a length arranged in the horizontal direction.
- Two chute (not shown), the two chute are spaced apart along the vertical direction, the upper limit plate 23 is connected to the top wall of the second housing 2 and placed in one of the chute, and the lower limit plate 24 is connected to the second chute.
- the bottom walls of the second housing 2 are placed in another chute.
- the upper limiting plate 23 and the lower limiting plate 24 ensure that the second housing 2 slides in the horizontal direction to push the first link 31 to swing.
- the nonlinear hybrid energy-dissipating vibration damper also includes multiple baffle groups 22, and the multiple baffle groups 22 are connected in the second housing 2 and along the The baffles 22 are spaced apart in the vertical direction.
- the baffles 22 include a plurality of baffles 22 .
- the baffles 22 are arranged at an angle.
- the plurality of baffles 22 are spaced apart in the horizontal direction.
- the nonlinear hybrid energy-dissipating vibration damper also includes a reset component 4.
- the reset component 4 includes a fixed rod 41, a sleeve 42, and a second elastic member 43. and the second connecting rod 44.
- the fixed rod 41 is connected in the first housing 1.
- the sleeve 42 is sleeved on the fixed rod 41 and can slide along the axis direction of the fixed rod 41.
- the two ends of the second elastic member 43 are respectively connected with the fixed rod 44.
- the rod 41 is connected to the sleeve 42 , the first end of the second connecting rod 44 is rotationally connected to the sleeve 42 , and the second end of the second connecting rod 44 is rotationally connected to the first connecting rod 31 .
- the first link 31 swings, the first link 31 pulls the sleeve 42 through the second link 44 to move along the axis of the fixed rod 41.
- the sleeve 42 stretches or compresses the second elastic member 43 to change the second elastic member.
- the second elastic member 43 drives the sleeve 42 to reset under its own elastic force, and the sleeve 42 pulls the first connecting rod 31 through the second connecting rod 44 to reset, further ensuring that the first connecting rod 31 is always in contact with the first connecting rod 31.
- the second housings 2 are in contact.
- the second elastic member 43 is a spring.
- there are multiple energy-consuming components 3 and the multiple energy-consuming components 3 are arranged at intervals; there are multiple reset components 4 , and the multiple reset components 4 correspond to the multiple energy-consuming components 3 one-to-one.
- the second connecting rod The second end of 44 is rotatably connected to the corresponding first link 31 .
- Multiple energy-consuming components 3 push multiple first filling liquids 11 so that multiple first filling liquids 11 participate in frictional energy consumption, which improves the efficiency of the fan plate 33 in transmitting mechanical energy to the first filling liquid 11 and the first filling efficiency.
- the reset assembly 4 includes a second fixed block 45, a fixed rod 41, two sleeves 42, two second elastic members 43 and two second connecting rods.
- the rod 44 and the second fixed block 45 are connected to the inner wall of the first housing 1.
- the fixed rod 41 is connected to the fixed block and the two ends of the fixed rod 41 are respectively placed on both sides of the second fixed block 45.
- the two sleeves 42 are respectively sleeved.
- the two second elastic members 43 Located at both ends of the fixed rod 41, the two second elastic members 43 correspond to the two sleeves 42 one by one, and the two ends of the second elastic member 43 are connected to the fixed rod 41 and the corresponding sleeves 42 respectively.
- the second connecting rods 44 correspond to the two sleeves 42 in a one-to-one correspondence, and the two second connecting rods 44 correspond to the two energy-consuming components 3 in a one-to-one correspondence.
- One end of the second connecting rod 44 The other end of the second link 44 is rotatably connected to the corresponding sleeve 42 and the other end of the second link 44 is rotatably connected to the corresponding first link 31 .
- the nonlinear hybrid energy-dissipating vibration damper also includes a third housing 5.
- the third housing 5 is connected to the first housing 1, and the third housing 5 is filled with There is a second filling liquid 51, and friction occurs between the second filling liquid 51 and the inner wall of the third housing 5, which further improves the mechanical energy loss efficiency of the anti-vibration damper.
- the nonlinear hybrid energy-dissipating damper also includes a positioning component 6.
- the positioning component 6 includes a positioning member 61, a sliding member 62 and a third elastic member 63.
- the positioning member 61 is suitable for Connected to the side wall of the building 100 , the first end of the sliding member 62 is connected to the first housing 1 and/or the third housing 5 , the second end of the sliding member 62 is connected to the positioning member 61 and along the direction of the sliding member 62 It is slidable in the axial direction, one end of the third elastic member 63 is connected to the positioning member 61, and the other end of the third elastic member 63 is connected to the first housing 1 and/or the third housing 5; there are multiple positioning components 6, multiple The positioning components 6 are spaced apart on the first housing 1 and/or the third housing 5 .
- the positioning member 61, the third elastic member 63 and the sliding member 62 transmit the vibration of the building 100 to the first housing 1 and the third housing 5, so that the components in the first housing 1 and the third housing 5 are aligned.
- the building's 100 mechanical energy is lost.
- the third elastic member 63 is a spring, and the third elastic member 63 is sleeved on the sliding member 62 .
- FIG. 1 in some embodiments, there are two positioning components 6 , one sliding member 62 is connected to the first housing 1 , and the other sliding member 62 is connected to the third housing 5 .
- the first filling liquid 11 is a viscous liquid
- the second filling liquid 51 is water
- the nonlinear hybrid energy-dissipating vibration damper also includes a base 7.
- the base 7 is connected to the lower end of the first housing 1.
- the base 7 is suitable for connection with the base plate of the building 100.
- the base 7 is used to fix the first housing 100. Housing 1.
- first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
- “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
- connection In this disclosure, unless otherwise explicitly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be mechanically connected, electrically connected or communicable with each other; it can be directly connected or indirectly connected through an intermediate medium; it can be the internal connection of two elements or the interaction between two elements, Unless otherwise expressly limited. For those of ordinary skill in the art, the specific meanings of the above terms in this disclosure can be understood according to specific circumstances.
- a first feature being "on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features may be in indirect contact through an intermediary. touch.
- the terms “above”, “above” and “above” the first feature of the second feature may mean that the first feature is directly above or diagonally above the second feature, Or simply means that the first feature has a higher level than the second feature.
- "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
- the terms “one embodiment,” “some embodiments,” “example,” “specific examples,” or “some examples” or the like mean that a particular feature, structure, material, or other feature is described in connection with the embodiment or example.
- Features are included in at least one embodiment or example of the disclosure.
- the schematic expressions of the above terms are not necessarily directed to the same embodiment or example.
- the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
- those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Environmental & Geological Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Vibration Prevention Devices (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
一种非线性混合耗能减振阻尼器,包括第一壳体、第二壳体和耗能组件,第一壳体内填充有第一填充液,第二壳体可滑动连接于第一壳体内,第二壳体内填充有颗粒群,耗能组件连接于第一壳体内,耗能组件包括第一连杆、第一弹性件和扇板,第一连杆的第一端可转动连接于第一壳体,第一连杆的第二端与第二壳体的侧壁相接触并相对于第二壳体可滑动,第一弹性件的两端分别连接于第一壳体和第一连杆,扇板连接于第一连杆。
Description
相关申请的交叉引用
本申请基于申请号为202211108167.0、申请日为2022年09月13日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本公开属于阻尼器技术领域,尤其涉及一种非线性混合耗能减振阻尼器。
阻尼是指阻碍物体的相对运动、并把运动能量转化为热能或其他可以耗散能量的一种作用,阻尼器就是人造的物体运动衰减工具,固体振动时,使固体振动的能量尽可能多地耗散在阻尼层中的装置,称为阻尼减振器。
相关技术中,非线性混合耗能减振阻尼器减振效果差,无法满足工程需求。
发明内容
本公开实施例的非线性混合耗能减振阻尼器包括第一壳体、第二壳体和耗能组件,所述第一壳体内填充有第一填充液,所述第二壳体可滑动连接于所述第一壳体内,所述第二壳体内填充有颗粒群,所述耗能组件连接于所述第一壳体内,所述耗能组件包括第一连杆、第一弹性件和扇板,所述第一连杆的第一端可转动连接于所述第一壳体的内壁,所述第一连杆的第二端与所述第二壳体的侧壁相接触并相对于第二壳体可滑动,所述第一弹性件的第一端连接于所述第一壳体的内壁,所述第一弹性件的第二端连接于所述第一连杆,所述第一弹性件用于保持所述第一连杆的第二端与所述第二壳体的侧壁相接触,所述扇板连接于所述第一连杆。
在一些实施例中,所述耗能组件还包括滚筒,所述滚筒可转动连接于所述第一连杆的第二端,所述滚筒的外壁与所述第二壳体的侧壁相接触并相对于所述第二壳体可滚动。
在一些实施例中,所述扇板的截面形状呈弧形,所述扇板有多个,多个所述扇板沿所述第一连杆的长度方向间隔设置。
在一些实施例中,所述非线性混合耗能减振阻尼器还包括多个挡板组,多个所述挡板组均连接于所述第二壳体内并沿竖直方向间隔分布,所述挡板组包括多个挡板,所述挡板倾斜设置,多个所述挡板沿水平方向间隔分布。
在一些实施例中,所述非线性混合耗能减振阻尼器还包括复位组件,所述复位组件包括固定杆、套筒、第二弹性件和第二连杆,所述固定杆连接于所述第一壳体内,所述套筒套设于所述固定杆并沿所述固定杆的轴线方向可滑动,所述第二弹性件的两端分别与所述固定杆和所述套筒连接,所述第二连杆的第一端转动连接于所述套筒,所述第二连杆的第二端转动连接于所述第一连杆。
在一些实施例中,所述耗能组件有多个,多个所述耗能组件间隔布置;所述复位组件有多个,多个所述复位组件与多个所述耗能组件一一对应,所述第二连杆的第二端转动连接于对应的所述第一连杆。
在一些实施例中,所述非线性混合耗能减振阻尼器还包括第三壳体,所述第三壳体连接于所述第一壳体上,所述第三壳体内填充有第二填充液。
在一些实施例中,所述非线性混合耗能减振阻尼器还包括定位组件,所述定位组件包括定位件、滑动件和第三弹性件,所述定位件适于与建筑物的侧壁连接,所述滑动件的第一端连接于所述第一壳体和/或第三壳体,所述滑动件的第二端连接于所述定位件并沿所述滑动件的轴线方向可滑动,所述第三弹性件的一端连接于所述定位件,所述第三弹性件的另一端连接于所述第一壳体和/或第三壳体;所述定位组件有多个,多个所述定位组件在所述第一壳体和/或第三壳体上间隔分布。
在一些实施例中,所述第一填充液为粘性液体,所述第二填充液为水。
在一些实施例中,所述非线性混合耗能减振阻尼器还包括底座,所述底座连接于所述第一壳体的下端,所述底座适于与建筑物底板连接。
图1是本公开实施例的非线性混合耗能减振阻尼器的内部结构示意图。
图2是本公开实施例的耗能组件的立体示意图。
图3是本公开图1中的局部放大图a。
图4是本公开图1中的局部放大图b。
图5是本公开实施例的复位组件的立体示意图。
图6是本公开实施例的第二壳体的内部结构示意图。
附图标记:
建筑物100;
第一壳体1;第一填充液11;
第二壳体2;颗粒群21;挡板22;上限位板23;下限位板24;
耗能组件3;第一连杆31;第一弹性件32;扇板33;滚筒34;安装块35;第一固定块
36;
复位组件4,固定杆41;套筒42;第二弹性件43;第二连杆44;第二固定块45;
第三壳体5;第二填充液51;
定位组件6;定位件61;滑动件62;第三弹性件63;
底座7。
建筑物100;
第一壳体1;第一填充液11;
第二壳体2;颗粒群21;挡板22;上限位板23;下限位板24;
耗能组件3;第一连杆31;第一弹性件32;扇板33;滚筒34;安装块35;第一固定块
36;
复位组件4,固定杆41;套筒42;第二弹性件43;第二连杆44;第二固定块45;
第三壳体5;第二填充液51;
定位组件6;定位件61;滑动件62;第三弹性件63;
底座7。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的实施例提出一种非线性混合耗能减振阻尼器,该非线性混合耗能减振阻尼器通过耗能组件对阻尼器内的机械能再消耗,提高了阻尼器的减振效果。
以下结合附图描述本公开实施例的非线性混合耗能减振阻尼器。
如图1-图3所示,本公开实施例的非线性混合耗能减振阻尼器包括第一壳体1、第二壳体2和耗能组件3,第一壳体1内填充有第一填充液11,第二壳体2可滑动连接于第一壳体1内,第二壳体2内填充有颗粒群21,耗能组件3连接于第一壳体1内,耗能组件3包括第一连杆31、第一弹性件32和扇板33,第一连杆31的第一端可转动连接于第一壳体1的内壁,第一连杆31的第二端与第二壳体2的侧壁相接触并相对于第二壳体2可滑动,第一弹性件32的第一端连接于第一壳体1的内壁,第一弹性件32的第二端连接于第一连杆31,第一弹性件32用于保持第一连杆31的第二端与第二壳体2的侧壁相接触,扇板33连接于第一连杆31。
需要说明的是,当建筑物100振动时,第二壳体2在惯性的作用下带动第一连杆31摆动,第一连杆31带动扇板33相对于第一填充液11移动,第一连杆31对第一填充液11产生推力以对第一填充液11回馈机械能,从而使第一填充液11晃动,第一填充液11分别与第一壳体1的内壁和第二壳体2的外壁摩擦进行耗能,同时第一填充液11由于内摩擦力对扇板33产生的机械能进行损耗;颗粒群21在惯性的作用下与第二壳体2发生行对移动,颗粒群21与第二壳体2内壁产生摩擦且颗粒群21内部产生摩擦以对机械能进行损耗。
本公开实施例的非线性混合耗能减振阻尼器通过第二壳体2和第一弹性件32带动第一连杆31进行摆动,第一连杆31带动扇板33与第一填充液11相对运动并给第一填充液11施加推力以对第一填充液11回馈机械能,第一填充液11对回馈的机械能进行摩擦损耗从而加速了非线性混合耗能减振阻尼器内的机械能的损耗,提高了非线性混合耗能减振阻尼器的减振效率。
如图1-图3所示,在一些实施例中,耗能组件3包括两个第一固定块36、两个第一连杆31、两个第一弹性件32和多个扇板33,两个第一固定块36固定连接于第一壳体1的内壁并沿前后方向间隔分布,两个第一连杆31与两个第一固定块36一一对应,且第一连杆31可转动连接于对应的第一固定块36上,两个第一弹性件32与两个第一连杆31一一对应,且第一弹性件32的一端连接于第一壳体1的内壁,第一弹性件32的另一端连接于对应的第一连杆31,多个扇板33均连接于第一连杆31并沿第一连杆31的长度方向间隔分布,扇板33的一端连接于其中一个第一连杆31,扇板33的另一端连接于另一个第一连杆31。
在一些实施例中,第一弹性件32为弹簧。
在一些实施例中,第一填充液11和第二壳体2占第一壳体1内部空间的80%,使第一壳体1的内部空间剩余20%用于第一填充液11和第二壳体2移动;颗粒群21由直径小于10mm的混凝土颗粒组成,且颗粒群21占第二壳体2内部空间的70%。
如图1和图2所示,在一些实施例中,耗能组件3还包括滚筒34,滚筒34可转动连接于第一连杆31的第二端,滚筒34的外壁与第二壳体2的侧壁相接触并相对于第二壳体2可
滚动,滚筒34将第一连杆31与第二壳体2之间的滑动摩擦变成滚动摩擦,避免第一连杆31与第二壳体2之间摩擦力过大而导致第二壳体2无法正常带动第一连杆31摆动。
如图1和图2所示,在一些实施例中,耗能组件3还包括安装块35,安装块35一端连接于第一连杆31的第二端,安装块35的另一端套设在滚筒34上并以滚筒34的轴线为回转中心可转动,便于第一连杆31安装在滚筒34上。
如图1-图3所示,在一些实施例中,扇板33的截面形状呈弧形,扇板33有多个,多个扇板33沿第一连杆31的长度方向间隔设置,提高了扇板33对第一填充液11传递机械能的效率。
如图1和图6所示,在一些实施例中,非线性混合耗能减振阻尼器还包括上限位板23和下限位板24,第一壳体1上设有长度沿水平方向设置的两个滑槽(未示出),两个滑槽沿竖直方向间隔分布,上限位板23连接于第二壳体2顶壁并置于其中一个滑槽内,下限位板24连接于第二壳体2底壁并置于另一个滑槽内,上限位板23和下限位板24保证了第二壳体2沿水平方向滑动以推动第一连杆31摆动。
如图1和图6所示,在一些实施例中,非线性混合耗能减振阻尼器还包括多个挡板22组,多个挡板22组均连接于第二壳体2内并沿竖直方向间隔分布,挡板22组包括多个挡板22,挡板22倾斜设置,多个挡板22沿水平方向间隔分布,颗粒群21相对于第二壳体2移动时与挡板22摩擦,进一步提高了非线性混合耗能减振阻尼器的耗能效率。
如图1、图3-图5所示,在一些实施例中,非线性混合耗能减振阻尼器还包括复位组件4,复位组件4包括固定杆41、套筒42、第二弹性件43和第二连杆44,固定杆41连接于第一壳体1内,套筒42套设于固定杆41并沿固定杆41的轴线方向可滑动,第二弹性件43的两端分别与固定杆41和套筒42连接,第二连杆44的第一端转动连接于套筒42,第二连杆44的第二端转动连接于第一连杆31。第一连杆31摆动时,第一连杆31通过第二连杆44拉动套筒42沿固定杆41的轴线方向移动,套筒42拉伸或压缩第二弹性件43从而改变第二弹性件43的形变量,第二弹性件43在自身弹力的作用下带动套筒42复位,套筒42通过第二连杆44拉动第一连杆31进行复位,进一步保证了第一连杆31始终与第二壳体2相接触。
在一些实施例中,第二弹性件43为弹簧。
在一些实施例中,耗能组件3有多个,多个耗能组件3间隔布置;复位组件4有多个,多个复位组件4与多个耗能组件3一一对应,第二连杆44的第二端转动连接于对应的第一连杆31。多个耗能组件3对多处第一填充液11进行推动,使多处第一填充液11均参与摩擦耗能,提高了扇板33对第一填充液11传递机械能的效率和第一填充液11的耗能效率。
如图1和图5所示,在一些实施例中,复位组件4包括一个第二固定块45、一个固定杆41、两个套筒42、两个第二弹性件43和两个第二连杆44,第二固定块45连接于第一壳体1内壁,固定杆41连接于固定块且固定杆41的两端分别置于第二固定块45的两侧,两个套筒42分别套设于固定杆41的两端,两个第二弹性件43与两个套筒42一一对应,且第二弹性件43的两端分别与固定杆41和对应的套筒42连接,两个第二连杆44分别与两个套筒42一一对应,且两个第二连杆44分别与两个耗能组件3一一对应,第二连杆44的一端
可转动连接于对应的套筒42,第二连杆44的另一端可转动连接于对应的第一连杆31。
如图1所示,在一些实施例中,非线性混合耗能减振阻尼器还包括第三壳体5,第三壳体5连接于第一壳体1上,第三壳体5内填充有第二填充液51,第二填充液51与第三壳体5内壁之间发生摩擦,进一步提高了抗振阻尼器的机械能损耗效率。
如图1所示,在一些实施例中,非线性混合耗能减振阻尼器还包括定位组件6,定位组件6包括定位件61、滑动件62和第三弹性件63,定位件61适于与建筑物100的侧壁连接,滑动件62的第一端连接于第一壳体1和/或第三壳体5,滑动件62的第二端连接于定位件61并沿滑动件62的轴线方向可滑动,第三弹性件63的一端连接于定位件61,第三弹性件63的另一端连接于第一壳体1和/或第三壳体5;定位组件6有多个,多个定位组件6在第一壳体1和/或第三壳体5上间隔分布。定位件61、第三弹性件63和滑动件62将建筑物100振动传递至第一壳体1和第三壳体5内,使第一壳体1和第三壳体5内的零部件对建筑物100机械能进行损耗。
在一些实施例中,第三弹性件63为弹簧,第三弹性件63套设于滑动件62。
如图1所示,在一些实施例中,定位组件6有两个,其中一个滑动件62连接于第一壳体1,另一个滑动件62连接于第三壳体5。
在一些实施例中,第一填充液11为粘性液体,第二填充液51为水。
在一些实施例中,非线性混合耗能减振阻尼器还包括底座7,底座7连接于第一壳体1的下端,底座7适于与建筑物100底板连接,底座7用于固定第一壳体1。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,
或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本公开中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了上述实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域普通技术人员对上述实施例进行的变化、修改、替换和变型均在本公开的保护范围内。
Claims (10)
- 一种非线性混合耗能减振阻尼器,包括:第一壳体,所述第一壳体内填充有第一填充液;第二壳体,所述第二壳体可滑动连接于所述第一壳体内,所述第二壳体内填充有颗粒群;耗能组件,所述耗能组件连接于所述第一壳体内,所述耗能组件包括第一连杆、第一弹性件和扇板,所述第一连杆的第一端可转动连接于所述第一壳体的内壁,所述第一连杆的第二端与所述第二壳体的侧壁相接触并相对于第二壳体可滑动,所述第一弹性件的第一端连接于所述第一壳体的内壁,所述第一弹性件的第二端连接于所述第一连杆,所述第一弹性件用于保持所述第一连杆的第二端与所述第二壳体的侧壁相接触,所述扇板连接于所述第一连杆。
- 根据权利要求1所述的非线性混合耗能减振阻尼器,其中,所述耗能组件还包括滚筒,所述滚筒可转动连接于所述第一连杆的第二端,所述滚筒的外壁与所述第二壳体的侧壁相接触并相对于所述第二壳体可滚动。
- 根据权利要求1所述的非线性混合耗能减振阻尼器,其中,所述扇板的截面形状呈弧形,所述扇板有多个,多个所述扇板沿所述第一连杆的长度方向间隔设置。
- 根据权利要求1所述的非线性混合耗能减振阻尼器,还包括多个挡板组,多个所述挡板组均连接于所述第二壳体内并沿竖直方向间隔分布,所述挡板组包括多个挡板,所述挡板倾斜设置,多个所述挡板沿水平方向间隔分布。
- 根据权利要求1所述的非线性混合耗能减振阻尼器,还包括复位组件,所述复位组件包括固定杆、套筒、第二弹性件和第二连杆,所述固定杆连接于所述第一壳体内,所述套筒套设于所述固定杆并沿所述固定杆的轴线方向可滑动,所述第二弹性件的两端分别与所述固定杆和所述套筒连接,所述第二连杆的第一端转动连接于所述套筒,所述第二连杆的第二端转动连接于所述第一连杆。
- 根据权利要求5所述的非线性混合耗能减振阻尼器,其中,所述耗能组件有多个,多个所述耗能组件间隔布置;所述复位组件有多个,多个所述复位组件与多个所述耗能组件一一对应,所述第二连杆的第二端转动连接于对应的所述第一连杆。
- 根据权利要求1所述的非线性混合耗能减振阻尼器,还包括第三壳体,所述第三壳体连接于所述第一壳体上,所述第三壳体内填充有第二填充液。
- 根据权利要求7所述的非线性混合耗能减振阻尼器,还包括定位组件,所述定位组件包括定位件、滑动件和第三弹性件,所述定位件适于与建筑物的侧壁连接,所述滑动件的第一端连接于所述第一壳体和/或第三壳体,所述滑动件的第二端连接于所述定位件并沿所述滑动件的轴线方向可滑动,所述第三弹性件的一端连接于所述定位件,所述第三弹性件的另一端连接于所述第一壳体和/或第三壳体;所述定位组件有多个,多个所述定位组件在所述第一壳体和/或第三壳体上间隔分布。
- 根据权利要求7所述的非线性混合耗能减振阻尼器,其中,所述第一填充液为粘性 液体,所述第二填充液为水。
- 根据权利要求1所述的非线性混合耗能减振阻尼器,还包括底座,所述底座连接于所述第一壳体的下端,所述底座适于与建筑物底板连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211108167.0A CN115405007B (zh) | 2022-09-13 | 2022-09-13 | 一种非线性混合耗能减振阻尼器 |
CN202211108167.0 | 2022-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024055594A1 true WO2024055594A1 (zh) | 2024-03-21 |
Family
ID=84166233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/090667 WO2024055594A1 (zh) | 2022-09-13 | 2023-04-25 | 一种非线性混合耗能减振阻尼器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115405007B (zh) |
WO (1) | WO2024055594A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115405007B (zh) * | 2022-09-13 | 2024-06-11 | 西安热工研究院有限公司 | 一种非线性混合耗能减振阻尼器 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101448386B1 (ko) * | 2013-05-22 | 2014-10-08 | 한양대학교 산학협력단 | 힌지 마찰댐퍼를 갖는 시저 토글식 제진장치 |
CN105863097A (zh) * | 2016-05-11 | 2016-08-17 | 同济大学 | 非线性轨道式协同调谐阻尼器 |
CN106401004A (zh) * | 2016-12-07 | 2017-02-15 | 山东大学 | 一种多向滚动式减振阻尼器 |
CN106567590A (zh) * | 2016-10-31 | 2017-04-19 | 同济大学 | 一种非线性混合旋转耗能阻尼器 |
CN108442552A (zh) * | 2018-04-24 | 2018-08-24 | 同济大学 | 三向非线性混合耗能自复位阻尼器 |
CN110894863A (zh) * | 2019-12-19 | 2020-03-20 | 中国地震局工程力学研究所 | 一种复合式阻尼装置及阻尼器 |
CN112681856A (zh) * | 2020-12-22 | 2021-04-20 | 北京工业大学 | 一种颗粒阻尼器 |
CN115405007A (zh) * | 2022-09-13 | 2022-11-29 | 西安热工研究院有限公司 | 一种非线性混合耗能减振阻尼器 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5819484A (en) * | 1995-07-28 | 1998-10-13 | Kar; Ramapada | Building structure with friction based supplementary damping in its bracing system for dissipating seismic energy |
JP3306399B2 (ja) * | 1999-12-03 | 2002-07-24 | 光陽精機株式会社 | 制震用オイルダンパー |
CN105308315B (zh) * | 2013-06-11 | 2018-09-11 | 维斯塔斯风力系统有限公司 | 具有阻尼器的风轮机塔架 |
CN205776855U (zh) * | 2016-05-11 | 2016-12-07 | 同济大学 | 非线性混合耗能减振阻尼器 |
CN106337594B (zh) * | 2016-11-10 | 2018-06-05 | 同济大学 | 多级弹簧颗粒阻尼器 |
CN206448585U (zh) * | 2017-01-24 | 2017-08-29 | 中国矿业大学 | 梁柱节点干连接扇形粘弹性阻尼器 |
CN211948991U (zh) * | 2020-04-01 | 2020-11-17 | 湖南三一工业职业技术学院 | 一种装配式建筑减震结构 |
CN113684931A (zh) * | 2021-09-22 | 2021-11-23 | 台州市博诚凯胜科技有限公司 | 一种装配式复合墙板与钢梁的抗震耗能连接节点结构 |
-
2022
- 2022-09-13 CN CN202211108167.0A patent/CN115405007B/zh active Active
-
2023
- 2023-04-25 WO PCT/CN2023/090667 patent/WO2024055594A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101448386B1 (ko) * | 2013-05-22 | 2014-10-08 | 한양대학교 산학협력단 | 힌지 마찰댐퍼를 갖는 시저 토글식 제진장치 |
CN105863097A (zh) * | 2016-05-11 | 2016-08-17 | 同济大学 | 非线性轨道式协同调谐阻尼器 |
CN106567590A (zh) * | 2016-10-31 | 2017-04-19 | 同济大学 | 一种非线性混合旋转耗能阻尼器 |
CN106401004A (zh) * | 2016-12-07 | 2017-02-15 | 山东大学 | 一种多向滚动式减振阻尼器 |
CN108442552A (zh) * | 2018-04-24 | 2018-08-24 | 同济大学 | 三向非线性混合耗能自复位阻尼器 |
CN110894863A (zh) * | 2019-12-19 | 2020-03-20 | 中国地震局工程力学研究所 | 一种复合式阻尼装置及阻尼器 |
CN112681856A (zh) * | 2020-12-22 | 2021-04-20 | 北京工业大学 | 一种颗粒阻尼器 |
CN115405007A (zh) * | 2022-09-13 | 2022-11-29 | 西安热工研究院有限公司 | 一种非线性混合耗能减振阻尼器 |
Also Published As
Publication number | Publication date |
---|---|
CN115405007A (zh) | 2022-11-29 |
CN115405007B (zh) | 2024-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024055594A1 (zh) | 一种非线性混合耗能减振阻尼器 | |
CN112814191A (zh) | 一种惯容式多向调谐型吸能减振装置 | |
CN212053292U (zh) | 电涡流颗粒阻尼器 | |
JP2011012688A (ja) | 回転伝動機構 | |
CN110284742A (zh) | 一种摩擦耗能型颗粒阻尼器 | |
JP7141146B2 (ja) | ジャイロスコープ型制動装置、組立体及び方法 | |
JP2019019849A (ja) | 免震ダンパおよび免震システム | |
JP2006249870A (ja) | 梁装置 | |
CN110206179B (zh) | 三维放大式粘滞阻尼器 | |
CN203238801U (zh) | 加速度相关型阻尼器 | |
CN216892920U (zh) | 多方向位移的阻尼器、阻尼支撑结构 | |
JPH06123324A (ja) | 水平方向および鉛直方向で作用するビスカスタイプの振動緩衝器 | |
CN112878775B (zh) | 一种粘滞阻尼器 | |
CN112855821A (zh) | 一种磁力丝杠式轴向电涡流阻尼器 | |
TWI558931B (zh) | Isolator | |
JPS629045A (ja) | 振動減衰装置 | |
CN219221143U (zh) | 一种文物与设备使用的调谐质量阻尼器隔震装置 | |
CN212338009U (zh) | 一种减震单元 | |
CN206667876U (zh) | T型摩擦阻尼器 | |
JP2010180669A (ja) | 制震ユニット、及び、制震ユニット設置構造 | |
CN205744350U (zh) | 压缩机的支撑底板以及具有其的往复式活塞压缩机 | |
CN214007867U (zh) | 磁性液体减振器 | |
JP5991591B2 (ja) | 振動低減装置 | |
CN204942961U (zh) | 电视机支架 | |
CN112502321B (zh) | 任意角度转动的隔墙与框架耗能减震连接构件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23864335 Country of ref document: EP Kind code of ref document: A1 |