WO2024055592A1 - 一种动力电池许用压差的计算方法及装置 - Google Patents

一种动力电池许用压差的计算方法及装置 Download PDF

Info

Publication number
WO2024055592A1
WO2024055592A1 PCT/CN2023/090277 CN2023090277W WO2024055592A1 WO 2024055592 A1 WO2024055592 A1 WO 2024055592A1 CN 2023090277 W CN2023090277 W CN 2023090277W WO 2024055592 A1 WO2024055592 A1 WO 2024055592A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
soc
allowable
difference
self
Prior art date
Application number
PCT/CN2023/090277
Other languages
English (en)
French (fr)
Inventor
刘涛
王书洋
刘佳鑫
许立超
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2024055592A1 publication Critical patent/WO2024055592A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio

Definitions

  • the present application relates to the technical field of power batteries, and specifically relates to a method for calculating the allowable pressure difference of a power battery, a device for calculating the allowable pressure difference of a power battery, and a method for detecting a power battery.
  • Power batteries are composed of many battery cells connected in series and parallel. Since the voltage of the battery cells is not completely consistent when they are offline, and the self-discharge rates of different battery cells are also inconsistent, there is a voltage difference between different battery cells in the power battery. , after the pressure difference accumulates too large, the monomer with the lowest voltage during the discharge process reaches the lower limit cut-off voltage first, while the discharge capacity of other monomers with higher voltages is not fully released. During the charging process, the monomer with the highest voltage reaches the upper limit cut-off voltage first, while other monomers with lower voltages reach the upper limit. The charging capacity is not fully released, thus affecting the charging and discharging power performance and life of the power battery.
  • the power battery needs to control the pressure difference when it comes off the assembly line, and at the same time, the pressure difference needs to be equalized during the operation of the vehicle.
  • the pressure difference qualification standard and the BMS equilibrium target value standard for power batteries when they are offline are generally established empirically to establish the allowable thresholds.
  • the problems with the existing methods are: there is no clear calculation method, and there are errors in subjective judgments; BEV, Power batteries with different characteristics such as PHEV and HEV cannot effectively formulate differentiated and reasonable thresholds for voltage differences.
  • the object of the present invention is to provide a method for calculating the allowable pressure difference of a power battery, a device for calculating the allowable pressure difference of a power battery, and a method for detecting a power battery, so as to solve at least one of the above technical problems.
  • the present invention provides the following solutions:
  • a method for calculating the allowable pressure difference of a power battery includes:
  • the obtaining basic data of the power battery includes:
  • Obtaining the basic data of the power battery includes obtaining the catch-up rate c of the displayed SOC of the power battery and the real SOC of the power battery;
  • obtaining the true SOC of the power battery includes:
  • obtaining the basic data of the power battery includes obtaining the catch-up rate c of the displayed SOC of the power battery and the real SOC of the power battery, including:
  • the catch-up ratio is c. If the power battery is in a charging state, the catch-up ratio is 1/c.
  • the calculation of the allowable SOC difference of the power battery based on the basic data of the power battery includes:
  • the allowable SOC difference ⁇ 1 is obtained without considering the difference in self-discharge consistency
  • the allowable SOC difference ⁇ 2 for self-discharge consistency is obtained based on the allowable SOC difference ⁇ 1 that does not consider the self-discharge consistency difference, the monthly self-discharge consistency difference ⁇ % of the power battery, and the allowable storage time M of the power battery, so The self-discharge consistency difference allowable SOC difference ⁇ 2 is used as the allowable SOC difference of the power battery.
  • obtaining the permissible true SOC lower limit threshold of the power battery based on the permissible storage time M of the power battery, the monthly self-discharge rate ⁇ % of the power battery, and the true SOC lower limit threshold of the power battery includes:
  • the permissible true SOC lower limit threshold of the power battery is obtained through the calculation formula of the permissible true SOC lower limit threshold of the power battery.
  • the calculation formula is as follows:
  • the allowable true SOC lower limit threshold of the power battery the true SOC lower limit threshold of the power battery + M* ⁇ %;
  • the acquisition of the power battery display SOC value when the SOC jumps based on the power battery display SOC lower limit threshold, the power battery real SOC value, the allowable real SOC lower limit threshold, and the power battery display SOC and the catch-up rate c of the power battery real SOC includes:
  • the SOC value displayed by the power battery when the SOC jumps is obtained through the calculation formula of the SOC value displayed by the power battery when the SOC jumps.
  • the calculation formula is as follows:
  • the allowable SOC difference value ⁇ 1 is obtained based on the SOC value displayed by the power battery when the SOC jumps, the calculation accuracy value A of the SOC calculated by the power battery management system, and the real SOC value of the power battery without considering the self-discharge consistency difference.
  • the allowable SOC difference ⁇ 1 not considering the difference in self - discharge consistency is obtained through the calculation formula of the allowable SOC difference ⁇ 1 not considering the difference in self-discharge consistency.
  • the calculation formula is as follows:
  • ⁇ 1 (SOC value displayed by the power battery when SOC jumps - A) - (real SOC value of the power battery + A);
  • the allowable SOC difference ⁇ 2 of the self-discharge consistency difference is obtained based on the allowable SOC difference ⁇ 1 of the self-discharge consistency difference, the monthly self-discharge consistency difference ⁇ % of the power battery and the allowable storage time M of the power battery without considering the self-discharge consistency difference .
  • the allowable SOC difference ⁇ 2 for self-discharge consistency is obtained through the calculation formula of the allowable SOC difference ⁇ 2 for self-discharge consistency difference.
  • the self-discharge consistency difference allowable SOC difference ⁇ 2 is used as the allowable SOC difference of the power battery.
  • looking up the preset SOC-OCV table according to the allowable SOC difference of the power battery to obtain the corresponding allowable pressure difference includes:
  • the allowable voltage difference of the power battery is obtained by subtracting the OCV value corresponding to the initial SOC of the power battery and the OCV value corresponding to the lowest allowable SOC of the power battery.
  • the invention also provides a device for calculating the allowable pressure difference of a power battery, which includes:
  • the acquisition module is used to obtain basic data of the power battery
  • the calculation module is used to calculate the allowable SOC difference of the power battery based on the basic data of the power battery;
  • the table lookup module is used to search the corresponding allowable voltage difference value in the SOC-OCV data table according to the allowable SOC difference value of the power battery.
  • the invention also provides a method for detecting a power battery, including:
  • the present invention has the following advantages:
  • the calculation method for the allowable pressure difference of the power battery solves the problem that there is currently no calculation method for the allowable pressure difference, and by judging whether the calculated allowable pressure difference is standardized, the cell voltage of the power battery can be controlled at Within a limited range, it solves the problem that due to excessive voltage difference, the cell with the lowest voltage during the discharge process reaches the lower limit cut-off voltage first, while the discharge capacity of other cells with higher voltages is not fully released. During the charging process, the cell with the highest voltage reaches the upper limit cut-off voltage first, while the others The problem of insufficient charging capacity of a low-voltage cell is not fully released, and the problem of voltage difference affecting the charging and discharging power performance and life of the power battery is avoided.
  • this application comprehensively considers the storage time of the power battery, the lower limit of SOC use, and the BMS. Multiple factors such as SOC calculation accuracy and SOC jump catching-up strategy make the calculation of the allowable pressure difference of power batteries more standard and the off-line detection of power batteries more standardized.
  • Figure 1 is a flow chart of a method for calculating the allowable pressure difference of a power battery according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of the deviation between the displayed SOC and the real SOC according to the calculation method of the power battery allowable pressure difference according to an embodiment of the present invention
  • Figure 3 is a structural diagram of an electronic device that can implement the calculation method of the allowable pressure difference of the power battery of the present invention.
  • Figure 1 is a flow chart of a method for calculating the allowable pressure difference of a power battery according to an embodiment of the present invention.
  • the calculation method of the allowable pressure difference of the power battery as shown in Figure 1 includes:
  • Step 1 Obtain basic data of the power battery
  • Step 2 Calculate the allowable SOC difference of the power battery based on the basic data of the power battery
  • Step 3 According to the allowable SOC difference of the power battery, look up the preset SOC-OCV table to obtain the corresponding allowable pressure difference.
  • the present invention has the following advantages:
  • the calculation method for the allowable pressure difference of the power battery solves the current problem of no calculation method for the allowable pressure difference, and by judging whether the calculated allowable pressure difference is standardized, the cell voltage of the power battery can be controlled at Within a limited range, it solves the problem of the lowest voltage during discharge due to excessive voltage difference.
  • the monomer reaches the lower limit cut-off voltage first while the discharge capacity of other monomers with higher voltages is not fully released.
  • the monomer with the highest voltage reaches the upper limit cut-off voltage first while the charging capacity of other monomers with lower voltages is not fully released, and avoids the problem caused by The pressure difference problem affects the charging and discharging power performance and life of the power battery; in the calculation process, this application comprehensively considers multiple factors such as the storage time of the power battery, the lower limit of SOC usage, the calculation accuracy of BMS for SOC and the SOC jump catch-up strategy, making the power
  • the calculation of the allowable voltage difference of the battery is more standardized, and the off-line inspection of the power battery is more standardized.
  • obtaining basic data of the power battery includes:
  • Obtaining the basic data of the power battery includes obtaining the catch-up rate c of the displayed SOC of the power battery and the real SOC of the power battery;
  • obtaining the real SOC of the power battery includes:
  • obtaining the basic data of the power battery includes obtaining the catch-up rate c of the displayed SOC of the power battery and the real SOC of the power battery, including:
  • the displayed SOC of the power battery is inconsistent with the real SOC of the power battery, it is necessary to determine the speed at which the displayed SOC of the power battery catches up with the real SOC of the power battery. degree; obtain the status of the power battery.
  • the catch-up ratio between the power battery display SOC and the power battery's true SOC is c times.
  • the catch-up ratio between the power battery display SOC and the power battery's true SOC is 1/c times; in this embodiment, the real SOC of the power battery is allowed to jump, but the displayed SOC of the power battery is not allowed to jump. Therefore, the displayed SOC of the power battery needs to catch up with the real SOC of the power battery at a certain speed.
  • calculating the allowable SOC difference of the power battery based on the basic data of the power battery includes:
  • Allowable real SOC lower limit threshold L′ real SOC lower limit threshold of the power battery L 1 % + M* ⁇ %.
  • calculating the allowable SOC difference of the power battery based on the basic data of the power battery includes:
  • calculating the allowable SOC difference of the power battery based on the basic data of the power battery includes:
  • the allowable SOC difference ⁇ 1 is obtained without considering the difference in self-discharge consistency
  • ⁇ 1 (SOC value displayed by the power battery when SOC jumps - A) - (real SOC value of the power battery + A).
  • calculating the allowable SOC difference of the power battery based on the basic data of the power battery includes:
  • the allowable SOC difference ⁇ 2 for self-discharge consistency is obtained based on the allowable SOC difference ⁇ 1 that does not consider the self-discharge consistency difference, the monthly self-discharge consistency difference ⁇ % of the power battery, and the allowable storage time M of the power battery .
  • the allowable SOC difference ⁇ 2 of the discharge consistency difference is used as the allowable SOC difference of the power battery;
  • the self-discharge consistency difference and the allowable SOC difference ⁇ 2 are used as the allowable SOC difference of the power battery.
  • the allowable SOC difference ⁇ 2 is looked up in the preset SOC-OCV table according to the self-discharge consistency difference of the power battery to obtain the corresponding allowable pressure difference.
  • This embodiment also provides a device for calculating the allowable pressure difference of the power battery, which specifically includes:
  • the acquisition module is used to obtain basic data of the power battery
  • the calculation module is used to calculate the allowable SOC difference of the power battery based on the basic data of the power battery;
  • the table lookup module is used to find the corresponding allowable voltage difference value in the SOC-OCV data table according to the allowable SOC difference value of the power battery.
  • the allowable pressure difference of the power battery in different states can be calculated according to the use requirements. For example, if the whole vehicle needs to be maintained in a state that can start and drive normally, then the allowable pressure difference of the whole vehicle can be obtained.
  • the basic data of the power battery in normal startup and driving conditions can be used to calculate the allowable pressure difference.
  • the calculation method of the allowable pressure difference in the vehicle's normal startup and driving conditions is as follows:
  • n% 40%
  • the lower limit threshold value L′ of the real SOC allowed for the power battery is obtained.
  • the allowable SOC difference ⁇ 1 is obtained without considering the difference in self-discharge consistency
  • ⁇ 2 ⁇ 1 - ⁇ %*m1
  • the allowable SOC difference ⁇ 2 of the self-discharge consistency difference is used as the allowable SOC difference of the power battery;
  • the initial SOC of the power battery is 55%
  • the lowest allowable SOC of the power battery is obtained according to the difference between the initial SOC of the power battery and the self-discharge consistency difference of the allowable SOC difference ⁇ 2 .
  • the initial SOC of the power battery and the lowest allowable SOC of the power battery look up the preset SOC-OCV table to obtain the OCV value corresponding to the initial SOC of the power battery and the OCV value corresponding to the lowest allowable SOC of the power battery.
  • the OCV value corresponding to the initial SOC and the OCV value corresponding to the lowest allowable SOC of the power battery are subtracted to obtain the allowable voltage difference of the power battery.
  • the allowable SOC difference of the power battery is 5%.
  • the temperature is 25°C
  • the power battery When the initial SOC value of the battery is 55%, the corresponding OCV value is 3.694V.
  • the minimum allowable SOC value of the power battery is 50%, the corresponding OCV value is 3.669V.
  • the allowable voltage difference value of 0.025V can be obtained.
  • the basic data of the power battery that can maintain good power for the whole vehicle can be obtained to calculate the allowable pressure difference.
  • the allowable pressure difference for the whole vehicle can be maintained for good power.
  • the pressure difference calculation method is as follows:
  • n% 40%
  • the SOC value H′ displayed by the power battery when the SOC jumps is obtained.
  • the calculation formula is as follows:
  • the allowable SOC difference ⁇ 1 ′ is obtained without considering the difference in self-discharge consistency
  • ⁇ 1 ′ (SOC value H′ displayed by the power battery when SOC jumps - calculation accuracy value A) - (real SOC value n% of the power battery + calculation accuracy value A).
  • the allowable SOC difference ⁇ 2 of the self-discharge consistency difference is used as the allowable SOC difference of the power battery;
  • the initial SOC of the power battery is 45%;
  • the lowest allowable SOC of the power battery is obtained according to the difference between the initial SOC of the power battery and the self-discharge consistency difference of the allowable SOC difference ⁇ 2 .
  • the initial SOC of the power battery and the lowest allowable SOC of the power battery look up the preset SOC-OCV table to obtain the OCV value corresponding to the initial SOC of the power battery and the OCV value corresponding to the lowest allowable SOC of the power battery.
  • the OCV value corresponding to the initial SOC and the OCV value corresponding to the lowest allowable SOC of the power battery are subtracted to obtain the allowable voltage difference of the power battery.
  • this application also provides a method for detecting a power battery based on the allowable pressure difference of the power battery, which specifically includes:
  • this application also provides a structural diagram of an electronic device that can implement the calculation method of the power battery's allowable pressure difference in this application.
  • the electronic device includes: a processor, a communication interface, a memory, and a communication bus.
  • the processor, communication interface, and memory complete communication with each other through the communication bus; a computer program is stored in the memory.
  • the processor is executed, the processor is caused to execute the steps of the method for calculating the allowable pressure difference of the power battery.
  • This application also provides a computer-readable storage medium that stores a computer program that can be executed by an electronic device.
  • the computer program When the computer program is run on the electronic device, the electronic device executes the steps of the method for calculating the allowable pressure difference of the power battery.
  • the communication bus mentioned in the above-mentioned electronic equipment can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the communication bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • Electronic devices include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system.
  • This hardware layer includes hardware such as central processing unit (CPU, Central Processing Unit), memory management unit (MMU, Memory Management Unit), and memory.
  • the operating system can be any one or more computer operating systems that realize control of electronic devices through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system or windows operating system, etc.
  • the electronic device may be a handheld device such as a smartphone or a tablet computer, or may be an electronic device such as a desktop computer or a portable computer, which is not particularly limited in the embodiment of the present invention.
  • the execution subject of electronic device control in the embodiment of the present invention may be an electronic device, or a functional module in the electronic device that can call a program and execute the program.
  • the electronic device can obtain the firmware corresponding to the storage medium.
  • the firmware corresponding to the storage medium is provided by the supplier.
  • the firmware corresponding to different storage media The items may be the same or different, and are not limited here.
  • After the electronic device obtains the firmware corresponding to the storage medium it can write the firmware corresponding to the storage medium into the storage medium, specifically, burn the firmware corresponding to the storage medium into the storage medium.
  • the process of burning the firmware into the storage medium can be implemented using existing technology, and will not be described again in the embodiment of the present invention.
  • the electronic device can also obtain the reset command corresponding to the storage medium.
  • the reset command corresponding to the storage medium is provided by the supplier.
  • the reset commands corresponding to different storage media can be the same or different, and are not limited here.
  • the storage medium of the electronic device is a storage medium in which the corresponding firmware is written.
  • the electronic device can respond to the reset command corresponding to the storage medium in the storage medium in which the corresponding firmware is written, so that the electronic device responds to the reset command corresponding to the storage medium.
  • Reset command to reset the storage medium in which the corresponding firmware is written.
  • the process of resetting the storage medium according to the reset command can be implemented with existing technology, and will not be described again in the embodiment of the present invention.
  • the present application can be implemented by means of software plus the necessary general hardware platform. Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product can be stored in a storage medium, such as ROM/RAM, disk , optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments of this application.

Abstract

本发明公开了一种动力电池许用压差的计算方法,所述动力电池许用压差的计算方法包括:获取动力电池的基本数据;根据所述动力电池的基本数据计算动力电池的许用SOC差值;根据所述动力电池的许用SOC差值在预设SOC-OCV表中查表,获取相对应的许用压差。本申请提供的动力电池许用压差的计算方法综合考虑了动力电池存储时长、SOC使用下限、BMS对SOC的计算精度及SOC跳变追赶策略等多重因素,使得动力电池许用压差的计算更加标准,动力电池的下线检测更为规范,解决目前许用压差无计算方法的问题;且通过判断计算后的许用压差是否规范进而解决因压差问题影响动力电池的充放电功率性能和使用寿命。

Description

一种动力电池许用压差的计算方法及装置 技术领域
本申请涉及动力电池技术领域,具体涉及一种动力电池许用压差的计算方法、动力电池许用压差的计算装置及检测动力电池的方法。
背景技术
动力电池由很多电池单体通过一定的串并联组合而成,由于电池单体下线时电压不是完全一致,且不同电池单体自放电率也不一致,导致动力电池不同电池单体间存在压差,压差累积过大后,放电过程电压最低单体先达到下限截止电压而其他电压较高单体放电能力未充分释放,充电过程电压最高单体先达到上限截止电压而其他电压较低单体充电能力未充分释放,从而影响动力电池的充放电功率性能和寿命。
基于以上问题,动力电池需控制下线时的压差,同时整车运行过程中需进行压差均衡。目前动力电池下线时的压差合格标准和BMS均衡目标值的标准,一般采用经验的方式确立许用阈值,现有方式存在的问题在于:无明确的计算方法,主观判断存在误差;BEV、PHEV、HEV等不同特性动力电池不能有效的制定出差异化的压差合理阈值。
发明内容
本发明的目的在于提供一种动力电池许用压差的计算方法、动力电池许用压差的计算装置及检测动力电池的方法,来至少解决上述的一个技术问题。
本发明提供了下述方案:
根据本发明的一个方面,提供一种动力电池许用压差的计算方法,所述动力电池许用压差的计算方法包括:
获取动力电池的基本数据;
根据所述动力电池的基本数据计算动力电池的许用SOC差值;
根据所述动力电池的许用SOC差值在预设SOC-OCV表中查表,获取相对应的许用压差。
可选地,所述获取动力电池的基本数据包括:
获取动力电池许用存储时间M;
获取动力电池显示SOC下限阈值;
获取动力电池的真实SOC下限阈值;
获取动力电池管理系统计算SOC的计算精度值A;
获取动力电池真实SOC;
获取动力电池的基本数据包括获取动力电池显示SOC和动力电池真实SOC的追赶倍率c;
获取动力电池的月自放电率λ%;
获取动力电池的月自放电一致性差异μ%。
可选地,所述获取动力电池真实SOC包括:
获取动力电池组中所有单体电池的SOC;
获取所述动力电池组中所有单体电池SOC中的最小SOC;
判断所述动力电池的最小SOC是否小于预设阈值,若是,则将动力电池的最小SOC作为动力电池真实SOC。
可选地,所述获取动力电池的基本数据包括获取动力电池显示SOC和动力电池真实SOC的追赶倍率c,包括:
获取动力电池状态,若所述动力电池处于放电状态时所述追赶倍率为c,若动力电池处于充电状态时所述追赶倍率为1/c。
可选地,所述根据动力电池基本数据计算动力电池的许用SOC差值包括:
根据所述动力电池许用存储时间M、动力电池的月自放电率λ%以及动力电池的真实SOC下限阈值获取动力电池许用真实SOC下限阈值;
根据动力电池显示SOC下限阈值、动力电池真实SOC值、许用真实SOC下限阈值及动力电池显示SOC和动力电池真实SOC的追赶倍率c获取SOC跳变时动力电池显示SOC值;
根据SOC跳变时动力电池显示SOC值、动力电池管理系统计算SOC的计算精度值A及动力电池真实SOC值获取未考虑自放电一致性差异许用SOC差值Δ1
根据未考虑自放电一致性差异许用SOC差值Δ1、动力电池的月自放电一致性差异μ%及动力电池许用存储时间M获取自放电一致性差异许用SOC差值Δ2,所述自放电一致性差异许用SOC差值Δ2作为所述动力电池的许用SOC差值。
可选地,所述根据动力电池许用存储时间M、动力电池的月自放电率λ%以及动力电池的真实SOC下限阈值获取动力电池许用真实SOC下限阈值包括:
通过动力电池许用真实SOC下限阈值的计算公式获得动力电池许用真实SOC下限阈值,计算公式如下:
动力电池许用真实SOC下限阈值=动力电池的真实SOC下限阈值+M*λ%;
所述根据动力电池显示SOC下限阈值、动力电池真实SOC值、许用真实SOC下限阈值及动力电池显示SOC和动力电池真实SOC的追赶倍率c获取SOC跳变时动力电池显示SOC值包括:
通过SOC跳变时动力电池显示SOC值的计算公式获得SOC跳变时动力电池显示SOC值,计算公式如下:
SOC跳变时动力电池显示SOC值=动力电池显示SOC下限阈值+(动力电池真实SOC值-许用真实SOC下限阈值)*c。
可选地,所述根据SOC跳变时动力电池显示SOC值、动力电池管理系统计算SOC的计算精度值A及动力电池真实SOC值获取未考虑自放电一致性差异许用SOC差值Δ1包括:
通过未考虑自放电一致性差异许用SOC差值Δ1的计算公式获得未考虑自放电一致性差异许用SOC差值Δ1,计算公式如下:
Δ1=(SOC跳变时动力电池显示SOC值-A)-(动力电池真实SOC值+A);
所述根据未考虑自放电一致性差异许用SOC差值Δ1、动力电池的月自放电一致性差异μ%及动力电池许用存储时间M获取自放电一致性差异许用SOC差值Δ2包括:
通过自放电一致性差异许用SOC差值Δ2的计算公式获得自放电一致性差异许用SOC差值Δ2,计算公式如下:
Δ2=Δ1-μ%*M,
所述自放电一致性差异许用SOC差值Δ2作为所述动力电池的许用SOC差值。
可选地,所述根据所述动力电池的许用SOC差值在预设SOC-OCV表中查表,获取相对应的许用压差包括:
获取动力电池的初始SOC;
根据所述动力电池的初始SOC和动力电池的许用SOC差值获取动力电池最低许用SOC;
根据所述动力电池的初始SOC和所述动力电池最低许用SOC在预设SOC-OCV表中查表,获得所述动力电池的初始SOC对应的OCV值和所述动力电池最低许用SOC对应的OCV值;
将所述动力电池的初始SOC对应的OCV值和所述动力电池最低许用SOC对应的OCV值相减,获得动力电池的许用压差。
本发明还提供了一种动力电池许用压差的计算装置,包括:
获取模块用于获取动力电池的基本数据;
计算模块用于根据所述动力电池基本数据计算动力电池的许用SOC差值;
查表模块用于根据所述动力电池的许用SOC差值在SOC-OCV数据表中查找相对应的许用压差值。
本发明还提供了一种检测动力电池的方法,包括:
获取动力电池的许用压差;
判断所述动力电池的许用压差是否小于预设阈值,若是,则动力电池数据合格,
若否,则动力电池数据异常。
本发明与现有技术相比具有以下的优点:
本发明提供的动力电池许用压差的计算方法解决目前许用压差无计算方法的问题,且通过判断计算后的许用压差是否规范,使得动力电池下线时单体电压可以控制在限定范围内,解决了因压差过大而导致放电过程电压最低单体先达到下限截止电压而其他电压较高单体放电能力未充分释放,充电过程电压最高单体先达到上限截止电压而其他电压较低单体充电能力未充分释放的问题,且避免了因压差问题影响动力电池的充放电功率性能和寿命;本申请在计算过程中综合考虑了动力电池存储时长、SOC使用下限、BMS对SOC的计算精度及SOC跳变追赶策略等多重因素,使得动力电池许用压差的计算更加标准,动力电池的下线检测更为规范。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例的动力电池许用压差的计算方法的流程图;
图2为本发明一实施例的动力电池许用压差的计算方法的显示SOC和真实SOC的偏差示意图;
图3为能够实现本发明动力电池许用压差的计算方法的电子设备结构图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明一实施例的动力电池许用压差的计算方法的流程图
如图1所示的动力电池许用压差的计算方法,包括:
步骤1:获取动力电池的基本数据;
步骤2:根据动力电池的基本数据计算动力电池的许用SOC差值;
步骤3:根据动力电池的许用SOC差值在预设SOC-OCV表中查表,获取相对应的许用压差。
本发明与现有技术相比具有以下的优点:
本申请提供的动力电池许用压差的计算方法解决目前许用压差无计算方法的问题,且通过判断计算后的许用压差是否规范,使得动力电池下线时单体电压可以控制在限定范围内,解决了因压差过大而导致放电过程电压最低 单体先达到下限截止电压而其他电压较高单体放电能力未充分释放,充电过程电压最高单体先达到上限截止电压而其他电压较低单体充电能力未充分释放的问题,且避免了因压差问题影响动力电池的充放电功率性能和寿命;本申请在计算过程中综合考虑了动力电池存储时长、SOC使用下限、BMS对SOC的计算精度及SOC跳变追赶策略等多重因素,使得动力电池许用压差的计算更加标准,动力电池的下线检测更为规范。
在本实施例中,获取动力电池的基本数据包括:
获取动力电池许用存储时间M;
获取动力电池显示SOC下限阈值;
获取动力电池的真实SOC下限阈值;
获取动力电池管理系统计算SOC的计算精度值A;
获取动力电池真实SOC;
获取动力电池的基本数据包括获取动力电池显示SOC和动力电池真实SOC的追赶倍率c;
获取动力电池的月自放电率λ%;
获取动力电池的月自放电一致性差异μ%。
在本实施例中,获取动力电池真实SOC包括:
获取动力电池组中所有单体电池的SOC;
获取动力电池组中所有单体电池SOC中的最小SOC;
判断动力电池的最小SOC是否小于预设阈值,若是,则将动力电池的最小SOC作为动力电池真实SOC。
在本实施例中,获取动力电池的基本数据包括获取动力电池显示SOC和动力电池真实SOC的追赶倍率c,包括:
如图2所示,因实际使用中,动力电池的显示SOC和动力电池的真实SOC不一致,所以需要确定动力电池显示SOC追赶动力电池真实SOC的速 度;获取动力电池状态,当动力电池处于放电状态时动力电池显示SOC和动力电池真实SOC的追赶倍率为c倍,当动力电池处于充电状态时动力电池显示SOC和动力电池真实SOC的追赶倍率为1/c倍;在本实施例中,动力电池真实SOC允许跳变,而动力电池显示SOC不允许跳变,故动力电池显示SOC需按一定的速度追赶动力电池真实SOC。
在本实施例中,根据动力电池基本数据计算动力电池的许用SOC差值包括:
根据动力电池许用存储时间M、动力电池的月自放电率λ%以及动力电池的真实SOC下限阈值获取动力电池许用真实SOC下限阈值L′;
动力电池许用真实SOC下限阈值计算公式如下:
许用真实SOC下限阈值L′=动力电池的真实SOC下限阈值L1%+M*λ%。
在本实施例中,根据动力电池基本数据计算动力电池的许用SOC差值包括:
根据动力电池显示SOC下限阈值L%、动力电池真实SOC值n%、许用真实SOC下限阈值L′及动力电池显示SOC和动力电池真实SOC的追赶倍率c获取SOC跳变时动力电池显示SOC值H,计算公式如下:
SOC跳变时动力电池显示SOC值H=动力电池显示SOC下限阈值L%+(动力电池真实SOC值n%-许用真实SOC下限阈值L′)*c。
在本实施例中,根据动力电池基本数据计算动力电池的许用SOC差值包括:
根据SOC跳变时动力电池显示SOC值、动力电池管理系统计算SOC的计算精度值A及动力电池真实SOC值获取未考虑自放电一致性差异许用SOC差值Δ1
未考虑自放电一致性差异许用SOC差值Δ1的计算公式如下:
Δ1=(SOC跳变时动力电池显示SOC值-A)-(动力电池真实SOC值+A)。
在本实施例中,根据动力电池基本数据计算动力电池的许用SOC差值包括:
根据未考虑自放电一致性差异许用SOC差值Δ1、动力电池的月自放电一致性差异μ%及动力电池许用存储时间M获取自放电一致性差异许用SOC差值Δ2,自放电一致性差异许用SOC差值Δ2作为动力电池的许用SOC差值;
自放电一致性差异许用SOC差值Δ2的计算公式如下:
Δ2=Δ1-μ%*M,
自放电一致性差异许用SOC差值Δ2作为动力电池的许用SOC差值。
在本实施例中,根据动力电池的自放电一致性差异许用SOC差值Δ2在预设SOC-OCV表中查表,获取相对应的许用压差。
本实施例还提供动力电池许用压差的计算装置,具体包括:
获取模块用于获取动力电池的基本数据;
计算模块用于根据动力电池基本数据计算动力电池的许用SOC差值;
查表模块用于根据动力电池的许用SOC差值在SOC-OCV数据表中查找相对应的许用压差值。
值得注意的是,虽然本系统只披露了获取模块、计算模块以及查表模块等基本功能模块,但并不意味着本装置仅仅局限于上述基本功能模块,相对,本发明所要表达的意思是,在上述基本功能模块的基础之上,本领域技术人员可以结合现有技术任意添加一个或多个功能模块,形成无穷多个实施例或技术方案,也就是说本系统是开放式的而非封闭式的,不能因为本实施例仅披露了个别基本功能模块,就认为本发明权利要求的保护范围局限于上述公开的基本功能模块。
下面以举例的方式对本申请进行进一步详细阐述,可以理解的是,该举例并不构成对本申请的任何限制。
本申请一个实施例的动力电池许用压差的计算方法,具体可以包括如下步骤:
因本申请的许用压差计算方法为通用方法,因此可根据使用需求计算不同状态的动力电池许用压差,例如,需要整车维持可正常启机及行驶的状态,那么获取整车可正常启机及行驶状态的动力电池基本数据计算许用压差即可,具体而言,整车可正常启机及行驶状态的许用压差计算方法如下:
获取整车可正常启机及行驶状态动力电池许用存储时间m1月,本实施例中m1=6;
获取整车可正常启机及行驶状态动力电池显示SOC下限阈值L%,本实施例中L%=42%;
获取整车可正常启机及行驶状态动力电池的真实SOC下限阈值L1%,本实施例中L1%=20%;
获取动力电池管理系统计算SOC的计算精度值A,本实施例中A=±
5%,可以理解的是,在实际计算中使用﹢5%获得的计算结果更为精确,因此在本实施例中A取﹢5%的值;
获取动力电池真实SOC,判断动力电池的最小SOC是否小于预设阈值n%,若是,则将动力电池的最小SOC作为动力电池真实SOC,本实施例中n%=40%;
获取动力电池显示SOC和动力电池真实SOC的追赶倍率c,当动力电池处于放电状态时追赶倍率为c,动力电池处于充电状态时追赶倍率为1/c,本实施例中c=1.5;
获取动力电池的月自放电率λ%,本实施例中λ%=1.2%;
获取动力电池的月自放电一致性差异μ%,本实施例中μ%=1%;
获取动力电池许用真实SOC下限阈值L′,动力电池许用真实SOC下限阈值计算公式如下:
L′=动力电池的真实SOC下限阈值L1%+动力电池许用存储时间m1*月
自放电率λ%,本实施例中
L′=20%+6*1.2%=27.2%
根据动力电池许用真实SOC下限阈值L′获取SOC跳变时动力电池显示SOC值H,计算公式如下:
SOC跳变时动力电池显示SOC值H=动力电池显示SOC下限阈值L%+(动力电池真实SOC值n%-许用真实SOC下限阈值L′)*c,在本实施例中,
H=42%+(40%-27.2%)*1.5=61.2%
根据SOC跳变时动力电池显示SOC值获取未考虑自放电一致性差异许用SOC差值Δ1
未考虑自放电一致性差异许用SOC差值Δ1的计算公式如下:
Δ1=(SOC跳变时动力电池显示SOC值H-计算精度值A)-(动力电池真实SOC值n%+计算精度值A),在本实施例中
Δ1=(61.2%-5%)-(40%+5%)=11.2%
根据未考虑自放电一致性差异许用SOC差值Δ1获取自放电一致性差异许用SOC差值Δ2
自放电一致性差异许用SOC差值Δ2的计算公式如下:
Δ2=Δ1-μ%*m1,在本实施例中
Δ2=11.2%-1%*6=5.2%,
自放电一致性差异许用SOC差值Δ2作为动力电池的许用SOC差值;
根据动力电池的许用SOC差值在预设SOC-OCV表中查表,获取相对应的许用压差包括:
获取动力电池的初始SOC,在本实施例中动力电池的初始SOC为55%;
根据动力电池的初始SOC和自放电一致性差异许用SOC差值Δ2的差值获取动力电池最低许用SOC,在本实施例中,动力电池最低许用SOC为
55%-5.2%=49.8%,
根据动力电池的初始SOC和动力电池最低许用SOC在预设SOC-OCV表中查表,获得动力电池的初始SOC对应的OCV值和动力电池最低许用SOC对应的OCV值,将动力电池的初始SOC对应的OCV值和动力电池最低许用SOC对应的OCV值相减,获得动力电池的许用压差。
在一个实施例中,当动力电池初始SOC值为55%,动力电池最低许用SOC值为50%时,动力电池的许用SOC差值为5%,在温度为25℃的情况下,动力电池初始SOC值为55%所对应的OCV值为3.694V,动力电池最低许用SOC值为50%所对应的OCV值为3.669V,将两个对应的OCV值相减3.694V-3.669V,即可获得许用压差值0.025V。
                                       电压单位:V
如果需要整车可维持较好的动力性,那么可以获取整车可维持较好的动力性的动力电池基本数据计算许用压差,具体而言,整车可维持较好动力性的许用压差计算方法如下:
获取整车可维持较好的动力性状态动力电池许用存储时间m2月,本实施例中m2=3;
获取整车可维持较好的动力性状态动力电池显示SOC下限阈值L%,本实施例中L%=42%;
获取整车可维持较好的动力性状态动力电池的真实SOC下限阈值L1%,本实施例中L2%=27%;
获取动力电池管理系统计算SOC的计算精度值A,本实施例中A=±5%,可以理解的是,在实际计算中使用﹢5%获得的计算结果更为精确,因此在本实施例中A取﹢5%的值;
获取动力电池真实SOC,判断动力电池的最小SOC是否小于预设阈值n%,若是,则将动力电池的最小SOC作为动力电池真实SOC,本实施例中n%=40%;
获取动力电池显示SOC和动力电池真实SOC的追赶倍率c,当动力电池处于放电状态时追赶倍率为c,动力电池处于充电状态时追赶倍率为1/c,本实施例中c=1.5;
获取动力电池的月自放电率λ%,本实施例中λ%=1.2%;
获取动力电池的月自放电一致性差异μ%,本实施例中μ%=1%;
获取动力电池许用真实SOC下限阈值L″,动力电池许用真实SOC下限阈值计算公式如下:
L″=动力电池的真实SOC下限阈值L2%+动力电池许用存储时间m2*月自放电率λ%,本实施例中
L″=27%+3*1.2%=30.6%
根据动力电池许用真实SOC下限阈值L″获取SOC跳变时动力电池显示SOC值H′,计算公式如下:
SOC跳变时动力电池显示SOC值H′=动力电池显示SOC下限阈值L%+(动力电池真实SOC值n%-许用真实SOC下限阈值L″)*c,在本实施例中,
H′=42%+(40%-30.6%)*1.5=56.1%
根据SOC跳变时动力电池显示SOC值获取未考虑自放电一致性差异许用SOC差值Δ1′;
未考虑自放电一致性差异许用SOC差值Δ1′的计算公式如下:
Δ1′=(SOC跳变时动力电池显示SOC值H′-计算精度值A)-(动力电池真实SOC值n%+计算精度值A),在本实施例中
Δ1′=(56.1%-5%)-(40%+5%)=6.1%
根据未考虑自放电一致性差异许用SOC差值Δ1′获取自放电一致性差异许用SOC差值Δ2′;
自放电一致性差异许用SOC差值Δ2′的计算公式如下:
Δ2′=Δ1′-μ%*m2,在本实施例中
Δ2′=6.1%-1%*3=3.1%
自放电一致性差异许用SOC差值Δ2作为动力电池的许用SOC差值;
根据动力电池的许用SOC差值在预设SOC-OCV表中查表,获取相对应的许用压差包括:
获取动力电池的初始SOC,在本实施例中动力电池的初始SOC为45%;
根据动力电池的初始SOC和自放电一致性差异许用SOC差值Δ2的差值获取动力电池最低许用SOC,在本实施例中,动力电池最低许用SOC为
45%-3.1%=41.9%,
根据动力电池的初始SOC和动力电池最低许用SOC在预设SOC-OCV表中查表,获得动力电池的初始SOC对应的OCV值和动力电池最低许用SOC对应的OCV值,将动力电池的初始SOC对应的OCV值和动力电池最低许用SOC对应的OCV值相减,获得动力电池的许用压差。
根据本申请的一个方面,本申请还提供了根据动力电池许用压差检测动力电池的方法,具体包括:
获取动力电池的许用压差;
判断动力电池的许用压差是否小于预设阈值,若是,则动力电池数据合格,
若否,则动力电池数据异常。
参见图3,本申请还提供了能够实现本申请的动力电池许用压差的计算方法的电子设备结构图。
如图3所示,电子设备包括:处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;存储器中存储有计算机程序,当计算机程序被处理器执行时,使得处理器执行动力电池许用压差的计算方法的步骤。
本申请还提供了一种计算机可读存储介质,其存储有可由电子设备执行的计算机程序,当计算机程序在电子设备上运行时,使得电子设备执行动力电池许用压差的计算方法的步骤。
上述电子设备提到的通信总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
电子设备包括硬件层,运行在硬件层之上的操作系统层,以及运行在操作系统上的应用层。该硬件层包括中央处理器(CPU,Central Processing Unit)、内存管理单元(MMU,Memory Management Unit)和内存等硬件。该操作系统可以是任意一种或多种通过进程(Process)实现电子设备控制的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。并且在本发明实施例中该电子设备可以是智能手机、平板电脑等手持设备,也可以是桌面计算机、便携式计算机等电子设备,本发明实施例中并未特别限定。
本发明实施例中的电子设备控制的执行主体可以是电子设备,或者是电子设备中能够调用程序并执行程序的功能模块。电子设备可以获取到存储介质对应的固件,存储介质对应的固件由供应商提供,不同存储介质对应的固 件可以相同可以不同,在此不做限定。电子设备获取到存储介质对应的固件后,可以将该存储介质对应的固件写入存储介质中,具体地是往该存储介质中烧入该存储介质对应固件。将固件烧入存储介质的过程可以采用现有技术实现,在本发明实施例中不做赘述。
电子设备还可以获取到存储介质对应的重置命令,存储介质对应的重置命令由供应商提供,不同存储介质对应的重置命令可以相同可以不同,在此不做限定。
此时电子设备的存储介质为写入了对应的固件的存储介质,电子设备可以在写入了对应的固件的存储介质中响应该存储介质对应的重置命令,从而电子设备根据存储介质对应的重置命令,对该写入对应的固件的存储介质进行重置。根据重置命令对存储介质进行重置的过程可以现有技术实现,在本发明实施例中不做赘述。
为了描述的方便,描述以上装置时以功能分为各种单元、模块分别描述。当然在实施本申请时可以把各单元、模块的功能在同一个或多个软件和/或硬件中实现。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非被特定定义,否则不会用理想化或过于正式的含义来解释。
对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明实施例并不受所描述的动作顺序的限制,因为依据本发明实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明实施例所必须的。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器或者网络设备等)执行本申请各个实施方式或者实施方式的某些部分所述的方法。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种动力电池许用压差的计算方法,其特征在于,所述动力电池许用压差的计算方法包括:
    获取动力电池的基本数据;
    根据所述动力电池的基本数据计算动力电池的许用SOC差值;
    根据所述动力电池的许用SOC差值在预设SOC-OCV表中查表,获取相对应的许用压差。
  2. 如权利要求1所述的动力电池许用压差的计算方法,其特征在于,所述获取动力电池的基本数据包括:
    获取动力电池许用存储时间M;
    获取动力电池显示SOC下限阈值;
    获取动力电池的真实SOC下限阈值;
    获取动力电池管理系统计算SOC的计算精度值A;
    获取动力电池真实SOC;
    获取动力电池的基本数据包括获取动力电池显示SOC和动力电池真实SOC的追赶倍率c;
    获取动力电池的月自放电率λ%;
    获取动力电池的月自放电一致性差异μ%。
  3. 如权利要求2所述的动力电池许用压差的计算方法,其特征在于,所述获取动力电池真实SOC包括:
    获取动力电池组中所有单体电池的SOC;
    获取所述动力电池组中所有单体电池SOC中的最小SOC;
    判断所述动力电池的最小SOC是否小于预设阈值,若是,则将动力电池的最小SOC作为动力电池真实SOC。
  4. 如权利要求3所述的动力电池许用压差的计算方法,其特征在于,所述获取动力电池的基本数据包括获取动力电池显示SOC和动力电池真实SOC的追赶倍率c,包括:
    获取动力电池状态,若所述动力电池处于放电状态时所述追赶倍率为c,动力电池处于充电状态时所述追赶倍率为1/c。
  5. 如权利要求4所述的动力电池许用压差的计算方法,其特征在于,所述根据动力电池基本数据计算动力电池的许用SOC差值包括:
    根据所述动力电池许用存储时间M、动力电池的月自放电率λ%以及动力电池的真实SOC下限阈值获取动力电池许用真实SOC下限阈值;
    根据动力电池显示SOC下限阈值、动力电池真实SOC值、许用真实SOC下限阈值及动力电池显示SOC和动力电池真实SOC的追赶倍率c获取SOC跳变时动力电池显示SOC值;
    根据SOC跳变时动力电池显示SOC值、动力电池管理系统计算SOC的计算精度值A及动力电池真实SOC值获取未考虑自放电一致性差异许用SOC差值Δ1
    根据未考虑自放电一致性差异许用SOC差值Δ1、动力电池的月自放电一致性差异μ%及动力电池许用存储时间M获取自放电一致性差异许用SOC差值Δ2,所述自放电一致性差异许用SOC差值Δ2作为所述动力电池的许用SOC差值。
  6. 如权利要求5所述的动力电池许用压差的计算方法,其特征在于,所述根据动力电池许用存储时间M、动力电池的月自放电率λ%以及动力电池的真实SOC下限阈值获取动力电池许用真实SOC下限阈值包括:
    通过动力电池许用真实SOC下限阈值的计算公式获得动力电池许用真实SOC下限阈值,计算公式如下:
    动力电池许用真实SOC下限阈值=动力电池的真实SOC下限阈值+M*
    λ%;
    所述根据动力电池显示SOC下限阈值、动力电池真实SOC值、许用真实SOC下限阈值及动力电池显示SOC和动力电池真实SOC的追赶倍率c获取SOC跳变时动力电池显示SOC值包括:
    通过SOC跳变时动力电池显示SOC值的计算公式获得SOC跳变时动力电池显示SOC值,计算公式如下:
    SOC跳变时动力电池显示SOC值=动力电池显示SOC下限阈值+(动力
    电池真实SOC值-许用真实SOC下限阈值)*c。
  7. 如权利要求6所述的动力电池许用压差的计算方法,其特征在于,所述根据SOC跳变时动力电池显示SOC值、动力电池管理系统计算SOC的计算精度值A及动力电池真实SOC值获取未考虑自放电一致性差异许用SOC差值Δ1包括:
    通过未考虑自放电一致性差异许用SOC差值Δ1的计算公式获得未考虑自放电一致性差异许用SOC差值Δ1,计算公式如下:
    Δ1=(SOC跳变时动力电池显示SOC值-A)-(动力电池真实SOC值
    +A);
    所述根据未考虑自放电一致性差异许用SOC差值Δ1、动力电池的月自放电一致性差异μ%及动力电池许用存储时间M获取自放电一致性差异许用SOC差值Δ2包括:
    通过自放电一致性差异许用SOC差值Δ2的计算公式获得自放电一致性差异许用SOC差值Δ2,计算公式如下:
    Δ2=Δ1-μ%*M,
    所述自放电一致性差异许用SOC差值Δ2作为所述动力电池的许用SOC差值。
  8. 如权利要求7所述的动力电池许用压差的计算方法,其特征在于,所述根据所述动力电池的许用SOC差值在预设SOC-OCV表中查表,获取相对应的许用压差包括:
    获取动力电池的初始SOC;
    根据所述动力电池的初始SOC和动力电池的许用SOC差值获取动力电池最低许用SOC;
    根据所述动力电池的初始SOC和所述动力电池最低许用SOC在预设SOC-OCV表中查表,获得所述动力电池的初始SOC对应的OCV值和所述动力电池最低许用SOC对应的OCV值;
    将所述动力电池的初始SOC对应的OCV值和所述动力电池最低许用SOC对应的OCV值相减,获得动力电池的许用压差。
  9. 一种动力电池许用压差的计算装置,其特征在于,包括:
    获取模块,所述获取模块用于获取动力电池的基本数据;
    计算模块,所述计算模块用于根据所述动力电池基本数据计算动力电池的许用SOC差值;
    查表模块,所述查表模块用于根据所述动力电池的许用SOC差值在SOC-OCV数据表中查找相对应的许用压差值。
  10. 一种检测动力电池的方法,其特征在于,包括:
    获取动力电池的许用压差;
    判断所述动力电池的许用压差是否小于预设阈值,若是,则动力电池数据合格,
    若否,则动力电池数据异常。
PCT/CN2023/090277 2022-09-16 2023-04-24 一种动力电池许用压差的计算方法及装置 WO2024055592A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211130408.1 2022-09-16
CN202211130408.1A CN115480165B (zh) 2022-09-16 2022-09-16 一种动力电池许用压差的计算方法及装置

Publications (1)

Publication Number Publication Date
WO2024055592A1 true WO2024055592A1 (zh) 2024-03-21

Family

ID=84424339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090277 WO2024055592A1 (zh) 2022-09-16 2023-04-24 一种动力电池许用压差的计算方法及装置

Country Status (2)

Country Link
CN (1) CN115480165B (zh)
WO (1) WO2024055592A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115480165B (zh) * 2022-09-16 2024-03-22 中国第一汽车股份有限公司 一种动力电池许用压差的计算方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101909960A (zh) * 2008-01-16 2010-12-08 日产自动车株式会社 用于混合动力车辆的驱动控制设备和驱动控制方法
CN102204004A (zh) * 2008-11-21 2011-09-28 本田技研工业株式会社 充电控制装置
JP2013099167A (ja) * 2011-11-02 2013-05-20 Toyota Motor Corp 蓄電システムを搭載した車両の制御装置及び制御方法
JP2015136268A (ja) * 2014-01-20 2015-07-27 株式会社デンソー 組電池の均等化装置及び方法
CN107907836A (zh) * 2017-11-21 2018-04-13 中国第汽车股份有限公司 一种锂离子动力电池一致性评价方法及系统
CN110091752A (zh) * 2018-01-29 2019-08-06 丰田自动车株式会社 电动机车辆和用于电动机车辆的控制方法
CN110967637A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池的许用功率估算方法、装置、系统和存储介质
CN114355200A (zh) * 2022-01-06 2022-04-15 欣旺达电动汽车电池有限公司 电池许用电流模型的建立方法、装置及电池管理系统
CN115480165A (zh) * 2022-09-16 2022-12-16 中国第一汽车股份有限公司 一种动力电池许用压差的计算方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201121133A (en) * 2009-12-01 2011-06-16 Nan Ya Printed Circuit Board Operation method for fuel cell and fuel cell system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101909960A (zh) * 2008-01-16 2010-12-08 日产自动车株式会社 用于混合动力车辆的驱动控制设备和驱动控制方法
CN102204004A (zh) * 2008-11-21 2011-09-28 本田技研工业株式会社 充电控制装置
JP2013099167A (ja) * 2011-11-02 2013-05-20 Toyota Motor Corp 蓄電システムを搭載した車両の制御装置及び制御方法
JP2015136268A (ja) * 2014-01-20 2015-07-27 株式会社デンソー 組電池の均等化装置及び方法
CN107907836A (zh) * 2017-11-21 2018-04-13 中国第汽车股份有限公司 一种锂离子动力电池一致性评价方法及系统
CN110091752A (zh) * 2018-01-29 2019-08-06 丰田自动车株式会社 电动机车辆和用于电动机车辆的控制方法
CN110967637A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池的许用功率估算方法、装置、系统和存储介质
CN114355200A (zh) * 2022-01-06 2022-04-15 欣旺达电动汽车电池有限公司 电池许用电流模型的建立方法、装置及电池管理系统
CN115480165A (zh) * 2022-09-16 2022-12-16 中国第一汽车股份有限公司 一种动力电池许用压差的计算方法及装置

Also Published As

Publication number Publication date
CN115480165B (zh) 2024-03-22
CN115480165A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
EP3614157B1 (en) Method and device for estimating state of health of battery
WO2024055592A1 (zh) 一种动力电池许用压差的计算方法及装置
CN111293739B (zh) 一种充电方法及装置
WO2022111555A1 (zh) 用于换电电池的容量均衡方法、装置、设备及存储介质
WO2021238198A1 (zh) 一种充电方法、充电芯片和终端设备
WO2023005436A1 (zh) 锂离子电池自放电检测方法、设备及计算机可读存储介质
US20220146585A1 (en) Device and method for estimating state of battery
WO2023077270A1 (zh) 电芯容量均衡方法、电池管理系统和存储介质
WO2019230131A1 (ja) 充電制御装置、輸送機器、及びプログラム
CN114609530A (zh) 修正电池荷电状态的方法、装置、设备及介质
JP7404612B2 (ja) バッテリー診断装置及び方法
Lai et al. A quantitative method for early-stage detection of the internal-short-circuit in Lithium-ion battery pack under float-charging conditions
US20240055872A1 (en) Charging method of energy storage power supply, charging apparatus therefor, device, and medium
Hardy et al. Rethinking lithium-ion battery management: eliminating routine cell balancing enhances hazardous fault detection
US20220209547A1 (en) Method for equalizing battery module, apparatus, battery module and power management controller
CN116047325A (zh) 一种用于锂离子电池的自放电检测方法和装置
CN116381499A (zh) 蓄电池多次峰值功率性能参数预测方法及装置
CN114300763A (zh) 基于车云协调的电池内阻异常监测方法、设备及存储介质
US20230266400A1 (en) Battery Diagnosing Apparatus and Method
WO2023225795A1 (zh) 电芯均衡方法、装置、电子设备和存储介质
US20240133965A1 (en) Battery diagnosis method and battery system applying the same
CN115882530A (zh) 储能电池组的均衡控制方法、装置、设备和存储介质
CN117907847A (zh) 一种异常电池筛选方法、装置、设备及存储介质
CN117991132A (zh) 电池组内短路故障检测方法、装置、电子设备和存储介质
CN116990703A (zh) 一种电池最大电流确定方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864333

Country of ref document: EP

Kind code of ref document: A1