WO2024055557A1 - 一种手术机器人系统及柔性手术器械 - Google Patents

一种手术机器人系统及柔性手术器械 Download PDF

Info

Publication number
WO2024055557A1
WO2024055557A1 PCT/CN2023/083648 CN2023083648W WO2024055557A1 WO 2024055557 A1 WO2024055557 A1 WO 2024055557A1 CN 2023083648 W CN2023083648 W CN 2023083648W WO 2024055557 A1 WO2024055557 A1 WO 2024055557A1
Authority
WO
WIPO (PCT)
Prior art keywords
instrument
driving
flexible
transmission
caster
Prior art date
Application number
PCT/CN2023/083648
Other languages
English (en)
French (fr)
Inventor
江维
武文杰
卢天伟
Original Assignee
北京云力境安科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京云力境安科技有限公司 filed Critical 北京云力境安科技有限公司
Publication of WO2024055557A1 publication Critical patent/WO2024055557A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes

Definitions

  • This application relates to the technical field of medical devices, and specifically to a surgical robot system and flexible surgical instruments.
  • Diseases of natural orifices such as the digestive system, urinary system, and respiratory system are common major chronic diseases.
  • Diseases such as gastric cancer, esophageal cancer, colorectal cancer, bladder cancer, and lung cancer have high morbidity and mortality rates and seriously endanger human health.
  • Diagnosis and treatment using flexible endoscopy with related surgical instruments has become a mainstream treatment method, which has the characteristics of small trauma, small bleeding volume, and low complication rate.
  • the purpose of this application is to provide a surgical robot system and flexible surgical instruments that can realize the storage of the actuator unit body of the flexible instrument through optimized configuration, and meet the operation requirements of different application scenarios based on the functional requirements of effectively avoiding contamination or cross-contamination. need.
  • the flexible surgical instrument includes a flexible instrument and an instrument driving device that can output driving force to the flexible instrument.
  • the flexible instrument includes an instrument delivery unit and an actuator. unit and transmission unit;
  • the instrument transport unit includes a shell and an instrument storage, the housing has an internal accommodation space and an instrument outlet is provided on its side wall, and the outer peripheral surface of the instrument storage is provided with a spiral accommodation groove for winding and storage
  • a flexible body of an actuator unit, at least part of the instrument storage is built into the housing and is rotatable and axially movable relative to the housing;
  • the actuator unit includes an actuator and a flexible body, the flexible body It includes a drive wire and a sleeve that are nested inside and outside, and the distal end of the drive wire is configured with the actuator;
  • the transmission unit includes a transmission base plate that is drivingly connected to the instrument driving device, and the transmission base plate is connected to the instrument driving device.
  • the instrument storage of the instrument delivery unit is connected to drive the instrument storage to rotate and move axially relative to
  • the transmission unit further includes an execution transmission assembly and a rotation transmission assembly provided on the transmission base plate; the execution transmission assembly is configured to drive the driving wire to push out under the driving of the instrument driving device. Or retracted, the rotation transmission assembly is configured to drive the driving wire to rotate under the driving of the instrument driving device.
  • the execution transmission assembly includes a traction member and a first drive shaft.
  • the first drive shaft is inserted into the transmission base plate and is drivingly connected with the instrument driving device; the traction member is connected to the first drive shaft.
  • the proximal end of the driving wire is connected to the traction member and is configured such that the driving wire can be pushed out or retracted along a predetermined trajectory driven by the traction member, and the driving wire is relative to the traction member.
  • the traction member has rotational freedom; the rotation transmission assembly includes a rotation shaft, a second terminal, a bevel gear set and a second drive shaft.
  • the second drive shaft is inserted into the transmission base plate and can be connected with the instrument drive device.
  • the driving wheel of the bevel gear set is connected to the second drive shaft, the rotating shaft is connected to the driven wheel of the bevel gear set;
  • the drive wire is fixed to the second terminal, and the third Two terminals are arranged on the rotating shaft and are configured such that the second terminal can rotate driven by the rotating shaft, and the second terminal has a pulling direction along the driving wire relative to the rotating shaft. Sliding freedom.
  • a docking unit for connecting external devices includes an electrical interface, a water interface and a guide tube, the electrical interface and the water interface are configured on the top of the housing of the instrument delivery unit, and
  • the guide tube is fixedly arranged in the housing to introduce cables and water pipes to the actuator unit through the electrical interface, the water interface and the guide tube respectively.
  • the instrument driving device includes a first driving component, an output shaft and a driving base plate.
  • the driving base plate is adapted to the transmission base plate of the transmission unit.
  • the first driving component includes an output capable of outputting rotational driving force. end, the output shaft is drivingly connected to the output end of the first driving component, and the driving base plate is connected to the output shaft; wherein, there are two ends between the output end of the first driving component and the output shaft.
  • a power transmission path is provided, and is configured to drive the output shaft to rotate and move axially respectively, so as to drive the flexible instrument through the driving base plate for conveying operation.
  • a screw nut transmission mechanism and a pulley transmission mechanism are provided between the output end of the first driving component and the output shaft, and the power transmission path that drives the output shaft to rotate is formed by the pulley transmission mechanism.
  • the power transmission path that drives the output shaft to move in the axial direction is constructed by the screw nut transmission mechanism.
  • the instrument driving device further includes a second driving component, a third driving component, a first driving disk and a second driving disk, and the first driving disk is connected to the output end of the second driving component.
  • transmission connection the second driving transmission plate is transmission connection with the output end of the second driving component;
  • the driving base plate is provided with a first through hole and a second through hole, and the first through hole is connected to the first through hole.
  • the driving transmission disks are arranged correspondingly, and the second through-holes are arranged correspondingly with the second driving transmission disks, so that the corresponding driving transmission disks drive the execution transmission assembly and the rotation transmission assembly respectively through the through-holes.
  • the first active transmission plate and the second active transmission plate are respectively fixed on two sliding brackets, each of the sliding brackets is axially displaceable relative to a corresponding fixed slide rail, and each An elastic reset member is provided between the sliding bracket and the fixed structure.
  • the elastic reset piece is configured to deform when the sliding bracket is displaced toward the instrument driving device to provide a reset force to the corresponding sliding bracket. stand.
  • first driving transmission plate and the second driving component are connected through a first flange
  • the second driving transmission disk and the third driving component are connected through a second flange
  • the first The flange and the second flange are respectively fixed on the corresponding sliding bracket.
  • the driving base plate is provided with a buckle
  • the transmission base plate is provided with a card slot.
  • the buckle is placed in the card slot and can construct a circumferential rotation limiting pair to pass through the matching
  • the buckles and slots transmit the rotational driving force to the instrument side.
  • the buckle includes a hook portion extending outward from the body, and a bayonet adapted to the hook portion is provided on the side wall of the instrument storage; the buckle can be positioned relative to the hook portion.
  • the driving base plate slides and switches between the extending working position and the retracting working position, and is configured such that: when located at the extending working position, the hook head of the buckle is inserted into the bayonet; When the working position is retracted, the hook head of the buckle protrudes from the bayonet.
  • a chute is provided on the driving base plate, and the buckle includes a sliding portion extending downward from the body.
  • the sliding portion can be slidably adapted along the chute to slide to and from the outer body. Between the extending working position and the retracting working position; the groove wall of the clamping groove and the groove wall of the chute both extend in the radial direction.
  • a button and a return spring are also included, the button is provided at the outer end of the buckle, and the return spring is pre-compressedly provided between the inner end of the buckle and the slide groove of the drive base plate.
  • This application also provides a surgical robot system, including a body and a flexible surgical instrument provided on the body.
  • the flexible surgical instrument adopts the flexible surgical instrument as described above.
  • the human-computer interaction system includes a touch screen device, a mechanical handle and a display screen device; wherein the touch screen and the mechanical handle are arranged on the top of the fuselage, And the tilt angle of the display component of the touch screen device is adjustable, and the display screen device is connected to the fuselage through a multi-section arm bracket.
  • the touch screen device further includes a wireless handle and a mechanical button provided on the top of the fuselage, and the wireless handle includes an operating handle and a charging base.
  • the fuselage includes a shell device, a lifting device and a caster moving device.
  • the shell device includes an upper shell at the top and a lower shell at the bottom.
  • the lifting device is arranged in the lower shell.
  • the lifting device includes a lifting plate that can be lifted and lowered, and the upper shell is arranged on the lifting plate of the lifting device.
  • the lifting device includes a lifting drive component, a lifting screw, a motor fixed plate and a load-bearing chassis.
  • the lifting screw is arranged between the lifting plate and the motor fixed plate.
  • the load-bearing chassis is fixedly arranged. Below the motor fixed plate, the motor is arranged below the load-bearing chassis and is drivingly connected to the lifting screw.
  • the housing device further includes an intermediate shell located between the upper shell and the lower shell, the upper shell is inserted into the middle shell, and there is a transition fit between the two, and the upper shell
  • the shell can rotate around the central axis relative to the middle shell; there is a circumferential limiting pair between the lower part of the middle shell and the upper part of the lower shell; the lower shell is provided with heat dissipation holes.
  • the lower part of the middle shell is provided with a tooth part extending in the axial direction
  • the upper part of the lower shell is provided with a groove part extending in the axial direction
  • the tooth part is adapted to the groove part to form the Circumferential limiter.
  • the caster moving device includes a caster and a caster locking device
  • the caster locking device is provided on the caster
  • the bottom plate of the lower shell is provided with an opening corresponding to the caster
  • the caster locking device is provided on the caster. Part of the wheel body of the caster is placed in the lower shell.
  • the caster has a self-locking electrical feedback interface and can output a caster status signal to the control device of the electrical system, and is configured to: when the caster status signal indicates that the caster is in an unlocked state, The control device limits the output of a start command to the instrument drive device.
  • control device of the electrical system is provided on the bottom plate of the lower shell through a fixing device.
  • the fixing device includes a plurality of fixed claws and a rotating claw located on one side.
  • the rotating claw is connected to the fixed claw through a rotating shaft. Turn the connection.
  • the flexible surgical instrument includes a flexible instrument and an instrument driving device that can output driving force to the flexible instrument.
  • the housing of the instrument delivery unit of the flexible instrument has an internal accommodation space and has an instrument outlet on its side wall.
  • the instrument storage A spiral receiving groove is provided on the outer peripheral surface to wrap around and receive the flexible body of the actuator unit, and the instrument storage can rotate and move axially relative to the housing.
  • the transmission unit of the flexible instrument includes a transmission base plate that is transmission connected with the instrument driving device, and the transmission base plate is connected with the instrument storage of the instrument transport unit to drive the instrument storage to rotate and move axially relative to the housing.
  • flexible instruments with functions can be configured according to different needs, such as but not limited to flexible instruments that can match multiple sizes and functions, which effectively solves the current problems of difficult medical cooperation and shortage of medical resources. , has good adaptability.
  • the flexible body wrapped around the spiral receiving groove can be continuously transported through the instrument outlet.
  • the elastic deformation energy based on the spiral winding deformation reserve is released, which can effectively overcome the resistance formed when entering the flexible endoscope and assist in providing good delivery capabilities.
  • the flexible body can be retracted into the shell and spirally wrapped around the instrument storage.
  • this solution uses structural constraints to make the flexible body arranged in an orderly manner to avoid The bodies squeeze and destroy each other; at the same time, the retraction and storage of the actuator unit does not occupy radial space, and the structure is relatively compact and reasonable, making it easy for clinical use and operation.
  • the transmission unit also includes an execution transmission assembly and a rotation transmission assembly arranged on the transmission base plate; the execution transmission assembly is configured to drive the driving wire to push out or When retracted, the rotating transmission assembly is configured to drive the driving wire to rotate under the driving of the instrument driving device. That is to say, the transmission unit is configured with an execution drive interface adapted to the instrument drive device, for example, but not limited to, to realize pulling and twisting operations of the drive wire.
  • the flexible instrument includes the function of connecting with an external device.
  • the docking unit includes an electrical interface and a water interface configured on the top of the housing, and also includes a guide tube fixedly provided in the housing to introduce cables and water pipes to the actuator unit through the electrical interface, water interface, and guide tube respectively.
  • flexible devices can be integrated to provide connectivity functions such as power supply, signal source, and waterway, which can further improve the adaptability in different application scenarios.
  • the surgical robot system provided by the present invention includes a human-computer interaction system and an electrical system.
  • the human-computer interaction system includes a touch screen device, a mechanical handle and a display screen device for outputting instructions to implement instrument operation and at the same time displaying surgical procedures.
  • Related information such as but not limited to, displays the current status of the robot and the interaction information of the organization; wherein, the touch screen and mechanical handle are set on the top of the fuselage, and the tilt angle of the display component of the touch screen device is adjustable, and the actual tilt angle can be adjusted through
  • the internal angle adjustment device is used for adjustment, for example but not limited to adjustment within the range of 10°-60°. This angle adjustment can be coordinated with the overall lifting of the fuselage to adapt to the operator's touch operation angle.
  • the outer shell device of the fuselage includes an upper shell located at the top and a lower shell located at the bottom, and its lifting device is provided in the lower shell.
  • the lifting device includes a liftable The lifting plate is lowered, and the upper shell arranged on it drives the flexible surgical instruments and the touch screen device arranged on it to be lifted and lowered to meet different use needs.
  • the caster has a self-locking electrical feedback interface and can output the caster status signal to the control device of the electrical system.
  • the control device Limit the output of start commands to the instrument drive device. In other words, the equipment drive system can only be started when the casters are locked. It has good safety and reliability.
  • Figure 1 is a schematic diagram of the overall structure of the flexible surgical instrument according to the embodiment of the present application.
  • Figure 2 is a schematic diagram of the flexible instrument according to the embodiment of the present application.
  • Figure 3 is an exploded view of the assembly of the flexible device shown in Figure 2;
  • Figure 4 is a schematic diagram of a partially cutaway view of the flexible instrument shown in Figure 2;
  • Figure 5 is a schematic diagram of an actuator unit provided by an embodiment of the present application.
  • Figure 6 is a cross-sectional view along line A-A of Figure 2;
  • Figure 7 is a schematic diagram of the overall structure of the transmission unit provided by the embodiment of the present application.
  • Figure 8 shows a schematic diagram of the assembly relationship between the transmission unit and the instrument storage according to the embodiment of the present application
  • Figure 9 is a schematic diagram of the assembly relationship between the transmission unit and the instrument storage from another perspective
  • Figure 10 is a schematic diagram of the assembly relationship of the execution transmission assembly according to the embodiment of the present application.
  • FIG 11 is an enlarged schematic diagram of part I of Figure 6;
  • Figure 12 is a schematic diagram of another execution transmission assembly provided by the embodiment of the present application.
  • Figure 13 is a schematic diagram of the assembly relationship of the rotation transmission assembly according to the embodiment of the present application.
  • Figure 14 is an enlarged schematic diagram of Part II of Figure 6;
  • Figure 15 is a schematic diagram of the power supply and signal source introduction paths in the embodiment of the present application.
  • Figure 16 is a schematic diagram of the internal structure of the instrument driving device according to the embodiment of the present application.
  • Figure 17 is a schematic diagram of the connection mechanism on the instrument driving device side shown in Figure 16
  • Figure 18 is a schematic diagram of the assembly relationship between the drive substrate and the instrument storage according to the embodiment of the present application.
  • Figure 19 is a partial cross-sectional view of BB in Figure 17;
  • Figure 20 is a schematic diagram of the assembly relationship between the first active transmission plate and the second active transmission plate in the embodiment of the present application;
  • Figure 21 is a schematic diagram of the assembly relationship between the transmission substrate and the transmission unit in the embodiment of the present application.
  • Figure 22 is a schematic diagram of the transmission relationship of the first driving member in the embodiment of the present application.
  • Figure 23 is an axial cross-sectional view of Figure 16;
  • Figure 24 is a schematic diagram of the connection relationship of the force sensor described in the embodiment of the present application.
  • Figure 25 shows a schematic diagram of another combined use state of the flexible instruments according to the embodiment of the present application.
  • Figure 26 is a schematic diagram of the overall structure of the surgical robot system in the embodiment of the present application.
  • Figure 27 is a schematic structural diagram of the touch screen device in the embodiment of the present application.
  • Figure 28 is a schematic structural diagram of the mechanical handle in the embodiment of the present application.
  • Figure 29 is a schematic structural diagram of the wireless handle in the embodiment of the present application.
  • Figure 30 is an exploded assembly view of the fuselage according to the embodiment of the present application.
  • Figure 31 is a schematic structural diagram of the lifting device according to the embodiment of the present application.
  • Figure 32 is a schematic diagram of the assembly relationship between the electrical system, the lifting device and the lower shell in the embodiment of the present application;
  • Figure 33 is a schematic diagram of the assembly relationship of the caster moving device according to the embodiment of the present application.
  • Figure 34 shows a schematic diagram of a state after the surgical robot system according to the embodiment of the present application is raised
  • Figure 35 shows a scene diagram in which a doctor stands and uses the robot
  • Figure 36 shows a schematic diagram of a state after the surgical robot system is lowered according to the embodiment of the present application.
  • Figure 37 shows a scene diagram in which a doctor sits down and uses the robot.
  • Flexible instrument 10 First flexible instrument 10a, second flexible instrument 10b, instrument delivery unit 11. Housing 111, instrument outlet 1111, socket 1112, instrument storage 112, spiral receiving groove 1121, passage port 1122, bayonet 1123, protective tube 113, actuator unit 12, first actuator unit 12a, second actuator Unit 12b, driving wire 121, limit block 1211, actuator 122, sleeve Tube 123, transmission unit 13, execution transmission assembly 131, first drive shaft 1311, first terminal 1312, fourth through hole 13121, traction member 1313, mounting groove 13131, first constraint 1315, constraint cavity 13151, first interior Channel 13152, bevel gear set 1311a, first terminal 1312a, screw rod 1313a, rotation transmission assembly 132, rotation shaft 1321, mounting hole 13211, second terminal 1322, bevel gear set 1323, second drive shaft 1324, second restraint member 1325.
  • Body 300 Body 300, shell device 310, upper shell 3101, middle shell 3102, lower shell 3103, heat dissipation holes 3104, tooth portion 3105, groove portion 3106, opening 3107, lifting device 320, lifting drive component 3201, lifting screw 3202 , lifting plate 3203, motor fixed plate 3204, load-bearing chassis 3205, caster moving device 330, caster 3301, caster lock 3302, electrical system 400, control device 410, fixing device 420, fixed claw 4201, rotating claw 4202, damping shaft 4203, cooling fan 430.
  • Figure 1 is a schematic diagram of the overall structure of a flexible surgical instrument according to an embodiment of the present application.
  • the flexible surgical instrument 100 includes a flexible instrument 10 and an instrument driving device 20.
  • the flexible instrument 10 is configured with an actuator unit 12 for diagnosis and auxiliary diagnosis and treatment.
  • the instrument driving device 20 can provide driving force to the actuator unit 12 to achieve The conveying operation of flexible instruments and the rotation or opening and closing of actuators.
  • FIG. 2 is a schematic diagram of the flexible device according to an embodiment of the present application
  • FIG. 3 is an exploded assembly view of the flexible device 10 shown in FIG. 2 .
  • the flexible instrument 10 includes an instrument delivery unit 11, an actuator unit 12 built in the instrument delivery unit 11, and a transmission unit 13 for transmitting the driving force of the movement of the actuator.
  • the instrument transport unit 11 includes a housing 111 and an instrument storage 112. Driven by the transmission unit 13, the instrument storage 112 can rotate relative to the housing 111; after assembly, the housing 111 remains relatively fixed.
  • the flexible body (driving wire 121 and sleeve 123) of the actuator unit 12 is wrapped around the outer periphery of the instrument storage 112, and can be extended through the instrument outlet 1111 opened on the side wall of the housing 111; here, a guard is provided on the outside of the instrument outlet 1111.
  • the protective tube 113 is fixed on the housing 111 to protect the actuator unit 12 extending out of the housing 111 in a stable posture.
  • the flexible body of the actuator unit 12 is continuously transported through the instrument outlet 1111; similarly, when the instrument storage 112 moves in reverse, the flexible body can be retracted into the housing and wrapped around the instrument storage 112 to realize the retraction and storage of the actuator unit 12.
  • the outer shell 111 and the instrument storage 112 in the non-use state form a relatively closed space for storing the flexible instrument body.
  • the outer peripheral surface of the instrument storage 112 can be provided with a spiral receiving groove 1121.
  • Figure 4 is a partial cross-section of the flexible instrument shown in Figure 2 Schematic diagram of the formation. The flexible body of the actuator unit 12 that is retracted into the housing is placed in the spiral receiving groove 1121 of the instrument storage 112 to avoid messy or knotted wires.
  • the instrument storage 112 can also move axially relative to the housing 111. That is to say, when the instrument storage 112 rotates, it moves synchronously in the axial direction. In this way, the part where the flexible body of the actuator unit 12 breaks away from the spiral receiving groove 1121 can be kept roughly aligned with the instrument outlet 1111 in two dimensions, and the retracting and retracting operation can be performed smoothly. Smooth execution.
  • the actuator unit 12 can be selected according to specific applications, such as but not limited to clamp-type, electrocoagulation-type, basket-type, injection-type, guidance-type, sensor-type flexible instruments, etc.
  • the clamp-type flexible instrument includes a tissue clamping device with a degree of freedom of clamping and a hemostatic device with a degree of rotational freedom
  • the electrocoagulation and resection type flexible instrument includes a clamping degree of freedom and a degree of freedom for tissue electrocution and electrocoagulation.
  • basket type flexible instruments include a push degree of freedom for pushing out and retracting the basket
  • injection type flexible instruments include a pushing degree of freedom for pushing out and retracting needles
  • guidance type For coaxial instrument guidance, there is no degree of freedom
  • sensor-type flexible instruments can include image sensor instruments, position sensor instruments or shape sensor instruments, etc.
  • FIG. 5 is a schematic diagram of an actuator unit 12 provided in an embodiment of the present application.
  • the actuator 122 located at the distal end can be moved, such as but not limited to opening and closing of the actuator and pushing the actuator; similarly, by twisting the driving wire 121, the distal actuator 122 can also be moved. The rotational movement of the actuator 122.
  • proximal end and distal end used in this article are defined from the perspective of the operator of the surgical instrument. That is, the end of the drive wire 121 close to the operator is the “proximal end”. Correspondingly, The other end closer to the patient is the “distal end”. It should be understood that the use of the above directional words is only used to clearly describe the technical solution, and does not constitute a substantial limitation on the flexible surgical instrument claimed in this application.
  • the pulling and twisting of the driving wire 121 of the actuator unit 12 is realized based on the driving force output from the instrument driving device 20 side. Specifically, the driving force is transmitted through the execution transmission assembly 131 and the rotation transmission assembly 132 of the transmission unit 13 .
  • Figure 6 is a cross-sectional view taken along line AA in Figure 2
  • Figure 7 is a schematic diagram of the overall structure of the transmission unit provided by the embodiment of the present application.
  • the transmission unit 13 includes a transmission base plate 133.
  • the execution transmission assembly 131 and the rotation transmission assembly 132 are arranged on the transmission base plate 133, and can be assembled and fixed with the instrument storage 112 of the instrument delivery unit 11 through the transmission base plate 133.
  • Figures 8 and 9 together. The two figures respectively show the assembly relationship between the transmission unit and the instrument storage from different perspectives. The overall structure is relatively compact and the assembly process is good.
  • the execution transmission assembly 131 includes a first terminal 1312 , a traction member 1313 and a first drive shaft 1311 .
  • the traction member 1313 is connected to the first drive shaft 1311.
  • the first drive shaft 1311 is inserted and installed on the transmission base plate 133 to rotate under the driving force of the instrument driving device 20 and drive the traction member 1313 to swing around its rotation center. .
  • the first terminal 1312 is fixed on the pulling member 1313 and can follow when the pulling member 1313 rotates.
  • the proximal end of the driving wire 121 is connected to the first terminal 1312 and is configured such that the driving wire 121 can be pushed out or retracted along a predetermined trajectory driven by the first terminal 1312, and the driving wire 121 can rotate relative to the first terminal 1312. It can be understood that the swing range of the pulling member 1313 needs to meet the pulling stroke requirements of the first terminal 1312, that is, the required push-out or retraction displacement of the distal actuator 122.
  • FIG. 10 is a schematic diagram of the assembly relationship of the execution transmission assembly according to the embodiment of the present application
  • FIG. 11 is an enlarged schematic diagram of part I of FIG. 6 .
  • the first terminal 1312 is embedded in the traction member 1313.
  • the traction member 1313 has an installation groove 13131 adapted to the first terminal 1312 on its outer peripheral surface, and the outer peripheral surface is an arc surface.
  • the outer peripheral surface of the traction part 1313 is not limited to the arc shape shown in the figure; at the same time, the fixed terminal can also be completely set inside the traction part, and is not limited to embedded installation.
  • the outer peripheral surface of the traction member 1313 (not shown in the figure).
  • the driving wire 121 is inserted into the fourth through hole 13121 of the first terminal 1312, and two limiting blocks 1211 are provided on the body of the driving wire 121, respectively located at both ends of the fourth through hole 13121.
  • the size of the limiting block 1211 is larger than the size of the fourth through hole 13121.
  • the gap means that the driving wire 121 has a degree of rotational freedom relative to the fixed terminal.
  • the driving wire rotates under the driving of the rotating transmission assembly 132, it can rotate relative to the fourth through hole 13121 without interfering with the fixed terminal side.
  • the transmission base plate 133 serves as a basic component for transmission connection with the driving side, and a first restraining member 1315 is fixed thereon.
  • the first restraining member 1315 is provided with a restraining cavity 13151, and the driving wire 121 is placed in the restraining cavity 13151. Driven by the first terminal 1312, the driving wire 121 can be pushed out or retracted on the predetermined trajectory constructed by the constraint cavity 13151.
  • the first restraining member 1315 and the restraining cavity 13151 formed thereon are generally arc-shaped.
  • the first restraining member 1315 includes a guide segment C and a retaining segment D that are connected in sequence.
  • the guide segment C has an arc-shaped inner wall that matches the arc-shaped outer peripheral surface of the traction member 1313.
  • the constraint cavity 13151 on the inner wall of the guide section C is an open cavity, and the constraint cavity 13151 on the holding section D is a closed cavity.
  • the displacement guide of the pulling member 1313 can be established through the arc-shaped inner wall, and at the same time, the guide The open lumen on section C and the closed lumen on retaining section D jointly establish a predetermined trajectory for guiding the driving wire 121 .
  • the first terminal 1312a, the meshing bevel gear set 1311a and the screw rod 1313a can also be used to push out or retract the driving wire 121.
  • Figure 12 is a schematic diagram of another execution transmission assembly provided by an embodiment of the present application. In order to clearly illustrate the differences and connections with the embodiment described in FIG. 6 , the same functional components or structures are illustrated with the same symbols.
  • the driving gear of the bevel gear set 1311a can be driven by the first drive shaft 1311 to drive the driven gear to rotate, and the screw rod 1313a and the driven gear rotate coaxially; at the same time, one end of the first terminal 1312a is clamped
  • the proximal end of the driving wire 121 is fixed, and the other end of the first terminal 1312a is equipped with a nut (not shown in the figure) adapted to the screw rod 1313a.
  • the nut is fixed on the first terminal 1312a and can be attached to the screw rod 1313a.
  • the rotation moves along its axial direction, thereby driving the driving wire 121 through the first terminal 1312a to push out or retract.
  • the embodiment depicted in Figure 12 can also be configured to construct a constrained cavity for a predetermined trajectory.
  • the rotation transmission assembly 132 in this embodiment includes a rotation shaft 1321 , a second terminal 1322 , a bevel gear set 1323 and a second drive shaft 1324 .
  • the driving wheel of the bevel gear set 1323 is connected to the second drive shaft 1324, and the second drive shaft 1324 is inserted and arranged on the transmission base plate 133 to rotate under the driving force of the instrument driving device 20, and drives the rotating shaft 1321 to rotate around its rotation center through the bevel gear set 1323.
  • the second terminal 1322 is provided on the rotating shaft 1321.
  • the driving wire 121 is fixed by the second terminal 1322 and can follow the rotation of the rotating shaft 1321. And it is configured such that the second terminal 1322 can rotate driven by the rotating shaft 1321, and the second terminal 1322 can slide relative to the rotating shaft 1321 along the pulling direction of the driving wire 121.
  • the sliding stroke of the second terminal 1322 also needs to meet the pulling stroke requirement of the first terminal 1312.
  • Figure 13 is a schematic diagram of the assembly relationship of the rotation transmission assembly according to the embodiment of the present application. This figure is a view formed by radial sectioning from the position of the second terminal 1322.
  • Figure 14 is an enlarged schematic diagram of Part II of Figure 6 .
  • the second terminal 1322 is embedded in the rotating shaft 1321. Specifically, a mounting hole 13211 is opened in the middle of the rotating shaft 1321, and the driving wire 121 can extend into the restraining cavity of the first restraining member through the mounting hole 13211.
  • the second terminal 1322 fixedly connected to the driving wire 121 is inserted into the mounting hole 13211, and both have matching rectangular cross-sections. In this way, when the rotating shaft 1321 rotates, the second terminal 1322 can rotate synchronously to drive the driving wire 121 to twist; at the same time, the second terminal 1322 has sliding freedom relative to the rotating shaft 1321, that is, the second terminal 1322 can slide relative to the rotating shaft 1321. 1321 moves axially. When the driving wire is pulled by the execution transmission assembly 131, it can rotate relative to the mounting hole 13211 without interfering with the rotation axis side.
  • the cross-sectional form of the second terminal 1322 and the mounting hole 13211 can also adopt other structures, such as, but not limited to, other polygons or shapes with circumferential limiting planes, as long as the position of the second terminal in the mounting hole can be satisfied.
  • the functional requirements of internal sliding and synchronous rotation with the rotating axis are within the scope of protection requested by this application.
  • a second restraining member 1325 is fixedly provided on the transmission base plate 133. As shown in FIGS. 6 and 7, along the axial direction of the rotation shaft 1321, one end of the second restraining member 1325 is connected to the first restraining member 1315 to maintain section D. The ends are arranged oppositely, and the second restraining member 1325 and the first restraining member 1315 respectively provide shaft end support, so that the shaft ends on both sides of the rotating shaft 1321 can obtain a reliable pivot adaptation relationship to meet the functional requirements of relative rotation.
  • the second restraining member 1325 is provided with a third through hole 13251.
  • the instrument storage 112 of the instrument delivery unit 11 is provided with a passage opening 1122, and the passage opening 1122 is inclined. to open so that the flexible body of the actuator unit 12 extends and transitions into the spiral receiving groove 1121 on its outer surface.
  • the diameter of the third through hole 13251 can be adapted to the size of the flexible body sleeve 123 of the actuator unit 12 to reliably fix the pipe end of the sleeve 123 .
  • the flexible instrument 10 provided in this embodiment also includes a docking unit 14 for connection to external devices, such as but not limited to power and signal source connection and waterway connection.
  • a docking unit 14 for connection to external devices, such as but not limited to power and signal source connection and waterway connection.
  • the top of the housing 111 is provided with an electrical interface 141 and a water interface 142 that communicate with the interior.
  • the housing 111 is fixedly provided with an axially extending guide tube 15 .
  • the electrical interface 141 can introduce power and signal sources into the instrument, and the water interface 142 can introduce external water sources into the instrument, enter the actuator unit 12 through the guide tube 15 in the middle of the housing 111, and then be connected to the remote actuator.
  • Figure 15 is a schematic diagram of the introduction path of power supply and signal source.
  • the first restraining member 1315 is provided with a first internal channel 13152, and the first internal channel 13152 is connected with the mounting hole 13211 of the rotating shaft.
  • the cable introduced from the electrical interface 141 goes down through the guide tube, enters the mounting hole 13211 of the rotating shaft through the first internal channel 13152 of the first restraining member 1315, and is connected to the cable at the distal end through the sleeve 123 of the actuator unit 12.
  • the actuator For example, but not limited to, it is used to realize the power supply of the remote actuator, and the interactive transmission of signals with the remote actuator.
  • the second restraining member 1325 is also provided with a second internal channel 13252, and the second internal channel 13252 is connected with the third through hole 13251.
  • the water pipe introduced by the water interface 142 can also go down through the guide tube, enter the third through hole 13251 through the second internal channel 13252 of the second restraining member 1325, and be connected to the remote water pipe through the sleeve 123 of the actuator unit 12. end actuator.
  • end actuator For example, but not limited to, it is used to realize the perfusion of flushing liquid, etc.
  • a detachable connection mechanism is provided between the flexible instrument 10 and the instrument driving device 20, specifically including an instrument storage 112 and a transmission unit 13 (execution transmission assembly 131, rotation transmission assembly 132)
  • the detachable connection with the instrument driving device 20 satisfies the functional requirement of transmitting corresponding driving force on the basis of rapid assembly operation.
  • FIG. 16 is a schematic diagram of the internal structure of the instrument driving device 20 according to the embodiment of the present application
  • FIG. 17 is a schematic diagram of the connection mechanism on the side of the instrument driving device shown in FIG. 16 .
  • an interface component 24 for outputting power is disposed on the top of the instrument driving device 20 .
  • the driving base plate 241 serves as an interface connection for outputting the driving force of the first driving component 21 and is used to transmit power to the instrument storage 112 ;
  • the first active transmission disk 242 serves as an interface connector for outputting the driving force of the second driving component 22 to transmit power to the first drive shaft 1311 for pulling the drive wire;
  • the second active transmission disk 243 serves as an output for the third drive
  • the driving force interface of component 23 is used to transmit power to the second driving shaft 1324 for twisting the driving wire.
  • FIG. 18 shows a schematic diagram of the assembly relationship between the driving substrate and the instrument storage 112 .
  • the driving base plate 241 is arranged opposite to the transmission base plate 133.
  • the driving base plate 241 is provided with a buckle 244, and the transmission base plate 133 is provided with a corresponding slot 1331. After assembly, the buckle 244 is placed in the slot 1331 to form a circumferential rotation limit.
  • Deputy When the driving base plate 241 rotates under the driving of the first driving component 21, the circumferential rotation limiting pair can drive the transmission base plate 133 to rotate synchronously, thereby driving the instrument storage 112 fixed to the transmission base plate 133 to rotate to transport the actuator unit. 12.
  • the matching buckles 244 and the slots 1331 are arranged in two groups, and are arranged symmetrically, so that the force is relatively balanced. It is understood that in other specific implementations, other complex arrays set at circumferential intervals may also be configured.
  • the buckle 244 can move in the radial direction relative to the driving base plate 241, that is, the buckle 244 can also slide in the buckle groove 1331.
  • the buckle 244 has a hook portion 2441 formed by extending from the body, and the outer end; correspondingly Specifically, a bayonet 1123 adapted to the hook head 2441 is provided on the side wall of the instrument storage 112 . In this way, when the buckle 244 is in the extended working position, the hook head 2441 can be inserted into the bayonet 1123 to limit the instrument storage device 112 from being detached.
  • the instrument storage 112 when the instrument storage 112 is driven to rotate, it can be synchronously driven to extend or retract in the axial direction through the matching buckle 244 and the groove 1331 .
  • the functional requirement of synchronous axial movement can also be achieved through other structural forms.
  • a button 245 is provided on the outside of the buckle 244, and a return spring 246 is provided on the inside of the buckle 244.
  • the return spring 246 can be pre-compressed and disposed between the buckle 244 and the driving base plate 241, so that the buckle 244 Reliably maintains extended working position.
  • Figure 19 is a partial cross-sectional view taken along line B-B of Figure 17.
  • the top of the extended end of the hook head 2441 has a guide surface 2442, and the guide surface 2442 extends downward.
  • the lower edge of the instrument storage 112 axially presses against the guide surface 2442 of the hook head 2441, and generates a radially inward component force acting on the buckle 244, and the buckle 244 moves inward under this force.
  • the return spring 246 is further deformed under pressure.
  • the return spring 246 releases its elastic deformation energy and pushes the hook.
  • the head 2441 extends into the bayonet 1123 to quickly complete the assembly operation between the two.
  • the return spring can also be implemented in other structural forms, such as, but not limited to, a return member made based on the properties of rubber material, or a return member with an elastic sheet structure.
  • a sleeve 247 is provided on the outer periphery of the driving base plate 241, and the sleeve 247 includes a shielding section 2471 extending axially upward.
  • the driving base plate 241 and the buckle 244 thereon can be built into the cavity formed by the blocking section 2471; at the same time, the blocking section 2471 is provided with two through holes 2472, which are arranged diametrically opposite to the two buttons 245. So that the push rod of the button 245 is fixedly connected to the body of the buckle 244 through the through hole 2472.
  • the operability of the buttons can also be taken into account.
  • the driving base plate 241 is drivingly connected to the first driving component 21 through the sleeve 247 and the connecting sleeve 248 .
  • the driving base plate 241 can also be directly connected to the first driving component 21 in transmission, or can also be connected in transmission to the first driving component 21 through the sleeve 247.
  • an electronic identification component can also be configured between the flexible instrument 10 and the instrument driving device 20 for the system to identify the type of instrument currently connected.
  • the electronic identification component may include a signal generator 161 configured on one side of the flexible instrument and a signal receiver 162 configured on the instrument driving device side.
  • the signal generator 161 may be disposed on the instrument storage side.
  • the outer peripheral surface of the device 112, and accordingly the signal receiver 162 can be disposed on the inner wall of the sleeve 247 (not shown in the figure), using radio frequency signal identification.
  • an installation checker can be configured on the side of the instrument drive device.
  • Test component 17 can be a micro switch and is arranged on the top surface of the buckle 244 .
  • the flexible instrument When the flexible instrument is installed on the driving device, the flexible instrument generates a signal by squeezing the micro switch, thereby realizing the installation status detection.
  • the electronic identification components and installation detection components can be in the form of other devices, which can be selected according to actual product design requirements and are not limited to the device types and configuration positions shown in the figure.
  • Figure 20 shows a schematic diagram of the assembly relationship between the first driving transmission plate 242 and the second driving transmission plate 243.
  • Figure 21 further shows Schematic diagram of the assembly relationship between the transmission base plate and the transmission unit.
  • the bottom of the transmission base plate 133 is provided with a first passive transmission disk 134 and a second passive transmission disk 135 .
  • the first passive transmission disk 134 is fixedly connected to the shaft end of the first drive shaft 1311 and is adaptively connected to the first active transmission disk 242;
  • the second passive transmission disk 135 is fixedly connected to the shaft end of the second drive shaft 1324 and is connected to the shaft end of the second drive shaft 1324.
  • the second driving transmission plate 243 is adapted and connected.
  • the driving base plate 241 is provided with a first through hole 2411 and a second through hole 2412, so that the first active transmission disk 242 and the second active transmission disk 243 are adapted to the matching passive transmission disk through the two through holes.
  • the second driving component 22 is fixedly installed on the first flange 251, and its output shaft is connected to the first driving transmission plate 242 through the first flange 251.
  • the third driving component 23 is fixedly installed on the second flange 252, and The output shaft is connected to the second driving transmission plate 243 through the second flange 252, and is arranged sequentially along the axial direction as a whole, which can reduce the space occupation in the radial dimension.
  • the detachable connection mechanism of this embodiment further has axial adaptability.
  • the first flange 251 and the second flange 252 can be respectively fixed on the corresponding sliding bracket 253, and the two sliding brackets 253 can respectively be axially displaced relative to the fixed slide rail 254.
  • the sliding bracket 253 and the sliding rail 254 that are adapted to the first flange 251 are shown in FIG. 20 . That is to say, the sliding bracket 253 has a degree of freedom that can be axially displaced relative to the slide rail 254 to adaptively adjust the axial relative position.
  • an elastic return member 255 can be provided at the bottom of each sliding bracket 253 to provide a restoring force to the sliding bracket 253 so that a reliable connection is established between the corresponding active and passive transmission disks.
  • the slide rail 254 is a relatively fixed structural member, and the details can be determined according to the internal
  • a corresponding fixed connection method is configured in space, such as but not limited to being fixedly provided on the connection sleeve 248 as shown in the figure.
  • the first passive transmission plate 134 has a first recess 1341
  • the second passive transmission plate 135 has a second recess 1351
  • the first active transmission plate 242 has a third recess 1351.
  • the matching outer diameters of the active transmission plate and the passive transmission plate are approximately the same.
  • the recessed portion is formed radially inwardly from the outer peripheral surface of the passive transmission plate, and the convex portion is formed by axially extending from the top surface of the active transmission plate. , after assembly, the convex part on the active transmission plate fits into the concave part on the passive transmission plate. It has the characteristics of compact structure and high connection reliability.
  • the number of matching convex and concave portions on each transmission path can be determined according to the overall design requirements of the product, and is not limited to the two groups shown in the figure.
  • Figure 22 shows a schematic diagram of the transmission relationship of the first driving component.
  • Figure 23 is an axial cross-sectional view of Figure 16. The specific cross-section position passes through the first driving component and the output The centerline of the shaft.
  • the output shaft of the first driving component 21 is coaxially fixed with the screw rod 261, and the screw rod 261 is used as the basic transmission component of the two power transmission paths. As shown in the figure, a driving pulley 263 and a nut 262 are arranged on the screw rod 261 at intervals.
  • the driving pulley 263 is fixedly arranged on the screw rod 261 and transmits the rotational driving force to the driven pulley 264 through the belt.
  • the driven pulley 264 is arranged on the output shaft 265.
  • the driven pulley 264 is fixedly provided on the first sleeve 266, which is pivotally connected to the fixed structure through the bearing 269.
  • the outer surface of the output shaft 265 has an axially arranged key 2651.
  • the inner surface of a sleeve 266 has a keyway 2661 that matches the key. Based on the pulley transmission mechanism, driven by the first sleeve 266, the output shaft 265 can rotate synchronously, and the output shaft 265 and the first sleeve 266 can move axially relative to each other.
  • the nut 262 is threadedly adapted to the screw rod 261 and is connected to the output shaft 265 through the connecting piece 267.
  • the nut 262 is fixedly mounted on one end of the connecting piece 267, and the output shaft 265 is pivotally connected on the other end of the connecting piece 267, with an axial limiter between them.
  • a thrust bearing 2681 is provided at the shaft end of the output shaft 265
  • a bearing fixing seat 268 is fixedly provided on the connecting piece 267
  • the bearing fixing seat 268 and the thrust bearing 2681 are axially limited. Based on the matching relationship between the screw rod and the nut, the output shaft 265 can be driven to reciprocate along the axial direction.
  • the driving force output by the output shaft of the first driving component 21 synchronously drives the output shaft 265 to rotate and move axially through the two transmission paths, and drives the driving substrate 241 to rotate and axially move through the connecting sleeve 248 fixed on the output shaft 265. move.
  • rotation is the main movement for delivering the flexible instrument
  • axial movement is the auxiliary movement to ensure that the flexible body of the actuator unit 12 and the instrument storage 112 maintain alignment through the opening 1122 .
  • the fixed structure for pivotally adapting to the first sleeve 266 and the related structure for keeping the housing 111 relatively fixed can be implemented in different ways.
  • the above-mentioned fixing structure is integrally provided on the cover 27 of the instrument driving device 20 , and the side wall 271 of the cover 27 extends upward to the side of the shell 111 of the flexible instrument 10 .
  • the outer peripheral surface of the housing 111 is provided with a socket 1112, and can be mounted on the side wall 271 through the socket 1112.
  • the housing 111 is fixed on the side wall 271 using threaded fasteners based on different assembly sizes.
  • the fixed plate 272 that is pivotally adapted to the first sleeve 266, as shown in Figures 16 and 23, the fixed plate 272 is fixed on the side wall 271, thereby forming a second sleeve for installing the bearing 269. 273.
  • the second sleeve 273 and the fixed plate 272 may adopt an integrated structure.
  • a guide sleeve 274 can be disposed on the outer periphery of the connecting sleeve 248.
  • the guide sleeve 274 is fixed on the side wall 271, and an axial movement adaptation is formed between the connecting sleeve 248 and the guide sleeve 274.
  • the pair provides guide support within the axial movement range of the connecting sleeve 248 to ensure that the relevant structure has good operating performance.
  • sensors can be added.
  • a force sensor 281 is disposed on the driving wire 121 between the first constraining member 1315 and the second constraining member 1325. Please also refer to FIG. 24 .
  • a position sensor 282 is arranged on the second driving component 22, Please also see Figure 21. During the working process, the pulling force and the driving output rotation amount can be fed back to the controller, and used for precise adjustment and control.
  • the flexible instrument and the instrument driving device provided by this embodiment can also be used in combination.
  • Figure 25 shows the embodiment of the present application. Schematic diagram of another combined use state of the flexible instruments.
  • the first flexible instrument 10a is used to assemble with the instrument driving device to establish a power transmission relationship; the second flexible instrument 10b is used to provide an actuator for treating lesions.
  • the first actuator unit 12a of the first flexible instrument 10a is connected to the docking unit 14 of the second flexible instrument 10b, and is connected to its second actuator unit 12b based on the internal channel of the second flexible instrument 10b, and the two cooperate together. Achieve the purpose of coaxial transportation of flexible instruments.
  • this embodiment also provides a surgical robot system.
  • FIG. 26 is a schematic diagram of the overall composition of the bedside technician robot that can perform surgical treatment in the embodiment of this application.
  • the surgical robot system includes a human-computer interaction system 200, a body 300 and an electrical system 400.
  • the body 300 is provided with the flexible surgical instrument 100 as described above.
  • the human-computer interaction system 200 includes a touch screen device 210, a mechanical handle 220, a wireless handle 230, a mechanical button 240 and a multi-degree-of-freedom display device 250.
  • Figure 27 is a schematic structural diagram of the touch screen device in the embodiment of the present application
  • Figure 28 is a schematic structural diagram of the mechanical handle in the embodiment of the present application
  • Figure 29 is Structural diagram of the wireless handle in the embodiment of the present application.
  • the touch screen device 210 is divided into a carrying body 2101, a display component 2102, a touch component 2103 and a base 2104.
  • the carrying body 2101 is arranged on the fuselage 300 through the base 2104, and can rotate relative to the base 2104; the display component 2102 and the touch component 2103 are configured on the obliquely arranged top surface of the carrying body 2101.
  • the specific inclination angle can be determined by
  • the internal angle adjustment device can be adjusted, for example, but not limited to, within the range of 10°-60°. This angle adjustment can be coordinated with the overall lifting of the fuselage to adapt to the operator's touch operation angle.
  • the display component 2102 is used to display the current status of the robot and the interactive information of the organization;
  • the touch component 2103 is used to input operating instructions to adjust the robot status, and can use the horizontally distributed touch buttons. Controls operations such as caster locking, robot lifting, touch device angle adjustment, touch device rotation, and upper shell rotation.
  • the mechanical handle 220 includes a handle rocker 2201 and a handle button 2202.
  • the handle rocker 2201 is used to control instrument transportation, that is, to control the first driving component 21 of the flexible surgical instrument 100;
  • the handle button 2202 is used to control the instrument function, that is, to control the second driving component 22 and the third driving component of the flexible surgical instrument 100.
  • Three drive components 23 are used to control instrument transportation, that is, to control the first driving component 21 of the flexible surgical instrument 100;
  • the handle button 2202 is used to control the instrument function, that is, to control the second driving component 22 and the third driving component of the flexible surgical instrument 100.
  • Three drive components 23 are used to control instrument transportation, that is, to control the first driving component 21 of the flexible surgical instrument 100.
  • the wireless handle 230 includes an operating handle 2301 and a charging base 2302.
  • the operating handle 2301 is wirelessly connected to the control system to realize the operation control of the instrument; here, the wireless handle 230 can be used as a redundant of the mechanical handle 220, Specific settings can be made according to product design needs.
  • the charging base 2302 can be a wireless charging base, which can be magnetically installed on the operating plane of the fuselage upper shell. Therefore, its charging position can be moved within a certain range to avoid contact with some robots in operating postures. The operator's arms interfere.
  • buttons 240 there are two mechanical buttons 240.
  • functional redundant operating interfaces they can be used to control two functions of the instrument, that is, pulling or twisting the driving wire 121 of the actuator unit 12 to realize the rotation or opening and closing of the actuator. operating functions.
  • the display screen device 250 is connected to the fuselage 300 through a multi-section arm bracket 2501, and the presentation angle of the display screen can be adjusted in any combination of distance and angle within the space determined by the bracket.
  • the body 300 includes a housing device 310, a lifting device 320 and a caster moving device 330.
  • Figure 30 is an exploded assembly view of the fuselage according to the embodiment of the present application
  • Figure 31 is the structure of the lifting device according to the embodiment of the present application.
  • Figure 32 is a schematic diagram of the assembly relationship between the electrical system, the lifting device and the lower shell in the embodiment of the present application.
  • Figure 33 is a schematic diagram of the assembly relationship of the caster moving device in the embodiment of the present application.
  • the outer shell device 310 is used to install the lifting device 320 and the caster moving device 330, and its interior is used to install the electrical system 400, thereby forming an integrated skeleton system.
  • the housing device 310 includes three parts: an upper shell 3101, a middle shell 3102 and a lower shell 3103.
  • the upper shell 3101 is inserted into the middle shell 3102, and the two can adopt a transition fit.
  • the upper shell 3101 is installed on the lifting plate of the lifting device 320 and moves up and down. At the same time, the upper shell can rotate around the central axis.
  • the top of the upper case 3101 is an operating plane for placing the human-computer interaction system 200
  • the bottom of the upper case is provided with wiring through holes to facilitate electrical and signal connections between the human-computer interaction system 200 and the electrical system 400
  • the lower part of the middle shell 3102 has a tooth part 3105 extending along the axial direction
  • the upper part of the lower shell 3103 has a groove part 3106 extending along the axial direction.
  • the middle shell and the lower shell use tooth grooves to fit, which can facilitate assembly, inspection and maintenance.
  • the middle shell and the lower shell are relatively fixed based on the circumferential limiting pairs constructed of matching teeth and grooves. In other words, the middle shell will not rotate relative to the lower shell.
  • other structural forms can also be used to construct the circumferential limiting pair between the middle shell 3102 and the lower shell 3103.
  • the middle shell 3102 and the lower shell 3103 can also be an integrated structure.
  • the lifting device 320 includes a lifting driving component 3201, a lifting screw 3202, a lifting plate 3203, a motor fixed plate 3204 and a load-bearing chassis 3205.
  • each lifting screw 3202 is arranged between the lifting plate 3203 and the motor fixed plate 3204; there is a predetermined distance between the motor fixed plate 3204 and the load-bearing chassis 3205 to form an installation space for the lifting driving component 3201.
  • each lifting screw 3202 is configured with a lifting driving part 3201.
  • a lifting driving component can synchronously drive the screw rod inside the lifting screw 3202 (not shown in the figure). It should be understood that the power transmission relationship between the lifting driving component (driving motor) and the screw rod can be realized using existing technology, so this article will not go into details.
  • the operator can output instructions through the buttons of the touch component 2103 of the touch screen device 210 to control the lifting driving component 3201 to drive the screw inside the lifting screw 3202 to rotate, so that the lifting plate 3203 supported by it can be lifted and lowered.
  • a limiting mechanism (not shown in the figure) may be provided when the lifting device reaches a critical value of the lifting distance to ensure that the robot remains in a reliable state of use during surgery.
  • the electrical system 400 in this embodiment is fixedly installed in the lower case 3103, and the lower case 3103 is provided with heat dissipation holes 3104, which also functions as an electrical cabinet of the industrial computer.
  • the lower part of the lower shell 3103 is disk-shaped, and the load-bearing chassis 3205 of the lifting device 320 is embedded and fixed on its side wall.
  • the caster moving device 330 can be fixed on the load-bearing chassis 3205.
  • the caster moving device 330 includes casters 3301 and caster locks 3302.
  • the bottom plate of the lower shell 3103 has an opening 3107 corresponding to each caster 3301. Part of the wheel body of the caster 3301 is placed in the lower shell 3103. For example, but not limited to, most of the caster is blocked by the bottom plate of the lower shell 3103. In this way, the size of the opening 3107 at the bottom of the lower shell can be slightly smaller than the wheel diameter of the caster 3301, which has a specific dustproof and sound insulation effect.
  • This setting can, on the one hand, block the noise from the inside of the robot and the movement of the casters, and on the other hand, it can effectively block dust from entering the inside of the robot.
  • the operator can output instructions through the touch component 2103 of the touch screen device 210 to control the caster lock 3302 to lock the caster 3301; at the same time, the caster 3301 can be equipped with a self-locking electrical feedback interface, and can output the caster
  • the status signal is sent to the control device 410 of the electrical system 400.
  • the control device 410 limits the output of the start command to the instrument driving device 20. In this way, when the caster 3301 is not locked and self-locking, the instrument driving device cannot be started. That is to say, the instrument driving device cannot be started until the caster 3301 is locked.
  • the electrical system 400 includes a control device 410 , a fixing device 420 and a cooling fan 430 .
  • the fixing device 420 is used to fix the control device 410, that is, the electronic control system component of the industrial computer.
  • the fixing device 420 includes a plurality of fixed claws 4201 and a rotating claw 4202 located on one side. The rotating claw 4202 is damped The rotating shaft 4203 is rotationally connected to the fixed claw 4201.
  • the lower end of the fixed claw 4201 is fixed on the load-bearing chassis 3205 in the fuselage 300.
  • the rotating claw 4202 can rotate around the damping shaft 322.
  • the electrical system 400 is completely fixed.
  • the angle of upward rotation of the rotating claw 4202 is greater than or equal to 90°, the industrial computer is released with a degree of freedom on the side where the rotating claw is located, and the electrical system 400 can be disassembled and assembled.
  • the cooling fan 430 is arranged above the control device 410, assisted by the heat dissipation holes 3104 opened on the lower case 3103.
  • the air flow formed by starting the cooling fan 430 can convect and dissipate the hot air above the control device 410 through the peripheral heat dissipation holes 3104. external.
  • the surgical robot system can realize a variety of device combinations, realize the function of coaxial transportation of the flexible instrument, and operations such as rotation, opening and closing of the actuator.
  • the human-computer interaction system of the surgical robot system realizes functional integration and simplification of operations. One person can complete the entire operation alone without the cooperation of other medical staff.
  • the machine can
  • the adjustable height range of the robot corresponds to the usage habits of different operators to achieve operational comfort and stability.
  • the adjustment parameters can be archived in the control system based on the use ID, so as to save the operator's adjustment time for each operation.
  • Figure 34 shows a schematic diagram of a state after the surgical robot system is raised according to the embodiment of the present application
  • Figure 35 shows a scene diagram of a doctor standing and using the robot.
  • Figure 36 and 37 shows a schematic diagram of a state after the surgical robot system is lowered according to the embodiment of the present application
  • Figure 37 shows a scene diagram of a doctor sitting down to use the robot.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Robotics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Manipulator (AREA)

Abstract

一种手术机器人系统及柔性手术器械(100),该柔性手术器械(100)包括柔性器械(10)和可输出驱动力至柔性器械(10)的器械驱动装置(20),柔性器械(10)的器械输送单元(11)包括外壳(111)和器械储存器(112),该器械储存器(112)的外周表面设置有螺旋容纳槽(1121),以缠绕收纳执行器单元(12)的柔性本体,且可相对于柔性器械(10)的外壳(111)转动和轴向移动;传动单元(13)包括与器械驱动装置(20)传动连接的传动基板(133),且传动基板(133)与器械输送单元(11)的器械储存器(112)相连,以带动器械储存器(112)相对于外壳(111)转动和轴向移动。通过优化配置能够实现柔性器械(10)高效驱动,可以有效规避交叉污染,同时能满足不同应用场景的操作需要。

Description

一种手术机器人系统及柔性手术器械
本申请要求于2022年09月14日提交中国专利局的申请号为202211117679.3、发明名称为“一种手术机器人系统及柔性手术器械”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种医疗器械技术领域,具体涉及一种手术机器人系统及柔性手术器械。
背景技术
消化系统、泌尿系统、呼吸系统等自然腔道疾病是常见重大慢性病,如胃癌、食管癌、大肠癌、膀胱癌、肺癌等疾病发病率和死亡率高,严重危害人体健康。以软式内镜配合相关手术器械进行诊断和治疗已成为主流治疗手段,具有创伤小、出血量小,并发症发生率低的特点。
众所周知,与常规大切口手术不同的是,经人体腔道介入手术的操作空间常常狭小,通常需要依赖柔性器械进行诊疗操作。现有的柔性器械种类丰富,例如但不限于夹钳类、电凝电切类、注射类、引导类等,能够满足狭窄环境下的不同操作需求。目前的手术器械大多基于人工操作设计,为满足腔道介入需求,现有柔性器械设计为柔性细长类器械,使用过程中需要医护人员配合、操作复杂;另外,柔性细长的器械容易与污物接触,存在污染风险,且在器械收回过程中也会存在交叉感染的可能。
有鉴于此,亟待针对柔性手术器械进行优化设计,以克服上述缺陷。
发明内容
本申请的目的在于提供一种手术机器人系统及柔性手术器械,通过优化配置能够实现柔性器械的执行器单元本体的收纳,在有效规避污染或交叉污染的功能要求基础上,满足不同应用场景的操作需要。
本申请实施例提供的柔性手术器械,包括柔性器械和可输出驱动力至所述柔性器械的器械驱动装置,所述柔性器械包括器械输送单元、执行器 单元和传动单元;所述器械输送单元包括外壳和器械储存器,所述外壳具有内部容纳空间且其侧壁开设有器械出口,所述器械储存器的外周表面设置有螺旋容纳槽,以缠绕收纳执行器单元的柔性本体,至少部分所述器械储存器内置于所述外壳中,且可相对于所述外壳转动和轴向移动;所述执行器单元包括执行器和柔性本体,所述柔性本体包括内外嵌套设置的驱动丝和套管,所述驱动丝的远端配置有所述执行器;所述传动单元包括与所述器械驱动装置传动连接的传动基板,且所述传动基板与所述器械输送单元的器械储存器相连,以带动所述器械储存器相对于所述外壳转动和轴向移动。
可选地,所述传动单元还包括设置在所述传动基板上的执行传动组件和旋转传动组件;所述执行传动组件配置为:可在所述器械驱动装置的驱动下带动所述驱动丝推出或收回,所述旋转传动组件配置为:可在所述器械驱动装置的驱动下带动所述驱动丝扭转。
可选地,所述执行传动组件包括牵引件和第一驱动轴,所述第一驱动轴插装设置在所述传动基板上,并与器械驱动装置传动连接;所述牵引件与第一驱动轴连接,所述驱动丝的近端与所述牵引件相连接,并配置为:所述驱动丝可在所述牵引件的带动下沿预定轨迹推出或收回,且所述驱动丝相对于所述牵引件具有转动自由度;旋转传动组件包括旋转轴、第二端子、锥齿轮组和第二驱动轴,所述第二驱动轴插装设置在所述传动基板上,并可与器械驱动装置传动连接;所述锥齿轮组的主动轮与所述第二驱动轴连接,所述旋转轴与所述锥齿轮组的被动轮连接;所述驱动丝与所述第二端子固定,所述第二端子设置在所述旋转轴上,并配置为:所述第二端子可在所述旋转轴的带动下转动,且所述第二端子相对于所述旋转轴具有沿驱动丝的牵拉方向滑动的自由度。
可选地,还包括用于连接外部装置的对接单元,所述对接单元包括电接口、水接口和引导管,所述电接口和所述水接口配置在所述器械输送单元的外壳顶部,且所述引导管固定设置在所述外壳内,以通过所述电接口、所述水接口和所述引导管分别将线缆和水路接管引入至所述执行器单元。
可选地,所述器械驱动装置包括第一驱动部件、输出轴和驱动基板,所述驱动基板与所述传动单元的传动基板适配,所述第一驱动部件包括可输出旋转驱动力的输出端,所述输出轴与所述第一驱动部件的输出端传动连接,所述驱动基板与所述输出轴相连;其中,所述第一驱动部件的输出端与所述输出轴之间包括两个动力传递路径,并配置为可分别带动所述输出轴转动及轴向移动,以通过所述驱动基板带动柔性器械进行输送操作。
可选地,所述第一驱动部件的输出端与所述输出轴之间设置有丝杆螺母传动机构和皮带轮传动机构,带动所述输出轴转动的动力传递路径由所述皮带轮传动机构构建形成,带动所述输出轴沿轴向移动的动力传递路径由所述丝杆螺母传动机构构建形成。
可选地,所述器械驱动装置还包括第二驱动部件、第三驱动部件、第一主动传动盘和第二主动传动盘,所述第一主动传动盘与所述第二驱动部件的输出端传动连接,所述第二主动传动盘与所述第二驱动部件的输出端传动连接;所述驱动基板开设有第一贯通孔和第二贯通孔,所述第一贯通孔与所述第一主动传动盘相应设置,所述第二贯通孔与所述第二主动传动盘相应设置,以便相应的主动传动盘通过贯通孔分别带动所述执行传动组件和所述旋转传动组件。
可选地,所述第一主动传动盘和所述第二主动传动盘分别固定在两个滑动支架上,每个所述滑动支架相对于相应固定设置的滑轨可轴向位移,且每个所述滑动支架与固定结构之间设置弹性复位件,所述弹性复位件配置为:在所述滑动支架朝向所述器械驱动装置位移时可产生形变,以提供复位作用力至相应的所述滑动支架。
可选地,所述第一主动传动盘和所述第二驱动部件通过第一法兰相连,所述第二主动传动盘和所述第三驱动部件通过第二法兰相连,所述第一法兰和所述第二法兰分别固定在相应的所述滑动支架上。
可选地,所述驱动基板上设置有卡扣,所述传动基板上设置有卡槽,所述卡扣置于所述卡槽中并可构建周向转动限位副,以通过相适配的所述卡扣和卡槽将旋转驱动力传递至器械侧。
可选地,所述卡扣包括自本体向外延伸形成的勾头部,所述器械储存器的侧壁上设置有与所述勾头部适配的卡口;所述卡扣可相对于所述驱动基板滑动切换于外伸工作位和内收工作位之间,并配置为:位于所述外伸工作位时,所述卡扣的勾头部插装在所述卡口中;位于所述内收工作位时,所述卡扣的勾头部自所述卡口脱出。
可选地,所述驱动基板上开设有滑槽,所述卡扣包括自本体向下延伸形成的滑动部,所述滑动部可沿所述滑槽滑动适配,以滑动切换于所述外伸工作位和所述内收工作位之间;所述卡槽的槽壁和所述滑槽的槽壁均沿径向延伸。
可选地,还包括按钮和复位弹簧,所述按钮设置在所述卡扣的外侧端,所述复位弹簧预压缩设置在所述卡扣的内侧端与所述驱动基板的滑槽之间。
本申请还提供一种手术机器人系统,包括机身和设置在所述机身上的柔性手术器械,所述柔性手术器械采用如前所述的柔性手术器械。
可选地,还包括人机交互系统和电气系统,所述人机交互系统包括触摸屏装置、机械手柄和显示屏装置;其中,所述触摸屏和所述机械手柄设置在所述机身的顶部,且所述触摸屏装置的显示部件的倾斜角度可调节,所述显示屏装置通过多节臂支架连接在机身上。
可选地,所述触摸屏装置还包括设置在所述机身的顶部的无线手柄和机械按钮,所述无线手柄包括操作手柄和充电底座。
可选地,所述机身包括外壳装置、升降装置和脚轮移动装置,所述外壳装置包括位于顶部的上壳和位于底部的下壳,所述升降装置设置在所述下壳内,所述升降装置包括可升降的升降盘,所述上壳设置在所述升降装置的升降盘上。
可选地,所述升降装置包括升降驱动部件、升降丝杆、电机固定盘和承重底盘,所述升降丝杆设置在所述升降盘和所述电机固定盘之间,所述承重底盘固定设置在所述电机固定盘下方,所述电机设置在所述承重底盘的下方,且与所述升降丝杆传动连接。
可选地,所述外壳装置还包括位于所述上壳和所述下壳之间中间壳,所述上壳插装在所述中间壳中,两者之间为过渡配合,且所述上壳可相对于所述中间壳绕中心轴周转;所述中间壳的下部与所述下壳的上部之间具有周向限位副;所述下壳上开设有散热孔。
可选地,所述中间壳的下部设置有沿轴向延伸的齿部,所述下壳的上部设置有沿轴向延伸的槽部,所述齿部与所述槽部适配构建所述周向限位副。
可选地,所述脚轮移动装置包括脚轮和脚轮抱死器,所述脚轮抱死器设置在所述脚轮上,所述下壳的底板上开设有与所述脚轮相应设置的开口,且所述脚轮的部分轮体内置于所述下壳内。
可选地,所述脚轮具有自锁电反馈接口,并可输出脚轮状态信号至所述电气系统的控制装置,并配置为:当所述脚轮状态信号表征所述脚轮处于未锁止状态时,所述控制装置限制输出启动指令至所述器械驱动装置。
可选地,所述电气系统的控制装置通过固定装置设置在所述下壳的底板上,所述固定装置包括多个固定爪和位于一侧的转动爪,所述转动爪通过转轴与固定爪转动连接。
与现有技术相比,本发明创新性地提出了器械侧与驱动侧分体组装的柔性手术器械实现方案,以满足不同应用场景下的器械收纳需求。该柔性手术器械包括柔性器械和可输出驱动力至柔性器械的器械驱动装置,具体地,其柔性器械的器械输送单元的外壳,具有内部容纳空间且其侧壁开设有器械出口,器械储存器的外周表面设置有螺旋容纳槽,以缠绕收纳执行器单元的柔性本体,且器械储存器可相对于外壳转动和轴向移动。同时,其柔性器械的传动单元包括与器械驱动装置传动连接的传动基板,且传动基板与器械输送单元的器械储存器相连,以带动器械储存器相对于外壳转动和轴向移动。应用本方案,具有下述有益技术效果:
首先,基于柔性器械和器械驱动装置的独立配置,可根据不同需要配置功能的柔性器械,例如但不限于可匹配多种尺寸功能的柔性器械,有效解决了目前医护配合难、医疗资源紧缺的问题,具有较好的可适应性。
其次,随着器械储存器的转动,缠绕收纳于螺旋容纳槽的柔性本体可通过器械出口连续输送。执行器输送过程中,基于螺旋缠绕形变储备的弹性变形能得以释放,可有效克服进入软式内镜中形成的阻力,辅助提供良好输送能力。器械储存器反向运动,则柔性本体可收回至外壳内并螺旋缠绕在器械储存器上,一方面,对于自身刚度不高的柔性本体,本方案通过结构约束使得柔性本体有序排布,规避本体之间相互挤压和破坏;同时,执行器单元的收回及收纳不占用径向尺寸空间,结构较为紧凑合理,便于临床使用操作。
第三,在本发明的可选方案中,传动单元还包括设置在传动基板上的执行传动组件和旋转传动组件;该执行传动组件配置为:可在器械驱动装置的驱动下带动驱动丝推出或收回,旋转传动组件配置为:可在器械驱动装置的驱动下带动驱动丝扭转。也就是说,该传动单元配置有用于与器械驱动装置适配的执行驱动接口,例如但不限于,可实现驱动丝的牵拉和扭转操作。
第四,在本发明的另一可选方案中,该柔性器械包括与外部装置连接的功能。具体地,对接单元包括配置在外壳顶部的电接口和水接口,还包括固定设置在外壳内的引导管,以通过电接口、水接口和引导管分别将线缆和水路接管引入至执行器单元。这样,柔性器械可集成提供电源、信号源和水路等连通功能,可进一步提高不同应用场景下的可适应性。
第五,本发明提供的手术机器人系统,包括人机交互系统和电气系统,其中,人机交互系统包括触摸屏装置、机械手柄和显示屏装置,以用于输出指令实现器械操作,同时能够显示术中相关信息,例如但不限于,显示当前机器人的状态与组织的交互信息;其中,触摸屏和机械手柄设置在机身的顶部,且触摸屏装置的显示部件的倾斜角度可调节,实际倾斜角度可以通过内部角度调节装置进行调节,例如但不限于在10°-60°范围内进行调节,此角度调节可与机身整体升降配合,以适配操作者的触控操作角度。
第六,在本发明的又一可选方案中,机身的外壳装置包括位于顶部的上壳和位于底部的下壳,其升降装置设置在下壳内,该升降装置包括可升 降的升降盘,并通过设置在其上的上壳带动设置在其上的柔性手术器械以及触摸屏装置升降,满足不同的使用需要。
第七,在本发明的再一可选方案中,脚轮具有自锁电反馈接口,并可输出脚轮状态信号至电气系统的控制装置,当脚轮状态信号表征脚轮处于未锁止状态时,控制装置限制输出启动指令至器械驱动装置。也就是说,脚轮抱死才能启动器械驱动系统。具有较好的安全可靠性。
附图说明
图1为本申请实施方式所述柔性手术器械的整体结构示意图;
图2为本申请实施方式所述柔性器械的示意图;
图3为图2中所示柔性器械的装配爆炸图;
图4为图2中所示柔性器械局部剖切形成的示意图;
图5为本申请实施方式提供的一种执行器单元的示意图;
图6为图2的A-A剖视图;
图7为本申请实施方式提供的传动单元的整体结构示意图;
图8示出了本申请实施方式所述传动单元与器械储存器的装配关系示意图;
图9为另一视角形成的传动单元与器械储存器的装配关系示意图;
图10为本申请实施方式所述执行传动组件的装配关系示意图;
图11为图6的Ⅰ部放大示意图;
图12为本申请实施方式提供的另一种执行传动组件的示意图;
图13为本申请实施方式所述旋转传动组件的装配关系示意图;
图14为图6的Ⅱ部放大示意图;
图15为本申请实施方式中所述电源和信号源引入路径示意图;
图16为本申请实施方式所述器械驱动装置的内部构成示意图;
图17为图16中所示器械驱动装置侧的连接机构示意图
图18为本申请实施方式所述驱动基板与器械储存器的组装关系示意图;
图19为图17的B-B局部剖视图;
图20为本申请实施方式中所述第一主动传动盘和第二主动传动盘的组装关系示意图;
图21为本申请实施方式中所述传动基板与传动单元的组装关系示意图;
图22为本申请实施方式中所述第一驱动件的传动关系示意图;
图23为图16的轴向剖视图;
图24为本申请实施方式中所述力传感器的连接关系示意图;
图25示出了本申请实施方式所述柔性器械的另一种组合使用状态示意图;
图26为本申请实施方式中所述手术机器人系统的整体构成示意图;
图27为本申请实施方式中所述触摸屏装置的结构示意图;
图28为本申请实施方式中所述机械手柄的结构示意图;
图29为本申请实施方式中所述无线手柄的结构示意图;
图30为本申请实施方式所述机身的装配爆炸图;
图31为本申请实施方式所述升降装置的结构示意图;
图32为本申请实施方式中所述电气系统、升降装置与下壳的组装关系示意图;
图33为本申请实施方式所述脚轮移动装置的装配关系示意图;
图34示出了本申请实施方式所述手术机器人系统升起后的一种状态示意图;
图35示出了医生站立使用机器人的一种场景图;
图36示出了本申请实施方式所述手术机器人系统下降后的一种状态示意图;
图37示出了医生坐下使用机器人的一种场景图。
图中:
柔性器械10、第一柔性器械10a、第二柔性器械10b、器械输送单元
11、外壳111、器械出口1111、插口1112、器械储存器112、螺旋容纳槽1121、通过口1122、卡口1123、护管113、执行器单元12、第一执行器单元12a、第二执行器单元12b、驱动丝121、限位块1211、执行器122、套 管123、传动单元13、执行传动组件131、第一驱动轴1311、第一端子1312、第四贯通孔13121、牵引件1313、安装槽13131、第一约束件1315、约束腔13151、第一内部通道13152、锥齿轮组1311a、第一端子1312a、丝杆1313a、旋转传动组件132、旋转轴1321、安装孔13211、第二端子1322、锥齿轮组1323、第二驱动轴1324、第二约束件1325、第三贯通孔13251、第二内部通道13252、传动基板133、卡槽1331、第一被动传动盘134、第一凹部1341、第二被动传动盘135、第二凹部1351、对接单元14、电接口141、水接口142、引导管15、信号发生器161、信号接收器162、安装检测组件17;
器械驱动装置20、第一驱动部件21、第二驱动部件22、第三驱动部
件23、接口部件24、驱动基板241、第一贯通孔2411、第二贯通孔2412、第一主动传动盘242、第一凸部2421、第二主动传动盘243、第二凸部2431、卡扣244、勾头部2441、引导面2442、按钮245、复位弹簧246、套筒247、遮挡段2471、穿装孔2472、连接套248、第一法兰251、第二法兰252、滑动支架253、滑轨254、复位件255、丝杆261、螺母262、主动带轮263、从动带轮264、输出轴265、键2651、第一轴套266、键槽2661、连接件267、轴承固定座268、推力轴承2681、轴承269、罩壳27、侧壁271、固定盘272、第二轴套273、导向套274、力传感器281、位置传感器282;
柔性手术器械100、人机交互系统200、触摸屏装置210、承载主体2101、
显示部件2102、触控部件2103、底座2104、机械手柄220、手柄摇杆2201、手柄按钮2202、无线手柄230、操作手柄2301、充电底座2302、机械按钮240、显示屏装置250、多节臂支架2501、机身300、外壳装置310、上壳3101、中间壳3102、下壳3103、散热孔3104、齿部3105、槽部3106、开口3107、升降装置320、升降驱动部件3201、升降丝杆3202、升降盘3203、电机固定盘3204、承重底盘3205、脚轮移动装置330、脚轮3301、脚轮抱死器3302、电气系统400、控制装置410、固定装置420、固定爪4201、转动爪4202,阻尼转轴4203、散热风扇430。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
不失一般性,本实施方式提供一种柔性手术器械,以有效解决较长细软器械操作复杂,不易收纳用容易污染的问题。请参见图1,该图为本申请实施方式柔性手术器械的整体结构示意图。
该柔性手术器械100包括柔性器械10和器械驱动装置20,其中,柔性器械10中配置有用于诊疗和辅助诊疗的执行器单元12,器械驱动装置20可提供驱动力至执行器单元12,以实现柔性器械的输送操作和执行器的旋转或开闭等操作。
请一并参见图2和图3,其中,图2为本申请实施方式所述柔性器械的示意图,图3为图2中所示柔性器械10的装配爆炸图。
该柔性器械10包括器械输送单元11、内置于器械输送单元11中的执行器单元12和用于传递执行器运动驱动力的传动单元13。
其中,器械输送单元11包括外壳111和器械储存器112,在传动单元13的带动下,器械储存器112可相对于外壳111转动;组装完成后,外壳111保持相对固定的状态。
其中,执行器单元12的柔性本体(驱动丝121及套管123)缠绕在器械储存器112外周,且可经由外壳111侧壁开设的器械出口1111伸出;这里,器械出口1111外侧设置有护管113,该护管固定在外壳111上,以便伸出外壳111的执行器单元12保护稳定的姿态。随着器械储存器112的转动,执行器单元12的柔性本体通过器械出口1111连续输送;同理,器械储存器112反向运动时,则柔性本体可收回至外壳内并缠绕在器械储存器112上,实现执行器单元12的收回及收纳。具体来说,非使用状态下的外壳111和器械储存器112形成相对封闭的空间,用于柔性器械本体的收纳。
为了执行器单元12的柔性本体能够有序缠绕排布,器械储存器112的外周表面可设置有螺旋容纳槽1121,请一并参见图4,该图为图2中所示柔性器械局部剖切形成的示意图。收回至外壳内的执行器单元12的柔性本体,置于器械储存器112的螺旋容纳槽1121内,可避免出线乱或打结的情形。
在传动单元13的带动下,器械储存器112还可相对于外壳111轴向移动。也就是说,器械储存器112转动时同步轴向移动,这样,执行器单元12柔性本体脱离螺旋容纳槽1121的部位,能够在两个维度上保持与器械出口1111大致对中,收放操作得以顺畅执行。
在具体实现中,执行器单元12可以根据具体应用进行选择,例如但不限于,夹钳类、电凝电切类、网篮类、注射类、引导类、传感器类柔性器械等。其中,夹钳类柔性器械包括一个夹持自由度的组织夹取器和夹持旋转自由度的止血器;电凝电切类柔性器械包括一个用于组织电切电凝的夹持自由度和包含一个圈套器械的推拉自由度;网篮类柔性器械包括一个用于网篮的推出和收回的推送自由度;注射类柔性器械包括一个用于针头的推出和收回的推送自由度;引导类用于同轴器械引导,不具备自由度;传感器类柔性器械可以包括图像传感器械、位置传感器械或者形状传感器械等。
基于执行器单元12的上述功能需要,可通过牵拉或扭转执行器单元12的驱动丝121近端实现。请参见图5,该图为本申请实施方式提供的一种执行器单元12的示意图。
具体地,通过牵拉驱动丝121可以使得位于远端的执行器122运动,例如但不限于包括执行器的开合以及执行器的推送;同理,通过扭转驱动丝121也可以实现远端的执行器122的旋转运动。
本文中所使用的方位词“近端”和“远端”,是以手术器械操作人员的视角定义的,也即,该驱动丝121的近操作人员的一端为“近端”,相对应地近患者的另一端为“远端”。应当理解,上述方位词的使用仅用于清楚描述技术方案,且对于本申请请求保护的柔性手术器械并未构成实质性的限制。
对于执行器单元12的驱动丝121的牵拉和扭转,基于器械驱动装置20侧输出的驱动力实现,具体通过传动单元13的执行传动组件131和旋转传动组件132传递驱动力。请一并参见图2、图3、图6和图7,其中,图6为图2的A-A剖视图,图7为本申请实施方式提供的传动单元的整体结构示意图。
如图3所示,该传动单元13包括传动基板133,执行传动组件131和旋转传动组件132设置在该传动基板133上,并可通过传动基板133与器械输送单元11的器械储存器112组装固定。请一并参见图8和图9,两图分别从不同视角示出了传动单元与器械储存器的装配关系。整体结构较为紧凑,且组装工艺性较好。
如图6所示,执行传动组件131包括第一端子1312、牵引件1313和第一驱动轴1311。
其中,牵引件1313与第一驱动轴1311连接,第一驱动轴1311插装设置在传动基板133上,以在器械驱动装置20的驱动力作用下转动,并带动牵引件1313绕其转动中心摆动。
其中,第一端子1312固定在牵引件1313上,并可在牵引件1313转动时随动。驱动丝121的近端与第一端子1312相连接,并配置为:驱动丝121可在第一端子1312的带动下沿预定轨迹推出或收回,且驱动丝121可相对于第一端子1312旋转。可以理解的是,该牵引件1313摆动幅度范围内,需要满足第一端子1312的牵拉行程要求,也即远端的执行器122所需的推出或收回位移量。
请一并参见图10和图11,其中,图10为本申请实施方式所述执行传动组件的装配关系示意图,图11为图6的Ⅰ部放大示意图。
第一端子1312嵌装在牵引件1313中,具体地,牵引件1313的外周表面开设有适配于第一端子1312的安装槽13131,该外周表面为圆弧面。在其他具体实现中,根据实际产品设计要求,牵引件1313的外周表面非局限于图中所示的圆弧状;同时,该固定端子也可完全设置在牵引件内部,而非局限于嵌装在牵引件1313的外周表面上(图中未示出)。
本实施方案中,驱动丝121穿装在第一端子1312的第四贯通孔13121中,且驱动丝121本体上设置有两个限位块1211,分别位于第四贯通孔13121两端侧,该限位块1211的尺寸大于第四贯通孔13121的尺寸。牵引件1313正反向转动时,基于第一端子1312与相应侧限位块1211之间的限位关系,可实现驱动丝121的推出和收回,满足术中的具体操作要求。
同时,驱动丝121与第一端子1312的第四贯通孔13121之间具有径向 间隙,也即驱动丝121相对于固定端子具备转动自由度,当驱动丝在旋转传动组件132的带动下转动时,可相对于第四贯通孔13121转动,与固定端子侧无动作干涉。
其中,传动基板133作为与驱动侧传动连接的基础构件,其上固定设置有第一约束件1315,该第一约束件1315上开设有约束腔13151,驱动丝121置于约束腔13151中。在第一端子1312的带动下,驱动丝121可在该约束腔13151构建的预定轨迹上推出或收回。
为了充分利用外壳内部空间,第一约束件1315及其上开设的约束腔13151大致呈弧状。同时,该第一约束件1315包括顺次连接的导向段C和保持段D,如图6所示,导向段C具有与牵引件1313的圆弧状外周表面适配的圆弧状内壁,该导向段C内壁上的约束腔13151为开放腔道,该保持段D上的约束腔13151为封闭腔道;这样,一方面可通过圆弧状内壁建立牵引件1313的位移导向,同时,由导向段C上的开放腔道及保持段D上的封闭腔道共同建立引导驱动丝121的预定轨迹。
当然,在其他具体实现中,也可以采用第一端子1312a、相啮合的锥齿轮组1311a和丝杆1313a,实现驱动丝121推出或收回。请参见图12,该图为本申请实施方式提供的另一种执行传动组件的示意图。为了清楚示明与图6所描述实施方案的区别和联系,相同功能构成或结构以同一标记进行示意。
如图12所示,该锥齿轮组1311a的主动齿轮可在第一驱动轴1311带动下,带动被动齿轮转动,丝杆1313a与被动齿轮同轴转动;与此同时,第一端子1312a一端夹持固定驱动丝121的近端,第一端子1312a的另一端配置有与丝杆1313a适配的螺母(图中未示出),这里,螺母固定在第一端子1312a上,并可随丝杆1313a的转动沿其轴向移动,从而通过第一端子1312a带动驱动丝121实现推出或收回。应当理解,图12所描述的实施方案同样可配置用于构建预定轨迹的约束腔。
再如图3和图6所示,本实施方案中旋转传动组件132包括旋转轴1321、第二端子1322、锥齿轮组1323和第二驱动轴1324。
其中,锥齿轮组1323的主动轮与第二驱动轴1324连接,第二驱动轴 1324插装设置在传动基板133上,以在器械驱动装置20的驱动力作用下转动,并通过锥齿轮组1323带动旋转轴1321绕其转动中心转动。
其中,第二端子1322设置在该旋转轴1321上,驱动丝121由第二端子1322固定,并可在旋转轴1321转动时随动。并配置为:第二端子1322可在旋转轴1321的带动下转动,且第二端子1322可沿驱动丝121的牵拉方向相对于旋转轴1321滑动。这里,该第二端子1322的滑动行程,同样需要满足第一端子1312的牵拉行程要求。
请一并参见图13和图14,其中,图13为本申请实施方式所述旋转传动组件的装配关系示意图,该图为自第二端子1322所在位置处径向剖切后形成的视图,图14为图6的Ⅱ部放大示意图。
第二端子1322嵌装在旋转轴1321中,具体地,旋转轴1321的中部开设有安装孔13211,驱动丝121可经由该安装孔13211延伸至第一约束件的约束腔中。本实施方案中,与驱动丝121固定连接的第二端子1322插装在该安装孔13211中,且两者具有相适配的矩形截面。这样,当旋转轴1321转动时,第二端子1322可同步转动带动驱动丝121扭转;同时,第二端子1322相对于旋转轴1321具有滑动自由度,也即,第二端子1322可相对于旋转轴1321轴向运动,当驱动丝在执行传动组件131的带动下牵拉时,可相对于安装孔13211转动,与旋转轴侧无动作干涉。
在其他具体实现中,第二端子1322与该安装孔13211的截面形式也可以采用其他结构,例如但不限于,其他多边形或者具有周向限位平面的形态,只要能够满足第二端子在安装孔内滑动且可随旋转轴同步转动的功能需要,均在本申请请求保护的范围内。
其中,传动基板133上固定设置有第二约束件1325,再如图6和图7所示,沿旋转轴1321的轴向,该第二约束件1325一端与第一约束件1315保持段D的端部相对设置,且第二约束件1325与第一约束件1315分别提供轴端支撑,旋转轴1321的两侧轴端得以获得可靠的枢接适配关系,满足相对转动的功能需要。
这里,第二约束件1325上开设有第三贯通孔13251,相对应地,器械输送单元11的器械储存器112上开设有通过口1122,且该通过口1122斜 向开设,以便执行器单元12柔性本体延伸过渡至其外表面的螺旋容纳槽1121中。第三贯通孔13251的孔径可以与执行器单元12的柔性本体套管123尺寸适配,以可靠固定套管123的管端。
另外,本实施方式提供的柔性器械10还包括对接单元14,用于外部装置连接,例如但不限于实现电源和信号源连接以及水路连接。请参见图2和图4,外壳111的顶端配置有与内部连通的电接口141和水接口142,外壳111固定设置有轴向延伸形成的引导管15。该电接口141可将电源和信号源引入器械内部,水接口142可将外部水源引入器械内部,通过外壳111中部的引导管15进入执行器单元12,进而连接至远端执行器。
对于电源和信号源的引入,请一并参见图7和图15,其中,图15为电源和信号源引入路径示意图。
第一约束件1315上开设有第一内部通道13152,第一内部通道13152与旋转轴的安装孔13211连通。电接口141引入的缆线,经由引导管下行,并通过第一约束件1315的第一内部通道13152进入旋转轴的安装孔13211内,并通过执行器单元12的套管123连接至位于远端的执行器。例如但不限于,用于实现远端执行器的供电,以及与远端执行器之间的信号交互传输等。
第二约束件1325上还开设有第二内部通道13252,第二内部通道13252与第三贯通孔13251连通。水接口142引入的水路接管,同样可经由引导管下行,并通过第二约束件1325的第二内部通道13252进入第三贯通孔13251内,并通过执行器单元12的套管123连接至位于远端的执行器。例如但不限于,用于实现冲洗液的灌注等。
为了便于整机快速组装,本实施方案中,柔性器械10与器械驱动装置20之间设置有可拆卸连接机构,具体包括器械储存器112和传动单元13(执行传动组件131、旋转传动组件132)与器械驱动装置20之间的可拆卸连接,在快速组装操作的基础上,同时满足传递相应驱动力的功能需要。
请参见图16和图17,其中,图16为本申请实施方式所述器械驱动装置20的内部构成示意图,图17为图16中所示器械驱动装置侧的连接机构示意图。
如图所示,在器械驱动装置20的顶部配置有输出动力的接口部件24,其中,驱动基板241作为输出第一驱动部件21的驱动力的接口连接件,用于传递动力至器械储存器112;第一主动传动盘242作为输出第二驱动部件22的驱动力的接口连接件,以传递动力至第一驱动轴1311,用于牵拉驱动丝;第二主动传动盘243作为输出第三驱动部件23的驱动力的接口连接件,以传递动力至第二驱动轴1324,用于扭转驱动丝。
请一并参见图8、图9和图18,其中,图18示出了驱动基板与器械储存器112的组装关系示意图。
驱动基板241与传动基板133相对设置,驱动基板241上设置有卡扣244,传动基板133上相应设置有卡槽1331,组装后,该卡扣244置于卡槽1331中,形成周向转动限位副。当驱动基板241在第一驱动部件21驱动下转动时,可基于该周向转动限位副带动传动基板133同步转动,进而带动与传动基板133固定的器械储存器112转动,以输送执行器单元12。
本实施方案中,相适配的卡扣244和卡槽1331设置为两组,且采用对称布置方式,受力较为均衡。可以理解的是,在其他具体实现中,也可以配置为周向间隔设置的其他复数组。
进一步地,卡扣244可相对于驱动基板241沿径向移动,也即卡扣244还可在卡槽1331滑动,该卡扣244具有自本体外伸形成的勾头部2441,外端;相应地,器械储存器112的侧壁上设置有与该勾头部2441适配的卡口1123。这样,卡扣244处于外伸工作位时,该勾头部2441可插装在卡口1123中,限制器械储存器112脱离。
由此,带动器械储存器112转动时,可通过相适配的卡扣244和卡槽1331同步带动轴向伸出或收回。在其他具体实现中,还可以通过其他结构形式达成同步轴向移动的功能需要。
为了提高可操作性,卡扣244的外侧设置有按钮245,卡扣244的内侧设置有复位弹簧246,该复位弹簧246可以预压缩设置在卡扣244与驱动基板241之间,以便卡扣244可靠地保持在外伸工作位。请一并参见图19,该图为图17的B-B局部剖视图。
拆卸时,操作者施加作用力于按钮245,卡扣244沿着卡槽1331向内 滑动,复位弹簧246进一步形变,勾头部2441自卡口1123脱出,即可将柔性器械10拆下。
其中,勾头部2441外伸端的顶部具有引导面2442,该引导面2442向下延伸形成。实际组装时,器械储存器112的下沿轴向压抵勾头部2441的引导面2442,并产生作用于卡扣244的径向向内的分力,卡扣244在该作用力下向内滑动;与此同时,复位弹簧246受压进一步形变,随着器械储存器112轴向移动,至其上的卡口1123与勾头部2441对中时,复位弹簧246释放弹性变形能,推动勾头部2441伸入卡口1123内,快速完成两者之间的组装操作。
可以理解的是,在其他具体实现中,该复位弹簧还可以采用其他结构形式实现,例如但不限于采用基于橡胶材料特性制成的复位件,或者采用弹片结构的复位件。
进一步地,为了避免卡合结构外露可能产生的影响,本实施方案中,驱动基板241的外周设置有套筒247,该套筒247包括轴向向上延伸的遮挡段2471。驱动基板241及其上的卡扣244可内置于遮挡段2471围合形成的空腔内;同时,遮挡段2471上开设有两个穿装孔2472,分别与两个按钮245径向相对设置,以便按钮245的推杆通过该穿装孔2472与卡扣244本体固定连接。在有效遮挡卡合结构的基础上,同时可兼顾按钮的可操作性。
这里,驱动基板241通过套筒247和连接套248与第一驱动部件21传动连接。当然,在其他实现中,驱动基板241也可直接与第一驱动部件21传动连接,或者还可以通过套筒247与第一驱动部件21传动连接。
另外,在柔性器械10与器械驱动装置20之间还可以配置电子识别组件,用于系统识别当前接入的器械类型。再如图17所示,该电子识别组件可以包括配置在柔性器械一侧的信号发生器161和配置在器械驱动装置一侧的信号接收器162,具体地,信号发生器161可设置在器械储存器112的外周表面,相应地信号接收器162可设置在套筒247的内壁(图中未示出),采用射频信号识别。
此外,为了实时监测安装状态,可以在器械驱动装置一侧配置安装检 测组件17。再如图16和图17所示,该安装检测组件17可以采用微动开关,并设置在卡扣244的顶面。当柔性器械安装至驱动装置上时,柔性器械通过挤压微动开关产生一个信号,从而实现安装状态检测。
需要说明的是,电子识别组件和安装检测组件可以采用其他器件形式,具体可根据实际产品设计要求进行选定,而非局限于图中所示的器件类型及配置位置。
请一并参见图9、图17、图18、图20和图21,其中,图20示出了第一主动传动盘242和第二主动传动盘243的组装关系示意图,图21进一步示出了传动基板与传动单元的组装关系示意图。
本实施方案中,设置有两组传动连接的主动传动盘和被动传动盘,其中,传动基板133的底部设置有第一被动传动盘134和第二被动传动盘135。第一被动传动盘134固定连接在第一驱动轴1311的轴端,并与第一主动传动盘242适配连接;第二被动传动盘135固定连接在第二驱动轴1324的轴端,并与第二主动传动盘243适配连接。
相应地,驱动基板241开设有第一贯通孔2411和第二贯通孔2412,以便第一主动传动盘242和第二主动传动盘243分别通过两个贯通孔与相适配的被动传动盘适配。同时,第二驱动部件22固定设置在第一法兰251,且其输出轴通过第一法兰251与第一主动传动盘242相连,第三驱动部件23固定设置在第二法兰252,且其输出轴通过第二法兰252与第二主动传动盘243相连,整体上沿轴向依次设置,可减小径向尺寸的空间占用。
为了进一步匹配不同对接侧轴向对接行程,本实施方案的可拆卸连接机构进一步具有轴向可适应性。该第一法兰251和第二法兰252可分别固定在相应的滑动支架253上,两个滑动支架253可分别相对于固定设置的滑轨254轴向位移。这里,为了简化图示,图20中仅示出了与第一法兰251相适配的滑动支架253和滑轨254。也就是说,滑动支架253具有可相对于滑轨254轴向相对位移的自由度,以适应性调整轴向相对位置。
相应地,在每个滑动支架253的底部可设置弹性复位件255,以提供复位作用力至滑动支架253,使得相应的主动、被动传动盘之间建立可靠的连接。可以理解的是,滑轨254为相对固定的结构件,具体可根据内部 空间配置相应的固定连接方式,例如但不限于图中所示的固定设置在连接套248上。
如图9所示,第一被动传动盘134上具有第一凹部1341,第二被动传动盘135上具有第二凹部1351;如图17和图18所示,第一主动传动盘242上具有第一凸部2421,第二主动传动盘243上具有第二凸部2431,可分别与相应被动传动盘上的凹部适配构建形成周向限位副。这样,第二驱动部件22和第三驱动部件23分别启动时,可分别上述相适配主、被动传动盘将动力传递至传动单元的驱动轴,用于实现执行器单元的牵拉和扭转操作。
本实施方案中,相适配的主动传动盘与被动传动盘的外径尺寸大致相同,凹部自被动传动盘的外周表面径向内凹形成,凸部自主动传动盘的顶面轴向延伸形成,组装后,主动传动盘上的凸部与被动传动盘上的凹部嵌合。具有结构紧凑、连接可靠性高的特点。在其他具体实现中,每个传动路径上,相适配的凸、凹部的配置数量可以根据产品总体设计要求进行确定,而非局限于图中所示的两组。
另外,本实施方案的器械储存器112转动及轴向位移,由第一驱动部件21提供驱动力,并分别通过两个动力传递路径实现。请一并参见图16、图22和图23,其中,图22示出了第一驱动件的传动关系示意图,图23为图16的轴向剖视图,具体剖切位置通过第一驱动部件及输出轴的中心线。
该第一驱动部件21的输出轴与丝杆261同轴固定,并以丝杆261作为两个动力传递路径的基础传动构件。如图所示,丝杆261上间隔设置有主动带轮263和螺母262。
其中,主动带轮263固定设置在丝杆261上,并通过皮带将转动驱动力传递至从动带轮264,从动带轮264设置在输出轴265上。具体地,从动带轮264固定设置在第一轴套266上,该第一轴套266通过轴承269枢接在固定结构上,输出轴265外表面上具有轴向设置的键2651,该第一轴套266内表面上具有与该键相适配的键槽2661。基于带轮传动机构,在第一轴套266的带动下,输出轴265可同步转动,且输出轴265与第一轴套266之间可轴向相对移动。
其中,螺母262与丝杆261螺纹适配,并通过连接件267与输出轴265相连。该螺母262固定设置在连接件267的一端,输出轴265枢接在连接件267的另一端枢接,且两者之间具有轴向限位。具体地,输出轴265的轴端设置有推力轴承2681,连接件267上固定设置有轴承固定座268,且轴承固定座268与推力轴承2681的轴向限位。基于丝杆与螺母的适配关系,可带动输出轴265沿轴向往复移动。
由此,第一驱动部件21输出轴输出的驱动力,通过两个传递路径同步带动输出轴265转动及轴向移动,并通过固定在输出轴265上连接套248带动驱动基板241转动及轴向移动。该复合运动以旋转运动为柔性器械输送的主运动,轴向移动为保障执行器单元12柔性本体与器械储存器112通过口1122保持对准的辅助运动。
需要说明的是,用于与第一轴套266枢接适配的固定结构,以及用于外壳111保持相对固定的相关结构,可以采用不同方式实现。本实施方案中,将上述固定结构集成设置在器械驱动装置20的罩壳27上,该罩壳27的侧壁271向上延伸至柔性器械10的外壳111旁侧。
对于柔性器械10外壳111的固定,请一并参见图1和图16。外壳111的外周表面设置插口1112,并可通过插口1112套装在侧壁271上,基于不同的组装尺寸利用螺纹紧固件将外壳111固定在侧壁271上。
对于与第一轴套266枢接适配的固定盘272,如图16、图23所示,该固定盘272固定于侧壁271上,以此固定形成用于安装轴承269的第二轴套273。当然,在其他具体实现中,该第二轴套273与固定盘272可采用一体式结构。
进一步的,为了提高轴向移动的稳定性,可以在连接套248的外周配置导向套274,该导向套274固定于侧壁271上,连接套248与导向套274之间形成轴向移动适配副,在连接套248的轴向移动行程范围内提供导向支撑,确保相关结构具有良好的作动性能。
为了进一步提高驱动控制精度,可以增设传感器。例如但不限于,在第一约束件1315与第二约束件1325之间的驱动丝121上配置力传感器281,请一并参见图24。同时,在第二驱动部件22上配置位置传感器282, 请一并参见图21。工作过程中,可反馈牵拉作用力及驱动输出转动量至控制器,并以此进行精确调整控制。
除前述柔性器械与器械驱动装置的组配关系外,在其他应用场景下,本实施方式提供的柔性器械与器械驱动装置还可以组合使用,请参见图25,该图示出了本申请实施方式所述柔性器械的另一种组合使用状态示意图。
如图所示的两个柔性器械,第一柔性器械10a用于与器械驱动装置组装,建立动力传动关系;第二柔性器械10b用于提供处理病灶的执行器。其中,第一柔性器械10a的第一执行器单元12a连接至第二柔性器械10b的对接单元14,并基于第二柔性器械10b的内部通道连接至其第二执行器单元12b,两者共同配合实现柔性器械同轴输送的目的。
除前述柔性手术器械,本实施方式还提供一种手术机器人系统,请参见图26,该图为本申请实施方式中所述可进行手术治疗的床旁技师机器人的整体构成示意图。
该手术机器人系统包括人机交互系统200、机身300和电气系统400,该机身300上设置有如前所述的柔性手术器械100。其中,人机交互系统200包括触摸屏装置210、机械手柄220、无线手柄230、机械按钮240和多自由度显示屏装置250。请一并参见图27、图28和图29,其中,图27为本申请实施方式中所述触摸屏装置的结构示意图,图28为本申请实施方式中所述机械手柄的结构示意图,图29为本申请实施方式中所述无线手柄的结构示意图。
如图27所示,该触摸屏装置210分为承载主体2101、显示部件2102、触控部件2103和底座2104。其中,承载主体2101通过底座2104设置在机身300上,且可相对于底座2104转动;显示部件2102和触控部件2103配置在承载主体2101的斜向设置的顶面上,具体倾斜角度可以通过内部角度调节装置进行调节,例如但不限于可以在10°-60°范围内进行调节,此角度调节可与机身整体升降配合,以适配操作者的触控操作角度。其中,显示部件2102用于显示当前机器人的状态与组织的交互信息;触控部件2103用于输入操作指令调节机器人状态,并可通过横向分布的触控按钮, 控制脚轮锁死、机器人升降、触摸装置角度调节、触摸装置旋转以及上壳旋转等操作。
如图28所示,该机械手柄220包括手柄摇杆2201和手柄按钮2202。其中,手柄摇杆2201用于操纵器械输送,也即控制柔性手术器械100的第一驱动部件21;手柄按钮2202用于控制器械功能,也即控制柔性手术器械100的第二驱动部件22和第三驱动部件23。
如图29所示,该无线手柄230包括操作手柄2301和充电底座2302,操作手柄2301通过与控制系统进行无线连接,实现器械的操纵控制;这里,无线手柄230可以作为机械手柄220的冗余,具体可以根据产品设计需要进行设置。本实施方案中,充电底座2302可以为无线充电底座,可采用磁吸的方式设置在机身上壳的操作平面,由此,可以在一定范围内移动其充电位置,避免部分机器人操作姿态下与操作者手臂产生干涉。
其中,机械按钮240有两个,作为功能冗余操作接口可分别用来控制器械的两个功能,也即牵拉或扭转执行器单元12的驱动丝121,实现执行器的旋转或开闭等操作功能。
其中,显示屏装置250通过多节臂支架2501连接在机身300上,显示屏的呈现角度可在支架确定空间内进行任意距离和角度组合调节。
本实施方案中,所述机身300包括外壳装置310、升降装置320和脚轮移动装置330。请一并参见图26、图30、图31、图32和图33,其中,图30为本申请实施方式所述机身的装配爆炸图,图31为本申请实施方式所述升降装置的结构示意图,图32为本申请实施方式中所述电气系统、升降装置与下壳的组装关系示意图,图33为本申请实施方式所述脚轮移动装置的装配关系示意图。
该外壳装置310作为基础构成部分,用于安装升降装置320和脚轮移动装置330,同时其内部用于安装电气系统400,由此形成一体的骨架系统。
如图30所示,该外壳装置310包括上壳3101、中间壳3102和下壳3103三个部分,其中,上壳3101插装在中间壳3102中,且两者可采用过渡配合,该上壳3101设置在升降装置320升降盘上,以上下移动。同时,上壳可以绕中心轴周转。
这里,上壳3101的顶部为放置人机交互系统200的操作平面,上壳底部设有走线通孔,以便人机交互系统200与电气系统400之间实现电连接及信号连接。本实施方案中,中间壳3102下部有沿轴向延伸的齿部3105,下壳3103上部有沿轴向延伸的槽部3106,中间壳与下壳采用齿槽配合,可方便组装及检修维护。上壳绕中心轴周转时,中间壳与下壳基于相适配的齿部和槽部构建的周向限位副相对固定,换言之,中间壳不会相对于下壳转动。在其他具体实现中,中间壳3102和下壳3103之间也可以采用其他结构形式构建该周向限位副。当然,中间壳3102和下壳3103也可为一体式结构。
如图31所示,升降装置320包括升降驱动部件3201、升降丝杆3202、升降盘3203、电机固定盘3204和承重底盘3205。其中,各升降丝杆3202设置在升降盘3203和电机固定盘3204之间;电机固定盘3204与承重底盘3205之间具有预定间距,以形成升降驱动部件3201的安装空间。
相应地,升降驱动部件3201设置在电机固定盘3204的下方,以驱动升降丝杆3202内部的丝杆,带动位于其顶部的升降盘3203上下移动,并通过上壳3101带动设置在其上的柔性手术器械100,以及触摸屏装置210等构成相应运动。这里,每个升降丝杆3202配置一个升降驱动部件3201。在其他具体应用中,可以由一个升降驱动部件同步驱动升降丝杆3202内部的丝杆(图中未示出)。应当理解,升降驱动部件(驱动电机)及丝杆的动力传递关系可以采用现有技术实现,故本文不再赘述。
使用状态下,操作者可通过触摸屏装置210的触控部件2103的按钮输出指令,控制升降驱动部件3201驱动升降丝杆3202内部的丝杠转动,使其支撑的升降盘3203得以升降操作。例如但不限于,可以在升降装置在达到升降距离临界值时设有限位机构(图中未示出),以确保机器人术中保持可靠的使用状态。
如图32所示,本实施方案中的电气系统400固定设置在下壳3103内,且下壳3103上开设有散热孔3104,兼具工控机的电气柜的功能。具体地,该下壳3103下部分呈圆盘状,升降装置320的承重底盘3205嵌装固定在其侧壁上,同时可将脚轮移动装置330固定在承重底盘3205上。
如图33所示,该脚轮移动装置330包括脚轮3301和脚轮抱死器3302,下壳3103的底板上对应各脚轮3301开设有开口3107,该脚轮3301的部分轮体内置于下壳3103内,例如但不限于,脚轮的大部分被下壳3103的底板遮挡这样,下壳底部的开口3107尺寸可以略小于脚轮3301轮径,具体防尘隔音作用。如此设置,一方面可以阻隔机器人内部与脚轮移动的噪音,另一方面可以有效的阻隔灰尘进入机器人内部。
使用状态下,操作者可通过触摸屏装置210的触控部件2103输出指令,控制脚轮抱死器3302锁止脚轮3301;与此同时,脚轮3301上可装有自锁电反馈接口,并可输出脚轮状态信号至电气系统400的控制装置410,当脚轮状态信号表征脚轮3301处于未锁止状态时,控制装置410限制输出启动指令至器械驱动装置20。这样,当脚轮3301没有抱死自锁时,器械驱动装置无法启动,也就是说,脚轮3301抱死才能启动器械驱动装置。
再如图32所示,电气系统400包括控制装置410、固定装置420和散热风扇430。其中,固定装置420用来固定控制装置410,也即工控机的电控系统器件,图中所示,固定装置420包括多个固定爪4201和位于一侧的转动爪4202,转动爪4202通过阻尼转轴4203与固定爪4201转动连接。
其中,固定爪4201的下端固定在机身300内的承重底盘3205上,基于阻尼转轴322构建的转动副,转动爪4202可绕阻尼转轴322旋转,当转动爪固定时,电气系统400完全固定。当转动爪4202向上转动的角度大于等于90°时,工控机则在转动爪所在侧被释放出一个自由度,即可拆装电气系统400。
其中,散热风扇430设置在控制装置410的上方,辅以下壳3103上开设的散热孔3104,散热风扇430启动形成的气流,可将控制装置410上方热的空气通过周边散热孔3104对流并散热到外部。
基于本实施方式提供的柔性手术器械100,该手术机器人系统可以实现多种装置组合,实现柔性器械同轴输送的功能以及执行器的旋转和开合等操作。实际操作时,通过手术机器人系统的人机交互系统,实现功能集成和操作的简化,一人就可单独完成整套操作,不需其他医护人员配合。
实际使用状态下,通过控制触摸面板坡度以及整体升降的配合,在机 器人高度可调范围内对应不同操作者的使用习惯,达到操作的舒适性和稳定性。进一步地,可以在控制系统中基于使用ID存档其调节参数,以便于节省操作者每次操作的调节时间。
请参见图34和图35,其中,图34示出了本申请实施方式所述手术机器人系统升起后的一种状态示意图,图35示出了医生站立使用机器人的一种场景图。请参见图36和图37,其中,图36示出了本申请实施方式所述手术机器人系统下降后的一种状态示意图,图37示出了医生坐下使用机器人的一种场景图。应用本实施方式提供的手术机器人系统,一人就可单独完成整套流程操作,不需其他医护人员配合,解决了目前经自然腔道介入手术诊疗过程中单人操作难度大,协同操作沟通成本高的实际问题
应当理解,该手术机器人系统的电气系统、散热风扇等其他功能构成可采用现有技术实现,故本文不再赘述。
本文所使用的序数词“第一”和“第二”,仅用于在描述技术方案中相同功能的构成或结构。可以理解的是,上述序数词“第一”和“第二”的使用,对本申请请求保护的技术方案未构成理解上的限制。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (17)

  1. 一种柔性手术器械,其特征在于,包括柔性器械和可输出驱动力至所述柔性器械的器械驱动装置,所述柔性器械包括器械输送单元、执行器单元和传动单元;
    所述器械输送单元包括外壳和器械储存器,所述外壳具有内部容纳空间且其侧壁开设有器械出口,所述器械储存器的外周表面设置有螺旋容纳槽,以缠绕收纳执行器单元的柔性本体,至少部分所述器械储存器内置于所述外壳中,且可相对于所述外壳转动和轴向移动;所述执行器单元包括执行器和柔性本体,所述柔性本体包括内外嵌套设置的驱动丝和套管,所述驱动丝的远端配置有所述执行器;
    所述传动单元包括与所述器械驱动装置传动连接的传动基板,且所述传动基板与所述器械输送单元的器械储存器相连,以带动所述器械储存器相对于所述外壳转动和轴向移动;
    所述传动单元还包括设置在所述传动基板上的执行传动组件和旋转传动组件;所述执行传动组件配置为:可在所述器械驱动装置的驱动下带动所述驱动丝推出或收回,所述旋转传动组件配置为:可在所述器械驱动装置的驱动下带动所述驱动丝扭转。
  2. 根据权利要求1所述的柔性手术器械,其特征在于,还包括用于连接外部装置的对接单元,所述对接单元包括电接口、水接口和引导管,所述电接口和所述水接口配置在所述器械输送单元的外壳顶部,且所述引导管固定设置在所述外壳内,以通过所述电接口、所述水接口和所述引导管分别将线缆和水路接管引入至所述执行器单元。
  3. 根据权利要求1或2所述的柔性手术器械,其特征在于,所述器械驱动装置包括第一驱动部件、输出轴和驱动基板,所述驱动基板与所述传动单元的传动基板适配,所述第一驱动部件包括可输出旋转驱动力的输出端,所述输出轴与所述第一驱动部件的输出端传动连接,所述驱动基板与所述输出轴相连;其中,所述第一驱动部件的输出端与所述输出轴之间包括两个动力传递路径,并配置为可分别带动所述输出轴转动及轴向移动,以通过所述驱动基板带动柔性器械进行输送操作。
  4. 根据权利要求3所述的柔性手术器械,其特征在于,所述器械驱动装置还包括第二驱动部件、第三驱动部件、第一主动传动盘和第二主动传动盘,所述第一主动传动盘与所述第二驱动部件的输出端传动连接,所述第二主动传动盘与所述第二驱动部件的输出端传动连接;所述驱动基板开设有第一贯通孔和第二贯通孔,所述第一贯通孔与所述第一主动传动盘相应设置,所述第二贯通孔与所述第二主动传动盘相应设置,以便相应的主动传动盘通过贯通孔分别带动所述执行传动组件和所述旋转传动组件。
  5. 根据权利要求4所述的柔性手术器械,其特征在于,所述第一主动传动盘和所述第二主动传动盘分别固定在两个滑动支架上,每个所述滑动支架相对于相应固定设置的滑轨可轴向位移,且每个所述滑动支架与固定结构之间设置弹性复位件,所述弹性复位件配置为:在所述滑动支架朝向所述器械驱动装置位移时可产生形变,以提供复位作用力至相应的所述滑动支架。
  6. 根据权利要求3所述的柔性手术器械,其特征在于,所述驱动基板上设置有卡扣,所述传动基板上设置有卡槽,所述卡扣置于所述卡槽中并可构建周向转动限位副,以通过相适配的所述卡扣和卡槽将旋转驱动力传递至器械侧。
  7. 根据权利要求6所述的柔性手术器械,其特征在于,所述卡扣包括自本体向外延伸形成的勾头部,所述器械储存器的侧壁上设置有与所述勾头部适配的卡口;所述卡扣可相对于所述驱动基板滑动切换于外伸工作位和内收工作位之间,并配置为:位于所述外伸工作位时,所述卡扣的勾头部插装在所述卡口中;位于所述内收工作位时,所述卡扣的勾头部自所述卡口脱出。
  8. 一种手术机器人系统,其特征在于,包括机身和设置在所述机身上的柔性手术器械,所述柔性手术器械采用权利要求1至7中任一项所述的柔性手术器械。
  9. 根据权利要求8所述的手术机器人系统,其特征在于,还包括人机交互系统和电气系统,所述人机交互系统包括触摸屏装置、机械手柄和显示屏装置;其中,所述触摸屏装置和所述机械手柄设置在所述机身的顶部, 且所述触摸屏装置的显示部件的倾斜角度可调节,所述显示屏装置通过多节臂支架连接在机身上。
  10. 根据权利要求9所述的手术机器人系统,其特征在于,所述触摸屏装置还包括设置在所述机身的顶部的无线手柄和机械按钮,所述无线手柄包括操作手柄和充电底座。
  11. 根据权利要求10所述的手术机器人系统,其特征在于,所述机身包括外壳装置、升降装置和脚轮移动装置,所述外壳装置包括位于顶部的上壳和位于底部的下壳,所述升降装置设置在所述下壳内,所述升降装置包括可升降的升降盘,所述上壳设置在所述升降装置的升降盘上。
  12. 根据权利要求11所述的手术机器人系统,其特征在于,所述升降装置包括升降驱动部件、升降丝杆、电机固定盘和承重底盘,所述升降丝杆设置在所述升降盘和所述电机固定盘之间,所述承重底盘固定设置在所述电机固定盘下方,所述电机设置在所述承重底盘的下方,且与所述升降丝杆传动连接。
  13. 根据权利要求11所述的手术机器人系统,其特征在于,所述外壳装置还包括位于所述上壳和所述下壳之间中间壳,所述上壳插装在所述中间壳中,两者之间为过渡配合,且所述上壳可相对于所述中间壳绕中心轴周转;所述中间壳的下部与所述下壳的上部之间具有周向限位副;所述下壳上开设有散热孔。
  14. 根据权利要求13所述的手术机器人系统,其特征在于,所述中间壳的下部设置有沿轴向延伸的齿部,所述下壳的上部设置有沿轴向延伸的槽部,所述齿部与所述槽部适配构建所述周向限位副。
  15. 根据权利要求11至14中任一项所述的手术机器人系统,其特征在于,所述脚轮移动装置包括脚轮和脚轮抱死器,所述脚轮抱死器设置在所述脚轮上,所述下壳的底板上开设有与所述脚轮相应设置的开口,且所述脚轮的部分轮体内置于所述下壳内。
  16. 根据权利要求15所述的手术机器人系统,其特征在于,所述脚轮具有自锁电反馈接口,并可输出脚轮状态信号至所述电气系统的控制装置,并配置为:当所述脚轮状态信号表征所述脚轮处于未锁止状态时,所述控 制装置限制输出启动指令至所述器械驱动装置。
  17. 根据权利要求11至14中任一项所述的手术机器人系统,其特征在于,所述电气系统的控制装置通过固定装置设置在所述下壳的底板上,所述固定装置包括多个固定爪和位于一侧的转动爪,所述转动爪通过转轴与固定爪转动连接。
PCT/CN2023/083648 2022-09-14 2023-03-24 一种手术机器人系统及柔性手术器械 WO2024055557A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211117679.3 2022-09-14
CN202211117679.3A CN115192200B (zh) 2022-09-14 2022-09-14 一种手术机器人系统及柔性手术器械

Publications (1)

Publication Number Publication Date
WO2024055557A1 true WO2024055557A1 (zh) 2024-03-21

Family

ID=83573661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083648 WO2024055557A1 (zh) 2022-09-14 2023-03-24 一种手术机器人系统及柔性手术器械

Country Status (2)

Country Link
CN (1) CN115192200B (zh)
WO (1) WO2024055557A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115192200B (zh) * 2022-09-14 2023-01-13 北京云力境安科技有限公司 一种手术机器人系统及柔性手术器械
CN115363648B (zh) * 2022-09-14 2023-03-10 北京云力境安科技有限公司 一种柔性手术器械、柔性器械及其器械输送单元
CN115363649B (zh) * 2022-09-14 2023-02-17 北京云力境安科技有限公司 一种柔性手术器械及其器械驱动装置
CN115414129B (zh) * 2022-11-04 2023-04-07 北京云力境安科技有限公司 一种柔性手术器械、柔性器械及其器械输送单元
CN116035708B (zh) * 2023-02-28 2023-07-04 北京云力境安科技有限公司 一种手术器械
CN117386733B (zh) * 2023-12-13 2024-02-23 以诺康医疗科技(苏州)有限公司 一种基于微创手术机器人的离合小车

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040153062A1 (en) * 2003-02-04 2004-08-05 Mcginley Shawn E. Surgical navigation instrument useful in marking anatomical structures
US20050203382A1 (en) * 2004-02-23 2005-09-15 Assaf Govari Robotically guided catheter
CN201703910U (zh) * 2010-02-10 2011-01-12 上海颐尚电工科技有限公司 线材卷绕装置
US20130303892A1 (en) * 2012-05-14 2013-11-14 Intuitive Surgical Operations, Inc. Systems and Methods for Navigation Based on Ordered Sensor Records
US20170151027A1 (en) * 2015-11-30 2017-06-01 Hansen Medical, Inc. Robot-assisted driving systems and methods
CN111281544A (zh) * 2020-02-26 2020-06-16 陕西中医药大学 体内医疗器械自动引导机器人系统及其自动引导方法
CN111887994A (zh) * 2020-07-16 2020-11-06 安徽航天生物科技股份有限公司 基于闭环反馈的软性内窥镜手术机器人系统及其控制方法
CN112043387A (zh) * 2020-10-10 2020-12-08 苏州威森特医疗机器人有限公司 手术机器人的末端执行器驱动装置及末端执行器
CN113813050A (zh) * 2021-09-29 2021-12-21 深圳市精锋医疗科技有限公司 外科手术器械和手术机器人
CN216360328U (zh) * 2021-12-23 2022-04-22 成都拟合未来科技有限公司 绕线装置及其构成的拉力器械
CN114870203A (zh) * 2022-04-28 2022-08-09 上海微创医疗机器人(集团)股份有限公司 柔性器械、盘绕装置、手术器械及手术机器人
CN115192200A (zh) * 2022-09-14 2022-10-18 北京云力境安科技有限公司 一种手术机器人系统及柔性手术器械
CN115363648A (zh) * 2022-09-14 2022-11-22 北京云力境安科技有限公司 一种柔性手术器械、柔性器械及其器械输送单元
CN115363649A (zh) * 2022-09-14 2022-11-22 北京云力境安科技有限公司 一种柔性手术器械及其器械驱动装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB468211A (en) * 1934-12-29 1937-06-28 Hoe & Co R A new or improved web feeding mechanism
JPH05158344A (ja) * 1991-10-08 1993-06-25 Ricoh Co Ltd トナーカートリッジ収納ケース
EP2884915B1 (en) * 2013-05-17 2017-09-27 Interscope, Inc. Insertable endoscopic instrument for tissue removal
CN109499009A (zh) * 2018-12-12 2019-03-22 深圳先进技术研究院 一种用于植入放射性粒子的机器人
CN112744637A (zh) * 2021-01-13 2021-05-04 江苏凯宫机械股份有限公司 自动精密缠绕倒筒机
CN215159799U (zh) * 2021-06-29 2021-12-14 济宁市水利事业发展中心 一种方便单人使用的水利工程放线装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040153062A1 (en) * 2003-02-04 2004-08-05 Mcginley Shawn E. Surgical navigation instrument useful in marking anatomical structures
US20050203382A1 (en) * 2004-02-23 2005-09-15 Assaf Govari Robotically guided catheter
CN201703910U (zh) * 2010-02-10 2011-01-12 上海颐尚电工科技有限公司 线材卷绕装置
US20130303892A1 (en) * 2012-05-14 2013-11-14 Intuitive Surgical Operations, Inc. Systems and Methods for Navigation Based on Ordered Sensor Records
US20170151027A1 (en) * 2015-11-30 2017-06-01 Hansen Medical, Inc. Robot-assisted driving systems and methods
CN111281544A (zh) * 2020-02-26 2020-06-16 陕西中医药大学 体内医疗器械自动引导机器人系统及其自动引导方法
CN111887994A (zh) * 2020-07-16 2020-11-06 安徽航天生物科技股份有限公司 基于闭环反馈的软性内窥镜手术机器人系统及其控制方法
CN112043387A (zh) * 2020-10-10 2020-12-08 苏州威森特医疗机器人有限公司 手术机器人的末端执行器驱动装置及末端执行器
CN113813050A (zh) * 2021-09-29 2021-12-21 深圳市精锋医疗科技有限公司 外科手术器械和手术机器人
CN216360328U (zh) * 2021-12-23 2022-04-22 成都拟合未来科技有限公司 绕线装置及其构成的拉力器械
CN114870203A (zh) * 2022-04-28 2022-08-09 上海微创医疗机器人(集团)股份有限公司 柔性器械、盘绕装置、手术器械及手术机器人
CN115192200A (zh) * 2022-09-14 2022-10-18 北京云力境安科技有限公司 一种手术机器人系统及柔性手术器械
CN115363648A (zh) * 2022-09-14 2022-11-22 北京云力境安科技有限公司 一种柔性手术器械、柔性器械及其器械输送单元
CN115363649A (zh) * 2022-09-14 2022-11-22 北京云力境安科技有限公司 一种柔性手术器械及其器械驱动装置

Also Published As

Publication number Publication date
CN115192200A (zh) 2022-10-18
CN115192200B (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
WO2024055557A1 (zh) 一种手术机器人系统及柔性手术器械
WO2024055555A1 (zh) 一种柔性手术器械及其器械驱动装置
US11589736B2 (en) Deflectable endoscope and method of use
WO2024055556A1 (zh) 一种柔性手术器械及其柔性器械
JP6771494B2 (ja) 双方向連結部を備えたロボット外科用機器の制御法
JP7386242B2 (ja) 内視鏡および使用方法
US10758301B2 (en) Highly maneuverable disposable resectoscope
JP2023503998A (ja) 外科用ツールハンドルのロボット操作
US20130096378A1 (en) Systems And Methods For Controlling Balloon Catheters
CN115919474B (zh) 软式内镜操控机器人系统
CN115414129B (zh) 一种柔性手术器械、柔性器械及其器械输送单元
WO2011084422A1 (en) User interface support devices for endoscopic surgical instruments
WO2013071712A1 (zh) 可弯可视手术钳
KR101630794B1 (ko) 수술 로봇 시스템 및 이에 구비되는 액티브 가이드 유닛
WO2023216712A1 (zh) 一种内窥镜手柄可重复使用段、内窥镜手柄及内窥镜
CN115919475B (zh) 一种分体式软式内镜手术机器人系统
US11889992B2 (en) Endoscope and method of use
US20210052336A1 (en) Robotically controlled surgical tool
CN112617728A (zh) 一种气管镜镜鞘及其操作装置
CN112807548A (zh) 一种凸轮可调弯鞘管
WO2019136342A1 (en) User interface for robotic surgical system
CN214128776U (zh) 传动件、驱动组件、执行机构及手术机器人
EP3908170A1 (en) Endoscopic device and methods of use thereof
CN217927000U (zh) 一种柔性手术器械及其连接机构
CN117297790B (zh) 一种医疗设备及其器械操控机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864300

Country of ref document: EP

Kind code of ref document: A1