WO2024055372A1 - 一种功率变换器及自动清尘方法 - Google Patents

一种功率变换器及自动清尘方法 Download PDF

Info

Publication number
WO2024055372A1
WO2024055372A1 PCT/CN2022/123967 CN2022123967W WO2024055372A1 WO 2024055372 A1 WO2024055372 A1 WO 2024055372A1 CN 2022123967 W CN2022123967 W CN 2022123967W WO 2024055372 A1 WO2024055372 A1 WO 2024055372A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
power converter
preset
reversal
reverse
Prior art date
Application number
PCT/CN2022/123967
Other languages
English (en)
French (fr)
Inventor
于任斌
徐安安
杨叶
Original Assignee
阳光电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源股份有限公司 filed Critical 阳光电源股份有限公司
Publication of WO2024055372A1 publication Critical patent/WO2024055372A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0213Venting apertures; Constructional details thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components

Definitions

  • This application relates to the technical field of electrical equipment, and specifically to a power converter and an automatic dust cleaning method.
  • power converters as a kind of AC to DC conversion equipment, are widely used in data communications, computers, industry, aerospace and other fields.
  • Power converters often use air-cooling for heat dissipation, that is, the fan sucks external cold air through the air inlet and blows it to the radiator to take away the heat.
  • air-cooling heat dissipation there is a problem of accumulation and blockage of inhaled foreign matter such as dust, which affects the heat dissipation effect. Failure to dissipate heat properly will lead to a decrease in the efficiency of the power converter and even the risk of complete machine failure. Therefore, removing foreign matter from the air duct is an important part of maintaining the normal operation of the power converter.
  • the main measure to solve the problem of power converter blockage is manual maintenance and cleaning on a regular basis.
  • This measure requires personnel to go to the site for maintenance and cleaning, which is lagging; in addition, manual maintenance and cleaning also has the disadvantages of long maintenance time and high maintenance cost.
  • this application provides a power converter and an automatic dust cleaning method, which can automatically realize the internal cleaning of the power converter without affecting the normal operation of the power converter.
  • this application provides a power converter, including: a power semiconductor device, a radiator, a fan and a controller; the radiator includes a radiator substrate and radiator teeth;
  • the power semiconductor device is attached to the heat sink substrate;
  • the air inlet mesh, fan, radiator and air outlet mesh are arranged in sequence in the box of the power converter; an air duct is formed between the fan and the radiator and between the radiator and the air outlet mesh;
  • the controller is used to control the fan reversal when the power converter is not connected to the grid, so as to self-clean the power converter.
  • the controller is specifically configured to control the fan to reverse in a preset cycle, each time reversing for a preset time period.
  • the controller is specifically configured to control the fan to reverse for a preset time period when the time since the last reversal is greater than or equal to the first interval, and then control the fan to stop and update the time since the last reversal.
  • the controller is specifically configured to control the fan to reverse with a preset period when the total fan reversal time is greater than or equal to the preset time; when the total fan reversal time is less than the preset time, to control the fan to reverse with a preset period smaller than the preset period.
  • the time interval controls the fan reversal again.
  • the controller is specifically configured to control the fan to reverse with a preset period when the total number of fan reversals is greater than or equal to the preset number of times; when the total number of fan reversals is less than the preset number of times, to control the fan to reverse with a preset period smaller than the preset period.
  • the time interval controls the fan reversal again.
  • the controller is specifically configured to control the fan to reverse with a preset period when the total fan reversal time is greater than or equal to the preset time and the total number of fan reversals is greater than or equal to the preset times; when the total fan reversal time is less than the preset time, When the set duration or the total number of fan reversals is less than the preset number of times, the fan is controlled to reverse again at a time interval smaller than the preset period.
  • the controller is also used to control the fan reversal according to the power and/or current of the inverter when the inverter in the power converter is connected to the grid.
  • the controller is also used to control the fan to rotate in reverse to consume energy when the power converter is started, and to determine whether the energy at the input end of the inverter meets the grid connection requirement.
  • the power converter includes: a power semiconductor device, a radiator and a fan; the radiator includes a radiator substrate and radiator teeth; the power semiconductor device is attached to the radiator substrate Above;
  • the air inlet mesh, fan, radiator and air outlet mesh are arranged in sequence in the box of the power converter; an air duct is formed between the fan and the radiator and between the radiator and the air outlet mesh;
  • the method includes: identifying the working status of the power converter; when the working status of the power converter is not grid-connected, controlling the fan to reverse to self-clean the power converter.
  • the working state of the power converter is non-grid-connected and the fan is controlled to reverse, which specifically includes: when the power converter is in a non-grid-connected working state, the fan is controlled to reverse in a preset period, and each reversal is performed for a preset time period. .
  • controlling the fan to reverse specifically includes: when the time since the last reversal is greater than or equal to the first interval, controlling the fan to reverse for a preset time period, and then controlling the fan to stop, and updating the time since the last reversal.
  • controlling the fan to reverse specifically includes: when the total fan reversal time is greater than or equal to the preset time, controlling the fan to reverse with a preset period; when the total fan reversal time is less than the preset time, controlling the fan to reverse at a preset period. Small time intervals control the fan to reverse again.
  • controlling fan reversal specifically includes: when the total number of fan reversals is greater than or equal to a preset number of times, controlling the fan reversal with a preset period; when the total number of fan reversals is less than the preset number of times, controlling the fan reversal with a preset period. Small time intervals control the fan to reverse again.
  • controlling the fan to reverse specifically includes: when the total fan reversal time is greater than or equal to a preset time and the total number of fan reversals is greater than or equal to the preset times, controlling the fan reversal with a preset period; when the total fan reversal time is greater than or equal to the preset time, When the duration is less than the preset time or the total number of fan reversals is less than the preset times, the fan is controlled to reverse again at a time interval smaller than the preset period.
  • the method further includes: when the inverter in the power converter is connected to the grid, controlling the fan to reverse based on the power and/or current of the inverter.
  • the fan is controlled to reverse based on the power and/or current of the inverter, specifically including:
  • the fan is controlled to reverse.
  • the method further includes: controlling the fan to rotate in reverse to consume energy when the power converter is started, and determining whether the energy at the input end of the inverter meets the requirement for grid connection.
  • the controller in the power converter controls the fan to reverse when the power converter is in a non-grid connected state.
  • Dust and other foreign matter inside the power converter are blown out to achieve automatic cleaning, saving manpower and improving the lag of manual cleaning. Since this application controls the fan to self-clean the power converter when the power converter is not connected to the grid, it does not affect the normal operation of the power converter and thus does not reduce the working efficiency of the power converter. Moreover, it is simple and easy to use the fan already used for heat dissipation in the power converter, without adding hardware equipment.
  • Figure 1 is a three-dimensional schematic diagram of a power converter
  • Figure 2 is a left cross-sectional view corresponding to Figure 1;
  • Figure 3 is a bottom view corresponding to Figure 1;
  • Figure 4 is a schematic diagram of a power converter provided by an embodiment of the present application.
  • Figure 5 is a flow chart of an automatic dust cleaning method for a power converter provided by an embodiment of the present application.
  • Figure 6 is a flow chart of another automatic dust cleaning method for a power converter provided by an embodiment of the present application.
  • FIG. 7 is a flow chart of yet another automatic dust cleaning method for a power converter provided by an embodiment of the present application.
  • Figure 1 is a three-dimensional schematic diagram of a power converter.
  • Figure 2 is a left cross-sectional view corresponding to Figure 1.
  • the power converter includes the following parts: front box 1, radiator 4, fan 5, air inlet mesh 6, air outlet mesh 7, air duct 8 and power semiconductor device 9. Among them, the radiator base plate 2 and the radiator teeth 3 constitute the radiator 4.
  • the power semiconductor device 9 is placed in the front box 1 and is bonded to the radiator substrate 2 through the interface material; the heat generated by the power semiconductor device 9 in the front box 1 is transferred to the radiator teeth through the radiator substrate 2 3 on; the fan 5 sucks in external cold air from the air inlet mesh 6, and then blows the cold air to the radiator teeth 3 to take away the heat; the generated hot air is discharged from the air outlet mesh 7 to the outside environment.
  • the technical solution provided by the embodiment of this application can control the fan to reverse when the power converter is not connected to the grid, blowing out dust and other foreign matter, thus achieving Automatic cleaning of the inside of the power converter saves manpower and can improve hysteresis; since this application controls the fan to self-clean the power converter when the power converter is not connected to the grid, it does not affect the normal operation of the power converter. .
  • FIG 4 is a schematic diagram of a power converter provided by an embodiment of the present application.
  • the power converter 1000 provided in this embodiment includes: a power semiconductor device 9, a heat sink 4, a fan 5 and a controller 100.
  • the heat sink 4 includes a heat sink substrate 2 and a heat sink tooth plate 3; the power semiconductor device 9 is attached to the heat sink substrate 2.
  • the air inlet mesh 6, the fan 5, the radiator 4 and the air outlet mesh 7 are arranged in the box of the power converter 1000 in sequence; there is a gap formed between the fan 5 and the radiator 4 and between the radiator 4 and the air outlet mesh 7. Wind channel 8.
  • the power converter can be applied to photovoltaic systems, energy storage systems, new energy vehicles, etc.
  • the power converter can be a DCDC converter, a DCAC converter, or an ACDC converter.
  • the power semiconductor device inside the power converter can be any of the following: metal oxide semiconductor field effect transistor MOS, insulation Gate bipolar transistor IGBT, etc.
  • This application does not limit the specific type of the power semiconductor device, and it may also be a device other than those listed above.
  • the controller 100 is used to control fan reversal when the power converter is in a non-grid-connected state, so as to self-clean the power converter.
  • the fan 5 When the power converter is not connected to the grid, the fan 5 is controlled to reverse, which does not affect the normal operation of the power converter and does not consume the total power generation. It can also blow out dust and other foreign matter inside the power converter 1000 to achieve automatic cleaning.
  • the controller controls the fan to reverse when the power converter is in a non-grid-connected state, blowing out dust and other foreign matter inside the power converter, thereby realizing automatic cleaning, saving manpower, and improving the efficiency of the power converter.
  • Hysteresis of manual cleaning since this application controls the fan to self-clean the power converter when the power converter is not connected to the grid, it does not affect the normal operation of the power converter.
  • the embodiments of the present application do not specifically limit the specific implementation method of the fan reversal, such as the duration, number, and interval of reversal, which will be introduced in detail below with examples.
  • the first implementation method :
  • the controller is specifically configured to control the fan to reverse in a preset period when the power converter is in a non-grid-connected state, and each reversal is for a preset time period.
  • the preset period is 1 hour, that is, the fan reverses every hour; the preset time period is 10 minutes, that is, the fan needs to reverse for 10 minutes each time it reverses.
  • the embodiments of the present application do not specifically limit the size of the preset period and the preset time period. Those skilled in the art can set the size of the preset period and the preset time period according to the actual needs of self-cleaning.
  • the controller can set the minimum time interval ta between two consecutive fan reversals, referred to as the first interval ta.
  • the controller is specifically used to control the fan reversal after the preset time period tb when the time t1 from the last reversal is greater than or equal to ta. Stop and update the time t1 since the last reversal.
  • the preset time period tb for each reversal can be the same or different; the preset period can be set to control the fan reversal, or it can not be controlled according to the period.
  • the power converter provided by the embodiment of the present application can also perform reversal only when the time since the last reversal reaches the first interval ta, with a preset time period tb for each reversal.
  • the first interval ta and the preset time period tb together form a preset period.
  • Those skilled in the art can adjust the fan reversal frequency according to the preset period. In scenarios where the self-cleaning demand is large, the reversal cycle is reduced and the reversal frequency is increased; in scenarios where the self-cleaning demand is small, the reversal period is increased and the reversal frequency is reduced. , saves electricity and can adapt to different scenarios, making it more flexible.
  • the controller can be used to set the preset time tc when the power converter is in a non-grid-connected state.
  • the total reversal time t2 is greater than or equal to the preset time tc, it controls the fan to reverse in a preset cycle; when the total reversal time t2 When t2 is less than the preset time period tc, the fan is controlled to reverse again at a time interval smaller than the preset period.
  • the controller can also be used to set a preset number of times N when the power converter is in a non-grid-connected state.
  • the fan can be controlled to reverse in a preset cycle.
  • n is less than the preset number N
  • the fan is controlled to reverse again at a time interval smaller than the preset period.
  • the total reversal time t2 is greater than or equal to the preset time length tc or the total reversal times n is greater than or equal to the preset times N, it indicates that the degree of fan reversal self-cleaning has reached the preset standard, then continue to perform self-cleaning according to the preset cycle. . If the total reversal time t2 is less than the preset time tc or the total number of reversals n is less than the preset number N, it means that the degree of self-cleaning of the fan has not reached the preset standard, so it is controlled again at a time interval smaller than the preset period. The fan rotates in reverse direction to improve self-cleaning efficiency.
  • the preset duration tc and the preset number of times N can be both set, only one can be set, or neither can be set.
  • the power converter provided by the embodiment of the present application can also realize multiple reversals during the reversal process, that is, when the total reversal duration and/or the total number of reversals has not been reached, there is no need to wait for the arrival of the next reversal cycle. , performing multiple reversals within a short interval, making it easier for foreign objects to be removed, improving the efficiency of automatic cleaning, and is suitable for use in scenarios with high self-cleaning requirements.
  • controller may be used to control fan reversal according to the power and/or current of the inverter when the inverter in the power converter is connected to the grid.
  • the power and/or current of the inverter can be used to control the fan reversal without affecting the normal operation of the power converter. At this time, the fan reversal can be controlled without affecting the power. Self-cleaning is achieved when the converter is operating normally.
  • the controller can also be used to control the fan to rotate in reverse to consume energy when the power converter is started, and to determine whether the energy at the input end of the inverter meets the grid connection requirement.
  • the energy consumed by the fan rotation for a certain period of time is usually used to judge. Therefore, the fan can be controlled to reverse at this time, which not only determines whether the input energy meets the requirements, but also performs reverse self-cleaning, saving steps.
  • embodiments of the present application also provide a control method for the power converter, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 5 is a flow chart of an automatic dust cleaning method for a power converter provided by an embodiment of the present application.
  • the automatic dust cleaning method of the power converter provided by this embodiment is applied to the power converter introduced in the above embodiment.
  • the power converter includes: a power semiconductor device, a radiator and a fan; the radiator includes a radiator substrate and a radiator. Gear plates; the power semiconductor device is attached to the radiator substrate; the air inlet mesh, fan, radiator and air outlet mesh are arranged in sequence in the box of the power converter; between the fan and the radiator and between the radiator and the air outlet Air channels are formed between the mesh holes.
  • the method includes:
  • S501 Determine whether the working status of the power converter is connected to the grid. If not, execute S502.
  • controlling fan reversal may include:
  • the fan When the power converter is in a non-grid-connected state, the fan is controlled to reverse at a preset cycle, and each reversal is for a preset time period;
  • the fan is controlled to reverse.
  • This method may also include:
  • the fan When the power converter is started, the fan is controlled to rotate in reverse to consume energy, and it is judged whether the energy at the input end of the inverter meets the grid connection requirement.
  • the automatic dust cleaning method of the power converter controls the fan to reverse when the power converter is not connected to the grid, and can blow out the dust and other foreign matter inside the power converter, thereby realizing automatic cleaning and saving manpower. , and also improves the hysteresis of manual cleaning; because this application controls the fan to self-clean the power converter when the power converter is not connected to the grid, it does not affect the normal operation of the power converter.
  • the fan reversal can be controlled according to a variety of methods.
  • the different control methods will be described below with reference to the accompanying drawings.
  • the fan reversal is periodically controlled by setting the first interval ta. See Figure 6 , which is a flow chart of another automatic dust cleaning method for a power converter provided by an embodiment of the present application. .
  • S601 Determine whether the working status of the power converter is connected to the grid. If so, execute S602.
  • S602 Determine whether the time t1 since the last reversal is greater than or equal to the first interval ta. If so, execute S603; otherwise, execute S604.
  • the method provided by the above embodiment can only perform reversal when the time from the last reversal reaches the first interval ta, and each reversal is performed for a preset time period tb.
  • the first interval ta and the preset time period tb together form a preset period.
  • Those skilled in the art can adjust the fan reversal frequency according to the preset period. In scenarios where the self-cleaning demand is large, the reversal cycle is reduced and the reversal frequency is increased; in scenarios where the self-cleaning demand is small, the reversal period is increased and the reversal frequency is reduced. , saves electricity and can adapt to different scenarios, making it more flexible.
  • a preset time period tc or a preset number of times N can also be set to control the fan to perform multiple reversals. See Figure 7 , which shows another power converter provided in an embodiment of the present application. Flow chart of the automatic dust cleaning method.
  • S701 Determine whether the working status of the power converter is connected to the grid. If so, execute S702.
  • S702 Determine whether the time t1 from the last reversal is greater than or equal to the first interval ta. If so, execute S703; otherwise, execute S707.
  • S704 Determine whether the total reversal time t2 is greater than or equal to the preset time length tc or whether the total number of reversals is greater than or equal to the preset number N. If so, execute S705; otherwise, execute S706.
  • the method provided by the above embodiment can realize multiple reversals during the reversal process, that is, when the total reversal duration and/or the total number of reversals has not been reached, there is no need to wait for the next reversal period to arrive, and in a shorter period Multiple reversals within intervals make it easier to remove foreign matter and improve the efficiency of automatic cleaning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inverter Devices (AREA)

Abstract

本申请公开了一种功率变换器及自动清尘方法,功率变换器包括:功率半导体器件、散热器、风扇和控制器;散热器包括散热器基板和散热器齿片;功率半导体器件贴合于散热器基板上;功率变换器的箱体内依次排布进风口网孔、风扇、散热器和出风口网孔;风扇和散热器之间以及散热器与出风口网孔之间形成风道;控制器,用于在功率变换器处于非并网状态时控制风扇反转,为功率变换器自清洁。由于本申请在功率变换器非并网状态下,控制风扇为功率变换器自清洁,因此不影响功率变换器的正常工作,从而不会降低功率变换器的工作效率。

Description

一种功率变换器及自动清尘方法
本申请要求于2022年09月13日提交中国国家知识产权局的申请号为202211119013.1、申请名称为“一种功率变换器及自动清尘方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电气设备技术领域,具体涉及一种功率变换器及自动清尘方法。
背景技术
随着电气技术的不断发展,功率变换器作为一种交直流转换设备,被广泛应用于数据通讯、计算机、工业、航天等领域。功率变换器常采用风冷散热,即风扇将外部冷风通过进风口吸入,吹至散热器带走热量。但风冷散热过程中,存在吸入的如灰尘等异物堆积堵塞的问题,影响散热效果。无法正常散热将导致功率变换器效率下降,甚至有整机失效的风险。因此,清除风道异物是维持功率变换器正常工作的重要的一环。
目前,解决功率变换器堵塞的主要措施是人工定期进行维护清理。这种措施需要人员到现场进行维护清理,具有滞后性;另外,人工维护清理还具有维护时间长、维护成本高的缺点。
发明内容
有鉴于此,本申请提供一种功率变换器及自动清尘方法,能够自动实现功率变换器的内部清理,而且不影响功率变换器的正常工作。
为解决上述问题,本申请提供一种功率变换器,包括:功率半导体器件、散热器、风扇和控制器;散热器包括散热器基板和散热器齿片;
功率半导体器件贴合于散热器基板上;
功率变换器的箱体内依次排布进风口网孔、风扇、散热器和出风口网孔;风扇和散热器之间以及散热器与出风口网孔之间形成风道;
控制器,用于在功率变换器处于非并网状态时控制风扇反转,为功率变换 器自清洁。
优选地,控制器,具体用于以预设周期控制风扇反转,每次反转预设时间段。
优选地,控制器,具体用于在距离上次反转时间大于等于第一间隔时,控制风扇反转预设时间段,然后控制风扇停转,更新距离上次反转时间。
优选地,控制器,具体用于在风扇反转总时长大于等于预设时长时,以预设周期控制风扇反转;在风扇反转总时长小于预设时长时,以比预设周期小的时间间隔再次控制风扇反转。
优选地,控制器,具体用于在风扇反转总次数大于等于预设次数时,以预设周期控制风扇反转;在风扇反转总次数小于预设次数时,以比预设周期小的时间间隔再次控制风扇反转。
优选地,控制器,具体用于在风扇反转总时长大于等于预设时长且风扇反转总次数大于等于预设次数时,以预设周期控制风扇反转;在风扇反转总时长小于预设时长或风扇反转总次数小于预设次数时,以比预设周期小的时间间隔再次控制风扇反转。
优选地,控制器,还用于在功率变换器中的逆变器并网时,根据逆变器的功率和/或电流控制风扇反转。
优选地,控制器,还用于在功率变换器启动时控制风扇反转来消耗能量,判断逆变器输入端的能量是否满足并网。
本申请还提供一种功率变换器的自动清尘方法,功率变换器包括:功率半导体器件、散热器和风扇;散热器包括散热器基板和散热器齿片;功率半导体器件贴合于散热器基板上;功率变换器的箱体内依次排布进风口网孔、风扇、散热器和出风口网孔;风扇和散热器之间以及散热器与出风口网孔之间形成风道;
该方法包括:识别功率变换器的工作状态;当功率变换器的工作状态为非并网时,控制风扇反转,为功率变换器自清洁。
优选地,功率变换器的工作状态为非并网控制风扇反转,具体包括:功率变换器的工作状态为非并网时,以预设周期控制风扇反转,每次反转预设时间段。
优选地,控制风扇反转,具体包括:在距离上次反转时间大于等于第一间隔时,控制风扇反转预设时间段,然后控制风扇停转,更新距离上次反转时间。
优选地,控制风扇反转,具体包括:在风扇反转总时长大于等于预设时长时,以预设周期控制风扇反转;在风扇反转总时长小于预设时长时,以比预设周期小的时间间隔再次控制风扇反转。
优选地,控制风扇反转,具体包括:在风扇反转总次数大于等于预设次数时,以预设周期控制风扇反转;在风扇反转总次数小于预设次数时,以比预设周期小的时间间隔再次控制风扇反转。
优选地,控制风扇反转,具体包括:在风扇反转总时长大于等于预设时长且风扇反转总次数大于等于预设次数时,以预设周期控制风扇反转;在风扇反转总时长小于预设时长或风扇反转总次数小于预设次数时,以比预设周期小的时间间隔再次控制风扇反转。
优选地,还包括:在功率变换器中的逆变器并网时,根据逆变器的功率和/或电流控制风扇反转。
优选地,根据逆变器的功率和/或电流控制风扇反转,具体包括:
逆变器的功率小于预设功率和/或逆变器的电流小于预设电流时,控制风扇反转。
优选地,还包括:在功率变换器启动时控制风扇反转来消耗能量,判断逆变器输入端的能量是否满足并网。
由此可见,本申请具有如下有益效果:
该功率变换器中的控制器在功率变换器处于非并网状态时控制风扇反转,
将功率变换器内部的灰尘等异物吹出,实现自动清理,节省了人力,还改善了人工清理的滞后性。由于本申请在功率变换器非并网状态下,控制风扇为功率变换器自清洁,因此不影响功率变换器的正常工作,从而不会降低功率变换器的工作效率。而且利用功率变换器中已有用于散热的风扇,不需要增加硬件设备,简单易行。
附图说明
图1为一种功率变换器的三维示意图;
图2为图1对应的左视剖面图;
图3为图1对应的仰视图;
图4为本申请实施例提供的一种功率变换器的示意图;
图5为本申请实施例提供的一种功率变换器的自动清尘方法的流程图;
图6为本申请实施例提供的另一种功率变换器的自动清尘方法的流程图;
图7为本申请实施例提供的又一种功率变换器的自动清尘方法的流程图。
具体实施方式
为更清楚地理解本申请的各个实施例,下面先对功率变换器的散热原理进行简要说明。
参见图1,该图为一种功率变换器的三维示意图。
参见图2,该图为图1对应的左视剖面图。
参见图3,该图为图1对应的仰视图。
功率变换器包括如下部分:前箱体1、散热器4、风扇5、进风口网孔6、出风口网孔7、风道8和功率半导体器件9。其中,散热器基板2和散热器齿片3组成散热器4。
功率半导体器件9置于前箱体1内,并通过界面材料与散热器基板2贴合在一起;前箱体1中的功率半导体器件9产生的热量经散热器基板2传递到散热器齿片3上;风扇5将外部冷风从进风口网孔6吸入,然后将冷风吹向散热器齿片3,带走热量;产生的热风从出风口网孔7排至外界环境。
但是,风扇5散热过程中,进风口网孔6处会形成负压,易将空气中的棉絮、灰尘等异物吸入风道8,造成进风口网孔6、散热器齿片3等区域堵塞,影响散热。
采用人工定期清理的方式,维护成本高,而且有滞后性,本申请实施例提供的技术方案可以在功率变换器处于非并网状态时,控制风扇进行反转,将灰尘等异物吹出,实现了自动对功率变换器内部的清理,节省人力,可以改善滞后性;由于本申请控制风扇为功率变换器自清洁是在功率变换器非并网状态下进行的,因此不影响功率变换器的正常工作。
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请实施例作进一步详细的说明。
参见图4,该图为本申请实施例提供的一种功率变换器的示意图。
本实施例提供的功率变换器1000,包括:功率半导体器件9、散热器4、风扇5和控制器100。
继续参见图1。
其中,散热器4包括散热器基板2和散热器齿片3;功率半导体器件9贴合于散热器基板2上。
功率变换器1000的箱体内依次排布进风口网孔6、风扇5、散热器4和出风口网孔7;风扇5和散热器4之间以及散热器4与出风口网孔7之间形成风道8。
本申请实施例不具体限定功率变换器的具体拓扑和应用场景,例如功率变换器可以应用于光伏系统,也可以应用于储能系统,也可以应用于新能源汽车等。功率变换器可以为DCDC变换器,也可以为DCAC变换器,也可以为ACDC变换器,其中,功率变换器内部的功率半导体器件可以为以下任意一种:金属氧化物半导体场效应管MOS、绝缘栅双极型晶体管IGBT等。
本申请对于功率半导体器件的具体类型不做限定,也可以为以上列举之外的器件。
控制器100,用于在功率变换器处于非并网状态时控制风扇反转,为功率变换器自清洁。
在功率变换器处于非并网状态时,控制风扇5反转,不影响功率变换器的正常工作,不消耗总发电量,还可以将功率变换器1000内部的灰尘等异物吹出,实现自动清理。
本申请实施例提供的功率变换器,控制器在功率变换器处于非并网状态时,控制风扇反转,将功率变换器内部的灰尘等异物吹出,实现自动清理,节省了人力,还改善了人工清理的滞后性;由于本申请控制风扇为功率变换器自清洁是在功率变换器非并网状态下进行的,因此不影响功率变换器的正常工作。
本申请实施例不具体限定风扇反转时的具体实现方式,例如反转的时长、次数以及间隔等,下面举例进行具体介绍。
第一种实现方式:
控制器,具体用于在功率变换器处于非并网状态时,以预设周期控制所述风扇反转,每次反转预设时间段。例如,预设周期为1小时,即每隔1小时风 扇反转一次;预设时间段为10分钟,即每次反转时风扇需要反转10分钟。本申请实施例不具体限定预设周期和预设时间段的大小,本领域技术人员可以根据自清洁的实际需要,来设置预设周期和预设时间段的大小。
控制器可以设置相邻两次风扇反转最小时间间隔ta,简称第一间隔ta,控制器具体用于在距离上次反转时间t1大于等于ta时,控制风扇反转预设时间段tb后停转,更新距离上次反转时间t1。
距离上次反转时间t1大于等于ta时,表示已经达到了预设周期,需要进行新的一次自清洁,控制器则需要控制风扇进行下一次反转。
当然,每次反转的预设时间段tb可以相同也可以不同;可以设定预设周期对风扇反转进行控制,也可以不按照周期控制。
本申请实施例提供的功率变换器,还可以仅在距离上次反转时间达到第一间隔ta时进行反转,每次反转预设时间段tb。第一间隔ta与预设时间段tb一同构成预设周期。本领域技术人员可以根据预设周期调节风扇反转频率,在自清洁需求大的场景下缩小反转周期提高反转频率;在自清洁需求小的场景下则增大反转周期降低反转频率,节约用电且能够适应不同场景,更为灵活。
第二种实现方式:
控制器可以用于在功率变换器处于非并网状态时,设置预设时长tc,在反转总时长t2大于等于预设时长tc时,以预设周期控制风扇反转;在反转总时长t2小于预设时长tc时,以比预设周期小的时间间隔再次控制风扇反转。控制器也可以用于在功率变换器处于非并网状态时,设置预设次数N,在反转总次数n大于预设次数N时,以预设周期控制风扇反转;在反转总次数n小于预设次数N时,以比预设周期小的时间间隔再次控制风扇反转。
反转总时长t2大于等于预设时长tc或反转总次数n大于等于预设次数N时,表明风扇反转自清洁的程度已经达到预设标准,则继续按照预设周期进行自清洁即可。若反转总时长t2小于预设时长tc或反转总次数n小于预设次数N,表明风扇反转自清洁的程度还未达到预设标准,因此以比预设周期小的时间间隔再次控制风扇反转,提高自清洁效率。
其中,预设时长tc与预设次数N可以都设置,可以只设置一项,还可以都不设置。
本申请实施例提供的功率变换器,还可以实现反转过程中的多次反转,即在未达到反转总时长和/或未达到反转总次数时,无需等待下一反转周期到来,在较短间隔内进行多次反转,使异物更容易被清除,提高了自动清理的效率,适合应用于自清洁需求高的场景中。
另外,控制器可以用于,在功率变换器中的逆变器并网时,根据逆变器的功率和/或电流控制风扇反转。
在功率变换器并网时,可以根据逆变器的功率和/或电流,得到控制风扇反转时不会影响功率变换器正常工作的情况;此时控制风扇反转,也能在不影响功率变换器正常工作的情况下实现自清理。
控制器还可以用于,在功率变换器启动时控制风扇反转来消耗能量,判断逆变器输入端的能量是否满足并网。
检测输入端输入能量是否满足并网要求时,通常利用风扇转动一定时间消耗的能量来进行判断。因此,此时可以控制风扇反转,既判断输入能量是否满足要求,又进行了反转自清洁,节省了步骤。
基于以上实施例提供的一种功率变换器,本申请实施例还提供一种功率变换器的控制方法,下面结合附图进行详细介绍。
参见图5,该图为本申请实施例提供的一种功率变换器的自动清尘方法的流程图。
本实施例提供的功率变换器的自动清尘方法,应用于以上实施例介绍的功率变换器,其中,功率变换器包括:功率半导体器件、散热器和风扇;散热器包括散热器基板和散热器齿片;功率半导体器件贴合于散热器基板上;功率变换器的箱体内依次排布进风口网孔、风扇、散热器和出风口网孔;风扇和散热器之间以及散热器与出风口网孔之间形成风道。
该方法包括:
S501:判断功率变换器的工作状态是否并网,如果否,执行S502。
S502:在功率变换器处于非并网状态时,控制风扇反转,为功率变换器自清洁。
其中,控制风扇反转,具体可以包括:
在功率变换器处于非并网状态时,以预设周期控制风扇反转,每次反转预 设时间段;
或,
在功率变换器中的逆变器并网时,逆变器的功率小于预设功率和/或逆变器的电流小于预设电流时,控制风扇反转。
该方法,还可以包括:
在功率变换器启动时,控制风扇反转来消耗能量,判断逆变器输入端能量是否满足并网。
本实施例提供的功率变换器的自动清尘方法,在功率变换器处于非并网状态时,控制风扇反转,可以将功率变换器内部的灰尘等异物吹出,从而实现自动清理,节省了人力,还改善了人工清理的滞后性;由于本申请控制风扇为功率变换器自清洁是在功率变换器非并网状态下进行的,因此不影响功率变换器的正常工作。
上述功率变换器的自动清尘方法中,可以根据多种方法控制风扇反转,以下结合附图对所述不同的控制方法分别进行描述。
本申请一实施例中,通过设置第一间隔ta,对风扇反转进行了周期控制,参见图6,该图为本申请实施例提供的另一种功率变换器的自动清尘方法的流程图。
S601:判断功率变换器工作状态是否并网,如果是,执行S602。
S602:判断距离上次反转时间t1是否大于等于第一间隔ta,如果是,执行S603;反之执行S604。
S603:在距离上次反转时间t1大于等于第一间隔ta时,控制风扇反转预设时间段tb,然后停转,更新距离上次反转时间t1。
S604:控制风扇停转。
上述实施例提供的方法,可以仅在距离上次反转时间达到第一间隔ta时进行反转,每次反转预设时间段tb。第一间隔ta与预设时间段tb一同构成预设周期。本领域技术人员可以根据预设周期调节风扇反转频率,在自清洁需求大的场景下缩小反转周期提高反转频率;在自清洁需求小的场景下则增大反转周期降低反转频率,节约用电且能够适应不同场景,更为灵活。
在本申请另一实施例中,还可以设置预设时长tc或预设次数N,来控制 风扇进行多次反转,参见图7,该图为本申请实施例提供的又一种功率变换器的自动清尘方法的流程图。
S701:判断功率变换器工作状态是否并网,如果是,执行S702。
S702:判断距离上次反转时间t1是否大于等于第一间隔ta,如果是,执行S703;反之执行S707。
S703:在距离上次反转时间t1大于等于第一间隔ta时,控制风扇反转预设时间段tb,然后停转,更新距离上次反转时间t1、反转总时长t2和反转总次数n。
S704:判断反转总时长t2是否大于等于预设时长tc或反转总次数是否大于等于预设次数N,如果是,执行S705;反之执行S706。
S705:在风扇反转总时长t2大于等于预设时长tc或风扇反转总次数n大于等于预设次数N时,清零距离上次反转时间t1、反转总时长t2和反转总次数n。
S706:在风扇反转总时长t2小于预设时长tc或风扇反转总次数n小于预设次数N时,以比预设周期小的时间间隔再次控制风扇反转。
S707:控制风扇停转。
上述实施例提供的方法,可以实现反转过程中的多次反转,即在未达到反转总时长和/或未达到反转总次数时,无需等待下一反转周期到来,在较短间隔内进行多次反转,使异物更容易被清除,提高了自动清理的效率。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (17)

  1. 一种功率变换器,其特征在于,包括:功率半导体器件、散热器、风扇和控制器;所述散热器包括散热器基板和散热器齿片;
    所述功率半导体器件贴合于所述散热器基板上;
    所述功率变换器的箱体内依次排布进风口网孔、所述风扇、所述散热器和出风口网孔;所述风扇和所述散热器之间以及所述散热器与所述出风口网孔之间形成风道;
    所述控制器,用于在所述功率变换器处于非并网状态时控制所述风扇反转,为所述功率变换器自清洁。
  2. 根据权利要求1所述的功率变换器,其特征在于,所述控制器,具体用于以预设周期控制所述风扇反转,每次反转预设时间段。
  3. 根据权利要求2所述的功率变换器,其特征在于,所述控制器,具体用于在距离上次反转时间大于等于第一间隔时,控制所述风扇反转预设时间段,然后控制所述风扇停转,更新所述距离上次反转时间。
  4. 根据权利要求2所述的功率变换器,其特征在于,所述控制器,具体用于在所述风扇反转总时长大于等于预设时长时,以所述预设周期控制所述风扇反转;在所述风扇反转总时长小于预设时长时,以比所述预设周期小的时间间隔再次控制所述风扇反转。
  5. 根据权利要求2所述的功率变换器,其特征在于,所述控制器,具体用于在所述风扇反转总次数大于等于预设次数时,以所述预设周期控制所述风扇反转;在所述风扇反转总次数小于预设次数时,以比所述预设周期小的时间间隔再次控制所述风扇反转。
  6. 根据权利要求2所述的功率变换器,其特征在于,所述控制器,具体用于在所述风扇反转总时长大于等于预设时长且所述风扇反转总次数大于等于预设次数时,以所述预设周期控制所述风扇反转;在所述风扇反转总时长小于预设时长或所述风扇反转总次数小于预设次数时,以比所述预设周期小的时间间隔再次控制所述风扇反转。
  7. 根据权利要求1-6任一项所述的功率变换器,其特征在于,所述控制器,还用于在所述功率变换器中的逆变器并网时,根据所述逆变器的功 率和/或电流控制所述风扇反转。
  8. 根据权利要求1-6任一项所述的功率变换器,其特征在于,所述控制器,还用于在所述功率变换器启动时控制所述风扇反转来消耗能量,判断逆变器输入端的能量是否满足并网。
  9. 一种功率变换器的自动清尘方法,其特征在于,所述功率变换器包括:功率半导体器件、散热器和风扇;所述散热器包括散热器基板和散热器齿片;所述功率半导体器件贴合于所述散热器基板上;所述功率变换器的箱体内依次排布进风口网孔、所述风扇、所述散热器和出风口网孔;所述风扇和所述散热器之间以及所述散热器与所述出风口网孔之间形成风道;
    该方法包括:
    识别所述功率变换器的工作状态;
    当所述功率变换器的工作状态为非并网时,控制所述风扇反转,为所述功率变换器自清洁。
  10. 根据权利要求9所述的方法,其特征在于,所述功率变换器的工作状态为非并网控制所述风扇反转,具体包括:
    所述功率变换器的工作状态为非并网时,以预设周期控制所述风扇反转,每次反转预设时间段。
  11. 根据权利要求10所述的方法,其特征在于,所述控制所述风扇反转,具体包括:
    在距离上次反转时间大于等于第一间隔时,控制所述风扇反转预设时间段,然后控制所述风扇停转,更新所述距离上次反转时间。
  12. 根据权利要求10所述的方法,其特征在于,所述控制所述风扇反转,具体包括:
    在所述风扇反转总时长大于等于预设时长时,以所述预设周期控制所述风扇反转;在所述风扇反转总时长小于预设时长时,以比所述预设周期小的时间间隔再次控制所述风扇反转。
  13. 根据权利要求10所述的方法,其特征在于,所述控制所述风扇反转,具体包括:
    在所述风扇反转总次数大于等于预设次数时,以所述预设周期控制所 述风扇反转;在所述风扇反转总次数小于预设次数时,以比所述预设周期小的时间间隔再次控制所述风扇反转。
  14. 根据权利要求10所述的方法,其特征在于,所述控制所述风扇反转,具体包括:
    在所述风扇反转总时长大于等于预设时长且所述风扇反转总次数大于等于预设次数时,以所述预设周期控制所述风扇反转;在所述风扇反转总时长小于预设时长或所述风扇反转总次数小于预设次数时,以比所述预设周期小的时间间隔再次控制所述风扇反转。
  15. 根据权利要求9-14任一项所述的方法,其特征在于,还包括:
    在所述功率变换器中的逆变器并网时,根据所述逆变器的功率和/或电流控制所述风扇反转。
  16. 根据权利要求15所述的方法,其特征在于,根据所述逆变器的功率和/或电流控制所述风扇反转,具体包括:
    所述逆变器的功率小于预设功率和/或所述逆变器的电流小于预设电流时,控制所述风扇反转。
  17. 根据权利要求9-14任一项所述的方法,其特征在于,还包括:
    在所述功率变换器启动时控制所述风扇反转来消耗能量,判断逆变器输入端的能量是否满足并网。
PCT/CN2022/123967 2022-09-13 2022-10-09 一种功率变换器及自动清尘方法 WO2024055372A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211119013.1 2022-09-13
CN202211119013.1A CN115360925A (zh) 2022-09-13 2022-09-13 一种功率变换器及自动清尘方法

Publications (1)

Publication Number Publication Date
WO2024055372A1 true WO2024055372A1 (zh) 2024-03-21

Family

ID=84006310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123967 WO2024055372A1 (zh) 2022-09-13 2022-10-09 一种功率变换器及自动清尘方法

Country Status (2)

Country Link
CN (1) CN115360925A (zh)
WO (1) WO2024055372A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217475A1 (de) * 2012-09-26 2014-03-27 Siemens Aktiengesellschaft Verfahren und Anordnung zur Beseitigung von Verschmutzungen an einem Kühlsystem
CN104158218A (zh) * 2014-08-27 2014-11-19 阳光电源股份有限公司 一种光伏逆变器启动控制方法、系统及光伏发电系统
CN104564769A (zh) * 2015-01-28 2015-04-29 合肥联宝信息技术有限公司 一种风扇自动除尘控制方法及装置
CN112187137A (zh) * 2020-09-29 2021-01-05 深圳市库马克新技术股份有限公司 变频器的风冷散热结构和变频器风道自清洁的控制方法
CN112578874A (zh) * 2019-09-27 2021-03-30 恒为科技(上海)股份有限公司 一种除尘方法、装置及除尘系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217475A1 (de) * 2012-09-26 2014-03-27 Siemens Aktiengesellschaft Verfahren und Anordnung zur Beseitigung von Verschmutzungen an einem Kühlsystem
CN104158218A (zh) * 2014-08-27 2014-11-19 阳光电源股份有限公司 一种光伏逆变器启动控制方法、系统及光伏发电系统
CN104564769A (zh) * 2015-01-28 2015-04-29 合肥联宝信息技术有限公司 一种风扇自动除尘控制方法及装置
CN112578874A (zh) * 2019-09-27 2021-03-30 恒为科技(上海)股份有限公司 一种除尘方法、装置及除尘系统
CN112187137A (zh) * 2020-09-29 2021-01-05 深圳市库马克新技术股份有限公司 变频器的风冷散热结构和变频器风道自清洁的控制方法

Also Published As

Publication number Publication date
CN115360925A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
CN106225186A (zh) 变频空调系统及其的功率模块的发热控制方法、装置
CN201075884Y (zh) 一种散热装置及一种电子设备机箱
WO2024055372A1 (zh) 一种功率变换器及自动清尘方法
CN204559426U (zh) 逆变器及其冷却风道结构
CN203872034U (zh) 一种新型水冷变频器
CN208128742U (zh) 一种机电设备散热装置
CN104734465B (zh) 功率柜及变流器
CN206976322U (zh) 一种板状散热片
CN201246992Y (zh) 一种冷却器的冷却管
CN210432290U (zh) 一种高效散热的功放机结构
CN208337423U (zh) 一种基于igbt功率模块的散热装置及光伏并网逆变器
CN207968305U (zh) 一种新型变频电源装置
CN219679078U (zh) 一种高压变频器的柜体内风冷散热装置
CN211880328U (zh) 一种散热性能好的变频器
CN213846517U (zh) 一种具有良好散热性能的变频器
CN213214003U (zh) 一种电压稳定性高的发电机组辅助电源装置
CN212649974U (zh) 一种机房的散热结构
CN210868550U (zh) 一种高频整流电源外循环散热系统
CN217823776U (zh) 一种便于散热的高低压开关柜
CN219477855U (zh) 一种逆变功率单元
CN107332445A (zh) 一种节能型变频器
CN210518129U (zh) 一种离网光伏逆变器的散热装置
CN207166353U (zh) 一种降低ab变频器运行温度的系统
CN213957959U (zh) 一种变频器散热机箱
CN211953117U (zh) 一种管制大厅高台循环送风散热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958562

Country of ref document: EP

Kind code of ref document: A1