WO2024055253A1 - 成像设备及成像方法 - Google Patents

成像设备及成像方法 Download PDF

Info

Publication number
WO2024055253A1
WO2024055253A1 PCT/CN2022/119128 CN2022119128W WO2024055253A1 WO 2024055253 A1 WO2024055253 A1 WO 2024055253A1 CN 2022119128 W CN2022119128 W CN 2022119128W WO 2024055253 A1 WO2024055253 A1 WO 2024055253A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
array
filters
optical
light intensity
Prior art date
Application number
PCT/CN2022/119128
Other languages
English (en)
French (fr)
Inventor
杨晖
蒋永斌
赵婉月
刘畅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/119128 priority Critical patent/WO2024055253A1/zh
Publication of WO2024055253A1 publication Critical patent/WO2024055253A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present application relates to the field of image processing technology, and more specifically, to an imaging device and an imaging method.
  • the imaging equipment and imaging method provided by this application can accurately and efficiently image the detection object, and detect the detection object based on the imaging results.
  • the present application provides an imaging device, including: a filter array disposed in front of a photosensitive array, the filter array including at least two types of filters, used to obtain detection objects in at least two types of
  • the optical filter corresponds to the optical signal of the spectral band;
  • the photosensitive array is used to obtain the light intensity information of the corresponding spectral band according to the optical signal;
  • the processing module electrically connected to the photosensitive array is used to obtain the light intensity information of the corresponding spectral band according to each of the spectra.
  • the light intensity information of the band is used to obtain the PL image.
  • the detection objects include components that can excite light (detection light) through PL, such as photovoltaic components, photovoltaic sheets, etc.
  • the photosensitive array can be a short-wave infrared detector array such as indium gallium arsenide (chemical formula InGaAs).
  • the arrangement of the filter array before the photosensitive array means that the incident detection light in the imaging device first passes through the filter array and then passes through the photosensitive array.
  • the two optical filters may be a first optical filter and a second optical filter. The optical signal of the detection object in the spectral band corresponding to the first optical filter is obtained, and the optical signal of the detection object in the spectral band corresponding to the second optical filter is obtained.
  • the filter array when the detection light passes through the first filter, the filter array can obtain the optical signal of the detection object in the corresponding spectral band of the first filter, and when the detection light passes through the second filter, the filter array can obtain The optical signal of the object in the corresponding spectral band of the second filter is detected.
  • the photosensitive array obtains the light intensity information of the spectral band corresponding to the first filter based on the light signal corresponding to the spectral band of the first filter, and obtains the spectrum corresponding to the second filter based on the light signal corresponding to the spectral band of the second filter. The light intensity information of the band.
  • the processing module can obtain the missing light intensity information of the first filter and the second filter in each pixel through a preset algorithm, such as a color guessing algorithm, based on the light intensity information corresponding to the first filter and the second filter.
  • the light intensity information missing from the light sheet is then used to obtain the light intensity information of each pixel of the PL pattern based on the complete light intensity information of the first filter and the second filter, thereby obtaining a complete PL image.
  • M*N filters are provided corresponding to each pixel in the filter array, where M is the number of filters provided in the horizontal direction of the filter array.
  • the number of optical plates, N is the number of optical filters arranged in the vertical direction of the optical filter array, and both M and N are positive integers greater than 1.
  • Imaging devices can support different pixels for imaging. Therefore, the filter array provided in each imaging device can be prepared according to the pixel requirements of the device.
  • the filter array at least includes a first filter and a second filter, and the first filter and the second filter are in The filters are arranged in a crosswise manner in the array.
  • the first filter and the second filter can be arranged with one filter as a crossing unit, or between the first filter and the second filter, a plurality of filters can be arranged as a crossing unit. , such as two first filters and two second filters arranged crosswise and other cross-arrangement methods.
  • the filter array at least includes the first filter and the second filter, and the first filter and the second filter are The optical filters are interleaved in row units in the filter array, or the first optical filter and the second optical filter are interleaved in row units in the optical filter array.
  • the spectral overlap of the first optical filter and the second optical filter does not exceed a preset value.
  • the first filter you can choose a filter with a center frequency of 1130nm and a half-wave width of 20nm to 70nm.
  • the second filter you can choose a filter with a center frequency of 1200nm to 1300nm and a half-wave width of 20nm to 70nm.
  • the default value is is 5%, that is, the overlap of the filter spectrum bands of the first filter and the second filter does not exceed 5%.
  • the repetition rate of the optical signal obtained by the filter is low, which can reduce redundancy and save equipment expenses.
  • the optical filter array is bonded to the photosensitive array.
  • the present application provides an imaging method.
  • the method is applied in an imaging device and includes: acquiring optical signals of a detection object in spectral bands corresponding to at least two filters, wherein the imaging device includes: A filter array before the photosensitive array, the filter array includes at least two types of filters; light intensity information corresponding to the spectral band is obtained according to the optical signal; light intensity information of each spectral band is obtained PL image.
  • M*N filters are provided corresponding to each pixel in the filter array, where M is the number of filters provided in the horizontal direction of the filter array.
  • the number of optical plates, N is the number of optical filters arranged in the vertical direction of the optical filter array, and both M and N are positive integers greater than 1.
  • the filter array at least includes a first filter and a second filter, and the first filter and the second filter are in The filters are arranged in a crosswise manner in the array.
  • the filter array includes at least the first filter and the second filter, and the first filter and the second filter are The optical filters are interleaved in row units in the filter array, or the first optical filter and the second optical filter are interleaved in row units in the optical filter array.
  • the spectral overlap of the first optical filter and the second optical filter does not exceed a preset value.
  • the optical filter array is bonded to the photosensitive array.
  • the present application provides an optical imaging system, which includes an imaging device and a detection object, wherein the detection object includes components that can excite light (detection light) through PL, such as photovoltaic components, photovoltaic sheets, etc.
  • the structure of the imaging device is as shown in the first aspect and any possible implementation of the first aspect, and the imaging device is used to perform the second aspect and any possible implementation of the second aspect performed by the imaging device. Some or all operations.
  • the present application provides a computer-readable storage medium that stores instructions that, when run on a processor, implement the method described in any of the foregoing aspects and any of the foregoing. Some or all of the operations included in any possible implementation of the aspect.
  • the present application provides a computer program product, which includes instructions that, when run on a processor, implement the method described in any of the foregoing aspects and any possible method of any of the foregoing aspects. Some or all of the operations included in the implementation.
  • this application provides a chip including: an interface circuit and a processor.
  • the interface circuit is connected to the processor, and the processor is configured to cause the chip to perform some or all of the operations included in the method described in any of the foregoing aspects and any possible implementation of any of the foregoing aspects. .
  • Figure 1 is a schematic structural diagram of an imaging device provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a filter array provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another filter array provided by an embodiment of the present application.
  • Figure 4 is a schematic flowchart of an imaging method provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an imaging system provided by an embodiment of the present application.
  • Coating refers to the process of coating a layer (or multiple layers) of metal (or dielectric) film on the surface of an optical component.
  • Interference coating is a process in which the optical coating is reflected and transmitted multiple times after coating the surface of the optical component.
  • forming multi-beam interference a process in which different intensity distributions are obtained by controlling the refractive index and thickness of the coating.
  • detection light the light that is excited by PL on a detection object such as a photovoltaic module and enters the imaging device is called detection light.
  • Training data a mathematical model of sample data
  • the electroluminescence principle of crystalline silicon is used, and a high-resolution infrared camera is used to capture near-infrared images of crystalline silicon.
  • the imaging software is used to analyze and process the obtained imaging images to detect whether there are any abnormalities in the photovoltaic modules.
  • V represents the voltage
  • Voc represents the open circuit voltage when the current is equal to zero.
  • the imaging device provided by the embodiment of the present application can be a camera, a mobile phone, and other devices equipped with an image sensor and capable of imaging.
  • Figure 1 is a schematic structural diagram of an imaging device provided by an embodiment of the present application. Referring to Figure 1, the The imaging device 10 includes: a filter array 101, a photosensitive array 102 and a processing module 103.
  • the filter array 101 disposed in front of the photosensitive array 102 includes at least two kinds of filters, and is used to obtain the optical signal of the detection object in the spectral band corresponding to the at least two kinds of filters.
  • the detection objects include components that can excite light (detection light) through PL, such as photovoltaic components, photovoltaic sheets, etc.
  • Setting the filter array before the photosensitive array means that the incident detection light in the imaging device first passes through the filter array and then passes through the photosensitive array.
  • the imaging device acquires the optical signal of the detection object in the spectral band corresponding to the first filter, and the optical signal of the detection object in the spectral band corresponding to the second filter.
  • the filter array can The optical signal of the object in the spectral band corresponding to the first filter is obtained.
  • the filter array can obtain the optical signal of the object in the spectral band corresponding to the second filter.
  • the photosensitive array obtains the light intensity information of the spectral band corresponding to the first filter based on the light signal corresponding to the spectral band of the first filter, and obtains the light intensity information corresponding to the spectral band of the second filter based on the light signal corresponding to the spectral band of the second filter.
  • Light intensity information can obtain the missing light intensity information of the first filter in each pixel through a preset algorithm, such as a color guessing algorithm, based on the light intensity information corresponding to the first filter and the second filter. The light intensity information missing from the filter is filled in and a complete PL image is obtained.
  • the imaging device can support different pixels for imaging. Therefore, the filter array set in each imaging device can be prepared according to the pixel requirements of the device.
  • the embodiment of the present application shows a filter array corresponding to one pixel.
  • FIG2 is a schematic diagram of a filter array provided in the embodiment of the present application. Taking two filters as the first filter and the second filter, the first filter and the second filter can be cross-arranged in the filter array as an example. FIG2 takes the arrangement of one filter as a cross unit between the first filter and the second filter as an example. Between the first filter and the second filter, multiple filters are used as cross units, such as two first filters and two second filters are cross-arranged, and other cross-arrangement methods are also within the protection scope of the present application.
  • the filter array corresponding to one pixel includes M*N filters, where M is the number of filters set in the horizontal direction of the filter array, and N is the number of filters set in the vertical direction of the filter array, and both M and N are positive integers greater than 1.
  • a coordinate position can be marked for each filter. For example, with the 0 point position in FIG.
  • the first filter in the horizontal and vertical directions is marked as filter (1, 1)
  • the first filter in the horizontal direction and the second filter in the vertical direction are marked as filter (1, 2)
  • the first filter in the horizontal direction and the third filter in the vertical direction are marked as filter (1, 3)
  • the second horizontal filter and the first vertical filter are marked as filter (2, 1)
  • the second horizontal filter and the second vertical filter are marked as filter (2, 2)
  • the second horizontal filter and the third vertical filter are marked as filter (2, 3)
  • the third horizontal filter and the first vertical filter are marked as filter (3, 1)
  • the third horizontal filter and the second vertical filter are marked as filter (3, 2)
  • the second horizontal filter and the third vertical filter are marked as filter (3, 3), and so on.
  • filter (1, 1), filter (3, 1), filter (2, 2), filter (1, 3) and filter (3, 3) are first filters
  • filter (2, 1), filter (1, 2), filter (3, 2) and filter (2, 3) are second filters, and so on, and the filter spectrum overlap of the first filter and the second filter does not exceed a preset value.
  • the first filter can select a filter with a center frequency of 1130nm and a half-wave width of 20nm to 70nm
  • the second filter can select a filter with a center frequency of 1200nm to 1300nm and a half-wave width of 20nm to 70nm
  • the preset value is 5%, that is, the filter spectrum band overlap of the first filter and the second filter does not exceed 5%, and the optical signal repetition rate obtained by the two filters is low, which can reduce redundancy and save equipment expenses.
  • the first optical filter and the second optical filter can be arranged crosswise in row units, or the first optical filter and the second optical filter can be arranged crosswise in row units.
  • the second optical filter can be arranged crosswise in units of rows.
  • Figure 3 is a schematic diagram of another optical filter array provided by an embodiment of the present application. As shown in Figure 3, the first optical filter and the second optical filter are arranged in units of one row. Taking the cross arrangement as an example, assume that the filter array corresponding to one pixel includes M*N filters.
  • a filter array includes 25 filters, in a plane coordinate system (x, y) representing the position in the pixel, the 0 point position in Figure 3 is used as a reference, the first horizontal
  • the first filter and the fifth filter in the longitudinal direction are marked as filter (1, 5)
  • the second filter in the horizontal direction and the fifth filter in the longitudinal direction are marked as filter (2, 5).
  • the third horizontal filter and the fifth longitudinal filter are marked as filter (3, 5), the fourth horizontal filter and the fifth longitudinal filter are marked as filter (4 , 5), the fifth filter in the lateral direction and the fifth filter in the longitudinal direction are marked as filter (5, 5), the first filter in the lateral direction and the fourth filter in the longitudinal direction are marked as filter Light sheet (1, 4), the second horizontal filter and the fourth longitudinal filter are marked as filter (2, 4), the third horizontal filter and the fourth longitudinal filter.
  • the pieces are marked as filter (3, 4), the fourth transverse filter and the fourth longitudinal filter are marked as filter (4, 4), the fifth transverse filter and the longitudinal
  • the fourth filter is labeled filter (5, 4), and so on.
  • filter (1,5), filter (2,5), filter (3,5), filter (4,5) and filter ( 5,5) is the first filter
  • filter (1,4), filter (2,4), filter (3,4), filter (4,4) and filter ( 5, 4) is the second filter, and so on, and the overlap of the filter spectra of the first filter and the second filter does not exceed the preset value.
  • the first filter can select a filter whose center frequency of the first spectral band is in the range of 1100nm to 1160nm.
  • the center frequency is 1130nm and the half-wave width is 20nm to 70nm.
  • the second filter can select the second filter.
  • the center frequency of the second spectral band is in the range of 1200nm to 1300nm, and the half-wave width is from 20nm to 70nm.
  • the default value is 5%, that is, the filter spectrum bands of the first filter and the second filter do not overlap. More than 5%.
  • the embodiment of the present application is illustrated by taking the arrangement of the filter array provided in Figures 2 and 3 as an example.
  • the case where the filter array includes three or more types of filters is also within the protection scope of the present application.
  • This example can be used by analogy.
  • the filter array includes two types of filters, it is not limited to the arrangement of the filter array provided in Figures 2 and 3. Other arrangements are also within the scope of protection of this application. within.
  • the filter array can be disposed in front of the photosensitive array, or can be processed on the photosensitive array, such as bonded to the photosensitive array, or the filter array can also be arranged in parallel in front of the photosensitive array to filter out
  • the light plate array is bonded to the photosensitive array as an example, but this structure is not limited.
  • the filter array can be obtained by using interference coating technology or micro-nano optical technology.
  • the photosensitive array 102 is used to obtain light intensity information corresponding to the spectral band based on the optical signal acquired by the filter array 101 .
  • the light intensity information of the spectral band may include the light intensity information of the first spectral band corresponding to the first filter and the light intensity information of the second spectral band corresponding to the second filter.
  • the photosensitive array 102 may be based on the optical filter.
  • the optical signal acquired by the array 101 obtains radiation information or frequency information in the spectral band, etc.
  • the embodiment of the present application uses light intensity information as an example to illustrate.
  • the photosensitive array 102 can obtain the light intensity information of the first spectral band through the light signal passing through the first filter, and through the light signal passing through the second filter.
  • the signal obtains the light intensity information of the second spectral band.
  • the photosensitive array 102 can obtain filter (1, 1), filter (3, 1), filter (2, 2), filter (1 , 3) and the light intensity information of the first filter in the first spectral band at positions such as filter (3, 3), and filter (2, 1), filter (1, 2), filter
  • the light intensity information in the second spectral band of the second filter at positions such as filter (3, 2) and filter (2, 3) however, the light intensity information corresponding to a pixel in the first spectral band is incomplete, as shown in this In the example, there is a lack of light intensity information in the first spectral band for positions such as filter (2, 1), filter (1, 2), filter (3, 2), and filter (2, 3).
  • the light intensity information corresponding to a pixel in the second spectral band is incomplete.
  • the photosensitive array 102 can obtain filter (1, 5), filter (2, 5), filter (3, 5), The light intensity information of the first filter in the first spectral band at positions such as filter (4, 5) and filter (5, 5), and filter (1, 4), filter (2, 4), the light intensity information of the second filter in the second spectral band at positions such as filter (3, 4), filter (4, 4) and filter (5, 4), but the first The light intensity information corresponding to a pixel in the spectral band is incomplete. For example, in this example, filter (1, 4), filter (2, 4), filter (3, 4), filter (4) are missing.
  • the second spectral band corresponds to a pixel of incomplete light intensity information, such as in this example, the lack of filter (1, 5), the light intensity information of the second spectral band at the positions of filter (2, 5), filter (3, 5), filter (4, 5), and filter (5, 5).
  • the processing module 103 is electrically connected to the photosensitive array 102, and is used to obtain a PL image based on the light intensity information of each spectral band.
  • the photosensitive array 102 may be a short-wave infrared detector array such as InGaAs.
  • the processing module 103 obtains the light intensity information of two spectral bands at each pixel position through a demosaicing algorithm to complete the missing light intensity information. For example, when corresponding to the filter shown in Figure 2, there is a lack of filter (2, 1), filter (1, 2), filter (3, 2) and filter (2, 3 ) and other positions in the first spectral band, and filter (1, 1), filter (3, 1), filter (2, 2), filter (1, 3) and For the light intensity information of the second spectral band at positions such as the filter (3, 3), the processing module 103 can obtain the missing spectral information in each pixel through a color guessing algorithm.
  • the spectral information can include the light intensity information of the first spectral band.
  • the color algorithm is a method of calculating the spectral information of the missing filter position through the spectral information of the four adjacent filter positions. For example, filter (3, 3) If the position lacks the light intensity information of the second spectral band, the light of the second spectral band at the position of the filter (2, 2) can be calculated through the light intensity information of the second spectral band at the four adjacent positions.
  • the exact part can also be obtained through machine learning methods.
  • the training data "red green blue (RGB) imaging demosaic algorithm” can be obtained by training, and two types of missing positions in a pixel can be calculated.
  • the light intensity information of the spectral band is obtained to obtain complete light intensity information of the two spectral bands, which will not be described in detail here.
  • the processing module 103 obtains the light intensity information of the first spectral band at all positions in each pixel, denoted as F1(x, y), and the light intensity information of the second spectral band at all positions in each pixel, denoted as F2(x , y), calculate the light intensity information of each pixel of the PL image according to the following formula to obtain the PL image:
  • PL represents the light intensity information of each pixel of the PL image
  • C is a constant.
  • qualified test products can be passed, such as the known light intensity information of each pixel of the PL image of photovoltaic components, and according to the test For this photovoltaic component, refer to F1(x, y) and F2(x, y) obtained by the above method to calculate C and save it for later use.
  • F1(x, y) and F2(x, y) obtained by the above method to calculate C and save it for later use.
  • C can be obtained through empirical values, or through real-time reference points, for example, calculated based on fixed reference objects in the test camera frame, etc.
  • the photosensitive array 102 can convert the light intensity information of each pixel of the PL image obtained by the processing module 103 into an electrical signal to form a complete image in a charge-coupled device (CCD) or complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor). Imaging on Metal Oxide Semiconductor, CMOS).
  • CCD charge-coupled device
  • CMOS complementary metal oxide semiconductor
  • the imaging device 10 provided in the embodiment of the present application can determine whether the detection object is faulty through the obtained PL image, and can obtain two sets of light intensity information through two optical filters in one shot, and calculate the detection object image, which can quickly , accurately and efficiently judge the status of the detection object and determine whether it is operating normally.
  • the detection object is a photovoltaic module
  • the imaging equipment provided by the embodiment of the present application, it is no longer necessary to collect the current and voltage of the photovoltaic module to determine whether the power generation performance of the photovoltaic module is normal. It can only locate component-level faults and identify faults. It is no longer necessary to use methods that are not accurate enough to detect; there is no need to use hot red temperature measurement, which cannot detect small cracks, identify Potential Induced Degradation (PID), and distinguish some types of defects; nor It is necessary to inject current back into the installed photovoltaic modules on the existing network, or to disassemble the photovoltaic modules during daytime inspection and conduct detection in a dark room using the electroluminescence method.
  • PID Potential Induced Degradation
  • the intensity of PL can be increased 20 times by adjusting the voltage from the maximum power point (MPP) to the Voc point, and the PL intensity at the center frequency of 1130nm
  • MPP maximum power point
  • Some technologies adjust the inverter to the Voc state and use a short-wave infrared camera to take pictures to obtain a Voc imaging image.
  • the image at this time contains natural light information, environment temperature information and PL intensity information, then adjust the inverter to the MPP state, and then take pictures with a short-wave infrared camera to obtain the image, which is recorded as MPPT imaging.
  • the image contains natural light information, ambient temperature information and negligible PL intensity information.
  • the content of the image includes subtracting the information of the MPPT imaging image from the information of the Voc imaging image to obtain the PL intensity information image.
  • this method requires imaging in two states: Voc and MPP.
  • the information changes in the image in these two states are used as the detection basis. Once the environment changes or the image is jittered, the detection results will have a large error. Therefore, the two methods are superimposed.
  • the image information in the state requires very high image registration.
  • the Voc intensity information is much smaller than the natural light information during the day, in order to detect the Voc information, a short-wave infrared camera needs to have a very low noise floor and a large output.
  • the requirements for the camera are also very high.
  • Using this camera to detect photovoltaic modules using the above method not only requires high hardware equipment and imaging environment, but also takes a long time.
  • the radiation information (light intensity information) based on PL in a specific spectrum band is negligible, and the solar spectrum is a characteristic where the radiation information remains stable in a relatively short period of time, such as 1 s, by replacing the filter.
  • the camera collects radiation information in different spectral bands in one cycle and calculates the PL intensity.
  • This method requires the replacement of different filters, which doubles the information collection time.
  • errors may occur in the parameters used to calculate PL intensity, resulting in inaccurate calculation results. .
  • FIG. 4 is a schematic flowchart of an imaging method provided by an embodiment of the present application. As shown in Figure 4, the method includes:
  • the imaging device acquires the optical signals of the detection object in the spectral bands corresponding to at least two filters.
  • the imaging device includes a filter array arranged before the photosensitive array, and the filter array includes at least two types of filters.
  • the imaging device obtains light intensity information corresponding to the spectral band based on the optical signal obtained by the filter array.
  • the imaging device obtains a photoluminescence image based on the light intensity information of each spectral band.
  • FIG. 5 is a schematic structural diagram of an imaging system provided by an embodiment of the present application. As shown in Figure 5, the system includes the imaging device 10 and the detection object 20 in the above embodiment, where , the detection object can be a photovoltaic module.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a program. When it is run on a computer, it causes the computer to execute S103 of the method described in the embodiment shown in Figure 4. steps performed.
  • An embodiment of the present application also provides a computer program that, when run on a computer, causes the computer to perform the steps performed in S103 in the method described in the embodiment shown in FIG. 1 .
  • the processing module function provided by the embodiment of the present application can be integrated on a chip.
  • the chip includes: a processing unit and a communication unit.
  • the processing unit can be, for example, a processor.
  • the communication unit can be, for example, an input/output interface, a pin, or a circuit. wait.
  • the processing unit can execute computer execution instructions stored in the storage unit, so that the chip performs the steps performed by the electronic device in the method described in the embodiment shown in FIG. 4, or performs the method described in the embodiment shown in FIG. 4. Enter the steps performed by the device.
  • the storage unit is a storage unit within the chip, such as a register, cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the wireless access device, such as Read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
  • ROM Read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above places can be a general central processing unit, a microprocessor, an ASIC, or
  • One or more integrated circuits for controlling program execution of the method of the first aspect are provided.
  • the present application can be implemented by software plus necessary general hardware. Of course, it can also be implemented by dedicated hardware including dedicated integrated circuits, dedicated memories, and dedicated components. Wait for it to happen. In general, all functions performed by computer programs can be easily implemented with corresponding hardware. Moreover, the specific hardware structures used to implement the same function can also be diverse, such as analog circuits, digital circuits or special-purpose circuits. circuit etc. However, for this application, software program implementation is a better implementation in most cases. Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product is stored in a readable storage medium, such as a computer floppy disk. , U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc., including several instructions to cause a computer device (which can be a personal computer, server, or network device, etc.) to execute the method described in each embodiment of the application. .
  • a computer device which can be a personal computer, server, or network device, etc.
  • the computer program includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transferred from a website, computer, server, or data center Transmit to another website site, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL) or wireless (such as infrared, wireless, microwave, etc.)).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL) or wireless (such as infrared, wireless, microwave, etc.)
  • the computer-readable storage medium It can be any available media that a computer can store or a data storage device such as a server or data center integrated with one or more available media.
  • the available media can be magnetic media (for example, floppy disks, hard disks, tapes), optical media (For example, DVD), or semiconductor media (such as Solid State Disk (SSD)), etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种成像设备(10)及成像方法,成像设备(10)包括滤光片阵列(101),感光阵列(102)和处理模块(103)。设置于感光阵列(102)之前的滤光片阵列(101),至少包括两种滤光片,用于获取检测对象在至少两种滤光片对应光谱波段的光信号;感光阵列(102),用于根据光信号得到对应光谱波段的光强信息;与感光阵列(102)电连接的处理模块(103),用于根据各光谱波段的光强信息得到PL图像。能够准确、高效地对检测对象成像,根据成像的图像对检测对象进行检测。

Description

成像设备及成像方法 技术领域
本申请涉及图像处理技术领域,并且更具体的,涉及一种成像设备及成像方法。
背景技术
随着相继公布碳中和达成的时间点,各国都加大了在新能源领域的投入,光伏作为新能源中,应用最广泛、技术最成熟、成本也在不断降低的技术之一,已经成为对实现碳中和目标做出较大贡献的重要技术。
由于光伏部署的前期投入大,需要的在线运营时间长,因此,如何保障光伏组件在户外各种恶劣环境下的正常运营受到广泛关注,对光伏组件的检测成为保障其正常运营的重要部分,如何准确、高效的检测成为亟待解决的问题。
发明内容
本申请提供的成像设备及成像方法,能够准确、高效的对检测对象成像,根据成像的结果对检测对象进行检测。
第一方面,本申请提供了一种成像设备,包括:设置于感光阵列之前的滤光片阵列,所述滤光片阵列至少包括两种滤光片,用于获取检测对象在至少两种所述滤光片对应光谱波段的光信号;所述感光阵列,用于根据所述光信号得到对应光谱波段的光强信息;与所述感光阵列电连接的处理模块,用于根据各所述光谱波段的光强信息得到PL图像。
其中,检测对象包括能够通过PL激发出光线(检测光线)的组件,如光伏组件,光伏片等,感光阵列可以是铟镓砷(化学式InGaAs)等短波红外探测器阵列。滤光片阵列设置在感光阵列之前是指,成像设备中入射的检测光线先通过滤片阵列,再通过感光阵列。两种滤光片可以是第一滤光片和第二滤光片,获取检测对象在第一滤光片对应光谱波段的光信号,和检测对象在第二滤光片对应光谱波段的光信号,在检测光线通过第一滤光片时,滤光片阵列可以获得检测对象在第一滤光片对应光谱波段的光信号,在检测光线通过第二滤光片时,滤光片阵列可以获得检测对象在第二滤光片对应光谱波段的光信号。所述感光阵列根据第一滤光片对应光谱波段的光信号得到第一滤光片对应光谱波段的光强信息,根据第二滤光片对应光谱波段的光信号得到第二滤光片对应光谱波段的光强信息。处理模块可以根据第一滤光片和第二滤光片分别对应的光强信息,通过预设算法,如猜色算法得到每个像素中第一滤光片缺失的光强信息和第二滤光片缺失的光强信息,再根据第一滤光片和第二滤光片完整的光强信息得到PL图形各像素的光强信息,即得到完整的PL图像。
基于第一方面,在一种可能的实现方式中,所述滤光片阵列中对应每个像素设置有M*N个滤光片,其中,M为所述滤光片阵列水平方向设置的滤光片个数,N为所述滤光片阵竖直方向设置的滤光片个数,M和N均为大于1的正整数。
成像设备能够支持成像的像素不同,因此,每个成像设备中设置的滤光片阵列可以根据该设备的像素要求对应制备。
基于第一方面,在一种可能的实现方式中,所述滤光片阵列至少包括第一滤光片和第二滤光片,所述第一滤光片和所述第二滤光片在所述滤光片阵列中交叉排布。
第一滤光片和第二滤光片之间可以以一个滤光片为交叉单位排布,或,第一滤光片和第二滤光片之间,以多个滤光片为交叉单位,如两个第一滤光片和两个第二滤光片交叉排布等其他交叉排布的方式。
基于第一方面,在一种可能的实现方式中,所述滤光片阵列至少包括所述第一滤光片和所述第二滤光片,所述第一滤光片和所述第二滤光片在所述滤光片阵列中以行为单位交叉排布,或,所述第一滤光片和所述第二滤光片在所述滤光片阵列中以列为单位交错排布。
基于第一方面,在一种可能的实现方式中,所述第一滤光片和所述第二滤光片的光谱交叠不超过预设值。
第一滤光片可以选择中心频率为1130nm,半波宽20nm到70nm的滤波片,第二滤波片可以选择中心频率为1200nm到1300nm,半波宽为20nm到70nm的滤波片,且预设值为5%,即第一滤波片和第二滤波片的滤光光谱波段交叠不超过5%,滤光片获取到的光信号重复率低,可以减少冗余,节省设备的开销。
基于第一方面,在一种可能的实现方式中,所述滤光片阵列键合在所述感光阵列上。
第二方面,本申请提供了一种成像方法,所述方法应用在成像设备中,包括:获取检测对象在至少两种滤光片对应光谱波段的光信号,其中,所述成像设备包括设置在感光阵列之前的滤光片阵列,所述滤光片阵列至少包括两种所述滤光片;根据所述光信号得到对应光谱波段的光强信息;根据各所述光谱波段的光强信息得到PL图像。
基于第二方面,在一种可能的实现方式中,所述滤光片阵列中对应每个像素设置有M*N个滤光片,其中,M为所述滤光片阵列水平方向设置的滤光片个数,N为所述滤光片阵竖直方向设置的滤光片个数,M和N均为大于1的正整数。
基于第二方面,在一种可能的实现方式中,所述滤光片阵列至少包括第一滤光片和第二滤光片,所述第一滤光片和所述第二滤光片在所述滤光片阵列中交叉排布。
基于第二方面,在一种可能的实现方式中,所述滤光片阵列至少包括所述第一滤光片和所述第二滤光片,所述第一滤光片和所述第二滤光片在所述滤光片阵列中以行为单位交叉排布,或,所述第一滤光片和所述第二滤光片在所述滤光片阵列中以列为单位交错排布。
基于第二方面,在一种可能的实现方式中,所述第一滤光片和所述第二滤光片的光谱交叠不超过预设值。
基于第二方面,在一种可能的实现方式中,所述滤光片阵列键合在所述感光阵列上。
应当理解的是,本申请的第二方面与本申请的第一方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
第三方面,本申请提供了一种光学成像系统,该系统包括成像设备和检测对象,其中,检测对象包括能够通过PL激发出光线(检测光线)的组件,如光伏组件,光伏片等。所述成像设备结构如第一方面以及第一方面任一可能的实现方式中所示,所述成像设备用于执行第二方面以及第二方面任一可能的实现方式中由成像设备所执行的部分或全部操作。
第四方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在处理器上运行时,实现前述任一方面所述的方法以及前述任一方面的任一可能的实现方式中所包括的部分或全部操作。
第五方面,本申请提供了一种计算机程序产品,所述计算机程序产品包含指令,当其在处理器上运行时,实现前述任一方面所述的方法以及前述任一方面的任一可能的实现方式中所包括的部分或全部操作。
第六方面,本申请提供了一种芯片,包括:接口电路和处理器。所述接口电路和所述处理器相连接,所述处理器用于使得所述芯片执行前述任一方面所述的方法以及前述任一方面的任一可能的实现方式中所包括的部分或全部操作。
附图说明
图1是本申请实施例提供的一种成像设备的结构示意图;
图2是本申请实施例提供的一种滤光片阵列示意图;
图3是本申请实施例提供的另一种滤光片阵列示意图;
图4是本申请实施例提供的一种成像方法的流程示意图;
图5是本申请实施例提供的一种成像系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文所提及的"第一"、或"第二"以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,"一个"或者"一"等类似词语也不表示数量限制,而是表示存在至少一个。"耦合"等类似的词语并非限定于物理的或者机械的直接连接,而是可以包括电性的连接,不管是直接的还是间接的,等同于广义上的连通。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。
在本申请的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对申请的限制。
在说明书及权利要求当中使用了某些词汇来指称特定的组件。本领域技术人员应可理解,硬件制造商可能会用不同的名词来称呼同一个组件。本说明书及后权利要求并不以名称的差异来区分组件,而是以组件在功能上的差异作为区分的准则。在说明书及权利要求当中所提及的包含或者包括是开放式的用语,解释成包含但不限定于或者包括但不限于。
为了便于理解,下面先对本申请实施例所使用到的相关名词或术语进行解释说明:
1、干涉镀膜工艺
镀膜是指在光学部件表面上镀上一层(或多层)金属(或介质)薄膜的工艺过程,干涉镀膜是在对光学部件表面涂层后,光学镀膜在涂层上多次反射和透射,形成多光束干涉,通过控制涂层的折射率和厚度获得不同的强度分布的工艺。
2、微纳光学技术
是指通过在材料中引入微纳光学结构,实现新型光学功能器件的技术。
3、光致发光(photoluminescence,PL)
是指物体依赖外界光源的照射,从而获得能量,产生激发导致发光的现象。
4、检测光线
本申请中,在检测对象如光伏组件上通过PL激发的、进入成像设备的光线称为检测光线。
5、机器学习
是一门多学科交叉专业,使用计算机作为工具并致力于真实实时的模拟人类学习方式,并将现有内容进行知识结构划分来有效提高学习效率。机器学习建立样本数据的数学模型,称为“训练数据”。
6、电致发光(Electro Luminescence,EL)
利用晶体硅的电致发光原理,配合高分辨率的红外相机拍摄晶体硅的近红外图像,通过图像软件对获取成像图像进行分析处理检测光伏组件有无异常现象。
7、Voc
V表示电压,Voc表示当电流等于零时的开路电压。
本申请实施例提供的成像设备,可以是相机,手机以及其他设置有图像传感器具备成像功能的设备,图1是本申请实施例提供的一种成像设备的结构示意图,参照图1所示,该成像设备10包括:滤光片阵列101、感光阵列102和处理模块103。
设置于感光阵列102之前的滤光片阵列101,至少包括两种滤光片,用于获取检测对象在至少两种滤光片对应光谱波段的光信号。
其中,检测对象包括能够通过PL激发出光线(检测光线)的组件,如光伏组件,光伏片等。滤光片阵列设置在感光阵列之前表示,成像设备中入射的检测光线先通过滤片阵列,再通过感光阵列。
成像设备获取检测对象在第一滤光片对应光谱波段的光信号,和检测对象在第二滤光片对应光谱波段的光信号,在检测光线通过第一滤光片时,滤光片阵列可以获得对象在第一滤光片对应光谱波段的光信号,在检测光线通过第二滤光片时,滤光片阵列可以获得对象在第二滤光片对应光谱波段的光信号。感光阵列根据第一滤光片对应光谱波段的光信号得到第一滤光片对应光谱波段的光强信息,根据第二滤光片对应光谱波段的光信号得到第二滤光片对应光谱波段的光强信息。处理模块可以根据第一滤光片和第二滤光片分别对应的光强信息,通过预设算法,如猜色算法得到每个像素中第一滤光片缺失的光强信息,和第二滤光片缺失的光强信息,补齐光强信息并得到完整的PL图像。
在一些实例中,成像设备能够支持成像的像素不同,因此,每个成像设备中设置的滤光片阵列可以根据该设备的像素要求对应制备,本申请实施例示出一种对应一个像素的滤光片阵列,图2是本申请实施例提供的一种滤光片阵列示意图,以两种滤光片分别为第一滤光片和第二滤光片,第一滤光片和第二滤光片可以在滤光片阵列中交叉排布为例,图2 以第一滤光片和第二滤光片之间,以一个滤光片为交叉单位排布为例说明,第一滤光片和第二滤光片之间,以多个滤光片为交叉单位,如两个第一滤光片和两个第二滤光片交叉排布等其他交叉排布的方式,也在本申请保护范围之内。假设,对应于一个像素的滤光片阵列包括M*N个滤光片,其中,M为滤光片阵列水平方向设置的滤光片个数,N为滤光片阵列竖直方向设置的滤光片个数,且,M和N均为大于1的正整数。滤光片阵列中两种滤光片的排布方式可以参照图2,M=5,N=5,即一个像素的滤光片阵列包括5*5个滤光片,在一个表示像素中的位置的平面坐标系(x,y)中,可以分别对每个滤波片标记一个坐标位置,如图2中0点位置为参照,横向和纵向的第一个滤光片标记为滤光片(1,1),横向的第一个滤光片和纵向的第二滤光片标记为滤光片(1,2),横向的第一个滤光片和纵向的第三滤光片标记为滤光片(1,3),横向的第二个滤光片和纵向的第一滤光片标记为滤光片(2,1),横向的第二个滤光片和纵向的第二滤光片标记为滤光片(2,2),横向的第二个滤光片和纵向的第三滤光片标记为滤光片(2,3),横向的第三个滤光片和纵向的第一滤光片标记为滤光片(3,1),横向的第三个滤光片和纵向的第二滤光片标记为滤光片(3,2),横向的第二个滤光片和纵向的第三滤光片标记为滤光片(3,3),以此类推。参照图2中的滤波片排布,滤光片(1,1)、滤光片(3,1)、滤光片(2,2)、滤光片(1,3)和滤光片(3,3)为第一滤波片,滤光片(2,1)、滤光片(1,2)、滤光片(3,2)和滤光片(2,3)为第二滤波片,以此类推,且第一滤光片和第二滤光片的滤光光谱交叠不超过预设值。举例来说,第一滤光片可以选择中心频率为1130nm,半波宽20nm到70nm的滤波片,第二滤波片可以选择中心频率为1200nm到1300nm,半波宽为20nm到70nm的滤波片,且预设值为5%,即第一滤波片和第二滤波片的滤光光谱波段交叠不超过5%,两种滤光片分别获取到的光信号重复率低,可以减少冗余,节省设备的开销。
仍以两种滤光片分别为第一滤光片和第二滤光片为例,第一滤光片和第二滤光片可以以行为单位交叉排布,或,第一滤光片和第二滤光片可以以列为单位交叉排布,图3是本申请实施例提供的另一种滤光片阵列示意图,如图3第一滤光片和第二滤光片以一行为单位交叉排布为例进行说明,假设对应于一个像素的滤光片阵列包括M*N个滤光片,滤光片阵列的两种滤光片的排布方式可以参照图3,M=5,N=5,一个滤光片阵列中包括25个滤光片,在一个表示像素中的位置的平面坐标系(x,y)中,如图3中的0点位置为参照,横向的第一个滤光片和纵向的第五滤光片标记为滤光片(1,5),横向的第二个滤光片和纵向的第五滤光片标记为滤光片(2,5),横向的第三个滤光片和纵向的第五滤光片标记为滤光片(3,5)、横向的第四个滤光片和纵向的第五滤光片标记为滤光片(4,5),横向的第五个滤光片和纵向的第五滤光片标记为滤光片(5,5),横向的第一个滤光片和纵向的第四滤光片标记为滤光片(1,4),横向的第二个滤光片和纵向的第四滤光片标记为滤光片(2,4),横向的第三个滤光片和纵向的第四滤光片标记为滤光片(3,4)、横向的第四个滤光片和纵向的第四滤光片标记为滤光片(4,4),横向的第五个滤光片和纵向的第四滤光片标记为滤光片(5,4),以此类推。参照图3中的滤波片排布,滤光片(1,5)、滤光片(2,5)、滤光片(3,5)、滤光片(4,5)和滤光片(5,5)为第一滤波片,滤光片(1,4)、滤光片(2,4)、滤光片(3,4)、滤光片(4,4)和滤光片(5,4)为第二滤波片,以此类推,且第一滤光片和第二滤光片的滤光光谱交叠不超过预设值。举 例来说,第一滤光片可以选择第一光谱波段的中心频率在1100nm到1160nm范围内,优选地,中心频率为1130nm,半波宽20nm到70nm的滤波片,第二滤波片可以选择第二光谱波段的中心频率在1200nm到1300nm范围内,半波宽为20nm到70nm的滤波片,且预设值为5%,即第一滤波片和第二滤波片的滤光光谱波段交叠不超过5%。
本申请实施例以图2和图3提供的滤光片阵列的排布方式举例进行说明,滤光片阵列包括三种以及更多种的滤光片的情况也在本申请保护范围之内,可参照本例类推,且,滤光片阵列包括两种滤光片时,不限定于图2和图3提供的滤光片阵列的排布方式,其他的排布方式也在本申请保护范围之内。
进一步地,该滤光片阵列可以设置于感光阵列之前,还可以加工在感光阵列上,如键合在感光阵列上,或者,该滤光片阵列也可以平行的设置于感光阵列之前,以滤光片阵列键合在感光阵列上为例,但不以此结构为限定,检测光线进入成像设备后,先通过上述滤光片阵列滤光后,再由感光阵列得到光强信息的结构的成像设备均在本申请保护范围之内,不以上述举例为限定,在实际制备中,滤光片阵列可以采用干涉镀膜工艺或微纳光学技术等得到。
感光阵列102,用于根据滤光片阵列101获取的光信号得到对应光谱波段的光强信息。
其中,光谱波段的光强信息可以包括对应第一滤波片的第一光谱波段的光强信息和对应第二滤波片的第二光谱波段的光强信息,或者,感光阵列102可以根据滤光片阵列101获取的光信号得到光谱波段的辐射信息或频率信息等,本申请实施例以光强信息举例进行说明。
举例来说,如果检测光线通过如图2所示的滤波片阵列101,感光阵列102可以通过经过第一滤波片的光信号得到第一光谱波段的光强信息,通过经过第二滤波片的光信号得到第二光谱波段的光强信息,如,感光阵列102可以得到滤光片(1,1)、滤光片(3,1)、滤光片(2,2)、滤光片(1,3)和滤光片(3,3)等位置的第一滤波片在第一光谱波段的光强信息,和滤光片(2,1)、滤光片(1,2)、滤光片(3,2)和滤光片(2,3)等位置的第二滤波片在第二光谱波段的光强信息,但,第一光谱波段对应一个像素的光强信息不完整,如本例中,缺少滤光片(2,1)、滤光片(1,2)、滤光片(3,2)和滤光片(2,3)等位置在第一光谱波段的光强信息,第二光谱波段对应一个像素的光强信息不完整,如本例中,缺少滤光片(1,1)、滤光片(3,1)、滤光片(2,2)、滤光片(1,3)和滤光片(3,3)等位置在第二光谱波段的光强信息。
同理,如果检测光线通过如图3所示的滤波片阵列101,感光阵列102可以得到滤光片(1,5)、滤光片(2,5)、滤光片(3,5)、滤光片(4,5)和滤光片(5,5)等位置的第一滤波片在第一光谱波段的光强信息,和滤光片(1,4)、滤光片(2,4)、滤光片(3,4)、滤光片(4,4)和滤光片(5,4)等位置的第二滤波片在第二光谱波段的光强信息,但,第一光谱波段对应一个像素的光强信息不完整,如本例中,缺少滤光片(1,4)、滤光片(2,4)、滤光片(3,4)、滤光片(4,4)和滤光片(5,4)等位置在第一光谱波段的光强信息,第二光谱波段对应一个像素的光强信息不完整,如本例中,缺少滤光片(1,5)、滤光片(2,5)、滤光片(3,5)、滤光片(4,5)和滤光片(5,5)等位置在第二光谱波段的光强信息。
与感光阵列102电连接的处理模块103,用于根据各光谱波段的光强信息得到PL图 像。
举例来说,感光阵列102可以是InGaAs等短波红外探测器阵列。
在一些实例中,处理模块103通过解马赛克算法获得每个像素位置的两种光谱波段的光强信息,将缺失的光强信息补充完整。如,在对应如图2所示的滤光片时,缺少滤光片(2,1)、滤光片(1,2)、滤光片(3,2)和滤光片(2,3)等位置在第一光谱波段的光强信息,和滤光片(1,1)、滤光片(3,1)、滤光片(2,2)、滤光片(1,3)和滤光片(3,3)等位置在第二光谱波段的光强信息,处理模块103可以通过猜色算法得到每个像素中缺失的光谱信息,光谱信息可以包括第一光谱波段的光强信息和第二光谱波段的光强信息,彩色算法是通过相邻的四个滤光片位置的光谱信息来推算缺失的滤光片位置的光谱信息的方法,举例来说,滤光片(3,3)位置缺失第二光谱波段的光强信息,可以通过与它相邻的四个位置的第二光谱波段的光强信息计算得到滤光片(2,2)位置的第二光谱波段的光强信息,当滤光片(2,3)位置的第二光谱波段的光强信息为F2(2,3)、滤光片(4,3)位置的第二光谱波段的光强信息为F2(4,3)、滤光片(3,2)位置的第二光谱波段的光强信息为F2(3,2)、滤光片(3,4)位置的第二光谱波段的光强信息为F2(3,4)时,滤光片(2,2)位置的第二光谱波段的光强信息F2(3,3)可以如下方公式所示,取平均值获得:
Figure PCTCN2022119128-appb-000001
其他缺失的部分可以参照本方法补齐,得到一个像素中所有位置的两种光谱波段的光强信息。
除了上述的猜色算法,确实的部分还可以通过机器学习方法得到,如训练得到训练数据“红绿蓝(red green blue,RGB)成像解马赛克算法”,计算得到一个像素中缺失位置的两种光谱波段的光强信息,得到完整的两种光谱波段的光强信息,在此不再展开详述。
处理模块103得到每一个像素中所有位置的第一光谱波段的光强信息,记作F1(x,y),每一个像素中所有位置的第二光谱波段的光强信息,记作F2(x,y),根据如下公式计算得到PL图像的各像素光强信息得到PL图像:
PL=F2(x,y)–C*F1(x,y)
其中,PL表示PL图像的各像素光强信息,C是常数,在测试设备进行测试之前,可以先通过合格的测试产品,如光伏部件的已知PL图像的各像素光强信息、以及根据测试该光伏部件,参照上述方法得到的F1(x,y)和F2(x,y)计算出得到C保存待用,在进行测试时,使用该C的保存数值即可。在一些实例中,C可以是通过经验值获得的,或者通过实时参考点获得的,例根据测试相机画面中固定参考物计算得到等。
进一步地,感光阵列102可以将处理模块103得到的PL图像的各像素光强信息转化为电信号,形成完整的图像在电荷耦合器件(Charge-coupled Device,CCD)或互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)上成像。
本申请实施例提供的成像设备10通过得到的PL图像,可以判断出检测对象是否出现故障,且一次拍摄就可以通过两种滤光片得到两组光强信息,计算得到检测对象图像,能够快速、准确高效的判断检测对象的状态,确定其是否在正常运营。
比如检测对象是光伏组件时,使用本申请实施例提供的成像设备,不用再通过采集光 伏组件的电流和电压,判断光伏组件的发电性能是否正常这种,只能定位到组件级故障,故障识别准确率不够高的方法进行检测;也不用再通过热红测温这种,不能判断小隐裂、无法识别电势诱导衰减(Potential Induced Degradation,PID)和区分部分缺陷类型的方法进行检测;也不需要在现网已安装光伏组件上反灌电流,或者日间检测时拆卸光伏组件在暗室进行的电致发光的方法进行检测。
对一些能够光致发光的检测对象,如光伏组件,基于电压从最大功率点(Max Power Point,MPP)调到Voc点,PL的强度可以提升20倍的原理,和PL强度在中心频率为1130nm时的太阳光谱相对较弱,PL强度相比太阳光谱的比值可以提升,一些技术通过将逆变器调节到Voc状态,用短波红外相机拍照得到Voc成像图像,这时的图像包含自然光信息、环境温度信息和PL强度信息,然后将逆变器调节到MPP状态,再通过短波红外相机拍照得到图像,记作MPPT成像图像包含自然光信息、环境温度信息和可忽略不计的PL强度信息,根据两种图像的内容,有将Voc成像图像的信息减去MPPT成像图像的信息得到PL强度信息图像。但是这种方法需要在Voc和MPP两种状态下成像,以这两种状态下图像的信息变化作为检测依据,一旦出现环境变换或者图像存在抖动,检测结果会有较大误差,因此叠加两种状态下的图像信息,对图像配准要求很高,同时,由于Voc强度信息远小于白天的自然光信息,为了检测出Voc信息,则需要短波红外相机有非常低的底噪,和较大的输出位宽,因此,对相机的要求也很高。通过这种相机采用上述方法检测光伏组件不仅硬件设备和成像环境要求较高,耗费时间也较长。在另一些技术中,基于在特定谱段PL的辐射信息(光强信息)可以忽略不计,并且太阳光谱在相对较短时间内,例如1s内是辐射信息保持稳定的特性,通过更换滤光片的相机在一个周期采集不同谱段的辐射信息,计算得到PL强度。这种方法因为需要更换不同的滤光片,信息采集时间增加1倍,且,受到不同时刻太阳光谱不同谱段能量的变化影响,用于计算PL强度的参数也会出现误差导致计算结果不准确。且,该方法进行检测时,可能会存在需要切换光伏状态或更换滤光片的情况,造成至少需要两侧成像才能得到检测结果,多次成像对图像配准的要求极高,也会导致该方法检测光伏组件不仅硬件设备和成像环境要求较高,耗费时间也较长。与上述方法相比,在本申请实施例提供的成像设备中,适用下述方法进行检测,可以通过一次成像获得两种滤光片的光谱信息,再通过解马赛克计算得到整个检测对象,如光伏组件画面的PL光谱,即得到PL图像,有效解决了上述技术中需要两次成像导致成像结果存在误差的情况。图4是本申请实施例提供的一种成像方法的流程示意图,如图4所示,该方法包括:
S101、成像设备获取检测对象在至少两种滤光片对应光谱波段的光信号。
其中,成像设备包括设置在感光阵列之前的滤光片阵列,滤光片阵列至少包括两种滤光片。
S102、成像设备根据滤光片阵列获取的光信号得到对应光谱波段的光强信息。
S103、成像设备根据各光谱波段的光强信息得到光致发光图像。
本申请实施例提供一种检测系统,图5是本申请实施例提供的一种成像系统的结构示意图,如图5所示,该系统包括上述实施例中的成像设备10和检测对象20,其中,检测对象可以是光伏组件。
本申请实施例中还提供一种计算机可读存储介质,该计算机可读存储介质中存储有程 序,当其在计算机上运行时,使得计算机执行如前述图4所示实施例描述的方法中S103所执行的步骤。
本申请实施例中还提供一种计算机程序,当其在计算机上运行时,使得计算机执行如前述图1所示实施例描述的方法中S103所执行的步骤。
本申请实施例提供的处理模块功能可以集成在芯片上,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使芯片执行上述前述图4所示实施例描述的方法中电子设备所执行的步骤,或者,执行如上述图4所示实施例描述的方法中输入设备所执行的步骤。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述无线接入设备端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,ASIC,或
一个或多个用于控制上述第一方面方法的程序执行的集成电路。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序的形式实现。
所述计算机程序包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种成像设备,其特征在于,包括:
    设置于感光阵列之前的滤光片阵列,所述滤光片阵列至少包括两种滤光片,用于获取检测对象在至少两种所述滤光片对应光谱波段的光信号;
    所述感光阵列,用于根据所述光信号得到对应光谱波段的光强信息;
    与所述感光阵列电连接的处理模块,用于根据各所述光谱波段的光强信息得到PL图像。
  2. 根据权利要求1所述的设备,其特征在于,
    所述滤光片阵列中对应每个像素设置有M*N个滤光片,其中,M为所述滤光片阵列水平方向设置的滤光片个数,N为所述滤光片阵竖直方向设置的滤光片个数,M和N均为大于1的正整数。
  3. 根据权利要求1或2所述的设备,其特征在于,
    所述滤光片阵列至少包括第一滤光片和第二滤光片,所述第一滤光片和所述第二滤光片在所述滤光片阵列中交叉排布。
  4. 根据权利要求1或2所述的设备,其特征在于,
    所述滤光片阵列至少包括所述第一滤光片和所述第二滤光片,所述第一滤光片和所述第二滤光片在所述滤光片阵列中以行为单位交叉排布,或,所述第一滤光片和所述第二滤光片在所述滤光片阵列中以列为单位交错排布。
  5. 根据权利要求3或4所述的设备,其特征在于,
    所述第一滤光片和所述第二滤光片的光谱交叠不超过预设值。
  6. 根据权利要求1至5任一项所述的设备,其特征在于,
    所述滤光片阵列键合在所述感光阵列上。
  7. 一种成像方法,其特征在于,所述方法应用在成像设备中,包括:
    获取检测对象在至少两种滤光片对应光谱波段的光信号,其中,所述成像设备包括设置在感光阵列之前的滤光片阵列,所述滤光片阵列至少包括两种所述滤光片;
    根据所述光信号得到对应光谱波段的光强信息;
    根据各所述光谱波段的光强信息得到PL图像。
  8. 根据权利要求7所述的方法,其特征在于,
    所述滤光片阵列中对应每个像素设置有M*N个滤光片,其中,M为所述滤光片阵列水平方向设置的滤光片个数,N为所述滤光片阵竖直方向设置的滤光片个数,M和N均为大于1的正整数。
  9. 根据权利要求7或8所述的方法,其特征在于,
    所述滤光片阵列至少包括第一滤光片和第二滤光片,所述第一滤光片和所述第二滤光片在所述滤光片阵列中交叉排布。
  10. 根据权利要求7或8所述的方法,其特征在于,
    所述滤光片阵列至少包括所述第一滤光片和所述第二滤光片,所述第一滤光片和所述第二滤光片在所述滤光片阵列中以行为单位交叉排布,或,所述第一滤光片和所述第二滤光片在所述滤光片阵列中以列为单位交错排布。
  11. 根据权利要求9或10所述的方法,其特征在于,
    所述第一滤光片和所述第二滤光片的光谱交叠不超过预设值。
  12. 根据权利要求7至11任一项所述的方法,其特征在于,
    所述滤光片阵列键合在所述感光阵列上。
PCT/CN2022/119128 2022-09-15 2022-09-15 成像设备及成像方法 WO2024055253A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119128 WO2024055253A1 (zh) 2022-09-15 2022-09-15 成像设备及成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119128 WO2024055253A1 (zh) 2022-09-15 2022-09-15 成像设备及成像方法

Publications (1)

Publication Number Publication Date
WO2024055253A1 true WO2024055253A1 (zh) 2024-03-21

Family

ID=90273943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119128 WO2024055253A1 (zh) 2022-09-15 2022-09-15 成像设备及成像方法

Country Status (1)

Country Link
WO (1) WO2024055253A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200816342A (en) * 2006-08-01 2008-04-01 Newsouth Innovations Pty Ltd Determining diffusion length of minority carriers
US20110228097A1 (en) * 2010-03-19 2011-09-22 Pixim Inc. Image Sensor Including Color and Infrared Pixels
CN104412098A (zh) * 2012-07-06 2015-03-11 Bt成像股份有限公司 检查半导体晶片的方法
CN111351578A (zh) * 2020-02-27 2020-06-30 北京理工大学 基于像素化双波段窄带滤光片阵列的温度测量系统及方法
CN112304904A (zh) * 2019-07-15 2021-02-02 松山湖材料实验室 基于滤波阵列的硅片反射率检测方法
CN113834816A (zh) * 2021-09-30 2021-12-24 江西省通讯终端产业技术研究院有限公司 基于机器视觉的光伏电池缺陷在线检测方法及系统
CN114079754A (zh) * 2020-08-19 2022-02-22 华为技术有限公司 一种图像传感器、信号处理方法以及设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200816342A (en) * 2006-08-01 2008-04-01 Newsouth Innovations Pty Ltd Determining diffusion length of minority carriers
US20110228097A1 (en) * 2010-03-19 2011-09-22 Pixim Inc. Image Sensor Including Color and Infrared Pixels
CN104412098A (zh) * 2012-07-06 2015-03-11 Bt成像股份有限公司 检查半导体晶片的方法
CN112304904A (zh) * 2019-07-15 2021-02-02 松山湖材料实验室 基于滤波阵列的硅片反射率检测方法
CN111351578A (zh) * 2020-02-27 2020-06-30 北京理工大学 基于像素化双波段窄带滤光片阵列的温度测量系统及方法
CN114079754A (zh) * 2020-08-19 2022-02-22 华为技术有限公司 一种图像传感器、信号处理方法以及设备
CN113834816A (zh) * 2021-09-30 2021-12-24 江西省通讯终端产业技术研究院有限公司 基于机器视觉的光伏电池缺陷在线检测方法及系统

Similar Documents

Publication Publication Date Title
US8698083B2 (en) Solar cell evaluation method, evaluation device, maintenance method, maintenance system, and method of manufacturing solar cell module
Guada et al. Daylight luminescence system for silicon solar panels based on a bias switching method
WO2021027366A1 (zh) 一种光伏电站的电池片检测方法、装置及系统
CN106004137B (zh) 基于el检测控制丝网印刷质量和生产过程的方法
TW201121087A (en) Solar cell defect inspection apparatus, defect inspection method and program
CN109116197B (zh) 日盲紫外相机及紫外光子计数方法
JP2015043395A (ja) 太陽電池装置及びその利用
CN107121607A (zh) 一种基于紫外和红外图像的电力系统故障检测系统及方法
Liu et al. Luminescence imaging analysis of light harvesting from inactive areas in crystalline silicon PV modules
Sharma et al. Investigation of solar cell degradation using electrochemical impedance spectroscopy
KR20180015024A (ko) 온-셀 터치 유기발광다이오드 표시 장치의 터치 감지용 전극 검사 방법 및 장치
WO2024055253A1 (zh) 成像设备及成像方法
Tong et al. Modeling the edge effect for measuring the performance of mesoscopic solar cells with shading masks
JP2014228517A (ja) 太陽電池モジュールの評価方法及びその利用
US20230042106A1 (en) System and method for the statistical analysis of images of photovoltaic panels
WO2018192096A1 (zh) 一种检测装置、方法及系统
KR20130049063A (ko) 태양광 모듈 내 셀의 핫스팟 측정방법
KR20130049062A (ko) 태양광 모듈 내 셀의 핫스팟 측정장치
CN202661042U (zh) 一种阻焊曝光对位精度辅助检查装置
CN101915546B (zh) 太阳能芯片的抗反射层的检测方法及检测装置
JP7149534B2 (ja) 太陽電池パネルの検査装置、及び検査方法
CN103558558A (zh) 一种硅太阳能电池转换效率检测装置及检测方法
CN106301214A (zh) 太阳能模块的检测方法
CN201740515U (zh) 太阳能芯片的抗反射层的检测装置
CN207853845U (zh) 光伏组件el测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958445

Country of ref document: EP

Kind code of ref document: A1