WO2024053695A1 - Light detection device - Google Patents

Light detection device Download PDF

Info

Publication number
WO2024053695A1
WO2024053695A1 PCT/JP2023/032601 JP2023032601W WO2024053695A1 WO 2024053695 A1 WO2024053695 A1 WO 2024053695A1 JP 2023032601 W JP2023032601 W JP 2023032601W WO 2024053695 A1 WO2024053695 A1 WO 2024053695A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
layer
photodetection device
seam
buried layer
Prior art date
Application number
PCT/JP2023/032601
Other languages
French (fr)
Japanese (ja)
Inventor
巧 小野寺
貴弘 亀井
明久 坂本
勝哉 秋山
直樹 小川
徹 大迫
義之 石井
弘康 松谷
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2024053695A1 publication Critical patent/WO2024053695A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present disclosure relates to a photodetection device.
  • Patent Document 1 discloses a technique for suppressing communication of the seam portions to the outside by making the seam portions of two stacked layers discontinuous.
  • photodetection device that has a structure in which a layer is provided so as to cover a chip provided on a substrate containing a photodetection element. Seams may occur due to the step provided by the chip. There is still room to consider ways to suppress communication of the seam portion to the outside.
  • One aspect of the present disclosure suppresses communication of the seam portion to the outside.
  • a photodetection device includes a substrate including a photodetection element, a chip provided to the substrate, an embedded layer provided to cover the chip, and a photodetector generated in the embedded layer. It includes a seam portion extending to the surface of the layer, and a sealing layer provided so as to cover the buried layer and the seam portion.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a photodetection device according to a first embodiment.
  • FIG. 3 is a diagram illustrating an example of a schematic configuration of a photodetection device according to a second embodiment. It is a figure showing an example of a schematic structure of a photodetection device concerning a 4th embodiment. It is a figure showing an example of a schematic structure of a photodetection device concerning a 5th embodiment. It is a figure showing an example of a schematic structure of a photodetection device concerning a 6th embodiment. It is a figure showing an example of a schematic structure of a photodetection device concerning a 6th embodiment.
  • FIG. 7 It is a figure showing an example of a schematic structure of a photodetection device concerning a 7th embodiment. It is a figure showing an example of a schematic structure of a photodetection device concerning an 8th embodiment. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device.
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of a photodetection device according to an application example.
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of a photodetection device according to an application example.
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of a photodetection device according to an application example.
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of a photodetection device according to an application example.
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of a photodetection device according to an application example.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of a vehicle control system.
  • FIG. 2 is an explanatory diagram showing an example of installation positions of an outside-vehicle information detection section and an imaging section. It is a figure showing an example of a schematic structure of a photodetection device concerning a 9th embodiment.
  • FIG. 9 It is a figure showing an example of a schematic structure of a photodetection device concerning a 9th embodiment. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure showing a modification. It is a figure showing a modification.
  • FIG. 10 It is a figure showing an example of a schematic structure of a photodetection device concerning a 10th embodiment. It is a figure showing an example of a schematic structure of a photodetection device concerning a 10th embodiment. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device.
  • FIG. 3 is a diagram showing an example of a schematic configuration of a sealing layer. It is a figure showing an example of a schematic structure of a photodetection device concerning a 13th embodiment. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device.
  • FIG. 3 is a diagram showing a first arrangement example of dummy chips.
  • FIG. 3 is a diagram showing a first arrangement example of dummy chips. It is a figure showing the effect of a dummy chip.
  • FIG. 2 is a diagram showing an example of a schematic configuration of a wafer.
  • FIG. 7 is a diagram showing a second example of arrangement of dummy chips. It is a figure showing the effect of a dummy chip.
  • FIG. 2 is a diagram showing an example of a schematic configuration of a wafer.
  • FIG. 7 is a diagram showing a third arrangement example of dummy chips. It is a figure showing the effect of a dummy chip.
  • FIG. 2 is a diagram showing an example of a schematic configuration of a wafer. It is a figure which shows the 4th example of arrangement
  • FIG. 2 is a diagram showing an example of a schematic configuration of a wafer. It is a figure which shows the 5th example of arrangement
  • FIG. 2 is a diagram showing an example of a schematic configuration of a wafer.
  • FIG. 2 is a diagram showing an example of a schematic configuration of a wafer. It is a figure showing the effect of a dummy chip.
  • FIG. 2 is a diagram showing an example of a schematic configuration of a wafer. It is a figure which shows the 7th example of arrangement
  • FIG. 1 is a diagram showing an example of a schematic configuration of a wafer. It is a figure which shows the 5th example of arrangement
  • FIG. 2
  • FIG. 2 is a diagram showing an example of a schematic configuration of a wafer. It is a figure showing a modification. It is a figure showing a modification. It is a figure showing a modification. It is a figure showing an example of a schematic structure of a photodetection device concerning a 16th embodiment. It is a figure showing an example of a schematic structure of a photodetection device concerning a 17th embodiment. It is a figure showing an example of a schematic structure of a photodetection device concerning an 18th embodiment. It is a figure showing an example of a schematic structure of a photodetection device concerning a 19th embodiment. It is a figure showing an example of a schematic structure of a photodetection device concerning a 20th embodiment.
  • FIG. 7 is a diagram illustrating an example of a schematic configuration of a photodetection device according to a twenty-first embodiment. It is a figure showing an example of a schematic structure of a photodetection device concerning a 22nd embodiment. It is a figure showing an example of a schematic structure of a photodetection device concerning a 23rd embodiment. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device.
  • FIG. 7 is a diagram showing an example of a schematic configuration of a photodetection device according to a twenty-fourth embodiment. It is a figure showing an example of a schematic structure of a photodetection device concerning a 24th embodiment. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device.
  • FIG. 3 is a diagram showing an example of CMP.
  • FIG. 3 is a diagram showing an example of CMP.
  • FIG. 25 It is a figure showing an example of a schematic structure of a photodetection device concerning a 25th embodiment. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device. It is a figure which shows the example of the manufacturing method of a photodetection device.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a photodetection device according to a first embodiment.
  • a cross section of a photodetector 100 is schematically shown.
  • the photodetecting device 100 includes a substrate 1 , a chip 2 , a buried layer 3 , a seam portion 4 , a sealing layer 5 , an auxiliary layer 6 , and a support substrate 7 .
  • “layer” may be read as “film”, “member”, etc. as appropriate.
  • “provide” may be read as “form”, “arrange”, etc. as appropriate.
  • an XYZ coordinate system is also illustrated.
  • the Z-axis direction corresponds to the thickness direction of the substrate or layer.
  • the X-axis direction and the Y-axis direction correspond to the plane direction of the substrate or layer.
  • the substrate 1 and the support substrate 7 are opposed to each other. In this example, of the substrate 1 and the support substrate 7, the substrate 1 is located on the negative side of the Z-axis, and the support substrate 7 is located on the positive side of the Z-axis.
  • the chip 2 , the buried layer 3 , the seam 4 , the sealing layer 5 and the auxiliary layer 6 are located between the substrate 1 and the support substrate 7 .
  • the photodetector 100 includes a wiring layer. All wiring provided in the wiring layer is referred to as wiring L and illustrated. An example of the material of the wiring L is copper (Cu) or the like. Note that some vias connecting the wirings L in different wiring layers are also shown with the same hatching as the wirings L.
  • the substrate 1 is a semiconductor substrate such as a silicon (Si) semiconductor substrate, and includes a photodetector element 1p.
  • An example of the photodetection element is a photoelectric conversion element such as a PD (Photo Diode).
  • a plurality of photoelectric conversion elements arranged in an array in the XY plane direction may correspond to the photodetection element 1p.
  • the substrate 1 also includes circuit elements such as transistors for driving each photoelectric conversion element and extracting an electric signal according to the amount of light received by each photoelectric conversion element.
  • a circuit including such a circuit element is also referred to as a pixel circuit.
  • the illustrated photodetector 100 is a backside illumination type photodetector that detects light incident on the backside 1b of the substrate 1.
  • the substrate 1 has a wiring layer on the front surface 1a side.
  • the wiring L in the wiring layer of the substrate 1 may constitute a part of a pixel circuit.
  • the wiring layer of the illustrated substrate 1 is a multilayer wiring layer, and some wirings L are exposed on the surface 1a.
  • the chip 2 is provided on the substrate 1. Being provided on the substrate 1 may be understood to include not only being provided directly on the substrate 1, but also being provided via another element (for example, an additional substrate 12 in FIG. 21, which will be described later). In the example shown in FIG. 1, the chip 2 is provided directly on the substrate 1, more specifically on the surface 1a of the substrate 1.
  • the mounting surface of the chip 2 is shown as a mounting surface 2b.
  • the chip 2 has a wiring layer on the mounting surface 2b side.
  • the wiring layer of the illustrated chip 2 is a multilayer wiring layer, and some wirings L are exposed on the mounting surface 2b.
  • the chip 2 is provided on the substrate 1 so that the mounting surface 2b of the chip 2 is in contact with the surface 1a of the substrate 1. More specifically, the chip 2 is mounted on the substrate 1 such that the wiring L of the chip 2 and the wiring L of the substrate 1 are in contact with each other and electrically connected. Such a connection is also called a Cu--Cu bond or the like when the material of the wiring L is Cu.
  • the mounting surface 2b of the chip 2 and the surface 1a of the substrate 1 define a bonding surface between the chip 2 and the substrate 1 (chip bonding surface).
  • the chip 2 may be any chip (IC, etc.) that can be used in the photodetector 100.
  • An example of the chip 2 is a logic chip, which drives, for example, a transistor of a pixel circuit or processes an electric signal taken out from the pixel circuit.
  • Another example of the chip 2 is a memory chip, which stores, for example, data used in processing by a logic chip or data obtained by processing.
  • Yet another example of chip 2 is an AI (Artificial Intelligence) chip, which is specifically designed to perform high-speed arithmetic processing using a trained model (for example, a trained DNN (Deep Neural Network)). .
  • AI Artificial Intelligence
  • the chip 2 provided on the substrate 1 provides a step.
  • the chip 2 is a stepped portion having a convex shape protruding toward the positive direction of the Z-axis with respect to the surface 1a of the substrate 1 as a reference.
  • the number of chips 2 included in the photodetector 100 is not limited to the example shown in FIG. 1.
  • the photodetection device 100 may include any number of chips 2, one or more.
  • the buried layer 3 is provided so as to cover the chip 2, and more specifically, to cover the substrate 1 and the chip 2 in this example.
  • the buried layer 3 can function as a protective layer that protects the chip 2. For example, entry of moisture, chemicals, undesired gases, etc. into the chip 2 is suppressed.
  • Examples of the material of the buried layer 3 are SiN, SiO2 , etc.
  • the surface on the Z-axis positive direction side is referred to as a surface 3a and illustrated.
  • the surface on the negative side of the Z-axis is referred to as a back surface 3b in the drawing.
  • the seam portion 4 occurs within the buried layer 3 due to the step provided by the chip 2.
  • the seam portion 4 starts from, for example, the rising portion of the step or its surrounding portion, and extends to the surface 3a of the buried layer 3.
  • At least a portion of the seam portion 4 may be a void.
  • the void that the seam portion 4 has is shown as a void 4a.
  • the entire seam portion 4 is a void 4a.
  • a portion of the surface 3a of the buried layer 3 where the seam portion 4 is located is open.
  • the sealing layer 5 is provided so as to cover the buried layer 3 and the seam portion 4.
  • the opening formed in the surface 3a of the buried layer 3 by the seam portion 4 is also closed by the sealing layer 5.
  • the sealing layer 5 prevents the seam portion 4 from communicating with the outside.
  • the material of the sealing layer 5 may be the same as the material of the buried layer 3, or may be different. Some examples of materials for the sealing layer 5 will be described later.
  • the auxiliary layer 6 is provided to cover the sealing layer 5.
  • the auxiliary layer 6 includes, for example, a material suitable for bonding to the support substrate 7. Examples of materials for the auxiliary layer 6 are mainly SiOx (SiNx, SiON, SiCN, SiOC). Among the surfaces of the auxiliary layer 6, the surface on the Z-axis positive direction side is referred to as a surface 6a and illustrated.
  • the support substrate 7 is located on the opposite side of the substrate 1 with the sealing layer 5 in between, and supports the sealing layer 5 directly or indirectly.
  • the support substrate 7 may be, for example, a silicon (Si) semiconductor substrate. In the example shown in FIG. It is bonded to the auxiliary layer 6 so as to indirectly support 5).
  • a silicon (Si) semiconductor substrate In the example shown in FIG. It is bonded to the auxiliary layer 6 so as to indirectly support 5).
  • the surface on the negative side of the Z-axis is referred to as a back surface 7b.
  • the back surface 7b of the support substrate 7 and the front surface 6a of the auxiliary layer 6 define a bonding surface between the support substrate 7 and the auxiliary layer 6 (support substrate bonding surface).
  • the photodetecting device 100 may not include the auxiliary layer 6, and in that case, the support substrate 7 is bonded to the sealing layer 5 so
  • the sealing layer 5 that covers the embedded layer 3 and the seam portion 4
  • communication of the seam portion 4 to the outside can be suppressed.
  • the sealing layer 5 that covers the embedded layer 3 and the seam portion 4
  • FIG. 2 is a diagram showing an example of a schematic configuration of a photodetection device according to a second embodiment.
  • the sealing layer 5 includes an extension portion 5 a that extends into the seam portion 4 .
  • the extending portion 5a extends so as to fill at least a portion of the seam portion 4, and in the example shown in FIG. 2, extends so as to fill the entire seam portion 4.
  • the seam portion 4 does not have a void 4a (FIG. 1).
  • the material of the sealing layer 5 includes a low permeability material. Examples of low permeability materials include SiN-based materials. Examples of SiN-based materials are SiNx, SiCN, SiON, etc.
  • the material of the sealing layer 5 includes a low Young's modulus material.
  • low Young's modulus materials are low-k materials, organic materials, etc.
  • An example of a low-k material is porous SiO2, etc.
  • organic materials are silicones, siloxanes, polyimides, etc.
  • FIG. 3 is a diagram showing an example of a schematic configuration of a photodetection device according to a fourth embodiment.
  • the extending portion 5a of the sealing layer 5 extends so as to fill only a portion of the seam portion 4.
  • the remainder of the seam portion 4 is a void 4a. By leaving the void 4a, inter-chip stress can also be alleviated.
  • FIG. 4 is a diagram showing an example of a schematic configuration of a photodetection device according to a fifth embodiment.
  • Photodetection device 100 further includes a side wall portion 8 .
  • the side wall portion 8 is provided so as to cover the side surface (side wall) of the chip 2 .
  • the buried layer 3 is provided so as to cover the substrate 1 , the chip 2 , and the sidewall portion 8 .
  • An example of the material of the side wall portion 8 is an inorganic material. Examples of inorganic materials are mainly SiNx (SiOx, SiON, SiCN, SiOC).
  • FIGS. 5 and 6 are diagrams showing an example of a schematic configuration of a photodetecting device according to a sixth embodiment. Seam portions 4 caused by two different chips 2 are connected to each other. Among the two chips 2, the first chip is shown as a chip 2-1. The second chip is designated and illustrated as chip 2-2.
  • the seam portion 4 includes a seam portion 4-1 and a seam portion 4-2.
  • the seam portion 4-1 is a first seam portion caused by the chip 2-1.
  • the seam portion 4-2 is a second seam portion caused by the chip 2-2.
  • the seam portion 4-1 and the seam portion 4-2 are connected to each other on the way to the surface 3a of the buried layer 3, and extend to the surface 3a of the buried layer 3.
  • the step provided by the seam portion 4-1 and the seam portion 4-2 are connected to each other from the beginning and extend together to the surface 3a of the buried layer 3. For example, even if there are a seam portion 4-1 and a seam portion 4-2 that are connected to each other in this manner, communication between them to the outside can be suppressed.
  • FIG. 7 is a diagram showing an example of a schematic configuration of a photodetection device according to a seventh embodiment.
  • Photodetection device 100 further includes an additional layer 9 .
  • An additional layer 9 is provided between the substrate 1 and the chip 2 and the buried layer 3.
  • the additional layer 9 is provided so as to cover the substrate 1 and the chip 2
  • the buried layer 3 is provided so as to cover the additional layer 9 .
  • the material of the additional layer 9 may be the same as the material of the buried layer 3 or may be different. Examples of materials for the additional layer 9 are mainly SiNx (SiOx, SiON, SiCN, SiOC).
  • the additional layer 9 may have a single layer structure or a laminated structure. By providing the additional layer 9, reliability can be further improved.
  • FIG. 8 is a diagram showing an example of a schematic configuration of a photodetection device according to an eighth embodiment.
  • the auxiliary layer 6 has a laminated structure.
  • the auxiliary layer 6 has a three-layer structure and includes a layer 61, a layer 62, and a layer 63 in this order in the positive Z-axis direction.
  • the layers 61, 62, and 63 may be made of different materials or the same material. Depending on the number of layers and material design, it is possible to adjust warpage and expand bonding margins.
  • FIGS. 9 to 19 are diagrams illustrating an example of a method of manufacturing a photodetector.
  • FIGS. 9 to 14 show the photodetecting devices 100 (FIGS. 1 to 3, and FIGS. 5 to 3) according to the first to fourth embodiments and the sixth to eighth embodiments described above.
  • An example of the manufacturing method of 8) is shown below.
  • a substrate 1 including a photodetecting element 1p is prepared, and a chip 2 is provided on the substrate 1.
  • a buried layer 3 is provided to cover the substrate 1 and the chip 2.
  • a seam portion 4 is generated within the buried layer 3 due to the step provided by the chip 2 . At this point, the entire seam portion 4 is a void 4a.
  • the seam portions 4 corresponding to adjacent chips 2 may be connected to each other.
  • the additional layer 9 (FIG. 7) is provided so as to cover the substrate 1 and the chip 2
  • the buried layer 3 is provided so as to cover the additional layer 9.
  • a flattened surface 3a is obtained as shown in FIG.
  • the portion of the surface 3a where the seam portion 4 reaches is open.
  • a sealing layer 5 is provided to cover the buried layer 3.
  • the opening in the surface 3a is closed by the sealing layer 5.
  • the entire seam portion 4 remains the void 4a.
  • the entire seam portion 4 is filled with the material of the sealing layer 5, and that portion becomes the extension portion 5a of the sealing layer 5.
  • the fourth embodiment described above FIG. 3
  • only a portion of the seam portion 4 is filled with the material of the sealing layer 5, and that portion becomes the extension portion 5a of the sealing layer 5.
  • any aspect may be used.
  • an auxiliary layer 6 is provided to cover the sealing layer 5. Thereafter, the auxiliary layer 6 is polished and cleaned. Since the seam portion 4 is covered with the sealing layer 5, the seam portion 4 does not widen even after cleaning.
  • a plurality of layers eg, layer 61, layer 62, and layer 63
  • the support substrate 7 is bonded to the auxiliary layer 6.
  • the photodetecting device 100 according to the first to fourth embodiments and the sixth to eighth embodiments described above can be manufactured as described above.
  • FIGS. 15 to 19 show an example of the manufacturing method of the fifth embodiment (FIG. 4) described above.
  • the steps up to preparing the substrate 1 and providing the chip 2 on the substrate 1 are the same as those in FIG. 9 described above.
  • the material of the side wall portion 8 (FIG. 4) is provided so as to cover the substrate 1 and chip 2.
  • etching for example, dry etching
  • etching is performed so that the above-mentioned material remains on the side surface of the chip 2.
  • the material remaining on the side surface of the chip 2 becomes the side wall portion 8.
  • a buried layer 3 is provided to cover the substrate 1, the chip 2, and the side wall portion 8.
  • a seam portion 4 is generated within the buried layer 3 due to the step provided by the chip 2 .
  • an auxiliary layer 6 is provided to cover the sealing layer 5.
  • the support substrate 7 is bonded to the auxiliary layer 6.
  • the photodetection device 100 according to the fifth embodiment described above can be manufactured as described above.
  • FIG. 20 is a diagram illustrating an example of a schematic configuration of a photodetection device according to an application example. Please note that the direction of the Z axis is reversed from the previous figures.
  • the illustrated photodetection device 100 is an imaging device configured to include a plurality of pixels 101. Examples of the pixel 101 include a pixel G that receives green light, a pixel R that receives red light, and a pixel B that receives blue light.
  • the substrate 1 is a substrate (image sensor substrate) configured to include a photoelectric conversion element corresponding to each pixel 101.
  • Photodetection device 100 includes a filter layer 10 and a lens layer 11.
  • the filter layer 10 is provided on the opposite side of the chip 2 and the buried layer 3 with the substrate 1 in between. In this example, the filter layer 10 is provided on the back surface 1b of the substrate 1.
  • Filter layer 10 includes multiple filters corresponding to multiple pixels 101.
  • a filter provided in pixel G is referred to as a filter 10G and illustrated.
  • the filter provided in pixel R is referred to as a filter 10R and illustrated.
  • the filter provided in pixel B is referred to as filter 10B and illustrated.
  • Filter 10G passes green light.
  • the filter 10R allows red light to pass through.
  • Filter 10B allows blue light to pass through.
  • Various known materials such as resins may be used.
  • the lens layer 11 is provided on the opposite side of the substrate 1 with the filter layer 10 in between.
  • the lens layer 11 includes a plurality of lenses 11a corresponding to the plurality of pixels 101.
  • the lens 11a is a condenser lens that condenses light that is incident on the photoelectric conversion element of the substrate 1 via the filter layer 10.
  • Various known materials such as resins may be used.
  • the photodetection device 100 having the above configuration can be used as an imaging device.
  • Other configurations are possible, and some examples are described with reference to FIGS. 21-23.
  • FIG. 21 is a diagram illustrating an example of a schematic configuration of a photodetection device according to an application example.
  • Photodetection device 100 further includes an additional substrate 12 .
  • Additional substrate 12 is provided between substrate 1 and buried layer 3 .
  • the additional substrate 12 can also be said to be an intermediate substrate located between the substrate 1 and the support substrate 7.
  • a surface 12a the surface on the Z-axis positive direction side is referred to as a surface 12a and illustrated.
  • the surface on the negative side of the Z-axis is referred to as a back surface 12b.
  • the front surface 12a of the additional substrate 12 is in contact with the back surface 3b of the buried layer 3, and the back surface 12b of the additional substrate 12 is in contact with the front surface 1a of the substrate 1.
  • the additional board 12 has wiring layers on each of the front surface 12a side and the back surface 12b side.
  • the illustrated wiring layer of the additional board 12 is a multilayer wiring layer, and some wiring L is exposed on the front surface 12a or the back surface 12b.
  • the chip 2 is provided on the additional substrate 12 such that the mounting surface 2b of the chip 2 is in contact with the surface 12a of the additional substrate 12. More specifically, the chip 2 is mounted on the additional substrate 12 such that the wiring L of the chip 2 and the wiring L of the additional substrate 12 are in contact and electrically connected.
  • the mounting surface 2b of the chip 2 and the surface 12a of the additional substrate 12 define a bonding surface (chip bonding surface) between the chip 2 and the additional substrate 12.
  • the additional board 12 is bonded to the board 1 so that the wiring L of the additional board 12 and the wiring L of the board 1 are electrically contacted and connected.
  • the front surface 1a of the substrate 1 and the back surface 12b of the additional substrate 12 define a bonding surface (F2F bonding surface) between the substrate 1 and the additional substrate 12.
  • the additional board 12 includes through vias 12v.
  • the through via 12v penetrates the portion (substrate) between the wiring layer on the front surface 12a side of the additional board 12 and the wiring layer on the back surface 12b side of the additional board 12 so as to connect them.
  • more wiring and circuit elements can be formed.
  • the functionality of the photodetection device 100 can be further improved.
  • two or more additional substrates 12 may be provided.
  • FIGS. 22 and 23 are diagrams illustrating an example of a schematic configuration of a photodetection device according to an application example. As shown in FIG. 22, wiring L and structures are also provided between chips 2 that are arranged adjacent to each other with an interval. A through via V is exemplified as the structure.
  • the buried layer 3 and the auxiliary layer 6 also include the wiring L.
  • Some wiring lines L are provided between adjacent chips 2.
  • the wiring L may be provided in the seam portion 4, and the degree of freedom in layout is improved accordingly.
  • the through via V penetrates the buried layer 3, the sealing layer 5, the auxiliary layer 6, and the support substrate 7. Through the through-vias V, electrical access is made possible from the surface 7a of the support substrate 7 to the wiring layer on the surface 12a side of the additional substrate 12.
  • the through via V can also be called a contact via.
  • the through via V In the buried layer 3, at least some of the through vias V are located between adjacent chips 2. Further, the through via V may pass through the seam portion 4.
  • FIG. 23 schematically shows a planar layout. When viewed in plan (when viewed in the Z-axis direction), some of the through-vias V out of the plurality of through-vias V arranged around the chip 2 overlap with the seam portion 4 . Through vias V can be provided at various positions, and the degree of freedom in layout is improved accordingly.
  • the photodetecting device 100 includes a substrate 1 including a photodetecting element 1p, a chip 2 provided on the substrate 1, and an embedded portion provided to cover the chip 2.
  • a layer 3 a seam portion 4 generated within the buried layer 3 and extending to the surface 3a of the buried layer 3, and a sealing layer 5 provided so as to cover the buried layer 3 and the seam portion 4.
  • the photodetecting device 100 includes a support substrate that is located on the opposite side of the substrate 1 with the sealing layer 5 in between and supports the sealing layer 5 directly or indirectly. 7 may be provided. Since the seam portion 4 covered with the sealing layer 5 does not reach the bonding surface with the support substrate 7, deterioration in bonding quality due to void generation etc. can be suppressed.
  • At least a portion of the seam portion 4 may be a void 4a. Thereby, for example, inter-chip stress can be alleviated.
  • the sealing layer 5 may include the extending portion 5a that extends into the seam portion 4 so as to fill at least a portion of the seam portion 4.
  • the material of the sealing layer 5 may include a low permeability material. Thereby, for example, the effect of suppressing moisture and the like from entering the chip 2 can be enhanced.
  • the material of the sealing layer 5 may include a low Young's modulus material. Thereby, for example, inter-chip stress can be alleviated.
  • the photodetecting device 100 may include the side wall portion 8 provided so as to cover the side surface of the chip 2. Thereby, the protection performance of the chip 2 can be further improved.
  • the chip 2 includes a chip 2-1 (first chip) and a chip 2-2 (second chip) that are spaced apart from each other
  • the seam portion 4 includes a seam portion 4-1 (first seam portion) caused by the chip 2-1 and a seam portion 4-2 (second seam portion) caused by the chip 2-2.
  • the seam portion 4-1 and the seam portion 4-2 may be connected to each other. For example, even if there are a seam portion 4-1 and a seam portion 4-2 that are connected to each other in this manner, communication between them to the outside can be suppressed.
  • the photodetector 100 may include the additional layer 9 provided between the chip 2 and the buried layer 3. Thereby, reliability can be further improved.
  • the photodetector 100 may include the auxiliary layer 6 provided to cover the sealing layer 5. This makes it easier to bond to the support substrate 7, for example.
  • the auxiliary layer 6 may have a laminated structure. Depending on the number of layers and material design, it is possible to adjust warpage and expand bonding margins.
  • the chip 2 may include at least one of a logic chip, a memory chip, and an AI (Artificial Intelligence) chip.
  • a logic chip for example, it is possible to provide a highly functional photodetection device provided with such various chips 2.
  • AI Artificial Intelligence
  • the photodetection device 100 may be an imaging device configured to include a plurality of pixels 101.
  • the photodetecting device 100 includes a filter layer 10 provided on the opposite side of the chip 2 and the embedded layer 3 with the substrate 1 in between, a lens layer 11 provided on the opposite side of the substrate with the filter layer 10 in between, may be provided.
  • the photodetection device 100 can be applied to an imaging device.
  • the photodetecting device 100 may include the additional substrate 12 provided between the substrate 1 and the buried layer 3. Thereby, for example, the photodetection device 100 can be made highly functional.
  • the chip 2 includes two chips 2 arranged adjacent to each other with an interval, and the buried layer 3 is provided between the two chips 2.
  • the wiring L may be included. It becomes possible to further improve the functionality of the photodetecting device 100.
  • the photodetecting device 100 may include a through via V that penetrates the buried layer 3 , the sealing layer 5 , and the support substrate 7 . For example, it becomes possible to access the wiring layer on the surface 12a side of the additional substrate 12 from the surface 7a of the support substrate 7.
  • the photodetection device 100 described so far is a device mounted on any type of moving object such as a car, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility vehicle, an airplane, a drone, a ship, a robot, etc. It may also be realized as
  • FIG. 24 is a block diagram illustrating a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/image output section 12052, and an in-vehicle network I/F (Interface) 12053 are illustrated as the functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a drive force generation device such as an internal combustion engine or a drive motor that generates drive force for the vehicle, a drive force transmission mechanism that transmits the drive force to wheels, and a drive force transmission mechanism that controls the steering angle of the vehicle. It functions as a control device for a steering mechanism to adjust and a braking device to generate braking force for the vehicle.
  • the body system control unit 12020 controls the operations of various devices installed in the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a turn signal, or a fog lamp.
  • radio waves transmitted from a portable device that replaces a key or signals from various switches may be input to the body control unit 12020.
  • the body system control unit 12020 receives input of these radio waves or signals, and controls the door lock device, power window device, lamp, etc. of the vehicle.
  • the external information detection unit 12030 detects information external to the vehicle in which the vehicle control system 12000 is mounted.
  • an imaging section 12031 is connected to the outside-vehicle information detection unit 12030.
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the external information detection unit 12030 may perform object detection processing such as a person, car, obstacle, sign, or text on the road surface or distance detection processing based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electrical signal as an image or as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • a driver condition detection section 12041 that detects the condition of the driver is connected to the in-vehicle information detection unit 12040.
  • the driver condition detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver condition detection unit 12041. It may be calculated, or it may be determined whether the driver is falling asleep.
  • the microcomputer 12051 calculates control target values for the driving force generation device, steering mechanism, or braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, Control commands can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions, including vehicle collision avoidance or shock mitigation, following distance based on vehicle distance, vehicle speed maintenance, vehicle collision warning, vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose of ADAS (Advanced Driver Assistance System) functions, including vehicle collision avoidance or shock mitigation, following distance based on vehicle distance, vehicle speed maintenance, vehicle collision warning, vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose of
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of autonomous driving, etc., which does not rely on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control for the purpose of preventing glare, such as switching from high beam to low beam. It can be carried out.
  • the audio and image output unit 12052 transmits an output signal of at least one of audio and images to an output device that can visually or audibly notify information to the occupants of the vehicle or to the outside of the vehicle.
  • an audio speaker 12061, a display section 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
  • FIG. 25 is a diagram showing an example of the installation position of the imaging section 12031.
  • the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at, for example, the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield inside the vehicle.
  • An imaging unit 12101 provided in the front nose and an imaging unit 12105 provided above the windshield inside the vehicle mainly acquire images in front of the vehicle 12100.
  • Imaging units 12102 and 12103 provided in the side mirrors mainly capture images of the sides of the vehicle 12100.
  • An imaging unit 12104 provided in the rear bumper or back door mainly captures images of the rear of the vehicle 12100.
  • the imaging unit 12105 provided above the windshield inside the vehicle is mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 25 shows an example of the imaging range of the imaging units 12101 to 12104.
  • An imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • imaging ranges 12112 and 12113 indicate imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • an imaging range 12114 shows the imaging range of the imaging unit 12101 provided on the front nose.
  • the imaging range of the imaging unit 12104 provided in the rear bumper or back door is shown. For example, by overlapping the image data captured by the imaging units 12101 to 12104, an overhead image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of image sensors, or may be an image sensor having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104. By determining the following, it is possible to extract, in particular, the closest three-dimensional object on the path of vehicle 12100, which is traveling at a predetermined speed (for example, 0 km/h or more) in approximately the same direction as vehicle 12100, as the preceding vehicle. can. Furthermore, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of autonomous driving, etc., in which the vehicle travels autonomously without depending on the driver's operation.
  • automatic brake control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 transfers three-dimensional object data to other three-dimensional objects such as two-wheeled vehicles, regular vehicles, large vehicles, pedestrians, and utility poles based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic obstacle avoidance. For example, the microcomputer 12051 identifies obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines a collision risk indicating the degree of risk of collision with each obstacle, and when the collision risk exceeds a set value and there is a possibility of a collision, the microcomputer 12051 transmits information via the audio speaker 12061 and the display unit 12062. By outputting a warning to the driver via the vehicle control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • the microcomputer 12051 determines a collision risk indicating the degree of risk of collision with each obstacle, and when the collision risk exceed
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether the pedestrian is present in the images captured by the imaging units 12101 to 12104.
  • pedestrian recognition involves, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and a pattern matching process is performed on a series of feature points indicating the outline of an object to determine whether it is a pedestrian or not.
  • the audio image output unit 12052 creates a rectangular outline for emphasis on the recognized pedestrian.
  • the display unit 12062 is controlled to display the .
  • the audio image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the photodetecting device 100 described above can be applied to, for example, the imaging section 12031 among the configurations described above.
  • the reliability of products including the photodetector 100 can be further improved.
  • the sealing layer 5 may or may not extend into the seam portion 4.
  • the material of the sealing layer 5 may be a low permeability material or a low Young's modulus material (for example, resin).
  • Photodetection device 100 may be an imaging device.
  • FIGS. 26 and 27 are diagrams illustrating an example of a schematic configuration of a photodetecting device according to a ninth embodiment.
  • Chip 2 includes a plurality of chips 2. As the plurality of chips 2, two chips 2 are illustrated in FIG. 26, and three chips 2 are illustrated in FIG. 27. The first chip is illustrated and referred to as chip 2-1. The second chip is designated and illustrated as chip 2-2. A third chip is illustrated and referred to as chip 2-3. Note that the chip 2-1 and the chip 2-2 here may be understood separately from the chip 2-1 and the chip 2-2 of the sixth embodiment (FIGS. 5 and 6) described above.
  • the chip 2-1 and the chip 2-2 have mutually different thicknesses (heights).
  • Chip 2-2 has a thickness greater than that of chip 2-1.
  • chip 2-1 has a thickness smaller than that of chip 2-2.
  • the seam portion 4 includes a seam portion 4-1 and a seam portion 4-2.
  • the seam portion 4-1 is a first seam portion extending from the chip 2-1 toward the surface 3a of the buried layer 3.
  • the seam portion 4-2 is a second seam portion extending from the chip 2-2 toward the surface 3a of the buried layer 3.
  • the length of the seam portion 4-1 may be shorter than the length of the seam portion 4-2 in the thickness direction thereof.
  • Seam portion 4-2 may extend closer to surface 3a of buried layer 3 than seam portion 4-1.
  • the seam portion 4-2 has reached the surface 3a of the buried layer 3, whereas the seam portion 4-1 has not reached the surface 3a of the buried layer 3.
  • the extending portion 5a of the sealing layer 5 may extend into the seam portion 4-2 so as to fill at least a portion of the seam portion 4-2.
  • the seam portion 4-1 can become a void 4a.
  • chip 2-3 is provided on chip 2-2.
  • Chip 2-2 and chip 2-3 are a plurality of chips 2 (stacked chips) stacked in this order.
  • Chip 2-3 is electrically connected to chip 2-2 via wiring.
  • the wiring also includes a through via 2v that penetrates the chip 2.
  • Chip 2-2 and chip 2-3 have a total thickness greater than the thickness of chip 2-1. As long as this condition is satisfied, the thickness of the chip 2-2 may be the same as or different from the thickness of the chip 2-1. The same applies to chip 2-3. Note that the number of stacked chips 2 may be three or more.
  • the seam portion 4 is the same as that shown in FIG. 26 described above.
  • the seam portion 4-2 may extend closer to the surface 3a of the buried layer 3 than the seam portion 4-1. In the example shown in FIG. 27, the seam portion 4-2 has reached the surface 3a of the buried layer 3, whereas the seam portion 4-1 has not reached the surface 3a of the buried layer 3.
  • Example of manufacturing method> 28 to 32 are diagrams illustrating an example of a method for manufacturing a photodetecting device. Note that descriptions of content that overlap with the previous description regarding the manufacturing method will be omitted as appropriate.
  • a chip 2-1 and a chip 2-2 are provided on a substrate 1.
  • a buried layer 3 is provided to cover the substrate 1, chips 2-1, and chips 2-2.
  • a seam portion 4-1 and a seam portion 4-2 are generated. At this point, both the seam portion 4-1 and the seam portion 4-2 are voids.
  • the buried layer 3 is planarized. Of the seam portions 4-1 and 4-2, the upper portion of the seam portion 4-2 is open. As shown in FIG. 31, a sealing layer 5 is provided to cover the buried layer 3 and the seam portion 4-2. The sealing layer 5 extends into the seam portion 4-2, and that portion becomes an extension portion 5a of the sealing layer 5. As shown in FIG. 32, an auxiliary layer 6 is provided to cover the sealing layer 5. Thereafter, by bonding the support substrate 7 to the auxiliary layer 6, the configuration shown in FIG. 26 described above is obtained.
  • ⁇ Modified example> 33 and 34 are diagrams showing modified examples.
  • the seam portion 4-1 reaches the surface 3a of the buried layer 3, compared to the photodetecting device 100 shown in FIGS. 26 and 27 described above. The difference is that the extending portion 5a of the sealing layer 5 extends into the seam portion 4-1.
  • FIGS. 35 and 36 are diagrams showing an example of a schematic configuration of a photodetecting device according to a 10th embodiment.
  • the layered structure of the photodetecting device 100 described so far is multilayered.
  • the chip 2 includes two chips 2 located side by side in the height direction (Z-axis direction).
  • a chip 2-2 and a chip 2-3 are illustrated as two chips 2 located side by side in the height direction.
  • the chip 2-2 is a lower chip located below the chip 2-3 (on the Z-axis negative direction side).
  • Chip 2-3 is an upper chip located above chip 2-2 (on the Z-axis positive direction side). Note that the chip 2-2 is located at the same height as the chip 2-1.
  • the photodetector 100 further includes a bonding layer 13.
  • Bonding layer 13 is provided between chip 2-2 and chip 2-3.
  • the bonding layer 13 is configured to include wiring so as to provide electrical connection between the chips 2-2 and 2-3.
  • the parts of the bonding layer 13 other than the wiring may be made of an insulating material, and in this sense, the bonding layer 13 can also be called an insulating layer.
  • the chip 2-2 and the chip 2-3 are provided on opposite sides of the bonding layer 13 and are electrically connected to each other via the bonding layer 13.
  • the buried layer 3 includes a buried layer 3-1 and a buried layer 3-2.
  • the buried layer 3-1 is a lower buried layer provided to cover the substrate 1, the side surfaces of the chip 2-1, and the side surfaces of the chip 2-2.
  • the buried layer 3-2 is an upper buried layer provided to cover the bonding layer 13 and the chip 2-3.
  • the seam portion 4 includes a seam portion 4-1, a seam portion 4-2, and a seam portion 4-3.
  • Seam portion 4-1 extends from chip 2-1 toward surface 3a of buried layer 3-1.
  • Seam portion 4-2 extends from chip 2-1 toward surface 3a of buried layer 3-1.
  • the seam portion 4-3 extends from the chip 2-3 toward the surface 3a of the buried layer 3-2.
  • the seam portion 4-1 and the seam portion 4-2 are lower seam portions that occur within the buried layer 3-1 and extend to the surface 3a of the buried layer 3-1.
  • the seam portion 4-3 is an upper seam portion that occurs within the buried layer 3-2 and extends to the surface 3a of the buried layer 3-2.
  • the sealing layer 5 is provided to cover the buried layer 3-2 and the seam portion 4-3.
  • the bonding layer 13 is provided so as to cover the buried layer 3-1, the seam portion 4-1, and the seam portion 4-2.
  • the bonding layer 13 can function similarly to the sealing layer 5 with respect to the buried layer 3-1, the seam portion 4-1, and the seam portion 4-2.
  • the chip 2 further includes a dummy chip 2D.
  • the dummy chip 2D is located in the buried layer 3-2 above the chip 2-1.
  • the dummy chip 2D creates a state in the buried layer 3-2 as if a chip 2 with the same volume as the dummy chip 2D exists.
  • the material of the dummy chip 2D may be the same as the material of the chip 2, or may be different.
  • the dummy chip 2D does not need to have the function of the chip 2.
  • the chip 2-1 and the dummy chip 2D are provided on opposite sides of the bonding layer 13. Note that the chip 2-1 and the dummy chip 2D may or may not be electrically connected.
  • the dummy chip 2D has, for example, the same thickness as the chip 2-3.
  • the buried layer 3-2 is provided to cover the bonding layer 13, the dummy chip 2D, and the chip 2-3.
  • the seam portion 4 further includes a seam portion 4-D extending from the dummy chip 2D toward the surface 3a of the buried layer 3-2.
  • the sealing layer 5 is provided to cover the buried layer 3-2, the seam portion 4-D, and the seam portion 4-3.
  • the entire portion must be filled with the buried layer 3, and for example, the height of the buried layer 3 may be insufficient in that portion, making it difficult to planarize the buried layer 3.
  • This problem is addressed by providing a dummy chip 2D. That is, by providing the dummy chip 2D, planarization of the buried layer 3-2 becomes easier than in the case where the dummy chip 2D is not provided.
  • 37 to 43 are diagrams illustrating an example of a method for manufacturing a photodetecting device. As a premise, it is assumed that the manufacturing process similar to that shown in FIGS. 28 and 29 described above has been completed.
  • the buried layer 3-1 here corresponds to the buried layer 3 in FIGS. 28 and 29, and the thickness of the chip 2-2 here is the same as the thickness of the chip 2-2 in FIGS. 28 and 29. is different.
  • the upper part of the buried layer 3-1 is polished and cleaned, and the sealing layer 5 is provided so as to cover the buried layer 3-1, the seam portions 4-1, and the seam portions 4-2.
  • the sealing layer 5 extends to the inside of the seam portion 4-1 and the seam portion 4-2, and that portion becomes an extension portion 5a of the sealing layer 5.
  • the sealing layer 5 is removed by polishing.
  • the extending portion 5a remains within the seam portion 4-1 and within the seam portion 4-2.
  • Surfaces 2a of chips 2-1 and 2-2 are exposed.
  • the surface 2a is the surface of the chips 2-1 and 2-2 on the Z-axis positive direction side.
  • a through via 2v is provided that penetrates the chip 2-2.
  • a bonding layer 13 is provided so as to cover the buried layer 3-1, the chip 2-1, the seam portion 4-1, the chip 2-2, and the seam portion 4-2.
  • a chip 2-3 is provided on the bonding layer 13 on the opposite side of the bonding layer 13 from the chip 2-2.
  • a buried layer 3-2 is provided to cover the bonding layer 13 and the chip 2-2.
  • a seam portion 4-3 is generated. At this point, the seam portion 4-3 is a gap.
  • a sealing layer 5 is provided to cover the buried layer 3-2, chip 2-3, and seam portion 4-3.
  • the sealing layer 5 extends into the seam portion 4-3, and that portion becomes an extension portion 5a of the sealing layer 5.
  • an auxiliary layer 6 is provided to cover the sealing layer 5. Thereafter, by bonding the support substrate 7 to the auxiliary layer 6, the configuration shown in FIG. 35 described above is obtained.
  • FIG. 44 is a diagram showing a modification.
  • Two substrates 1 are prepared, a chip 2 and a buried layer 3 are provided on each substrate, and then they are bonded together via a bonding layer 13.
  • the first of the two substrates 1 is referred to as a substrate 1-1.
  • the second substrate is illustrated and referred to as substrate 1-2.
  • a manufacturing process similar to that up to the manufacturing process of FIG. 39 described above is performed on the substrate 1-1.
  • a chip 2-1 and a chip 2-2 are provided on the substrate 1-1, and a through via 2v is also provided.
  • a buried layer 3-1 is provided to cover the substrate 1-1, the chip 2-1, and the chip 2-2.
  • a seam portion 4-1 and a seam portion 4-2 are generated within the buried layer 3-1.
  • a sealing layer 5 is provided so as to cover the buried layer 3-1, the seam portion 4-1, and the seam portion 4-2.
  • the sealing layer 5 extends to the inside of the seam portion 4-1 and the seam portion 4-2, and that portion becomes an extension portion 5a of the sealing layer 5.
  • the sealing layer 5 is removed by polishing.
  • the extending portion 5a remains within the seam portion 4-1 and within the seam portion 4-2.
  • a bonding layer 13 is provided so as to cover the buried layer 3-1, the seam portions 4-1, and the seam portions 4-2.
  • a chip 2-3 and a dummy chip 2D are provided on the substrate 1-2, and a through via 3v passing through the chip 2-3 is provided.
  • a buried layer 3-2 is provided to cover the substrate 1-2, chip 2-2, and dummy chip 2D.
  • a seam portion 4-3 and a seam portion 4-D are generated within the buried layer 3-2.
  • a sealing layer 5 is provided to cover the buried layer 3-2, the seam portion 4-3, and the seam portion 4-D. The sealing layer 5 extends into the seam portion 4-3 and into the seam portion 4-D, and that portion becomes an extension portion 5a of the sealing layer 5.
  • the sealing layer 5 is removed by polishing.
  • the extension portion 5a remains within the seam portion 4-3 and within the seam portion 4-D.
  • the structure shown in FIG. 44 is obtained by bonding the buried layer 3-2 on the substrate 1-2 side obtained as described above to the bonding layer 13 on the substrate 1-1 side.
  • This bonding may be performed by bonding a wafer (for example, a semiconductor wafer) containing the substrate 1-1 and a wafer containing the substrate 1-2.
  • the interior of the seam portion 4 is filled with an extension portion 5a, and the opening portion of the seam portion is covered with a bonding layer 13. It can also be said that the bonding layer 13 functions as the sealing layer 5 covering the seam portion 4.
  • the photodetecting device 100 includes the chip 2-1 (first chip) and the chip 2-2 (first chip) having a thickness greater than that of the chip 2-1.
  • the seam portion 4 includes a seam portion 4-1 (first seam portion) extending from the chip 2-1 toward the surface 3a of the buried layer 3, and a seam portion 4-1 (first seam portion) extending from the chip 2-2 toward the surface 3a of the buried layer 3.
  • a seam portion 4-2 (second seam portion) extending toward the surface 3a of the buried layer 3, the seam portion 4-2 being closer to the surface 3a of the buried layer 3 than the seam portion 4-1. It may extend as close as possible.
  • the chip 2 includes a chip 2-1 (first chip), a chip 2-2 (second chip) and a chip 2 stacked in this order.
  • the chip 2-2 and the chip 2-3 have a thickness larger as a whole than the thickness of the chip 2-1, and the seam part 4 is separated from the chip 2-1.
  • a seam portion 4-1 (first seam portion) extending toward the surface 3a of the buried layer 3, and a seam portion 4-2 (first seam portion) extending from the chip 2-2 toward the surface 3a of the buried layer 3.
  • the seam portion 4-2 may extend closer to the surface 3a of the buried layer 3 than the seam portion 4-1. Even in such a configuration in which the thickness of the chip portions is different, communication of the seam portion 4 to the outside can be suppressed.
  • the sealing layer 5 extends into the seam portion 4-2 so as to fill at least a portion of the seam portion 4-2. It may include an extension portion 5a. Thereby, the advantage of the extension part 5a can also be obtained. For example, when the material of the sealing layer 5 includes a low permeability material, the effect of suppressing moisture etc. from entering the chip 2 can be enhanced, and the material of the sealing layer 5 includes a low Young's modulus material. If it is included, inter-chip stress can be alleviated.
  • the seam portion 4-1 does not reach the surface 3a of the buried layer 3, and the seam portion 4-2 does not reach the surface 3a of the buried layer 3. It's okay to do so. In this way, even if there are a mixture of seam portions 4-2 that reach the surface 3a of the buried layer 3 and seam portions 4-1 that do not reach the surface, communication of the seam portion 4 to the outside can be suppressed.
  • the chip 2 includes a chip 2-2 (lower chip) and a chip 2-3 (upper chip) located side by side in the height direction, and includes a photodetector.
  • 100 further includes a bonding layer 13 provided between the chip 2-2 and the chip 2-3, and the buried layer 3 includes a buried layer 3-1 (provided to cover the side surface of the chip 2-2).
  • a lower buried layer and a buried layer 3-2 (upper buried layer) provided to cover the chip 2-3 and the bonding layer 13; , a seam portion 4-2 (lower seam portion) that extends to the surface 3a of the buried layer 3-1, and a seam portion 4 that occurs within the buried layer 3-2 and extends to the surface 3a of the buried layer 3-2.
  • -3 upper seam part
  • the bonding layer 13 is provided so as to cover the buried layer 3-1 and the seam part 4-2, and the sealing layer 5 is provided to cover the buried layer 3-2 and the seam part 4.
  • -3 may be provided to cover. With such a configuration as well, communication of the seam portion 4 to the outside can be suppressed.
  • the chip 2 further includes a chip 2-1 (lower chip) and a dummy chip 2D provided on opposite sides with the bonding layer 13 in between, and a buried layer 3-2. may be provided to cover the chip 2-3, the dummy chip 2D, and the bonding layer 13. This makes planarization of the buried layer 3-2 easier than in the case where the dummy chip 2D is not provided.
  • FIGS. 45 and 46 are diagrams showing an example of a schematic configuration of a photodetecting device according to an 11th embodiment.
  • the sealing layer 5 includes a first portion 51 and a second portion 52.
  • the first portion 51 is a portion of the sealing layer 5 that covers the seam portion 4 . At least a portion of the first portion 51 is located between adjacent chips 2.
  • the second portion 52 is a portion of the sealing layer 5 that does not cover the seam portion 4 . At least a portion of the second portion 52 is located on top of the corresponding chip 2.
  • the second portion 52 may be a portion of the sealing layer 5 other than the first portion 51 .
  • the surface of the first portion 51 on the Z-axis positive direction side is referred to as a surface 51a in the drawing.
  • the surface on the negative side of the Z-axis is referred to as a back surface 51b.
  • the surface of the second portion 52 on the Z-axis positive direction side is referred to as a surface 52a and is illustrated.
  • the surface on the negative side of the Z-axis is referred to as a back surface 52b in the drawing.
  • the back surface 51b of the first portion 51 is located lower than the back surface 52b of the second portion 52 (on the Z-axis negative direction side).
  • the surface 51a of the first portion 51 is located at the same height as the surface 52a of the second portion 52.
  • the entire surface of the sealing layer 5 is a flat surface.
  • the surface 51a of the first portion 51 and the surface 52a of the second portion 52 are located at different heights.
  • the surface 52a of the second portion 52 is located above the surface 51a of the first portion 51 (on the Z-axis positive direction side).
  • the entire surface of the sealing layer 5 is a non-flat surface.
  • the auxiliary layer 6 (for example, SiO2, etc.) provided on the sealing layer 5 has a flat surface 6a, thereby ensuring flatness.
  • the auxiliary layer 6 can also be called an easy-to-planarize layer.
  • the thickness of the sealing layer 5 on the seam portion 4 can be increased compared to the configurations described above. Accordingly, the function of the sealing layer 5 to suppress communication of the seam portion 4 to the outside can be enhanced. Furthermore, since there is no need to flatten the buried layer 3, it is possible to prevent chemical liquid from entering the seam portion 4, which may occur during polishing or cleaning of the buried layer 3, for example.
  • 47 to 51 are diagrams illustrating an example of a method for manufacturing a photodetecting device.
  • 47 to 49 show an example of a manufacturing method for obtaining the configuration shown in FIG. 45 described above.
  • the sealing layer 5 is provided on the buried layer 3 without polishing it.
  • the sealing layer 5 extends into the seam portion 4, and that portion becomes an extension portion 5a of the sealing layer 5.
  • FIG. 48 by polishing and cleaning the upper part of the sealing layer 5, the sealing layer 5 including the first portion 51 and the second portion 52 as shown in FIG. is obtained.
  • the surface 51a of the first portion 51 and the surface 52a of the second portion 52 are both located at the same height, and the entire surface of the sealing layer 5 is a flat surface.
  • an auxiliary layer 6 is provided to cover the sealing layer 5. Thereafter, by bonding the support substrate 7 to the auxiliary layer 6, the configuration shown in FIG. 45 described above is obtained.
  • FIGS. 50 and 51 show an example of a manufacturing method for obtaining the configuration shown in FIG. 46 described above. As a premise, it is assumed that the manufacturing process shown in FIG. 47 described above has been completed.
  • a sealing layer 5 including a first portion 51 and a second portion 52 similar to those in FIG. 49 described above is obtained, and this sealing layer 5 is not polished.
  • an auxiliary layer 6 is provided to cover the sealing layer 5.
  • FIG. 51 by polishing and cleaning the upper part of the auxiliary layer 6, the auxiliary layer 6 having a flat surface 6a is obtained. Thereafter, by bonding the support substrate 7 to the auxiliary layer 6, the configuration shown in FIG. 46 described above is obtained.
  • the sealing layer 5 may have a laminated structure. This will be explained with reference to FIG. 52.
  • FIG. 52 is a diagram showing an example of a schematic configuration of a sealing layer.
  • FIG. 52A schematically shows a cross section of the sealing layer 5 and its surroundings.
  • FIG. 52(B) schematically shows an enlarged cross section of a part of the sealing layer 5.
  • the sealing layer 5 has a laminated structure in which a plurality of layers are laminated.
  • the plurality of layers may include, for example, two types of layers.
  • One type of layer of the two types of layers may be an inorganic layer and the other type of layer may be an organic layer.
  • the inorganic layer is illustrated as an inorganic layer 53.
  • the organic layer is illustrated as organic layer 54 .
  • inorganic materials may be used as the material for the inorganic layer 53.
  • examples of inorganic materials are Al 2 O 3 , SiN, SiON, SiCN, etc.
  • organic materials may be used as the material for the organic layer 54.
  • materials are polymers, hybrid polymers, etc.
  • polymers are PEN, PET, PEG, etc.
  • Hybrid polymers are materials that include a polymer and, for example, a metallic material.
  • An example of a hybrid polymer when the metal material is aluminum is Alcone.
  • the organic layer 54 may be formed using, for example, spin coating, an inkjet method, an MLD method, or the like.
  • the MLD method may be suitably used to form the sealing layer 5 including the extension portion 5a extending into the seam portion 4.
  • the sealing layer 5 has a six-layer structure including three inorganic layers 53 and three organic layers 54.
  • the inorganic layers 53 and the organic layers 54 are alternately stacked.
  • the number of inorganic layers 53 and organic layers 54 may be smaller or larger than the number shown in FIG. 52.
  • the sealing layer 5 has a laminated structure, the function of the sealing layer 5 can be enhanced. For example, gas (water vapor, etc.) barrier properties can be improved, and robustness against deformation can be improved.
  • gas water vapor, etc.
  • the sealing layer 5 includes a first portion 51 that covers the seam portion 4, a second portion 52 that does not cover the seam portion 4, and a second portion 52 that does not cover the seam portion 4.
  • the back surface 51b of the first portion 51 may be located lower than the back surface 52b of the second portion 52 (on the Z-axis negative direction side).
  • the surface 51a of the first portion 51 may be located at the same height as the surface 52a of the second portion 52.
  • the photodetecting device 100 includes the auxiliary layer 6 provided to cover the sealing layer 5, and the surface 52a of the second portion 52 is It is located above the surface 51a of the portion 51 (on the Z-axis positive direction side), and the surface 6a of the auxiliary layer 6 may be a flat surface.
  • the thickness of the sealing layer 5 on the seam portion 4 can be increased. Accordingly, the function of the sealing layer 5 to suppress communication of the seam portion 4 to the outside can be enhanced.
  • the sealing layer 5 may have a laminated structure in which a plurality of layers are laminated.
  • the plurality of layers of the sealing layer 5 may include an inorganic layer 53 and an organic layer 54.
  • the function of the sealing layer 5 can be enhanced. For example, gas (water vapor, etc.) barrier properties can be improved, and robustness against deformation can be improved.
  • FIG. 53 is a diagram illustrating an example of a schematic configuration of a photodetection device according to a 13th embodiment.
  • Photodetection device 100 includes a dummy chip 2D. Note that the dummy chip 2D here may be understood as being distinct from the dummy chip 2D of the tenth embodiment (FIG. 36) described above.
  • the dummy chip 2D is used to narrow the peripheral interval of the chip 2.
  • the dummy chip 2D is arranged adjacent to the chip 2 with an interval therebetween.
  • the chips 2 include two chips 2 spaced apart from each other.
  • the dummy chip 2D is provided between these two chips 2.
  • the buried layer 3 is provided to cover the substrate 1, chip 2, and dummy chip 2D.
  • Seam portion 4 extends to surface 3a of buried layer 3 in a portion between chip 2 and dummy chip 2D.
  • the aspect ratio of the portion of the buried layer 3 where the seam portion 4 occurs increases by the amount that the dummy chip 2D is provided.
  • the aspect ratio here corresponds to the ratio of the length in the Z-axis direction to the length in the XY plane direction. By increasing the aspect ratio, the direction in which the seam portion 4 extends is restricted.
  • the extending direction of the seam portion 4 is made close to the height direction (Z-axis positive direction) of the chip 2 and the dummy chip 2D.
  • the aspect ratio may be designed so that such a seam portion 4 can be easily obtained.
  • the aspect ratio may be designed within the range of 1-3.
  • the seam portion 4 extends along the height direction (Z-axis positive direction) of the chip 2 and the dummy chip 2D. Extending along the height direction may include not only extending in the same direction as the height direction, but also extending at a certain angle with respect to the height direction. Examples of such upper limits for angles are less than 30 degrees, less than 25 degrees, less than 20 degrees, less than 15 degrees, less than 10 degrees, less than 5 degrees, etc. The lower limit of the angle may be 0 degrees. Note that, hereinafter, extending along the height direction of the chip 2 and the dummy chip 2D will also be referred to as extending in the vertical direction.
  • the sealing layer 5 Since the seam portion 4 extends in the vertical direction, when the sealing layer 5 is provided to cover the embedded layer 3 and the seam portion 4, the sealing layer 5 easily extends into the seam portion 4. Become. The advantages of the extending portion 5a of the sealing layer 5 as described above can be easily obtained.
  • Example of manufacturing method> 54 to 58 are diagrams illustrating an example of a method for manufacturing a photodetecting device.
  • a chip 2 and a dummy chip 2D are provided on a substrate 1.
  • a buried layer 3 is provided (for example, formed into a film) so as to cover the substrate 1, chip 2, and dummy chip 2D. Seam portions 4 occur due to overhang during film formation. That is, the film is formed on the upper part of the chip 2 faster than the film forming speed on the bottom part between the chip 2 and the dummy chip 2D.
  • the material of the buried layer 3 is blocked during the film formation, and a seam portion 4 is generated between the chip 2 and the dummy chip 2D without being formed.
  • the extending direction of the seam portion 4 can be brought closer to the height direction (positive Z-axis direction) of the chips 2 and the dummy chips 2D. .
  • the seam portion 4 is a void.
  • the upper part of the buried layer 3 is polished and cleaned.
  • the upper part of the seam part 4 is open.
  • a sealing layer 5 is provided to cover the buried layer 3 and the seam portion 4. Since the seam portion 4 extends in the vertical direction, the sealing layer 5 easily extends into the seam portion 4, and that portion becomes an extension portion 5a of the sealing layer 5.
  • an auxiliary layer 6 is provided to cover the sealing layer 5. Thereafter, by bonding the support substrate 7 to the auxiliary layer 6, the configuration shown in FIG. 53 described above is obtained.
  • FIG. 59 is a diagram showing an example of a schematic configuration of a photodetection device according to a 14th embodiment.
  • the chip 2 has a shape in which the width (length in the XY plane direction) decreases as it approaches the surface 2a.
  • a portion located at the center of the chip 2 in the XY plane direction is referred to as a central portion 21 and illustrated.
  • a portion located outside the center portion 21 and including the edge of the chip 2 is referred to as an edge portion 22 and illustrated.
  • the edge 22 of the chip 2 has a round shape on the surface 2a of the chip 2.
  • the edge portion 22 may have a shape other than a round shape.
  • An example of another shape is a tapered shape.
  • the buried layer 3 is provided to cover the chip 2.
  • Seam portion 4 extends from chip 2 to surface 3a of buried layer 3. Since the width of the chip 2 on the front surface 2a side is narrow, the seam portion 4 extends along the height direction of the chip 2, that is, extends in the vertical direction. This is because the embeddability of the embedding layer 3 in the bottom of the periphery of the chip 2, more specifically in the area between adjacent chips 2 in this example, is improved.
  • the advantage of the seam portion 4 extending in the vertical direction is as described above.
  • ⁇ Example of manufacturing method> 60 to 64 are diagrams illustrating an example of a method for manufacturing a photodetecting device.
  • a chip 2 is provided on a substrate 1, the width of which is narrower on the front surface 2a side.
  • the chip 2 is processed so that the angle of the edge 22 of the chip 2 is less than 90 degrees.
  • An example of processing is chamfering the surface 2a of the chip 2. Examples of chamfering include C chamfering, R chamfering, etc. by plasma etching or the like.
  • a buried layer 3 is provided to cover the substrate 1 and chip 2.
  • the embedding property of the embedding layer 3 to the bottom of the portion between the chips 2 is improved.
  • the extending direction of the generated seam portion 4 is brought closer to the height direction of the chip 2 (positive Z-axis direction). At this point, the seam portion 4 is a void.
  • the upper part of the buried layer 3 is polished and cleaned.
  • the upper part of the seam part 4 is open.
  • a sealing layer 5 is provided to cover the buried layer 3 and the seam portion 4. Since the seam portion 4 extends in the vertical direction, the sealing layer 5 easily extends into the seam portion 4, and that portion becomes an extension portion 5a of the sealing layer 5.
  • an auxiliary layer 6 is provided to cover the sealing layer 5. Even during polishing and cleaning of the auxiliary layer 6, the seam portion 4 is covered with the sealing layer 5, so the seam portion 4 does not widen. Thereafter, by bonding the support substrate 7 to the auxiliary layer 6, the configuration shown in FIG. 59 described above is obtained.
  • FIG. 65 is a diagram showing an example of a schematic configuration of a photodetection device according to a 15th embodiment.
  • the seam portion 4 has a shape in which the width (length in the XY plane direction) changes as it progresses in the extending direction.
  • the shape of the seam portion 4 may have a locally bulged shape.
  • the seam portion 4 includes an end portion 41, a center portion 42, and an end portion 43.
  • the center portion 42 is a portion located at the center of the seam portion 4 in the direction in which the seam portion 4 extends.
  • the end portion 41 and the end portion 43 are portions located at the ends of the seam portion 4 in the extending direction of the seam portion 4.
  • the end portion 41 and the end portion 43 are located on opposite sides of the center portion 42 . In this example, the end portion 41, the center portion 42, and the end portion 43 are located in this order along the Z-axis positive direction.
  • the central portion 42 has a width larger than the width of at least one of the end portions 41 and 43.
  • the width of the central portion 42 is greater than the width of the end portions 41 and also greater than the width of the end portions 43.
  • the seam portion 4 has a shape in which a central portion 42 is bulged in its extending direction.
  • the dummy chip 2D is provided on the substrate 1, but even if the dummy chip 2D is not provided, the seam portion 4 having a locally bulged shape may occur. It is possible. By providing the dummy chip 2D, the extending direction of the seam portion 4 can be made closer to the height direction (Z-axis positive direction) of the chip 2 and the dummy chip 2D. Furthermore, instead of providing the dummy chip 2D, the same effect can be obtained by using the chip 2 whose width on the front surface 2a side is narrower as shown in FIG. 59 described above.
  • ⁇ Example of manufacturing method> 66 to 69 are diagrams illustrating an example of a method for manufacturing a photodetecting device. As a premise, it is assumed that a manufacturing process similar to that shown in FIG. 54 described above has been completed. As shown in FIG. 66, a buried layer 3 is provided (for example, formed into a film) so as to cover the substrate 1, chip 2, and dummy chip 2D. Seam portions 4 occur due to overhang during film formation. The film is formed on the upper part of the chip 2 faster than the film on the bottom part between the chip 2 and the dummy chip 2D.
  • the material of the buried layer 3 is blocked during the film formation, and a gap is locally formed between the chip 2 and the dummy chip 2D without the film being formed midway. This gap becomes the seam portion 4. Since the peripheral interval of the chips 2 is narrowed by the provision of the dummy chips 2D, the extending direction of the seam portion 4 is brought closer to the height direction (Z-axis positive direction) of the chips 2 and the dummy chips 2D.
  • the upper part of the buried layer 3 is polished and cleaned.
  • the upper part of the seam part 4 is open.
  • a sealing layer 5 is provided to cover the embedded layer 3 and the seam portion 4. Since the seam portion 4 extends in the vertical direction, the sealing layer 5 easily extends into the seam portion 4, and that portion becomes an extension portion 5a of the sealing layer 5.
  • an auxiliary layer 6 is provided to cover the sealing layer 5. Thereafter, by bonding the support substrate 7 to the auxiliary layer 6, the configuration shown in FIG. 65 described above is obtained.
  • the photodetecting device 100 includes the dummy chip 2D that is arranged adjacent to the chip 2 with a space therebetween, and the buried layer 3 supports the chip 2 and the dummy chip 2D.
  • the seam portion 4 may extend to the surface 3a of the buried layer 3 in a portion between the chip 2 and the dummy chip 2D.
  • the seam portion 4 may extend along the height direction (Z-axis positive direction) of the chip 2 and the dummy chip 2D.
  • the chips 2 include two chips 2 provided apart from each other, and the dummy chip 2D may be provided between the two chips 2. Thereby, when the sealing layer 5 is provided so as to cover the embedded layer 3 and the seam part 4, the sealing layer 5 can easily extend into the seam part 4.
  • the advantages of the extending portion 5a of the sealing layer 5 can be easily obtained.
  • the chip 2 may have a shape in which the width becomes smaller toward the surface 2a of the chip 2 (as it progresses in the positive direction of the Z-axis).
  • the edge 22 of the chip 2 may have a tapered shape or a round shape on the surface 2a of the chip 2.
  • the seam portion 4 may extend along the height direction (Z-axis direction) of the chip 2. Such a configuration also allows the sealing layer 5 to easily extend into the seam portion 4 when the sealing layer 5 is provided to cover the buried layer 3 and the seam portion 4 .
  • the seam portion 4 may have a shape in which the width changes as it progresses in its extending direction.
  • the seam portion 4 includes a center portion 42 located at the center in the extending direction of the seam portion 4, and an end portion 41 (or may be an end portion 43) located at an end in the extending direction of the seam portion 4.
  • the portion 42 may have a width greater than the width of the end portion 41 (which may also be the end portion 43). Even when the seam portion 4 has such a shape, communication of the seam portion 4 to the outside can be suppressed.
  • the extending direction of the seam portion 4 can be set in the height direction of the chip 2 (Z-axis direction). can be approached.
  • FIG. 70 and 71 are diagrams showing a first arrangement example of dummy chips.
  • FIG. 70 schematically shows a cross section of the photodetector 100.
  • FIG. 71 schematically shows a cross section (planar layout) of the photodetector 100 taken along the line II in FIG. 70. Note that in the example shown in FIG. 70, the seam portion 4 is filled with the extension portion 5a. In FIG. 71, the seam portion 4 is simplified and depicted as having no width.
  • the chip 2 has a side surface 2c, a side surface 2d, a side surface 2e, and a side surface 2f.
  • the side surface 2c and the side surface 2d are a pair of side surfaces facing each other.
  • the side surface 2e and the side surface 2f are a pair of side surfaces that face each other and connect the side surface 2c and the side surface 2d.
  • the side surface 2c, the side surface 2d, the side surface 2e, and the side surface 2f of the chip 2 are not particularly distinguished, they are also simply referred to as the side surface of the chip 2.
  • the dummy chip 2D extends to face the side surface of the chip 2 when viewed in plan.
  • the dummy chips 2D may be a plurality of dummy chips 2D, each facing a different side surface of the chip 2.
  • Two or more dummy chips 2D may be provided for one chip 2.
  • the material of the dummy chip 2D may include the same material as the material of the chip 2. Further, the dummy chip 2D may have the same height as the chip 2. In the XY plane direction, the chips 2 and the dummy chips 2D may be provided alternately.
  • the material of the buried layer 3 is reduced from the chip 2 toward the periphery when the buried layer 3 is provided (for example, during film formation), compared to when the dummy chip 2D is not provided. It is possible to suppress the stress that acts on the
  • the dummy chip 2D may include two or more dummy chips 2D.
  • the dummy chips 2D include four dummy chips 2D.
  • the dummy chip 2D facing the side surface 2c of the chip 2 is shown as a dummy chip 2D-1.
  • the dummy chip 2D facing the side surface 2d of the chip 2 is shown as a dummy chip 2D-2.
  • the dummy chip 2D facing the side surface 2e of the chip 2 is shown as a dummy chip 2D-3.
  • the dummy chip 2D facing the side surface 2f of the chip 2 is shown as a dummy chip 2D-4.
  • the dummy chips 2D are arranged at intervals from each other. Near the corners of the chip 2, the dummy chips 2D are spaced apart from each other.
  • FIG. 72 is a diagram showing the effect of the dummy chip.
  • FIG. 72A schematically shows the range of the seam portion 4E1 that may occur when only the chip 2 is provided.
  • FIG. 72(B) schematically shows the range of the seam portion 4E2 that may occur when only the dummy chip 2D is provided.
  • FIG. 72C schematically shows the range of the seam portion 4 that occurs when the chip 2 and the dummy chip 2D are provided.
  • the dummy chip 2D may have a length equal to or more than half the length of the side surface of the opposing chip 2 in its extending direction.
  • the length of the side surface 2c of the chip 2 is shown as a length H.
  • the length of the side surface 2e of the chip 2 is shown as a length W.
  • the length of the dummy chip 2D-1 in the extending direction facing the side surface 2c of the chip 2 is referred to as length HD in the drawing.
  • the length of the dummy chip 2D-3 in the extending direction facing the side surface 2e of the chip 2 is referred to as a length W D in the drawing.
  • the length HD of the dummy chip 2D-1 may be designed to satisfy the following formula (1).
  • Dummy chip 2D-2 may be designed similarly.
  • the dummy chip 2D-3 may be designed to satisfy the following formula (2).
  • W D ⁇ W/2 (2) Dummy chip 2D-4 may be designed similarly.
  • the effect of the dummy chip 2D that is, the extending direction of the seam portion 4 is brought closer to the height direction (Z-axis positive direction) of the chip 2 and the dummy chip 2D. This effect becomes easier to obtain.
  • the dummy chip 2D is arranged so as to sandwich the chip 2.
  • the dummy chip 2D-1 and the dummy chip 2D-2 are arranged on opposite sides of the chip 2 so as to sandwich the chip 2 therebetween.
  • the dummy chip 2D-3 and the dummy chip 2D-4 are arranged on opposite sides of the chip 2 so as to sandwich the chip 2 therebetween.
  • the area where the effect of the dummy chip 2D can be obtained can be expanded compared to the case where only the dummy chip 2D is provided facing one side of the chip 2.
  • the components of the photodetector 100 may be provided in each region defined by a scribe line on the wafer, for example.
  • the photodetector 100 is obtained by dicing (cutting) the wafer along the scribe lines. This will be explained with reference to FIG. 73.
  • FIG. 73 is a diagram showing an example of a schematic configuration of a wafer.
  • the ware is referred to as a wafer 200 and illustrated.
  • FIG. 73 schematically shows a part of the wafer 200 when viewed from above (when viewed in the negative Z-axis direction).
  • a scribe line SL-H and a scribe line SL-V are formed on the wafer 200, which are perpendicular to each other. When these are not particularly distinguished, they are simply referred to as scribe lines SL.
  • One area surrounded by scribe line SL-H and scribe line SL-V corresponds to one photodetector 100.
  • the chip 2 and the dummy chip 2D of the photodetector 100 are located inside the scribe line SL (not located on the scribe line SL).
  • One piece (1 shot) obtained by dicing the wafer 200 along the scribe line SL becomes the photodetecting device 100.
  • the material of the dummy chip 2D may include the same material as the material of the chip 2.
  • the dummy chip 2D may have the same height as the chip 2. Further, the dummy chip 2D may be arranged to sandwich the chip 2.
  • FIG. 74 is a diagram showing a second arrangement example of dummy chips.
  • the dummy chip 2D extends continuously to surround the chip 2.
  • dummy chips 2D-1 to 2D-4 are arranged to surround chip 2, and are connected to each other.
  • the entire periphery of the chip 2 is surrounded by the dummy chip 2D, and the effect of the dummy chip 2D can be maximized.
  • FIG. 75 is a diagram showing the effect of the dummy chip. The explanation will be omitted since it is the same as that of FIG. 72 above.
  • FIG. 76 is a diagram showing an example of a schematic configuration of a wafer.
  • the chip 2 and the dummy chip 2D of the photodetector 100 are located inside the scribe line SL.
  • the photodetecting device 100 is obtained by dicing the wafer 200 along the scribe line SL.
  • FIG. 77 is a diagram showing a third arrangement example of dummy chips.
  • Dummy chip 2D-1, dummy chip 2D-2, dummy chip 2D-3, and dummy chip 2D-4 are arranged so as to surround chip 2, and are spaced apart from each other.
  • the side surface of the dummy chip 2D-1, the side surface of the dummy chip 2D-2, the side surface of the dummy chip 2D-3, and the side surface of the dummy chip 2D-4, which is located on the opposite side to the chip 2, is the side surface 2D-1a. , side surface 2D-2a, side surface 2D-3a, and side surface 2D-4a. These side surfaces constitute part of the side surfaces of the photodetector 100.
  • the side surface 2D-1a, the side surface 2D-2a, the side surface 2D-3a, and the side surface 2D-4a are separated from the buried layer 3. Exposed (not covered by buried layer 3).
  • FIG. 78 is a diagram showing the effect of the dummy chip. The explanation will be omitted since it is the same as that of FIG. 72 above.
  • FIG. 79 is a diagram showing an example of a schematic configuration of a wafer.
  • the chip 2 of the photodetector 100 is located inside the scribe line SL.
  • the dummy chips 2D of adjacent photodetecting devices 100 are provided in a continuous manner across the scribe line SL. It can also be said that these dummy chips 2D are provided on the scribe line SL.
  • the photodetector 100 is obtained by dicing the wafer 200 and the dummy chips 2D along the scribe line SL. Since the dummy chips 2D of adjacent photodetecting devices 100 can be provided together, manufacturing becomes easier.
  • FIG. 80 is a diagram showing a fourth example of arrangement of dummy chips.
  • the chip 2 is placed near a corner of the photodetector 100.
  • the chip 2 is arranged such that the side surface 2c and the side surface 2e of the chip 2 are located near the side surface of the photodetecting device 100.
  • Two dummy chips 2D facing the other two sides of the chip 2 are arranged.
  • a dummy chip 2D-2 facing the side surface 2d of the chip 2 and a dummy chip 2D-4 facing the side surface 2f of the chip 2 are arranged.
  • FIG. 81 is a diagram showing the effect of the dummy chip. The explanation will be omitted since it is the same as that of FIG. 72 above.
  • FIG. 82 is a diagram showing an example of a schematic configuration of a wafer.
  • the chip 2 and the dummy chip 2D of the photodetector 100 are located inside the scribe line SL.
  • the photodetecting device 100 is obtained by dicing the wafer 200 along the scribe line SL.
  • FIG. 83 is a diagram showing a fifth arrangement example of dummy chips.
  • Dummy chip 2D-1, dummy chip 2D-2, dummy chip 2D-3, and dummy chip 2D-4 are arranged so as to surround chip 2, and are spaced apart from each other. Unlike FIG.
  • the side surface 2D-1a of the dummy chip 2D-1, the side surface 2D-2a of the dummy chip 2D-2, and the side surface 2D-2a of the dummy chip 2D-3 are The side surface 2D-3a and the side surface 2D-4a of the dummy chip 2D-4 are not exposed from the buried layer 3 (covered by the buried layer 3).
  • FIG. 84 is a diagram showing the effect of the dummy chip 2D. The explanation will be omitted since it is the same as that of FIG. 72 above.
  • FIG. 85 is a diagram showing an example of a schematic configuration of a wafer.
  • the chip 2 and the dummy chip 2D of the photodetector 100 are located inside the scribe line SL. Unlike FIG. 79 described above, the dummy chips 2D of adjacent photodetecting devices 100 do not straddle the scribe line SL and are separated from each other.
  • the photodetecting device 100 is obtained by dicing the wafer 200 along the scribe line SL.
  • FIG. 86 is a diagram showing an example of a schematic configuration of a wafer.
  • the chip 2 includes two or more chips 2, and two chips 2 are illustrated in FIG. A side surface 2e of one chip 2 and a side surface 2f of the other chip 2 face each other.
  • Two dummy chips 2D are arranged. One of the dummy chips 2D is placed between the two chips 2. This dummy chip 2D is shown as a dummy chip 2D-34. Another dummy chip 2D is a dummy chip 2D-2 arranged so as to extend along the side surfaces 2d of the two chips 2.
  • FIG. 87 is a diagram showing the effect of the dummy chip. The explanation will be omitted since it is the same as that of FIG. 72 above.
  • FIG. 88 is a diagram showing an example of a schematic configuration of a wafer.
  • the chip 2 and the dummy chip 2D of the photodetector 100 are located inside the scribe line SL.
  • the photodetecting device 100 is obtained by dicing the wafer 200 along the scribe line SL.
  • FIG. 89 is a diagram showing a seventh example of arrangement of dummy chips.
  • the advantages of the second arrangement example (FIG. 74) and the third arrangement example (FIG. 77) described above are combined.
  • the dummy chip 2D extends continuously to surround the chip 2.
  • dummy chips 2D-1 to 2D-4 are arranged to surround chip 2, and are connected to each other.
  • the side surface 2D-1a of the dummy chip 2D-1, the side surface 2D-2a of the dummy chip 2D-2, The side surface 2D-3a of the dummy chip 2D-3 and the side surface 2D-4a of the dummy chip 2D-4 are exposed from the buried layer 3.
  • FIG. 90 is a diagram showing the effect of the dummy chip. The explanation will be omitted since it is the same as that of FIG. 72 above.
  • FIG. 91 is a diagram showing an example of a schematic configuration of a wafer.
  • the chip 2 of the photodetector 100 is located inside the scribe line SL.
  • the dummy chips 2D of adjacent photodetecting devices 100 are provided so as to be connected across the scribe line SL.
  • the photodetector 100 is obtained by dicing the wafer 200 and the dummy chips 2D along the scribe line SL.
  • FIGS. 92 and 93 are diagrams showing modified examples. .
  • FIG. 92 schematically shows a cross section of the photodetector 100.
  • FIG. 93 schematically shows a cross section (planar layout) of the photodetector 100 taken along line II-II in FIG. 92.
  • the arrangement of the dummy chips 2D is the same as the first arrangement example (FIGS. 70 and 71) described above.
  • the sealing layer 5 does not have the extending portion 5a, and the seam portion 4 is a void. Even in this case, the effect of the dummy chip 2D can be obtained.
  • the seam portion 4 may be a void in the second to seventh arrangement examples described above as well.
  • the photodetecting device 100 in which the dummy chip 2D is arranged as described above is specified, for example, as follows.
  • the chip 2D extends so as to face the side surface of the chip 2, and has a length (in the extending direction) that is at least half the length (length H, length W) of the side surface of the chip 2 that faces the chip 2D. (H D ⁇ H/2, W D ⁇ W/ 2 ).
  • the effect of the dummy chip 2D that is, the extending direction of the seam portion 4 can be adjusted in the height direction of the chip 2 (Z-axis positive direction) of the chip 2 and the dummy chip 2D. It becomes easier to obtain the effect of bringing the distance closer to .
  • the dummy chip 2D may be arranged to sandwich the chip 2 when viewed from above.
  • the dummy chip 2D may include two or more dummy chips 2D.
  • the area where the effect of the dummy chip 2D can be obtained can be expanded, for example, compared to the case where only one dummy chip 2D facing one side of the chip 2 is provided.
  • the material of the dummy chip 2D may include the same material as the material of the chip 2. Furthermore, the dummy chip 2D may have the same height as the chip 2 (length in the Z-axis direction). For example, by using such a dummy chip 2D, the extending direction of the seam portion 4 can be brought closer to the height direction (Z-axis direction) of the chip 2 and the chip 2 of the dummy chip 2D.
  • the chip includes two or more chips. For example, even in such a multi-chip configuration, the effect of the dummy chip 2D can be obtained.
  • the dummy chip 2D may continuously extend to surround the chip 2 when viewed in plan. Thereby, the effect of the dummy chip 2D can be maximized.
  • the dummy chips 2D (for example, the dummy chips 2D-1, Dummy chip 2D-2, dummy chip 2D-3, dummy chip 2D-4) have side surfaces exposed from buried layer 3 (for example, side surface 2D-1a, side surface 2D-2a, side surface 2D-3a, side surface 2D-4a).
  • the dummy chip 2D can be placed at the outermost position of the photodetector 100. For example, it becomes easier to secure a region where the chip 2 is to be provided.
  • the dummy chips 2D of adjacent photodetecting devices 100 can be provided together on the wafer 200, manufacturing becomes easier.
  • FIG. 94 is a diagram showing an example of a schematic configuration of a photodetection device according to a 16th embodiment.
  • the photodetecting device 100 includes a sealing layer 5-2 instead of the sealing layer 5.
  • photodetector 100 does not include auxiliary layer 6.
  • the support substrate 7 is joined (bonded) via the sealing layer 5-2.
  • the buried layer 3 is provided to cover the side surface of the chip 2. A surface 2a of the chip 2 is exposed from the buried layer 3. At least a portion of the seam portion 4 is filled with a material different from the material of the buried layer 3. In this example, the extending portion 5a described above extends within the seam portion 4 so as to fill at least a portion of the seam portion 4.
  • the sealing layer 5-2 is provided to cover the buried layer 3, the seam portion 4, and the surface 2a of the chip 2.
  • the sealing layer 5-2 is in contact not only with the surface 3a of the buried layer 3 but also with the surface 2a of the chip 2.
  • the sealing layer 5-2 has a higher thermal conductivity than that of silicon (Si).
  • the portion to which heat from the chip 2 is transmitted is more likely to be thermally connected to the outside through the sealing layer 5-2 (easier to be thermally exposed, and heat dissipation and other heat dissipation properties can be improved.
  • a metal material is used for the buried layer 3 with the aim of improving heat dissipation by the buried layer 3, there is a possibility that leakage may occur between the buried layer 3 and the chip 2, reducing the reliability of the device.
  • leakage can be suppressed and reliability of the device can be improved.
  • FIG. 95 is a diagram showing an example of a schematic configuration of a photodetecting device according to a 17th embodiment.
  • the photodetecting device 100 includes the above-described sealing layer 5-2 instead of the auxiliary layer 6 described above.
  • Two sealing layers are provided: sealing layer 5 and sealing layer 5-2.
  • the sealing layer 5 is a first sealing layer provided so as to cover the embedded layer 3 and the seam portion 4 .
  • the sealing layer 5-2 is a second sealing layer provided to cover the sealing layer 5.
  • Support substrate 7 is bonded via sealing layer 5-2. It is also possible to improve heat dissipation by providing the sealing layer 5-2 in this manner.
  • FIG. 96 is a diagram showing an example of a schematic configuration of a photodetection device according to an 18th embodiment.
  • the photodetecting device 100 differs from the configuration of FIG. 94 described above in that it does not include the sealing layer 5-2 but includes the sealing layer 5-3.
  • the sealing layer 5-3 is a metal layer.
  • materials for the metal layer include copper (Cu), aluminum (Al), tungsten (W), titanium (Ti), tantalum (Ta), gold (Au), silver (Ag), platinum (Pt), and palladium ( Pd) etc.
  • Support substrate 7 is bonded via sealing layer 5-3. In this way, the sealing layer 5-3, which is a metal layer, can be provided to improve heat dissipation.
  • FIG. 97 is a diagram showing an example of a schematic configuration of a photodetection device according to a nineteenth embodiment.
  • the photodetecting device 100 does not include the sealing layer 5-2, but does include the sealing layer 5-4, compared to the configuration of FIG. 94 described above.
  • the sealing layer 5-4 includes an insulating layer 50 and a sealing layer 5-2 that extend continuously in the plane direction (XY plane direction) of the sealing layer 5-4.
  • the insulating layer 50 is a first portion of the sealing layer 5-4 that covers the buried layer 3 and the buried layer 3 of the chip 2.
  • the sealing layer 5-2 is a second portion provided to cover the buried layer 3 and the buried layer 3 of the chip 2.
  • the insulating layer 50 has insulating properties. Examples of materials for the insulating layer 50 include SiOx, SiNx, SiON, SiOC, SiCN, and SiC. As mentioned earlier, the sealing layer 5-2 has a higher thermal conductivity than that of silicon. The sealing layer 5-2 may be provided so as to be in contact with the surface 2a of the chip 2. It is also possible to improve heat dissipation by providing the sealing layer 5-2 in this manner.
  • FIG. 98 is a diagram showing an example of a schematic configuration of a photodetection device according to a 20th embodiment.
  • the photodetecting device 100 differs from the configuration of FIG. 94 described above in that it does not include the sealing layer 5-2 but includes the additional layer 9.
  • the additional layer 9 here may be understood separately from the additional layer 9 of the seventh embodiment (FIG. 7) described above.
  • the additional layer 9 is provided between the chip 2 and the buried layer 3. More specifically, the additional layer 9 is provided to cover the substrate 1 and the chip 2. The buried layer 3 is provided to cover the additional layer 9 except for the portion of the additional layer 9 located above the chip 2 .
  • the additional layer 9 in this embodiment is a metal layer (also called a barrier metal).
  • a metal layer also called a barrier metal.
  • materials for the metal layer are titanium (Ti), tantalum (Ta), and the like.
  • the interior of the seam portion 4 is filled with an extension portion 5a, and the seam portion 4 is covered with an additional layer 9.
  • Support substrate 7 is bonded via buried layer 3 and additional layer 9 .
  • the support substrate 7 and the additional layer 9 can serve as a sealing layer covering the buried layer 3 , the seam 4 and the chip 2 .
  • FIG. 99 is a diagram illustrating an example of a schematic configuration of a photodetection device according to a 21st embodiment.
  • a part of the seam part 4 is filled with an extension part 5a, but the remaining part is a void 4a.
  • the sealing layer 5-2 can be provided to improve heat dissipation.
  • the stress between the chips 2 can be relaxed by the amount of the gap 4a.
  • part of the seam portion 4 may be filled with the extension portion 5a, and the remaining portion may be the void 4a.
  • FIG. 100 is a diagram showing an example of a schematic configuration of a photodetecting device according to a 22nd embodiment.
  • the photodetecting device 100 differs from the configuration of FIG. 94 described above in that it includes a compound layer 14.
  • the compound layer 14 is provided between the chip 2 and the sealing layer 5-2, and is also provided on the sealing layer 5-2.
  • the compound layer 14 may be, for example, a silicide layer.
  • Examples of materials for the compound layer 14 may include semiconductor materials such as silicon (Si) and metal materials.
  • the first compound layer 14 is provided on the surface 2a of the chip 2.
  • the sealing layer 5-2 is provided so as to cover the buried layer 3, the seam portion 4, and the first compound layer 14.
  • the second compound layer 14 is provided to cover the sealing layer 5-2.
  • the support substrate 7 is bonded via this compound layer 14. It is also possible to improve heat dissipation by providing the compound layer 14 containing a metal material in this way.
  • FIG. 101 is a diagram showing an example of a schematic configuration of a photodetection device according to a 23rd embodiment.
  • the photodetecting device 100 differs from the configuration of FIG. 94 described above in that it does not include the sealing layer 5-2 but includes the sealing layer 5-5.
  • the sealing layer 5-5 is a layer in which metal structures such as wiring (including vias) are provided within an insulator.
  • the metal structure provides a heat dissipation path and can be used as wiring or as a pad.
  • An example of a metal structure is shown labeled as via 5-5v. Heat dissipation can also be improved by providing the sealing layer 5-5 in this manner.
  • wiring can be formed on the bonding surface between the buried layer 3 and the support substrate 7.
  • Example of Application to Imaging Device An example of application of the photodetecting device 100 according to the sixteenth to twenty-third embodiments described above is an imaging device. The imaging device was previously described with reference to FIGS. 20 to 23, so detailed description will not be repeated. For example, when the photodetection device 100 according to the sixteenth embodiment is used as an imaging device, a configuration including a sealing layer 5-2 in place of the sealing layer 5 and the auxiliary layer 6 in FIGS. 20 to 22 is adopted. be able to.
  • FIGS. 102 to 107 are diagrams showing an example of a method of manufacturing a photodetector. 102 to 105 show an example of a manufacturing method for obtaining the structure shown in FIG. 94 described above. It is assumed that a manufacturing process similar to that shown in FIGS. 9 to 12 described above has been completed.
  • the sealing layer 5 and the buried layer 3 are polished and cleaned.
  • the surface 2a of the chip 2 is exposed from the buried layer 3.
  • a sealing layer 5-2 is provided to cover the buried layer 3, seam portion 4, and chip 2.
  • FIG. 104 by bonding the support substrate 7 through the sealing layer 5-2, the configuration shown in FIG. 94 described above can be obtained.
  • bonding surface B is located between support substrate 7 and sealing layer 5-2.
  • bonding surface C is located in the sealing layer 5-2.
  • the bonding surface D is located between the sealing layer 5-2 and the buried layer 3.
  • the supporting substrate 7, the sealing layer 5-2, and the buried layer 3 are disassembled in the Z-axis direction at the bonding surface B, bonding surface C, and bonding surface D.
  • the diagram is shown schematically. A compound (silicide) is generated during the bonding process, and in that case, the configuration shown in FIG. 100 described above is obtained.
  • FIGS. 106 and 107 show an example of a manufacturing method for obtaining the configuration shown in FIG. 101 described above. As a premise, it is assumed that the manufacturing process up to FIG. 102 described above has been completed.
  • a sealing layer 5-5 is provided to cover the buried layer 3, seam portion 4, and chip 2.
  • the structure shown in FIG. 101 described above can be obtained by bonding the support substrate 7 through the sealing layer 5-5.
  • the photodetecting device 100 is specified, for example, as follows. As described with reference to FIGS. 94 and 99, at least a portion of the seam portion 4 is filled with a material (for example, the extension portion 5a) different from the material of the buried layer 3, and the sealing layer 5 -2 is a layer having a thermal conductivity higher than that of silicon (Si). Even in such a configuration, communication of the seam portion 4 to the outside can be suppressed. Moreover, heat dissipation can be improved.
  • a material for example, the extension portion 5a
  • Si silicon
  • the photodetector 100 includes the sealing layer 5 (first sealing layer) provided so as to cover the embedded layer 3 and the seam portion 4, and the sealing layer 5.
  • a sealing layer 5-2 (second sealing layer) provided to cover the silicon (Si), and the sealing layer 5-2 has a thermal conductivity higher than that of silicon (Si). You may do so. Such a configuration can also improve heat dissipation.
  • the sealing layer 5-3 may be a metal layer. Such a configuration can also improve heat dissipation.
  • the sealing layer 5-4 includes an insulating layer 50 (first portion) that covers the buried layer 3 of the buried layer 3 and the chip 2, and an insulating layer 50 (first portion) that covers the buried layer 3 and the chip 2.
  • the insulating layer 50 has an insulating property
  • the sealing layer 5-2 includes a sealing layer 5-2 (second portion) that covers the chip 2 of the silicon (Si). It may have higher thermal conductivity than conductivity. Such a configuration can also improve heat dissipation.
  • the photodetector 100 includes the additional layer 9 provided between the chip 2 and the buried layer 3, and the additional layer 9 may be a metal layer. Such a configuration can also improve heat dissipation.
  • the photodetector 100 includes the compound layer 14 provided between the chip 2 and the sealing layer 5-2, and the compound layer 14 is a silicide layer. good. Such a configuration can also improve heat dissipation.
  • the sealing layer 5-5 may be a layer in which a metal structure (for example, a via 5-5v, etc.) is provided within an insulator. Such a configuration can also improve heat dissipation. When the support substrate 7 is bonded, wiring can also be formed on the bonding surface portion.
  • a metal structure for example, a via 5-5v, etc.
  • FIGS. 108 and 109 are diagrams showing an example of a schematic configuration of a photodetection device according to a 24th embodiment. Note that illustration of the support substrate 7 is omitted, and this point is also the same in subsequent figures.
  • the photodetecting device 100 includes a sealing layer 5-6 instead of the sealing layer 5.
  • the sealing layer 5-6 is a resin layer. Among the surfaces of the sealing layer 5-6, the surface on the Z-axis positive direction side is referred to as a surface 5-6a in the drawing.
  • FIG. 109 schematically shows an enlarged view of a portion including the chip 2, the buried layer 3 located above it, and the sealing layer 5.
  • the buried layer 3 has an uneven shape on the surface 3a.
  • the surface 3a of the buried layer 3 has a concave portion 3c1 and a convex portion 3c2.
  • the recessed portion 3c1 has a concave shape that is recessed downward (in the Z-axis positive direction).
  • the convex portion 3c2 has a convex shape that protrudes upward (in the Z-axis positive direction).
  • the sealing layer 5-6 is a resin layer provided to fill the recess 3c1 and cover the recess 3c1 and the projection 3c2.
  • the resin layer may be an oxidized layer or an organic layer.
  • the oxide layer may be, for example, an oxide-based insulating film or an oxide-based bonding film.
  • the organic layer may have a heat resistance of, for example, 400° C. or higher. Examples of materials for such organic layers are polyimides, siloxanes, silicones, etc. It can withstand heat even when exposed to heat of about 400°C in a post-process.
  • the sealing layer 5-6 may be coated on the buried layer 3 in the form of a coating liquid during manufacturing. This makes it easier to fill the recess 3c1 with the sealing layer 5-6, and also makes it easier for the sealing layer 5-6 to extend into the seam portion 4. Since it is not a conformal film formation method, the surface after application is flatter than before application. In the example shown in FIG. 109, the surface 5-6a of the sealing layer 5-6 is a flat surface. That is, the sealing layer 5-6 absorbs the shapes of the concave portions 3c1 and convex portions 3c2 on the surface 3a of the buried layer 3, resulting in a flat surface 5-6a.
  • 110 to 114 are diagrams illustrating an example of a method for manufacturing a photodetecting device.
  • chips 2 are provided on a substrate 1, and a buried layer 3 is provided to cover them.
  • a seam portion 4 is generated within the buried layer 3.
  • the buried layer 3 on the chip 2 is removed by a lithography process including dry etching, leaving the upper part of the corner of the chip 2.
  • the buried layer 3 remaining above the corner of the chip 2 is shown as a corner 3h. By leaving the corner portion 3h, the outer portion of the chip 2 can be protected and the embedded layer 3 on the outer side of the chip 2 can be prevented from falling out.
  • a buried layer 3 is further provided.
  • a seam 4 also occurs within the buried layer 3 at the top of the chip 2.
  • the corner 3h is removed by CMP.
  • the CMP here differs from normal CMP in the slurry composition, etc., and ends when the slurry becomes somewhat flat (Self-stop CMP).
  • a sealing layer 5-6 is provided to cover the buried layer 3 and the seam portion 4.
  • the sealing layer 5-6 is provided by applying the material (resin material). At this time, the material of the sealing layer 5-6 extends into the seam portion 4, and that portion becomes the extended portion 5a of the sealing layer 5-6.
  • the recess 3c1 in the surface 3a of the buried layer 3, which was previously explained with reference to FIG. 109, is filled with the sealing layer 5-6. Thereafter, by providing the auxiliary layer 6 to cover the sealing layer 5, the configurations shown in FIGS. 108 and 109 described above are obtained.
  • the lithography and subsequent process of forming the buried layer 3 may be omitted.
  • 115 to 119 are diagrams illustrating an example of a method for manufacturing a photodetecting device. Compared to the manufacturing method shown in FIGS. 110 to 114 described above, a CMP process is added before providing the sealing layer 5-6. As a premise, it is assumed that the manufacturing process shown in FIG. 111 described above has been completed.
  • a buried layer 3 is further provided.
  • the thickness (length in the Z-axis direction) of the buried layer 3 added here may be greater than the thickness of the buried layer 3 in FIG. 112 described above.
  • the corner 3h is removed by self-stop CMP.
  • the upper part of the buried layer 3 is polished and cleaned by CMP. During this CMP, the portions of the buried layer 3 corresponding to the corners of the chip 2 are rounded (rounded).
  • a sealing layer 5-6 is provided to cover the buried layer 3 and seam portion 4.
  • an auxiliary layer 6 is provided to cover the sealing layer 5.
  • a structure similar to that shown in FIGS. 108 and 109 described above is obtained, except that the buried layer 3 in the portions corresponding to the corners of the chip 2 are rounded.
  • the lithography, the subsequent film formation of the buried layer 3, and the self-stop CMP process may be omitted.
  • the surface 3a of the buried layer 3 may have a concave portion 3c1 and a convex portion 3c2. This will be explained with reference to FIGS. 120 and 121.
  • 120 and 121 are diagrams showing examples of CMP. Note that for ease of understanding, illustration of the seam portion 4 is omitted.
  • FIG. 120 schematically shows the Self-stop CMP performed in FIGS. 113 and 116 described above.
  • the upper part of the buried layer 3 for example, an oxide film such as SiO2
  • the corner portion 3h is removed.
  • the buried layer 3 has a concave portion 3c1 and a convex portion 3c2.
  • the remaining portions of the corner portions 3h that are not cut, the slits that occur between the remaining corner portions, the seam portions 4, etc. may become the recessed portions 3c1 and the convex portions 3c2.
  • FIG. 121 schematically shows the CMP performed in FIG. 117 described above.
  • the upper part of the buried layer 3 is polished using a polishing PAD.
  • the ceria abrasive grains Pa are not adsorbed to the buried layer 3 and exist freely.
  • slurry pools are generated in the concave portions 3c1 and convex portions 3c2 of the buried layer 3 located above the corners of the chip 2, local stress increases, and polishing progresses. Polishing of the flat portion at the tip of the convex portion 3c2 having a relatively wide width (length in the XY plane direction) is inhibited by the effect of the additive Ad.
  • the buried layer 3 comes to have a recess 3c1 and a projection 3c2 in the manufacturing process.
  • the sealing layer 5-6 resin layer
  • the recess 3c1 and the projection 3c2 are absorbed and a flat surface 5-6a is obtained.
  • FIG. 122 is a diagram showing an example of a schematic configuration of a photodetection device according to a 25th embodiment.
  • the photodetecting device 100 includes a resin layer 15 instead of the sealing layer 5.
  • the resin layer 15 is an oxidized layer or an organic layer, similar to the sealing layer 5-6 described above.
  • the material of the resin layer 15 may be the same as the material of the sealing layer 5-6.
  • the resin layer 15 is provided between the chip 2 and the buried layer 3.
  • the resin layer 15 is provided to cover the substrate 1 and the side surfaces of the chip 2.
  • the resin layer 15 not only the side surface of the chip 2 but also the surface 2a may be covered with the resin layer 15.
  • the shape of the chip 2 portion for example, the shape of the stepped portion with respect to the substrate 1 becomes gentle. Accordingly, the seam portion 4 is less likely to occur. Even if a seam portion 4 occurs, the auxiliary layer 6 functions as a sealing layer that covers the buried layer 3 and the seam portion 4, thereby suppressing communication of the seam portion 4 to the outside, as explained above. be able to.
  • 123 to 128 are diagrams illustrating an example of a method for manufacturing a photodetecting device.
  • chips 2 are provided on a substrate 1, and a resin layer 15 is provided to cover them.
  • the buried layer 3 is provided so as to cover the resin layer 15 (also the surface 2a of the chip 2 in this example).
  • no seam portion 4 is generated within the buried layer 3.
  • the buried layer 3 is removed by a lithography process including dry etching or the like so as to leave the corner 3h.
  • a buried layer 3 is further provided. As shown in FIG. 127, the corner 3h is removed by CMP (Self-stop CMP). As shown in FIG. 128, the upper part of the buried layer 3 is polished and cleaned by CMP. Thereafter, by providing the auxiliary layer 6 so as to cover the buried layer 3, the structure shown in FIG. 122 described above is obtained.
  • CMP Self-stop CMP
  • the sealing layer 5-6 may be a resin layer (for example, an oxide layer or an organic layer).
  • the surface 3a of the buried layer 3 may have a recess 3c1, and the sealing layer 5-6 may be provided to fill the recess 3c1.
  • the surface 5-6a of the sealing layer 5-6 may be a flat surface.
  • the sealing layer 5-6 which is an organic layer, may have heat resistance of 400° C. or higher.
  • the material of the organic layer may include at least one of polyimide, siloxane, and silicone. This makes it possible to withstand heat, for example, even when exposed to heat of about 400° C. in a post-process.
  • the photodetector 100 may include the resin layer 15 (for example, an oxide layer or an organic layer) provided between the chip 2 and the buried layer 3. Thereby, the occurrence of seam portions 4 can be suppressed.
  • the resin layer 15 for example, an oxide layer or an organic layer
  • the resin layer 15 may have the same characteristics as the sealing layer 5-6 described above.
  • the resin layer 15, which is an organic layer may have heat resistance of 400° C. or higher.
  • the material of the organic layer may include at least one of polyimide, siloxane, and silicone. This makes it possible to withstand heat, for example, even when exposed to heat of about 400° C. in a post-process.
  • the present technology can also have the following configuration.
  • at least a portion of the seam portion is a void;
  • the sealing layer includes an extension portion that extends into the seam portion so as to fill at least a portion of the seam portion.
  • the material of the sealing layer includes a low permeability material.
  • the material of the sealing layer includes a low Young's modulus material.
  • the chip includes a first chip and a second chip that are spaced apart from each other,
  • the seam part includes a first seam part caused by the first chip and a second seam part caused by the second chip, the first seam part and the second seam part are connected to each other,
  • an additional layer provided between the chip and the buried layer;
  • (10) comprising an auxiliary layer provided to cover the sealing layer;
  • the auxiliary layer has a laminated structure, The photodetector according to (10).
  • the chip includes at least one of a logic chip, a memory chip, and an AI (Artificial Intelligence) chip.
  • the photodetector according to any one of (1) to (11).
  • An imaging device configured to include a plurality of pixels, The photodetector according to any one of (1) to (12).
  • a filter layer provided on the opposite side of the chip and the buried layer with the substrate in between; a lens layer provided on the opposite side of the substrate with the filter layer in between; Equipped with The photodetector according to (13).
  • an additional substrate provided between the substrate and the buried layer; The photodetector according to any one of (1) to (14).
  • the chip includes two chips arranged adjacent to each other with an interval, The buried layer includes wiring provided between the two chips, The photodetector according to any one of (1) to (15).
  • a supporting substrate that is provided on the opposite side of the substrate with the sealing layer in between and directly or indirectly supports the sealing layer; a through via that penetrates the buried layer, the sealing layer, and the support substrate; Equipped with The photodetector according to any one of (1) to (16).
  • the chip is a first chip; a second chip having a thickness greater than the thickness of the first chip; including;
  • the seam portion is a first seam extending from the first chip toward the surface of the buried layer; a second seam extending from the second chip toward the surface of the buried layer; including; The second seam portion extends closer to the surface of the buried layer than the first seam portion.
  • the chip is a first chip; including a second chip and a third chip stacked in order, The second chip and the third chip have an overall thickness greater than the thickness of the first chip,
  • the seam portion is a first seam extending from the first chip toward the surface of the buried layer; a second seam extending from the second chip toward the surface of the buried layer; including; The second seam portion extends closer to the surface of the buried layer than the first seam portion.
  • the photodetector according to any one of (1) to (18).
  • the sealing layer includes an extension portion that extends into the second seam portion so as to fill at least a portion of the second seam portion.
  • the photodetecting device further includes a bonding layer provided between the lower chip and the upper chip,
  • the embedded layer is a lower buried layer provided to cover a side surface of the lower chip; an upper buried layer provided to cover the upper chip and the bonding layer; including;
  • the seam portion is a lower seam generated within the lower buried layer and extending to a surface of the lower buried layer; an upper seam occurring within the upper buried layer and extending to a surface of the upper buried layer; including;
  • the bonding layer is provided to cover the lower buried layer and the lower seam portion,
  • the sealing layer is provided to cover the upper buried layer and the upper seam part,
  • the photodetector according to any one of (1) to (21).
  • the chip further includes a lower chip and a dummy chip provided on opposite sides of the bonding layer, The upper buried layer is provided to cover the upper chip, the dummy chip, and the bonding layer.
  • the sealing layer is a first portion covering the seam portion; a second portion that does not cover the seam portion; including; The back surface of the first portion is located below the back surface of the second portion.
  • a surface of the first portion is located at the same height as a surface of the second portion; The photodetector according to (24).
  • the sealing layer has a laminated structure in which a plurality of layers are laminated.
  • the plurality of layers of the sealing layer include an inorganic layer and an organic layer.
  • the photodetector according to (27). a dummy chip arranged adjacent to the chip with a space therebetween; The buried layer is provided to cover the chip and the dummy chip, The seam portion extends to the surface of the buried layer in a portion between the chip and the dummy chip.
  • the seam portion extends along the height direction of the chip and the dummy chip.
  • the chip includes two chips spaced apart from each other, The dummy chip is provided between the two chips, The photodetector according to (29) or (30).
  • the chip has a shape whose width decreases toward the surface of the chip, The photodetector according to any one of (1) to (31).
  • the edge of the chip has a tapered shape or a round shape on the surface of the chip, The photodetector according to (32).
  • the seam portion extends along the height direction of the chip.
  • the seam portion has a shape whose width changes as it progresses in its extending direction.
  • the photodetection device according to any one of (1) to (34).
  • the seam portion is a central portion located at the center in the extending direction of the seam portion; an end located at the end in the extending direction of the seam part; including; The central portion has a width greater than the width of the end portions.
  • the photodetector according to (35). When viewed in plan, the dummy chip extends so as to face the side surface of the chip, and has a length in the extending direction that is at least half the length of the side surface of the opposing chip.
  • the photodetector according to any one of (29) to (36).
  • the dummy chip When viewed from above, the dummy chip is arranged to sandwich the chip, The photodetector according to any one of (29) to (37). (39) The dummy chip includes two or more dummy chips. The photodetector according to any one of (29) to (38). (40) The material of the dummy chip includes the same material as the material of the chip, The photodetector according to any one of (29) to (39). (41) the dummy chip has the same height as the chip; The photodetector according to any one of (29) to (40). (42) The chip includes two or more chips. The photodetector according to any one of (29) to (41).
  • the dummy chip When viewed in plan, the dummy chip extends continuously so as to surround the chip, The photodetector according to any one of (29) to (42). (44) When the photodetection device is viewed from the side, the dummy chip has a side surface exposed from the buried layer. The photodetector according to any one of (29) to (43). (45) At least a portion of the seam portion is filled with a material different from the material of the buried layer, The sealing layer is a layer having a thermal conductivity higher than that of silicon, The photodetector according to any one of (1) to (44).
  • the sealing layer is a metal layer, The photodetector according to (45) or (46).
  • the sealing layer is a first portion of the buried layer and the chip that covers the buried layer; a second portion of the embedded layer and the chip that covers the chip; including; The first portion has insulating properties, the second portion has a thermal conductivity higher than that of silicon;
  • the photodetector according to any one of (45) to (48). comprising a compound layer provided between the chip and the sealing layer, the compound layer is a silicide layer, The photodetector according to any one of (45) to (49).
  • the sealing layer is a layer in which a metal structure is provided within an insulator.
  • the sealing layer is a resin layer.
  • the surface of the buried layer has a recess, The sealing layer is provided to fill the recess, The photodetector according to (52).
  • the surface of the sealing layer is a flat surface.
  • the resin layer is an oxidized layer or an organic layer, The photodetector according to any one of (52) to (54).
  • the organic layer has heat resistance of 400° C. or higher, The photodetector according to (55).
  • the material of the organic layer includes at least one of polyimide, siloxane, and silicone. The photodetector according to (56).
  • the resin layer is an oxidized layer or an organic layer, The photodetector according to (58).
  • the organic layer has heat resistance of 400° C. or higher, The photodetector according to (59).
  • the material of the organic layer includes at least one of polyimide, siloxane, and silicone. The photodetector according to (60).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

This light detection device comprises: a substrate that includes a light detection element; chips that are provided to the substrate; a buried layer that is provided so as to cover the chips; a seam portion that occurs in the buried layer and extends to the surface of the buried layer; and a sealing layer that is provided so as to cover the buried layer and the seam portion.

Description

光検出装置light detection device
 本開示は、光検出装置に関する。 The present disclosure relates to a photodetection device.
 基板上の段差に起因して、基板を覆うように設けられた層にシーム部が発生することが知られている。例えば特許文献1は、積層された2つの層それぞれのシーム部を不連続にすることで、シーム部の外部への連通を抑制する技術を開示する。 It is known that a seam occurs in a layer provided to cover a substrate due to a step on the substrate. For example, Patent Document 1 discloses a technique for suppressing communication of the seam portions to the outside by making the seam portions of two stacked layers discontinuous.
国際公開第2017/183390号International Publication No. 2017/183390
 光検出素子を含む基板に対して設けられたチップを覆うように層が設けられた構成を備える光検出装置がある。チップが与える段差に起因してシーム部が発生し得る。シーム部の外部への連通を抑制する手法を検討する余地が依然として残る。 There is a photodetection device that has a structure in which a layer is provided so as to cover a chip provided on a substrate containing a photodetection element. Seams may occur due to the step provided by the chip. There is still room to consider ways to suppress communication of the seam portion to the outside.
 本開示の一側面は、シーム部の外部への連通を抑制する。 One aspect of the present disclosure suppresses communication of the seam portion to the outside.
 本開示の一側面に係る光検出装置は、光検出素子を含む基板と、基板に対して設けられたチップと、チップを覆うように設けられた埋め込み層と、埋め込み層内に発生し、埋め込み層の表面まで延在しているシーム部と、埋め込み層及びシーム部を覆うように設けられた封止層と、を備える。 A photodetection device according to one aspect of the present disclosure includes a substrate including a photodetection element, a chip provided to the substrate, an embedded layer provided to cover the chip, and a photodetector generated in the embedded layer. It includes a seam portion extending to the surface of the layer, and a sealing layer provided so as to cover the buried layer and the seam portion.
第1実施形態に係る光検出装置の概略構成の例を示す図である。FIG. 1 is a diagram illustrating an example of a schematic configuration of a photodetection device according to a first embodiment. 第2実施形態に係る光検出装置の概略構成の例を示す図である。FIG. 3 is a diagram illustrating an example of a schematic configuration of a photodetection device according to a second embodiment. 第4実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 4th embodiment. 第5実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 5th embodiment. 第6実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 6th embodiment. 第6実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 6th embodiment. 第7実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 7th embodiment. 第8実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning an 8th embodiment. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 応用例に係る光検出装置の概略構成の例を示す図である。FIG. 2 is a diagram illustrating an example of a schematic configuration of a photodetection device according to an application example. 応用例に係る光検出装置の概略構成の例を示す図である。FIG. 2 is a diagram illustrating an example of a schematic configuration of a photodetection device according to an application example. 応用例に係る光検出装置の概略構成の例を示す図である。FIG. 2 is a diagram illustrating an example of a schematic configuration of a photodetection device according to an application example. 応用例に係る光検出装置の概略構成の例を示す図である。FIG. 2 is a diagram illustrating an example of a schematic configuration of a photodetection device according to an application example. 車両制御システムの概略的な構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a schematic configuration of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of installation positions of an outside-vehicle information detection section and an imaging section. 第9実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 9th embodiment. 第9実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 9th embodiment. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 変形例を示す図である。It is a figure showing a modification. 変形例を示す図である。It is a figure showing a modification. 第10実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 10th embodiment. 第10実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 10th embodiment. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 変形例を示す図である。It is a figure showing a modification. 第11実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning an 11th embodiment. 第11実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning an 11th embodiment. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 封止層の概略構成の例を示す図である。FIG. 3 is a diagram showing an example of a schematic configuration of a sealing layer. 第13実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 13th embodiment. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 第14実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 14th embodiment. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 第15実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 15th embodiment. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. ダミーチップの第1配置例を示す図である。FIG. 3 is a diagram showing a first arrangement example of dummy chips. ダミーチップの第1配置例を示す図である。FIG. 3 is a diagram showing a first arrangement example of dummy chips. ダミーチップの効果を示す図である。It is a figure showing the effect of a dummy chip. ウェハの概略構成の例を示す図である。FIG. 2 is a diagram showing an example of a schematic configuration of a wafer. ダミーチップの第2配置例を示す図である。FIG. 7 is a diagram showing a second example of arrangement of dummy chips. ダミーチップの効果を示す図である。It is a figure showing the effect of a dummy chip. ウェハの概略構成の例を示す図である。FIG. 2 is a diagram showing an example of a schematic configuration of a wafer. ダミーチップの第3配置例を示す図である。FIG. 7 is a diagram showing a third arrangement example of dummy chips. ダミーチップの効果を示す図である。It is a figure showing the effect of a dummy chip. ウェハの概略構成の例を示す図である。FIG. 2 is a diagram showing an example of a schematic configuration of a wafer. ダミーチップの第4配置例を示す図である。It is a figure which shows the 4th example of arrangement|positioning of a dummy chip. ダミーチップの効果を示す図である。It is a figure showing the effect of a dummy chip. ウェハの概略構成の例を示す図である。FIG. 2 is a diagram showing an example of a schematic configuration of a wafer. ダミーチップの第5配置例を示す図である。It is a figure which shows the 5th example of arrangement|positioning of a dummy chip. ダミーチップ2Dの効果を示す図である。It is a figure showing the effect of dummy chip 2D. ウェハの概略構成の例を示す図である。FIG. 2 is a diagram showing an example of a schematic configuration of a wafer. ウェハの概略構成の例を示す図である。FIG. 2 is a diagram showing an example of a schematic configuration of a wafer. ダミーチップの効果を示す図である。It is a figure showing the effect of a dummy chip. ウェハの概略構成の例を示す図である。FIG. 2 is a diagram showing an example of a schematic configuration of a wafer. ダミーチップの第7配置例を示す図である。It is a figure which shows the 7th example of arrangement|positioning of a dummy chip. ダミーチップの効果を示す図である。It is a figure showing the effect of a dummy chip. ウェハの概略構成の例を示す図である。FIG. 2 is a diagram showing an example of a schematic configuration of a wafer. 変形例を示す図である。It is a figure showing a modification. 変形例を示す図である。It is a figure showing a modification. 第16実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 16th embodiment. 第17実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 17th embodiment. 第18実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning an 18th embodiment. 第19実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 19th embodiment. 第20実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 20th embodiment. 第21実施形態に係る光検出装置の概略構成の例を示す図である。FIG. 7 is a diagram illustrating an example of a schematic configuration of a photodetection device according to a twenty-first embodiment. 第22実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 22nd embodiment. 第23実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 23rd embodiment. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 第24実施形態に係る光検出装置の概略構成の例を示す図である。FIG. 7 is a diagram showing an example of a schematic configuration of a photodetection device according to a twenty-fourth embodiment. 第24実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 24th embodiment. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. CMPの例を示す図である。FIG. 3 is a diagram showing an example of CMP. CMPの例を示す図である。FIG. 3 is a diagram showing an example of CMP. 第25実施形態に係る光検出装置の概略構成の例を示す図である。It is a figure showing an example of a schematic structure of a photodetection device concerning a 25th embodiment. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device. 光検出装置の製造方法の例を示す図である。It is a figure which shows the example of the manufacturing method of a photodetection device.
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、とくに説明がある場合を除き、以下の各実施形態において、同一の要素には同一の符号を付することにより重複する説明を省略する。 Below, embodiments of the present disclosure will be described in detail based on the drawings. Note that, unless otherwise specified, in each of the embodiments below, the same elements are given the same reference numerals and redundant explanation will be omitted.
 以下に示す項目順序に従って本開示を説明する。
  1.第1実施形態
  2.第2実施形態
  3.第3実施形態
  4.第4実施形態
  5.第5実施形態
  6.第6実施形態
  7.第7実施形態
  8.第8実施形態
  9.製造方法の例
 10.撮像装置への応用例
 11.効果の例
 12.移動体への応用例
 13.第9実施形態
 14.第10実施形態
 15.第11実施形態
 16.第12実施形態
 17.第13実施形態
 18.第14実施形態
 19.第15実施形態
 20.ダミーチップの配置の例
 21.第16実施形態
 22.第17実施形態
 23.第18実施形態
 24.第19実施形態
 25.第20実施形態
 26.第21実施形態
 27.第22実施形態
 28.第23実施形態
 29.撮像装置への応用例
 30.製造方法の例
 31.第24実施形態
 32.第25実施形態
The present disclosure will be described according to the order of items shown below.
1. First embodiment 2. Second embodiment 3. Third embodiment 4. Fourth embodiment 5. Fifth embodiment 6. Sixth embodiment 7. Seventh embodiment 8. Eighth embodiment 9. Example of manufacturing method 10. Application example to imaging device 11. Example of effect 12. Example of application to mobile objects 13. Ninth embodiment 14. 10th embodiment 15. Eleventh embodiment 16. Twelfth embodiment 17. Thirteenth embodiment 18. Fourteenth embodiment 19. Fifteenth embodiment 20. Example of dummy chip arrangement 21. Sixteenth embodiment 22. Seventeenth embodiment 23. Eighteenth embodiment 24. Nineteenth embodiment 25. 20th embodiment 26. 21st embodiment 27. 22nd embodiment 28. 23rd embodiment 29. Application example to imaging device 30. Example of manufacturing method 31. 24th embodiment 32. 25th embodiment
1.第1実施形態
 図1は、第1実施形態に係る光検出装置の概略構成の例を示す図である。光検出装置100の断面が模式的に示される。光検出装置100は、基板1と、チップ2と、埋め込み層3と、シーム部4と、封止層5と、補助層6と、支持基板7とを含む。なお、矛盾の無い範囲において、「層」は、「膜」、「部材」等に適宜読み替えられてよい。また、「設ける」は、「形成する、「配置する」等に適宜読み替えられてよい。
1. First Embodiment FIG. 1 is a diagram showing an example of a schematic configuration of a photodetection device according to a first embodiment. A cross section of a photodetector 100 is schematically shown. The photodetecting device 100 includes a substrate 1 , a chip 2 , a buried layer 3 , a seam portion 4 , a sealing layer 5 , an auxiliary layer 6 , and a support substrate 7 . Note that, within the scope of consistency, "layer" may be read as "film", "member", etc. as appropriate. Further, "provide" may be read as "form", "arrange", etc. as appropriate.
 図において、XYZ座標系も図示される。Z軸方向は、基板や層の厚さ方向に相当する。X軸方向及びY軸方向(XY平面方向)は、基板や層の面方向に相当する。基板1及び支持基板7は、互いに対向している。この例では、基板1及び支持基板7のうち、基板1がZ軸負方向側に位置し、支持基板7がZ軸正方向側に位置している。チップ2、埋め込み層3、シーム部4、封止層5及び補助層6は、基板1と支持基板7との間に位置している。 In the figure, an XYZ coordinate system is also illustrated. The Z-axis direction corresponds to the thickness direction of the substrate or layer. The X-axis direction and the Y-axis direction (XY plane direction) correspond to the plane direction of the substrate or layer. The substrate 1 and the support substrate 7 are opposed to each other. In this example, of the substrate 1 and the support substrate 7, the substrate 1 is located on the negative side of the Z-axis, and the support substrate 7 is located on the positive side of the Z-axis. The chip 2 , the buried layer 3 , the seam 4 , the sealing layer 5 and the auxiliary layer 6 are located between the substrate 1 and the support substrate 7 .
 光検出装置100は、配線層を含む。配線層に設けられた配線を、いずれも配線Lと称し図示する。配線Lの材料の例は、銅(Cu)等である。なお、異なる配線層の配線Lどうしを接続するいくつかのビアも、配線Lと同じハッチングで図示される。 The photodetector 100 includes a wiring layer. All wiring provided in the wiring layer is referred to as wiring L and illustrated. An example of the material of the wiring L is copper (Cu) or the like. Note that some vias connecting the wirings L in different wiring layers are also shown with the same hatching as the wirings L.
 基板1は、例えばシリコン(Si)半導体基板等の半導体基板であり、光検出素子1pを含む。光検出素子の例は、PD(Photo Diode)等の光電変換素子であり、例えばXY平面方向にアレイ状に配置された複数の光電変換素子が、光検出素子1pに相当し得る。図示しないが、各光電変換素子を駆動したり、各光電変換素子の受光光量に応じた電気信号を取り出したりするためのトランジスタ等の回路素子も、基板1に含まれる。そのような回路素子を含む回路を、画素回路とも称する。 The substrate 1 is a semiconductor substrate such as a silicon (Si) semiconductor substrate, and includes a photodetector element 1p. An example of the photodetection element is a photoelectric conversion element such as a PD (Photo Diode). For example, a plurality of photoelectric conversion elements arranged in an array in the XY plane direction may correspond to the photodetection element 1p. Although not shown, the substrate 1 also includes circuit elements such as transistors for driving each photoelectric conversion element and extracting an electric signal according to the amount of light received by each photoelectric conversion element. A circuit including such a circuit element is also referred to as a pixel circuit.
 基板1の面のうち、Z軸正方向側の面を、表面1aと称し図示する。Z軸負方向側の面を、裏面1bと称し図示する。例示される光検出装置100は、基板1の裏面1bに入射した光を検出する裏面照射型の光検出装置である。 Among the surfaces of the substrate 1, the surface on the Z-axis positive direction side is referred to as a surface 1a and illustrated. The surface on the negative side of the Z-axis is referred to as a back surface 1b and illustrated. The illustrated photodetector 100 is a backside illumination type photodetector that detects light incident on the backside 1b of the substrate 1.
 基板1は、表面1a側に配線層を有する。基板1の配線層の配線Lは、画素回路の一部を構成し得る。例示される基板1の配線層は多層配線層であり、いくつかの配線Lが表面1aに露出している。 The substrate 1 has a wiring layer on the front surface 1a side. The wiring L in the wiring layer of the substrate 1 may constitute a part of a pixel circuit. The wiring layer of the illustrated substrate 1 is a multilayer wiring layer, and some wirings L are exposed on the surface 1a.
 チップ2は、基板1に対して設けられる。基板1に対して設けられるとは、基板1に直接設けられることだけでなく、別の要素(例えば後述の図21の追加基板12)を介して設けられることを含む意味に解されてよい。図1に示される例では、チップ2は、基板1に直接設けられ、より具体的には、基板1の表面1a上に設けられる。チップ2の実装面を、実装面2bと称し図示する。チップ2は、実装面2b側に配線層を有する。例示されるチップ2の配線層は多層配線層であり、いくつかの配線Lが実装面2bに露出している。 The chip 2 is provided on the substrate 1. Being provided on the substrate 1 may be understood to include not only being provided directly on the substrate 1, but also being provided via another element (for example, an additional substrate 12 in FIG. 21, which will be described later). In the example shown in FIG. 1, the chip 2 is provided directly on the substrate 1, more specifically on the surface 1a of the substrate 1. The mounting surface of the chip 2 is shown as a mounting surface 2b. The chip 2 has a wiring layer on the mounting surface 2b side. The wiring layer of the illustrated chip 2 is a multilayer wiring layer, and some wirings L are exposed on the mounting surface 2b.
 チップ2は、チップ2の実装面2bが基板1の表面1aと接触するように、基板1上に設けられる。より具体的に、チップ2は、チップ2の配線Lと基板1の配線Lとが接触して電気的に接続されるように、基板1に実装される。このような接続は、配線Lの材料がCuの場合には、Cu-Cu接合等とも称される。チップ2の実装面2b及び基板1の表面1aは、チップ2及び基板1の接合面(チップ接合面)を規定する。 The chip 2 is provided on the substrate 1 so that the mounting surface 2b of the chip 2 is in contact with the surface 1a of the substrate 1. More specifically, the chip 2 is mounted on the substrate 1 such that the wiring L of the chip 2 and the wiring L of the substrate 1 are in contact with each other and electrically connected. Such a connection is also called a Cu--Cu bond or the like when the material of the wiring L is Cu. The mounting surface 2b of the chip 2 and the surface 1a of the substrate 1 define a bonding surface between the chip 2 and the substrate 1 (chip bonding surface).
 チップ2は、光検出装置100に用いることのできるあらゆるチップ(IC等)であってよい。チップ2の一例は、ロジックチップであり、例えば画素回路のトランジスタを駆動したり、画素回路から取り出された電気信号を処理したりする。チップ2の別の例は、メモリチップであり、例えばロジックチップによる処理で用いられるデータや、処理によって得られたデータを記憶する。チップ2のさらに別の例は、AI(Artificial Intelligence)チップであり、学習済みモデル(例えば学習済みのDNN(Deep Neural Network))を用いた演算処理を高速に行うように専用に設計されている。 The chip 2 may be any chip (IC, etc.) that can be used in the photodetector 100. An example of the chip 2 is a logic chip, which drives, for example, a transistor of a pixel circuit or processes an electric signal taken out from the pixel circuit. Another example of the chip 2 is a memory chip, which stores, for example, data used in processing by a logic chip or data obtained by processing. Yet another example of chip 2 is an AI (Artificial Intelligence) chip, which is specifically designed to perform high-speed arithmetic processing using a trained model (for example, a trained DNN (Deep Neural Network)). .
 図1から理解されるように、基板1上に設けられたチップ2が、段差を与える。この例では、チップ2は、基板1の表面1aを基準としてZ軸正方向に向かって突出する凸形状を有する段差部である。なお、光検出装置100に含まれるチップ2の数は、図1に示される例に限られない。光検出装置100は、1つ以上の任意の数のチップ2を含んでよい。 As understood from FIG. 1, the chip 2 provided on the substrate 1 provides a step. In this example, the chip 2 is a stepped portion having a convex shape protruding toward the positive direction of the Z-axis with respect to the surface 1a of the substrate 1 as a reference. Note that the number of chips 2 included in the photodetector 100 is not limited to the example shown in FIG. 1. The photodetection device 100 may include any number of chips 2, one or more.
 埋め込み層3は、チップ2を覆うように、より具体的にこの例では基板1及びチップ2を覆うように設けられる。埋め込み層3は、チップ2を保護する保護層として機能し得る。例えば、水分、薬品、不所望のガス等のチップ2への侵入が抑制される。埋め込み層3の材料の例は、SiN、SiO等である。埋め込み層3の面のうち、Z軸正方向側の面を、表面3aと称し図示する。Z軸負方向側の面を、裏面3bと称し図示する。 The buried layer 3 is provided so as to cover the chip 2, and more specifically, to cover the substrate 1 and the chip 2 in this example. The buried layer 3 can function as a protective layer that protects the chip 2. For example, entry of moisture, chemicals, undesired gases, etc. into the chip 2 is suppressed. Examples of the material of the buried layer 3 are SiN, SiO2 , etc. Among the surfaces of the buried layer 3, the surface on the Z-axis positive direction side is referred to as a surface 3a and illustrated. The surface on the negative side of the Z-axis is referred to as a back surface 3b in the drawing.
 シーム部4は、チップ2が与える段差に起因して、埋め込み層3内に発生する。シーム部4は、例えば段差の立ち上がり部分又はその周辺部分を起点とし、埋め込み層3の表面3aまで延在している。 The seam portion 4 occurs within the buried layer 3 due to the step provided by the chip 2. The seam portion 4 starts from, for example, the rising portion of the step or its surrounding portion, and extends to the surface 3a of the buried layer 3.
 シーム部4の少なくとも一部は、空隙であってよい。シーム部4が有する空隙を、空隙4aと称し図示する。図1に示される例では、シーム部4の全部が空隙4aである。埋め込み層3の表面3aのうち、シーム部4の位置する部分は開口している。 At least a portion of the seam portion 4 may be a void. The void that the seam portion 4 has is shown as a void 4a. In the example shown in FIG. 1, the entire seam portion 4 is a void 4a. A portion of the surface 3a of the buried layer 3 where the seam portion 4 is located is open.
 封止層5は、埋め込み層3及びシーム部4を覆うように設けられる。シーム部4によって埋め込み層3の表面3aにできた開口も、封止層5よって塞がれる。封止層5により、シーム部4の外部への連通が抑制される。封止層5の材料は、埋め込み層3の材料と同じであってもよいし、異なっていてもよい。封止層5の材料のいくつかの例は後述する。 The sealing layer 5 is provided so as to cover the buried layer 3 and the seam portion 4. The opening formed in the surface 3a of the buried layer 3 by the seam portion 4 is also closed by the sealing layer 5. The sealing layer 5 prevents the seam portion 4 from communicating with the outside. The material of the sealing layer 5 may be the same as the material of the buried layer 3, or may be different. Some examples of materials for the sealing layer 5 will be described later.
 補助層6は、封止層5を覆うように設けられる。補助層6は、例えば支持基板7との接合に適した材料を含んで構成される。補助層6の材料の例は、主にSiOx(SiNx、SiON、SiCN、SiOC)である。補助層6の面のうち、Z軸正方向側の面を、表面6aと称し図示する。 The auxiliary layer 6 is provided to cover the sealing layer 5. The auxiliary layer 6 includes, for example, a material suitable for bonding to the support substrate 7. Examples of materials for the auxiliary layer 6 are mainly SiOx (SiNx, SiON, SiCN, SiOC). Among the surfaces of the auxiliary layer 6, the surface on the Z-axis positive direction side is referred to as a surface 6a and illustrated.
 支持基板7は、封止層5を挟んで基板1とは反対側に位置し、封止層5を直接的又は間接的に支持する。支持基板7は、例えばシリコン(Si)半導体基板等であってよい。図1に示される例では、支持基板7は、封止層5及び補助層6を挟んで基板1とは反対側に位置し、補助層6を介して封止層5を(すなわち封止層5を間接的に)支持するように、補助層6に貼り合わされる。支持基板7の面のうち、Z軸正方向側の面を、表面7aと称し図示する。Z軸負方向側の面を、裏面7bと称し図示する。支持基板7の裏面7b及び補助層6の表面6aは、支持基板7及び補助層6の接合面(支持基板接合面)を規定する。なお、光検出装置100は、補助層6を含まなくてもよく、その場合、支持基板7は、封止層5を直接的に支持するように封止層5に貼り合わされる。 The support substrate 7 is located on the opposite side of the substrate 1 with the sealing layer 5 in between, and supports the sealing layer 5 directly or indirectly. The support substrate 7 may be, for example, a silicon (Si) semiconductor substrate. In the example shown in FIG. It is bonded to the auxiliary layer 6 so as to indirectly support 5). Among the surfaces of the support substrate 7, the surface on the Z-axis positive direction side is referred to as a surface 7a and illustrated. The surface on the negative side of the Z-axis is referred to as a back surface 7b. The back surface 7b of the support substrate 7 and the front surface 6a of the auxiliary layer 6 define a bonding surface between the support substrate 7 and the auxiliary layer 6 (support substrate bonding surface). Note that the photodetecting device 100 may not include the auxiliary layer 6, and in that case, the support substrate 7 is bonded to the sealing layer 5 so as to directly support the sealing layer 5.
 以上で説明した光検出装置100によれば、埋め込み層3及びシーム部4を覆う封止層5を設けることで、シーム部4の外部への連通を抑制することができる。具体的に、図1に示される例では、シーム部4が、支持基板7との接合面である補助層6の表面6aまで到達するのを防ぐことができる。仮にシーム部4が補助層6の表面6aに到達すると、支持基板7との接合面に開口ができてしまい、ボイド発生等によって接合品質が低下する可能性がある。このような接合品質の低下が、光検出装置100によって抑制される。 According to the photodetection device 100 described above, by providing the sealing layer 5 that covers the embedded layer 3 and the seam portion 4, communication of the seam portion 4 to the outside can be suppressed. Specifically, in the example shown in FIG. 1, it is possible to prevent the seam portion 4 from reaching the surface 6a of the auxiliary layer 6, which is the bonding surface with the support substrate 7. If the seam portion 4 reaches the surface 6a of the auxiliary layer 6, an opening will be formed at the bonding surface with the support substrate 7, and there is a possibility that the bonding quality will be degraded due to the generation of voids or the like. Such deterioration in bonding quality is suppressed by the photodetecting device 100.
 上記の技術をベースとするいくつかの他の実施形態について説明する。矛盾の無い範囲において、各実施形態の技術特徴は適宜組み合わされてよい。 Several other embodiments based on the above technology will be described. The technical features of each embodiment may be combined as appropriate to the extent that there is no contradiction.
2.第2実施形態
 図2は、第2実施形態に係る光検出装置の概略構成の例を示す図である。封止層5は、シーム部4内まで延在する延在部5aを含む。延在部5aは、シーム部4の少なくとも一部を埋めるように延在し、図2に示される例では、シーム部4の全部を埋めるように延在している。シーム部4は、空隙4a(図1)を有さない。封止層5の材料(延在部5aの材料)は、低浸透性材料を含む。低浸透性材料の例は、SiN系材料等である。SiN系材料の例は、SiNx、SiCN、SiON等である。このような封止層5の延在部5aがシーム部4を埋めることで、例えばチップ2への水分等の侵入の抑制効果を高めることができる。信頼性向上等にもつながる。
2. Second Embodiment FIG. 2 is a diagram showing an example of a schematic configuration of a photodetection device according to a second embodiment. The sealing layer 5 includes an extension portion 5 a that extends into the seam portion 4 . The extending portion 5a extends so as to fill at least a portion of the seam portion 4, and in the example shown in FIG. 2, extends so as to fill the entire seam portion 4. The seam portion 4 does not have a void 4a (FIG. 1). The material of the sealing layer 5 (the material of the extension portion 5a) includes a low permeability material. Examples of low permeability materials include SiN-based materials. Examples of SiN-based materials are SiNx, SiCN, SiON, etc. By filling the seam portion 4 with the extending portion 5a of the sealing layer 5, the effect of suppressing moisture from entering the chip 2, for example, can be enhanced. This also leads to improved reliability.
3.第3実施形態
 一実施形態において、封止層5の材料は、低ヤング率材料を含む。低ヤング率材料の例は、Low-k材料、有機材料等である。Low-k材料の例は、多孔性のSiO2等である。有機材料の例は、シリコーン、シロキサン、ポリイミド等である。このような封止層5の延在部5aがシーム部4を埋めることで、例えばチップ間応力を緩和することができる。
3. Third Embodiment In one embodiment, the material of the sealing layer 5 includes a low Young's modulus material. Examples of low Young's modulus materials are low-k materials, organic materials, etc. An example of a low-k material is porous SiO2, etc. Examples of organic materials are silicones, siloxanes, polyimides, etc. By filling the seam portion 4 with the extending portion 5a of the sealing layer 5, for example, inter-chip stress can be alleviated.
4.第4実施形態
 図3は、第4実施形態に係る光検出装置の概略構成の例を示す図である。封止層5の延在部5aは、シーム部4の一部だけを埋めるように延在している。シーム部4の残部は空隙4aである。空隙4aを残すことでチップ間応力を緩和することもできる。
4. Fourth Embodiment FIG. 3 is a diagram showing an example of a schematic configuration of a photodetection device according to a fourth embodiment. The extending portion 5a of the sealing layer 5 extends so as to fill only a portion of the seam portion 4. The remainder of the seam portion 4 is a void 4a. By leaving the void 4a, inter-chip stress can also be alleviated.
 なお、以降では、とくに説明がある場合を除き、封止層5の延在部5aがシーム部4の全部を埋めるように延在している場合で説明する。 Note that, in the following description, unless otherwise specified, a case will be described in which the extending portion 5a of the sealing layer 5 extends so as to fill the entire seam portion 4.
5.第5実施形態
 図4は、第5実施形態に係る光検出装置の概略構成の例を示す図である。光検出装置100は、側壁部8をさらに含む。側壁部8は、チップ2の側面(側壁)を覆うように設けられる。埋め込み層3は、基板1、チップ2及び側壁部8を覆うように設けられる。側壁部8の材料の例は、無機材料等である。無機材料の例は、主にSiNx(SiOx、SiON、SiCN、SiOC)である。側壁部8を設けることで、チップ2の保護性能をさらに高めることができる。
5. Fifth Embodiment FIG. 4 is a diagram showing an example of a schematic configuration of a photodetection device according to a fifth embodiment. Photodetection device 100 further includes a side wall portion 8 . The side wall portion 8 is provided so as to cover the side surface (side wall) of the chip 2 . The buried layer 3 is provided so as to cover the substrate 1 , the chip 2 , and the sidewall portion 8 . An example of the material of the side wall portion 8 is an inorganic material. Examples of inorganic materials are mainly SiNx (SiOx, SiON, SiCN, SiOC). By providing the side wall portion 8, the protection performance of the chip 2 can be further improved.
6.第6実施形態
 図5及び図6は、第6実施形態に係る光検出装置の概略構成の例を示す図である。2つの異なるチップ2に起因して発生したシーム部4どうしが、互いにつながっている。2つのチップ2のうち、第1のチップを、チップ2-1と称し図示する。第2のチップを、チップ2-2と称し図示する。
6. Sixth Embodiment FIGS. 5 and 6 are diagrams showing an example of a schematic configuration of a photodetecting device according to a sixth embodiment. Seam portions 4 caused by two different chips 2 are connected to each other. Among the two chips 2, the first chip is shown as a chip 2-1. The second chip is designated and illustrated as chip 2-2.
 シーム部4は、シーム部4-1及びシーム部4-2を含む。シーム部4-1は、チップ2-1に起因して発生した第1のシーム部である。シーム部4-2は、チップ2-2に起因して発生した第2のシーム部である。図5に示される例では、シーム部4-1及びシーム部4-2は、埋め込み層3の表面3aに向かう途中で互いにつながり、埋め込み層3の表面3aまで延在している。図6に示される例では、シーム部4-1が与える段差及びシーム部4-2がはじめから互いにつながっており、一緒に埋め込み層3の表面3aまで延在している。例えばこのように互いにつながっているシーム部4-1及びシーム部4-2がある場合でも、それらの外部への連通を抑制することができる。 The seam portion 4 includes a seam portion 4-1 and a seam portion 4-2. The seam portion 4-1 is a first seam portion caused by the chip 2-1. The seam portion 4-2 is a second seam portion caused by the chip 2-2. In the example shown in FIG. 5, the seam portion 4-1 and the seam portion 4-2 are connected to each other on the way to the surface 3a of the buried layer 3, and extend to the surface 3a of the buried layer 3. In the example shown in FIG. 6, the step provided by the seam portion 4-1 and the seam portion 4-2 are connected to each other from the beginning and extend together to the surface 3a of the buried layer 3. For example, even if there are a seam portion 4-1 and a seam portion 4-2 that are connected to each other in this manner, communication between them to the outside can be suppressed.
7.第7実施形態
 図7は、第7実施形態に係る光検出装置の概略構成の例を示す図である。光検出装置100は、追加層9をさらに含む。追加層9は、基板1及びチップ2と、埋め込み層3との間に設けられる。換言すると、追加層9は、基板1及びチップ2を覆うように設けられ、埋め込み層3は、追加層9を覆うように設けられる。追加層9の材料は、埋め込み層3の材料と同じであってもよいし、異なっていてもよい。追加層9の材料の例は、主にSiNx(SiOx、SiON、SiCN、SiOC)である。追加層9は、単層構造を有していてもよいし、積層構造を有していてもよい。追加層9を設けることで、信頼性をさらに向上させることができる。
7. Seventh Embodiment FIG. 7 is a diagram showing an example of a schematic configuration of a photodetection device according to a seventh embodiment. Photodetection device 100 further includes an additional layer 9 . An additional layer 9 is provided between the substrate 1 and the chip 2 and the buried layer 3. In other words, the additional layer 9 is provided so as to cover the substrate 1 and the chip 2 , and the buried layer 3 is provided so as to cover the additional layer 9 . The material of the additional layer 9 may be the same as the material of the buried layer 3 or may be different. Examples of materials for the additional layer 9 are mainly SiNx (SiOx, SiON, SiCN, SiOC). The additional layer 9 may have a single layer structure or a laminated structure. By providing the additional layer 9, reliability can be further improved.
8.第8実施形態
 図8は、第8実施形態に係る光検出装置の概略構成の例を示す図である。補助層6は、積層構造を有する。この例では、補助層6は、3層構造であり、Z軸正方向に、層61、層62及び層63をこの順に含む。層61、層62及び層63それぞれの材料は、互いに異なる材料であってもよいし、同じ材料であってもよい。層数や材料の設計により、反り調整、接合マージン拡大等が可能になる。
8. Eighth Embodiment FIG. 8 is a diagram showing an example of a schematic configuration of a photodetection device according to an eighth embodiment. The auxiliary layer 6 has a laminated structure. In this example, the auxiliary layer 6 has a three-layer structure and includes a layer 61, a layer 62, and a layer 63 in this order in the positive Z-axis direction. The layers 61, 62, and 63 may be made of different materials or the same material. Depending on the number of layers and material design, it is possible to adjust warpage and expand bonding margins.
9.製造方法の例
 図9~図19は、光検出装置の製造方法の例を示す図である。図9~図14には、前述の第1実施形態~第4実施形態、及び、第6実施形態~第8実施形態に係る光検出装置100(図1~図3、及び、図5~図8)の製造方法の例が示される。
9. Example of Manufacturing Method FIGS. 9 to 19 are diagrams illustrating an example of a method of manufacturing a photodetector. FIGS. 9 to 14 show the photodetecting devices 100 (FIGS. 1 to 3, and FIGS. 5 to 3) according to the first to fourth embodiments and the sixth to eighth embodiments described above. An example of the manufacturing method of 8) is shown below.
 図9に示されるように、光検出素子1pを含む基板1を準備し、チップ2を基板1上に設ける。図10に示されるように、基板1及びチップ2を覆うように、埋め込み層3を設ける。チップ2が与える段差に起因して、埋め込み層3内にシーム部4が発生する。この時点では、シーム部4の全体が空隙4aである。 As shown in FIG. 9, a substrate 1 including a photodetecting element 1p is prepared, and a chip 2 is provided on the substrate 1. As shown in FIG. 10, a buried layer 3 is provided to cover the substrate 1 and the chip 2. A seam portion 4 is generated within the buried layer 3 due to the step provided by the chip 2 . At this point, the entire seam portion 4 is a void 4a.
 前述の第6実施形態(図5、図6)のように、隣り合うチップ2それぞれに対応するシーム部4どうしが繋がる場合もある。前述の第7実施形態(図7)の場合は、基板1及びチップ2を覆うように追加層9(図7)を設けた後で、追加層9を覆うように埋め込み層3を設ける。 As in the aforementioned sixth embodiment (FIGS. 5 and 6), the seam portions 4 corresponding to adjacent chips 2 may be connected to each other. In the case of the seventh embodiment (FIG. 7) described above, after the additional layer 9 (FIG. 7) is provided so as to cover the substrate 1 and the chip 2, the buried layer 3 is provided so as to cover the additional layer 9.
 埋め込み層3の上部(Z軸正方向側の部分)を研磨し、洗浄することで、図11に示されるように、平坦化された表面3aが得られる。表面3aにおいてシーム部4が到達している部分は開口している。この状態で、図12に示されるように、埋め込み層3を覆うように封止層5を設ける。表面3aの開口は、封止層5によって塞がれる。 By polishing and cleaning the upper part of the buried layer 3 (the part on the Z-axis positive direction side), a flattened surface 3a is obtained as shown in FIG. The portion of the surface 3a where the seam portion 4 reaches is open. In this state, as shown in FIG. 12, a sealing layer 5 is provided to cover the buried layer 3. The opening in the surface 3a is closed by the sealing layer 5.
 前述の第1実施形態(図1)の場合は、シーム部4の全部が空隙4aのままである。前述の第2実施形態及び第3実施形態(図2)の場合は、シーム部4の全部が封止層5の材料によって埋められ、その部分が封止層5の延在部5aになる。前述の第4実施形態(図3)の場合は、シーム部4の一部だけが封止層5の材料によって埋められ、その部分が封止層5の延在部5aになる。前述の第6実施形態~第8実施形態(図5~図8)の場合は、いずれの態様であってもよい。 In the case of the first embodiment (FIG. 1) described above, the entire seam portion 4 remains the void 4a. In the case of the second and third embodiments (FIG. 2) described above, the entire seam portion 4 is filled with the material of the sealing layer 5, and that portion becomes the extension portion 5a of the sealing layer 5. In the case of the fourth embodiment described above (FIG. 3), only a portion of the seam portion 4 is filled with the material of the sealing layer 5, and that portion becomes the extension portion 5a of the sealing layer 5. In the case of the sixth to eighth embodiments (FIGS. 5 to 8) described above, any aspect may be used.
 図13に示されるように、封止層5を覆うように補助層6を設ける。その後、補助層6を研磨し、洗浄を行う。シーム部4が封止層5で覆われているので、洗浄を行っても、シーム部4は広がらない。前述の第8実施形態(図8)の場合は、補助層6が積層構造を有するように、複数の層(例えば層61、層62及び層63)が設けられる。図14に示されるように、支持基板7を補助層6に貼り合わせる。 As shown in FIG. 13, an auxiliary layer 6 is provided to cover the sealing layer 5. Thereafter, the auxiliary layer 6 is polished and cleaned. Since the seam portion 4 is covered with the sealing layer 5, the seam portion 4 does not widen even after cleaning. In the case of the eighth embodiment (FIG. 8) described above, a plurality of layers (eg, layer 61, layer 62, and layer 63) are provided so that the auxiliary layer 6 has a laminated structure. As shown in FIG. 14, the support substrate 7 is bonded to the auxiliary layer 6.
 例えば以上のようにして、前述の実施形態1~実施形態4、及び、実施形態6~実施形態8に係る光検出装置100を製造することができる。 For example, the photodetecting device 100 according to the first to fourth embodiments and the sixth to eighth embodiments described above can be manufactured as described above.
 図15~図19には、前述の第5実施形態(図4)の製造方法の例が示される。基板1を準備し、チップ2を基板1上に設けるところまでは、先に説明した図9と同様である。図15に示されるように、基板1及びチップ2を覆うように、側壁部8(図4)の材料を設ける。 FIGS. 15 to 19 show an example of the manufacturing method of the fifth embodiment (FIG. 4) described above. The steps up to preparing the substrate 1 and providing the chip 2 on the substrate 1 are the same as those in FIG. 9 described above. As shown in FIG. 15, the material of the side wall portion 8 (FIG. 4) is provided so as to cover the substrate 1 and chip 2.
 図16に示されるように、チップ2の側面上に上述の材料が残るように、エッチング(例えばドライエッチング)を行う。チップ2の側面上に残った材料が、側壁部8になる。図17に示されるように、基板1、チップ2及び側壁部8を覆うように、埋め込み層3を設ける。チップ2が与える段差に起因して、埋め込み層3内にシーム部4が発生する。図18に示されるように、封止層5を覆うように補助層6を設ける。図19に示されるように、支持基板7を補助層6に貼り合わせる。 As shown in FIG. 16, etching (for example, dry etching) is performed so that the above-mentioned material remains on the side surface of the chip 2. The material remaining on the side surface of the chip 2 becomes the side wall portion 8. As shown in FIG. 17, a buried layer 3 is provided to cover the substrate 1, the chip 2, and the side wall portion 8. A seam portion 4 is generated within the buried layer 3 due to the step provided by the chip 2 . As shown in FIG. 18, an auxiliary layer 6 is provided to cover the sealing layer 5. As shown in FIG. 19, the support substrate 7 is bonded to the auxiliary layer 6.
 例えば以上のようにして、上述の実施形態5に係る光検出装置100を製造することができる。 For example, the photodetection device 100 according to the fifth embodiment described above can be manufactured as described above.
10.撮像装置への応用例
 これまで説明した光検出装置100の応用の一例は、撮像装置である。図20~図23を参照して説明する。
10. Application Example to Imaging Device An example of application of the photodetection device 100 described so far is an imaging device. This will be explained with reference to FIGS. 20 to 23.
 図20は、応用例に係る光検出装置の概略構成の例を示す図である。これまでの図とはZ軸の向きが逆になっていることに留意されたい。例示される光検出装置100は、複数の画素101を含むように構成された撮像装置である。画素101として、緑色光を受光する画素G、赤色光を受光する画素R、及び、青色光を受光する画素Bが例示される。基板1は、各画素101に対応する光電変換素子を含むように構成された基板(イメージセンサ基板)である。光検出装置100は、フィルタ層10及びレンズ層11を含む。 FIG. 20 is a diagram illustrating an example of a schematic configuration of a photodetection device according to an application example. Please note that the direction of the Z axis is reversed from the previous figures. The illustrated photodetection device 100 is an imaging device configured to include a plurality of pixels 101. Examples of the pixel 101 include a pixel G that receives green light, a pixel R that receives red light, and a pixel B that receives blue light. The substrate 1 is a substrate (image sensor substrate) configured to include a photoelectric conversion element corresponding to each pixel 101. Photodetection device 100 includes a filter layer 10 and a lens layer 11.
 フィルタ層10は、基板1を挟んでチップ2及び埋め込み層3とは反対側に設けられる。この例では、フィルタ層10は、基板1の裏面1b上に設けられる。フィルタ層10は、複数の画素101に対応する複数のフィルタを含む。画素Gに設けられるフィルタを、フィルタ10Gと称し図示する。画素Rに設けられるフィルタを、フィルタ10Rと称し図示する。画素Bに設けられるフィルタを、フィルタ10Bと称し図示する。フィルタ10Gは、緑色の光を通過させる。フィルタ10Rは、赤色の光を通過させる。フィルタ10Bは、青色の光を通過させる。樹脂等の種々の公知の材料が用いられてよい。 The filter layer 10 is provided on the opposite side of the chip 2 and the buried layer 3 with the substrate 1 in between. In this example, the filter layer 10 is provided on the back surface 1b of the substrate 1. Filter layer 10 includes multiple filters corresponding to multiple pixels 101. A filter provided in pixel G is referred to as a filter 10G and illustrated. The filter provided in pixel R is referred to as a filter 10R and illustrated. The filter provided in pixel B is referred to as filter 10B and illustrated. Filter 10G passes green light. The filter 10R allows red light to pass through. Filter 10B allows blue light to pass through. Various known materials such as resins may be used.
 レンズ層11は、フィルタ層10を挟んで基板1とは反対側に設けられる。レンズ層11は、複数の画素101に対応する複数のレンズ11aを含む。レンズ11aは、フィルタ層10を介して基板1の光電変換素子に入射する光を集光する集光レンズである。樹脂等の種々の公知の材料が用いられてよい。 The lens layer 11 is provided on the opposite side of the substrate 1 with the filter layer 10 in between. The lens layer 11 includes a plurality of lenses 11a corresponding to the plurality of pixels 101. The lens 11a is a condenser lens that condenses light that is incident on the photoelectric conversion element of the substrate 1 via the filter layer 10. Various known materials such as resins may be used.
 例えば上記の構成を備える光検出装置100を、撮像装置として用いることができる。他の構成も可能であり、いくつかの例について、図21~図23を参照して説明する。 For example, the photodetection device 100 having the above configuration can be used as an imaging device. Other configurations are possible, and some examples are described with reference to FIGS. 21-23.
 図21は、応用例に係る光検出装置の概略構成の例を示す図である。光検出装置100は、追加基板12をさらに含む。追加基板12は、基板1と埋め込み層3との間に設けられる。追加基板12は、基板1と支持基板7との間に位置する中間基板ともいえる。追加基板12の面のうち、Z軸正方向側の面を、表面12aと称し図示する。Z軸負方向側の面を、裏面12bと称し図示する。追加基板12の表面12aが埋め込み層3の裏面3bに接触し、追加基板12の裏面12bが基板1の表面1aに接触している。 FIG. 21 is a diagram illustrating an example of a schematic configuration of a photodetection device according to an application example. Photodetection device 100 further includes an additional substrate 12 . Additional substrate 12 is provided between substrate 1 and buried layer 3 . The additional substrate 12 can also be said to be an intermediate substrate located between the substrate 1 and the support substrate 7. Among the surfaces of the additional substrate 12, the surface on the Z-axis positive direction side is referred to as a surface 12a and illustrated. The surface on the negative side of the Z-axis is referred to as a back surface 12b. The front surface 12a of the additional substrate 12 is in contact with the back surface 3b of the buried layer 3, and the back surface 12b of the additional substrate 12 is in contact with the front surface 1a of the substrate 1.
 追加基板12は、表面12a側及び裏面12b側それぞれに配線層を有する。例示される追加基板12の配線層は多層配線層であり、いくつかの配線Lが表面12a又は裏面12bに露出している。 The additional board 12 has wiring layers on each of the front surface 12a side and the back surface 12b side. The illustrated wiring layer of the additional board 12 is a multilayer wiring layer, and some wiring L is exposed on the front surface 12a or the back surface 12b.
 チップ2は、チップ2の実装面2bが追加基板12の表面12aと接触するように、追加基板12上に設けられる。より具体的に、チップ2は、チップ2の配線Lと追加基板12の配線Lとが接触して電気的に接続されるように、追加基板12に実装される。チップ2の実装面2b及び追加基板12の表面12aは、チップ2及び追加基板12の接合面(チップ接合面)を規定する。 The chip 2 is provided on the additional substrate 12 such that the mounting surface 2b of the chip 2 is in contact with the surface 12a of the additional substrate 12. More specifically, the chip 2 is mounted on the additional substrate 12 such that the wiring L of the chip 2 and the wiring L of the additional substrate 12 are in contact and electrically connected. The mounting surface 2b of the chip 2 and the surface 12a of the additional substrate 12 define a bonding surface (chip bonding surface) between the chip 2 and the additional substrate 12.
 追加基板12は、追加基板12の配線Lと基板1の配線Lとが電気的に接触して接続されるように、基板1に貼り合わされる。基板1の表面1a及び追加基板12の裏面12bは、基板1及び追加基板12の接合面(F2F接合面)を規定する。 The additional board 12 is bonded to the board 1 so that the wiring L of the additional board 12 and the wiring L of the board 1 are electrically contacted and connected. The front surface 1a of the substrate 1 and the back surface 12b of the additional substrate 12 define a bonding surface (F2F bonding surface) between the substrate 1 and the additional substrate 12.
 追加基板12は、貫通ビア12vを含む。貫通ビア12vは、追加基板12の表面12a側の配線層と、追加基板12の裏面12b側の配線層とを接続するように、それらの間の部分(基体)を貫通する。追加基板12の配線層も利用することで、より多くの配線や回路素子を形成することができる。例えば光検出装置100をさらに高機能化することができる。なお、2つ以上の追加基板12が設けられてもよい。 The additional board 12 includes through vias 12v. The through via 12v penetrates the portion (substrate) between the wiring layer on the front surface 12a side of the additional board 12 and the wiring layer on the back surface 12b side of the additional board 12 so as to connect them. By also utilizing the wiring layer of the additional substrate 12, more wiring and circuit elements can be formed. For example, the functionality of the photodetection device 100 can be further improved. Note that two or more additional substrates 12 may be provided.
 図22及び図23は、応用例に係る光検出装置の概略構成の例を示す図である。図22に示されるように、間隔をあけて隣り合うように配置されたチップ2どうしの間にも、配線Lや構造体が設けられる。構造体として、貫通ビアVが例示される。 FIGS. 22 and 23 are diagrams illustrating an example of a schematic configuration of a photodetection device according to an application example. As shown in FIG. 22, wiring L and structures are also provided between chips 2 that are arranged adjacent to each other with an interval. A through via V is exemplified as the structure.
 具体的に、図22に示されるように、埋め込み層3及び補助層6も、配線Lを含む。いくつかの配線Lは、隣り合うチップ2どうしの間に設けられる。埋め込み層3及び補助層6にも配線Lを設けることで、光検出装置100のさらなる高機能化が可能になる。配線Lはシーム部4に設けられていてもよく、その分レイアウト自由度が向上する。 Specifically, as shown in FIG. 22, the buried layer 3 and the auxiliary layer 6 also include the wiring L. Some wiring lines L are provided between adjacent chips 2. By providing the wiring L in the buried layer 3 and the auxiliary layer 6 as well, it is possible to further improve the functionality of the photodetecting device 100. The wiring L may be provided in the seam portion 4, and the degree of freedom in layout is improved accordingly.
 貫通ビアVは、埋め込み層3、封止層5、補助層6及び支持基板7を貫通する。貫通ビアVを介して、支持基板7の表面7aから追加基板12の表面12a側の配線層への電気的なアクセスが可能になる。貫通ビアVは、コンタクトビアともいえる。埋め込み層3において、少なくとも一部の貫通ビアVは、隣り合うチップ2どうしの間に位置している。また、貫通ビアVは、シーム部4を貫通していてよい。具体的に、図23には、平面レイアウトが模式的に示される。平面視したときに(Z軸方向にみたときに)、チップ2の周辺に配置された複数の貫通ビアVのうちのいくつかの貫通ビアVが、シーム部4と重なっている。さまざまな位置に貫通ビアVを設けることができ、その分レイアウト自由度が向上する。 The through via V penetrates the buried layer 3, the sealing layer 5, the auxiliary layer 6, and the support substrate 7. Through the through-vias V, electrical access is made possible from the surface 7a of the support substrate 7 to the wiring layer on the surface 12a side of the additional substrate 12. The through via V can also be called a contact via. In the buried layer 3, at least some of the through vias V are located between adjacent chips 2. Further, the through via V may pass through the seam portion 4. Specifically, FIG. 23 schematically shows a planar layout. When viewed in plan (when viewed in the Z-axis direction), some of the through-vias V out of the plurality of through-vias V arranged around the chip 2 overlap with the seam portion 4 . Through vias V can be provided at various positions, and the degree of freedom in layout is improved accordingly.
11.効果の例
 以上で説明した技術は、例えば次のように特定される。開示される技術の1つは、光検出装置100である。図1等を参照して説明したように、光検出装置100は、光検出素子1pを含む基板1と、基板1に対して設けられたチップ2と、チップ2を覆うように設けられた埋め込み層3と、埋め込み層3内に発生し、埋め込み層3の表面3aまで延在しているシーム部4と、埋め込み層3及びシーム部4を覆うように設けられた封止層5と、を備える。
11. Examples of effects The techniques described above are specified as follows, for example. One of the techniques disclosed is a photodetection device 100. As described with reference to FIG. 1 etc., the photodetecting device 100 includes a substrate 1 including a photodetecting element 1p, a chip 2 provided on the substrate 1, and an embedded portion provided to cover the chip 2. A layer 3, a seam portion 4 generated within the buried layer 3 and extending to the surface 3a of the buried layer 3, and a sealing layer 5 provided so as to cover the buried layer 3 and the seam portion 4. Be prepared.
 上記の光検出装置100によれば、埋め込み層3及びシーム部4を覆うように封止層5を設けることで、シーム部4の外部への連通を抑制することができる。 According to the above photodetecting device 100, by providing the sealing layer 5 to cover the embedded layer 3 and the seam portion 4, communication of the seam portion 4 to the outside can be suppressed.
 図1等を参照して説明したように、光検出装置100は、封止層5を挟んで基板1とは反対側に位置し、封止層5を直接的又は間接的に支持する支持基板7を備えてよい。封止層5で覆われたシーム部4が支持基板7との接合面までは到達しないので、ボイド発生等による接合品質の低下を抑制することができる。 As described with reference to FIG. 1 and the like, the photodetecting device 100 includes a support substrate that is located on the opposite side of the substrate 1 with the sealing layer 5 in between and supports the sealing layer 5 directly or indirectly. 7 may be provided. Since the seam portion 4 covered with the sealing layer 5 does not reach the bonding surface with the support substrate 7, deterioration in bonding quality due to void generation etc. can be suppressed.
 図1及び図3等を参照して説明したように、シーム部4の少なくとも一部は、空隙4aであってよい。これにより、例えばチップ間応力を緩和することができる。 As described with reference to FIGS. 1 and 3, at least a portion of the seam portion 4 may be a void 4a. Thereby, for example, inter-chip stress can be alleviated.
 図2及び図3等を参照して説明したように、封止層5は、シーム部4の少なくとも一部を埋めるようにシーム部4内まで延在する延在部5aを含んでよい。封止層5の材料は、低浸透性材料を含んでよい。これにより、例えばチップ2への水分等の侵入の抑制効果を高めることができる。封止層5の材料は、低ヤング率材料を含んでよい。これにより、例えばチップ間応力を緩和することができる。 As described with reference to FIGS. 2, 3, etc., the sealing layer 5 may include the extending portion 5a that extends into the seam portion 4 so as to fill at least a portion of the seam portion 4. The material of the sealing layer 5 may include a low permeability material. Thereby, for example, the effect of suppressing moisture and the like from entering the chip 2 can be enhanced. The material of the sealing layer 5 may include a low Young's modulus material. Thereby, for example, inter-chip stress can be alleviated.
 図4等を参照して説明したように、光検出装置100は、チップ2の側面を覆うように設けられた側壁部8を備えてよい。これにより、チップ2の保護性能をさらに高めることができる。 As described with reference to FIG. 4 and the like, the photodetecting device 100 may include the side wall portion 8 provided so as to cover the side surface of the chip 2. Thereby, the protection performance of the chip 2 can be further improved.
 図5及び図6等を参照して説明したように、チップ2は、互いに離間して設けられたチップ2-1(第1のチップ)及びチップ2-2(第2のチップ)を含み、シーム部4は、チップ2-1に起因して発生したシーム部4-1(第1のシーム部)及びチップ2-2に起因して発生したシーム部4-2(第2のシーム部)を含み、シーム部4-1及びシーム部4-2は、互いにつながっていてよい。例えばこのように互いにつながっているシーム部4-1及びシーム部4-2がある場合でも、それらの外部への連通を抑制することができる。 As described with reference to FIGS. 5 and 6, the chip 2 includes a chip 2-1 (first chip) and a chip 2-2 (second chip) that are spaced apart from each other, The seam portion 4 includes a seam portion 4-1 (first seam portion) caused by the chip 2-1 and a seam portion 4-2 (second seam portion) caused by the chip 2-2. The seam portion 4-1 and the seam portion 4-2 may be connected to each other. For example, even if there are a seam portion 4-1 and a seam portion 4-2 that are connected to each other in this manner, communication between them to the outside can be suppressed.
 図7等を参照して説明したように、光検出装置100は、チップ2と埋め込み層3との間に設けられた追加層9を備えてよい。これにより、信頼性をさらに向上させることができる。 As described with reference to FIG. 7 and the like, the photodetector 100 may include the additional layer 9 provided between the chip 2 and the buried layer 3. Thereby, reliability can be further improved.
 図1及び図8等を参照して説明したように、光検出装置100は、封止層5を覆うように設けられた補助層6を備えてよい。これにより、例えば支持基板7との接合を行い易くすることができる。補助層6は、積層構造を有してよい。層数や材料の設計により、反り調整、接合マージン拡大等が可能になる。 As described with reference to FIGS. 1, 8, etc., the photodetector 100 may include the auxiliary layer 6 provided to cover the sealing layer 5. This makes it easier to bond to the support substrate 7, for example. The auxiliary layer 6 may have a laminated structure. Depending on the number of layers and material design, it is possible to adjust warpage and expand bonding margins.
 図1等を参照して説明したように、チップ2は、ロジックチップ、メモリチップ及びAI(Artificial Intelligence)チップの少なくとも1つを含んでよい。例えばこのようなさまざまなチップ2が設けられ高機能化された光検出装置を提供することができる。 As described with reference to FIG. 1 and the like, the chip 2 may include at least one of a logic chip, a memory chip, and an AI (Artificial Intelligence) chip. For example, it is possible to provide a highly functional photodetection device provided with such various chips 2.
 図20等を参照して説明したように、光検出装置100は、複数の画素101を含むように構成された撮像装置であってよい。光検出装置100は、基板1を挟んでチップ2及び埋め込み層3とは反対側に設けられたフィルタ層10と、フィルタ層10を挟んで基板とは反対側に設けられたレンズ層11と、を備えてよい。光検出装置100を撮像装置に応用することができる。 As described with reference to FIG. 20 and the like, the photodetection device 100 may be an imaging device configured to include a plurality of pixels 101. The photodetecting device 100 includes a filter layer 10 provided on the opposite side of the chip 2 and the embedded layer 3 with the substrate 1 in between, a lens layer 11 provided on the opposite side of the substrate with the filter layer 10 in between, may be provided. The photodetection device 100 can be applied to an imaging device.
 図21等を参照して説明したように、光検出装置100は、基板1と埋め込み層3との間に設けられた追加基板12を備えてよい。これにより、例えば光検出装置100を高機能化することができる。 As described with reference to FIG. 21 and the like, the photodetecting device 100 may include the additional substrate 12 provided between the substrate 1 and the buried layer 3. Thereby, for example, the photodetection device 100 can be made highly functional.
 図22等を参照して説明したように、チップ2は、間隔をあけて隣り合うように配置された2つのチップ2を含み、埋め込み層3は、2つのチップ2どうしの間に設けられた配線Lを含んでよい。光検出装置100のさらなる高機能化が可能になる。光検出装置100は、埋め込み層3、封止層5及び支持基板7を貫通する貫通ビアVを備えてよい。例えば支持基板7の表面7aから追加基板12の表面12a側の配線層へのアクセスが可能になる。 As described with reference to FIG. 22 and the like, the chip 2 includes two chips 2 arranged adjacent to each other with an interval, and the buried layer 3 is provided between the two chips 2. The wiring L may be included. It becomes possible to further improve the functionality of the photodetecting device 100. The photodetecting device 100 may include a through via V that penetrates the buried layer 3 , the sealing layer 5 , and the support substrate 7 . For example, it becomes possible to access the wiring layer on the surface 12a side of the additional substrate 12 from the surface 7a of the support substrate 7.
 なお、本開示に記載された効果は、あくまで例示であって、開示された内容に限定されない。他の効果があってもよい。 Note that the effects described in the present disclosure are merely examples and are not limited to the disclosed contents. There may also be other effects.
12.移動体への応用例
 これまで説明した技術は、さまざまな製品へ応用することができる。例えば、これまで説明した光検出装置100は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
12. Examples of applications to mobile objects The technology described so far can be applied to a variety of products. For example, the photodetection device 100 described so far is a device mounted on any type of moving object such as a car, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility vehicle, an airplane, a drone, a ship, a robot, etc. It may also be realized as
 図24は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 24 is a block diagram illustrating a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図24に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(Interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 24, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050. Further, as the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output section 12052, and an in-vehicle network I/F (Interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 includes a drive force generation device such as an internal combustion engine or a drive motor that generates drive force for the vehicle, a drive force transmission mechanism that transmits the drive force to wheels, and a drive force transmission mechanism that controls the steering angle of the vehicle. It functions as a control device for a steering mechanism to adjust and a braking device to generate braking force for the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operations of various devices installed in the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a turn signal, or a fog lamp. In this case, radio waves transmitted from a portable device that replaces a key or signals from various switches may be input to the body control unit 12020. The body system control unit 12020 receives input of these radio waves or signals, and controls the door lock device, power window device, lamp, etc. of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The external information detection unit 12030 detects information external to the vehicle in which the vehicle control system 12000 is mounted. For example, an imaging section 12031 is connected to the outside-vehicle information detection unit 12030. The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image. The external information detection unit 12030 may perform object detection processing such as a person, car, obstacle, sign, or text on the road surface or distance detection processing based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light. The imaging unit 12031 can output the electrical signal as an image or as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects in-vehicle information. For example, a driver condition detection section 12041 that detects the condition of the driver is connected to the in-vehicle information detection unit 12040. The driver condition detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver condition detection unit 12041. It may be calculated, or it may be determined whether the driver is falling asleep.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates control target values for the driving force generation device, steering mechanism, or braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, Control commands can be output to 12010. For example, the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions, including vehicle collision avoidance or shock mitigation, following distance based on vehicle distance, vehicle speed maintenance, vehicle collision warning, vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose of
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 In addition, the microcomputer 12051 controls the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of autonomous driving, etc., which does not rely on operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Furthermore, the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the outside information detection unit 12030. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control for the purpose of preventing glare, such as switching from high beam to low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図24の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio and image output unit 12052 transmits an output signal of at least one of audio and images to an output device that can visually or audibly notify information to the occupants of the vehicle or to the outside of the vehicle. In the example of FIG. 24, an audio speaker 12061, a display section 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
 図25は、撮像部12031の設置位置の例を示す図である。 FIG. 25 is a diagram showing an example of the installation position of the imaging section 12031.
 図25では、撮像部12031として、撮像部12101、12102、12103、12104、12105を有する。 In FIG. 25, the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, and 12105.
 撮像部12101、12102、12103、12104、12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102、12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided at, for example, the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield inside the vehicle. An imaging unit 12101 provided in the front nose and an imaging unit 12105 provided above the windshield inside the vehicle mainly acquire images in front of the vehicle 12100. Imaging units 12102 and 12103 provided in the side mirrors mainly capture images of the sides of the vehicle 12100. An imaging unit 12104 provided in the rear bumper or back door mainly captures images of the rear of the vehicle 12100. The imaging unit 12105 provided above the windshield inside the vehicle is mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
 なお、図25には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 25 shows an example of the imaging range of the imaging units 12101 to 12104. An imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, imaging ranges 12112 and 12113 indicate imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and an imaging range 12114 shows the imaging range of the imaging unit 12101 provided on the front nose. The imaging range of the imaging unit 12104 provided in the rear bumper or back door is shown. For example, by overlapping the image data captured by the imaging units 12101 to 12104, an overhead image of the vehicle 12100 viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of image sensors, or may be an image sensor having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104. By determining the following, it is possible to extract, in particular, the closest three-dimensional object on the path of vehicle 12100, which is traveling at a predetermined speed (for example, 0 km/h or more) in approximately the same direction as vehicle 12100, as the preceding vehicle. can. Furthermore, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of autonomous driving, etc., in which the vehicle travels autonomously without depending on the driver's operation.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 transfers three-dimensional object data to other three-dimensional objects such as two-wheeled vehicles, regular vehicles, large vehicles, pedestrians, and utility poles based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic obstacle avoidance. For example, the microcomputer 12051 identifies obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines a collision risk indicating the degree of risk of collision with each obstacle, and when the collision risk exceeds a set value and there is a possibility of a collision, the microcomputer 12051 transmits information via the audio speaker 12061 and the display unit 12062. By outputting a warning to the driver via the vehicle control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether the pedestrian is present in the images captured by the imaging units 12101 to 12104. Such pedestrian recognition involves, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and a pattern matching process is performed on a series of feature points indicating the outline of an object to determine whether it is a pedestrian or not. This is done by a procedure that determines the When the microcomputer 12051 determines that a pedestrian is present in the images captured by the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 creates a rectangular outline for emphasis on the recognized pedestrian. The display unit 12062 is controlled to display the . Furthermore, the audio image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
 以上、先に説明した光検出装置100は、以上説明した構成のうち、例えば撮像部12031に適用され得る。例えば、光検出装置100を含む製品の信頼性をより向上させることができる。 The photodetecting device 100 described above can be applied to, for example, the imaging section 12031 among the configurations described above. For example, the reliability of products including the photodetector 100 can be further improved.
 光検出装置100のさらなる実施形態について説明する。なお、これまで説明した技術内容も含め、矛盾の無い範囲において、開示される技術が適宜組み合わされてよい。例えば、封止層5は、シーム部4内まで延在していてもよいし、していなくてもよい。封止層5の材料は、低浸透性材料であってもよいし、低ヤング率材料(例えば樹脂)であってもよい。光検出装置100は、撮像装置であってよい。 Further embodiments of the photodetection device 100 will be described. Note that the disclosed technologies may be combined as appropriate, including the technical contents described so far, within the scope of consistency. For example, the sealing layer 5 may or may not extend into the seam portion 4. The material of the sealing layer 5 may be a low permeability material or a low Young's modulus material (for example, resin). Photodetection device 100 may be an imaging device.
13.第9実施形態
 図26及び図27は、第9実施形態に係る光検出装置の概略構成の例を示す図である。チップ2は、複数のチップ2を含む。複数のチップ2として、図26には2つのチップ2が、図27には3つのチップ2が例示される。第1のチップを、チップ2-1と称し図示する。第2のチップを、チップ2-2と称し図示する。第3のチップを、チップ2-3と称し図示する。なお、ここでのチップ2-1及びチップ2-2は、先に説明した第6実施形態(図5及び図6)のチップ2-1及びチップ2-2とは区別して解されてよい。
13. Ninth Embodiment FIGS. 26 and 27 are diagrams illustrating an example of a schematic configuration of a photodetecting device according to a ninth embodiment. Chip 2 includes a plurality of chips 2. As the plurality of chips 2, two chips 2 are illustrated in FIG. 26, and three chips 2 are illustrated in FIG. 27. The first chip is illustrated and referred to as chip 2-1. The second chip is designated and illustrated as chip 2-2. A third chip is illustrated and referred to as chip 2-3. Note that the chip 2-1 and the chip 2-2 here may be understood separately from the chip 2-1 and the chip 2-2 of the sixth embodiment (FIGS. 5 and 6) described above.
 図26に示される例では、チップ2-1及びチップ2-2は、互いに異なる厚さ(高さ)を有する。チップ2-2は、チップ2-1の厚さよりも大きい厚さを有する。換言すると、チップ2-1は、チップ2-2の厚さよりも小さい厚さを有する。シーム部4は、シーム部4-1と、シーム部4-2とを含む。シーム部4-1は、チップ2-1から埋め込み層3の表面3aに向かって延在する第1のシーム部である。シーム部4-2は、チップ2-2から埋め込み層3の表面3aに向かって延在する第2のシーム部である。 In the example shown in FIG. 26, the chip 2-1 and the chip 2-2 have mutually different thicknesses (heights). Chip 2-2 has a thickness greater than that of chip 2-1. In other words, chip 2-1 has a thickness smaller than that of chip 2-2. The seam portion 4 includes a seam portion 4-1 and a seam portion 4-2. The seam portion 4-1 is a first seam portion extending from the chip 2-1 toward the surface 3a of the buried layer 3. The seam portion 4-2 is a second seam portion extending from the chip 2-2 toward the surface 3a of the buried layer 3.
 チップ2-1の厚さがチップ2-2の厚さよりも小さいので、それらの厚さ方向において、シーム部4-1の長さは、シーム部4-2の長さよりも短くなり得る。シーム部4-2は、シーム部4-1よりも埋め込み層3の表面3aの近くまで延在し得る。図26に示される例では、シーム部4-2は埋め込み層3の表面3aに到達しているのに対し、シーム部4-1は、埋め込み層3の表面3aに到達していない。封止層5の延在部5aは、シーム部4-2の少なくとも一部を埋めるように、シーム部4-2内まで延在し得る。一方で、シーム部4-1は、空隙4aになり得る。 Since the thickness of the chip 2-1 is smaller than the thickness of the chip 2-2, the length of the seam portion 4-1 may be shorter than the length of the seam portion 4-2 in the thickness direction thereof. Seam portion 4-2 may extend closer to surface 3a of buried layer 3 than seam portion 4-1. In the example shown in FIG. 26, the seam portion 4-2 has reached the surface 3a of the buried layer 3, whereas the seam portion 4-1 has not reached the surface 3a of the buried layer 3. The extending portion 5a of the sealing layer 5 may extend into the seam portion 4-2 so as to fill at least a portion of the seam portion 4-2. On the other hand, the seam portion 4-1 can become a void 4a.
 図27に示される例では、チップ2-3が、チップ2-2上に設けられる。チップ2-2及びチップ2-3は、この順に積層された複数のチップ2(積層チップ)である。チップ2-3は、配線を介して、チップ2-2と電気的に接続される。配線には、チップ2を貫通する貫通ビア2vも含まれる。チップ2-2及びチップ2-3は、全体として、チップ2-1の厚さよりも大きい厚さを有する。この条件を満たす限りにおいて、チップ2-2の厚さは、チップ2-1の厚さと同じであってもよいし、異なっていてもよい。チップ2-3についても同様である。なお、積層されるチップ2の数は、3以上であってもよい。 In the example shown in FIG. 27, chip 2-3 is provided on chip 2-2. Chip 2-2 and chip 2-3 are a plurality of chips 2 (stacked chips) stacked in this order. Chip 2-3 is electrically connected to chip 2-2 via wiring. The wiring also includes a through via 2v that penetrates the chip 2. Chip 2-2 and chip 2-3 have a total thickness greater than the thickness of chip 2-1. As long as this condition is satisfied, the thickness of the chip 2-2 may be the same as or different from the thickness of the chip 2-1. The same applies to chip 2-3. Note that the number of stacked chips 2 may be three or more.
 シーム部4については、先に説明した図26と同様である。シーム部4-2は、シーム部4-1よりも埋め込み層3の表面3aの近くまで延在していてよい。図27に示される例では、シーム部4-2は埋め込み層3の表面3aに到達しているのに対し、シーム部4-1は、埋め込み層3の表面3aに到達していない。 The seam portion 4 is the same as that shown in FIG. 26 described above. The seam portion 4-2 may extend closer to the surface 3a of the buried layer 3 than the seam portion 4-1. In the example shown in FIG. 27, the seam portion 4-2 has reached the surface 3a of the buried layer 3, whereas the seam portion 4-1 has not reached the surface 3a of the buried layer 3.
<製造方法の例>
 図28~図32は、光検出装置の製造方法の例を示す図である。なお、製造方法に関するこれまでの説明と重複する内容については適宜説明を省略する。
<Example of manufacturing method>
28 to 32 are diagrams illustrating an example of a method for manufacturing a photodetecting device. Note that descriptions of content that overlap with the previous description regarding the manufacturing method will be omitted as appropriate.
 図28に示されるように、チップ2-1及びチップ2-2を基板1上に設ける。図29に示されるように、基板1、チップ2-1及びチップ2-2を覆うように、埋め込み層3を設ける。シーム部4-1及びシーム部4-2が発生する。この時点では、シーム部4-1及びシーム部4-2はいずれも空隙である。 As shown in FIG. 28, a chip 2-1 and a chip 2-2 are provided on a substrate 1. As shown in FIG. 29, a buried layer 3 is provided to cover the substrate 1, chips 2-1, and chips 2-2. A seam portion 4-1 and a seam portion 4-2 are generated. At this point, both the seam portion 4-1 and the seam portion 4-2 are voids.
 図30に示されるように、埋め込み層3を平坦化する。シーム部4-1及びシーム部4-2のうち、シーム部4-2の上部が開口している。図31に示されるように、埋め込み層3及びシーム部4-2を覆うように、封止層5を設ける。封止層5がシーム部4-2内まで延在し、その部分が封止層5の延在部5aになる。図32に示されるように、封止層5を覆うように補助層6を設ける。その後、補助層6に支持基板7を貼り合わせることで、先に説明した図26の構成が得られる。 As shown in FIG. 30, the buried layer 3 is planarized. Of the seam portions 4-1 and 4-2, the upper portion of the seam portion 4-2 is open. As shown in FIG. 31, a sealing layer 5 is provided to cover the buried layer 3 and the seam portion 4-2. The sealing layer 5 extends into the seam portion 4-2, and that portion becomes an extension portion 5a of the sealing layer 5. As shown in FIG. 32, an auxiliary layer 6 is provided to cover the sealing layer 5. Thereafter, by bonding the support substrate 7 to the auxiliary layer 6, the configuration shown in FIG. 26 described above is obtained.
 上記の製造プロセスにおけるチップ2-2を、チップ2-2及びチップ2-3の積層構造に置き換えることによって、先に説明した図27の構成が得られる。 By replacing chip 2-2 in the above manufacturing process with a stacked structure of chip 2-2 and chip 2-3, the configuration shown in FIG. 27 described earlier can be obtained.
<変形例>
 図33及び図34は、変形例を示す図である。図33及び図34に示される光検出装置100は、先に説明した図26及び図27の光検出装置100と比較して、シーム部4-1が埋め込み層3の表面3aに到達している点、及び、封止層5の延在部5aがシーム部4-1内まで延在している点において相違する。
<Modified example>
33 and 34 are diagrams showing modified examples. In the photodetecting device 100 shown in FIGS. 33 and 34, the seam portion 4-1 reaches the surface 3a of the buried layer 3, compared to the photodetecting device 100 shown in FIGS. 26 and 27 described above. The difference is that the extending portion 5a of the sealing layer 5 extends into the seam portion 4-1.
14.第10実施形態
 図35及び図36は、第10実施形態に係る光検出装置の概略構成の例を示す図である。これまで説明した光検出装置100の層構造が多層化される。チップ2は、高さ方向(Z軸方向)に並んで位置する2つのチップ2を含む。
14. 10th Embodiment FIGS. 35 and 36 are diagrams showing an example of a schematic configuration of a photodetecting device according to a 10th embodiment. The layered structure of the photodetecting device 100 described so far is multilayered. The chip 2 includes two chips 2 located side by side in the height direction (Z-axis direction).
 図35を参照すると、高さ方向に並んで位置する2つのチップ2として、チップ2-2及びチップ2-3が例示される。チップ2-2は、チップ2-3よりも下方(Z軸負方向側)に位置する下方チップである。チップ2-3は、チップ2-2よりも上方(Z軸正方向側)に位置する上方チップである。なお、チップ2-2は、チップ2-1と同じ高さに位置している。 Referring to FIG. 35, a chip 2-2 and a chip 2-3 are illustrated as two chips 2 located side by side in the height direction. The chip 2-2 is a lower chip located below the chip 2-3 (on the Z-axis negative direction side). Chip 2-3 is an upper chip located above chip 2-2 (on the Z-axis positive direction side). Note that the chip 2-2 is located at the same height as the chip 2-1.
 光検出装置100は、接合層13をさらに含む。接合層13は、チップ2-2とチップ2-3との間に設けられる。接合層13は、チップ2-2とチップ2-3との電気的な接続を与えるように、配線を含んで構成される。接合層13における配線以外の部分は、絶縁材料であってよく、この意味において、接合層13は、絶縁層とも呼べる。チップ2-2及びチップ2-3は、接合層13を介して互いに反対側に設けられるとともに、接合層13を介して互いに電気的に接続される。 The photodetector 100 further includes a bonding layer 13. Bonding layer 13 is provided between chip 2-2 and chip 2-3. The bonding layer 13 is configured to include wiring so as to provide electrical connection between the chips 2-2 and 2-3. The parts of the bonding layer 13 other than the wiring may be made of an insulating material, and in this sense, the bonding layer 13 can also be called an insulating layer. The chip 2-2 and the chip 2-3 are provided on opposite sides of the bonding layer 13 and are electrically connected to each other via the bonding layer 13.
 埋め込み層3は、埋め込み層3-1と、埋め込み層3-2とを含む。埋め込み層3-1は、基板1、チップ2-1の側面及びチップ2-2の側面を覆うように設けられた下方埋め込み層である。埋め込み層3-2は、接合層13及びチップ2-3を覆うように設けられた上方埋め込み層である。 The buried layer 3 includes a buried layer 3-1 and a buried layer 3-2. The buried layer 3-1 is a lower buried layer provided to cover the substrate 1, the side surfaces of the chip 2-1, and the side surfaces of the chip 2-2. The buried layer 3-2 is an upper buried layer provided to cover the bonding layer 13 and the chip 2-3.
 シーム部4は、シーム部4-1と、シーム部4-2と、シーム部4-3とを含む。シーム部4-1は、チップ2-1から埋め込み層3-1の表面3aに向かって延在する。シーム部4-2は、チップ2-1から埋め込み層3-1の表面3aに向かって延在する。シーム部4-3は、チップ2-3から埋め込み層3-2の表面3a向かって延在する。 The seam portion 4 includes a seam portion 4-1, a seam portion 4-2, and a seam portion 4-3. Seam portion 4-1 extends from chip 2-1 toward surface 3a of buried layer 3-1. Seam portion 4-2 extends from chip 2-1 toward surface 3a of buried layer 3-1. The seam portion 4-3 extends from the chip 2-3 toward the surface 3a of the buried layer 3-2.
 シーム部4-1及びシーム部4-2は、埋め込み層3-1内に発生し、埋め込み層3-1の表面3aまで延在する下方シーム部である。シーム部4-3は、埋め込み層3-2内に発生し、埋め込み層3-2の表面3aまで延在する上方シーム部である。 The seam portion 4-1 and the seam portion 4-2 are lower seam portions that occur within the buried layer 3-1 and extend to the surface 3a of the buried layer 3-1. The seam portion 4-3 is an upper seam portion that occurs within the buried layer 3-2 and extends to the surface 3a of the buried layer 3-2.
 封止層5は、埋め込み層3-2及びシーム部4-3を覆うように設けられる。接合層13は、埋め込み層3-1、シーム部4-1及びシーム部4-2を覆うように設けられる。接合層13は、埋め込み層3-1、シーム部4-1及びシーム部4-2に対して、封止層5と同様に機能し得る。 The sealing layer 5 is provided to cover the buried layer 3-2 and the seam portion 4-3. The bonding layer 13 is provided so as to cover the buried layer 3-1, the seam portion 4-1, and the seam portion 4-2. The bonding layer 13 can function similarly to the sealing layer 5 with respect to the buried layer 3-1, the seam portion 4-1, and the seam portion 4-2.
 図36に示される例では、チップ2は、ダミーチップ2Dをさらに含む。ダミーチップ2Dは、チップ2-1よりも上方において、埋め込み層3-2内に位置する。ダミーチップ2Dは、埋め込み層3-2内に、あたかもダミーチップ2Dの容積と同じ容積のチップ2が存在するような状態を作り出す。ダミーチップ2Dの材料は、チップ2の材料と同じであってもよいし、異なっていてもよい。ダミーチップ2Dは、チップ2の機能を有していなくてもよい。 In the example shown in FIG. 36, the chip 2 further includes a dummy chip 2D. The dummy chip 2D is located in the buried layer 3-2 above the chip 2-1. The dummy chip 2D creates a state in the buried layer 3-2 as if a chip 2 with the same volume as the dummy chip 2D exists. The material of the dummy chip 2D may be the same as the material of the chip 2, or may be different. The dummy chip 2D does not need to have the function of the chip 2.
 チップ2-1及びダミーチップ2Dは、接合層13を介して互いに反対側に設けられる。なお、チップ2-1とダミーチップ2Dとは、電気的に接続されてもよいし、接続されていなくてもよい。ダミーチップ2Dは、例えばチップ2-3の厚さと同じ厚さを有する。 The chip 2-1 and the dummy chip 2D are provided on opposite sides of the bonding layer 13. Note that the chip 2-1 and the dummy chip 2D may or may not be electrically connected. The dummy chip 2D has, for example, the same thickness as the chip 2-3.
 埋め込み層3-2は、接合層13、ダミーチップ2D及びチップ2-3を覆うように設けられる。シーム部4は、ダミーチップ2Dから埋め込み層3-2の表面3aに向かって延在するシーム部4-Dをさらに含む。封止層5は、埋め込み層3-2、シーム部4-D及びシーム部4-3を覆うように設けられる。 The buried layer 3-2 is provided to cover the bonding layer 13, the dummy chip 2D, and the chip 2-3. The seam portion 4 further includes a seam portion 4-D extending from the dummy chip 2D toward the surface 3a of the buried layer 3-2. The sealing layer 5 is provided to cover the buried layer 3-2, the seam portion 4-D, and the seam portion 4-3.
 ダミーチップ2Dが無いと、その部分をすべて埋め込み層3で埋めなければならず、例えばその部分だけ埋め込み層3の高さが不足する等して、埋め込み層3の平坦化が難しくなる。この問題が、ダミーチップ2Dを設けることによって対処される。すなわち、ダミーチップ2Dを設けることで、ダミーチップ2Dを設けない場合よりも、埋め込み層3-2の平坦化が容易になる。 If there is no dummy chip 2D, the entire portion must be filled with the buried layer 3, and for example, the height of the buried layer 3 may be insufficient in that portion, making it difficult to planarize the buried layer 3. This problem is addressed by providing a dummy chip 2D. That is, by providing the dummy chip 2D, planarization of the buried layer 3-2 becomes easier than in the case where the dummy chip 2D is not provided.
<製造方法の例>
 図37~図43は、光検出装置の製造方法の例を示す図である。前提として、先に説明した図28及び図29と同様の製造プロセスが完了しているものとする。ここでの埋め込み層3-1は、図28及び図29の埋め込み層3に相当し、また、ここでのチップ2-2の厚さは、図28及び図29のチップ2-2の厚さとは異なる。
<Example of manufacturing method>
37 to 43 are diagrams illustrating an example of a method for manufacturing a photodetecting device. As a premise, it is assumed that the manufacturing process similar to that shown in FIGS. 28 and 29 described above has been completed. The buried layer 3-1 here corresponds to the buried layer 3 in FIGS. 28 and 29, and the thickness of the chip 2-2 here is the same as the thickness of the chip 2-2 in FIGS. 28 and 29. is different.
 図37に示されるように、埋め込み層3-1の上部を研磨、洗浄し、埋め込み層3-1、シーム部4-1及びシーム部4-2を覆うように封止層5を設ける。封止層5がシーム部4-1内及びシーム部4-2内まで延在し、その部分が封止層5の延在部5aになる。図38に示されるように、研磨によって封止層5を取り除く。延在部5aは、シーム部4-1内及びシーム部4-2内に残る。チップ2-1及びチップ2-2の表面2aが露出する。表面2aは、チップ2-1及びチップ2-2のZ軸正方向側の面である。 As shown in FIG. 37, the upper part of the buried layer 3-1 is polished and cleaned, and the sealing layer 5 is provided so as to cover the buried layer 3-1, the seam portions 4-1, and the seam portions 4-2. The sealing layer 5 extends to the inside of the seam portion 4-1 and the seam portion 4-2, and that portion becomes an extension portion 5a of the sealing layer 5. As shown in FIG. 38, the sealing layer 5 is removed by polishing. The extending portion 5a remains within the seam portion 4-1 and within the seam portion 4-2. Surfaces 2a of chips 2-1 and 2-2 are exposed. The surface 2a is the surface of the chips 2-1 and 2-2 on the Z-axis positive direction side.
 図39に示されるように、チップ2-2を貫通する貫通ビア2vを設ける。また、埋め込み層3-1、チップ2-1、シーム部4-1、チップ2-2及びシーム部4-2を覆うように、接合層13を設ける。図40に示されるように、接合層13を挟んでチップ2-2とは反対側において、接合層13上にチップ2-3を設ける。図41に示されるように、接合層13及びチップ2-2を覆うように、埋め込み層3-2を設ける。シーム部4-3が発生する。この時点ではシーム部4-3は空隙である。 As shown in FIG. 39, a through via 2v is provided that penetrates the chip 2-2. Further, a bonding layer 13 is provided so as to cover the buried layer 3-1, the chip 2-1, the seam portion 4-1, the chip 2-2, and the seam portion 4-2. As shown in FIG. 40, a chip 2-3 is provided on the bonding layer 13 on the opposite side of the bonding layer 13 from the chip 2-2. As shown in FIG. 41, a buried layer 3-2 is provided to cover the bonding layer 13 and the chip 2-2. A seam portion 4-3 is generated. At this point, the seam portion 4-3 is a gap.
 図42に示されるように、埋め込み層3-2、チップ2-3及びシーム部4-3を覆うように封止層5を設ける。封止層5がシーム部4-3内まで延在し、その部分が封止層5の延在部5aになる。図43に示されるように、封止層5を覆うように補助層6を設ける。その後、補助層6に支持基板7を貼り合わせることで、先に説明した図35の構成が得られる。 As shown in FIG. 42, a sealing layer 5 is provided to cover the buried layer 3-2, chip 2-3, and seam portion 4-3. The sealing layer 5 extends into the seam portion 4-3, and that portion becomes an extension portion 5a of the sealing layer 5. As shown in FIG. 43, an auxiliary layer 6 is provided to cover the sealing layer 5. Thereafter, by bonding the support substrate 7 to the auxiliary layer 6, the configuration shown in FIG. 35 described above is obtained.
 上記の製造プロセスにおいて、チップ2-3を設ける際にダミーチップ2Dも設けることで、先に説明した図36の構成が得られる。 In the above manufacturing process, by also providing the dummy chip 2D when providing the chip 2-3, the configuration shown in FIG. 36 described earlier can be obtained.
<変形例>
 図44は、変形例を示す図である。2つの基板1が準備され、それぞれの基板上にチップ2及び埋め込み層3を設けたうえで、それらが接合層13を介して貼り合わされる。2つの基板1のうちの第1の基板を、基板1-1と称し図する。第2の基板を、基板1-2と称し図示する。
<Modified example>
FIG. 44 is a diagram showing a modification. Two substrates 1 are prepared, a chip 2 and a buried layer 3 are provided on each substrate, and then they are bonded together via a bonding layer 13. The first of the two substrates 1 is referred to as a substrate 1-1. The second substrate is illustrated and referred to as substrate 1-2.
 先に説明した図39の製造プロセスまでと同様の製造プロセスを、基板1-1に対して行う。基板1-1上に、チップ2-1及びチップ2-2を設け、また、貫通ビア2vを設ける。基板1-1、チップ2-1及びチップ2-2を覆うように、埋め込み層3-1を設ける。埋め込み層3-1内に、シーム部4-1及びシーム部4-2が発生する。埋め込み層3-1、シーム部4-1及びシーム部4-2を覆うように、封止層5を設ける。封止層5がシーム部4-1内及びシーム部4-2内まで延在し、その部分が、封止層5の延在部5aになる。研磨により封止層5を取り除く。延在部5aは、シーム部4-1内及びシーム部4-2内に残る。埋め込み層3-1、シーム部4-1及びシーム部4-2を覆うように、接合層13を設ける。 A manufacturing process similar to that up to the manufacturing process of FIG. 39 described above is performed on the substrate 1-1. A chip 2-1 and a chip 2-2 are provided on the substrate 1-1, and a through via 2v is also provided. A buried layer 3-1 is provided to cover the substrate 1-1, the chip 2-1, and the chip 2-2. A seam portion 4-1 and a seam portion 4-2 are generated within the buried layer 3-1. A sealing layer 5 is provided so as to cover the buried layer 3-1, the seam portion 4-1, and the seam portion 4-2. The sealing layer 5 extends to the inside of the seam portion 4-1 and the seam portion 4-2, and that portion becomes an extension portion 5a of the sealing layer 5. The sealing layer 5 is removed by polishing. The extending portion 5a remains within the seam portion 4-1 and within the seam portion 4-2. A bonding layer 13 is provided so as to cover the buried layer 3-1, the seam portions 4-1, and the seam portions 4-2.
 基板1-2上に、チップ2-3及びダミーチップ2Dを設け、また、チップ2-3を貫通する貫通ビア3vを設ける。基板1-2、チップ2-2及びダミーチップ2Dを覆うように、埋め込み層3-2を設ける。埋め込み層3-2内に、シーム部4-3及びシーム部4-Dが発生する。埋め込み層3-2、シーム部4-3及びシーム部4-Dを覆うように、封止層5を設ける。封止層5がシーム部4-3内及びシーム部4-D内まで延在し、その部分が、封止層5の延在部5aになる。研磨により、封止層5を取り除く。延在部5aは、シーム部4-3内及びシーム部4-D内に残る。 A chip 2-3 and a dummy chip 2D are provided on the substrate 1-2, and a through via 3v passing through the chip 2-3 is provided. A buried layer 3-2 is provided to cover the substrate 1-2, chip 2-2, and dummy chip 2D. A seam portion 4-3 and a seam portion 4-D are generated within the buried layer 3-2. A sealing layer 5 is provided to cover the buried layer 3-2, the seam portion 4-3, and the seam portion 4-D. The sealing layer 5 extends into the seam portion 4-3 and into the seam portion 4-D, and that portion becomes an extension portion 5a of the sealing layer 5. The sealing layer 5 is removed by polishing. The extension portion 5a remains within the seam portion 4-3 and within the seam portion 4-D.
 上記のようにして得られた基板1-2側の埋め込み層3-2を、基板1-1側の接合層13に貼り合わせることで、図44の構成が得られる。この貼り合わせは、基板1-1を含むウェハ(例えば半導体ウェハ)と、基板1-2を含むウェハとを接合することによって行われてよい。シーム部4内は延在部5aで埋められており、シーム部の開口部分は接合層13で覆われている。接合層13が、シーム部4を覆う封止層5として機能するともいえる。 The structure shown in FIG. 44 is obtained by bonding the buried layer 3-2 on the substrate 1-2 side obtained as described above to the bonding layer 13 on the substrate 1-1 side. This bonding may be performed by bonding a wafer (for example, a semiconductor wafer) containing the substrate 1-1 and a wafer containing the substrate 1-2. The interior of the seam portion 4 is filled with an extension portion 5a, and the opening portion of the seam portion is covered with a bonding layer 13. It can also be said that the bonding layer 13 functions as the sealing layer 5 covering the seam portion 4.
<小結>
 以上で説明した第9実施形態及び第10実施形態に係る光検出装置100は、例えば次のように特定される。図26及び図33等を参照して説明したように、チップ2は、チップ2-1(第1のチップ)と、チップ2-1の厚さよりも大きい厚さを有するチップ2-2(第2のチップ)と、を含み、シーム部4は、チップ2-1から埋め込み層3の表面3aに向かって延在するシーム部4-1(第1のシーム部)と、チップ2-2から埋め込み層3の表面3aに向かって延在するシーム部4-2(第2のシーム部)と、を含み、シーム部4-2は、シーム部4-1よりも、埋め込み層3の表面3aの近くまで延在していてよい。或いは、図27及び図34等を参照して説明したように、チップ2は、チップ2-1(第1のチップ)と、順に積層されたチップ2-2(第2のチップ)及びチップ2-3(第3のチップ)を含み、チップ2-2及びチップ2-3は、全体として、チップ2-1の厚さよりも大きい厚さを有し、シーム部4は、チップ2-1から埋め込み層3の表面3aに向かって延在するシーム部4-1(第1のシーム部)と、チップ2-2から埋め込み層3の表面3aに向かって延在するシーム部4-2(第2のシーム部)と、を含み、シーム部4-2は、シーム部4-1よりも、埋め込み層3の表面3aの近くまで延在していてよい。このようにチップ部分の厚さが異なる構成においても、シーム部4の外部への連通を抑制することができる。
<Small conclusion>
The photodetecting device 100 according to the ninth embodiment and the tenth embodiment described above is specified, for example, as follows. As described with reference to FIGS. 26, 33, etc., the chip 2 includes the chip 2-1 (first chip) and the chip 2-2 (first chip) having a thickness greater than that of the chip 2-1. The seam portion 4 includes a seam portion 4-1 (first seam portion) extending from the chip 2-1 toward the surface 3a of the buried layer 3, and a seam portion 4-1 (first seam portion) extending from the chip 2-2 toward the surface 3a of the buried layer 3. A seam portion 4-2 (second seam portion) extending toward the surface 3a of the buried layer 3, the seam portion 4-2 being closer to the surface 3a of the buried layer 3 than the seam portion 4-1. It may extend as close as possible. Alternatively, as described with reference to FIGS. 27 and 34, the chip 2 includes a chip 2-1 (first chip), a chip 2-2 (second chip) and a chip 2 stacked in this order. -3 (third chip), the chip 2-2 and the chip 2-3 have a thickness larger as a whole than the thickness of the chip 2-1, and the seam part 4 is separated from the chip 2-1. A seam portion 4-1 (first seam portion) extending toward the surface 3a of the buried layer 3, and a seam portion 4-2 (first seam portion) extending from the chip 2-2 toward the surface 3a of the buried layer 3. The seam portion 4-2 may extend closer to the surface 3a of the buried layer 3 than the seam portion 4-1. Even in such a configuration in which the thickness of the chip portions is different, communication of the seam portion 4 to the outside can be suppressed.
 図26、図27、図33及び図34等を参照して説明したように、封止層5は、シーム部4-2の少なくとも一部を埋めるようにシーム部4-2内まで延在する延在部5aを含んでよい。これにより、延在部5aによるメリットも得られる。例えば、封止層5の材料が低浸透性材料を含む場合には、チップ2への水分等の侵入の抑制効果を高めることができ、また、封止層5の材料が低ヤング率材料を含む場合には、チップ間応力を緩和することができる。 As described with reference to FIG. 26, FIG. 27, FIG. 33, FIG. 34, etc., the sealing layer 5 extends into the seam portion 4-2 so as to fill at least a portion of the seam portion 4-2. It may include an extension portion 5a. Thereby, the advantage of the extension part 5a can also be obtained. For example, when the material of the sealing layer 5 includes a low permeability material, the effect of suppressing moisture etc. from entering the chip 2 can be enhanced, and the material of the sealing layer 5 includes a low Young's modulus material. If it is included, inter-chip stress can be alleviated.
 図26及び図27等を参照して説明したように、シーム部4-1は、埋め込み層3の表面3aに到達しておらず、シーム部4-2は、埋め込み層3の表面3aに到達していてよい。このように、埋め込み層3の表面3aに到達するシーム部4-2と、到達しないシーム部4-1とが混在する場合でも、シーム部4の外部への連通を抑制することができる。 As described with reference to FIGS. 26 and 27, the seam portion 4-1 does not reach the surface 3a of the buried layer 3, and the seam portion 4-2 does not reach the surface 3a of the buried layer 3. It's okay to do so. In this way, even if there are a mixture of seam portions 4-2 that reach the surface 3a of the buried layer 3 and seam portions 4-1 that do not reach the surface, communication of the seam portion 4 to the outside can be suppressed.
 図35及び図36等を参照して説明したように、チップ2は、高さ方向に並んで位置するチップ2-2(下方チップ)及びチップ2-3(上方チップ)を含み、光検出装置100は、チップ2-2とチップ2-3との間に設けられた接合層13をさらに備え、埋め込み層3は、チップ2-2の側面を覆うように設けられた埋め込み層3-1(下方埋め込み層)と、チップ2-3及び接合層13を覆うように設けられた埋め込み層3-2(上方埋め込み層)と、を含み、シーム部4は、埋め込み層3-1内に発生し、埋め込み層3-1の表面3aまで延在するシーム部4-2(下方シーム部)と、埋め込み層3-2内に発生し、埋め込み層3-2の表面3aまで延在するシーム部4-3(上方シーム部)と、を含み、接合層13は、埋め込み層3-1及びシーム部4-2を覆うように設けられ、封止層5は、埋め込み層3-2及びシーム部4-3を覆うように設けられてよい。このような構成によっても、シーム部4の外部への連通を抑制することができる。 As described with reference to FIGS. 35, 36, etc., the chip 2 includes a chip 2-2 (lower chip) and a chip 2-3 (upper chip) located side by side in the height direction, and includes a photodetector. 100 further includes a bonding layer 13 provided between the chip 2-2 and the chip 2-3, and the buried layer 3 includes a buried layer 3-1 (provided to cover the side surface of the chip 2-2). a lower buried layer) and a buried layer 3-2 (upper buried layer) provided to cover the chip 2-3 and the bonding layer 13; , a seam portion 4-2 (lower seam portion) that extends to the surface 3a of the buried layer 3-1, and a seam portion 4 that occurs within the buried layer 3-2 and extends to the surface 3a of the buried layer 3-2. -3 (upper seam part), the bonding layer 13 is provided so as to cover the buried layer 3-1 and the seam part 4-2, and the sealing layer 5 is provided to cover the buried layer 3-2 and the seam part 4. -3 may be provided to cover. With such a configuration as well, communication of the seam portion 4 to the outside can be suppressed.
 図36等を参照して説明したように、チップ2は、接合層13を挟んで互いに反対側に設けられたチップ2-1(下方チップ)及びダミーチップ2Dをさらに含み、埋め込み層3-2は、チップ2-3、ダミーチップ2D及び接合層13を覆うように設けられてよい。これにより、ダミーチップ2Dを設けない場合よりも、埋め込み層3-2の平坦化が容易になる。 As described with reference to FIG. 36 etc., the chip 2 further includes a chip 2-1 (lower chip) and a dummy chip 2D provided on opposite sides with the bonding layer 13 in between, and a buried layer 3-2. may be provided to cover the chip 2-3, the dummy chip 2D, and the bonding layer 13. This makes planarization of the buried layer 3-2 easier than in the case where the dummy chip 2D is not provided.
15.第11実施形態
 図45及び図46は、第11実施形態に係る光検出装置の概略構成の例を示す図である。封止層5は、第1の部分51と、第2の部分52とを含む。
15. 11th Embodiment FIGS. 45 and 46 are diagrams showing an example of a schematic configuration of a photodetecting device according to an 11th embodiment. The sealing layer 5 includes a first portion 51 and a second portion 52.
 第1の部分51は、封止層5のうち、シーム部4を覆う部分である。第1の部分51の少なくとも一部は、隣り合うチップ2どうしの間に位置している。第2の部分52は、封止層5のうち、シーム部4を覆わない部分である。第2の部分52の少なくとも一部は、対応するチップ2の上部に位置している。第2の部分52は、封止層5における第1の部分51以外の部分であってよい。 The first portion 51 is a portion of the sealing layer 5 that covers the seam portion 4 . At least a portion of the first portion 51 is located between adjacent chips 2. The second portion 52 is a portion of the sealing layer 5 that does not cover the seam portion 4 . At least a portion of the second portion 52 is located on top of the corresponding chip 2. The second portion 52 may be a portion of the sealing layer 5 other than the first portion 51 .
 第1の部分51のZ軸正方向側の面を、表面51aと称し図示する。Z軸負方向側の面を、裏面51bと称し図示する。第2の部分52のZ軸正方向側の面を、表面52aと称し図示する。Z軸負方向側の面を、裏面52bと称し図示する。第1の部分51の裏面51bは、第2の部分52の裏面52bよりも下方(Z軸負方向側)に位置している。 The surface of the first portion 51 on the Z-axis positive direction side is referred to as a surface 51a in the drawing. The surface on the negative side of the Z-axis is referred to as a back surface 51b. The surface of the second portion 52 on the Z-axis positive direction side is referred to as a surface 52a and is illustrated. The surface on the negative side of the Z-axis is referred to as a back surface 52b in the drawing. The back surface 51b of the first portion 51 is located lower than the back surface 52b of the second portion 52 (on the Z-axis negative direction side).
 図45に示される例では、第1の部分51の表面51aは、第2の部分52の表面52aと同じ高さに位置している。封止層5全体の表面は、平坦面である。 In the example shown in FIG. 45, the surface 51a of the first portion 51 is located at the same height as the surface 52a of the second portion 52. The entire surface of the sealing layer 5 is a flat surface.
 図46に示される例では、第1の部分51の表面51aと、第2の部分52の表面52aとは、互いに異なる高さに位置している。この例では、第2の部分52の表面52aは、第1の部分51の表面51aよりも上方(Z軸正方向側)に位置している。封止層5全体の表面は、非平坦面である。ただし、封止層5上に設けられた補助層6(例えばSiO2等)が平坦な表面6aを有し、そこで平坦性が確保される。封止層5の材料によっては研磨等による封止層5の平坦化が難しい場合があり、その場合には、封止層5は平坦化せず、より平坦化が容易な補助層6で対応することで、製造プロセスを容易化することができる。補助層6は、平坦化容易層と呼ぶこともできる。 In the example shown in FIG. 46, the surface 51a of the first portion 51 and the surface 52a of the second portion 52 are located at different heights. In this example, the surface 52a of the second portion 52 is located above the surface 51a of the first portion 51 (on the Z-axis positive direction side). The entire surface of the sealing layer 5 is a non-flat surface. However, the auxiliary layer 6 (for example, SiO2, etc.) provided on the sealing layer 5 has a flat surface 6a, thereby ensuring flatness. Depending on the material of the sealing layer 5, it may be difficult to flatten the sealing layer 5 by polishing or the like, and in that case, instead of flattening the sealing layer 5, use the auxiliary layer 6, which is easier to flatten. By doing so, the manufacturing process can be facilitated. The auxiliary layer 6 can also be called an easy-to-planarize layer.
 上記の図45及び図46の構成によれば、これまでに説明した構成と比較して、シーム部4上の封止層5の厚さを大きくすることができる。その分、シーム部4の外部への連通を抑制するという封止層5の機能を高めることができる。また、埋め込み層3を平坦化する必要が無いので、例えば、埋め込み層3の研磨、洗浄時に生じ得るシーム部4への薬液の侵入を防ぐことができる。 According to the configurations shown in FIGS. 45 and 46 above, the thickness of the sealing layer 5 on the seam portion 4 can be increased compared to the configurations described above. Accordingly, the function of the sealing layer 5 to suppress communication of the seam portion 4 to the outside can be enhanced. Furthermore, since there is no need to flatten the buried layer 3, it is possible to prevent chemical liquid from entering the seam portion 4, which may occur during polishing or cleaning of the buried layer 3, for example.
<製造方法の例>
 図47~図51は、光検出装置の製造方法の例を示す図である。図47~図49には、先に説明した図45の構成を得るための製造方法の例が示される。前提として、先に説明した図9及び図10と同様の製造プロセスが完了しているものとする。
<Example of manufacturing method>
47 to 51 are diagrams illustrating an example of a method for manufacturing a photodetecting device. 47 to 49 show an example of a manufacturing method for obtaining the configuration shown in FIG. 45 described above. As a premise, it is assumed that the manufacturing process similar to that shown in FIGS. 9 and 10 described above has been completed.
 図47に示されるように、埋め込み層3を研磨することなく、その上に封止層5を設ける。封止層5がシーム部4内まで延在し、その部分が、封止層5の延在部5aになる。図48に示されるように、封止層5の上部を研磨し、洗浄することで、先に説明した図45のような、第1の部分51及び第2の部分52を含む封止層5が得られる。第1の部分51の表面51a及び第2の部分52の表面52aは、いずれも同じ高さに位置し、封止層5全体の表面は平坦面になる。図49に示されるように、封止層5を覆うように補助層6を設ける。その後、補助層6に支持基板7を貼り合わせることで、先に説明した図45の構成が得られる。 As shown in FIG. 47, the sealing layer 5 is provided on the buried layer 3 without polishing it. The sealing layer 5 extends into the seam portion 4, and that portion becomes an extension portion 5a of the sealing layer 5. As shown in FIG. 48, by polishing and cleaning the upper part of the sealing layer 5, the sealing layer 5 including the first portion 51 and the second portion 52 as shown in FIG. is obtained. The surface 51a of the first portion 51 and the surface 52a of the second portion 52 are both located at the same height, and the entire surface of the sealing layer 5 is a flat surface. As shown in FIG. 49, an auxiliary layer 6 is provided to cover the sealing layer 5. Thereafter, by bonding the support substrate 7 to the auxiliary layer 6, the configuration shown in FIG. 45 described above is obtained.
 図50及び図51には、先に説明した図46の構成を得るための製造方法の例が示される。前提として、先に説明した図47の製造プロセスが完了しているものとする。 FIGS. 50 and 51 show an example of a manufacturing method for obtaining the configuration shown in FIG. 46 described above. As a premise, it is assumed that the manufacturing process shown in FIG. 47 described above has been completed.
 図50に示されるように、先に説明した図49と同様の第1の部分51及び第2の部分52を含む封止層5が得られており、この封止層5を研磨することなく、封止層5を覆うように補助層6を設ける。図51に示されるように、補助層6の上部を研磨、洗浄することで、平坦な表面6aを有する補助層6が得られる。その後、補助層6に支持基板7を貼り合わせることで、先に説明した図46の構成が得られる。 As shown in FIG. 50, a sealing layer 5 including a first portion 51 and a second portion 52 similar to those in FIG. 49 described above is obtained, and this sealing layer 5 is not polished. , an auxiliary layer 6 is provided to cover the sealing layer 5. As shown in FIG. 51, by polishing and cleaning the upper part of the auxiliary layer 6, the auxiliary layer 6 having a flat surface 6a is obtained. Thereafter, by bonding the support substrate 7 to the auxiliary layer 6, the configuration shown in FIG. 46 described above is obtained.
16.第12実施形態
 一実施形態において、封止層5は、積層構造を有してよい。図52を参照して説明する。
16. Twelfth Embodiment In one embodiment, the sealing layer 5 may have a laminated structure. This will be explained with reference to FIG. 52.
 図52は、封止層の概略構成の例を示す図である。図52の(A)には、封止層5及びその周辺の断面が模式的に示される。図52の(B)には、封止層5の一部を拡大した断面が模式的に示される。 FIG. 52 is a diagram showing an example of a schematic configuration of a sealing layer. FIG. 52A schematically shows a cross section of the sealing layer 5 and its surroundings. FIG. 52(B) schematically shows an enlarged cross section of a part of the sealing layer 5.
 封止層5は、複数の層が積層された積層構造を有する。複数の層は、例えば2種類の層を含んでよい。2種類の層のうちの一方の種類の層は無機層であってよく、他方の種類の層は有機層であってよい。無機層を、無機層53と称し図示する。有機層を、有機層54と称し図示する。 The sealing layer 5 has a laminated structure in which a plurality of layers are laminated. The plurality of layers may include, for example, two types of layers. One type of layer of the two types of layers may be an inorganic layer and the other type of layer may be an organic layer. The inorganic layer is illustrated as an inorganic layer 53. The organic layer is illustrated as organic layer 54 .
 無機層53の材料として、種々の公知の無機材料が用いられてよい。無機材料の例は、Al、SiN、SiON、SiCN等である。 Various known inorganic materials may be used as the material for the inorganic layer 53. Examples of inorganic materials are Al 2 O 3 , SiN, SiON, SiCN, etc.
 有機層54の材料として、種々の公知の有機材料が用いられてよい。材料の例は、ポリマー、ハイブリッドポリマー等である。ポリマーの例は、PEN、PET、PEG等である。ハイブリッドポリマーは、ポリマーと例えば金属材料と含む材料である。金属材料がアルミニウムの場合のハイブリッドポリマーの一例は、Alconeである。有機層54は、例えばスピンコート、インクジェット法、MLD法等を用いて形成されてよい。シーム部4の内部まで延在する延在部5aを含む封止層5の形成には、MLD法が好適に用いられ得る。 Various known organic materials may be used as the material for the organic layer 54. Examples of materials are polymers, hybrid polymers, etc. Examples of polymers are PEN, PET, PEG, etc. Hybrid polymers are materials that include a polymer and, for example, a metallic material. An example of a hybrid polymer when the metal material is aluminum is Alcone. The organic layer 54 may be formed using, for example, spin coating, an inkjet method, an MLD method, or the like. The MLD method may be suitably used to form the sealing layer 5 including the extension portion 5a extending into the seam portion 4.
 図52に示される例では、封止層5は、3つの無機層53と、3つの有機層54とを含む6層構造を有する。無機層53及び有機層54は、交互に積層される。ただし、無機層53及び有機層54の数は、図52に示される数よりも少なくてもよいし、多くてもよい。 In the example shown in FIG. 52, the sealing layer 5 has a six-layer structure including three inorganic layers 53 and three organic layers 54. The inorganic layers 53 and the organic layers 54 are alternately stacked. However, the number of inorganic layers 53 and organic layers 54 may be smaller or larger than the number shown in FIG. 52.
 封止層5が積層構造を有することにより、封止層5の機能を高めることができる。例えば、ガス(水蒸気等)バリア性を向上させたり、変形に対するロバスト性を向上させたりすることができる。 Since the sealing layer 5 has a laminated structure, the function of the sealing layer 5 can be enhanced. For example, gas (water vapor, etc.) barrier properties can be improved, and robustness against deformation can be improved.
<小結>
 以上で説明した第11実施形態及び第12実施形態に係る光検出装置100は、例えば次のように特定される。図45及び図46等を参照して説明したように、封止層5は、シーム部4を覆う第1の部分51と、シーム部4を覆わない第2の部分52と、を含み、第1の部分51の裏面51bは、第2の部分52の裏面52bよりも下方(Z軸負方向側)に位置していてよい。図45等を参照して説明したように、第1の部分51の表面51aは、第2の部分52の表面52aと同じ高さに位置していてよい。或いは、図46等を参照して説明したように、光検出装置100は、封止層5を覆うように設けられた補助層6を備え、第2の部分52の表面52aは、第1の部分51の表面51aよりも上方(Z軸正方向側)に位置しており、補助層6の表面6aは、平坦面であってよい。例えばこのような構成により、シーム部4上の封止層5の厚さを大きくすることができる。その分、シーム部4の外部への連通を抑制するという封止層5の機能を高めることができる。また、埋め込み層3を平坦化する必要が無いので、例えば、埋め込み層3の研磨、洗浄時に生じ得るシーム部4への薬液の侵入を防ぐことができる。
<Small conclusion>
The photodetecting device 100 according to the eleventh embodiment and the twelfth embodiment described above is specified as follows, for example. As described with reference to FIGS. 45 and 46, the sealing layer 5 includes a first portion 51 that covers the seam portion 4, a second portion 52 that does not cover the seam portion 4, and a second portion 52 that does not cover the seam portion 4. The back surface 51b of the first portion 51 may be located lower than the back surface 52b of the second portion 52 (on the Z-axis negative direction side). As described with reference to FIG. 45 and the like, the surface 51a of the first portion 51 may be located at the same height as the surface 52a of the second portion 52. Alternatively, as described with reference to FIG. 46 etc., the photodetecting device 100 includes the auxiliary layer 6 provided to cover the sealing layer 5, and the surface 52a of the second portion 52 is It is located above the surface 51a of the portion 51 (on the Z-axis positive direction side), and the surface 6a of the auxiliary layer 6 may be a flat surface. For example, with such a configuration, the thickness of the sealing layer 5 on the seam portion 4 can be increased. Accordingly, the function of the sealing layer 5 to suppress communication of the seam portion 4 to the outside can be enhanced. Furthermore, since there is no need to flatten the buried layer 3, it is possible to prevent chemical liquid from entering the seam portion 4, which may occur during polishing or cleaning of the buried layer 3, for example.
 図52等を参照して説明したように、封止層5は、複数の層が積層された積層構造を有してよい。封止層5の複数の層は、無機層53及び有機層54を含んでよい。これにより、封止層5の機能を高めることができる。例えば、ガス(水蒸気等)バリア性を向上させたり、変形に対するロバスト性を向上させたりすることができる。 As described with reference to FIG. 52 and the like, the sealing layer 5 may have a laminated structure in which a plurality of layers are laminated. The plurality of layers of the sealing layer 5 may include an inorganic layer 53 and an organic layer 54. Thereby, the function of the sealing layer 5 can be enhanced. For example, gas (water vapor, etc.) barrier properties can be improved, and robustness against deformation can be improved.
17.第13実施形態
 図53は、第13実施形態に係る光検出装置の概略構成の例を示す図である。光検出装置100は、ダミーチップ2Dを含む。なお、ここでのダミーチップ2Dは、先に説明した第10実施形態(図36)のダミーチップ2Dとは区別して解されてよい。
17. 13th Embodiment FIG. 53 is a diagram illustrating an example of a schematic configuration of a photodetection device according to a 13th embodiment. Photodetection device 100 includes a dummy chip 2D. Note that the dummy chip 2D here may be understood as being distinct from the dummy chip 2D of the tenth embodiment (FIG. 36) described above.
 ダミーチップ2Dは、チップ2の周辺間隔を狭めるために用いられる。ダミーチップ2Dは、チップ2と間隔をあけて隣り合うように配置される。この例では、チップ2は、互いに離間して設けられた2つのチップ2を含む。ダミーチップ2Dは、それら2つのチップ2どうしの間に設けられる。 The dummy chip 2D is used to narrow the peripheral interval of the chip 2. The dummy chip 2D is arranged adjacent to the chip 2 with an interval therebetween. In this example, the chips 2 include two chips 2 spaced apart from each other. The dummy chip 2D is provided between these two chips 2.
 埋め込み層3は、基板1、チップ2及びダミーチップ2Dを覆うように設けられる。シーム部4は、チップ2とダミーチップ2Dとの間の部分において、埋め込み層3の表面3aまで延在する。ダミーチップ2Dが設けられる分だけ、埋め込み層3においてシーム部4が発生する部分のアスペクト比が大きくなる。ここでいうアスペクト比は、XY平面方向の長さに対するZ軸方向の長さの比率に相当する。アスペクト比が大きくなることで、シーム部4の延在方向が制限される。シーム部4の延在方向は、チップ2及びダミーチップ2Dの高さ方向(Z軸正方向)に近づけられる。このようなシーム部4が得られ易くなるようにアスペクト比が設計されてよい。例えば、アスペクト比は、1~3の範囲内に設計されてよい。 The buried layer 3 is provided to cover the substrate 1, chip 2, and dummy chip 2D. Seam portion 4 extends to surface 3a of buried layer 3 in a portion between chip 2 and dummy chip 2D. The aspect ratio of the portion of the buried layer 3 where the seam portion 4 occurs increases by the amount that the dummy chip 2D is provided. The aspect ratio here corresponds to the ratio of the length in the Z-axis direction to the length in the XY plane direction. By increasing the aspect ratio, the direction in which the seam portion 4 extends is restricted. The extending direction of the seam portion 4 is made close to the height direction (Z-axis positive direction) of the chip 2 and the dummy chip 2D. The aspect ratio may be designed so that such a seam portion 4 can be easily obtained. For example, the aspect ratio may be designed within the range of 1-3.
 シーム部4は、チップ2及びダミーチップ2Dの高さ方向(Z軸正方向)に沿って延在する。高さ方向に沿って延在するとは、高さ方向と同じ方向に延在することだけでなく、高さ方向に対してある程度の角度を有して延在する場合も含んでよい。そのような角度の上限値の例は、30度未満、25度未満、20度未満、15度未満、10度未満、5度未満等である。角度の下限値は、0度であってよい。なお、以降では、チップ2及びダミーチップ2Dの高さ方向に沿って延在することを、縦方向に延在する等ともいう。 The seam portion 4 extends along the height direction (Z-axis positive direction) of the chip 2 and the dummy chip 2D. Extending along the height direction may include not only extending in the same direction as the height direction, but also extending at a certain angle with respect to the height direction. Examples of such upper limits for angles are less than 30 degrees, less than 25 degrees, less than 20 degrees, less than 15 degrees, less than 10 degrees, less than 5 degrees, etc. The lower limit of the angle may be 0 degrees. Note that, hereinafter, extending along the height direction of the chip 2 and the dummy chip 2D will also be referred to as extending in the vertical direction.
 シーム部4が縦方向に延在していることで、埋め込み層3及びシーム部4を覆うように封止層5を設けた際に、封止層5がシーム部4内まで延在し易くなる。これまで説明したような封止層5の延在部5aによるメリットが得られ易くなる。 Since the seam portion 4 extends in the vertical direction, when the sealing layer 5 is provided to cover the embedded layer 3 and the seam portion 4, the sealing layer 5 easily extends into the seam portion 4. Become. The advantages of the extending portion 5a of the sealing layer 5 as described above can be easily obtained.
<製造方法の例>
 図54~図58は、光検出装置の製造方法の例を示す図である。図54に示されるように、基板1上に、チップ2及びダミーチップ2Dを設ける。図55に示されるように、基板1、チップ2及びダミーチップ2Dを覆うように、埋め込み層3を設ける(例えば成膜する)。成膜時のオーバーハングにより、シーム部4が発生する。すなわち、チップ2とダミーチップ2Dとの間の部分における底部の成膜速度に対して、チップ2上部が早く成膜される。オーバーハングにより成膜途中で埋め込み層3の材料が閉塞し、チップ2とダミーチップ2Dとの間は途中で成膜されずにシーム部4が発生する。ただし、ダミーチップ2Dを設けた分だけチップ2の周辺間隔が狭くなっているので、シーム部4の延在方向は、チップ2及びダミーチップ2Dの高さ方向(Z軸正方向)に近づけられる。この時点では、シーム部4は空隙である。
<Example of manufacturing method>
54 to 58 are diagrams illustrating an example of a method for manufacturing a photodetecting device. As shown in FIG. 54, a chip 2 and a dummy chip 2D are provided on a substrate 1. As shown in FIG. 55, a buried layer 3 is provided (for example, formed into a film) so as to cover the substrate 1, chip 2, and dummy chip 2D. Seam portions 4 occur due to overhang during film formation. That is, the film is formed on the upper part of the chip 2 faster than the film forming speed on the bottom part between the chip 2 and the dummy chip 2D. Due to the overhang, the material of the buried layer 3 is blocked during the film formation, and a seam portion 4 is generated between the chip 2 and the dummy chip 2D without being formed. However, since the peripheral spacing of the chips 2 is narrowed by the provision of the dummy chips 2D, the extending direction of the seam portion 4 can be brought closer to the height direction (positive Z-axis direction) of the chips 2 and the dummy chips 2D. . At this point, the seam portion 4 is a void.
 図56に示されるように、埋め込み層3の上部を研磨し、洗浄する。シーム部4の上部が開口する。図57に示されるように、埋め込み層3及びシーム部4を覆うように封止層5を設ける。シーム部4が縦方向に延在しているので、封止層5がシーム部4内まで延在し易くなり、その部分が、封止層5の延在部5aになる。図58に示されるように、封止層5を覆うように補助層6を設ける。その後、補助層6に支持基板7を貼り合わせることで、先に説明した図53の構成が得られる。 As shown in FIG. 56, the upper part of the buried layer 3 is polished and cleaned. The upper part of the seam part 4 is open. As shown in FIG. 57, a sealing layer 5 is provided to cover the buried layer 3 and the seam portion 4. Since the seam portion 4 extends in the vertical direction, the sealing layer 5 easily extends into the seam portion 4, and that portion becomes an extension portion 5a of the sealing layer 5. As shown in FIG. 58, an auxiliary layer 6 is provided to cover the sealing layer 5. Thereafter, by bonding the support substrate 7 to the auxiliary layer 6, the configuration shown in FIG. 53 described above is obtained.
18.第14実施形態
 図59は、第14実施形態に係る光検出装置の概略構成の例を示す図である。チップ2は、表面2aに近づくにつれて幅(XY平面方向の長さ)が小さくなる形状を有する。
18. 14th Embodiment FIG. 59 is a diagram showing an example of a schematic configuration of a photodetection device according to a 14th embodiment. The chip 2 has a shape in which the width (length in the XY plane direction) decreases as it approaches the surface 2a.
 XY平面方向において、チップ2の中央に位置する部分を、中央部21と称し図示する。チップ2において、中央部21よりも外側に位置し、チップ2の縁を含む部分を、縁部22と称し図示する。チップ2の縁部22は、チップ2の表面2aにおいてラウンド形状を有する。なお、縁部22は、ラウンド形状以外の形状を有してもよい。他の形状の一例は、テーパー形状である。 A portion located at the center of the chip 2 in the XY plane direction is referred to as a central portion 21 and illustrated. In the chip 2, a portion located outside the center portion 21 and including the edge of the chip 2 is referred to as an edge portion 22 and illustrated. The edge 22 of the chip 2 has a round shape on the surface 2a of the chip 2. Note that the edge portion 22 may have a shape other than a round shape. An example of another shape is a tapered shape.
 埋め込み層3は、チップ2を覆うように設けられる。シーム部4は、チップ2から埋め込み層3の表面3aまで延在する。チップ2の表面2a側の幅が狭くなっていることで、シーム部4は、チップ2の高さ方向に沿って延在、すなわち縦方向に延在する。これは、チップ2の周辺、より具体的にこの例では隣り合うチップ2どうしの間の部分における底部への埋め込み層3の埋め込み性が改善されるためである。シーム部4が縦方向に延在することのメリットについては先に述べたとおりである。 The buried layer 3 is provided to cover the chip 2. Seam portion 4 extends from chip 2 to surface 3a of buried layer 3. Since the width of the chip 2 on the front surface 2a side is narrow, the seam portion 4 extends along the height direction of the chip 2, that is, extends in the vertical direction. This is because the embeddability of the embedding layer 3 in the bottom of the periphery of the chip 2, more specifically in the area between adjacent chips 2 in this example, is improved. The advantage of the seam portion 4 extending in the vertical direction is as described above.
<製造方法の例>
 図60~図64は、光検出装置の製造方法の例を示す図である。図60に示されるように、基板1上に、表面2a側の幅が狭くなっているチップ2を設ける。例えば、チップ2の縁部22の角の角度が90度未満となるように、チップ2が加工される。加工の一例は、チップ2の表面2aの面取りである。面取りの例は、プラズマエッチング等によるC面取り、R面取り等である。図61に示されるように、基板1及びチップ2を覆うように、埋め込み層3を設ける。チップ2が上記のように加工されている分だけ、チップ2どうしの間の部分における底部への埋め込み層3の埋め込み性が改善されている。発生するシーム部4の延在方向は、チップ2の高さ方向(Z軸正方向)に近づけられる。この時点では、シーム部4は空隙である。
<Example of manufacturing method>
60 to 64 are diagrams illustrating an example of a method for manufacturing a photodetecting device. As shown in FIG. 60, a chip 2 is provided on a substrate 1, the width of which is narrower on the front surface 2a side. For example, the chip 2 is processed so that the angle of the edge 22 of the chip 2 is less than 90 degrees. An example of processing is chamfering the surface 2a of the chip 2. Examples of chamfering include C chamfering, R chamfering, etc. by plasma etching or the like. As shown in FIG. 61, a buried layer 3 is provided to cover the substrate 1 and chip 2. To the extent that the chips 2 are processed as described above, the embedding property of the embedding layer 3 to the bottom of the portion between the chips 2 is improved. The extending direction of the generated seam portion 4 is brought closer to the height direction of the chip 2 (positive Z-axis direction). At this point, the seam portion 4 is a void.
 図62に示されるように、埋め込み層3の上部を研磨し、洗浄する。シーム部4の上部が開口する。図63に示されるように、埋め込み層3及びシーム部4を覆うように封止層5を設ける。シーム部4が縦方向に延在しているので、封止層5がシーム部4内まで延在し易くなっており、その部分が、封止層5の延在部5aになる。図64に示されるように、封止層5を覆うように補助層6を設ける。補助層6の研磨及び洗浄の際も、シーム部4が封止層5で覆われているので、シーム部4は広がらない。その後、補助層6に支持基板7を貼り合わせることで、先に説明した図59の構成が得られる。 As shown in FIG. 62, the upper part of the buried layer 3 is polished and cleaned. The upper part of the seam part 4 is open. As shown in FIG. 63, a sealing layer 5 is provided to cover the buried layer 3 and the seam portion 4. Since the seam portion 4 extends in the vertical direction, the sealing layer 5 easily extends into the seam portion 4, and that portion becomes an extension portion 5a of the sealing layer 5. As shown in FIG. 64, an auxiliary layer 6 is provided to cover the sealing layer 5. Even during polishing and cleaning of the auxiliary layer 6, the seam portion 4 is covered with the sealing layer 5, so the seam portion 4 does not widen. Thereafter, by bonding the support substrate 7 to the auxiliary layer 6, the configuration shown in FIG. 59 described above is obtained.
19.第15実施形態
 図65は、第15実施形態に係る光検出装置の概略構成の例を示す図である。シーム部4は、延在方向に進むにつれて幅(XY平面方向の長さ)が変化する形状を有する。シーム部4の形状は、局所的に膨らみを有する形状であってよい。
19. 15th Embodiment FIG. 65 is a diagram showing an example of a schematic configuration of a photodetection device according to a 15th embodiment. The seam portion 4 has a shape in which the width (length in the XY plane direction) changes as it progresses in the extending direction. The shape of the seam portion 4 may have a locally bulged shape.
 シーム部4は、端部41と、中央部42と、端部43とを含む。中央部42は、シーム部4の延在方向においてシーム部4の中央に位置する部分である。端部41及び端部43は、シーム部4の延在方向においてシーム部4の端に位置する部分である。端部41及び端部43は、中央部42を挟んで互いに反対側に位置する。この例では、Z軸正方向に沿って、端部41、中央部42及び端部43がこの順に位置する。 The seam portion 4 includes an end portion 41, a center portion 42, and an end portion 43. The center portion 42 is a portion located at the center of the seam portion 4 in the direction in which the seam portion 4 extends. The end portion 41 and the end portion 43 are portions located at the ends of the seam portion 4 in the extending direction of the seam portion 4. The end portion 41 and the end portion 43 are located on opposite sides of the center portion 42 . In this example, the end portion 41, the center portion 42, and the end portion 43 are located in this order along the Z-axis positive direction.
 中央部42は、端部41及び端部43の少なくとも一方の幅よりも大きい幅を有する。この例では、中央部42の幅は、端部41の幅よりも大きく、また、端部43の幅よりも大きい。シーム部4は、その延在方向において、中央部42が膨らんだ形状を有する。 The central portion 42 has a width larger than the width of at least one of the end portions 41 and 43. In this example, the width of the central portion 42 is greater than the width of the end portions 41 and also greater than the width of the end portions 43. The seam portion 4 has a shape in which a central portion 42 is bulged in its extending direction.
 なお、図65に示される例では、基板1上にダミーチップ2Dが設けられているが、ダミーチップ2Dが設けられていない場合でも、局所的に膨らみを有するような形状のシーム部4は発生し得る。ダミーチップ2Dを設けることにより、シーム部4の延在方向を、チップ2及びダミーチップ2Dの高さ方向(Z軸正方向)に近づけることができる。また、ダミーチップ2Dを設ける代わりに、先に説明した図59のように表面2a側の幅が狭くなっているチップ2を用いても、同様の効果が得られる。 In the example shown in FIG. 65, the dummy chip 2D is provided on the substrate 1, but even if the dummy chip 2D is not provided, the seam portion 4 having a locally bulged shape may occur. It is possible. By providing the dummy chip 2D, the extending direction of the seam portion 4 can be made closer to the height direction (Z-axis positive direction) of the chip 2 and the dummy chip 2D. Furthermore, instead of providing the dummy chip 2D, the same effect can be obtained by using the chip 2 whose width on the front surface 2a side is narrower as shown in FIG. 59 described above.
<製造方法の例>
 図66~図69は、光検出装置の製造方法の例を示す図である。前提として、先に説明した図54と同様の製造プロセスが完了しているものとする。図66に示されるように、基板1、チップ2及びダミーチップ2Dを覆うように、埋め込み層3を設ける(例えば成膜する)。成膜時のオーバーハングにより、シーム部4が発生する。チップ2とダミーチップ2Dとの間の部分における底部の成膜速度に対して、チップ2上部が早く成膜される。オーバーハングにより成膜途中で埋め込み層3の材料が閉塞し、チップ2とダミーチップ2Dとの間は途中で成膜されずに局所的に空隙となる。この空隙が、シーム部4になる。ダミーチップ2Dを設けた分だけチップ2の周辺間隔が狭くなっているので、シーム部4の延在方向は、チップ2及びダミーチップ2Dの高さ方向(Z軸正方向)に近づけられる。
<Example of manufacturing method>
66 to 69 are diagrams illustrating an example of a method for manufacturing a photodetecting device. As a premise, it is assumed that a manufacturing process similar to that shown in FIG. 54 described above has been completed. As shown in FIG. 66, a buried layer 3 is provided (for example, formed into a film) so as to cover the substrate 1, chip 2, and dummy chip 2D. Seam portions 4 occur due to overhang during film formation. The film is formed on the upper part of the chip 2 faster than the film on the bottom part between the chip 2 and the dummy chip 2D. Due to the overhang, the material of the buried layer 3 is blocked during the film formation, and a gap is locally formed between the chip 2 and the dummy chip 2D without the film being formed midway. This gap becomes the seam portion 4. Since the peripheral interval of the chips 2 is narrowed by the provision of the dummy chips 2D, the extending direction of the seam portion 4 is brought closer to the height direction (Z-axis positive direction) of the chips 2 and the dummy chips 2D.
 図67に示されるように、埋め込み層3の上部を研磨し、洗浄する。シーム部4の上部が開口する。図68に示されるように、埋め込み層3及びシーム部4を覆うように封止層5を設ける。シーム部4が縦方向に延在しているので、封止層5がシーム部4内まで延在し易くなり、その部分が、封止層5の延在部5aになる。図69に示されるように、封止層5を覆うように補助層6を設ける。その後、補助層6に支持基板7を貼り合わせることで、先に説明した図65の構成が得られる。 As shown in FIG. 67, the upper part of the buried layer 3 is polished and cleaned. The upper part of the seam part 4 is open. As shown in FIG. 68, a sealing layer 5 is provided to cover the embedded layer 3 and the seam portion 4. Since the seam portion 4 extends in the vertical direction, the sealing layer 5 easily extends into the seam portion 4, and that portion becomes an extension portion 5a of the sealing layer 5. As shown in FIG. 69, an auxiliary layer 6 is provided to cover the sealing layer 5. Thereafter, by bonding the support substrate 7 to the auxiliary layer 6, the configuration shown in FIG. 65 described above is obtained.
<小結>
 上記の第13実施形態~第15実施形態に係る光検出装置100は、例えば次のように特定される。図53等を参照して説明したように、光検出装置100は、チップ2と間隔をあけて隣り合うように配置されたダミーチップ2Dを備え、埋め込み層3は、チップ2及びダミーチップ2Dを覆うように設けられ、シーム部4は、チップ2とダミーチップ2Dとの間の部分において、埋め込み層3の表面3aまで延在してよい。シーム部4は、チップ2及びダミーチップ2Dの高さ方向(Z軸正方向)に沿って延在してよい。チップ2は、互いに離間して設けられた2つのチップ2を含み、ダミーチップ2Dは、2つのチップ2どうしの間に設けられてよい。これにより、埋め込み層3及びシーム部4を覆うように封止層5を設けた際に、封止層5がシーム部4内まで延在し易くなる。封止層5の延在部5aによるメリットが得られ易くなる。
<Small conclusion>
The photodetecting device 100 according to the thirteenth to fifteenth embodiments described above is specified, for example, as follows. As described with reference to FIG. 53 etc., the photodetecting device 100 includes the dummy chip 2D that is arranged adjacent to the chip 2 with a space therebetween, and the buried layer 3 supports the chip 2 and the dummy chip 2D. The seam portion 4 may extend to the surface 3a of the buried layer 3 in a portion between the chip 2 and the dummy chip 2D. The seam portion 4 may extend along the height direction (Z-axis positive direction) of the chip 2 and the dummy chip 2D. The chips 2 include two chips 2 provided apart from each other, and the dummy chip 2D may be provided between the two chips 2. Thereby, when the sealing layer 5 is provided so as to cover the embedded layer 3 and the seam part 4, the sealing layer 5 can easily extend into the seam part 4. The advantages of the extending portion 5a of the sealing layer 5 can be easily obtained.
 図59等を参照して説明したように、チップ2は、チップ2の表面2aに向かうにつれて(Z軸正方向に進むにつれて)幅が小さくなる形状を有してよい。チップ2の縁部22は、チップ2の表面2aにおいて、テーパー形状又はラウンド形状を有してよい。シーム部4は、チップ2の高さ方向(Z軸方向)に沿って延在してよい。このような構成によっても、埋め込み層3及びシーム部4を覆うように封止層5を設けた際に、封止層5がシーム部4内まで延在し易くなる。 As described with reference to FIG. 59 and the like, the chip 2 may have a shape in which the width becomes smaller toward the surface 2a of the chip 2 (as it progresses in the positive direction of the Z-axis). The edge 22 of the chip 2 may have a tapered shape or a round shape on the surface 2a of the chip 2. The seam portion 4 may extend along the height direction (Z-axis direction) of the chip 2. Such a configuration also allows the sealing layer 5 to easily extend into the seam portion 4 when the sealing layer 5 is provided to cover the buried layer 3 and the seam portion 4 .
 図65等を参照して説明したように、シーム部4は、その延在方向に進むにつれて幅が変化する形状を有してよい。シーム部4は、シーム部4の延在方向において中央に位置する中央部42と、シーム部4の延在方向において端に位置する端部41(端部43でもよい)と、を含み、中央部42は、端部41(端部43でもよい)の幅よりも大きい幅を有してよい。このような形状をシーム部4が有する場合でも、シーム部4の外部への連通を抑制することができる。また、例えばダミーチップ2Dを設けたり、或いは、表面2a側の幅が狭くなっているチップ2を用いたりすることで、シーム部4の延在方向をチップ2の高さ方向(Z軸方向)に近づけることができる。 As described with reference to FIG. 65 and the like, the seam portion 4 may have a shape in which the width changes as it progresses in its extending direction. The seam portion 4 includes a center portion 42 located at the center in the extending direction of the seam portion 4, and an end portion 41 (or may be an end portion 43) located at an end in the extending direction of the seam portion 4. The portion 42 may have a width greater than the width of the end portion 41 (which may also be the end portion 43). Even when the seam portion 4 has such a shape, communication of the seam portion 4 to the outside can be suppressed. In addition, for example, by providing a dummy chip 2D or using a chip 2 whose width is narrower on the surface 2a side, the extending direction of the seam portion 4 can be set in the height direction of the chip 2 (Z-axis direction). can be approached.
20.ダミーチップの配置の例
 先の第13実施形態で説明したダミーチップ2Dのいくつかの配置の例について説明する。
20. Examples of Arrangement of Dummy Chips Several examples of arrangement of the dummy chips 2D described in the thirteenth embodiment will be described.
<第1配置例>
 図70及び図71は、ダミーチップの第1配置例を示す図である。図70には、光検出装置100の断面が模式的に示される。図71には、図70のI-I線に沿ってみたときの光検出装置100の断面(平面レイアウト)が模式的に示される。なお、図70に示される例では、シーム部4は延在部5aで埋められている。図71において、シーム部4は、簡素化され、幅を有さないように描かれる。
<First arrangement example>
70 and 71 are diagrams showing a first arrangement example of dummy chips. FIG. 70 schematically shows a cross section of the photodetector 100. FIG. 71 schematically shows a cross section (planar layout) of the photodetector 100 taken along the line II in FIG. 70. Note that in the example shown in FIG. 70, the seam portion 4 is filled with the extension portion 5a. In FIG. 71, the seam portion 4 is simplified and depicted as having no width.
 チップ2は、側面2c、側面2d、側面2e及び側面2fを有する。側面2c及び側面2dは、互いに対向する一対の側面である。側面2e及び側面2fは、互いに対向するとともに側面2c及び側面2dを接続する一対の側面である。なお、チップ2の側面2c、側面2d、側面2e及び側面2fをとくに区別しない場合は、単にチップ2の側面とも呼ぶ。 The chip 2 has a side surface 2c, a side surface 2d, a side surface 2e, and a side surface 2f. The side surface 2c and the side surface 2d are a pair of side surfaces facing each other. The side surface 2e and the side surface 2f are a pair of side surfaces that face each other and connect the side surface 2c and the side surface 2d. In addition, when the side surface 2c, the side surface 2d, the side surface 2e, and the side surface 2f of the chip 2 are not particularly distinguished, they are also simply referred to as the side surface of the chip 2.
 図71に示されるように、平面視したときに、ダミーチップ2Dは、チップ2の側面に対向するように延在する。ダミーチップ2Dは、各々がチップ2の異なる側面に対向する複数のダミーチップ2Dであってよい。 As shown in FIG. 71, the dummy chip 2D extends to face the side surface of the chip 2 when viewed in plan. The dummy chips 2D may be a plurality of dummy chips 2D, each facing a different side surface of the chip 2.
 1つのチップ2に対して2つ以上のダミーチップ2Dが設けられてよい。ダミーチップ2Dの材料は、チップ2の材料と同じ材料を含んでよい。また、ダミーチップ2Dは、チップ2の高さと同じ高さを有してよい。XY平面方向において、チップ2及びダミーチップ2Dは交互に設けられてよい。 Two or more dummy chips 2D may be provided for one chip 2. The material of the dummy chip 2D may include the same material as the material of the chip 2. Further, the dummy chip 2D may have the same height as the chip 2. In the XY plane direction, the chips 2 and the dummy chips 2D may be provided alternately.
 チップ2の周辺にダミーチップ2Dを設けることで、ダミーチップ2Dを設けない場合よりも、埋め込み層3を設ける際に(例えば成膜時に)にチップ2からその周辺に向かって埋め込み層3の材料に作用する応力を抑制することができる。 By providing the dummy chip 2D around the chip 2, the material of the buried layer 3 is reduced from the chip 2 toward the periphery when the buried layer 3 is provided (for example, during film formation), compared to when the dummy chip 2D is not provided. It is possible to suppress the stress that acts on the
 ダミーチップ2Dは、2つ以上のダミーチップ2Dを含んでよい。図71に示される例では、ダミーチップ2Dは、4つのダミーチップ2Dを含む。チップ2の側面2cに対向するダミーチップ2Dを、ダミーチップ2D-1と称し図示する。チップ2の側面2dに対向するダミーチップ2Dを、ダミーチップ2D-2と称し図示する。チップ2の側面2eに対向するダミーチップ2Dを、ダミーチップ2D-3と称し図示する。チップ2の側面2fに対向するダミーチップ2Dを、ダミーチップ2D-4と称し図示する。図71に示される例では、各ダミーチップ2Dは、互いに間隔をあけて配置されている。チップ2の角の近くにおいて、ダミーチップ2Dどうしが離間している。 The dummy chip 2D may include two or more dummy chips 2D. In the example shown in FIG. 71, the dummy chips 2D include four dummy chips 2D. The dummy chip 2D facing the side surface 2c of the chip 2 is shown as a dummy chip 2D-1. The dummy chip 2D facing the side surface 2d of the chip 2 is shown as a dummy chip 2D-2. The dummy chip 2D facing the side surface 2e of the chip 2 is shown as a dummy chip 2D-3. The dummy chip 2D facing the side surface 2f of the chip 2 is shown as a dummy chip 2D-4. In the example shown in FIG. 71, the dummy chips 2D are arranged at intervals from each other. Near the corners of the chip 2, the dummy chips 2D are spaced apart from each other.
 図72は、ダミーチップの効果を示す図である。図72の(A)には、チップ2だけを設けた場合に発生し得るシーム部4E1の範囲が模式的に示される。図72の(B)には、ダミーチップ2Dだけを設けた場合に発生し得るシーム部4E2の範囲が模式的に示される。図72の(C)には、チップ2及びダミーチップ2Dを設けた場合に発生するシーム部4の範囲が模式的に示される。ダミーチップ2Dを設けることで、平面視したときのシーム部4の範囲が狭くなる。このことは、シーム部4の延在方向がチップ2及びダミーチップ2Dの高さ方向(Z軸正方向)に近づけられること、すなわち縦方向に延在するシーム部4が得られることを意味している。 FIG. 72 is a diagram showing the effect of the dummy chip. FIG. 72A schematically shows the range of the seam portion 4E1 that may occur when only the chip 2 is provided. FIG. 72(B) schematically shows the range of the seam portion 4E2 that may occur when only the dummy chip 2D is provided. FIG. 72C schematically shows the range of the seam portion 4 that occurs when the chip 2 and the dummy chip 2D are provided. By providing the dummy chip 2D, the range of the seam portion 4 when viewed from above becomes narrower. This means that the extending direction of the seam portion 4 is brought closer to the height direction (Z-axis positive direction) of the chip 2 and the dummy chip 2D, that is, the seam portion 4 extending in the vertical direction is obtained. ing.
 再び図71に戻り、ダミーチップ2Dは、その延在方向において、対向するチップ2の側面の長さの2分の1以上の長さを有してよい。例として、チップ2の側面2cの長さを、長さHと称し図示する。チップ2の側面2eの長さを、長さWと称し図示する。チップ2の側面2cに対向するダミーチップ2D-1の延在方向の長さを、長さHと称し図示する。チップ2の側面2eに対向するダミーチップ2D-3の延在方向の長さを、長さWと称し図示する。 Returning to FIG. 71 again, the dummy chip 2D may have a length equal to or more than half the length of the side surface of the opposing chip 2 in its extending direction. As an example, the length of the side surface 2c of the chip 2 is shown as a length H. The length of the side surface 2e of the chip 2 is shown as a length W. The length of the dummy chip 2D-1 in the extending direction facing the side surface 2c of the chip 2 is referred to as length HD in the drawing. The length of the dummy chip 2D-3 in the extending direction facing the side surface 2e of the chip 2 is referred to as a length W D in the drawing.
 ダミーチップ2D-1の長さHは、下記の式(1)を満たすように設計されてよい。
  H≧H/2   (1)
 ダミーチップ2D-2も同様に設計されてよい。
The length HD of the dummy chip 2D-1 may be designed to satisfy the following formula (1).
H D ≧H/2 (1)
Dummy chip 2D-2 may be designed similarly.
 ダミーチップ2D-3は、下記の式(2)を満たすように設計されてよい。
  W≧W/2   (2)
 ダミーチップ2D-4も同様に設計されてよい。
The dummy chip 2D-3 may be designed to satisfy the following formula (2).
W D ≧W/2 (2)
Dummy chip 2D-4 may be designed similarly.
 上記のようにダミーチップ2Dがある程度の長さを有することで、ダミーチップ2Dによる効果、すなわちシーム部4の延在方向をチップ2及びダミーチップ2Dの高さ方向(Z軸正方向)に近づけるという効果が得られ易くなる。 As described above, by having the dummy chip 2D having a certain length, the effect of the dummy chip 2D, that is, the extending direction of the seam portion 4 is brought closer to the height direction (Z-axis positive direction) of the chip 2 and the dummy chip 2D. This effect becomes easier to obtain.
 また、図71に示される例では、ダミーチップ2Dは、チップ2を挟み込むように配置される。具体的に、ダミーチップ2D-1及びダミーチップ2D-2が、チップ2を挟み込むように、チップ2を挟んで互いに反対側に配置される。また、ダミーチップ2D-3及びダミーチップ2D-4が、チップ2を挟み込むように、チップ2を挟んで互いに反対側に配置される。例えばチップ2の1つの側面に対向するダミーチップ2Dだけを設ける場合よりも、ダミーチップ2Dの効果が得られる領域を広げることができる。 Furthermore, in the example shown in FIG. 71, the dummy chip 2D is arranged so as to sandwich the chip 2. Specifically, the dummy chip 2D-1 and the dummy chip 2D-2 are arranged on opposite sides of the chip 2 so as to sandwich the chip 2 therebetween. Furthermore, the dummy chip 2D-3 and the dummy chip 2D-4 are arranged on opposite sides of the chip 2 so as to sandwich the chip 2 therebetween. For example, the area where the effect of the dummy chip 2D can be obtained can be expanded compared to the case where only the dummy chip 2D is provided facing one side of the chip 2.
 チップ2、ダミーチップ2D等の光検出装置100の構成要素は、例えば、ウェハ上のスクライブラインで区画された領域ごとに設けられてよい。スクライブラインに沿ってウェハをダイシング(切断)することで、光検出装置100が得られる。図73を参照して説明する。 The components of the photodetector 100, such as the chip 2 and the dummy chip 2D, may be provided in each region defined by a scribe line on the wafer, for example. The photodetector 100 is obtained by dicing (cutting) the wafer along the scribe lines. This will be explained with reference to FIG. 73.
 図73は、ウェハの概略構成の例を示す図である。ウェアを、ウェハ200と称し図示する。図73には、平面視したときの(Z軸負方向にみたときの)ウェハ200の一部が模式的に示される。ウェハ200上には、互いに直交するスクライブラインSL-H及びスクライブラインSL-Vが形成される。これらをとくに区別しない場合は、単にスクライブラインSLと呼ぶ。 FIG. 73 is a diagram showing an example of a schematic configuration of a wafer. The ware is referred to as a wafer 200 and illustrated. FIG. 73 schematically shows a part of the wafer 200 when viewed from above (when viewed in the negative Z-axis direction). A scribe line SL-H and a scribe line SL-V are formed on the wafer 200, which are perpendicular to each other. When these are not particularly distinguished, they are simply referred to as scribe lines SL.
 スクライブラインSL-H及びスクライブラインSL-Vで囲まれた1つの領域が、1つの光検出装置100に相当する。この例では、光検出装置100のチップ2及びダミーチップ2Dは、スクライブラインSLよりも内側に位置している(スクライブラインSL上には位置していない)。スクライブラインSLに沿ってウェハ200をダイシングして得られる1つの個片(1shot)が、光検出装置100になる。 One area surrounded by scribe line SL-H and scribe line SL-V corresponds to one photodetector 100. In this example, the chip 2 and the dummy chip 2D of the photodetector 100 are located inside the scribe line SL (not located on the scribe line SL). One piece (1 shot) obtained by dicing the wafer 200 along the scribe line SL becomes the photodetecting device 100.
 この後で説明する第2配置例~第7配置例については、主に、第1配置例との相違について述べる。矛盾の無い範囲において、第1配置例の説明が適宜援用されてよい。例えば、ダミーチップ2Dの材料は、チップ2の材料と同じ材料を含んでよい。ダミーチップ2Dは、チップ2の高さと同じ高さを有してよい。また、ダミーチップ2Dは、チップ2を挟み込むように配置されてよい。 Regarding the second to seventh layout examples that will be explained later, the differences from the first layout example will be mainly described. The description of the first arrangement example may be used as appropriate to the extent that there is no contradiction. For example, the material of the dummy chip 2D may include the same material as the material of the chip 2. The dummy chip 2D may have the same height as the chip 2. Further, the dummy chip 2D may be arranged to sandwich the chip 2.
<第2配置例>
 図74は、ダミーチップの第2配置例を示す図である。ダミーチップ2Dは、チップ2を取り囲むように連続して延在する。この例では、ダミーチップ2D-1~ダミーチップ2D-4が、チップ2を取り囲むように配置されており、また、それらは連接している。チップ2の周囲がすべてダミーチップ2Dで囲まれており、ダミーチップ2Dの効果が最大限に発揮され得る。
<Second arrangement example>
FIG. 74 is a diagram showing a second arrangement example of dummy chips. The dummy chip 2D extends continuously to surround the chip 2. In this example, dummy chips 2D-1 to 2D-4 are arranged to surround chip 2, and are connected to each other. The entire periphery of the chip 2 is surrounded by the dummy chip 2D, and the effect of the dummy chip 2D can be maximized.
 図75は、ダミーチップの効果を示す図である。説明は先の図72と同様であるので省略する。 FIG. 75 is a diagram showing the effect of the dummy chip. The explanation will be omitted since it is the same as that of FIG. 72 above.
 図76は、ウェハの概略構成の例を示す図である。光検出装置100のチップ2及びダミーチップ2Dは、スクライブラインSLよりも内側に位置している。スクライブラインSLに沿ってウェハ200をダイシングすることで、光検出装置100が得られる。 FIG. 76 is a diagram showing an example of a schematic configuration of a wafer. The chip 2 and the dummy chip 2D of the photodetector 100 are located inside the scribe line SL. The photodetecting device 100 is obtained by dicing the wafer 200 along the scribe line SL.
<第3配置例>
 図77は、ダミーチップの第3配置例を示す図である。ダミーチップ2D-1、ダミーチップ2D-2、ダミーチップ2D-3及びダミーチップ2D-4が、チップ2を取り囲むように配置されており、また、それらは離間している。
<Third arrangement example>
FIG. 77 is a diagram showing a third arrangement example of dummy chips. Dummy chip 2D-1, dummy chip 2D-2, dummy chip 2D-3, and dummy chip 2D-4 are arranged so as to surround chip 2, and are spaced apart from each other.
 ダミーチップ2D-1の側面、ダミーチップ2D-2の側面、ダミーチップ2D-3の側面及びダミーチップ2D-4の側面のうち、チップ2とは反対側に位置する側面を、側面2D-1a、側面2D-2a、側面2D-3a及び側面2D-4aと称し図示する。これらの側面は、光検出装置100の側面の一部を構成する。光検出装置100を側方からみたときに(X軸方向又はY軸方向にみたときに)、側面2D-1a、側面2D-2a、側面2D-3a及び側面2D-4aは、埋め込み層3から露出している(埋め込み層3によって覆われてはいない)。ダミーチップ2Dを光検出装置100の最も外側に配置できる分だけ、例えばチップ2を設ける領域を確保し易くなる。 The side surface of the dummy chip 2D-1, the side surface of the dummy chip 2D-2, the side surface of the dummy chip 2D-3, and the side surface of the dummy chip 2D-4, which is located on the opposite side to the chip 2, is the side surface 2D-1a. , side surface 2D-2a, side surface 2D-3a, and side surface 2D-4a. These side surfaces constitute part of the side surfaces of the photodetector 100. When the photodetecting device 100 is viewed from the side (when viewed in the X-axis direction or the Y-axis direction), the side surface 2D-1a, the side surface 2D-2a, the side surface 2D-3a, and the side surface 2D-4a are separated from the buried layer 3. Exposed (not covered by buried layer 3). By arranging the dummy chip 2D at the outermost position of the photodetecting device 100, it becomes easier to secure an area for the chip 2, for example.
 図78は、ダミーチップの効果を示す図である。説明は先の図72と同様であるので省略する。 FIG. 78 is a diagram showing the effect of the dummy chip. The explanation will be omitted since it is the same as that of FIG. 72 above.
 図79は、ウェハの概略構成の例を示す図である。光検出装置100のチップ2は、スクライブラインSLよりも内側に位置している。一方で、隣り合う光検出装置100のダミーチップ2Dどうしは、スクライブラインSLを跨いで連接して設けられる。それらのダミーチップ2DがスクライブラインSL上に設けられるともいえる。スクライブラインSLに沿ってウェハ200及びダミーチップ2Dをダイシングすることで、光検出装置100が得られる。隣り合う光検出装置100のダミーチップ2Dどうしをまとめて設けることができるので、製造が容易になる。 FIG. 79 is a diagram showing an example of a schematic configuration of a wafer. The chip 2 of the photodetector 100 is located inside the scribe line SL. On the other hand, the dummy chips 2D of adjacent photodetecting devices 100 are provided in a continuous manner across the scribe line SL. It can also be said that these dummy chips 2D are provided on the scribe line SL. The photodetector 100 is obtained by dicing the wafer 200 and the dummy chips 2D along the scribe line SL. Since the dummy chips 2D of adjacent photodetecting devices 100 can be provided together, manufacturing becomes easier.
<第4配置例>
 図80は、ダミーチップの第4配置例を示す図である。チップ2は、光検出装置100の角付近に配置される。この例では、チップ2の側面2c及び側面2eが光検出装置100の側面の近くに位置するように、チップ2が配置される。チップ2の他の2つの側面に対向する2つのダミーチップ2Dが配置される。この例では、チップ2の側面2dに対向するダミーチップ2D-2と、チップ2の側面2fに対向するダミーチップ2D-4とが配置される。
<Fourth arrangement example>
FIG. 80 is a diagram showing a fourth example of arrangement of dummy chips. The chip 2 is placed near a corner of the photodetector 100. In this example, the chip 2 is arranged such that the side surface 2c and the side surface 2e of the chip 2 are located near the side surface of the photodetecting device 100. Two dummy chips 2D facing the other two sides of the chip 2 are arranged. In this example, a dummy chip 2D-2 facing the side surface 2d of the chip 2 and a dummy chip 2D-4 facing the side surface 2f of the chip 2 are arranged.
 図81は、ダミーチップの効果を示す図である。説明は先の図72と同様であるので省略する。 FIG. 81 is a diagram showing the effect of the dummy chip. The explanation will be omitted since it is the same as that of FIG. 72 above.
 図82は、ウェハの概略構成の例を示す図である。この例では、光検出装置100のチップ2及びダミーチップ2Dは、スクライブラインSLよりも内側に位置している。スクライブラインSLに沿ってウェハ200をダイシングすることで、光検出装置100が得られる。 FIG. 82 is a diagram showing an example of a schematic configuration of a wafer. In this example, the chip 2 and the dummy chip 2D of the photodetector 100 are located inside the scribe line SL. The photodetecting device 100 is obtained by dicing the wafer 200 along the scribe line SL.
<第5配置例>
 図83は、ダミーチップの第5配置例を示す図である。ダミーチップ2D-1、ダミーチップ2D-2、ダミーチップ2D-3及びダミーチップ2D-4が、チップ2を取り囲むように配置されており、また、それらは離間している。先に説明した図77とは異なり、光検出装置100を側方からみたときに、ダミーチップ2D-1の側面2D-1a、ダミーチップ2D-2の側面2D-2a、ダミーチップ2D-3の側面2D-3a及びダミーチップ2D-4の側面2D-4aは、埋め込み層3から露出していない(埋め込み層3によって覆われている)。
<Fifth arrangement example>
FIG. 83 is a diagram showing a fifth arrangement example of dummy chips. Dummy chip 2D-1, dummy chip 2D-2, dummy chip 2D-3, and dummy chip 2D-4 are arranged so as to surround chip 2, and are spaced apart from each other. Unlike FIG. 77 described above, when the photodetector 100 is viewed from the side, the side surface 2D-1a of the dummy chip 2D-1, the side surface 2D-2a of the dummy chip 2D-2, and the side surface 2D-2a of the dummy chip 2D-3 are The side surface 2D-3a and the side surface 2D-4a of the dummy chip 2D-4 are not exposed from the buried layer 3 (covered by the buried layer 3).
 図84は、ダミーチップ2Dの効果を示す図である。説明は先の図72と同様であるので省略する。 FIG. 84 is a diagram showing the effect of the dummy chip 2D. The explanation will be omitted since it is the same as that of FIG. 72 above.
 図85は、ウェハの概略構成の例を示す図である。光検出装置100のチップ2及びダミーチップ2Dは、スクライブラインSLよりも内側に位置している。先に説明した図79とは異なり、隣り合う光検出装置100のダミーチップ2Dは、スクライブラインSLを跨ぐことなく、互いに離れている。スクライブラインSLに沿ってウェハ200をダイシングすることで、光検出装置100が得られる。 FIG. 85 is a diagram showing an example of a schematic configuration of a wafer. The chip 2 and the dummy chip 2D of the photodetector 100 are located inside the scribe line SL. Unlike FIG. 79 described above, the dummy chips 2D of adjacent photodetecting devices 100 do not straddle the scribe line SL and are separated from each other. The photodetecting device 100 is obtained by dicing the wafer 200 along the scribe line SL.
<第6配置例>
 図86は、ウェハの概略構成の例を示す図である。チップ2は2つ以上のチップ2を含み、図86には2つのチップ2が例示される。一方のチップ2の側面2eと、他方のチップ2の側面2fとが、互いに対向している。
<Sixth arrangement example>
FIG. 86 is a diagram showing an example of a schematic configuration of a wafer. The chip 2 includes two or more chips 2, and two chips 2 are illustrated in FIG. A side surface 2e of one chip 2 and a side surface 2f of the other chip 2 face each other.
 2つのダミーチップ2Dが配置される。そのうちの1つのダミーチップ2Dは、2つのチップ2どうしの間に配置される。このダミーチップ2Dを、ダミーチップ2D-34と称し図示する。もう1つのダミーチップ2Dは、2つのチップ2の側面2dに沿って延在するように配置されるダミーチップ2D-2である。 Two dummy chips 2D are arranged. One of the dummy chips 2D is placed between the two chips 2. This dummy chip 2D is shown as a dummy chip 2D-34. Another dummy chip 2D is a dummy chip 2D-2 arranged so as to extend along the side surfaces 2d of the two chips 2.
 図87は、ダミーチップの効果を示す図である。説明は先の図72と同様であるので省略する。 FIG. 87 is a diagram showing the effect of the dummy chip. The explanation will be omitted since it is the same as that of FIG. 72 above.
 図88は、ウェハの概略構成の例を示す図である。光検出装置100のチップ2及びダミーチップ2Dは、スクライブラインSLよりも内側に位置している。スクライブラインSLに沿ってウェハ200をダイシングすることで、光検出装置100が得られる。 FIG. 88 is a diagram showing an example of a schematic configuration of a wafer. The chip 2 and the dummy chip 2D of the photodetector 100 are located inside the scribe line SL. The photodetecting device 100 is obtained by dicing the wafer 200 along the scribe line SL.
<第7配置例>
 図89は、ダミーチップの第7配置例を示す図である。先に説明した第2配置例(図74)及び第3配置例(図77)の利点が組み合わされる。ダミーチップ2Dは、チップ2を取り囲むように連続して延在する。この例では、ダミーチップ2D-1~ダミーチップ2D-4が、チップ2を取り囲むように配置されており、また、それらは連接している。加えて、光検出装置100を側方からみたときに(X軸方向又はY軸方向にみたときに)、ダミーチップ2D-1の側面2D-1a、ダミーチップ2D-2の側面2D-2a、ダミーチップ2D-3の側面2D-3a及びダミーチップ2D-4の側面2D-4aは、埋め込み層3から露出している。
<Seventh arrangement example>
FIG. 89 is a diagram showing a seventh example of arrangement of dummy chips. The advantages of the second arrangement example (FIG. 74) and the third arrangement example (FIG. 77) described above are combined. The dummy chip 2D extends continuously to surround the chip 2. In this example, dummy chips 2D-1 to 2D-4 are arranged to surround chip 2, and are connected to each other. In addition, when the photodetecting device 100 is viewed from the side (when viewed in the X-axis direction or Y-axis direction), the side surface 2D-1a of the dummy chip 2D-1, the side surface 2D-2a of the dummy chip 2D-2, The side surface 2D-3a of the dummy chip 2D-3 and the side surface 2D-4a of the dummy chip 2D-4 are exposed from the buried layer 3.
 図90は、ダミーチップの効果を示す図である。説明は先の図72と同様であるので省略する。 FIG. 90 is a diagram showing the effect of the dummy chip. The explanation will be omitted since it is the same as that of FIG. 72 above.
 図91は、ウェハの概略構成の例を示す図である。光検出装置100のチップ2は、スクライブラインSLよりも内側に位置している。一方で、隣り合う光検出装置100のダミーチップ2Dどうしは、スクライブラインSLを跨いで連接して設けられる。スクライブラインSLに沿ってウェハ200及びダミーチップ2Dをダイシングすることで、光検出装置100が得られる。 FIG. 91 is a diagram showing an example of a schematic configuration of a wafer. The chip 2 of the photodetector 100 is located inside the scribe line SL. On the other hand, the dummy chips 2D of adjacent photodetecting devices 100 are provided so as to be connected across the scribe line SL. The photodetector 100 is obtained by dicing the wafer 200 and the dummy chips 2D along the scribe line SL.
<変形例>
 図92及び図93は、変形例を示す図である。。図92には、光検出装置100の断面が模式的に示される。図93には、図92のII-II線に沿ってみたときの光検出装置100の断面(平面レイアウト)が模式的に示される。ダミーチップ2Dの配置は、先に説明した第1配置例(図70及び図71)と同じである。ただしこの例では、封止層5は延在部5aを有さず、シーム部4は空隙となっている。この場合でもダミーチップ2Dによる効果が得られる。同様に、先に説明した第2配置例から第7配置例においても、シーム部4は空隙であってよい。
<Modified example>
FIGS. 92 and 93 are diagrams showing modified examples. . FIG. 92 schematically shows a cross section of the photodetector 100. FIG. 93 schematically shows a cross section (planar layout) of the photodetector 100 taken along line II-II in FIG. 92. The arrangement of the dummy chips 2D is the same as the first arrangement example (FIGS. 70 and 71) described above. However, in this example, the sealing layer 5 does not have the extending portion 5a, and the seam portion 4 is a void. Even in this case, the effect of the dummy chip 2D can be obtained. Similarly, the seam portion 4 may be a void in the second to seventh arrangement examples described above as well.
<小結>
 以上で説明したようにダミーチップ2Dが配置された光検出装置100は、例えば次のように特定される。図71、図74、図77、図80、図83、図86、図89及び図93等を参照して説明したように、平面視したときに(Z軸負方向にみたときに)、ダミーチップ2Dは、チップ2の側面に対向するように延在し、延在方向において、対向するチップ2の側面の長さ(長さH、長さW)の2分の1以上の長さ(長さH、長さW)を有してよい(H≧H/2、W≧W/2)。このようにダミーチップ2Dがある程度の長さを有することで、ダミーチップ2Dによる効果、すなわちシーム部4の延在方向をチップ2及びダミーチップ2Dのチップ2の高さ方向(Z軸正方向)に近づけるという効果が得られ易くなる。
<Small conclusion>
The photodetecting device 100 in which the dummy chip 2D is arranged as described above is specified, for example, as follows. As explained with reference to FIG. 71, FIG. 74, FIG. 77, FIG. 80, FIG. 83, FIG. 86, FIG. 89, FIG. The chip 2D extends so as to face the side surface of the chip 2, and has a length (in the extending direction) that is at least half the length (length H, length W) of the side surface of the chip 2 that faces the chip 2D. (H D ≧H/2, W D W/ 2 ). By having the dummy chip 2D have a certain length in this way, the effect of the dummy chip 2D, that is, the extending direction of the seam portion 4 can be adjusted in the height direction of the chip 2 (Z-axis positive direction) of the chip 2 and the dummy chip 2D. It becomes easier to obtain the effect of bringing the distance closer to .
 図71、図74、図77、図83、図89及び図93等を参照して説明したように、平面視したときに、ダミーチップ2Dは、チップ2を挟み込むように配置されてよい。ダミーチップ2Dは、2つ以上のダミーチップ2Dを含んでよい。これにより、例えばチップ2の1つの側面に対向する1つのダミーチップ2Dだけを設ける場合よりも、ダミーチップ2Dの効果が得られる領域を広げることができる。 As described with reference to FIGS. 71, 74, 77, 83, 89, and 93, the dummy chip 2D may be arranged to sandwich the chip 2 when viewed from above. The dummy chip 2D may include two or more dummy chips 2D. As a result, the area where the effect of the dummy chip 2D can be obtained can be expanded, for example, compared to the case where only one dummy chip 2D facing one side of the chip 2 is provided.
 図70及び図71等を参照して説明したように、ダミーチップ2Dの材料は、チップ2の材料と同じ材料を含んでよい。また、ダミーチップ2Dは、チップ2の高さ(Z軸方向の長さ)と同じ高さを有してよい。例えばこのようなダミーチップ2Dを用いて、シーム部4の延在方向をチップ2及びダミーチップ2Dのチップ2の高さ方向(Z軸方向)に近づけることができる。 As described with reference to FIGS. 70, 71, etc., the material of the dummy chip 2D may include the same material as the material of the chip 2. Furthermore, the dummy chip 2D may have the same height as the chip 2 (length in the Z-axis direction). For example, by using such a dummy chip 2D, the extending direction of the seam portion 4 can be brought closer to the height direction (Z-axis direction) of the chip 2 and the chip 2 of the dummy chip 2D.
 図86等を参照して説明したように、前記チップは、2つ以上のチップを含む。例えばこのようなマルチチップ構成においても、ダミーチップ2Dによる効果を得ることができる。 As described with reference to FIG. 86 and the like, the chip includes two or more chips. For example, even in such a multi-chip configuration, the effect of the dummy chip 2D can be obtained.
 図74及び図89等を参照して説明したように、平面視したときに、ダミーチップ2Dは、チップ2を取り囲むように連続して延在してよい。これにより、ダミーチップ2Dの効果が最大限に発揮され得る。 As described with reference to FIGS. 74 and 89, the dummy chip 2D may continuously extend to surround the chip 2 when viewed in plan. Thereby, the effect of the dummy chip 2D can be maximized.
 図77及び図89等を参照して説明したように、光検出装置100を側方からみたとき(X軸方向又はY軸方向にみたとき)に、ダミーチップ2D(例えばダミーチップ2D-1、ダミーチップ2D-2、ダミーチップ2D-3、ダミーチップ2D-4)は、埋め込み層3から露出する側面(例えば側面2D-1a、側面2D-2a、側面2D-3a、側面2D-4a)を有してよい。これにより、ダミーチップ2Dを光検出装置100の最も外側に配置できる。例えばチップ2を設ける領域を確保し易くなる。また、ウェハ200上では、隣り合う光検出装置100のダミーチップ2Dどうしをまとめて設けることができるので、製造が容易になる。 As described with reference to FIGS. 77 and 89, when the photodetecting device 100 is viewed from the side (when viewed in the X-axis direction or the Y-axis direction), the dummy chips 2D (for example, the dummy chips 2D-1, Dummy chip 2D-2, dummy chip 2D-3, dummy chip 2D-4) have side surfaces exposed from buried layer 3 (for example, side surface 2D-1a, side surface 2D-2a, side surface 2D-3a, side surface 2D-4a). may have. Thereby, the dummy chip 2D can be placed at the outermost position of the photodetector 100. For example, it becomes easier to secure a region where the chip 2 is to be provided. Moreover, since the dummy chips 2D of adjacent photodetecting devices 100 can be provided together on the wafer 200, manufacturing becomes easier.
21.第16実施形態
 図94は、第16実施形態に係る光検出装置の概略構成の例を示す図である。光検出装置100は、封止層5に代えて、封止層5-2を含む。この例では、光検出装置100は、補助層6は含まない。封止層5-2を介して支持基板7が接合される(貼り合わされる)。
21. 16th Embodiment FIG. 94 is a diagram showing an example of a schematic configuration of a photodetection device according to a 16th embodiment. The photodetecting device 100 includes a sealing layer 5-2 instead of the sealing layer 5. In this example, photodetector 100 does not include auxiliary layer 6. The support substrate 7 is joined (bonded) via the sealing layer 5-2.
 埋め込み層3は、チップ2の側面を覆うように設けられる。チップ2の表面2aは、埋め込み層3から露出している。シーム部4の少なくとも一部は、埋め込み層3の材料とは異なる材料で埋められている。この例では、これまで説明した延在部5aが、シーム部4の少なくとも一部を埋めるようにシーム部4内を延在している。 The buried layer 3 is provided to cover the side surface of the chip 2. A surface 2a of the chip 2 is exposed from the buried layer 3. At least a portion of the seam portion 4 is filled with a material different from the material of the buried layer 3. In this example, the extending portion 5a described above extends within the seam portion 4 so as to fill at least a portion of the seam portion 4.
 封止層5-2は、埋め込み層3、シーム部4、及びチップ2の表面2aを覆うように設けられる。封止層5-2は、埋め込み層3の表面3aだけでなくチップ2の表面2aにも接触している。 The sealing layer 5-2 is provided to cover the buried layer 3, the seam portion 4, and the surface 2a of the chip 2. The sealing layer 5-2 is in contact not only with the surface 3a of the buried layer 3 but also with the surface 2a of the chip 2.
 封止層5-2は、シリコン(Si)の熱伝導率よりも高い熱伝導率を有する。チップ2からの熱が伝わる部分が、封止層5-2を介して外部と熱的に接続され易くなり(熱的に露出し易くなり、熱消散等の放熱性を高めることができる。例えば埋め込み層3による放熱性の向上を狙って埋め込み層3に金属材料を用いると、チップ2との間でリークが生じて装置の信頼性が低下する可能性がある。そうではなく、封止層5-2を用いて放熱性を向上させることで、リークを抑制し、装置の信頼性を向上させることができる。 The sealing layer 5-2 has a higher thermal conductivity than that of silicon (Si). The portion to which heat from the chip 2 is transmitted is more likely to be thermally connected to the outside through the sealing layer 5-2 (easier to be thermally exposed, and heat dissipation and other heat dissipation properties can be improved. For example, If a metal material is used for the buried layer 3 with the aim of improving heat dissipation by the buried layer 3, there is a possibility that leakage may occur between the buried layer 3 and the chip 2, reducing the reliability of the device. By improving heat dissipation using 5-2, leakage can be suppressed and reliability of the device can be improved.
22.第17実施形態
 図95は、第17実施形態に係る光検出装置の概略構成の例を示す図である。光検出装置100は、これまで説明した補助層6に代えて、上述の封止層5-2を含む。封止層5及び封止層5-2の2つの封止層が設けられる。封止層5は、埋め込み層3及びシーム部4を覆うように設けられた第1の封止層である。封止層5-2は、封止層5を覆うように設けられた第2の封止層である。封止層5-2を介して支持基板7が接合される。このように封止層5-2を設けて放熱性を向上させることもできる。
22. 17th Embodiment FIG. 95 is a diagram showing an example of a schematic configuration of a photodetecting device according to a 17th embodiment. The photodetecting device 100 includes the above-described sealing layer 5-2 instead of the auxiliary layer 6 described above. Two sealing layers are provided: sealing layer 5 and sealing layer 5-2. The sealing layer 5 is a first sealing layer provided so as to cover the embedded layer 3 and the seam portion 4 . The sealing layer 5-2 is a second sealing layer provided to cover the sealing layer 5. Support substrate 7 is bonded via sealing layer 5-2. It is also possible to improve heat dissipation by providing the sealing layer 5-2 in this manner.
23.第18実施形態
 図96は、第18実施形態に係る光検出装置の概略構成の例を示す図である。光検出装置100は、先に説明した図94の構成と比較して、封止層5-2を含まない一方で、封止層5-3を含む点において相違する。
23. 18th Embodiment FIG. 96 is a diagram showing an example of a schematic configuration of a photodetection device according to an 18th embodiment. The photodetecting device 100 differs from the configuration of FIG. 94 described above in that it does not include the sealing layer 5-2 but includes the sealing layer 5-3.
 封止層5-3は、金属層である。金属層の材料の例は、銅(Cu)、アルミニウム(Al)、タングステン(W)、チタン(Ti)、タンタル(Ta)、金(Au)、銀(Ag)、白金(Pt)、パラジウム(Pd)等である。封止層5-3を介して、支持基板7が接合される。このように金属層である封止層5-3を設けて放熱性を向上させることもできる。 The sealing layer 5-3 is a metal layer. Examples of materials for the metal layer include copper (Cu), aluminum (Al), tungsten (W), titanium (Ti), tantalum (Ta), gold (Au), silver (Ag), platinum (Pt), and palladium ( Pd) etc. Support substrate 7 is bonded via sealing layer 5-3. In this way, the sealing layer 5-3, which is a metal layer, can be provided to improve heat dissipation.
24.第19実施形態
 図97は、第19実施形態に係る光検出装置の概略構成の例を示す図である。光検出装置100は、先に説明した図94の構成と比較して、封止層5-2を含まない一方で、封止層5-4を含む。
24. Nineteenth Embodiment FIG. 97 is a diagram showing an example of a schematic configuration of a photodetection device according to a nineteenth embodiment. The photodetecting device 100 does not include the sealing layer 5-2, but does include the sealing layer 5-4, compared to the configuration of FIG. 94 described above.
 封止層5-4は、封止層5-4の面方向(XY平面方向)に連接して延在する絶縁層50及び封止層5-2を含む。絶縁層50は、封止層5-4において、埋め込み層3及びチップ2のうちの埋め込み層3を覆う第1の部分である。封止層5-2は、埋め込み層3及びチップ2のうちの埋め込み層3を覆うように設けられる第2の部分である。 The sealing layer 5-4 includes an insulating layer 50 and a sealing layer 5-2 that extend continuously in the plane direction (XY plane direction) of the sealing layer 5-4. The insulating layer 50 is a first portion of the sealing layer 5-4 that covers the buried layer 3 and the buried layer 3 of the chip 2. The sealing layer 5-2 is a second portion provided to cover the buried layer 3 and the buried layer 3 of the chip 2.
 絶縁層50は、その名称のとおり、絶縁性を有する。絶縁層50の材料の例は、SiOx、SiNx、SiON、SiOC、SiCN,SiC等である。封止層5-2は、先にも述べたように、シリコンの熱伝導率よりも高い熱伝導率を有する。封止層5-2は、チップ2の表面2aに接触するように設けられてよい。このように封止層5-2を設けて放熱性を向上させることもできる。 As its name suggests, the insulating layer 50 has insulating properties. Examples of materials for the insulating layer 50 include SiOx, SiNx, SiON, SiOC, SiCN, and SiC. As mentioned earlier, the sealing layer 5-2 has a higher thermal conductivity than that of silicon. The sealing layer 5-2 may be provided so as to be in contact with the surface 2a of the chip 2. It is also possible to improve heat dissipation by providing the sealing layer 5-2 in this manner.
25.第20実施形態
 図98は、第20実施形態に係る光検出装置の概略構成の例を示す図である。光検出装置100は、先に説明した図94の構成と比較して、封止層5-2を含まない一方で、追加層9を含む点において相違する。なお、ここでの追加層9は、先に説明した第7実施形態(図7)の追加層9とは区別して解されてよい。
25. 20th Embodiment FIG. 98 is a diagram showing an example of a schematic configuration of a photodetection device according to a 20th embodiment. The photodetecting device 100 differs from the configuration of FIG. 94 described above in that it does not include the sealing layer 5-2 but includes the additional layer 9. Note that the additional layer 9 here may be understood separately from the additional layer 9 of the seventh embodiment (FIG. 7) described above.
 追加層9は、チップ2と埋め込み層3との間に設けられる。より具体的に、追加層9は、基板1及びチップ2を覆うように設けられる。埋め込み層3は、追加層9のうちのチップ2の上部に位置する部分を除き、追加層9を覆うように設けられる。 The additional layer 9 is provided between the chip 2 and the buried layer 3. More specifically, the additional layer 9 is provided to cover the substrate 1 and the chip 2. The buried layer 3 is provided to cover the additional layer 9 except for the portion of the additional layer 9 located above the chip 2 .
 この実施形態における追加層9は、金属層(バリアメタルとも呼べる)である。金属層の材料の例は、チタン(Ti)、タンタル(Ta)等である。 The additional layer 9 in this embodiment is a metal layer (also called a barrier metal). Examples of materials for the metal layer are titanium (Ti), tantalum (Ta), and the like.
 シーム部4内は延在部5aで埋められ、シーム部4は追加層9によって覆われる。埋め込み層3及び追加層9を介して支持基板7が接合される。支持基板7及び追加層9が、埋め込み層3、シーム部4及びチップ2を覆う封止層として機能し得る。このように金属層である追加層9を設けて放熱性を向上させることもできる。補助層6を設けなくてもよい分だけ、製造プロセス数を削減したり、装置の厚さを小さく(低背化)したりすることができる。 The interior of the seam portion 4 is filled with an extension portion 5a, and the seam portion 4 is covered with an additional layer 9. Support substrate 7 is bonded via buried layer 3 and additional layer 9 . The support substrate 7 and the additional layer 9 can serve as a sealing layer covering the buried layer 3 , the seam 4 and the chip 2 . It is also possible to improve heat dissipation by providing the additional layer 9, which is a metal layer, in this way. Since it is not necessary to provide the auxiliary layer 6, the number of manufacturing processes can be reduced and the thickness of the device can be reduced (lower height).
26.第21実施形態
 図99は、第21実施形態に係る光検出装置の概略構成の例を示す図である。先に説明した図94の構成と比較して、シーム部4の一部は延在部5aで埋められているが、残部は空隙4aである。このような構成においても、封止層5-2を設けて放熱性を向上させることができる。空隙4aがある分だけ、チップ2間応力が緩和され得る。先に説明した図95~図98の構成においても、シーム部4の一部が延在部5aが埋められており残部が空隙4aであってよい。
26. 21st Embodiment FIG. 99 is a diagram illustrating an example of a schematic configuration of a photodetection device according to a 21st embodiment. Compared to the configuration shown in FIG. 94 described above, a part of the seam part 4 is filled with an extension part 5a, but the remaining part is a void 4a. Even in such a configuration, the sealing layer 5-2 can be provided to improve heat dissipation. The stress between the chips 2 can be relaxed by the amount of the gap 4a. Also in the configurations of FIGS. 95 to 98 described above, part of the seam portion 4 may be filled with the extension portion 5a, and the remaining portion may be the void 4a.
27.第22実施形態
 図100は、第22実施形態に係る光検出装置の概略構成の例を示す図である。光検出装置100は、先に説明した図94の構成と比較して、化合物層14を含む点において相違する。
27. 22nd Embodiment FIG. 100 is a diagram showing an example of a schematic configuration of a photodetecting device according to a 22nd embodiment. The photodetecting device 100 differs from the configuration of FIG. 94 described above in that it includes a compound layer 14.
 化合物層14は、チップ2と封止層5-2との間に設けられ、また、封止層5-2上にも設けられる。化合物層14は、例えばシリサイド層であってよい。化合物層14の材料の例は、シリコン(Si)等の半導体材料及び金属材料を含んでよい。 The compound layer 14 is provided between the chip 2 and the sealing layer 5-2, and is also provided on the sealing layer 5-2. The compound layer 14 may be, for example, a silicide layer. Examples of materials for the compound layer 14 may include semiconductor materials such as silicon (Si) and metal materials.
 2つの化合物層14が設けられる。1つ目の化合物層14は、チップ2の表面2a上に設けられる。封止層5-2は、埋め込み層3、シーム部4及び1つ目の化合物層14を覆うように設けられる。2つ目の化合物層14は、封止層5-2を覆うように設けられる。この化合物層14を介して、支持基板7が接合される。このように金属材料を含む化合物層14を設けて放熱性を向上させることもできる。 Two compound layers 14 are provided. The first compound layer 14 is provided on the surface 2a of the chip 2. The sealing layer 5-2 is provided so as to cover the buried layer 3, the seam portion 4, and the first compound layer 14. The second compound layer 14 is provided to cover the sealing layer 5-2. The support substrate 7 is bonded via this compound layer 14. It is also possible to improve heat dissipation by providing the compound layer 14 containing a metal material in this way.
28.第23実施形態
 図101は、第23実施形態に係る光検出装置の概略構成の例を示す図である。光検出装置100は、先に説明した図94の構成と比較して、封止層5-2を含まない一方で、封止層5-5を含む点において相違する。封止層5-5は、絶縁体内に配線(ビアを含む)等の金属構造体が設けられた層である。金属構造体は、放熱経路を与えるとともに、配線として利用したりパッドとして利用したりすることができる。金属構造体の一例が、ビア5-5vとして符号を付して示される。このように封止層5-5を設けて放熱性を向上させることもできる。また、埋め込み層3と支持基板7との接合面部分に配線を形成することができる。
28. 23rd Embodiment FIG. 101 is a diagram showing an example of a schematic configuration of a photodetection device according to a 23rd embodiment. The photodetecting device 100 differs from the configuration of FIG. 94 described above in that it does not include the sealing layer 5-2 but includes the sealing layer 5-5. The sealing layer 5-5 is a layer in which metal structures such as wiring (including vias) are provided within an insulator. The metal structure provides a heat dissipation path and can be used as wiring or as a pad. An example of a metal structure is shown labeled as via 5-5v. Heat dissipation can also be improved by providing the sealing layer 5-5 in this manner. Furthermore, wiring can be formed on the bonding surface between the buried layer 3 and the support substrate 7.
29.撮像装置への応用例
 上記の第16実施形態から第23実施形態に係る光検出装置100の応用の一例は、撮像装置である。撮像装置については、先に図20~図23を参照して説明したので、詳細な説明は繰り返さない。例えば、第16実施形態に係る光検出装置100を撮像装置として用いる場合には、図20~図22における封止層5及び補助層6に代えて封止層5-2を含む構成を採用することができる。
29. Example of Application to Imaging Device An example of application of the photodetecting device 100 according to the sixteenth to twenty-third embodiments described above is an imaging device. The imaging device was previously described with reference to FIGS. 20 to 23, so detailed description will not be repeated. For example, when the photodetection device 100 according to the sixteenth embodiment is used as an imaging device, a configuration including a sealing layer 5-2 in place of the sealing layer 5 and the auxiliary layer 6 in FIGS. 20 to 22 is adopted. be able to.
30.製造方法の例
 図102~図107は、光検出装置の製造方法の例を示す図である。図102~図105には、先に説明した図94の構成を得るための製造方法の例が示される。前提として、先に説明した図9~図12と同様の製造プロセスが完了しているものとする。
30. Example of Manufacturing Method FIGS. 102 to 107 are diagrams showing an example of a method of manufacturing a photodetector. 102 to 105 show an example of a manufacturing method for obtaining the structure shown in FIG. 94 described above. It is assumed that a manufacturing process similar to that shown in FIGS. 9 to 12 described above has been completed.
 図102に示されるように、封止層5及び埋め込み層3を研磨し、洗浄する。チップ2の表面2aが埋め込み層3から露出する。図103に示されるように、埋め込み層3、シーム部4及びチップ2を覆うように、封止層5-2を設ける。図104に示されるように、封止層5-2を介して支持基板7を接合することで、先に説明した図94の構成が得られる。 As shown in FIG. 102, the sealing layer 5 and the buried layer 3 are polished and cleaned. The surface 2a of the chip 2 is exposed from the buried layer 3. As shown in FIG. 103, a sealing layer 5-2 is provided to cover the buried layer 3, seam portion 4, and chip 2. As shown in FIG. 104, by bonding the support substrate 7 through the sealing layer 5-2, the configuration shown in FIG. 94 described above can be obtained.
 上記の図103の製造プロセスにおいてシーム部4内が封止層5によっては完全に埋め込まれずシーム部4が空隙4aを有する場合は、先に説明した図99の構成が得られる。上記の図102の製造プロセスにおいて、チップ2上に埋め込み層3が残るように研磨、洗浄し、その後に封止層5を設けた場合は、先に説明した図95の構成が得られる。上記の図103の製造プロセスにおいて、封止層5-2の代わりに封止層5-3(金属層)を設けた場合は、先に説明した図96の構成が得られる。 In the manufacturing process shown in FIG. 103 above, if the inside of the seam portion 4 is not completely filled with the sealing layer 5 and the seam portion 4 has a void 4a, the configuration shown in FIG. 99 described earlier is obtained. In the manufacturing process shown in FIG. 102 above, if the chip 2 is polished and cleaned so that the buried layer 3 remains, and then the sealing layer 5 is provided, the structure shown in FIG. 95 described above is obtained. If the sealing layer 5-3 (metal layer) is provided in place of the sealing layer 5-2 in the manufacturing process shown in FIG. 103 above, the structure shown in FIG. 96 described above is obtained.
 支持基板7の接合面の位置にはいくつかのバリエーションが存在し得る。具体的に、図105の(A)には、接合面B、接合面C及び接合面Dの3通りの接合面が例示される。接合面Bは、支持基板7と封止層5-2との間に位置する。接合面Cは、封止層5-2中に位置する。接合面Dは、封止層5-2と埋め込み層3との間に位置する。 There may be several variations in the position of the bonding surface of the support substrate 7. Specifically, in (A) of FIG. 105, three types of bonding surfaces, bonding surface B, bonding surface C, and bonding surface D, are illustrated. Bonding surface B is located between support substrate 7 and sealing layer 5-2. The bonding surface C is located in the sealing layer 5-2. The bonding surface D is located between the sealing layer 5-2 and the buried layer 3.
 図105の(B)、(C)及び(D)には、接合面B、接合面C及び接合面Dにおいて、支持基板7、封止層5-2及び埋め込み層3をZ軸方向に分解した図が模式的に示される。接合の過程で化合物(シリサイド)が生じ、その場合は、先に説明した図100の構成が得られる。 In (B), (C), and (D) of FIG. 105, the supporting substrate 7, the sealing layer 5-2, and the buried layer 3 are disassembled in the Z-axis direction at the bonding surface B, bonding surface C, and bonding surface D. The diagram is shown schematically. A compound (silicide) is generated during the bonding process, and in that case, the configuration shown in FIG. 100 described above is obtained.
 図106及び図107には、先に説明した図101の構成を得るための製造方法の例が示される。前提として、先に説明した図102までの製造プロセスが完了しているものとする。 FIGS. 106 and 107 show an example of a manufacturing method for obtaining the configuration shown in FIG. 101 described above. As a premise, it is assumed that the manufacturing process up to FIG. 102 described above has been completed.
 図106に示されるように、埋め込み層3、シーム部4及びチップ2を覆うように、封止層5-5を設ける。図107に示されるように、封止層5-5を介して支持基板7を接合することで、先に説明した図101の構成が得られる。 As shown in FIG. 106, a sealing layer 5-5 is provided to cover the buried layer 3, seam portion 4, and chip 2. As shown in FIG. 107, the structure shown in FIG. 101 described above can be obtained by bonding the support substrate 7 through the sealing layer 5-5.
<小結>
 以上で説明した第16実施形態から第23実施形態に係る光検出装置100は、例えば次のように特定される。図94及び図99等を参照して説明したように、シーム部4の少なくとも一部は、埋め込み層3の材料とは異なる材料(例えば延在部5a)で埋められており、封止層5-2は、シリコン(Si)の熱伝導率よりも高い熱伝導率を有する層である。このような構成においても、シーム部4の外部への連通を抑制することができる。また、放熱性を向上させることができる。
<Small conclusion>
The photodetecting device 100 according to the sixteenth to twenty-third embodiments described above is specified, for example, as follows. As described with reference to FIGS. 94 and 99, at least a portion of the seam portion 4 is filled with a material (for example, the extension portion 5a) different from the material of the buried layer 3, and the sealing layer 5 -2 is a layer having a thermal conductivity higher than that of silicon (Si). Even in such a configuration, communication of the seam portion 4 to the outside can be suppressed. Moreover, heat dissipation can be improved.
 図95等を参照して説明したように、光検出装置100は、埋め込み層3及びシーム部4を覆うように設けられた封止層5(第1の封止層)と、封止層5を覆うように設けられた封止層5-2(第2の封止層)と、を備え、封止層5-2は、シリコン(Si)の熱伝導率よりも高い熱伝導率を有してよい。このような構成によっても、放熱性を向上させることができる。 As described with reference to FIG. 95 etc., the photodetector 100 includes the sealing layer 5 (first sealing layer) provided so as to cover the embedded layer 3 and the seam portion 4, and the sealing layer 5. A sealing layer 5-2 (second sealing layer) provided to cover the silicon (Si), and the sealing layer 5-2 has a thermal conductivity higher than that of silicon (Si). You may do so. Such a configuration can also improve heat dissipation.
 図96等を参照して説明したように、封止層5-3は、金属層であってよい。このような構成によっても、放熱性を向上させることができる。 As described with reference to FIG. 96 and the like, the sealing layer 5-3 may be a metal layer. Such a configuration can also improve heat dissipation.
 図97等を参照して説明したように、封止層5-4は、埋め込み層3及びチップ2のうちの埋め込み層3を覆う絶縁層50(第1の部分)と、埋め込み層3及びチップ2のうちのチップ2を覆う封止層5-2(第2の部分)と、を含み、絶縁層50は、絶縁性を有し、封止層5-2は、シリコン(Si)の熱伝導率よりも高い熱伝導率を有してよい。このような構成によっても、放熱性を向上させることができる。 As described with reference to FIG. 97 etc., the sealing layer 5-4 includes an insulating layer 50 (first portion) that covers the buried layer 3 of the buried layer 3 and the chip 2, and an insulating layer 50 (first portion) that covers the buried layer 3 and the chip 2. The insulating layer 50 has an insulating property, and the sealing layer 5-2 includes a sealing layer 5-2 (second portion) that covers the chip 2 of the silicon (Si). It may have higher thermal conductivity than conductivity. Such a configuration can also improve heat dissipation.
 図98等を参照して説明したように、光検出装置100は、チップ2と埋め込み層3との間に設けられた追加層9を備え、追加層9は、金属層であってよい。このような構成によっても、放熱性を向上させることができる。 As described with reference to FIG. 98 and the like, the photodetector 100 includes the additional layer 9 provided between the chip 2 and the buried layer 3, and the additional layer 9 may be a metal layer. Such a configuration can also improve heat dissipation.
 図100等を参照して説明したように、光検出装置100は、チップ2と封止層5-2との間に設けられた化合物層14を備え、化合物層14は、シリサイド層であってよい。このような構成によっても、放熱性を向上させることができる。 As described with reference to FIG. 100 etc., the photodetector 100 includes the compound layer 14 provided between the chip 2 and the sealing layer 5-2, and the compound layer 14 is a silicide layer. good. Such a configuration can also improve heat dissipation.
 図101等を参照して説明したように、封止層5-5は、絶縁体内に金属構造体(例えばビア5-5v等)が設けられた層であってよい。このような構成によっても、放熱性を向上させることができる。支持基板7が接合される場合には、その接合面部分に配線を形成することもできる。 As described with reference to FIG. 101 and the like, the sealing layer 5-5 may be a layer in which a metal structure (for example, a via 5-5v, etc.) is provided within an insulator. Such a configuration can also improve heat dissipation. When the support substrate 7 is bonded, wiring can also be formed on the bonding surface portion.
31.第24実施形態
 図108及び図109は、第24実施形態に係る光検出装置の概略構成の例を示す図である。なお、支持基板7の図示は省略し、この点は以降の図も同様である。光検出装置100は、封止層5に代えて、封止層5-6を含む。封止層5-6は、樹脂層である。封止層5-6の面のうち、Z軸正方向側の面を、表面5-6aと称し図示する。
31. 24th Embodiment FIGS. 108 and 109 are diagrams showing an example of a schematic configuration of a photodetection device according to a 24th embodiment. Note that illustration of the support substrate 7 is omitted, and this point is also the same in subsequent figures. The photodetecting device 100 includes a sealing layer 5-6 instead of the sealing layer 5. The sealing layer 5-6 is a resin layer. Among the surfaces of the sealing layer 5-6, the surface on the Z-axis positive direction side is referred to as a surface 5-6a in the drawing.
 図109には、チップ2とその上部に位置する埋め込み層3及び封止層5を含む部分の拡大図が模式的に示される。埋め込み層3は、表面3aにおいて凹凸形状を有する。具体的に、埋め込み層3の表面3aは、凹部3c1及び凸部3c2を有する。凹部3c1は、下方(Z軸正方向)に向かってへこむ凹形状を有する。凸部3c2は、上方(Z軸正方向)に向かって突出する凸形状を有する。 FIG. 109 schematically shows an enlarged view of a portion including the chip 2, the buried layer 3 located above it, and the sealing layer 5. The buried layer 3 has an uneven shape on the surface 3a. Specifically, the surface 3a of the buried layer 3 has a concave portion 3c1 and a convex portion 3c2. The recessed portion 3c1 has a concave shape that is recessed downward (in the Z-axis positive direction). The convex portion 3c2 has a convex shape that protrudes upward (in the Z-axis positive direction).
 封止層5-6は、凹部3c1を埋めるとともに、凹部3c1及び凸部3c2を覆うように設けられた樹脂層である。樹脂層は、酸化層又は有機層であってよい。酸化層は、例えば酸化膜系の絶縁膜であってもよいし、酸化膜系の接合膜であってもよい。有機層は、例えば400℃以上の耐熱性を有してよい。そのような有機層の材料の例は、ポリイミド、シロキサン、シリコーン等である。後工程において400℃程度の熱に晒された場合でも熱に耐えることができる。 The sealing layer 5-6 is a resin layer provided to fill the recess 3c1 and cover the recess 3c1 and the projection 3c2. The resin layer may be an oxidized layer or an organic layer. The oxide layer may be, for example, an oxide-based insulating film or an oxide-based bonding film. The organic layer may have a heat resistance of, for example, 400° C. or higher. Examples of materials for such organic layers are polyimides, siloxanes, silicones, etc. It can withstand heat even when exposed to heat of about 400°C in a post-process.
 封止層5-6は、製造時には、塗布液の形態で埋め込み層3上に塗布されてよい。これにより、凹部3c1が封止層5-6によって埋められ易くなり、また、封止層5-6がシーム部4内まで延在し易くなる。コンフォーマルな成膜方法ではないため、塗布後の表面は、塗布前よりも平坦な面になる。図109に示される例では、封止層5-6の表面5-6aは、平坦面である。すなわち、封止層5-6によって、埋め込み層3の表面3aの凹部3c1及び凸部3c2の形状が吸収され、平坦な表面5-6aが得られる。 The sealing layer 5-6 may be coated on the buried layer 3 in the form of a coating liquid during manufacturing. This makes it easier to fill the recess 3c1 with the sealing layer 5-6, and also makes it easier for the sealing layer 5-6 to extend into the seam portion 4. Since it is not a conformal film formation method, the surface after application is flatter than before application. In the example shown in FIG. 109, the surface 5-6a of the sealing layer 5-6 is a flat surface. That is, the sealing layer 5-6 absorbs the shapes of the concave portions 3c1 and convex portions 3c2 on the surface 3a of the buried layer 3, resulting in a flat surface 5-6a.
<製造方法の例>
 図110~図114は、光検出装置の製造方法の例を示す図である。図110に示されるように、基板1上にチップ2を設け、また、それらを覆うように埋め込み層3を設ける。埋め込み層3内にシーム部4が発生する。図111に示されるように、ドライエッチング等を含むリソグラフィのプロセスにより、チップ2の角の上部を残し、チップ2上の埋め込み層3を取り除く。チップ2の角の上部に残る埋め込み層3を、角部3hと称し図示する。角部3hを残すことで、チップ2の外側部分を保護し、チップ2の外側の埋め込み層3が抜けてしまうのを防ぐことができる。
<Example of manufacturing method>
110 to 114 are diagrams illustrating an example of a method for manufacturing a photodetecting device. As shown in FIG. 110, chips 2 are provided on a substrate 1, and a buried layer 3 is provided to cover them. A seam portion 4 is generated within the buried layer 3. As shown in FIG. 111, the buried layer 3 on the chip 2 is removed by a lithography process including dry etching, leaving the upper part of the corner of the chip 2. The buried layer 3 remaining above the corner of the chip 2 is shown as a corner 3h. By leaving the corner portion 3h, the outer portion of the chip 2 can be protected and the embedded layer 3 on the outer side of the chip 2 can be prevented from falling out.
 図112に示されるように、埋め込み層3をさらに設ける。この例では、チップ2の上部における埋め込み層3内にもシーム部4が発生する。図113に示されるように、CMPにより、角部3hを取り除く。ここでのCMPは、通常のCMPとはスラリーの組成等が異なり、ある程度平坦になった段階で終了する(Self-stop CMP)。図114に示されるように、埋め込み層3及びシーム部4を覆うように封止層5-6を設ける。封止層5-6は、その材料(樹脂材料)を塗布することによって設けられる。その際に、封止層5-6の材料がシーム部4内まで延在し、その部分が封止層5-6の延在部5aになる。また、先に図109を参照して説明した埋め込み層3の表面3aの凹部3c1が、封止層5-6で埋められる。その後、封止層5を覆うように補助層6を設けることで、先に説明した図108及び図109の構成が得られる。 As shown in FIG. 112, a buried layer 3 is further provided. In this example, a seam 4 also occurs within the buried layer 3 at the top of the chip 2. As shown in FIG. 113, the corner 3h is removed by CMP. The CMP here differs from normal CMP in the slurry composition, etc., and ends when the slurry becomes somewhat flat (Self-stop CMP). As shown in FIG. 114, a sealing layer 5-6 is provided to cover the buried layer 3 and the seam portion 4. The sealing layer 5-6 is provided by applying the material (resin material). At this time, the material of the sealing layer 5-6 extends into the seam portion 4, and that portion becomes the extended portion 5a of the sealing layer 5-6. Furthermore, the recess 3c1 in the surface 3a of the buried layer 3, which was previously explained with reference to FIG. 109, is filled with the sealing layer 5-6. Thereafter, by providing the auxiliary layer 6 to cover the sealing layer 5, the configurations shown in FIGS. 108 and 109 described above are obtained.
 なお、上記の製造方法において、リソグラフィとその後の埋め込み層3の成膜のプロセス(図111及び図112のプロセス)は省略してもよい。 Note that in the above manufacturing method, the lithography and subsequent process of forming the buried layer 3 (the process shown in FIGS. 111 and 112) may be omitted.
<製造方法の例>
 図115~図119は、光検出装置の製造方法の例を示す図である。前述の図110~図114の製造方法と比較して、封止層5-6を設ける前にCMPのプロセスが加えられる。前提として、先に説明した図111の製造プロセスが完了しているものとする。
<Example of manufacturing method>
115 to 119 are diagrams illustrating an example of a method for manufacturing a photodetecting device. Compared to the manufacturing method shown in FIGS. 110 to 114 described above, a CMP process is added before providing the sealing layer 5-6. As a premise, it is assumed that the manufacturing process shown in FIG. 111 described above has been completed.
 図115に示されるように、埋め込み層3をさらに設ける。ここで追加される埋め込み層3の厚さ(Z軸方向の長さ)は、先に説明した図112の埋め込み層3の厚さよりも大きくてよい。図116に示されるように、Self-stop CMPにより、角部3hを取り除く。図117に示されるように、CMPにより、埋め込み層3の上部を研磨、洗浄する。このCMPに際して、チップ2の角に対応する部分の埋め込み層3が丸みを有する(Rができる)。 As shown in FIG. 115, a buried layer 3 is further provided. The thickness (length in the Z-axis direction) of the buried layer 3 added here may be greater than the thickness of the buried layer 3 in FIG. 112 described above. As shown in FIG. 116, the corner 3h is removed by self-stop CMP. As shown in FIG. 117, the upper part of the buried layer 3 is polished and cleaned by CMP. During this CMP, the portions of the buried layer 3 corresponding to the corners of the chip 2 are rounded (rounded).
 図118に示されるように、埋め込み層3及びシーム部4を覆うように封止層5-6を設ける。図119に示されるように、封止層5を覆うように補助層6を設ける。チップ2の角に対応する部分の埋め込み層3が丸みを有する点を除き、先に説明した図108及び図109と同様の構成が得られる。 As shown in FIG. 118, a sealing layer 5-6 is provided to cover the buried layer 3 and seam portion 4. As shown in FIG. 119, an auxiliary layer 6 is provided to cover the sealing layer 5. A structure similar to that shown in FIGS. 108 and 109 described above is obtained, except that the buried layer 3 in the portions corresponding to the corners of the chip 2 are rounded.
 なお、上記の製造方法において、リソグラフィとその後の埋め込み層3の成膜さらにはSelf-stop CMPのプロセス(図111、図115及び図116のプロセス)は省略してよい。 Note that in the above manufacturing method, the lithography, the subsequent film formation of the buried layer 3, and the self-stop CMP process (the processes in FIGS. 111, 115, and 116) may be omitted.
 CMPによって埋め込み層3の上部を研磨した際に、埋め込み層3の表面3aが凹部3c1及び凸部3c2を有し得る。図120及び図121を参照して説明する。 When the upper part of the buried layer 3 is polished by CMP, the surface 3a of the buried layer 3 may have a concave portion 3c1 and a convex portion 3c2. This will be explained with reference to FIGS. 120 and 121.
 図120及び図121は、CMPの例を示す図である。なお、理解を容易にするため、シーム部4の図示は省略する。 120 and 121 are diagrams showing examples of CMP. Note that for ease of understanding, illustration of the seam portion 4 is omitted.
 図120には、先に説明した図113及び図116において行われるSelf-stop CMPが模式に示される。この例では、セリア砥粒Pa及び添加剤Adを含むスラリーを用いて、埋め込み層3(例えばSiO2等の酸化膜)の上部が研磨され、角部3hが取り除かれる。完全な平坦化が難しい場合もあり、この例では、埋め込み層3が凹部3c1及び凸部3c2を有する。例えば、削られずに残った角部3hの残部(角残り)、角残りどうしの間に生じるスリット、シーム部4等が、凹部3c1及び凸部3c2になり得る。 FIG. 120 schematically shows the Self-stop CMP performed in FIGS. 113 and 116 described above. In this example, the upper part of the buried layer 3 (for example, an oxide film such as SiO2) is polished using a slurry containing ceria abrasive grains Pa and an additive Ad, and the corner portion 3h is removed. In some cases, complete planarization is difficult, and in this example, the buried layer 3 has a concave portion 3c1 and a convex portion 3c2. For example, the remaining portions of the corner portions 3h (remaining corners) that are not cut, the slits that occur between the remaining corner portions, the seam portions 4, etc. may become the recessed portions 3c1 and the convex portions 3c2.
 図121には、先に説明した図117において行われるCMPが模式的に示される。図121の(A)に示されるように、研磨PADを用いて、埋め込み層3の上部が研磨される。セリア砥粒Paは埋め込み層3に吸着せずに遊離して存在する。図121の(B)に示されるように、チップ2の角の上方に位置する埋め込み層3の凹部3c1及び凸部3c2においてスラリー溜りが生じ、局所応力が大きくなり、研磨が進行する。比較的広い幅(XY平面方向の長さ)を有する凸部3c2の先端の平坦部分は、添加剤Adの効果で研磨が阻害される。 FIG. 121 schematically shows the CMP performed in FIG. 117 described above. As shown in FIG. 121(A), the upper part of the buried layer 3 is polished using a polishing PAD. The ceria abrasive grains Pa are not adsorbed to the buried layer 3 and exist freely. As shown in FIG. 121(B), slurry pools are generated in the concave portions 3c1 and convex portions 3c2 of the buried layer 3 located above the corners of the chip 2, local stress increases, and polishing progresses. Polishing of the flat portion at the tip of the convex portion 3c2 having a relatively wide width (length in the XY plane direction) is inhibited by the effect of the additive Ad.
 例えば上記のような理由から、製造プロセスにおいて、埋め込み層3が凹部3c1及び凸部3c2を有するようになる。凹部3c1を埋めるとともに凹部3c1及び凸部3c2を覆うように封止層5-6(樹脂層)を設けることで、凹部3c1及び凸部3c2が吸収され、平坦な表面5-6aが得られる。 For example, for the reasons mentioned above, the buried layer 3 comes to have a recess 3c1 and a projection 3c2 in the manufacturing process. By providing the sealing layer 5-6 (resin layer) so as to fill the recess 3c1 and cover the recess 3c1 and the projection 3c2, the recess 3c1 and the projection 3c2 are absorbed and a flat surface 5-6a is obtained.
32.第25実施形態
 図122は、第25実施形態に係る光検出装置の概略構成の例を示す図である。光検出装置100は、封止層5に代えて、樹脂層15を含む。樹脂層15は、先に説明した封止層5-6と同様に、酸化層又は有機層である。樹脂層15の材料は、封止層5-6の材料と同じであってよい。
32. 25th Embodiment FIG. 122 is a diagram showing an example of a schematic configuration of a photodetection device according to a 25th embodiment. The photodetecting device 100 includes a resin layer 15 instead of the sealing layer 5. The resin layer 15 is an oxidized layer or an organic layer, similar to the sealing layer 5-6 described above. The material of the resin layer 15 may be the same as the material of the sealing layer 5-6.
 樹脂層15は、チップ2と埋め込み層3との間に設けられる。この例では、樹脂層15は、基板1と、チップ2の側面とを覆うように設けられる。ただし、チップ2の側面だけでなく表面2aも樹脂層15で覆われていてよい。 The resin layer 15 is provided between the chip 2 and the buried layer 3. In this example, the resin layer 15 is provided to cover the substrate 1 and the side surfaces of the chip 2. However, not only the side surface of the chip 2 but also the surface 2a may be covered with the resin layer 15.
 チップ2を樹脂層15で覆うことにより、チップ2部分の形状、例えば基板1との段差部分の形状が緩やかになる。その分、シーム部4が発生しにくくなる。仮にシーム部4が発生した場合でも、補助層6が埋め込み層3及びシーム部4を覆う封止層として機能することで、これまで説明したように、シーム部4の外部への連通を抑制することができる。 By covering the chip 2 with the resin layer 15, the shape of the chip 2 portion, for example, the shape of the stepped portion with respect to the substrate 1 becomes gentle. Accordingly, the seam portion 4 is less likely to occur. Even if a seam portion 4 occurs, the auxiliary layer 6 functions as a sealing layer that covers the buried layer 3 and the seam portion 4, thereby suppressing communication of the seam portion 4 to the outside, as explained above. be able to.
<製造方法の例>
 図123~図128は、光検出装置の製造方法の例を示す図である。図123に示されるように、基板1上にチップ2を設け、それらを覆うように樹脂層15を設ける。図124に示されるように、樹脂層15(この例ではチップ2の表面2aも)を覆うように、埋め込み層3を設ける。この例では埋め込み層3内にはシーム部4は発生しない。図125に示されるように、ドライエッチング等を含むリソグラフィのプロセスにより、角部3hを残すように埋め込み層3を取り除く。
<Example of manufacturing method>
123 to 128 are diagrams illustrating an example of a method for manufacturing a photodetecting device. As shown in FIG. 123, chips 2 are provided on a substrate 1, and a resin layer 15 is provided to cover them. As shown in FIG. 124, the buried layer 3 is provided so as to cover the resin layer 15 (also the surface 2a of the chip 2 in this example). In this example, no seam portion 4 is generated within the buried layer 3. As shown in FIG. 125, the buried layer 3 is removed by a lithography process including dry etching or the like so as to leave the corner 3h.
 図126に示されるように、埋め込み層3をさらに設ける。図127に示されるように、CMPにより、角部3hを取り除く(Self-stop CMP)。図128に示されるように、CMPにより、埋め込み層3の上部を研磨、洗浄する。その後、埋め込み層3を覆うように補助層6を設けることで、先に説明した図122の構成が得られる。 As shown in FIG. 126, a buried layer 3 is further provided. As shown in FIG. 127, the corner 3h is removed by CMP (Self-stop CMP). As shown in FIG. 128, the upper part of the buried layer 3 is polished and cleaned by CMP. Thereafter, by providing the auxiliary layer 6 so as to cover the buried layer 3, the structure shown in FIG. 122 described above is obtained.
 なお、上記の製造方法において、リソグラフィとその後の埋め込み層3の成膜さらにはSelf-stop CMPのプロセス(図125~図127のプロセス)は省略してよい。 Note that in the above manufacturing method, the lithography, the subsequent film formation of the buried layer 3, and the self-stop CMP process (the processes shown in FIGS. 125 to 127) may be omitted.
<小結>
 以上で説明した第24実施形態及び第25実施形態に係る光検出装置100は、例えば次のように特定される。図108及び図109等を参照して説明したように、封止層5-6は、樹脂層(例えば酸化層又は有機層)であってよい。埋め込み層3の表面3aは、凹部3c1を有し、封止層5-6は、凹部3c1を埋めるように設けられてよい。封止層5-6の表面5-6aは、平坦面であってよい。これにより、埋め込み層3の表面3aが有する凹部3c1を吸収し、平坦な表面(表面5-6a)を得ることができる。
<Small conclusion>
The photodetecting device 100 according to the twenty-fourth embodiment and the twenty-fifth embodiment described above is specified, for example, as follows. As described with reference to FIGS. 108 and 109, the sealing layer 5-6 may be a resin layer (for example, an oxide layer or an organic layer). The surface 3a of the buried layer 3 may have a recess 3c1, and the sealing layer 5-6 may be provided to fill the recess 3c1. The surface 5-6a of the sealing layer 5-6 may be a flat surface. As a result, the recesses 3c1 of the surface 3a of the buried layer 3 can be absorbed, and a flat surface (surface 5-6a) can be obtained.
 有機層である封止層5-6は、400℃以上の耐熱性を有してよい。有機層の材料は、ポリイミド、シロキサン及びシリコーンの少なくとも1つを含んでよい。これにより、例えば後工程において400℃程度の熱に晒された場合でも熱に耐えることができる。 The sealing layer 5-6, which is an organic layer, may have heat resistance of 400° C. or higher. The material of the organic layer may include at least one of polyimide, siloxane, and silicone. This makes it possible to withstand heat, for example, even when exposed to heat of about 400° C. in a post-process.
 図122等を参照して説明したように、光検出装置100は、チップ2と埋め込み層3との間に設けられた樹脂層15(例えば酸化層又は有機層)を備えてよい。これにより、シーム部4の発生を抑制することができる。 As described with reference to FIG. 122 and the like, the photodetector 100 may include the resin layer 15 (for example, an oxide layer or an organic layer) provided between the chip 2 and the buried layer 3. Thereby, the occurrence of seam portions 4 can be suppressed.
 樹脂層15は、上述の封止層5-6と同様の特性を有してよい。例えば、有機層である樹脂層15は、400℃以上の耐熱性を有してよい。有機層の材料は、ポリイミド、シロキサン及びシリコーンの少なくとも1つを含んでよい。これにより、例えば後工程において400℃程度の熱に晒された場合でも熱に耐えることができる。 The resin layer 15 may have the same characteristics as the sealing layer 5-6 described above. For example, the resin layer 15, which is an organic layer, may have heat resistance of 400° C. or higher. The material of the organic layer may include at least one of polyimide, siloxane, and silicone. This makes it possible to withstand heat, for example, even when exposed to heat of about 400° C. in a post-process.
 以上、本開示の実施形態について説明したが、本開示の技術的範囲は、上述の実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。 Although the embodiments of the present disclosure have been described above, the technical scope of the present disclosure is not limited to the above-described embodiments as they are, and various changes can be made without departing from the gist of the present disclosure. Furthermore, components of different embodiments and modifications may be combined as appropriate.
 なお、本技術は以下のような構成も取ることができる。
(1)
 光検出素子を含む基板と、
 前記基板に対して設けられたチップと、
 前記チップを覆うように設けられた埋め込み層と、
 前記埋め込み層内に発生し、前記埋め込み層の表面まで延在しているシーム部と、
 前記埋め込み層及び前記シーム部を覆うように設けられた封止層と、
 を備える、
 光検出装置。
(2)
 前記封止層を挟んで前記基板とは反対側に位置し、前記封止層を直接的又は間接的に支持する支持基板を備える、
 (1)に記載の光検出装置。
(3)
 前記シーム部の少なくとも一部は、空隙である、
 (1)又は(2)に記載の光検出装置。
(4)
 前記封止層は、前記シーム部の少なくとも一部を埋めるように前記シーム部内まで延在する延在部を含む、
 (1)~(3)のいずれかに記載の光検出装置。
(5)
 前記封止層の材料は、低浸透性材料を含む、
 (1)~(4)のいずれかに記載の光検出装置。
(6)
 前記封止層の材料は、低ヤング率材料を含む、
 (1)~(5)のいずれかに記載の光検出装置。
(7)
 前記チップの側面を覆うように設けられた側壁部を備える、
 (1)~(6)のいずれかに記載の光検出装置。
(8)
 前記チップは、互いに離間して設けられた第1のチップ及び第2のチップを含み、
 前記シーム部は、前記第1のチップに起因して発生した第1のシーム部及び前記第2のチップに起因して発生した第2のシーム部を含み、
 前記第1のシーム部及び前記第2のシーム部は、互いにつながっている、
 (1)~(7)のいずれかに記載の光検出装置。
(9)
 前記チップと前記埋め込み層との間に設けられた追加層を備える、
 (1)~(8)のいずれかに記載の光検出装置。
(10)
 前記封止層を覆うように設けられた補助層を備える、
 (1)~(9)のいずれかに記載の光検出装置。
(11)
 前記補助層は、積層構造を有する、
 (10)に記載の光検出装置。
(12)
 前記チップは、ロジックチップ、メモリチップ及びAI(Artificial Intelligence)チップの少なくとも1つを含む、
 (1)~(11)のいずれかに記載の光検出装置。
(13)
 複数の画素を含むように構成された撮像装置である、
 (1)~(12)のいずれかに記載の光検出装置。
(14)
 前記基板を挟んで前記チップ及び前記埋め込み層とは反対側に設けられたフィルタ層と、
 前記フィルタ層を挟んで前記基板とは反対側に設けられたレンズ層と、
 を備える、
 (13)に記載の光検出装置。
(15)
 前記基板と前記埋め込み層との間に設けられた追加基板を備える、
 (1)~(14)のいずれかに記載の光検出装置。
(16)
 前記チップは、間隔をあけて隣り合うように配置された2つのチップを含み、
 前記埋め込み層は、前記2つのチップどうしの間に設けられた配線を含む、
 (1)~(15)のいずれかに記載の光検出装置。
(17)
 前記封止層を挟んで前記基板とは反対側に設けられ、前記封止層を直接的又は間接的に支持する支持基板と、
 前記埋め込み層、前記封止層及び前記支持基板を貫通する貫通ビアと、
 を備える、
 (1)~(16)のいずれかに記載の光検出装置。
(18)
 前記チップは、
 第1のチップと、
 前記第1のチップの厚さよりも大きい厚さを有する第2のチップと、
 を含み、
 前記シーム部は、
 前記第1のチップから前記埋め込み層の表面に向かって延在する第1のシーム部と、
 前記第2のチップから前記埋め込み層の表面に向かって延在する第2のシーム部と、
 を含み、
 前記第2のシーム部は、前記第1のシーム部よりも、前記埋め込み層の表面の近くまで延在している、
 (1)~(17)のいずれかに記載の光検出装置。
(19)
 前記チップは、
 第1のチップと、
 順に積層された第2のチップ及び第3のチップを含み、
 前記第2のチップ及び前記第3のチップは、全体として、前記第1のチップの厚さよりも大きい厚さを有し、
 前記シーム部は、
 前記第1のチップから前記埋め込み層の表面に向かって延在する第1のシーム部と、
 前記第2のチップから前記埋め込み層の表面に向かって延在する第2のシーム部と、
 を含み、
 前記第2のシーム部は、前記第1のシーム部よりも、前記埋め込み層の表面の近くまで延在している、
 (1)~(18)のいずれかに記載の光検出装置。
(20)
 前記封止層は、前記第2のシーム部の少なくとも一部を埋めるように前記第2のシーム部内まで延在する延在部を含む、
 (18)又は(19)に記載の光検出装置。
(21)
 前記第1のシーム部は、前記埋め込み層の表面に到達しておらず、
 前記第2のシーム部は、前記埋め込み層の表面に到達している、
 (18)~(20)のいずれかに記載の光検出装置。
(22)
 前記チップは、高さ方向に並んで位置する下方チップ及び上方チップを含み、
 前記光検出装置は、前記下方チップと前記上方チップとの間に設けられた接合層をさらに備え、
 前記埋め込み層は、
 前記下方チップの側面を覆うように設けられた下方埋め込み層と、
 前記上方チップ及び前記接合層を覆うように設けられた上方埋め込み層と、
 を含み、
 前記シーム部は、
 前記下方埋め込み層内に発生し、前記下方埋め込み層の表面まで延在する下方シーム部と、
 前記上方埋め込み層内に発生し、前記上方埋め込み層の表面まで延在する上方シーム部と、
 を含み、
 前記接合層は、前記下方埋め込み層及び前記下方シーム部を覆うように設けられ、
 前記封止層は、前記上方埋め込み層及び前記上方シーム部を覆うように設けられる、
 (1)~(21)のいずれかに記載の光検出装置。
(23)
 前記チップは、前記接合層を挟んで互いに反対側に設けられた下方チップ及びダミーチップをさらに含み、
 前記上方埋め込み層は、前記上方チップ、前記ダミーチップ及び前記接合層を覆うように設けられる、
 (22)に記載の光検出装置。
(24)
 前記封止層は、
 前記シーム部を覆う第1の部分と、
 前記シーム部を覆わない第2の部分と、
 を含み、
 前記第1の部分の裏面は、前記第2の部分の裏面よりも下方に位置している、
 (1)~(23)のいずれかに記載の光検出装置。
(25)
 前記第1の部分の表面は、前記第2の部分の表面と同じ高さに位置している、
 (24)に記載の光検出装置。
(26)
 前記封止層を覆うように設けられた補助層を備え、
 前記第2の部分の表面は、前記第1の部分の表面よりも上方に位置しており、
 前記補助層の表面は、平坦面である、
 (24)に記載の光検出装置。
(27)
 前記封止層は、複数の層が積層された積層構造を有する、
 (1)~(26)のいずれかに記載の光検出装置。
(28)
 前記封止層の前記複数の層は、無機層及び有機層を含む、
 (27)に記載の光検出装置。
(29)
 前記チップと間隔をあけて隣り合うように配置されたダミーチップを備え、
 前記埋め込み層は、前記チップ及び前記ダミーチップを覆うように設けられ、
 前記シーム部は、前記チップと前記ダミーチップとの間の部分において、前記埋め込み層の表面まで延在する、
 (1)~(28)のいずれかに記載の光検出装置。
(30)
 前記シーム部は、前記チップ及び前記ダミーチップの高さ方向に沿って延在する、
 (29)に記載の光検出装置。
(31)
 前記チップは、互いに離間して設けられた2つのチップを含み、
 前記ダミーチップは、前記2つのチップどうしの間に設けられる、
 (29)又は(30)に記載の光検出装置。
(32)
 前記チップは、前記チップの表面に向かうにつれて幅が小さくなる形状を有する、
 (1)~(31)のいずれかに記載の光検出装置。
(33)
 前記チップの縁部は、前記チップの表面において、テーパー形状又はラウンド形状を有する、
 (32)に記載の光検出装置。
(34)
 前記シーム部は、前記チップの高さ方向に沿って延在する、
 (32)又は(33)に記載の光検出装置。
(35)
 前記シーム部は、その延在方向に進むにつれて幅が変化する形状を有する、
 (1)~(34)のいずれかに記載の光検出装置。
(36)
 前記シーム部は、
 前記シーム部の延在方向において中央に位置する中央部と、
 前記シーム部の延在方向において端に位置する端部と、
 を含み、
 前記中央部は、前記端部の幅よりも大きい幅を有する、
 (35)に記載の光検出装置。
(37)
 平面視したときに、前記ダミーチップは、前記チップの側面に対向するように延在し、延在方向において、対向する前記チップの側面の長さの2分の1以上の長さを有する、
 (29)~(36)のいずれかに記載の光検出装置。
(38)
 平面視したときに、前記ダミーチップは、前記チップを挟み込むように配置される、
 (29)~(37)のいずれかに記載の光検出装置。
(39)
 前記ダミーチップは、2つ以上のダミーチップを含む、
 (29)~(38)のいずれかに記載の光検出装置。
(40)
 前記ダミーチップの材料は、前記チップの材料と同じ材料を含む、
 (29)~(39)のいずれかに記載の光検出装置。
(41)
 前記ダミーチップは、前記チップの高さと同じ高さを有する、
 (29)~(40)のいずれかに記載の光検出装置。
(42)
 前記チップは、2つ以上のチップを含む、
 (29)~(41)のいずれかに記載の光検出装置。
(43)
 平面視したときに、前記ダミーチップは、前記チップを取り囲むように連続して延在する、
 (29)~(42)のいずれかに記載の光検出装置。
(44)
 前記光検出装置を側方からみたときに、前記ダミーチップは、前記埋め込み層から露出する側面を有する、
 (29)~(43)のいずれかに記載の光検出装置。
(45)
 前記シーム部の少なくとも一部は、前記埋め込み層の材料とは異なる材料で埋められており、
 前記封止層は、シリコンの熱伝導率よりも高い熱伝導率を有する層である、
 (1)~(44)のいずれかに記載の光検出装置。
(46)
 前記埋め込み層及び前記シーム部を覆うように設けられた第1の封止層と、
 前記第1の封止層を覆うように設けられた第2の封止層と、
 を備え、
 前記第2の封止層は、シリコンの熱伝導率よりも高い熱伝導率を有する、
 (45)に記載の光検出装置。
(47)
 前記封止層は、金属層である、
 (45)又は(46)に記載の光検出装置。
(48)
 前記封止層は、
 前記埋め込み層及び前記チップのうちの前記埋め込み層を覆う第1の部分と、
 前記埋め込み層及び前記チップのうちの前記チップを覆う第2の部分と、
 を含み、
 前記第1の部分は、絶縁性を有し、
 前記第2の部分は、シリコンの熱伝導率よりも高い熱伝導率を有する、
 (45)~(47)のいずれかに記載の光検出装置。
(49)
 前記チップと前記埋め込み層との間に設けられた追加層を備え、
 前記追加層は、金属層である、
 (45)~(48)のいずれかに記載の光検出装置。
(50)
 前記チップと前記封止層との間に設けられた化合物層を備え、
 前記化合物層は、シリサイド層である、
 (45)~(49)のいずれかに記載の光検出装置。
(51)
 前記封止層は、絶縁体内に金属構造体が設けられた層である、
 請求項(45)~(50)のいずれかに記載の光検出装置。
(52)
 前記封止層は、樹脂層である、
 (1)~(51)のいずれかに記載の光検出装置。
(53)
 前記埋め込み層の表面は、凹部を有し、
 前記封止層は、前記凹部を埋めるように設けられる、
 (52)に記載の光検出装置。
(54)
 前記封止層の表面は、平坦面である、
 (52)又は(53)に記載の光検出装置。
(55)
 前記樹脂層は、酸化層又は有機層である、
 (52)~(54)のいずれかに記載の光検出装置。
(56)
 前記有機層は、400℃以上の耐熱性を有する、
 (55)に記載の光検出装置。
(57)
 前記有機層の材料は、ポリイミド、シロキサン及びシリコーンの少なくとも1つを含む、
 (56)に記載の光検出装置。
(58)
 前記チップと前記埋め込み層との間に設けられた樹脂層を備える、
 (1)~(57)のいずれかに記載の光検出装置。
(59)
 前記樹脂層は、酸化層又は有機層である、
 (58)に記載の光検出装置。
(60)
 前記有機層は、400℃以上の耐熱性を有する、
 (59)に記載の光検出装置。
(61)
 前記有機層の材料は、ポリイミド、シロキサン及びシリコーンの少なくとも1つを含む、
 (60)に記載の光検出装置。
Note that the present technology can also have the following configuration.
(1)
a substrate including a photodetector;
a chip provided on the substrate;
a buried layer provided to cover the chip;
a seam generated within the buried layer and extending to the surface of the buried layer;
a sealing layer provided to cover the embedded layer and the seam portion;
Equipped with
Photodetection device.
(2)
a support substrate located on the opposite side of the substrate across the sealing layer and directly or indirectly supporting the sealing layer;
The photodetection device according to (1).
(3)
at least a portion of the seam portion is a void;
The photodetector according to (1) or (2).
(4)
The sealing layer includes an extension portion that extends into the seam portion so as to fill at least a portion of the seam portion.
The photodetector according to any one of (1) to (3).
(5)
The material of the sealing layer includes a low permeability material.
The photodetector according to any one of (1) to (4).
(6)
The material of the sealing layer includes a low Young's modulus material.
The photodetector according to any one of (1) to (5).
(7)
comprising a side wall portion provided to cover a side surface of the chip;
The photodetector according to any one of (1) to (6).
(8)
The chip includes a first chip and a second chip that are spaced apart from each other,
The seam part includes a first seam part caused by the first chip and a second seam part caused by the second chip,
the first seam part and the second seam part are connected to each other,
The photodetector according to any one of (1) to (7).
(9)
an additional layer provided between the chip and the buried layer;
The photodetector according to any one of (1) to (8).
(10)
comprising an auxiliary layer provided to cover the sealing layer;
The photodetector according to any one of (1) to (9).
(11)
The auxiliary layer has a laminated structure,
The photodetector according to (10).
(12)
The chip includes at least one of a logic chip, a memory chip, and an AI (Artificial Intelligence) chip.
The photodetector according to any one of (1) to (11).
(13)
An imaging device configured to include a plurality of pixels,
The photodetector according to any one of (1) to (12).
(14)
a filter layer provided on the opposite side of the chip and the buried layer with the substrate in between;
a lens layer provided on the opposite side of the substrate with the filter layer in between;
Equipped with
The photodetector according to (13).
(15)
an additional substrate provided between the substrate and the buried layer;
The photodetector according to any one of (1) to (14).
(16)
The chip includes two chips arranged adjacent to each other with an interval,
The buried layer includes wiring provided between the two chips,
The photodetector according to any one of (1) to (15).
(17)
a supporting substrate that is provided on the opposite side of the substrate with the sealing layer in between and directly or indirectly supports the sealing layer;
a through via that penetrates the buried layer, the sealing layer, and the support substrate;
Equipped with
The photodetector according to any one of (1) to (16).
(18)
The chip is
a first chip;
a second chip having a thickness greater than the thickness of the first chip;
including;
The seam portion is
a first seam extending from the first chip toward the surface of the buried layer;
a second seam extending from the second chip toward the surface of the buried layer;
including;
The second seam portion extends closer to the surface of the buried layer than the first seam portion.
The photodetector according to any one of (1) to (17).
(19)
The chip is
a first chip;
including a second chip and a third chip stacked in order,
The second chip and the third chip have an overall thickness greater than the thickness of the first chip,
The seam portion is
a first seam extending from the first chip toward the surface of the buried layer;
a second seam extending from the second chip toward the surface of the buried layer;
including;
The second seam portion extends closer to the surface of the buried layer than the first seam portion.
The photodetector according to any one of (1) to (18).
(20)
The sealing layer includes an extension portion that extends into the second seam portion so as to fill at least a portion of the second seam portion.
The photodetector according to (18) or (19).
(21)
the first seam portion does not reach the surface of the buried layer;
the second seam reaches a surface of the buried layer;
The photodetector according to any one of (18) to (20).
(22)
The chips include a lower chip and an upper chip located side by side in the height direction,
The photodetecting device further includes a bonding layer provided between the lower chip and the upper chip,
The embedded layer is
a lower buried layer provided to cover a side surface of the lower chip;
an upper buried layer provided to cover the upper chip and the bonding layer;
including;
The seam portion is
a lower seam generated within the lower buried layer and extending to a surface of the lower buried layer;
an upper seam occurring within the upper buried layer and extending to a surface of the upper buried layer;
including;
The bonding layer is provided to cover the lower buried layer and the lower seam portion,
The sealing layer is provided to cover the upper buried layer and the upper seam part,
The photodetector according to any one of (1) to (21).
(23)
The chip further includes a lower chip and a dummy chip provided on opposite sides of the bonding layer,
The upper buried layer is provided to cover the upper chip, the dummy chip, and the bonding layer.
The photodetector according to (22).
(24)
The sealing layer is
a first portion covering the seam portion;
a second portion that does not cover the seam portion;
including;
The back surface of the first portion is located below the back surface of the second portion.
The photodetector according to any one of (1) to (23).
(25)
a surface of the first portion is located at the same height as a surface of the second portion;
The photodetector according to (24).
(26)
comprising an auxiliary layer provided to cover the sealing layer,
The surface of the second portion is located above the surface of the first portion,
The surface of the auxiliary layer is a flat surface.
The photodetector according to (24).
(27)
The sealing layer has a laminated structure in which a plurality of layers are laminated.
The photodetector according to any one of (1) to (26).
(28)
The plurality of layers of the sealing layer include an inorganic layer and an organic layer.
The photodetector according to (27).
(29)
a dummy chip arranged adjacent to the chip with a space therebetween;
The buried layer is provided to cover the chip and the dummy chip,
The seam portion extends to the surface of the buried layer in a portion between the chip and the dummy chip.
The photodetector according to any one of (1) to (28).
(30)
The seam portion extends along the height direction of the chip and the dummy chip.
The photodetector according to (29).
(31)
The chip includes two chips spaced apart from each other,
The dummy chip is provided between the two chips,
The photodetector according to (29) or (30).
(32)
The chip has a shape whose width decreases toward the surface of the chip,
The photodetector according to any one of (1) to (31).
(33)
The edge of the chip has a tapered shape or a round shape on the surface of the chip,
The photodetector according to (32).
(34)
The seam portion extends along the height direction of the chip.
The photodetector according to (32) or (33).
(35)
The seam portion has a shape whose width changes as it progresses in its extending direction.
The photodetection device according to any one of (1) to (34).
(36)
The seam portion is
a central portion located at the center in the extending direction of the seam portion;
an end located at the end in the extending direction of the seam part;
including;
The central portion has a width greater than the width of the end portions.
The photodetector according to (35).
(37)
When viewed in plan, the dummy chip extends so as to face the side surface of the chip, and has a length in the extending direction that is at least half the length of the side surface of the opposing chip.
The photodetector according to any one of (29) to (36).
(38)
When viewed from above, the dummy chip is arranged to sandwich the chip,
The photodetector according to any one of (29) to (37).
(39)
The dummy chip includes two or more dummy chips.
The photodetector according to any one of (29) to (38).
(40)
The material of the dummy chip includes the same material as the material of the chip,
The photodetector according to any one of (29) to (39).
(41)
the dummy chip has the same height as the chip;
The photodetector according to any one of (29) to (40).
(42)
The chip includes two or more chips.
The photodetector according to any one of (29) to (41).
(43)
When viewed in plan, the dummy chip extends continuously so as to surround the chip,
The photodetector according to any one of (29) to (42).
(44)
When the photodetection device is viewed from the side, the dummy chip has a side surface exposed from the buried layer.
The photodetector according to any one of (29) to (43).
(45)
At least a portion of the seam portion is filled with a material different from the material of the buried layer,
The sealing layer is a layer having a thermal conductivity higher than that of silicon,
The photodetector according to any one of (1) to (44).
(46)
a first sealing layer provided to cover the embedded layer and the seam portion;
a second sealing layer provided to cover the first sealing layer;
Equipped with
The second sealing layer has a thermal conductivity higher than that of silicon.
The photodetector according to (45).
(47)
the sealing layer is a metal layer,
The photodetector according to (45) or (46).
(48)
The sealing layer is
a first portion of the buried layer and the chip that covers the buried layer;
a second portion of the embedded layer and the chip that covers the chip;
including;
The first portion has insulating properties,
the second portion has a thermal conductivity higher than that of silicon;
The photodetector according to any one of (45) to (47).
(49)
an additional layer provided between the chip and the buried layer;
the additional layer is a metal layer;
The photodetector according to any one of (45) to (48).
(50)
comprising a compound layer provided between the chip and the sealing layer,
the compound layer is a silicide layer,
The photodetector according to any one of (45) to (49).
(51)
The sealing layer is a layer in which a metal structure is provided within an insulator.
The photodetection device according to any one of claims (45) to (50).
(52)
The sealing layer is a resin layer.
The photodetector according to any one of (1) to (51).
(53)
The surface of the buried layer has a recess,
The sealing layer is provided to fill the recess,
The photodetector according to (52).
(54)
The surface of the sealing layer is a flat surface.
The photodetector according to (52) or (53).
(55)
The resin layer is an oxidized layer or an organic layer,
The photodetector according to any one of (52) to (54).
(56)
The organic layer has heat resistance of 400° C. or higher,
The photodetector according to (55).
(57)
The material of the organic layer includes at least one of polyimide, siloxane, and silicone.
The photodetector according to (56).
(58)
comprising a resin layer provided between the chip and the buried layer;
The photodetector according to any one of (1) to (57).
(59)
The resin layer is an oxidized layer or an organic layer,
The photodetector according to (58).
(60)
The organic layer has heat resistance of 400° C. or higher,
The photodetector according to (59).
(61)
The material of the organic layer includes at least one of polyimide, siloxane, and silicone.
The photodetector according to (60).
 100 光検出装置
   1 基板
  1a 表面
  1b 裏面
  1p 光検出素子
   2 チップ
  2a 表面
  2b 実装面
  2c 側面
  2d 側面
  2e 側面
  2f 側面
  2v 貫通ビア
  21 中央部
  22 縁部
  2D ダミーチップ
   3 埋め込み層
  3a 表面
  3b 裏面
  3h 角部
  3v 貫通ビア
 3c1 凹部
 3c2 凸部
   4 シーム部
  41 端部
  42 中央部
  43 端部
  4a 空隙
   5 封止層
  5a 延在部
  51 第1の部分
 51a 表面
 51b 裏面
  52 第2の部分
 52a 表面
 52b 裏面
  53 無機層
  54 有機層
 5-2 封止層
 5-3 封止層
 5-4 封止層
 5-5 封止層
5-5v ビア
 5-6 封止層
   6 補助層
  61 層
  62 層
  63 層
  6a 表面
   7 支持基板
  7a 表面
  7b 裏面
   8 側壁部
   9 追加層
   L 配線
  10 フィルタ層
  11 レンズ層
 11a レンズ
  12 追加基板
 12a 表面
 12b 裏面
 12v 貫通ビア
   V 貫通ビア
  13 接合層
  14 化合物層
  15 樹脂層
 200 ウェハ
  Ad 添加剤
  Pa セリア砥粒
  SL スクライブライン
100 Photodetector 1 Substrate 1a Front 1b Back 1p Photodetector element 2 Chip 2a Front 2b Mounting surface 2c Side 2d Side 2e Side 2f Side 2v Through via 21 Center 22 Edge 2D Dummy chip 3 Embedded layer 3a Front 3b Back 3h Corner Part 3v Through via 3c1 Concave part 3c2 Convex part 4 Seam part 41 End part 42 Central part 43 End part 4a Gap 5 Sealing layer 5a Extending part 51 First part 51a Front surface 51b Back surface 52 Second part 52a Front surface 52b Back surface 53 Inorganic layer 54 Organic layer 5-2 Sealing layer 5-3 Sealing layer 5-4 Sealing layer 5-5 Sealing layer 5-5v Via 5-6 Sealing layer 6 Auxiliary layer 61 layer 62 layer 63 layer 6a Surface 7 Support substrate 7a Front surface 7b Back surface 8 Side wall portion 9 Additional layer L Wiring 10 Filter layer 11 Lens layer 11a Lens 12 Additional substrate 12a Front surface 12b Back surface 12v Through via V Through via 13 Bonding layer 14 Compound layer 15 Resin layer 200 Wafer Ad Additive Pa Ceria Abrasive SL Scribe Line

Claims (61)

  1.  光検出素子を含む基板と、
     前記基板に対して設けられたチップと、
     前記チップを覆うように設けられた埋め込み層と、
     前記埋め込み層内に発生し、前記埋め込み層の表面まで延在しているシーム部と、
     前記埋め込み層及び前記シーム部を覆うように設けられた封止層と、
     を備える、
     光検出装置。
    a substrate including a photodetector;
    a chip provided on the substrate;
    a buried layer provided to cover the chip;
    a seam generated within the buried layer and extending to the surface of the buried layer;
    a sealing layer provided to cover the embedded layer and the seam portion;
    Equipped with
    Photodetection device.
  2.  前記封止層を挟んで前記基板とは反対側に位置し、前記封止層を直接的又は間接的に支持する支持基板を備える、
     請求項1に記載の光検出装置。
    a support substrate located on the opposite side of the substrate across the sealing layer and directly or indirectly supporting the sealing layer;
    The photodetection device according to claim 1.
  3.  前記シーム部の少なくとも一部は、空隙である、
     請求項1に記載の光検出装置。
    at least a portion of the seam portion is a void;
    The photodetection device according to claim 1.
  4.  前記封止層は、前記シーム部の少なくとも一部を埋めるように前記シーム部内まで延在する延在部を含む、
     請求項1に記載の光検出装置。
    The sealing layer includes an extension portion that extends into the seam portion so as to fill at least a portion of the seam portion.
    The photodetection device according to claim 1.
  5.  前記封止層の材料は、低浸透性材料を含む、
     請求項1に記載の光検出装置。
    The material of the sealing layer includes a low permeability material.
    The photodetection device according to claim 1.
  6.  前記封止層の材料は、低ヤング率材料を含む、
     請求項1に記載の光検出装置。
    The material of the sealing layer includes a low Young's modulus material.
    The photodetection device according to claim 1.
  7.  前記チップの側面を覆うように設けられた側壁部を備える、
     請求項1に記載の光検出装置。
    comprising a side wall portion provided to cover a side surface of the chip;
    The photodetection device according to claim 1.
  8.  前記チップは、互いに離間して設けられた第1のチップ及び第2のチップを含み、
     前記シーム部は、前記第1のチップに起因して発生した第1のシーム部及び前記第2のチップに起因して発生した第2のシーム部を含み、
     前記第1のシーム部及び前記第2のシーム部は、互いにつながっている、
     請求項1に記載の光検出装置。
    The chip includes a first chip and a second chip that are spaced apart from each other,
    The seam part includes a first seam part caused by the first chip and a second seam part caused by the second chip,
    the first seam part and the second seam part are connected to each other,
    The photodetection device according to claim 1.
  9.  前記チップと前記埋め込み層との間に設けられた追加層を備える、
     請求項1に記載の光検出装置。
    an additional layer provided between the chip and the buried layer;
    The photodetection device according to claim 1.
  10.  前記封止層を覆うように設けられた補助層を備える、
     請求項1に記載の光検出装置。
    comprising an auxiliary layer provided to cover the sealing layer;
    The photodetection device according to claim 1.
  11.  前記補助層は、積層構造を有する、
     請求項10に記載の光検出装置。
    The auxiliary layer has a laminated structure,
    The photodetection device according to claim 10.
  12.  前記チップは、ロジックチップ、メモリチップ及びAI(Artificial Intelligence)チップの少なくとも1つを含む、
     請求項1に記載の光検出装置。
    The chip includes at least one of a logic chip, a memory chip, and an AI (Artificial Intelligence) chip.
    The photodetection device according to claim 1.
  13.  複数の画素を含むように構成された撮像装置である、
     請求項1に記載の光検出装置。
    An imaging device configured to include a plurality of pixels,
    The photodetection device according to claim 1.
  14.  前記基板を挟んで前記チップ及び前記埋め込み層とは反対側に設けられたフィルタ層と、
     前記フィルタ層を挟んで前記基板とは反対側に設けられたレンズ層と、
     を備える、
     請求項13に記載の光検出装置。
    a filter layer provided on the opposite side of the chip and the buried layer with the substrate in between;
    a lens layer provided on the opposite side of the substrate with the filter layer in between;
    Equipped with
    The photodetection device according to claim 13.
  15.  前記基板と前記埋め込み層との間に設けられた追加基板を備える、
     請求項1に記載の光検出装置。
    an additional substrate provided between the substrate and the buried layer;
    The photodetection device according to claim 1.
  16.  前記チップは、間隔をあけて隣り合うように配置された2つのチップを含み、
     前記埋め込み層は、前記2つのチップどうしの間に設けられた配線を含む、
     請求項1に記載の光検出装置。
    The chip includes two chips arranged adjacent to each other with an interval,
    The buried layer includes wiring provided between the two chips,
    The photodetection device according to claim 1.
  17.  前記封止層を挟んで前記基板とは反対側に設けられ、前記封止層を直接的又は間接的に支持する支持基板と、
     前記埋め込み層、前記封止層及び前記支持基板を貫通する貫通ビアと、
     を備える、
     請求項1に記載の光検出装置。
    a supporting substrate that is provided on the opposite side of the substrate with the sealing layer in between and supports the sealing layer directly or indirectly;
    a through via that penetrates the buried layer, the sealing layer, and the support substrate;
    Equipped with
    The photodetection device according to claim 1.
  18.  前記チップは、
     第1のチップと、
     前記第1のチップの厚さよりも大きい厚さを有する第2のチップと、
     を含み、
     前記シーム部は、
     前記第1のチップから前記埋め込み層の表面に向かって延在する第1のシーム部と、
     前記第2のチップから前記埋め込み層の表面に向かって延在する第2のシーム部と、
     を含み、
     前記第2のシーム部は、前記第1のシーム部よりも、前記埋め込み層の表面の近くまで延在している、
     請求項1に記載の光検出装置。
    The chip is
    a first chip;
    a second chip having a thickness greater than the thickness of the first chip;
    including;
    The seam portion is
    a first seam extending from the first chip toward the surface of the buried layer;
    a second seam extending from the second chip toward the surface of the buried layer;
    including;
    The second seam portion extends closer to the surface of the buried layer than the first seam portion.
    The photodetection device according to claim 1.
  19.  前記チップは、
     第1のチップと、
     順に積層された第2のチップ及び第3のチップを含み、
     前記第2のチップ及び前記第3のチップは、全体として、前記第1のチップの厚さよりも大きい厚さを有し、
     前記シーム部は、
     前記第1のチップから前記埋め込み層の表面に向かって延在する第1のシーム部と、
     前記第2のチップから前記埋め込み層の表面に向かって延在する第2のシーム部と、
     を含み、
     前記第2のシーム部は、前記第1のシーム部よりも、前記埋め込み層の表面の近くまで延在している、
     請求項1に記載の光検出装置。
    The chip is
    a first chip;
    including a second chip and a third chip stacked in order,
    The second chip and the third chip have an overall thickness greater than the thickness of the first chip,
    The seam portion is
    a first seam extending from the first chip toward the surface of the buried layer;
    a second seam extending from the second chip toward the surface of the buried layer;
    including;
    The second seam portion extends closer to the surface of the buried layer than the first seam portion.
    The photodetection device according to claim 1.
  20.  前記封止層は、前記第2のシーム部の少なくとも一部を埋めるように前記第2のシーム部内まで延在する延在部を含む、
     請求項18に記載の光検出装置。
    The sealing layer includes an extension portion that extends into the second seam portion so as to fill at least a portion of the second seam portion.
    The photodetection device according to claim 18.
  21.  前記第1のシーム部は、前記埋め込み層の表面に到達しておらず、
     前記第2のシーム部は、前記埋め込み層の表面に到達している、
     請求項18に記載の光検出装置。
    the first seam portion does not reach the surface of the buried layer;
    the second seam reaches a surface of the buried layer;
    The photodetection device according to claim 18.
  22.  前記チップは、高さ方向に並んで位置する下方チップ及び上方チップを含み、
     前記光検出装置は、前記下方チップと前記上方チップとの間に設けられた接合層をさらに備え、
     前記埋め込み層は、
     前記下方チップの側面を覆うように設けられた下方埋め込み層と、
     前記上方チップ及び前記接合層を覆うように設けられた上方埋め込み層と、
     を含み、
     前記シーム部は、
     前記下方埋め込み層内に発生し、前記下方埋め込み層の表面まで延在する下方シーム部と、
     前記上方埋め込み層内に発生し、前記上方埋め込み層の表面まで延在する上方シーム部と、
     を含み、
     前記接合層は、前記下方埋め込み層及び前記下方シーム部を覆うように設けられ、
     前記封止層は、前記上方埋め込み層及び前記上方シーム部を覆うように設けられる、
     請求項1に記載の光検出装置。
    The chips include a lower chip and an upper chip located side by side in the height direction,
    The photodetecting device further includes a bonding layer provided between the lower chip and the upper chip,
    The buried layer is
    a lower buried layer provided to cover a side surface of the lower chip;
    an upper buried layer provided to cover the upper chip and the bonding layer;
    including;
    The seam portion is
    a lower seam generated within the lower buried layer and extending to a surface of the lower buried layer;
    an upper seam occurring within the upper buried layer and extending to a surface of the upper buried layer;
    including;
    The bonding layer is provided to cover the lower buried layer and the lower seam portion,
    The sealing layer is provided to cover the upper buried layer and the upper seam part,
    The photodetection device according to claim 1.
  23.  前記チップは、前記接合層を挟んで互いに反対側に設けられた下方チップ及びダミーチップをさらに含み、
     前記上方埋め込み層は、前記上方チップ、前記ダミーチップ及び前記接合層を覆うように設けられる、
     請求項22に記載の光検出装置。
    The chip further includes a lower chip and a dummy chip provided on opposite sides of the bonding layer,
    The upper buried layer is provided to cover the upper chip, the dummy chip, and the bonding layer.
    The photodetection device according to claim 22.
  24.  前記封止層は、
     前記シーム部を覆う第1の部分と、
     前記シーム部を覆わない第2の部分と、
     を含み、
     前記第1の部分の裏面は、前記第2の部分の裏面よりも下方に位置している、
     請求項1に記載の光検出装置。
    The sealing layer is
    a first portion covering the seam portion;
    a second portion that does not cover the seam portion;
    including;
    The back surface of the first portion is located below the back surface of the second portion.
    The photodetection device according to claim 1.
  25.  前記第1の部分の表面は、前記第2の部分の表面と同じ高さに位置している、
     請求項24に記載の光検出装置。
    a surface of the first portion is located at the same height as a surface of the second portion;
    The photodetection device according to claim 24.
  26.  前記封止層を覆うように設けられた補助層を備え、
     前記第2の部分の表面は、前記第1の部分の表面よりも上方に位置しており、
     前記補助層の表面は、平坦面である、
     請求項24に記載の光検出装置。
    comprising an auxiliary layer provided to cover the sealing layer,
    The surface of the second portion is located above the surface of the first portion,
    The surface of the auxiliary layer is a flat surface.
    The photodetection device according to claim 24.
  27.  前記封止層は、複数の層が積層された積層構造を有する、
     請求項1に記載の光検出装置。
    The sealing layer has a laminated structure in which a plurality of layers are laminated.
    The photodetection device according to claim 1.
  28.  前記封止層の前記複数の層は、無機層及び有機層を含む、
     請求項27に記載の光検出装置。
    The plurality of layers of the sealing layer include an inorganic layer and an organic layer.
    The photodetection device according to claim 27.
  29.  前記チップと間隔をあけて隣り合うように配置されたダミーチップを備え、
     前記埋め込み層は、前記チップ及び前記ダミーチップを覆うように設けられ、
     前記シーム部は、前記チップと前記ダミーチップとの間の部分において、前記埋め込み層の表面まで延在する、
     請求項1に記載の光検出装置。
    a dummy chip arranged adjacent to the chip with a space therebetween;
    The buried layer is provided to cover the chip and the dummy chip,
    The seam portion extends to the surface of the buried layer in a portion between the chip and the dummy chip.
    The photodetection device according to claim 1.
  30.  前記シーム部は、前記チップ及び前記ダミーチップの高さ方向に沿って延在する、
     請求項29に記載の光検出装置。
    The seam portion extends along the height direction of the chip and the dummy chip.
    The photodetection device according to claim 29.
  31.  前記チップは、互いに離間して設けられた2つのチップを含み、
     前記ダミーチップは、前記2つのチップどうしの間に設けられる、
     請求項29に記載の光検出装置。
    The chip includes two chips spaced apart from each other,
    The dummy chip is provided between the two chips,
    The photodetection device according to claim 29.
  32.  前記チップは、前記チップの表面に向かうにつれて幅が小さくなる形状を有する、
     請求項1に記載の光検出装置。
    The chip has a shape whose width decreases toward the surface of the chip,
    The photodetection device according to claim 1.
  33.  前記チップの縁部は、前記チップの表面において、テーパー形状又はラウンド形状を有する、
     請求項32に記載の光検出装置。
    The edge of the chip has a tapered shape or a round shape on the surface of the chip,
    The photodetection device according to claim 32.
  34.  前記シーム部は、前記チップの高さ方向に沿って延在する、
     請求項32に記載の光検出装置。
    The seam portion extends along the height direction of the chip.
    The photodetection device according to claim 32.
  35.  前記シーム部は、その延在方向に進むにつれて幅が変化する形状を有する、
     請求項1に記載の光検出装置。
    The seam portion has a shape whose width changes as it progresses in its extending direction.
    The photodetection device according to claim 1.
  36.  前記シーム部は、
     前記シーム部の延在方向において中央に位置する中央部と、
     前記シーム部の延在方向において端に位置する端部と、
     を含み、
     前記中央部は、前記端部の幅よりも大きい幅を有する、
     請求項35に記載の光検出装置。
    The seam portion is
    a central portion located at the center in the extending direction of the seam portion;
    an end located at the end in the extending direction of the seam part;
    including;
    The central portion has a width greater than the width of the end portions.
    The photodetection device according to claim 35.
  37.  平面視したときに、前記ダミーチップは、前記チップの側面に対向するように延在し、延在方向において、対向する前記チップの側面の長さの2分の1以上の長さを有する、
     請求項29に記載の光検出装置。
    When viewed in plan, the dummy chip extends to face the side surface of the chip, and has a length in the extending direction that is at least half the length of the side surface of the opposing chip.
    The photodetection device according to claim 29.
  38.  平面視したときに、前記ダミーチップは、前記チップを挟み込むように配置される、
     請求項29に記載の光検出装置。
    When viewed from above, the dummy chip is arranged to sandwich the chip,
    The photodetection device according to claim 29.
  39.  前記ダミーチップは、2つ以上のダミーチップを含む、
     請求項29に記載の光検出装置。
    The dummy chip includes two or more dummy chips.
    The photodetection device according to claim 29.
  40.  前記ダミーチップの材料は、前記チップの材料と同じ材料を含む、
     請求項29に記載の光検出装置。
    The material of the dummy chip includes the same material as the material of the chip,
    The photodetection device according to claim 29.
  41.  前記ダミーチップは、前記チップの高さと同じ高さを有する、
     請求項29に記載の光検出装置。
    the dummy chip has the same height as the chip;
    The photodetection device according to claim 29.
  42.  前記チップは、2つ以上のチップを含む、
     請求項29に記載の光検出装置。
    The chip includes two or more chips.
    The photodetection device according to claim 29.
  43.  平面視したときに、前記ダミーチップは、前記チップを取り囲むように連続して延在する、
     請求項29に記載の光検出装置。
    When viewed in plan, the dummy chip extends continuously so as to surround the chip,
    The photodetection device according to claim 29.
  44.  前記光検出装置を側方からみたときに、前記ダミーチップは、前記埋め込み層から露出する側面を有する、
     請求項29に記載の光検出装置。
    When the photodetection device is viewed from the side, the dummy chip has a side surface exposed from the buried layer.
    The photodetection device according to claim 29.
  45.  前記シーム部の少なくとも一部は、前記埋め込み層の材料とは異なる材料で埋められており、
     前記封止層は、シリコンの熱伝導率よりも高い熱伝導率を有する層である、
     請求項1に記載の光検出装置。
    At least a portion of the seam portion is filled with a material different from the material of the buried layer,
    The sealing layer is a layer having a thermal conductivity higher than that of silicon,
    The photodetection device according to claim 1.
  46.  前記埋め込み層及び前記シーム部を覆うように設けられた第1の封止層と、
     前記第1の封止層を覆うように設けられた第2の封止層と、
     を備え、
     前記第2の封止層は、シリコンの熱伝導率よりも高い熱伝導率を有する、
     請求項45に記載の光検出装置。
    a first sealing layer provided to cover the embedded layer and the seam portion;
    a second sealing layer provided to cover the first sealing layer;
    Equipped with
    The second sealing layer has a thermal conductivity higher than that of silicon.
    The photodetection device according to claim 45.
  47.  前記封止層は、金属層である、
     請求項45に記載の光検出装置。
    the sealing layer is a metal layer,
    The photodetection device according to claim 45.
  48.  前記封止層は、
     前記埋め込み層及び前記チップのうちの前記埋め込み層を覆う第1の部分と、
     前記埋め込み層及び前記チップのうちの前記チップを覆う第2の部分と、
     を含み、
     前記第1の部分は、絶縁性を有し、
     前記第2の部分は、シリコンの熱伝導率よりも高い熱伝導率を有する、
     請求項45に記載の光検出装置。
    The sealing layer is
    a first portion of the buried layer and the chip that covers the buried layer;
    a second portion of the embedded layer and the chip that covers the chip;
    including;
    The first portion has insulating properties,
    the second portion has a thermal conductivity higher than that of silicon;
    The photodetection device according to claim 45.
  49.  前記チップと前記埋め込み層との間に設けられた追加層を備え、
     前記追加層は、金属層である、
     請求項45に記載の光検出装置。
    an additional layer provided between the chip and the buried layer;
    the additional layer is a metal layer;
    The photodetection device according to claim 45.
  50.  前記チップと前記封止層との間に設けられた化合物層を備え、
     前記化合物層は、シリサイド層である、
     請求項45に記載の光検出装置。
    comprising a compound layer provided between the chip and the sealing layer,
    the compound layer is a silicide layer,
    The photodetection device according to claim 45.
  51.  前記封止層は、絶縁体内に金属構造体が設けられた層である、
     請求項45に記載の光検出装置。
    The sealing layer is a layer in which a metal structure is provided within an insulator.
    The photodetection device according to claim 45.
  52.  前記封止層は、樹脂層である、
     請求項1に記載の光検出装置。
    The sealing layer is a resin layer.
    The photodetection device according to claim 1.
  53.  前記埋め込み層の表面は、凹部を有し、
     前記封止層は、前記凹部を埋めるように設けられる、
     請求項52に記載の光検出装置。
    The surface of the buried layer has a recess,
    The sealing layer is provided to fill the recess,
    The photodetection device according to claim 52.
  54.  前記封止層の表面は、平坦面である、
     請求項52に記載の光検出装置。
    The surface of the sealing layer is a flat surface.
    The photodetection device according to claim 52.
  55.  前記樹脂層は、酸化層又は有機層である、
     請求項52に記載の光検出装置。
    The resin layer is an oxidized layer or an organic layer,
    The photodetection device according to claim 52.
  56.  前記有機層は、400℃以上の耐熱性を有する、
     請求項55に記載の光検出装置。
    The organic layer has heat resistance of 400° C. or higher,
    The photodetection device according to claim 55.
  57.  前記有機層の材料は、ポリイミド、シロキサン及びシリコーンの少なくとも1つを含む、
     請求項56に記載の光検出装置。
    The material of the organic layer includes at least one of polyimide, siloxane, and silicone.
    The photodetection device according to claim 56.
  58.  前記チップと前記埋め込み層との間に設けられた樹脂層を備える、
     請求項1に記載の光検出装置。
    comprising a resin layer provided between the chip and the buried layer;
    The photodetection device according to claim 1.
  59.  前記樹脂層は、酸化層又は有機層である、
     請求項58に記載の光検出装置。
    The resin layer is an oxidized layer or an organic layer,
    The photodetection device according to claim 58.
  60.  前記有機層は、400℃以上の耐熱性を有する、
     請求項59に記載の光検出装置。
    The organic layer has heat resistance of 400° C. or higher,
    The photodetection device according to claim 59.
  61.  前記有機層の材料は、ポリイミド、シロキサン及びシリコーンの少なくとも1つを含む、
     請求項60に記載の光検出装置。
    The material of the organic layer includes at least one of polyimide, siloxane, and silicone.
    The photodetection device according to claim 60.
PCT/JP2023/032601 2022-09-08 2023-09-07 Light detection device WO2024053695A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-142956 2022-09-08
JP2022142956A JP2024038720A (en) 2022-09-08 2022-09-08 light detection device

Publications (1)

Publication Number Publication Date
WO2024053695A1 true WO2024053695A1 (en) 2024-03-14

Family

ID=90191272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032601 WO2024053695A1 (en) 2022-09-08 2023-09-07 Light detection device

Country Status (2)

Country Link
JP (1) JP2024038720A (en)
WO (1) WO2024053695A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221179A (en) * 1994-02-05 1995-08-18 Nec Corp Manufacturing method of semiconductor device
JPH088341A (en) * 1994-06-21 1996-01-12 Nippon Steel Corp Fabrication of semiconductor device
WO2017183390A1 (en) * 2016-04-20 2017-10-26 ソニー株式会社 Laminate structure and method for manufacturing same
WO2020079945A1 (en) * 2018-10-15 2020-04-23 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221179A (en) * 1994-02-05 1995-08-18 Nec Corp Manufacturing method of semiconductor device
JPH088341A (en) * 1994-06-21 1996-01-12 Nippon Steel Corp Fabrication of semiconductor device
WO2017183390A1 (en) * 2016-04-20 2017-10-26 ソニー株式会社 Laminate structure and method for manufacturing same
WO2020079945A1 (en) * 2018-10-15 2020-04-23 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic apparatus

Also Published As

Publication number Publication date
JP2024038720A (en) 2024-03-21

Similar Documents

Publication Publication Date Title
US20230107566A1 (en) Imaging unit, method for manufacturing the same, and electronic apparatus
CN111886855B (en) Image pickup apparatus and electronic apparatus
WO2022044553A1 (en) Semiconductor device and method for manufacturing semiconductor device
US20230361145A1 (en) Semiconductor device, method of manufacturing semiconductor device, and imaging element
WO2023176522A1 (en) Semiconductor device
WO2024053695A1 (en) Light detection device
WO2022196188A1 (en) Imaging device, method for manufacturing imaging device, and electronic device
JP2019161046A (en) Semiconductor device, imaging apparatus, and electronic equipment
JP7462620B2 (en) Semiconductor package, semiconductor package manufacturing method, and electronic device
WO2023248606A1 (en) Package, semiconductor device, and method for producing package
WO2024024794A1 (en) Electronic device
WO2023195236A1 (en) Package and method for manufacturing package
WO2024100994A1 (en) Peltier element and semiconductor package
US12080636B2 (en) Semiconductor package and manufacturing method of semiconductor package
WO2022239325A1 (en) Solid-state imaging device, method for manufacturing same, and electronic apparatus
WO2024057709A1 (en) Semiconductor package and electronic device
WO2023248974A1 (en) Photodetection element, and method for manufacturing photodetection element
WO2024024278A1 (en) Package and method for manufacturing package
WO2024111248A1 (en) Semiconductor package, optical device, and method for producing semiconductor package
WO2024202527A1 (en) Semiconductor package, semiconductor device, and method for manufacturing semiconductor package
WO2024062745A1 (en) Electronic device and manufacturing method for electronic device
WO2024224807A1 (en) Semiconductor package and method for producing semiconductor package
WO2024084865A1 (en) Semiconductor device
KR20240058890A (en) Semiconductor device, and method of manufacturing the semiconductor device
TW202247375A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863233

Country of ref document: EP

Kind code of ref document: A1