WO2024053649A1 - 氷核形成抑制または着雪氷抑制用の部材 - Google Patents

氷核形成抑制または着雪氷抑制用の部材 Download PDF

Info

Publication number
WO2024053649A1
WO2024053649A1 PCT/JP2023/032417 JP2023032417W WO2024053649A1 WO 2024053649 A1 WO2024053649 A1 WO 2024053649A1 JP 2023032417 W JP2023032417 W JP 2023032417W WO 2024053649 A1 WO2024053649 A1 WO 2024053649A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
polymer chain
chains
group
base material
Prior art date
Application number
PCT/JP2023/032417
Other languages
English (en)
French (fr)
Inventor
健 玉本
翼 杉田
宗平 金子
徳純 松井
敬亘 辻井
公洋 松川
雄司 黄瀬
健 中野
博之 荒船
貴哉 佐藤
Original Assignee
日本ペイントコーポレートソリューションズ株式会社
国立大学法人京都大学
国立大学法人横浜国立大学
独立行政法人国立高等専門学校機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイントコーポレートソリューションズ株式会社, 国立大学法人京都大学, 国立大学法人横浜国立大学, 独立行政法人国立高等専門学校機構 filed Critical 日本ペイントコーポレートソリューションズ株式会社
Publication of WO2024053649A1 publication Critical patent/WO2024053649A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class

Definitions

  • the present invention relates to a member for suppressing ice nucleation or snow and ice formation.
  • frost is formed through icing on the surface of the cooling member and the formation and growth of ice nuclei.
  • a method of suppressing the formation of frost a method of forming a resin film on the surface of a member is known, as described in Patent Document 1.
  • Patent Document 1 Although the method described in Patent Document 1 can delay the growth of frost by controlling the form of water droplets adhering to the surface of the member, it cannot sufficiently suppress the formation of ice nuclei and the accumulation of snow and ice on the surface of the member. , further improvements were required.
  • an object of the present invention is to provide a member that can suppress ice nucleation and snow and ice formation.
  • the present invention is as follows. [1] It has a layer containing a brush-like polymer chain aggregate composed of multiple polymer chains fixed to a base material, the layer containing the polymer chain aggregate retains a liquid substance; A member for suppressing ice nucleation or snow and ice formation, which has an icing stress of 150 kPa or less at -18°C. [2] The member according to [1], wherein the difference between the icing stress at -18°C and the icing stress at -8°C is 100 kPa or less. [3] The member according to [1] or [2], wherein the polymer chain aggregate does not swell with water and the liquid substance is immiscible with water.
  • the base material is a carrier made of a substance different from the polymer chain aggregate, The member according to [1] or [2], wherein the surface occupancy rate of the polymer chains on the surface of the base material is 0.08 to 0.65.
  • the member has a bottle brush structure in which the plurality of polymer chains are bonded as side chains to the polymer chain that is the base material, The member according to [1] or [2], wherein the surface occupancy of the side chain is 0.08 to 0.65.
  • the member of the present invention Since the member of the present invention has the above configuration, it is possible to suppress ice nucleation and snow and ice formation.
  • this embodiment a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail.
  • the present invention is not limited to the following description, and can be implemented with various modifications within the scope of the gist.
  • the member of this embodiment has a layer containing a brush-like polymer chain aggregate composed of a plurality of polymer chains fixed to a base material, and the layer containing the polymer chain aggregate contains a liquid substance.
  • This is a member for suppressing ice nucleation formation or snow and ice formation, which has an icing stress of 150 kPa or less at -18°C.
  • the above-mentioned member may be a member consisting only of a base material and the above-mentioned layer containing a polymer chain aggregate, or may further include other layers or materials.
  • the layer containing the polymer chain aggregate may be a layer consisting only of the polymer chain aggregate and a liquid substance, or may further contain other substances.
  • the member of this embodiment has an excellent effect of suppressing snow and ice formation and an excellent effect of suppressing ice nucleation. Although the detailed reason for obtaining such an effect is unknown, it is presumed to be due to the following.
  • the liquid substance is held by the polymer chain aggregates to form a stable liquid layer in which irreversible liquid leakage is unlikely to occur in the layer containing the polymer chain aggregates. Guessed.
  • the mobility of the liquid substance held by the polymer chain aggregates is appropriately controlled by the polymer chain aggregates, so that a supercooled state or an unfrozen state is likely to occur. It is presumed that the member of this embodiment has an interface with high mobility with respect to ice, snow, etc.
  • the member of this embodiment has an interface that prevents water from freezing on the member surface, prevents ice, snow, etc. from forming on the member surface, and has a highly movable interface with respect to ice, snow, etc. Therefore, even if ice, snow, etc. are formed on the surface of the member, it has excellent sliding properties, and is therefore presumed to have an excellent effect of suppressing snow and ice accumulation.
  • the member of this embodiment can further lower the freezing temperature of water inside or on the surface of the member, so the temperature at which ice nuclei are generated can be lowered, and it has an excellent effect of suppressing ice nucleation. It is presumed that it is.
  • the polymer chain aggregate used in this embodiment is an aggregate of multiple polymer chains, which has a brush-like shape as a whole, and is formed by simply applying a polymer solution. This is completely different from the organic film that was formed.
  • brush-like refers to a polymer chain in which at least one end is fixed to the surface of the base material or a layer on the base material, and a plurality of polymer chains (for example, two) extend in a direction away from the base material. (above) may be an existing structure. Note that when both ends of the polymer chain are fixed to the base material, it may have a U-shaped structure.
  • the layer containing the polymer chain aggregate retains a liquid substance. Furthermore, if it cannot be confirmed by differential scanning calorimetry, it can be confirmed by an indentation hardness test.
  • the liquid substance is held in the layer containing the polymer chain aggregate at a temperature lower than the freezing point (preferably -10°C or lower, more preferably -20°C or lower, still more preferably -30°C or lower). It is preferable that the liquid state be maintained even at temperatures below 10°C. Moreover, it is preferable that the liquid substance is water. Note that whether or not the liquid substance is in a liquid state can be confirmed by differential scanning calorimetry. Furthermore, if it cannot be confirmed by differential scanning calorimetry, it can be confirmed by an indentation hardness test.
  • the member of this embodiment has the following advantages: - At 18°C, when the polymer chains contained in the layer containing the polymer chain aggregate is 100 parts by mass, the proportion of the substance confirmed to be in a liquid state by the above method is 50 parts by mass or more. is preferable, more preferably 70 parts by mass or more, still more preferably 80 parts by mass or more, particularly preferably 90 parts by mass or more.
  • the above ratio can be adjusted by adjusting the combination of the polymer chain and the liquid substance. Further, the above ratio can be measured by an atomic force microscope, ellipsometry, or the like.
  • the member of this embodiment has a layer containing a brush-like polymer chain aggregate composed of a plurality of polymer chains fixed to a base material at -18°C, and includes the above-mentioned polymer chain aggregate.
  • the layer retains the liquid substance.
  • the thickness of the layer containing the polymer chain aggregate is preferably 50 nm or more, and 100 nm or more, because it is easier to obtain better effects of suppressing snow and ice accumulation and ice nucleation. It is more preferably at least 350 nm, even more preferably at least 500 nm, and particularly preferably at least 1000 nm.
  • the upper limit is not particularly limited, but may be, for example, 100 ⁇ m or less, or 50 ⁇ m or less.
  • the thickness of the layer containing the polymer chain aggregate can be measured by ellipsometry or the like. Further, the above film thickness may be a value measured at -18°C.
  • the polymer chain assembly in this embodiment is composed of a plurality of polymer chains and has a brush-like shape as a whole.
  • the term "polymer chain” as used herein refers to a molecule or a portion of a molecule having a structure in which a plurality of structural units are connected in a chain.
  • the plurality of polymer chains constituting the polymer chain assembly may be the same or different.
  • the polymer chain only needs to have a structure in which a plurality of identical or different constituent units are connected in a chain, and it may have a side chain or a branched structure. A crosslinked structure may be formed between them or between the polymer chains and the base material.
  • the polymer chain may be a polymer chain that has an affinity for the liquid substance held in the layer containing the polymer chain aggregate, or may be a polymer chain that does not have an affinity.
  • the polymer chains constituting the polymer chain assembly are preferably hydrophilic polymer chains.
  • the hydrophilic polymer chain may be synthesized using a hydrophilic monomer, or may be synthesized by synthesizing a polymer using a hydrophobic monomer and then introducing a hydrophilic group into the polymer.
  • a polymer chain with high compatibility with water may be referred to as a "compatible polymer chain”, and a polymer chain with low compatibility with water may be referred to as an "incompatible polymer chain”.
  • a polymer chain having high compatibility with water is defined as one having a degree of swelling measured and calculated by a film thickness measurement method using an atomic force microscope of 1.5 or more (preferably 2.0 or more, more preferably 2.0 or more). is 2.5 or more), and low compatibility with water is less than 1.5 (preferably 1.3 or less, more preferably 1.1 or less, still more preferably 1.08 or less). , particularly preferably 1.05 or less).
  • the said swelling degree refers to the value measured by the following method.
  • the polymer chain may be a homopolymer obtained by polymerizing one type of monomer, or may be a copolymer obtained by polymerizing two or more types of monomers.
  • Examples of the copolymer include random copolymers, block copolymers, gradient copolymers, and the like.
  • the monomer used to generate the polymer chain is preferably one that can bond the polymer chain obtained by polymerization to the base material as a graft chain.
  • examples of such monomers include monomers having at least one addition-polymerizable double bond, and preferably monofunctional monomers having one addition-polymerizable double bond.
  • monofunctional monomers having one addition-polymerizable double bond include (meth)acrylic acid monomers and styrene monomers.
  • the polymer chain may be a polymer obtained by reacting polymers having reactive groups with each other. Examples of the reactive group include a hydroxy group and an isocyanate group.
  • polymers having reactive groups include polymers of polyethylene glycol and dimethylsiloxane, and specific examples include Silaprene FM-0421 (reactive silicone) (manufactured by Shin-Etsu Chemical Co., Ltd.). Methoxypoly(ethylene glycol) methacrylate, which can reduce the difference between the icing stress at -8°C and the icing stress at -18°C, and is particularly effective in suppressing ice nucleation and snow and ice formation near -18°C.
  • a mixture of dodecyl methacrylate and tridecyl methacrylate is preferable, and a mixture of dodecyl methacrylate and tridecyl methacrylate is particularly preferable from the viewpoint of suppressing snow and ice formation outdoors.
  • (Meth)acrylic acid monomers include (meth)acrylic acid, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, and isobutyl (meth)acrylate.
  • Styrenic monomers include styrene, vinyltoluene, ⁇ -methylstyrene, p-chlorostyrene, p-chloromethylstyrene, m-chloromethylstyrene, o-aminostyrene, p-styrenechlorosulfonic acid, styrenesulfonic acid, and salt, vinylphenylmethyldithiocarbamate, 2-(2-bromopropionyloxy)styrene, 2-(2-bromoisobutyryloxy)styrene, 1-(2-((4-vinylphenyl)methoxy)-1-phenyl ethoxy)-2,2,6,6-tetramethylpiperidine, 1-(4-vinylphenyl)-3,5,7,9,11,13,15-heptaethylpentacyclo[9.5.1.13 ,9.15,15.17,13] oct
  • fluorine-containing vinyl monomers perfluoroethylene, perfluoropropylene, vinylidene fluoride, etc.
  • silicon-containing vinyl monomers vinyl trimethoxy silane, vinyltriethoxysilane
  • maleic anhydride maleic acid, monoalkyl esters and dialkyl esters of maleic acid, fumaric acid, monoalkyl esters and dialkyl esters of fumaric acid
  • maleimide monomers maleimide, methylmaleimide, ethylmaleimide, etc.
  • nitrile group-containing monomers acrylonitrile, methacrylon
  • ionic liquid monomers to generate polymer chains.
  • examples of the ionic liquid monomer include, but are not particularly limited to, compounds represented by the following formula (1).
  • m represents an integer of 1 to 10
  • n represents an integer of 1 to 5.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 2 , R 3 and R 4 each independently represent an alkyl group having 1 to 5 carbon atoms.
  • the alkyl group in R 2 , R 3 and R 4 may have a carbon atom or a hydrogen atom substituted with one or more hetero atoms selected from an oxygen atom, a sulfur atom, and a fluorine atom, and R 2 , R 3 and R 4 may be linked together to form a cyclic structure.
  • Y represents a monovalent anion.
  • Examples of the monovalent anion represented by Y include BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , AlCl 4 ⁇ , NbF 6 ⁇ , HSO 4 ⁇ , ClO 4 ⁇ , CH 3 SO 3 ⁇ , Examples include CF 3 SO 3 ⁇ , CF 3 CO 2 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , Cl ⁇ , Br ⁇ , I ⁇ and the like. Considering the stability of the anion, BF 4 ⁇ , PF 6 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , CF 3 SO 3 ⁇ or CF 3 CO 2 ⁇ is preferable.
  • the ionic liquid monomer is preferably a compound represented by any one of the following formulas (2) to (9).
  • m, n, R 1 , R 2 and Y have the same meanings as m, n, R 1 , R 2 and Y in formula (1).
  • Me represents a methyl group
  • Et represents an ethyl group.
  • hydrophilic monomers include hydroxy-substituted alkyl (meth)acrylates (e.g., 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2,3-dihydroxypropyl ( meth)acrylate, polyethoxyethyl (meth)acrylate, polyethoxypropyl (meth)acrylate, etc.), poly(alkylene glycol) mono(meth)acrylate (e.g.
  • Hydrophilic monomers include (meth)acrylamide, N-alkyl(meth)acrylamide (e.g., N-methylacrylamide, N,N-dimethylacrylamide, N-methylmethacrylamide, etc.), 2-glucosiloxyethyl (meth) )
  • N-alkyl(meth)acrylamide e.g., N-methylacrylamide, N,N-dimethylacrylamide, N-methylmethacrylamide, etc.
  • 2-glucosiloxyethyl (meth) e.g., N-methylacrylamide, N,N-dimethylacrylamide, N-methylmethacrylamide, etc.
  • 2-glucosiloxyethyl (meth) e.g., 2-glucosiloxyethyl (meth)
  • acrylate acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, crotonic acid
  • methacrylamide N-vinylpyrrolidone
  • hydrophilic polymer chain For the production of a hydrophilic polymer chain, it is also preferable to use a monomer having a carboxy group or a group that can be easily converted into a salt of a carboxy group in its side chain. Hydrophilicity can be imparted by converting the side chain groups of the produced polymer chain into carboxy groups or carboxy group salts. Examples of monomers having a carboxy group or a group that can be easily converted into a salt of a carboxy group in a side chain include tert-butyl (meth)acrylate.
  • the polymer chain is preferably a compatible polymer chain.
  • the compatible polymer chains include nonionic monomers such as poly(ethylene glycol) monomethacrylate; anionic monomers such as 3-sulfopropyl potassium methacrylate; cationic monomers such as methacryloyloxyethyltrimethylammonium chloride; and (3 - a betaine type monomer such as [(3-acrylamidopropyl)dimethylammonio]propane-1-sulfonic acid; It is preferable to include a structural unit derived from at least one compatible monomer selected from the group consisting of: Nonionic monomers are preferred from the viewpoint of being particularly effective in suppressing ice nucleation and snow accumulation near -18°C.The above compatible monomers may be used alone or in combination. good.
  • the compatible polymer chain has a mass ratio of structural units derived from the compatible monomer to 100 parts by mass of the compatible polymer chain of more than 50 parts by mass (preferably 70 parts by mass or more, more preferably 80 parts by mass). (more preferably 90 parts by mass or more, particularly preferably 100 parts by mass).
  • the mass ratio of the structural unit derived from the nonionic monomer to 100 parts by mass of the compatible polymer chain is preferably 70 parts by mass or more, more preferably 80 parts by mass or more, More preferably, it is 90 parts by mass or more, particularly preferably 100 parts by mass.
  • a compatible monomer is a monomer that has a swelling degree of 1.1 or more when made into a homopolymer
  • an incompatible monomer refers to a monomer that has a swelling degree of less than 1.1 when made into a homopolymer. It's called a certain monomer.
  • the liquid substance when the liquid substance is a substance incompatible with water (for example, an ionic liquid such as MEMP-TFSI, or a hydrocarbon oil such as poly- ⁇ -olefin), the icing stress of -8°C
  • the above-mentioned polymer chain is preferably an incompatible polymer chain from the viewpoint of reducing the difference between the icing stress at -18°C and being excellent in suppressing ice nucleation and snow and ice formation near -18°C.
  • a structural unit derived from an incompatible monomer such as an alkyl methacrylate having an alkyl group having 1 to 20 carbon atoms (preferably 1 to 15), such as methyl methacrylate, dodecyl methacrylate, or tridecyl methacrylate, or a methacrylate-terminated silicone macromonomer. It is preferable to include. Among these, from the viewpoint of being particularly effective in suppressing ice nucleation and snow and ice formation near -18°C, it is preferable to include a constituent unit consisting of a methacrylate-terminated silicone macromonomer (more preferably, only a constituent unit consisting of a methacrylate-terminated silicone macromonomer). ) is preferred.
  • the above-mentioned incompatible monomers may be used alone or in combination.
  • the mass ratio of the structural unit derived from the incompatible monomer to 100 parts by mass of the incompatible polymer chain is more than 50 parts by mass (preferably 70 parts by mass or more, more preferably 70 parts by mass or more). 80 parts by mass or more, more preferably 90 parts by mass or more, particularly preferably 100 parts by mass).
  • the monomers used to generate these polymer chains may be used alone or in combination of two or more.
  • a crosslinked structure may be formed between the polymer chains or between the polymer chains and the base material. Thereby, the elastic modulus of the polymer chain assembly can be controlled.
  • the crosslinked structure formed between polymer chains may be either a physical crosslinked structure or a chemical crosslinked structure.
  • the crosslinked structure may be formed simultaneously with the polymerization reaction for producing the polymer chain, or may be formed after the polymer chain is produced. Formation of a crosslinked structure that is carried out simultaneously with the polymerization reaction to generate a polymer chain requires adding a divinyl monomer such as ethylene glycol dimethacrylate to the polymerization reaction solution in addition to a monofunctional monomer to generate the polymer chain. This can be done by adding an appropriate amount of a difunctional monomer.
  • a crosslinking group is introduced into the polymer chain using a monomer having a crosslinking group, and the crosslinking group is The crosslinking group can be reacted with a reactive group of another polymer chain, or the crosslinking group can be reacted with a reactive group of a base material.
  • the crosslinking group include an azide group, a halogen group (preferably a bromo group), an alkoxysilyl group, an isocyanate group, a vinyl group, and a thiol group.
  • a reactive group remaining at the end of a graft chain can also be used as a crosslinking group.
  • the polymer chain aggregate does not swell with water. If the polymer chain aggregate does not swell with water, it is preferable that the liquid substance is immiscible with water. Since the liquid substance is immiscible with water, there is no need to suck out the liquid substance during snow and ice formation, making it possible to suppress snow and ice formation more efficiently.
  • polymer chain aggregates that do not swell with water preferably aggregates of incompatible polymer chains that do not swell with water, more preferably carbon atoms of 1 to 20 ( More preferably, it is a member having a polymer brush structure having a layer containing (1 to 15) an aggregate of polymer chains that do not swell with water and is composed of a structural unit derived from an alkyl methacrylate having an alkyl group.
  • a hydrocarbon oil preferably poly- ⁇ -olefin
  • Not swelling with water means that the degree of swelling in water measured and calculated using an atomic force microscope is 1.1 or less (preferably 1.08 or less, more preferably 1.05 or less).
  • the polymer chains constituting the polymer chain assembly are fixed to the base material.
  • the base material may be a carrier made of a substance different from the polymer chain assembly, or may be a linear or branched polymer chain that is the same as or different from the polymer chain assembly.
  • a polymer chain serving as a base material may be referred to as a "backbone polymer”.
  • the substrate is a carrier
  • the polymer chain assembly constitutes a "polymer brush.”
  • the carrier may be a flat, spherical, or porous base material having a large surface area (for example, a surface area of 100 mm 2 or more).
  • the base material is a backbone polymer
  • the entire combination of the backbone polymer as a main chain and the polymer chains (side chains) bonded to the main chain constitutes a "bottle brush structure.”
  • the member of this embodiment includes the bottle brush structure adhered to the carrier described above.
  • the polymer chains that make up the polymer chain aggregate are fixed to a carrier made of a different substance than the polymer chain aggregate, for example, the polymer chain aggregate forms a "polymer brush.” In this case, only one end of the polymer chain may be fixed to the base material (carrier), or both ends of the polymer chain may be fixed to the base material (carrier).
  • the polymer chain When both ends of a polymer chain are fixed to a base material (carrier), the polymer chain has a loop structure, and such a polymer chain aggregate constitutes a polymer brush with a loop structure.
  • the brush-like polymer having a loop structure may be a bottle brush.
  • immobilization refers to direct chemical bonding between a compound constituting the base material or an initiator group introduced onto the surface of the base material and a polymer chain, or a chemical bond between a layer provided on the surface of the base material and the polymer. Examples include binding to.
  • the compound constituting the base material or the initiating group introduced onto the surface of the base material and the polymer chain are directly chemically bonded.
  • substrate refers to something on which polymer chains are fixed.
  • carrier refers to a carrier having a layer containing a brush-like polymer chain aggregate composed of a plurality of polymer chains on its surface.
  • the base material may have a polymer chain fixed thereto, and the carrier may also have a polymer chain fixed thereon.
  • the base material may be a trunk polymer, and the carrier may be one to which the trunk polymer adheres.
  • the dry film thickness of the polymer brush is 10 nm or more. It is preferably 50 nm or more, more preferably 100 nm or more, even more preferably 300 nm or more, even more preferably 500 nm or more, and particularly preferably 1000 nm or more.
  • the upper limit is not particularly limited, but may be, for example, 100 ⁇ m or less, or 50 ⁇ m or less.
  • the dry film thickness is preferably 1 nm or more, more preferably 5 nm or more, more preferably 10 nm or more, and 100 nm or more. It is even more preferable that there be.
  • the upper limit is not particularly limited, but may be, for example, 1 ⁇ m or less, or 10 ⁇ m or less.
  • the dry film thickness of the layer containing the polymer chain aggregate is preferably 2 nm or more, and preferably 50 nm or more. is more preferable, more preferably 100 nm or more, even more preferably 300 nm or more, even more preferably 500 nm or more, and particularly preferably 1000 nm or more.
  • the upper limit is not particularly limited, but may be, for example, 100 ⁇ m or less, or 50 ⁇ m or less.
  • the member of this embodiment can be manufactured by the following method.
  • the method for manufacturing the member of this embodiment is preferably a manufacturing method in which a polymerization initiating group is introduced onto the surface of the base material and a plurality of polymer chains are formed via the polymerization initiating group.
  • a polymerization initiating group is introduced onto the surface of the base material and a plurality of polymer chains are formed via the polymerization initiating group.
  • methods for forming polymer chain aggregates will be explained for each of the polymer brush and the member having a bottle brush structure.
  • the polymer chain assembly of the polymer brush can be obtained by grafting, in which a plurality of polymer chains are bonded as graft chains to a carrier, which is a base material.
  • This grafting can be performed by a Grafting-from method or a Grafting-to method, and among these, it is preferable to use the Grafting-from method.
  • the Grafting-from method is a method in which a polymerization initiating group is introduced into a base material and a graft chain is grown from the polymerization initiating group
  • the Grafting-to method is a method in which a graft chain synthesized in advance is introduced into a base material. This is a method of binding to the introduced reaction point.
  • polymer chain aggregates are made by attaching the hydrophobic part of a polymer (block copolymer) having a hydrophobic block and a hydrophilic block to the surface of a hydrophobic base material or a hydrophobic base material. It can also be obtained by a method of binding using action.
  • block copolymer include copolymers having a polymethyl methacrylate (PMMA) structure as a hydrophobic block and a poly(sodium sulfonated glycidyl methacrylate) (PSGMA) structure as a hydrophilic block.
  • PMMA polymethyl methacrylate
  • PSGMA poly(sodium sulfonated glycidyl methacrylate)
  • block copolymer for example, a copolymer having a polydimethylsiloxane (PDMS) structure as a hydrophobic block and a polyethylene glycol (PEG) structure as a hydrophilic block can be mentioned. Another polymer structure may be interposed between the hydrophilic block and the hydrophobic block.
  • PDMS polydimethylsiloxane
  • PEG polyethylene glycol
  • the method for producing the polymer chain used in the graft polymerization method is not particularly limited, but it is preferable to use a radical polymerization method, more preferably to use a living radical polymerization (LRP) method, and an atom transfer radical polymerization (ATRP) method. It is more preferable to use
  • the living radical polymerization method uses various types of copolymers (e.g., random copolymers, block copolymers, compositionally graded copolymers, etc.) that allow easy control of the molecular weight and molecular weight distribution of the polymer chains.
  • the dense polymer brush described below can be produced with precise control of its density and thickness.
  • the Grafting-from method using living radical polymerization refer to JP-A-11-263819 and the like.
  • the atom transfer radical polymerization method see J. Am. Chem. Soc. , 117, 5614 (1995), Macromolecules, 28, 7901 (1995), Science, 272, 866 (1996), Macromolecules, 31, 5934-5936 (1998).
  • Polymer chains can also be produced by nitroxide-mediated polymerization (NMP), reversible addition-fragmentation chain transfer (RAFT) polymerization, reversible transfer-catalyzed polymerization (RTCP), reversible complex formation-mediated polymerization (RCMP), etc. can do.
  • NMP nitroxide-mediated polymerization
  • RAFT reversible addition-fragmentation chain transfer
  • RTCP reversible transfer-catalyzed polymerization
  • RCMP complex formation-mediated polymerization
  • the catalyst used in the radical polymerization method may be any catalyst as long as it can control radical polymerization, and is preferably a transition metal complex.
  • transition metal complexes include metal complexes whose central metal is an element of Group 7, 8, 9, 10, or 11 of the periodic table, and among them, copper complexes, ruthenium complexes, iron complexes, etc. It is preferable to use a complex or a nickel complex, and it is more preferable to use a copper complex.
  • the copper complex preferably includes a complex of a monovalent copper compound and an organic ligand, and a complex of a monovalent copper compound and an organic ligand, and a complex of a divalent copper compound and an organic ligand. It is more preferable to include.
  • Examples of monovalent copper compounds include cuprous chloride and cuprous bromide, and examples of divalent copper compounds include cupric chloride and cupric bromide.
  • organic ligands 2,2'-bipyridyl or its derivatives, 1,10-phenanthroline or its derivatives, polyamines (tetramethylethylenediamine, pentamethyldiethylenetriamine, hexamethyltris(2-aminoethyl)amine, etc.), L- Examples include polycyclic alkaloids such as (-)-sparteine.
  • the molar ratio of the monovalent copper compound to the compound based on copper is preferably 10 times or more, more preferably 20 times or more, and even more preferably 30 times or more. Further, it may be 200 times or less, 150 times or less, 100 times or less, or 40 times or less.
  • Tristriphenylphosphine complexes of divalent ruthenium chloride (RuCl 2 (PPh 3 ) 3 ) are also suitable as catalysts. When using a ruthenium compound as a catalyst, it is preferable to add aluminum alkoxides as an activator.
  • Bistriphenylphosphine complex of divalent iron (FeCl 2 (PPh 3 ) 2 ), bistriphenylphosphine complex of divalent nickel (NiCl 2 (PPh 3 ) 2 ), bistributylphosphine complex of divalent nickel (NiBr 2 (PBu 3 ) 2 ) and the like are also suitable as catalysts.
  • the copper complex may be formed in advance and then used in radical polymerization, or the copper compound and organic ligand may be blended in a ratio that will form a copper complex. Radical polymerization may also be carried out.
  • the ratio of the copper compound and organic ligand to be blended in radical polymerization is such that the organic ligand sufficiently coordinates with the copper compound and dissolves the copper complex well. It is preferably 2 times or more and 2.3 times or less, more preferably 2.1 times or more and 2.3 times or less, and 2.2 times or more and 2.3 times or less relative to the number of moles of the compound. is most preferred.
  • the polymerization reaction is preferably carried out in a solvent.
  • a solvent hydrocarbon solvents (benzene, toluene, etc.), ether solvents (diethyl ether, tetrahydrofuran, diphenyl ether, anisole, dimethoxybenzene, etc.), halogenated hydrocarbon solvents (methylene chloride, chloroform, chlorobenzene, etc.), ketone solvents Solvents (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), alcohol solvents (methanol, ethanol, propanol, isopropanol, butyl alcohol, t-butyl alcohol, etc.), nitrile solvents (acetonitrile, propionitrile, benzonitrile, etc.), esters solvents (ethyl acetate, butyl acetate, etc.), carbonate solvents (ethylene carbonate, propylene carbonate, etc.), amide solvents
  • a polymerization initiating group that serves as an initiation point for a polymerization reaction is introduced into the base material, and from this polymerization initiating group, using the above polymerization method. Graft growth of polymer chains.
  • the polymerization initiating group include a halogenated alkyl group and a halogenated sulfonyl group.
  • Polymerization initiating groups can be used to precisely control the density of graft chains (graft density) and the primary structure (molecular weight, molecular weight distribution, monomer arrangement pattern) of polymer chains obtained by graft polymerization.
  • Examples of the method for introducing (bonding) a polymerization initiating group onto the surface of a substrate include a chemical adsorption method, a Langmuir-Blodgett (LB) method, and the like.
  • a film forming material containing a polymerization initiating group is dissolved in an appropriate solvent (eg, chloroform, benzene, etc.).
  • an appropriate solvent eg, chloroform, benzene, etc.
  • a small amount of this solution is then spread on a clean liquid surface, preferably pure water, and the solvent is then evaporated or diffused into the adjacent aqueous phase, resulting in a low density of film-forming molecules on the water surface. form a film.
  • the partition plate is mechanically swept over the water surface to reduce the surface area of the water surface where film-forming molecules are spread, thereby compressing the film and increasing its density, resulting in a dense monomolecular film on the water surface. .
  • the substrate on which the monolayer is deposited is immersed or pulled up in a direction transverse to the monolayer on the water surface, while keeping the surface density of the molecules constituting the monolayer constant. , transfer the monolayer on the water surface onto the substrate, and deposit the monolayer onto the substrate.
  • a group that binds to the base material and a group that has an affinity with the base material at least one of a group that binds to the base material and a group that has an affinity with the base material, and a group that binds to the polymerization initiator group and a group that has an affinity with the polymerization initiator group.
  • This surface treatment agent may be a low molecular compound or a high molecular compound.
  • the surface treatment agent include a compound represented by the following formula (10).
  • n is an integer from 1 to 10, preferably from 3 to 8.
  • R 11 , R 12 and R 13 each independently represent a substituent.
  • At least one of R 11 , R 12 and R 13 is preferably an alkoxyl group or a halogen atom, and it is particularly preferable that all of R 11 , R 12 and R 13 are a methoxy group or an ethoxy group.
  • R 14 and R 15 each independently represent a substituent.
  • R 14 and R 15 are preferably each independently an alkyl group having 1 to 3 carbon atoms or an aromatic functional group, and most preferably both R 14 and R 15 are methyl groups.
  • X 11 represents a halogen atom, and is preferably a bromine atom.
  • silane coupling agent containing a polymerization initiating group silane coupling agent containing a polymerization initiating group
  • silane coupling agent containing a polymerization initiating group silane coupling agent containing a polymerization initiating group
  • polymerization initiating group-containing silane coupling agent include the compound represented by the above formula (10).
  • silane coupling agents containing polymerization initiating groups include (2-bromo-2-methyl)propionyloxyhexyltrimethoxysilane (BHM) and (2-bromo-2-methyl)propionyloxypropyltrimethoxysilane (BPM). , (2-bromo-2-methyl)propionyloxypropyltriethoxysilane (BPE).
  • a silane coupling agent containing a polymerization initiating group when using a silane coupling agent containing a polymerization initiating group as a surface treatment agent, a silane coupling agent that does not contain a polymerization initiating group, such as a known alkylsilane coupling agent, should be used in combination. is preferred. Thereby, the graft density can be freely changed by adjusting the ratio of the silane coupling agent containing a polymerization initiating group and the silane coupling agent not containing a polymerization initiating group.
  • silane coupling agents are silane coupling agents containing polymerization initiating groups
  • polymer chains can be formed with a surface occupancy of more than 0.03. can be grown.
  • silane coupling agent containing a polymerization initiating group is hydrolyzed in the presence of water to form silanol, which is partially condensed to form an oligomer state. After that, it may be subjected to surface treatment.
  • this oligomer may be adsorbed onto a base material such as silica in the form of hydrogen bonds, and then dried to cause a dehydration condensation reaction, thereby introducing a polymerization initiating group into the base material.
  • Base material In the polymer brush type polymer chain assembly, there are no particular limitations on the material constituting the base material (carrier) on which the polymer chains are fixed. It can be appropriately selected from organic materials, inorganic materials, metal materials, and the like.
  • the base material is preferably a carrier made of a substance different from the polymer chain aggregate.
  • the organic material is not particularly limited, and various resins and rubbers can be used without restriction.
  • the resin may be either a thermosetting resin or a thermoplastic resin.
  • the thermosetting resin include epoxy resin, phenol resin, amino resin, unsaturated polyester resin, polyurethane resin, urea resin, melamine resin, thermosetting polyimide resin, diallyl phthalate resin, and the like.
  • thermoplastic resins include polyolefin resins such as polyethylene, polypropylene, polystyrene, and polycycloolefin; vinyl resins such as polystyrene, acrylic resin, polyvinyl chloride resin, and polyvinyl alcohol; and fluorine resins such as polytetrafluoroethylene.
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and polyethylene naphthalate
  • silicone resins such as polydimethylsiloxane; and the like.
  • Rubbers include diene rubbers such as butadiene rubber, styrene-butadiene rubber, chloroprene rubber, isoprene rubber, natural rubber, nitrile rubber, butyl rubber; ethylene propylene rubber, acrylic rubber, polyether rubber, polyurethane rubber, fluorine rubber, silicone rubber, etc. Examples include rubbers other than diene rubber.
  • the substrate may be a polymer monolith.
  • the polymer monolith refers to a porous polymer body in which a three-dimensional co-continuous structure is formed by three-dimensionally connected continuous pores and a polymer skeleton.
  • the polymer skeleton of the polymer monolith is preferably a polymer of a polymerizable compound and a crosslinking agent.
  • a polymer monolith As the base material, it is preferably an incompatible system. This improves liquid retention.
  • a polymer monolith as the base material, this becomes possible by combining the fine co-continuous structure with the osmotic pressure effect of the brush.
  • the polymer monolith thicker, it can also serve as a tank for storing oil and other substances.
  • a polymer brush is modified on the surface of a polymer monolith, it can also be sucked out onto the surface.
  • the above-mentioned polymerizable compound may be any compound that can form a polymer skeleton by polymerization with a crosslinking agent, and examples thereof include epoxy compounds, (meth)acrylate compounds, and styrene compounds.
  • epoxy compounds are preferred because they have excellent flexibility and are easy to form a polymer monolith with a fine porous structure.
  • examples of the above epoxy compounds include bisphenol A epoxy resin, brominated bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol AD epoxy resin, stilbene epoxy resin, biphenyl epoxy resin, and bisphenol A novolak epoxy resin.
  • cresol novolac type epoxy resin diaminodiphenylmethane type epoxy resin, polyphenyl-based epoxy resin such as tetrakis(hydroxyphenyl)ethane base, fluorene-containing epoxy resin, 2,2,2-tri-(2,3-epoxypropyl) )-isocyanate and other triglycidyl isocyanurates, epoxy resins containing heteroaromatic rings such as triazine ring-containing epoxy resins, and carbon derived from aromatic rings such as N,N,N',N'-tetraglycidyl-m-xylylenediamine.
  • crosslinking agent examples include amine compounds, acid anhydrides, phenol compounds, and hydrazide compounds.
  • examples of the above amine compounds include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 4,4'-diaminodiphenylsulfone, 4,4'-methylene-bis(2-chloroaniline), and benzyldimethylamine.
  • aromatic amine compounds such as dimethylaminomethylbenzene; aromatic amine compounds having a heteroaromatic ring such as a triazine ring; ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, iminobispropylamine, bis(hexamethylene)triamine , 1,3,6-trisaminomethylhexane, polymethylenediamine, trimethylhexamethylenediamine, polyetherdiamine, isophoronediamine, menthanediamine, N-aminoethylpiperazine, 3,9-bis(3-aminopropyl)2, Alicyclic amine compounds such as 4,8,10-tetraoxaspiro(5,5)undecane adduct, bis(4-aminocyclohexyl)methane and modified products thereof; 1,6-hexamethylenebis(N, Examples include aliphatic polyamine hydrazide compounds such as N-dimethyls,
  • Examples of the acid anhydrides include aromatic acid anhydrides such as phthalic anhydride, trimetic anhydride, and pyrometic anhydride.
  • Examples of the above-mentioned phenol compound include novolac type phenol resin.
  • Examples of the hydrazide compound include aromatic hydrazide compounds such as isophthalic acid dihydrazide; aliphatic hydrazide compounds such as adipic acid dihydrazide, sebacic acid dihydrazide, and dodecanedioic acid dihydrazide.
  • the crosslinking agent is preferably an amine compound, and more preferably a bifunctional or more functional amine compound having two or more amino groups in the molecule.
  • the amine compound having two or more functionalities is preferably an alicyclic amine compound. Preferred specific examples include bis(4-aminocyclohexyl)methane.
  • the polymer skeleton of the polymer monolith is preferably a polymer of a difunctional or higher functional epoxy compound and a difunctional or higher functional amine compound, from the viewpoint of easy formation of the polymer monolith, and a difunctional or higher functional aliphatic epoxy compound. More preferably, it is a polymer of a bifunctional or more functional alicyclic amine compound.
  • the blending ratio of the polymerizable compound and the crosslinking agent may be determined by taking into consideration the crosslinking density, etc.
  • the amine equivalent of the crosslinking agent is 0.6 to 1 equivalent of the epoxy group of the polymerizable compound. It is preferable to adjust to a range of 1.5.
  • the polymer monolith can be formed, for example, from a polymer monolith-forming composition containing a polymerizable compound, a crosslinking agent, and a pore-forming agent. More specifically, the composition for forming a polymer monolith is applied to a base material serving as a carrier to form a coating film, and the coating film is cured. As the polymerizable compound is polymerized, the polymer component increases, spinodal decomposition occurs, and a co-continuous structure is developed. The pore forming agent can then be removed from the cured film to form a polymer monolith.
  • the surface on which the polymer monolith is provided may be subjected to treatment with a known coupling agent such as a silane coupling agent, plasma treatment, etc. in order to improve the affinity with the composition for forming a polymer monolith.
  • a known coupling agent such as a silane coupling agent, plasma treatment, etc.
  • Inorganic materials are not particularly limited, and include ceramics (e.g., alumina ceramics, bioceramics, composite ceramics such as zirconia-alumina composite ceramics, etc.), metals (e.g., iron, cast iron, steel, stainless steel, carbon steel, high carbon iron alloys such as chrome bearing steel (SUJ2), nonferrous and nonferrous alloys such as aluminum, zinc, copper, titanium, etc.), silicon such as polycrystalline silicon, silicon oxide, silicon nitride, various glasses, quartz, and composites thereof Examples include materials.
  • ceramics e.g., alumina ceramics, bioceramics, composite ceramics such as zirconia-alumina composite ceramics, etc.
  • metals e.g., iron, cast iron, steel, stainless steel, carbon steel, high carbon iron alloys such as chrome bearing steel (SUJ2), nonferrous and nonferrous alloys such as aluminum, zinc, copper, titanium, etc.
  • silicon such as polycrystalline silicon, silicon oxide, silicon nitrid
  • the type of base material is not particularly limited. Examples include tubes, sheets, fibers, strips, films, plates, foils, membranes, pellets, powders, particles, molded products (eg, extrusion molded products, cast molded products, etc.). Furthermore, the article itself to which the member of this embodiment is applied may be used as the base material.
  • the polymer chain assembly of the polymer brush can also be manufactured by the following manufacturing method. That is, a plurality of block copolymers comprising an organic material constituting a base material (hereinafter also referred to as a base polymer), a polymer block A, and a polymer block B having a lower affinity for the base polymer than the polymer block A. It can be produced by a production method comprising a step of preparing a mixed solution by mixing the combined components in a solvent, and a step of removing the solvent from the mixed solution to cause phase separation.
  • the block copolymer may have polymer blocks A at at least two locations.
  • a base material in which each of both ends of the polymer chains constituting the polymer chain assembly is a carrier can be used. It is possible to produce a polymer chain assembly of a polymer brush with a loop structure that is fixed to.
  • the block copolymer used in this method may be synthesized by a known method, or a commercially available product may be used. Commercially available products include PDMS-PEG and PDMS-PEG-PDMS (both manufactured by Polymer Science (USA)).
  • the organic material constituting the base material, which is the base polymer, is not particularly limited, and includes those mentioned above.
  • the block copolymer includes a polymer block A and a polymer block B which has a lower affinity for the base polymer than the polymer block A, and has the polymer block A in at least two places.
  • a polymer block B that is immiscible with the base polymer. More preferred is a combination in which the polymer block A is incompatible with the polymer block A and the polymer block A is compatible with the base polymer.
  • the expression that the polymer block A is compatible with the base polymer refers to the following state. That is, after a polymer consisting only of polymer block A and a base polymer are mixed by hot melt mixing or co-solution mixing, the resulting mixture is solidified by cooling or solvent evaporation removal. When the glass transition temperature (Tg) of the sample was measured, a different Tg was observed in the temperature range between the Tg of the polymer consisting only of polymer block A and the Tg of the base polymer. If they are compatible, it can be determined that they are compatible. Furthermore, the expression that the polymer block B is incompatible with the base polymer refers to the following state.
  • Tg glass transition temperature
  • the SP value (solubility parameter) of these Regarding the difference between the SP value of polymer block A and the SP value of polymer block B is preferably 1.5 (MPa) 0.5 or more, and more preferably 3 (MPa) 0.5 or more. , 5 (MPa) It is more preferable that it is 0.5 or more.
  • the difference between the SP value of polymer block A and the SP value of the base polymer is 0.5 (MPa) or less, and 0.3 ( MPa) is more preferably 0.5 or less, and even more preferably 0.2 (MPa) 0.5 or less.
  • the difference between the SP value of polymer block B and the SP value of the base polymer is 1.5 (MPa) 0.5 or more, and 3 (MPa) 0.5 It is more preferable that it is 5 (MPa) or more, and even more preferably that it is 5 (MPa) 0.5 or more. Note that for the SP values of polymer block A and polymer block B, for example, the values disclosed in Polymer Handbook (4th edition, Wiley-Interscience) can be used.
  • the polymer block A may be one that satisfies the above-mentioned characteristics and is not particularly limited, and may be selected depending on the relationship with the base polymer used.
  • Examples of the constituent resin or rubber include those made of polymer segments constituting the resin or rubber listed above.
  • the molecular weight (weight average molecular weight (Mw)) of the polymer block A portion of the block copolymer is not particularly limited, but it exhibits sufficient interaction with the base polymer, thereby forming a loop structure formed by the polymer block B. From the viewpoint that the durability can be further improved by supporting the 000, even more preferably 2,000 to 20,000, particularly preferably 2,000 to 6,000.
  • polymer block B among those explained as the polymer chains mentioned above, those that satisfy the above-mentioned characteristics with the base polymer are preferably used.
  • the solvent used is not particularly limited and can dissolve or disperse the base polymer and block copolymer chains.
  • Any suitable solvent may be used.
  • aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, tricyclodecane , hexahydroindene, cyclooctane; aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene; nitrogen-containing hydrocarbons such as nitromethane, nitrobenzene, acetonitrile
  • a mixed solution can be obtained by mixing and dissolving or dispersing the base polymer and a plurality of block copolymer chains in such a solvent.
  • a film is formed using the obtained mixed liquid by a casting method, a spin coating method, or the like, and then the solvent is removed from the formed mixed liquid.
  • the solvent is removed from the formed mixed liquid.
  • some of the plurality of block copolymer chains that are dispersed in the base polymer through the solvent become compatible with the base polymer. While this state remains, the polymer block B constituting the block copolymer chain undergoes phase separation from the base polymer, so that the polymer block A is in the base polymer, and the polymer block B is in the base polymer.
  • the state can be changed from a coalesced state to an exposed state, resulting in a polymer brush structure in which one end of the polymer chains constituting the polymer chain assembly is fixed to the carrier, or a polymer brush structure in which both ends are each fixed to the carrier.
  • a loop structure can be formed.
  • the method for removing the solvent is not particularly limited and may be selected depending on the type of solvent used, but a method of heating at 50 to 100 °C is preferred, and a method of heating at 70 to 80 °C is more preferred. preferable.
  • the polymer chain assembly of the polymer brush can also be manufactured by the following manufacturing method. That is, a block copolymer comprising a base polymer and a polymer block A and a polymer block B having a lower affinity for the base polymer than the polymer block A, and/or a block copolymer comprising a base polymer and a polymer block B having a lower affinity for the base polymer than the polymer block A and the polymer block A.
  • a step of preparing a molten mixture by mixing under heating a plurality of block copolymers comprising a polymer block B having low affinity for the base polymer and having polymer blocks A in at least two locations. and a step of causing phase separation by cooling the molten mixture.
  • the polymer chain assembly of the polymer brush is fixed to a base material in which one end of the polymer chain constituting the polymer chain assembly is a carrier, or each of both ends is a carrier.
  • a polymer chain assembly of loop-structured polymer brushes fixed to a substrate can be produced.
  • the heating temperature when preparing a molten mixture by mixing a base polymer and a plurality of block copolymers under heating is not particularly limited, and is the temperature at which the base polymer or block copolymer melts.
  • the temperature is preferably set at a temperature at which both the base polymer and the block copolymer chain melt, preferably from 40 to 300°C, more preferably from 80 to 200°C.
  • the method for cooling the molten mixture is not particularly limited, but it may be a method in which the molten mixture formed into a film is allowed to stand at room temperature, or a method in which the molten mixture is heated at a temperature lower than the melting temperature of each component constituting the molten mixture.
  • the method of placing the molten mixture into a film is allowed to stand at room temperature, or a method in which the molten mixture is heated at a temperature lower than the melting temperature of each component constituting the molten mixture.
  • the number average molecular weight (Mn) of the polymer chains constituting the polymer chain assembly is preferably 500 to 10,000,000, more preferably 100,000 to 10,000,000.
  • the number average molecular weight (Mn) and molecular weight distribution index (Mw/Mn) of the polymer chain aggregate can be determined by cutting out the polymer chains from the base material by treatment with hydrofluoric acid, and using gel permeation chromatography on the cut out polymer chains. It can be determined by molecular weight analysis using size exclusion chromatography. Furthermore, when a polymer chain assembly is formed using the graft polymerization method, it is assumed that the free polymer produced during the polymerization reaction of the polymer chains has the same molecular weight as the polymer chains fixed to the substrate.
  • the number average molecular weight (Mn) and molecular weight distribution index (Mw/Mn) of the free polymer were measured by size exclusion chromatography, and these were directly calculated as the number average molecular weight (Mn) and molecular weight distribution index (Mw/Mn) of the polymer chain.
  • a method using Mw/Mn) can also be adopted. It has been confirmed that the number average molecular weight (Mn) and the molecular weight distribution index (Mw/Mn) are approximately the same for the polymer chains fixed to the base material and the free polymer generated during the polymerization reaction.
  • a method for measuring molecular weight using a free polymer will be specifically explained.
  • a polymer chain is synthesized by surface-initiated living radical polymerization
  • adding a free initiator to the polymerization solution makes it possible to obtain a free polymer with the same molecular weight and molecular weight distribution as the polymer chains constituting the polymer chain assembly. can.
  • the number average molecular weight (Mn) and molecular weight distribution index (Mw/Mn) are determined by analyzing this free polymer by size exclusion chromatography.
  • the size exclusion chromatography analysis involves a calibration method using an available homogeneous monodisperse standard sample with a known molecular weight, and an absolute molecular weight evaluation using a multi-angle light scattering detector.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • the density of polymer chains on the surface of the substrate is preferably 0.01 chains/nm 2 or more, more preferably 0.05 chains/nm 2 or more, and 0.1 chains/nm 2 or more. More preferably, it is 0.2 chains/nm 2 or more, particularly preferably 0.2 chains/nm 2 or more.
  • the upper limit is not particularly limited, but may be 1.0 chain/nm 2 or less, and may also be 0.9 chain/nm 2 or less.
  • W represents the amount of grafting per unit area
  • Mn represents the number average molecular weight of the polymer chain assembly.
  • the amount of grafting per unit area (W) is determined by calculating the dry film thickness, that is, the dry thickness of the polymer chain aggregate layer, using the ellipsometry method. It can be determined by measuring the amount of grafting (W) per unit area using the density of the bulk film.
  • the number average molecular weight (Mn) of the polymer chain assembly can be measured by the
  • the surface occupancy rate of polymer chains on the surface of the base material is preferably 0.01 or more, more preferably 0.05 or more, and 0.10 or more. It is more preferable that The surface occupancy rate refers to the proportion of the graft point (first structural unit) occupying the surface of the base material, and is 1 in the case of closest packing.
  • the density of polymer chains can be calculated using the method described above.
  • the cross-sectional area of a polymer can be determined using the repeating unit length of the polymer in its fully extended form and the bulk density of the polymer.
  • the surface occupancy rate of the polymer chains on the surface of the base material is preferably 0.08 to 0.65, more preferably 0.1 to 0.4, and even more preferably 0 from the viewpoint of suppressing snow and ice accumulation outdoors. It is .15 to 0.25.
  • the above-mentioned base material is different from the above-mentioned polymer chain aggregate, from the viewpoint that an excellent snow and ice suppression effect can be obtained in a wide range of 0°C to -18°C.
  • the carrier is made of another substance, and the surface occupancy rate of the polymer chains on the surface of the base material is 0.08 to 0.65 (preferably 0.10 to 0.40, more preferably 0.15 to 0.40). ) is preferable.
  • the surface occupancy is within the above range, the density of the brush will be in an appropriate range, which will improve the holding power of liquid substances (especially for liquid substances that are incompatible with water). , the holding power is greatly improved), and the suppression of ice nucleation due to the size exclusion effect can be further improved.
  • the bottle brush structure refers to a branched polymer structure in which a plurality of side chains are branched from the main chain, and the overall shape is bottle brush-like.
  • the main chain constitutes a base material and the side chains constitute a polymer chain aggregate, but the bottle brush structure may be further adhered to a carrier to become a member having a bottle brush structure.
  • the carrier include those mentioned above.
  • both the bottle brush and the polymer brush may be fixed or glued to the carrier.
  • the polymer brush is preferably a thick polymer brush.
  • the member of this embodiment preferably has a bottle brush structure in which the plurality of polymer chains are bonded as side chains to the polymer chain that is the base material.
  • a member having a bottle brush structure can also be obtained by a graft polymerization method.
  • This graft polymerization involves the Grafting-to method, in which a pre-synthesized reactive side chain (graft chain) is bonded to a backbone polymer that becomes the main chain, and a polymerization initiating group of a macroinitiator (a backbone polymer into which a polymerization initiating group has been introduced).
  • This can be carried out using a Grafting-from method in which a side chain (graft chain) is grown, or a Grafting-through method in which a macromonomer (a polymer having a polymerizable functional group at the end of a polymer constituting a side chain) is polymerized.
  • a preferable example of the member having a bottle brush structure is a compound represented by formula (11).
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group
  • R 3 represents a substituent, which is preferably an alkyl group having 1 to 10 carbon atoms
  • R 4 and R 5 represent a terminal group consisting of an atom or an atomic group, and examples include a hydrogen atom, a halogen, and a functional group derived from a polymerization initiator.
  • X represents O or NH
  • Y represents a divalent organic group
  • n represents an integer of 10 or more
  • Polymer A represents a polymer chain.
  • the repeating structure of the constituent units bounded by n corresponds to the main chain of the bottlebrush structure
  • Polymer A corresponds to the side chain of the bottlebrush structure.
  • the organic group represented by Y includes an alkylene group having 1 to 10 carbon atoms, an oxyalkylene group (RO) having 1 to 5 carbon atoms (R represents an alkylene group having 1 to 5 carbon atoms), and a plurality of oxyalkylene groups connected together. or a combination of at least two of these organic groups (an alkylene group having 1 to 10 carbon atoms, an oxyalkylene group having 1 to 5 carbon atoms, and a connecting structure of oxyalkylene groups). Examples include groups.
  • the alkylene group of the alkylene group and the oxyalkylene group may be linear or branched, and may have a cyclic structure.
  • alkylene group examples include ethylene group, propylene group, butylene group, and cyclohexylene group.
  • the alkylene group of this alkylene group and oxyalkylene group may be substituted with a substituent.
  • substituents include an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 40 carbon atoms, and a heteroaryl group having 3 to 40 carbon atoms, and these substituents are further substituted with a substituent.
  • preferred range, and specific examples of Polymer A reference can be made to the above-mentioned polymer chains. In Polymer A, the constituent units of the main chain may be the same or different.
  • the side chains (graft chains) are extended linearly from the central axis, and the surface including the tip (virtual outer circumference) is assumed, the member's The external shape can be thought of as a cylinder whose side surface includes the tip.
  • the side chains (graft chains) can be folded freely.
  • the surface occupancy ( ⁇ * ) of side chains can be determined by the following formula.
  • DP n,graft is the number average degree of polymerization of the graft chains
  • x is the number of graft chains per unit length of the backbone polymer (strands/nm)
  • r is the radius of the backbone polymer (nm) (for example, in PBIEM, 0 .8 nm)
  • a 2 is the cross-sectional area of the monomer (nm 2 ) (for example, 3.3 nm 2 for PEGMA)
  • l is the total length of the repeating unit of the polymer chain (nm) (for example, 0 for polymethacrylate).
  • 2 ⁇ (DP n, graft ⁇ l+r) is the circumference of the cross section of the bottle brush (nm), and l/x is the distance between adjacent graft chains (nm).
  • the surface occupancy rate of the side chain shows a value of 0 to 1, and the larger the value, the greater the proportion occupied by the tip of the side chain on the side surface of the polymer, and the degree of freedom of the side chain is restricted. That is, the surface occupancy of the side chain is a numerical value that reflects the degree of freedom of the side chain, and the higher the surface occupancy ( ⁇ * ) of the side chain, the more the structural freedom of the side chain is restricted.
  • the side chains can maintain a state extending substantially perpendicularly to the main chain, and it is presumed that this structure exhibits properties specific to the structure.
  • the surface occupancy of the side chains of the member having a bottle brush structure is preferably 0.01 or more, more preferably 0.05 or more, and even more preferably 0.10 or more.
  • the surface occupancy is in the above range, the density of the brush is in an appropriate range, and the retention power of liquid substances is improved (particularly for liquid substances that are incompatible with water, the retention power is greatly improved), The suppression of ice nucleation due to the size exclusion effect can be further improved.
  • the surface occupancy of the side chain is preferably 0.08 to 0.65, more preferably 0.1 to 0.5, and even more preferably 0.2 to 0.4.
  • the side chain density of the member having a bottle brush structure is preferably 0.01 chain/nm 2 or more, more preferably 0.05 chain/nm 2 or more, and 0.1 chain/nm 2 or more. It is more preferable that it is, and it is particularly preferable that it is 0.2 chains/nm 2 or more.
  • the upper limit is not particularly limited, but may be 1.0 chain/nm 2 or less, and may also be 0.9 chain/nm 2 or less.
  • the number average molecular weight of the member having a bottle brush structure is preferably 1,000 to 10,000,000, more preferably 1,000 to 1,000,000, and more preferably 5,000 to 500,000. It is more preferable that
  • the member of this embodiment is a member having a bottle brush structure
  • the member is a member having a bottle brush structure in which the plurality of polymer chains are bonded as side chains to the polymer chain that is the base material
  • the member having a bottle brush structure preferably has a side chain surface occupancy of 0.08 to 0.50 (more preferably 0.10 to 0.50, still more preferably 0.15 to 0.50).
  • the layer containing the polymer chain aggregate of the member of this embodiment holds a liquid substance.
  • the liquid substance include water, ionic liquids, fluorinated solvents, oils (hydrocarbon oils, silicone oils, etc.), and preferably at least one selected from water and ionic liquids.
  • the liquid substance may be a hydrophilic liquid substance or a hydrophobic liquid substance.
  • hydrophilic liquid substances include water and hydrophilic ionic liquids.
  • hydrophobic liquid substances include hydrophobic ionic liquids, fluorinated solvents, and oils.
  • the liquid substance may be composed of only one type of liquid substance, or may be a mixture of two or more types of liquid substances.
  • the liquid substance may contain additives.
  • An ionic liquid is a low melting point salt that has ionic conductivity and is also called an ionic liquid or a room temperature molten salt. Most ionic liquids have a relatively low melting point property obtained by combining an organic onium ion as a cation and an organic or inorganic anion as an anion.
  • the melting point of the ionic liquid is usually 100°C or lower, preferably room temperature (25°C) or lower.
  • the melting point of an ionic liquid can be measured using a differential scanning calorimeter (DSC) or the like.
  • R 21 , R 22 , R 23 and R 24 are each independently an alkyl group having 1 to 5 carbon atoms or an alkoxyalkyl group represented by R'-O-(CH 2 ) n - , R' represents a methyl group or an ethyl group, and n is an integer of 1 to 4.
  • R 21 , R 22 , R 23 and R 24 may be the same or different. Further, any two of R 21 , R 22 , R 23 and R 24 may be bonded to each other to form a cyclic structure. However, at least one of R 21 , R 22 , R 23 and R 24 is an alkoxyalkyl group.
  • X 21 represents a nitrogen atom or a phosphorus atom
  • Y represents a monovalent anion.
  • Examples of the alkyl group having 1 to 5 carbon atoms in R 21 , R 22 , R 23 and R 24 include methyl group, ethyl group, n-propyl group, 2-propyl group, n-butyl group, n-pentyl group, etc. .
  • the alkoxyalkyl group represented by R'-O-(CH 2 ) n - is a methoxymethyl group, an ethoxymethyl group, a 2-methoxyethyl group or a 2-
  • Preferable examples include ethoxyethyl group, 3-methoxypropyl group, 3-ethoxypropyl group, 4-methoxybutyl group and 4-ethoxybutyl group.
  • any two of R 21 , R 22 , R 23 and R 24 are bonded to each other to form a cyclic structure
  • a nitrogen atom is adopted as X 21
  • a quaternary ammonium salt having a ring, a piperidine ring, etc. is preferable, and when a phosphorus atom is adopted as X 21 , a quaternary phosphonium salt having a pentamethylenephosphine (phosphorinane) ring etc. is preferable.
  • the quaternary ammonium salt preferably has at least one 2-methoxyethyl group in which R' is a methyl group and n is 2 as a substituent.
  • Monovalent anions in Y include BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , AlCl 4 ⁇ , NbF 6 ⁇ , HSO 4 ⁇ , ClO 4 ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 - , CF 3 CO 2 - , (CF 3 SO 2 ) 2 N - , Cl - , Br - , I -, etc., and BF 4 - , PF 6 - , (CF 3 SO 2 ) 2 N - , Preferably, it is CF 3 SO 3 - or CF 3 CO 2 - .
  • R 21 in formula (20) is a methyl group
  • R 23 and R 24 are an ethyl group
  • R 24 is an alkoxyalkyl group represented by R'-O-(CH 2 ) n -.
  • Compounds with the structure are preferably used.
  • an ionic liquid containing imidazolium ions or an ionic liquid containing aromatic cations can also be used.
  • the liquid substance is immiscible with water.
  • Immiscible with water means that the water content is 5% or less when water and liquid substance are stirred at room temperature overnight, left to stand at room temperature for 1 hour, and then only the liquid substance is taken out and NMR measurement is performed. It means that.
  • the polymer chain aggregate does not swell with water and that the liquid substance is not miscible with water.
  • the difference between the icing stress at -8°C and the icing stress at -18°C is small, and from the viewpoint of being excellent in suppressing ice nucleation and snow and ice formation near -18°C, liquid
  • the substance and the polymer chain are compatible with water (preferably water and poly(alkylene glycol) mono(meth)acrylate); ionic liquid and incompatible polymer chain (preferably, X is a nitrogen atom).
  • R 21 and R 22 combine with each other to form a cyclic structure
  • R 23 is an alkyl group having 1 to 5 carbon atoms
  • R 24 is an alkoxyalkyl represented by R'-O-(CH 2 ) n - a monopolymer of an ionic liquid of formula (20) which is a group and an alkyl methacrylate having an alkyl group having 1 to 8 carbon atoms); a hydrocarbon oil and an incompatible polymer chain (preferably a poly ⁇ -olefin and a carbon number 10 Monopolymers of alkyl methacrylates having ⁇ 15 alkyl groups) are preferred.
  • the method for retaining the liquid substance in the layer containing the polymer chain aggregate is not particularly limited. For example, a method in which a liquid substance is applied to the surface of a layer containing polymer chain aggregates and then left to stand, or a method in which a base material on which a layer containing polymer chain aggregates is formed is immersed in a liquid substance. Examples include. Further, the polymer chain aggregate may take in moisture from the atmosphere and retain water, which is a liquid substance, in the layer containing the polymer chain aggregate.
  • the member of this embodiment has an icing stress of 150 kPa or less at -18°C, preferably 100 kPa or less, more preferably 80 kPa or less, more preferably 65 kPa or less, still more preferably 50 kPa or less, even more preferably 35 kPa or less, and especially Preferably it is 20 kPa or less.
  • the icing stress at ⁇ 18° C. can be measured by the method described in Examples below.
  • the above-mentioned icing stress at -18°C can be adjusted by the type of polymer chain, the type of liquid substance, and the surface occupancy rate of the polymer chain.
  • the icing stress of the member of this embodiment at ⁇ 8° C. is preferably 10 to 50 kPa, more preferably 10 to 30 kPa, and still more preferably 0 to 20 kPa.
  • the icing stress at -8°C is within the above range, an excellent effect of suppressing snow and ice formation can be obtained over a wide range of 0°C to -18°C.
  • the icing stress at ⁇ 8° C. can be measured by the method described in Examples below.
  • the above-mentioned icing stress at -8°C can be adjusted by the type of polymer chain, the type of liquid substance, and the surface occupancy rate of the polymer chain.
  • the difference between the icing stress at -18°C and the icing stress at -8°C of the member of this embodiment is preferably 100 kPa or less, more preferably 90 kPa or less, even more preferably 80 kPa or less, even more preferably 50 kPa.
  • the pressure is preferably 30 kPa or less, particularly preferably 10 kPa or less.
  • the icing stress at -18°C is higher than the icing stress at -8°C.
  • the difference between the icing stress at -18°C and the icing stress at -8°C refers to the absolute value of the difference.
  • the contact angle of the surface of the member of this embodiment with water at 25°C is preferably 10° or more, more preferably 20° or more, even more preferably 45° or more, and even more preferably 48° or more. It is even more preferable that the angle is 48° to 80°.
  • the contact angle is in the above range, better effects of suppressing water droplet adhesion, snow and ice formation, and ice nucleation can be obtained.
  • the value of the contact angle of water on the surface of a member is a value determined by depositing 1 ⁇ L of water on the surface of the member and measuring the contact angle of water on the surface of the member 1 second after the droplet has been deposited.
  • the shape of the member of this embodiment is not particularly limited. Examples include tubular, sheet, fibrous, strip, film, plate, foil, film, pellet, powder, and particulate shapes.
  • the member of this embodiment can be applied to various articles. Examples include window glass, vehicle glass, mirrors, piping, containers, etc. Since the icing stress of the member of this embodiment does not change significantly in the range of 0°C to -20°C, it can be suitably used in applications where it is desired to suppress snow and ice formation over a wide temperature range of 0°C to -20°C. .
  • Example 1 The silicon wafer and DSC pan (made of aluminum) were ultrasonically cleaned in acetone for 30 minutes, in chloroform for 30 minutes, and in 2-propanol for 30 minutes, and then UV ozone was applied to both sides of the silicon wafer and DSC pan. It was irradiated for 30 minutes. Next, only the DSC pan was coated with silica.
  • BPE (2-bromo-2-methyl)propionyloxypropyltriethoxysilane
  • BPE (2-bromo-2-methyl)propionyloxypropyltriethoxysilane
  • ammonia water 1 /89/10 (mass ratio
  • PEGMA ethoxypoly(ethylene glycol) methacrylate
  • EBIB ethyl 2-bromo-2-methylpropionate
  • the silicon wafer into which the polymerization initiating group had been introduced and the DSC pan were placed in a resin container.
  • the container was sealed and covered with an aluminum bag, and the container was placed in a high-pressure reactor and a polymerization reaction was carried out at 400 MPa and 60° C. for 2 hours.Polymerization After the reaction, the silicon wafer and DSC pan were taken out from the container and washed with tetrahydrofuran using a shaking device.Then, by drying, a brush-like polymer chain consisting of multiple polymer chains was formed on the surface of the silicon wafer.
  • a test specimen of Example 1 was obtained by forming an aggregate (polymer brush layer).
  • the film thickness of the obtained test specimen was measured using an atomic force microscope in a dry state and in a water immersed state, and the results were as follows, assuming that the polymer chains contained in the layer containing the polymer chain aggregate were 100 parts by mass. The mass proportion of water was 50 parts by mass. Subsequent analysis revealed that the thickness of the polymer brush layer formed on the silicon wafer surface was 1097 nm, the number average molecular weight was 6.65 million, the molecular weight distribution index (PDI) was 1.43, the polymerization rate was 3%, and the polymer chain The density of the polymer chains was 0.12 chains/nm 2 , and the surface occupancy of the polymer chains was 0.33. The thickness of the polymer brush layer was measured by ellipsometry.
  • the number average molecular weight and molecular weight distribution index of the polymer brush layer were calculated by gel permeation chromatography using dimethylformamide containing 10 mM lithium bromide as a developing solvent and a multi-angle light scattering detector as a detector. Further, the polymer conversion rate was measured by 1 H-NMR. By adding 0.03 mg of water to the obtained sample with polymer chains immobilized on the DSC pan and performing differential scanning calorimetry, it was found that water remained in the layer containing the polymer chain aggregates even at -18°C. It was confirmed that it was kept in liquid form.
  • the film thickness of the obtained test specimen was measured using an atomic force microscope in a dry state and in a water immersed state, and the results were as follows, assuming that the polymer chains contained in the layer containing the polymer chain aggregate were 100 parts by mass. The mass proportion of water was 50 parts by mass.
  • the thickness of the polymer brush layer formed on the silicon wafer surface was 737 nm, the number average molecular weight was 6.65 million, the molecular weight distribution index (PDI) was 1.43, the polymerization rate was 3%, and the polymer chain The density of the polymer chains was 0.08 chains/nm 2 , and the surface occupancy rate of the polymer chains was 0.22.
  • the thickness of the polymer brush layer was measured by ellipsometry.
  • the number average molecular weight and molecular weight distribution index of the polymer brush layer were calculated by gel permeation chromatography using dimethylformamide containing 10 mM lithium bromide as a developing solvent and a multi-angle light scattering detector as a detector.
  • the polymer conversion rate was measured by 1 H-NMR.
  • 0.03 mg of water was added to the obtained sample with polymer chains immobilized on the DSC pan and performing differential scanning calorimetry, it was found that water remained in the layer containing the polymer chain aggregates even at -18°C. It was confirmed that it was kept in liquid form.
  • the film thickness of the obtained test specimen was measured using an atomic force microscope in a dry state and in a water immersed state, and the results were as follows, assuming that the polymer chains contained in the layer containing the polymer chain aggregate were 100 parts by mass. The mass proportion of water was 50 parts by mass.
  • the thickness of the polymer brush layer formed on the silicon wafer surface was 504 nm, the number average molecular weight was 6.65 million, the molecular weight distribution index (PDI) was 1.43, the polymerization rate was 3%, and the polymer chain The density of the polymer chains was 0.05 chains/nm 2 , and the surface occupancy rate of the polymer chains was 0.14.
  • the thickness of the polymer brush layer was measured by ellipsometry.
  • the number average molecular weight and molecular weight distribution index of the polymer brush layer were calculated by gel permeation chromatography using dimethylformamide containing 10 mM lithium bromide as a developing solvent and a multi-angle light scattering detector as a detector.
  • the polymer conversion rate was measured by 1 H-NMR.
  • 0.03 mg of water was added to the obtained sample with polymer chains immobilized on the DSC pan and performing differential scanning calorimetry, it was found that water remained in the layer containing the polymer chain aggregates even at -18°C. It was confirmed that it was kept in liquid form.
  • the film thickness of the obtained test specimen was measured using an atomic force microscope in a dry state and in a water immersed state, and the results were as follows, assuming that the polymer chains contained in the layer containing the polymer chain aggregate were 100 parts by mass. The mass proportion of water was 50 parts by mass.
  • the thickness of the polymer brush layer formed on the silicon wafer surface was 314 nm
  • the number average molecular weight was 6.55 million
  • the molecular weight distribution index (PDI) was 1.46
  • the polymerization rate was 4%
  • the polymer chain The density of the polymer chains was 0.03 chains/nm 2
  • the surface occupancy rate of the polymer chains was 0.09.
  • the thickness of the polymer brush layer was measured by ellipsometry.
  • the number average molecular weight and molecular weight distribution index of the polymer brush layer were calculated by gel permeation chromatography using dimethylformamide containing 10 mM lithium bromide as a developing solvent and a multi-angle light scattering detector as a detector.
  • the polymer conversion rate was measured by 1 H-NMR.
  • 0.03 mg of water was added to the obtained sample with polymer chains immobilized on the DSC pan and performing differential scanning calorimetry, it was found that even at -18°C, water remained in the layer containing polymer chain aggregates. It was confirmed that it was kept in liquid form.
  • SLMA trade name: S lauryl methacrylate, mixture of dodecyl methacrylate and tridecyl methacrylate, manufactured by NOF Corporation
  • the film thickness of the obtained test specimen was measured in a dry state and in a PAO10 (poly alpha olefin, hydrocarbon oil, trade name: Durasyn 170 (PAO10), (manufactured by INEOS Oligomers)) soaked state.
  • PAO10 poly alpha olefin, hydrocarbon oil, trade name: Durasyn 170 (PAO10), (manufactured by INEOS Oligomers)
  • the mass proportion of PAO10 was 50 parts by mass when the number of polymer chains contained in the layer containing the polymer chain aggregate was 100 parts by mass.
  • the film thickness of the polymer brush layer formed on the silicon wafer surface was 789 nm
  • the number average molecular weight was 4,050,000
  • the molecular weight distribution index (PDI) was 1.11
  • the polymerization rate was 7%
  • the polymer chain The density of the polymer chains was 0.11 chains/nm 2
  • the surface occupancy of the polymer chains was 0.20.
  • the thickness of the polymer brush layer was measured by ellipsometry.
  • the number average molecular weight and molecular weight distribution index of the polymer brush layer were calculated by gel permeation chromatography using tetrahydrofuran as a developing solvent and a multi-angle light scattering detector as a detector.
  • the polymer conversion rate was measured by 1 H-NMR.
  • the excess was blown off with Ar blow, and an icing stress test was conducted.
  • the degree of swelling in water of the produced polymer chain assembly was 1.1 or less, and analysis by 1 H-NMR revealed that PAO10 was not miscible with water. The measurement results are shown in Table 1.
  • Example 6 Main chain polymerization Synthesized by RAFT polymerization of 2-(2-bromoisobutyryloxy)ethyl methacrylate (hereinafter referred to as BIEM).
  • BIEM 2-(2-bromoisobutyryloxy)ethyl methacrylate
  • a toluene solution of BIEM (3M), cumyl dithiobenzoate (CTA) (30mM) and azobisisobutyronitrile (AIBN) (6mM) was prepared in an argon purged glovebox and transferred to a Schlenk flask. The solution was then stirred in a 60°C oil bath for 21 hours, then cooled to 0°C to quench and purged with air. The resulting solution was subjected to 1 H-NMR analysis to determine the conversion rate.
  • Mn Number average molecular weight (Mn) and polydispersity index (Mw/Mn) were determined using a polymethyl methacrylate (PMMA) calibrated GPC system.
  • the degree of polymerization (DP) was calculated based on the conversion rate and feed molar ratio of BIEM and CTA.
  • the obtained poly(2-(2-bromoisobutyryloxy)ethyl methacrylate) (hereinafter referred to as PBIEM) was purified by precipitation with methanol, and then vacuum-dried for 18 hours to obtain a pale pink powder.
  • Mn was 56,100
  • Mw/Mn was 1.3
  • degree of polymerization was 400.
  • the conversion rate of PEGMA was 19%. Mn was 235,000, Mw/Mn was 1.3, and the degree of polymerization was 11.
  • ⁇ Film formation method A bottle brush film was created using radical coupling. A bottle brush was dissolved in an anisole solution containing TDAE (tetrakis(dimethylamino)ethylene). Next, using a spin coater (manufactured by Mikasa Co., Ltd.), the bottle brush solution was spun for 30 seconds at a rotational speed of 3000 rpm onto a BPE ((2-bromo-2-methyl)propionyloxypropyltriethoxysilane) fixed silicon wafer. I coated it.
  • TDAE tetrakis(dimethylamino)ethylene
  • a bottle brush solution was dropped onto the BPE-fixed DSC pan to form a bottle brush film on the DSC pan.
  • the thin film was crosslinked by heating at 120° C. for 2 hours in a vacuum.
  • the thin film was washed by immersing it in toluene for 18 hours to remove any substances remaining on the surface.
  • the film thickness of the obtained test specimen was measured using an atomic force microscope in a dry state and in a water immersed state, and the results were as follows, assuming that the polymer chains contained in the layer containing the polymer chain aggregate were 100 parts by mass. The mass proportion of water was 50 parts by mass.
  • the thickness of the bottle brush layer formed on the surface of the main chain was 200 nm, and the surface occupancy rate of the polymer chains was 0.3.
  • the thickness of the bottle brush layer was measured by ellipsometry. By adding 0.03 mg of water to the obtained sample with polymer chains immobilized on the DSC pan and performing differential scanning calorimetry, it was found that water remained in the layer containing the polymer chain aggregates even at -18°C. It was confirmed that it was kept in liquid form. The measurement results are shown in Table 1.
  • the film thickness of the obtained test specimen was measured using an atomic force microscope in a dry state and in a water immersed state, and the results were as follows, assuming that the polymer chains contained in the layer containing the polymer chain aggregate were 100 parts by mass. The mass proportion of water was 50 parts by mass.
  • the thickness of the polymer brush layer formed on the silicon wafer surface was 118 nm, the number average molecular weight was 6.55 million, the molecular weight distribution index (PDI) was 1.46, the polymerization rate was 4%, and the polymer chain The density of the polymer chains was 0.01 chains/nm 2 , and the surface occupancy of the polymer chains was 0.04.
  • the thickness of the polymer brush layer was measured by ellipsometry.
  • the number average molecular weight and molecular weight distribution index of the polymer brush layer were calculated by gel permeation chromatography using dimethylformamide containing 10 mM lithium bromide as a developing solvent and a multi-angle light scattering detector as a detector. Further, the polymer conversion rate was measured by 1 H-NMR.
  • the film thickness of the obtained test specimen was measured using an atomic force microscope in a dry state and in a water immersed state, and the results were as follows, assuming that the polymer chains contained in the layer containing the polymer chain aggregate were 100 parts by mass. The mass proportion of water was 50 parts by mass.
  • the film thickness of the polymer brush layer formed on the silicon wafer surface was 80 nm
  • the number average molecular weight was 6.55 million
  • the molecular weight distribution index (PDI) was 1.46
  • the polymerization rate was 4%
  • the polymer chain The density of the polymer chains was 0.01 chains/nm 2
  • the surface occupancy of the polymer chains was 0.02.
  • the thickness of the polymer brush layer was measured by ellipsometry.
  • the number average molecular weight and molecular weight distribution index of the polymer brush layer were calculated by gel permeation chromatography using dimethylformamide containing 10 mM lithium bromide as a developing solvent and a multi-angle light scattering detector as a detector. Further, the polymer conversion rate was measured by 1 H-NMR.
  • a test specimen was obtained in the same manner as in Example 1 except that the time was changed to 4 hours. Using an atomic force microscope, the film thickness of the obtained test specimen was measured in dry state and in N-(2-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MEMP-TFSI) (ionic liquid).
  • MEMP-TFSI N-(2-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide
  • the mass proportion of MEMP-TFSI was 50 parts by mass when the polymer chains contained in the layer containing the polymer chain aggregate was 100 parts by mass.
  • the thickness of the polymer brush layer formed on the surface of the silicon wafer was 1030 nm
  • the number average molecular weight was 2.18 million
  • the molecular weight distribution index (PDI) was 1.26
  • the polymerization rate was 9%
  • the polymer brush layer was 1030 nm thick.
  • the density of chains was 0.34 chains/nm 2 and the surface occupancy rate of polymer chains was 0.19.
  • the thickness of the polymer brush layer was measured by ellipsometry.Number average molecular weight of the polymer brush layer and the molecular weight distribution index were calculated by gel permeation chromatography using tetrahydrofuran as a developing solvent and a multi-angle light scattering detector as a detector. The polymer conversion rate was measured by 1 H-NMR.
  • a test specimen was obtained in the same manner as in Comparative Example 3 except that the heating time was changed to 2 hours.
  • the film thickness of the obtained test specimen was measured using an atomic force microscope in a dry state and in a MEMP-TFSI immersed state, and it was found that 100 parts by mass of polymer chains contained in the layer containing polymer chain aggregates was measured. In this case, the mass proportion of MEMP-TFSI was 50 parts by mass.
  • the film thickness of the polymer brush layer formed on the silicon wafer surface was 789 nm
  • the number average molecular weight was 4,050,000
  • the molecular weight distribution index (PDI) was 1.11
  • the polymerization rate was 7%
  • the polymer chain The density of the polymer chains was 0.11 chains/nm 2
  • the surface occupancy of the polymer chains was 0.20.
  • the thickness of the polymer brush layer was measured by ellipsometry.
  • the number average molecular weight and molecular weight distribution index of the polymer brush layer were calculated by gel permeation chromatography using tetrahydrofuran as a developing solvent and a multi-angle light scattering detector as a detector.
  • the polymer conversion rate was measured by 1 H-NMR. Incidentally, after the obtained test specimen was immersed in MEMP-TFSI, the excess was blown off with Ar blow, and an icing stress test was conducted. Further, the degree of swelling in water of the produced polymer chain assembly was 1.1 or less, but when analyzed by 1 H-NMR, MEMP-TFSI was miscible with water. The measurement results are shown in Table 1.
  • the thickness of the polymer brush layer formed on the silicon wafer surface was 21 nm
  • the number average molecular weight was 3.8 million
  • the molecular weight distribution index (PDI) was 1.12
  • the polymerization rate was 7%
  • the polymer chain The density of the polymer chains was 0.003 chains/nm 2
  • the surface occupancy rate of the polymer chains was 0.01.
  • the thickness of the polymer brush layer was measured by ellipsometry.
  • the number average molecular weight and molecular weight distribution index of the polymer brush layer were calculated by gel permeation chromatography using tetrahydrofuran as a developing solvent and a multi-angle light scattering detector as a detector.
  • the polymer conversion rate was measured by 1 H-NMR.
  • the excess amount was blown off with an Ar blower, and an icing stress test was conducted.
  • the degree of swelling in water of the produced polymer chain assembly was 1.1 or less, and analysis by 1 H-NMR revealed that PAO10 was not miscible with water. The measurement results are shown in Table 1.
  • Example 7 A multi-block polymer with a structure in which polydimethylsiloxane (PDMS) at both ends sandwich polyethylene glycol (PEG) in the center (number average molecular weight of each PDMS block 5,000, number average molecular weight of PEG block 20,000, manufactured by Polymer Source Co., Ltd. (USA) (manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in 0.5 g of tetrahydrofuran, and 2.5 g of silicone rubber (KE-109E, manufactured by Shin-Etsu Chemical Co., Ltd.) serving as a base material was mixed at room temperature.
  • PDMS polydimethylsiloxane
  • PEG polyethylene glycol
  • the obtained prepared solution was evacuated to remove the solvent, and then spin coated on a glass substrate at 2000 rpm for 30 seconds. Thereafter, by heating in a vacuum at 150°C for 24 hours to complete the crosslinking reaction of the silicone rubber base material, a brush-like polymer consisting of multiple polymer chains made of silicone rubber as a base material is coated on the surface of the glass substrate.
  • a test specimen of Example 7 was obtained by forming a molecular chain assembly (polymer brush layer). When the obtained test specimen was immersed in heavy water and analyzed by neutron reflection using a high-intensity proton accelerator (J-PARC Center), the surface occupancy rate of the polymer chains was 0.60. By adding 0.03 mg of water to the obtained test specimen and performing differential scanning calorimetry, it was confirmed that water was retained in a liquid state in the layer containing polymer chain aggregates even at -18°C. confirmed.
  • an L-shaped jig attached to the stage was set to push the aluminum cylinder, and the icing stress was calculated from the load applied to the load cell of the stretching stage when the icicles peeled off (Fig. 1).
  • the stage movement speed was 10 mm/min.
  • the icing stress of the member of this embodiment does not change significantly in the range of 0°C to -20°C, it can be suitably used in applications where it is desired to suppress snow and ice formation over a wide temperature range of 0°C to -20°C.
  • the member of this embodiment can be used for, for example, window glass, vehicle glass, mirrors, piping, containers, and the like.

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明の目的は、氷核形成、着雪氷を抑制することができる部材を提供することにある。本発明の氷核形成抑制または着雪氷抑制用の部材は、基材に固定された複数の高分子鎖で構成されたブラシ状の高分子鎖集合体を含む層を有し、前記高分子鎖集合体を含む層は液状物質を保持していて、-18℃における着氷応力が150kPa以下であることを特徴としている。

Description

氷核形成抑制または着雪氷抑制用の部材
 本発明は、氷核形成抑制または着雪氷抑制用の部材に関する。
 空気調整機、冷凍機に用いられる熱交換器などにおいては、空気が急冷されることで熱交換器中の冷却部材表面に水滴が付着したり、霜が形成されたりして、熱交換効率などが低下することがある。特に、霜は、冷却部材表面の着氷や氷核の形成・成長を通して形成される。
 霜の形成を抑制する方法として、特許文献1に記載されているように、部材表面に樹脂膜を形成する方法が知られている。
特開2019-158247号公報
 特許文献1に記載の方法では、部材表面に付着する水滴の形態を制御して霜の成長を遅延させることはできるものの、部材表面の氷核形成や着雪氷を十分に抑制することはできず、さらなる改善が求められていた。
 従って、本発明の目的は、氷核形成、着雪氷を抑制することができる部材を提供することにある。
 すなわち、本発明は以下の通りである。
[1]
 基材に固定された複数の高分子鎖で構成されたブラシ状の高分子鎖集合体を含む層を有し、
 前記高分子鎖集合体を含む層は液状物質を保持していて、
 -18℃における着氷応力が150kPa以下である、氷核形成抑制または着雪氷抑制用の部材。
[2]
 -18℃における前記着氷応力と-8℃における着氷応力との差が、100kPa以下である、[1]に記載の部材。
[3]
 前記高分子鎖集合体が水で膨潤せず、かつ前記液状物質が水と混和しない、[1]または[2]に記載の部材。
[4]
 前記基材は前記高分子鎖集合体とは別の物質からなる担体であり、
 前記基材表面における前記高分子鎖の表面占有率が0.08~0.65である、[1]または[2]に記載の部材。
[5]
 前記部材が、前記基材である高分子鎖に前記複数の高分子鎖が側鎖として結合したボトルブラシ構造を有する部材であり、
 側鎖の表面占有率が0.08~0.65である、[1]または[2]に記載の部材。
[6]
 基材表面に重合開始基を導入し、前記重合開始基を介して複数の高分子鎖を形成する、[1]または[2]に記載の部材の製造方法。
 本発明の部材は、上記構成を有するため、氷核形成、着雪氷を抑制することができる。
着氷応力の試験方法を説明する概略図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。本発明は、以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
[部材]
 本実施形態の部材は、基材に固定された複数の高分子鎖で構成されたブラシ状の高分子鎖集合体を含む層を有し、上記高分子鎖集合体を含む層は液状物質を保持していて、-18℃における着氷応力が150kPa以下である、氷核形成抑制用または着雪氷抑制用の部材である。
 上記部材は、基材と高分子鎖集合体を含む上記層とのみからなる部材であってもよいし、さらに他の層や材料を有していてもよい。
 上記高分子鎖集合体を含む層は、高分子鎖集合体と液状物質とのみからなる層であってもよいし、さらに他の物質を含んでいてもよい。
 本実施形態の部材は、優れた着雪氷抑制効果および氷核形成抑制効果を有している。このような効果が得られる詳細な理由は不明であるが、次によるものであると推測される。本実施形態の部材では、液状物質が上記高分子鎖集合体によって保持されて高分子鎖集合体を含む層中にて不可逆的な液漏れなどが起こりにくい安定な液体層を形成していると推測される。また、高分子鎖集合体に保持された液状物質は、高分子鎖集合体によって運動性が適度に制御されて過冷却状態または不凍状態を生み出しやすいと推測される。本実施形態の部材は、このような安定な液体層が存在していることにより、氷、雪などに対する運動性の高い界面を有していると推測される。また、このような安定な液体層が存在していることにより、氷点以下でも水が凝固することなく熱運動させることができるので、部材表面上での水の氷結温度をより低下させることもできると推測される。
 そして、本実施形態の部材は、部材表面上で水が氷結しにくく、部材表面上にて氷、雪などが形成されにくく、更には、氷、雪などに対する運動性の高い界面を有しているため、部材表面上に氷、雪などが形成されてもこれらの滑落性に優れているため、優れた着雪氷抑制効果を有していると推測される。
 また、本実施形態の部材は、部材内部または表面上での水の氷結温度をより低下させることもできるため、氷核の発生温度を低下させることができ、優れた氷核形成抑制効果を有していると推測される。
 なお、本実施形態で用いる高分子鎖集合体とは、複数の高分子鎖の集合体であって、全体としてブラシ状の形状をなしているものであり、高分子の溶液を単に塗布して形成した有機膜とは全く異なるものである。
 なお、本明細書において、「ブラシ状」とは、基材表面または基材上の層に少なくとも一方の末端が固定され、基材から離れる方向に延びる高分子鎖が、複数(例えば、2本以上)存在する構造としてよい。なお、高分子鎖の両端が基材に固定される場合、U字状の構造であってよい。
 高分子鎖集合体を含む層が液状物質を保持していることは、示差走査熱量測定により確認することができる。また、示差走査熱量測定で確認できない場合は、押し込み硬さ試験(インデンテーション試験)の方法で確認することができる。
 本実施形態の部材において、上記液状物質が上記高分子鎖集合体を含む層に保持されて、氷点より低い温度(好ましくは-10℃以下、より好ましくは-20℃以下、更に好ましくは-30℃以下)でも液体状態を保持していることが好ましい。また、上記液状物質は水であることが好ましい。なお、液状物質が液体状態であるかどうかは、示差走査熱量測定により確認することができる。また、示差走査熱量測定で確認できない場合は、押し込み硬さ試験(インデンテーション試験)の方法で確認することができる。
 本実施形態の部材は、-8℃の着氷応力と-18℃の着氷応力との差を小さくでき、-18℃近辺での氷核形成および着雪氷の抑制効果に優れる観点から、-18℃において、上記高分子鎖集合体を含む層内に含まれる高分子鎖を100質量部とした際、上述の方法で液体状態と確認される物質の割合が、50質量部以上であることが好ましく、より好ましくは70質量部以上、さらに好ましくは80質量部以上、特に好ましくは90質量部以上である。上記割合は高分子鎖と液状物質との組み合わせなどにより調整することができる。また、上記割合は、原子間力顕微鏡やエリプソメトリー法などにより測定することができる。
 本実施形態の部材は、-18℃において、基材に固定された複数の高分子鎖で構成されたブラシ状の高分子鎖集合体を含む層を有し、上記高分子鎖集合体を含む層が液状物質を保持することが好ましい。
 本実施形態の部材において、高分子鎖集合体を含む層の膜厚は、より優れた着雪氷抑制効果および氷核形成抑制効果が得られやすいという理由から、50nm以上であることが好ましく、100nm以上であることがより好ましく、350nm以上であることが更に好ましく、500nm以上であることがより一層好ましく、1000nm以上であることが特に好ましい。上限は特に限定はないが、例えば100μm以下とすることができ、50μm以下とすることもできる。
 高分子鎖集合体を含む層の膜厚は、エリプソメトリー法などにより測定することができる。また、上記膜厚は-18℃で測定した値としてよい。
 以下、本実施形態の部材について詳細に説明する。
[高分子鎖集合体]
 本実施形態における高分子鎖集合体は、複数の高分子鎖からなり、全体としてブラシ状の形状をなすものである。本明細書における「高分子鎖」とは、複数の構成単位が鎖状に連なった構造を有する分子または分子の部分のことをいう。高分子鎖集合体を構成する複数の高分子鎖は、互いに同一であっても異なっていてもよい。また、高分子鎖は、複数の同一または異なる構成単位が鎖状に連なった構造を有していればよく、側鎖を有していても分岐構造を有していてもよく、高分子鎖同士の間や高分子鎖と基材との間に架橋構造が形成されていてもよい。
(高分子鎖)
 高分子鎖は、高分子鎖集合体を含む層に保持させる液状物質に対して親和性を有する高分子鎖であってもよいし、親和性を有しない高分子鎖であってもよい。
 例えば、高分子鎖集合体を含む層に、水や親水性の液状物質を保持させる場合は、高分子鎖集合体を構成する高分子鎖は、親水性高分子鎖であることが好ましい。親水性高分子鎖は、親水性モノマーを用いて合成してもよく、疎水性モノマーを用いて高分子を合成した後に、その高分子に親水性基を導入することによって合成してもよい。
 本明細書において、水との相溶性が高い高分子鎖を「相溶系高分子鎖」、水との相溶性が低い高分子鎖を「非相溶系高分子鎖」と称する場合がある。なお、水との相溶性が高い高分子鎖とは、原子間力顕微鏡を用いた膜厚測定法で測定、算出される膨潤度が、1.5以上(好ましくは2.0以上、より好ましくは2.5以上)である高分子鎖をいい、水との相溶性が低いとは1.5未満(好ましくは1.3以下、より好ましくは1.1以下、さらに好ましくは1.08以下、特に好ましくは1.05以下)である高分子鎖をいう。
 なお、上記膨潤度は以下の方法で測定された値をいう。膜厚を測定する試験体に、ピンセット先端などで傷をつけ、基板素地がむき出しになっている部分と膜がある部分の境界を、原子間力顕微鏡コロイドプローブ法(コンタクトモード)を用いて段差の高さ(すなわち、乾燥膜厚)を見積もる。次に、対応する液状物質に、同一試験体を終夜浸漬した後に、液中、同一箇所で原子間力顕微鏡コロイドプローブ法(コンタクトモード)を用いて段差の高さ(すなわち、膨潤状膜厚)を見積もる。そして。膨潤状膜厚/乾燥膜厚から、膨潤度を算出した。
 高分子鎖は、1種類のモノマーを重合させたホモ重合体であってもよく、2種類以上のモノマーを重合させた共重合体であってもよい。共重合体として、ランダム共重合体、ブロック共重合体、グラジエント共重合体などが挙げられる。
 高分子鎖の生成に用いるモノマーは、その重合により得られる高分子鎖を、グラフト鎖として基材に結合できるものであることが好ましい。そのようなモノマーとして、付加重合性の二重結合を少なくとも1つ有するモノマーを挙げることができ、付加重合性の二重結合を1つ有する単官能性のモノマーであることが好ましい。付加重合性の二重結合を1つ有する単官能性のモノマーとして、(メタ)アクリル酸系モノマー、スチレン系モノマーなどが挙げられる。
 また、高分子鎖は、反応性基を有するポリマー同士が反応して得られたポリマーであってもよい。反応性基としては、ヒドロキシ基やイソシアネート基などが挙げられる。反応性基を有するポリマーとしては、ポリエチレングリコールやジメチルシロキサンの重合体などが挙げられ、具体的には、サイラプレーンFM-0421(反応性シリコーン)(信越化学工業社製)などが挙げられる。
 -8℃の着氷応力と-18℃の着氷応力との差を小さくでき、-18℃近辺での氷核形成および着雪氷の抑制効果に特に優れる観点から、メトキシポリ(エチレングリコール)メタクリレート、またはドデシルメタクリレートとトリデシルメタクリレートとの混合物が好ましく、屋外での着雪氷抑制の観点から、ドデシルメタクリレートとトリデシルメタクリレートとの混合物が特に好ましい。
 (メタ)アクリル酸系モノマーとしては、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、フェニル(メタ)アクリレート、トルイル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、3-メトキシプロピル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ステアリル(メタ)アクリレート、グリシジル(メタ)アクリレート、3-エチル-3-(メタ)アクリロイルオキシメチルオキセタン、2-(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリレート-2-アミノエチル、2-(2-ブロモプロピオニルオキシ)エチル(メタ)アクリレート、2-(2-ブロモイソブチリルオキシ)エチル(メタ)アクリレート、1-(メタ)アクリロキシ-2-フェニル-2-(2,2,6,6-テトラメチル-1-ピペリジニルオキシ)エタン、1-(4-((4-(メタ)アクリロキシ)エトキシエチル)フェニルエトキシ)ピペリジン、γ-(メタクリロイルオキシプロピル)トリメトキシシラン、3-(3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-(3,5,7,9,11,13,15-ヘプタイソブチル-ペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-(3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-(3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-(3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタイソブチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、(メタ)アクリル酸のエチレンオキサイド付加物、トリフルオロメチルメチル(メタ)アクリレート、2-トリフルオロメチルエチル(メタ)アクリレート、2-ペルフルオロエチルエチル(メタ)アクリレート、2-ペルフルオロエチル-2-ペルフルオロブチルエチル(メタ)アクリレート、2-ペルフルオロエチル(メタ)アクリレート、トリフルオロメチル(メタ)アクリレート、ジペルフルオロメチルメチル(メタ)アクリレート、2-ペルフルオロメチル-2-ペルフルオロエチルエチル(メタ)アクリレート、2-ペルフルオロヘキシルエチル(メタ)アクリレート、2-ペルフルオロデシルエチル(メタ)アクリレート、2-ペルフルオロヘキサデシルエチル(メタ)アクリレートなどが挙げられる。
 スチレン系モノマーとしては、スチレン、ビニルトルエン、α-メチルスチレン、p-クロロスチレン、p-クロロメチルスチレン、m-クロロメチルスチレン、o-アミノスチレン、p-スチレンクロロスルホン酸、スチレンスルホン酸およびその塩、ビニルフェニルメチルジチオカルバメート、2-(2-ブロモプロピオニルオキシ)スチレン、2-(2-ブロモイソブチリルオキシ)スチレン、1-(2-((4-ビニルフェニル)メトキシ)-1-フェニルエトキシ)-2,2,6,6-テトラメチルピペリジン、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタイソブチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、3-(3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-(3,5,7,9,11,13,15-ヘプタイソブチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-(3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-(3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-(3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタイソブチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレンなどが挙げられる。
 また、付加重合性の二重結合を1分子中に1つ有する単官能性のモノマーとして、フッ素含有ビニルモノマー(ペルフルオロエチレン、ペルフルオロプロピレン、フッ化ビニリデンなど)、ケイ素含有ビニル系モノマー(ビニルトリメトキシシラン、ビニルトリエトキシシランなど)、無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステルおよびジアルキルエステル、フマル酸、フマル酸のモノアルキルエステルおよびジアルキルエステル、マレイミド系モノマー(マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミドなど)、ニトリル基含有モノマー(アクリロニトリル、メタクリロニトリルなど)、アミド基含有モノマー(アクリルアミド、メタクリルアミドなど)、ビニルエステル系モノマー(酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニルなど)、オレフィン類(エチレン、プロピレンなど)、共役ジエン系モノマー(ブタジエン、イソプレンなど)、ハロゲン化ビニル(塩化ビニルなど)、ハロゲン化ビニリデン(塩化ビニリデンなど)、ハロゲン化アリル(塩化アリルなど)、アリルアルコール、ビニルピロリドン、ビニルピリジン、N-ビニルカルバゾール、メチルビニルケトン、ビニルイソシアナート、主鎖がスチレン、(メタ)アクリル酸エステル、シロキサンなどから誘導されたマクロモノマーなども用いることもできる。
 また、高分子鎖の生成には、イオン液体型モノマーを用いることも好ましい。イオン液体型モノマーとして、特に限定されないが、例えば下記式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(1)において、mは1~10の整数を表し、nは1~5の整数を表す。Rは、水素原子または炭素数1~3のアルキル基を表し、R、RおよびRは、各々独立に炭素数1~5のアルキル基を表す。ただし、R、RおよびRにおけるアルキル基は、その炭素原子や水素原子が、酸素原子、硫黄原子、フッ素原子から選ばれる1種以上のヘテロ原子で置換されていてもよく、R、RおよびRは、その2つ以上が連結して環状構造を形成していてもよい。
 Yは一価のアニオンを表す。Yが表す一価のアニオンとしては、例えば、BF 、PF 、AsF 、SbF 、AlCl 、NbF 、HSO 、ClO 、CHSO 、CFSO 、CFCO 、(CFSO、Cl、Br、Iなどを挙げることができる。アニオンの安定性を考慮すると、BF 、PF 、(CFSO、CFSO 、またはCFCO であることが好ましい。
 イオン液体型モノマーは、式(1)で表される化合物のなかでも、特に下記式(2)~(9)のいずれかで表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(2)~(9)において、m、n、R、R、Yは、式(1)のm、n、R、R、Yと同義である。Meはメチル基を表し、Etはエチル基を表す。
 親水性高分子鎖の生成には、親水性モノマーを用いることが好ましい。すなわち、親水性高分子鎖は親水性モノマー由来の繰り返し単位を含むことが好ましい。
 親水性モノマーとしては、ヒドロキシ置換アルキル(メタ)アクリレート(例、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2,3-ジヒドロキシプロピル(メタ)アクリレート、ポリエトキシエチル(メタ)アクリレート、ポリエトキシプロピル(メタ)アクリレートなど)、ポリ(アルキレングリコール)モノ(メタ)アクリレート(例、ポリ(エチレングリコール)モノメタクリレートなど)、アルコキシポリ(アルキレングリコール)(メタ)アクリレート(例、メトキシポリ(エチレングリコール)メタクリレートなど)、フェノキシポリ(アルキレングリコール)(メタ)アクリレート(例、フェノキシポリ(エチレングリコール)メタクリレートなど)が好ましく、ポリアルコキシポリ(アルキレングリコール)(メタ)アクリレートがより好ましい。
 また、親水性モノマーとしては、(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド(例、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、N-メチルメタクリルアミドなど)、2-グルコシロキシエチル(メタ)アクリレート、アクリル酸、メタクリル酸、フマル酸、マレイン酸、イタコン酸、クロトン酸、メタクリルアミド、N-ビニルピロリドン、N,N-ジメチルアミノエチル(メタ)アクリレート、およびその四級アンモニウム塩を用いることもできる。
 親水性高分子鎖の生成には、カルボキシ基またはカルボキシ基の塩に容易に転換できる基を側鎖に有するモノマーを用いることも好ましい。生成した高分子鎖の側鎖の基を、カルボキシ基またはカルボキシ基の塩に転換することにより親水性付与することができる。カルボキシ基またはカルボキシ基の塩に容易に転換できる基を側鎖に有するモノマーとしては、tert-ブチル(メタ)アクリレートなどが挙げられる。
 本実施形態の部材において、上記液状物質が親水性の物質(例えば、水など)である場合、-8℃の着氷応力と-18℃の着氷応力との差を小さくでき、-18℃近辺での氷核形成および着雪氷の抑制効果に優れる観点から、上記高分子鎖は相溶系高分子鎖であることが好ましい。上記相溶系高分子鎖は、ポリ(エチレングリコール)モノメタクリレートなどのノニオン型モノマー;メタクリル酸3-スルホプロピルカリウム塩などのアニオン型モノマー;メタクリロイルオキシエチルトリメチルアンモニウムクロリドなどのカチオン型モノマー;および(3-[(3-アクリルアミドプロピル)ジメチルアンモニオ]プロパン-1-スルホン酸などのベタイン型モノマー;からなる群から選ばれる少なくとも一種の相溶系モノマーに由来する構造単位を含むことが好ましい。なかでも、-18℃近辺での氷核形成および着雪氷の抑制効果に特に優れる観点から、ノニオン型モノマーが好ましい。上記相溶系モノマーは、一種を単独で用いてもよいし複数種を組み合わせて用いてもよい。
 上記相溶系高分子鎖は、相溶系高分子鎖100質量部に対する、上記相溶系モノマーに由来する構造単位の質量割合が、50質量部超(好ましくは70質量部以上、より好ましくは80質量部以上、さらに好ましくは90質量部以上、特に好ましくは100質量部)である高分子鎖をいう。上記相溶系高分子鎖は、相溶系高分子鎖100質量部に対する、上記ノニオン型モノマーに由来する構造単位の質量割合が、70質量部以上であることが好ましく、より好ましくは80質量部以上、さらに好ましくは90質量部以上、特に好ましくは100質量部である。
 なお、相溶系モノマーとは、ホモポリマーとしたときの上記膨潤度が1.1以上であるモノマーといい、非相溶系モノマーとは、ホモポリマーとしたときの上記膨潤度が1.1未満であるモノマーという。
 本実施形態の部材において、上記液状物質が水と非相溶系の物質(例えば、MEMP-TFSIなどのイオン液体、ポリαオレフィンなどの炭化水素系オイル)である場合、-8℃の着氷応力と-18℃の着氷応力との差を小さくでき、-18℃近辺での氷核形成および着雪氷の抑制効果に優れる観点から、上記高分子鎖は非相溶系高分子鎖であることが好ましく、メチルメタクリレート、ドデシルメタクリレート、トリデシルメタクリレートなどの炭素数1~20(好ましくは1~15)のアルキル基を有するアルキルメタクリレート、メタクリレート末端シリコーンマクロモノマーなどの非相溶系モノマーに由来する構造単位を含むことが好ましい。中でも、-18℃近辺での氷核形成および着雪氷の抑制効果に特に優れる観点から、メタクリレート末端シリコーンマクロモノマーからなる構成単位を含むこと(より好ましくは、メタクリレート末端シリコーンマクロモノマーからなる構成単位のみからなること)が好ましい。上記非相溶系モノマーは、一種を単独で用いてもよいし複数種を組み合わせて用いてもよい。
 上記非相溶系高分子鎖は、非相溶系高分子鎖100質量部に対する、上記非相溶系モノマーに由来する構造単位の質量割合が、50質量部超(好ましくは70質量部以上、より好ましくは80質量部以上、さらに好ましくは90質量部以上、特に好ましくは100質量部)である高分子鎖をいう。
 これらの高分子鎖の生成に用いられるモノマーは、1種類を単独で使用してもよく、2種類以上を併用してもよい。
 高分子鎖集合体には、高分子鎖同士の間や高分子鎖と基材との間に架橋構造が形成されていてもよい。これにより、高分子鎖集合体の弾性率を制御することができる。高分子鎖同士の間に形成する架橋構造は、物理的架橋構造および化学的架橋構造のいずれであってもよい。架橋構造は、高分子鎖を生成するための重合反応と同時に形成してもよいし、高分子鎖を生成した後に形成してもよい。高分子鎖を生成するための重合反応と同時に行う架橋構造の形成は、重合反応液に、高分子鎖を生成するための単官能性モノマーに加えて、エチレングリコールジメタクリレートなどのジビニルモノマーのような二官能性モノマーを適量添加することにより行うことができる。また、生成した高分子鎖同士の間や高分子鎖と基材との間の架橋構造の形成は、架橋基を有するモノマーを用いて高分子鎖に架橋基を導入しておき、その架橋基と、他の高分子鎖の反応基との反応、その架橋基と基材の反応基との反応により行うことができる。架橋基としては、アジド基、ハロゲン基(好ましくはブロモ基)、アルコキシシリル基、イソシアネート基、ビニル基、チオール基などを挙げることができる。また、高分子鎖をリビングラジカル重合で生成した際に、グラフト鎖の末端に残る反応基を架橋基として用いることもできる。
 上記高分子鎖集合体は水で膨潤しないことが好ましい。高分子鎖集合体が水で膨潤しない場合、上記液状物質は水を混和しないことが好ましい。液状物質が水と混和しないことで、着雪氷時に液状物質を吸い出す必要がなくなり、一層効率よく着雪氷を抑制できる。
 なかでも、屋外での着雪氷抑制が向上する観点から、水で膨潤しない高分子鎖集合体(好ましくは水で膨潤しない非相溶系高分子鎖の集合体、より好ましくは炭素数1~20(さらに好ましくは1~15)のアルキル基を有するアルキルメタクリレートに由来する構造単位からなる水で膨潤しない高分子鎖の集合体)を含む層を有する、ポリマーブラシ構造の部材が好ましい。また、着雪氷抑制が一層向上する観点から、液状物質として炭化水素系オイル(好ましくはポリαオレフィン)を用いることが好ましい。
 水と膨潤しないとは、原子間力顕微鏡を用いて、測定、算出した水中膨潤度が1.1以下(好ましくは1.08以下、より好ましくは1.05以下)であることをいう
 本実施形態の部材において、高分子鎖集合体を構成する高分子鎖は基材に固定されている。基材は、高分子鎖集合体とは別の物質からなる担体であってもよいし、高分子鎖集合体と同一または異なる直鎖状または分岐鎖状の高分子鎖であってもよい。なお、本明細書において、基材としての高分子鎖を「幹ポリマー」と称する場合がある。
 基材が担体である場合、高分子鎖集合体は「ポリマーブラシ」を構成する。上記担体は平板状、球状、多孔質状などの広い表面積(例えば、100mm以上の表面積)を有する基材であってよい。
 また、基材が幹ポリマーである場合、主鎖としての該幹ポリマーと、その主鎖に結合した上記高分子鎖(側鎖)を合わせた全体が「ボトルブラシ構造」を構成する。基材が幹ポリマーである場合、本実施形態の部材は当該ボトルブラシ構造が上述の担体に接着したものを含む。
 また、高分子鎖集合体を構成する高分子鎖が、高分子鎖集合体とは別の物質からなる担体に固定されていている場合、たとえば、高分子鎖集合体が「ポリマーブラシ」を構成する場合においては、高分子鎖の片側末端のみが基材(担体)に固定されていてもよく、高分子鎖の両末端のそれぞれが基材(担体)に固定されていてもよい。高分子鎖の両末端が基材(担体)に固定されている場合は、高分子鎖はループ構造をなしており、このような高分子鎖集合体は、ループ構造のポリマーブラシを構成している。ループ構造を成すブラシ状ポリマーは、ボトルブラシであってもよい。
 ここで、固定とは、基材を構成する化合物または基材表面に導入した開始基と高分子鎖とが直接化学的に結合すること、基材表面に設けた層と高分子とが化学的に結合することなどが挙げられる。中でも、低温での氷核形成抑制および着雪氷抑制に優れる観点から、基材を構成する化合物または基材表面に導入した開始基と高分子鎖とが直接化学的に結合することが好ましい。
 なお、本明細書において「基材」とは高分子鎖が固定されるものをいう。また「担体」とは表面に複数の高分子鎖で構成されたブラシ状の高分子鎖集合体を含む層を有するものをいう。例えば、上述のポリマーブラシ構造を有する部材において、基材は、高分子鎖が固定されるものであり、担体もまた高分子鎖が固定されるものとしてよい。上述のボトルブラシ構造を有する部材において、基材は幹ポリマーであり、担体は幹ポリマーが接着するものとしてよい。
 本実施形態の部材において、高分子鎖集合体が上記ポリマーブラシを構成している場合、ポリマーブラシの乾燥膜厚、すなわち、乾燥状態における高分子鎖集合体の膜厚は、10nm以上であることが好ましく、50nm以上であることがより好ましく、100nm以上であることが更に好ましく、300nm以上であることがなお更に好ましく、500nm以上であることがより一層好ましく、1000nm以上であることが特に好ましい。上限は特に限定はないが、例えば100μm以下とすることができ、50μm以下とすることもできる。高分子鎖集合体が自己組織化により形成される場合、この乾燥膜厚は、1nm以上であることが好ましく、5nm以上であることがより好ましく、10nm以上であることがより好ましく、100nm以上であることが更に好ましい。上限は特に限定はないが、例えば1μm以下とすることができ、10μm以下とすることもできる。高分子鎖集合体が自己組織化により形成されるとは、個々の高分子鎖が、自発的に高分子鎖集合体を形成することを意味する。
 また、本実施形態の部材において、高分子鎖集合体が上記ボトルブラシ構造を有する場合、高分子鎖集合体を含む層の乾燥膜厚は、2nm以上であることが好ましく、50nm以上であることがより好ましく、100nm以上であることが更に好ましく、300nm以上であることがなお更に好ましく、500nm以上であることがより一層好ましく、1000nm以上であることが特に好ましい。上限は特に限定はないが、例えば100μm以下とすることができ、50μm以下とすることもできる。
 本実施形態の部材は、下記の方法で製造することができる。例えば、本実施形態の部材の製造方法は、基材表面に重合開始基を導入し、上記重合開始基を介して複数の高分子鎖を形成する製造方法が好ましい。
 以下においては、ポリマーブラシとボトルブラシ構造を有する部材のそれぞれについて、その高分子鎖集合体の形成方法を説明する。
[A]ポリマーブラシ
 ポリマーブラシの高分子鎖集合体は、複数の高分子鎖をグラフト鎖として基材である担体に結合させるグラフト化により得ることができる。このグラフト化は、Grafting-from法やGrafting-to法で行うことができ、このうち、Grafting-from法を用いることが好ましい。ここで、Grafting-from法は、基材に重合開始基を導入して、その重合開始基からグラフト鎖を成長させる方法であり、Grafting-to法は、予め合成したグラフト鎖を、基材に導入した反応点に結合させる方法である。
 また、高分子鎖集合体は、疎水性ブロックと親水性ブロックを有する高分子(ブロック共重合体)の疎水性部分を、疎水性の基材または疎水化された基材の表面に疎水性相互作用を用いて結合させる方法によっても得ることができる。ブロック共重合体としては、例えば、ポリメチルメタクリレート(PMMA)構造を疎水性ブロックとし、ポリ(ナトリウムスルホン化グリシジルメタクリレート)(PSGMA)構造を親水性ブロックとする共重合体を挙げることができる。この方法の詳細については、Nature, 425, 163-165 (2003)などを参照することができる。また、ブロック共重合体としては、例えば、ポリジメチルシロキサン(PDMS)構造を疎水性ブロックとし、ポリエチレングリコール(PEG)構造を親水性ブロックとする共重合体を挙げることができる。親水性ブロックと疎水性ブロックとの間には、他の高分子構造が介在していてもよい。
(グラフト重合法)
 以下に、高分子鎖集合体を、グラフト重合法を用いて形成する方法を具体的に説明する。
-高分子鎖の生成-
 グラフト重合法で用いる高分子鎖の生成方法は、特に限定されないが、ラジカル重合法を用いることが好ましく、リビングラジカル重合法(LRP)法を用いることがより好ましく、原子移動ラジカル重合(ATRP)法を用いることがさらに好ましい。リビングラジカル重合法は、高分子鎖の分子量や分子量分布をコントロールし易い、様々な種類の共重合体(例、ランダム共重合体、ブロック共重合体、組成傾斜型共重合体など)をグラフト鎖として生成できるという利点がある。また、リビングラジカル重合法によれば、高圧条件やイオン液体溶媒を用いることで、後述の濃厚ポリマーブラシを、その密度および厚さを精密に制御して生成することができる。リビングラジカル重合を用いたGrafting-from法の詳細については、特開平11-263819号公報などを参照することができる。また、原子移動ラジカル重合法の詳細については、J. Am. Chem. Soc., 117, 5614 (1995)、Macromolecules, 28, 7901 (1995)、Science, 272, 866 (1996)、Macromolecules, 31, 5934-5936 (1998)を参照することができる。
 また、高分子鎖は、ニトロキシド媒介重合法(NMP)、可逆的付加開裂連鎖移動(RAFT)重合法、可逆移動触媒重合法(RTCP)、可逆的錯体形成媒介重合法(RCMP)などによっても生成することができる。
 ラジカル重合法で用いる触媒は、ラジカル重合を制御できるものであればよく、好ましくは遷移金属錯体である。遷移金属錯体の好ましい例として、周期律表第7族、8族、9族、10族、または11族元素を中心金属とする金属錯体を挙げることができ、中でも、銅錯体、ルテニウム錯体、鉄錯体またはニッケル錯体を用いることが好ましく、銅錯体を用いることがより好ましい。銅錯体は、1価の銅化合物と有機配位子の錯体を含むことが好ましく、1価の銅化合物と有機配位子の錯体と2価の銅化合物と有機配位子の錯体の両方を含むことがより好ましい。1価の銅化合物として、塩化第一銅、臭化第一銅などを挙げることができ、2価の銅化合物として、塩化第二銅、臭化第二銅などを挙げることができる。有機配位子として、2,2’-ビピリジル若しくはその誘導体、1,10-フェナントロリンもしくはその誘導体、ポリアミン(テトラメチルエチレンジアミン、ペンタメチルジエチレントリアミン、ヘキサメチルトリス(2-アミノエチル)アミンなど)、L-(-)-スパルテインなどの多環式アルカロイドなどを挙げることができる。基材が担体の高分子鎖集合体であるポリマーブラシを形成するために1価の銅化合物と2価の銅化合物の両方を用いる場合、PDIの調整が良好となることから、2価の銅化合物に対する1価の銅化合物の銅を基準とするモル比率は、10倍以上であることが好ましく、20倍以上であることがより好ましく、30倍以上であることがさらに好ましい。また、200倍以下であってよく、150倍以下であってよく、100倍以下であってよく、40倍以下であってもよい。2価の塩化ルテニウムのトリストリフェニルホスフィン錯体(RuCl(PPh)も触媒として好適である。ルテニウム化合物を触媒として用いる場合には、活性化剤としてアルミニウムアルコキシド類を添加するのが好ましい。2価の鉄のビストリフェニルホスフィン錯体(FeCl(PPh)、2価のニッケルのビストリフェニルホスフィン錯体(NiCl(PPh)、2価のニッケルのビストリブチルホスフィン錯体(NiBr(PBu)なども触媒として好適である。ラジカル重合において銅錯体を配合する際は、あらかじめ銅錯体を形成させておいたうえでラジカル重合に用いてもよいし、銅化合物と有機配位子とを銅錯体が形成される比率で配合してラジカル重合を行ってもよい。ラジカル重合において配合する銅化合物と有機配位子との比率は、銅化合物に対する有機配位子が十分に配位し銅錯体の溶解が良好となることから、有機配位子のモル数が銅化合物のモル数に対し2倍以上2.3倍以下であることが好ましく、2.1倍以上2.3倍以下であることがより好ましく、2.2倍以上2.3倍以下であることが最も好ましい。
 重合反応は溶剤中で行うことが好ましい。溶剤として、炭化水素系溶剤(ベンゼン、トルエンなど)、エーテル系溶剤(ジエチルエーテル、テトラヒドロフラン、ジフェニルエーテル、アニソール、ジメトキシベンゼンなど)、ハロゲン化炭化水素系溶剤(塩化メチレン、クロロホルム、クロロベンゼンなど)、ケトン系溶剤(アセトン、メチルエチルケトン、メチルイソブチルケトンなど)、アルコール系溶剤(メタノール、エタノール、プロパノール、イソプロパノール、ブチルアルコール、t-ブチルアルコールなど)、ニトリル系溶剤(アセトニトリル、プロピオニトリル、ベンゾニトリルなど)、エステル系溶剤(酢酸エチル、酢酸ブチルなど)、カーボネート系溶剤(エチレンカーボネート、プロピレンカーボネートなど)、アミド系溶剤(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド)、ハイドロクロロフルオロカーボン系溶剤(1,1-ジクロロ-1-フルオロエタン、ジクロロペンタフルオロプロパン)、ハイドロフルオロカーボン系溶剤(炭素数2~5のハイドロフルオロカーボン、炭素数6以上のハイドロフルオロカーボン)、ペルフルオロカーボン系溶剤(ペルフルオロペンタン、ペルフルオロヘキサン)、脂環式ハイドロフルオロカーボン系溶剤(フルオロシクロペンタン、フルオロシクロブタン)、酸素含有フッ素系溶剤(フルオロエーテル、フルオロポリエーテル、フルオロケトン、フルオロアルコール)、水などを挙げることができる。これらの溶剤は、1種類を単独で使用してもよく、2種類以上を併用してもよい。
-重合開始基の導入-
 高分子鎖集合体を、例えばGrafting-from法を用いて形成するには、基材に重合反応の開始点となる重合開始基を導入し、この重合開始基から、上記の重合方法を用いて高分子鎖をグラフト成長させる。重合開始基としては、ハロゲン化アルキル基、ハロゲン化スルホニル基などを挙げることができる。重合開始基は、グラフト鎖の密度(グラフト密度)およびグラフト重合により得られる高分子鎖の一次構造(分子量、分子量分布、モノマー配列様式)を精度よく制御できることから、基材表面に物理的若しくは化学的に結合されているのが好ましい。重合開始基を基材表面に導入(結合)する方法としては、化学吸着法、ラングミュアー・ブロジェット(LB)法などを挙げることができる。
 例えば、シリコンウエハ(基材)表面へのクロロスルホニル基(重合開始基)の化学結合による導入は、2-(4-クロロスルホニルフェニル)エチルトリメトキシシランや2-(4-クロロスルホニルフェニル)エチルトリクロロシランなどを、シリコンウエハ表面の酸化層と反応させることにより行うことができる。
 また、LB法により重合開始基を導入するには、重合開始基を含む膜形成材料を適切な溶媒(例、クロロホルム、ベンゼンなど)に溶解する。次に、この溶液少量を清浄な液面、好ましくは純水の液面上に展開した後、溶媒を蒸発させるか、または隣接する水相に拡散させて、水面上に膜形成分子による低密度の膜を形成させる。続いて、仕切り板を水面上で機械的に掃引し、膜形成分子が展開している水面の表面積を減少させることにより膜を圧縮して密度を増加させ、緻密な水面上単分子膜を得る。次いで、適切な条件下で、水面上単分子膜を構成する分子の表面密度を一定に保ちながら、単分子層を堆積する基材を、水面上単分子膜を横切る方向に浸漬または引き上げることによって、水面上単分子膜を該基材上に移し取り、単分子層を該基材上に堆積する。LB法の詳細については、「福田清成他著、新実験化学講座18巻(界面とコロイド)6章、(1977年)丸善」、「福田清成・杉道夫・雀部博之編集、LB膜とエレクトロニクス、(1986年)シーエムシー」、或いは、「石井淑夫著、よいLB膜をつくる実践的技術、(1989年)共立出版」を参照することができる。
 重合開始基を基材表面に導入するに当たっては、基材に結合する基および基材と親和性を有する基の少なくとも一方と、重合開始基に結合する基および重合開始基と親和性を有する基の少なくとも一方を有する表面処理剤を用いて基材表面を処理することが好ましい。この表面処理剤は低分子化合物であっても、高分子化合物であってもよい。表面処理剤として、例えば下記式(10)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 式(10)において、nは1~10の整数であり、3~8の整数であることが好ましい。R11、R12およびR13は、各々独立に置換基を表す。R11、R12およびR13の少なくとも1つは、アルコキシル基またはハロゲン原子であることが好ましく、R11、R12およびR13の全てがメトキシ基であるか、エトキシ基であることが特に好ましい。R14およびR15は、各々独立に置換基を表す。R14およびR15は、各々独立に炭素数1~3のアルキル基、または芳香族性官能基であることが好ましく、R14およびR15の両方がメチル基であることが最も好ましい。X11は、ハロゲン原子を表し、臭素原子であることが好ましい。
 表面処理剤として、重合開始基を含有するシランカップリング剤(重合開始基含有シランカップリング剤)を用いることが好ましい。これにより、表面処理と重合開始基の導入を同時に行うことができる。重合開始基含有シランカップリング剤としては、上記式(10)で表される化合物などが挙げられる。重合開始基含有シランカップリング剤およびその製造方法の説明については、国際公開第2006/087839号トの記載を参照することができる。重合開始基含有シランカップリング剤の具体例として、(2-ブロモ-2-メチル)プロピオニルオキシヘキシルトリメトキシシラン(BHM)、(2-ブロモ-2-メチル)プロピオニルオキシプロピルトリメトキシシラン(BPM)、(2-ブロモ-2-メチル)プロピオニルオキシプロピルトリエトキシシラン(BPE)を挙げることができる。
 グラフト密度を調整する観点から、重合開始基含有シランカップリング剤を表面処理剤に用いる場合には、重合開始基を含有しないシランカップリング剤、例えば、公知のアルキルシランカップリング剤を併用することが好ましい。これにより、重合開始基含有シランカップリング剤と重合開始基を含有しないシランカップリング剤との割合を調整することで、グラフト密度を自在に変更することができる。例えば、シランカップリング剤のすべてが重合開始基含有シランカップリング剤である場合、その表面処理後にGrafting-from法にてグラフト重合を行うことにより、0.03を超える表面占有率で高分子鎖を成長させることができる。なお、表面処理剤として重合開始基含有シランカップリング剤を使用する場合、その重合開始基含有シランカップリング剤を水の存在下で加水分解させてシラノールとし、部分的に縮合させてオリゴマー状態とした後に表面処理に供してもよい。具体的には、このオリゴマーを、例えばシリカなどの基材に水素結合的に吸着させた後、乾燥処理することで脱水縮合反応を起こさせ、重合開始基を基材に導入してもよい。
(基材)
 ポリマーブラシ型の高分子鎖集合体において、高分子鎖を固定する基材(担体)を構成する材料としては、特に限定はない。有機材料、無機材料、金属材料などから適宜選択することができる。
 上記基材は、上記高分子鎖集合体とは異なる物質からなる担体が好ましい。
 有機材料としては、特に限定されず、各種樹脂およびゴムを制限なく用いることができる。樹脂としては、熱硬化性樹脂または熱可塑性樹脂のいずれでもよい。熱硬化性樹脂としては、たとえば、エポキシ樹脂、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ユリア樹脂、メラミン樹脂、熱硬化性ポリイミド樹脂、ジアリルフタレート樹脂などが挙げられる。熱可塑性樹脂としては、たとえば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリシクロオレフィンなどのポリオレフィン系樹脂;ポリスチレン、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアルコールなどのビニル系樹脂;ポリテトラフルオロエチレンなどのフッ素系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系樹脂;ポリジメチルシロキサンなどのシリコーン樹脂;などが挙げられる。ゴムとしては、ブタジエンゴム、スチレンブタジエンゴム、クロロプレンゴム、イソプレンゴム、天然ゴム、ニトリルゴム、ブチルゴムなどのジエン系ゴム;エチレンプロピレンゴム、アクリルゴム、ポリエーテルゴム、ポリウレタンゴム、フッ素ゴム、シリコーンゴムなどのジエン系ゴム以外のゴムなどが挙げられる。
 上記基材は、ポリマーモノリスであってもよい。ここで、ポリマーモノリスとは、三次元的に連通した連続空孔とポリマー骨格とで三次元共連続構造が形成されている高分子多孔質体をいう。
 ポリマーモノリスのポリマー骨格は、重合性化合物と架橋剤との重合物であることが好ましい。
 上記基材にポリマーモノリスを用いる場合、非相溶系であることが好ましい。これにより保液性が向上する。基材にポリマーモノリスを用いることにより、微細な共連続構造とブラシの浸透圧効果を掛け合わせることで可能になる。また、ポリマーモノリスを厚くすることで、オイルなどをポリマーモノリスに蓄えておくタンク的な役割を担うこともできる。ポリマーブラシをポリマーモノリス表面に修飾すると、これを表面に吸い出すこともできる。
 上記重合性化合物としては、架橋剤との重合によりポリマー骨格を形成可能な化合物であればよく、例えば、エポキシ化合物、(メタ)アクリレート化合物、スチレン化合物などが挙げられる。なかでも、柔軟性に優れ、微細な多孔質構造のポリマーモノリスを形成しやすい点から、エポキシ化合物が好ましい。上記エポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、スチルベン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、テトラキス(ヒドロキシフェニル)エタンべースなどのポリフェニルベースエポキシ樹脂、フルオレン含有エポキシ樹脂、2,2,2-トリ-(2,3-エポキシプロピル)-イソシアネートなどのトリグリシジルイソシアヌレート、トリアジン環含有エポキシ樹脂など、複素芳香環を含むエポキシ樹脂、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミンなどの芳香環由来の炭素原子を含む芳香族系エポキシ化合物や、脂肪族グリシジルエーテル型エポキシ樹脂、脂肪族グリシジルエステル型エポキシ樹脂、脂環族グリシジルエーテル型エポキシ樹脂、脂環族グリシジルエステル型エポキシ樹脂、1,3-ビス(N,N’-ジグリシジルアミノメチル)シクロヘキサンなどの芳香環由来の炭素原子を含まない脂肪族系エポキシ化合物などが挙げられる。なかでも、2官能以上のエポキシ化合物が好ましく、分子内にグリシジル基を2つ以上有する化合物がより好ましい。好ましい具体例としては、1,3-ビス(N,N’-ジグリシジルアミノメチル)シクロヘキサンなどが挙げられる。
 上記架橋剤としては、例えば、アミン化合物、酸無水物、フェノール化合物、ヒドラジド化合物などが挙げられる。
 上記アミン化合物としては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、o-フェニレンジアミン、4,4’-ジアミノジフェニルスルホン、4,4’-メチレン-ビス(2-クロロアニリン)、ベンジルジメチルアミン、ジメチルアミノメチルベンゼンなどの芳香族アミン化合物;トリアジン環などの複素芳香環を有する芳香族アミン化合物;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、1,3,6-トリスアミノメチルヘキサン、ポリメチレンジアミン、トリメチルヘキサメチレンジアミン、ポリエーテルジアミン、イソホロンジアミン、メンタンジアミン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラオキサスピロ(5,5)ウンデカンアダクト、ビス(4-アミノシクロへキシル)メタンおよびこれらの変性品などの脂環族アミン化合物;1,6-ヘキサメチレンビス(N,N-ジメチルセミカルバジド)などの脂肪族ポリアミンヒドラジド化合物;ポリアミン類とダイマー酸からなる脂肪族ポリアミドアミン類やポリアミノアミド類などが挙げられる。
 上記酸無水物としては、例えば、無水フタル酸、無水トリメット酸、無水ピロメット酸などの芳香族酸無水物が挙げられる。
 上記フェノール化合物としては、例えば、ノボラック型フェノール樹脂などが挙げられる。
 上記ヒドラジド化合物としては、例えば、イソフタル酸ジヒドラジドなどの芳香族ヒドラジド化合物;アジピン酸ジヒドラジド、セバチン酸ジヒドラジド、ドデカン二酸ジヒドラジドなどの脂肪族ヒドラジド化合物が挙げられる。
 架橋剤は重合性化合物の種類に応じて適宜選択することが好ましい。重合性化合物として、エポキシ化合物を用いた場合は、架橋剤はアミン化合物であることが好ましく、2官能以上のアミン化合物である分子内にアミノ基を2つ以上有する化合物がより好ましい。2官能以上のアミン化合物としては、脂環族アミン化合物であることが好ましい。好ましい具体例としては、ビス(4-アミノシクロへキシル)メタンなどが挙げられる。
 ポリマーモノリスのポリマー骨格としては、ポリマーモノリスの形成が簡便な点から、2官能以上のエポキシ化合物と2官能以上のアミン化合物の重合物であることが好ましく、2官能以上の脂肪族系エポキシ化合物と2官能以上の脂環族アミン化合物の重合物であることがより好ましい。
 重合性化合物と架橋剤の配合割合は、架橋密度などを考慮して決定すればよい。例えば、重合性化合物が2官能以上のエポキシ化合物であり、架橋剤が2官能以上のアミン化合物である場合、重合性化合物のエポキシ基1当量に対して、架橋剤のアミン当量が0.6~1.5の範囲になるように調整することが好ましい。
 ポリマーモノリスは、例えば、重合性化合物と架橋剤と孔形成剤とを含むポリマーモノリス形成用組成物によって形成することができる。より具体的には、担体としての基材にポリマーモノリス形成用組成物を塗布して塗布膜を形成し、塗布膜を硬化する。重合性化合物の重合に伴ってポリマー成分が増大し、スピノーダル分解が起こって共連続構造が発現する。その後、硬化膜から孔形成剤を除去することでポリマーモノリスを形成することができる。
 ポリマーモノリスを設ける面には、ポリマーモノリス形成用組成物との親和性を向上させるために、シランカップリング剤などの公知のカップリング剤による処理や、プラズマ処理などが施されていてもよい。
 無機材料としては、特に限定されず、セラミックス(例、アルミナセラミックス、バイオセラミックス、ジルコニア-アルミナ複合セラミックスなどの複合セラミックスなど)、金属(例、鉄、鋳鉄、鋼、ステンレス鋼、炭素鋼、高炭素クロム軸受鋼鋼材(SUJ2)などの鉄合金、アルミニウム、亜鉛、銅、チタンなどの非鉄および非鉄合金など)、多結晶シリコンなどのシリコン、酸化ケイ素、窒化ケイ素、各種ガラス、石英、およびこれらの複合材料などが挙げられる。
 基材の種類は、特に限定されない。
 例えばチューブ、シート、繊維、ストリップ、フィルム、板、箔、膜、ペレット、粉末、粒子、成形品(例、押出し成形品、鋳込み成形品など)などが挙げられる。また、本実施形態の部材を適用する物品そのものを基材に用いてもよい。
(他の製造方法)
 また、ポリマーブラシの高分子鎖集合体は、次の製造方法によって製造することもできる。すなわち、基材を構成する有機材料(以下、基材重合体ともいう)と、ポリマーブロックAおよびポリマーブロックAよりも基材重合体に対する親和性が低いポリマーブロックBとを備える複数のブロック共重合体とを溶剤中で混合して混合液を調製する工程と、混合液中から溶剤を除去して、相分離を生じさせる工程とを備える製造方法により製造することができる。ブロック共重合体は、ポリマーブロックAを少なくとも2箇所に有していてよい。この製造方法において、ポリマーブロックBを挟んでポリマーブロックAを両末端に有するブロック共重合体を使用すれば、高分子鎖集合体を構成する高分子鎖の両末端のそれぞれが担体である基材に固定されているループ構造のポリマーブラシの高分子鎖集合体を製造することができる。本方法で用いるブロック共重合体は、公知の方法で合成してよいし、市販品を用いてよい。市販品としては、PDMS-PEG、PDMS-PEG-PDMS(いずれもPolymer Science社(米)製)などが挙げられる。
 基材重合体である基材を構成する有機材料については、特に限定されず、上述したものが挙げられる。
 ブロック共重合体としては、ポリマーブロックAおよびポリマーブロックAよりも基材重合体に対する親和性が低いポリマーブロックBとを備え、かつ、ポリマーブロックAを少なくとも2箇所に有しているものであればよく、特に限定されないが、ループ構造を好適に形成できるという観点より、ポリマーブロックBは、基材重合体に対して非相溶であるものを用いることが好ましく、ポリマーブロックBが、基材重合体に対して非相溶であり、かつ、ポリマーブロックAが、基材重合体に対して相溶である組み合わせがより好ましい。
 ここで、ポリマーブロックAが、基材重合体に対して相溶であるとは、次の状態をいう。すなわち、ポリマーブロックAのみからなる重合体と、基材重合体とを、熱溶融混合や共溶液混合などにより混合した後、得られた混合物について、冷却あるいは溶剤蒸発除去などにより固化することにより得られた試料について、ガラス転移温度(Tg)を測定した場合に、ポリマーブロックAのみからなる重合体のTgと、基材重合体のTgとの間の温度域に、これらとは異なるTgが観測できる場合に、相溶であると判断することができる。
 また、ポリマーブロックBが、基材重合体に対して非相溶であるとは、次の状態をいう。すなわち、ポリマーブロックBのみからなる重合体と、基材重合体とを、熱溶融混合や共溶液混合などにより混合した後、得られた混合物について、冷却あるいは溶剤蒸発除去などにより固化することにより得られた試料について、ガラス転移温度(Tg)を測定した場合に、ポリマーブロックBのみからなる重合体のTgおよび基材重合体のTg以外に、これらとは異なるTgが観測できない場合に、非相溶であると判断することができる。
 ポリマーブロックAおよびポリマーブロックBとしては、基材重合体に対する相溶性が上記の関係にあるものを用いればよいが、ポリマーブラシ構造を好適に形成できるという観点より、これらのSP値(溶解度パラメータ)に関し、ポリマーブロックAのSP値と、ポリマーブロックBのSP値との差は1.5(MPa)0.5以上であることが好ましく、3(MPa)0.5以上であることがより好ましく、5(MPa)0.5以上であることがさらに好ましい。また、ポリマーブロックAのSP値に関し、ポリマーブロックAのSP値と、基材重合体とのSP値との差が0.5(MPa)0.5以下であることが好ましく、0.3(MPa)0.5以下であることがより好ましく、0.2(MPa)0.5以下であることがさらに好ましい。ポリマーブロックBのSP値に関し、ポリマーブロックBのSP値と、基材重合体のSP値との差が1.5(MPa)0.5以上であることが好ましく、3(MPa)0.5以上であることがより好ましく、5(MPa)0.5以上であることがさらに好ましい。なお、ポリマーブロックAおよびポリマーブロックBのSP値は、たとえば、ポリマーハンドブック(第4版、Wiley-Interscience)に開示された値を用いることができる。
 ポリマーブロックAとしては、上述した特性を満たすものであればよく、特に限定されず、用いる基材重合体との関係で選択すればよいが、その具体例としては、上述した基材重合体を構成する樹脂またはゴムとして例示した樹脂またはゴムを構成する重合体セグメントからなるものなどが挙げられる。
 ブロック共重合体のポリマーブロックA部分の分子量(重量平均分子量(Mw))は、特に限定されないが、基材重合体と十分な相互作用を示し、これにより、ポリマーブロックBにより形成されるループ構造をより適切に支えることにより、耐久性をより高めることができるという観点より、好ましくは1,000~100,000、より好ましくは1,000~50,000、さらに好ましくは1,000~20,000であり、さらにより好ましくは2,000~20,000、特に好ましくは2,000~6,000である。
 ポリマーブロックBとしては、上述した高分子鎖として説明したもののうち、基材重合体との間で上述した特性を満たすものが好ましく用いられる。
 基材重合体と、複数のブロック共重合体鎖とを溶剤中で混合する際に、用いる溶剤としては、特に限定されず、基材重合体と、ブロック共重合体鎖とを溶解あるいは分散可能な溶剤であれば何でもよい。たとえば、n-ペンタン、n-ヘキサン、n-ヘプタンなどの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデン、シクロオクタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレン、メシチレンなどの芳香族炭化水素;ニトロメタン、ニトロベンゼン、アセトニトリル、プロピオニトリル、ベンゾニトリルなどの含窒素系炭化水素;ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類;アセトン、エチルメチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノンなどのケトン類;酢酸メチル、酢酸エチル、プロピオン酸エチル、安息香酸メチルなどのエステル類;クロロホルム、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼンなどのハロゲン化炭化水素;メタノール、エタノールなどのアルコール類などが挙げられる。
 このような溶剤中で、基材重合体と、複数のブロック共重合体鎖とを混合し、溶解あるいは分散させることで、混合液を得ることができる。次いで、得られた混合液を用いて、キャスト法やスピンコート法などにより製膜した後に、製膜した混合液中から溶剤を除去する。溶剤を介して基材重合体に対して分散状態にある複数のブロック共重合体鎖のうち一部が、溶剤が除去されることで、ポリマーブロックAについては、基材重合体と相溶した状態となったままで、ブロック共重合体鎖を構成するポリマーブロックBが、基材重合体と相分離して、ポリマーブロックAが基材重合体中にあり、かつ、ポリマーブロックBが基材重合体から露出した状態に変化させることができ、これにより、高分子鎖集合体を構成する高分子鎖の片末端が担体に固定されたポリマーブラシ構造、または両末端のそれぞれが担体に固定されたループ構造を形成させることができる。
 溶剤を除去する方法としては、特に限定されず、用いる溶剤の種類に応じて選択すればよいが、50℃~100℃にて加熱する方法が好ましく、70~80℃にて加熱する方法がより好ましい。
 また、ポリマーブラシの高分子鎖集合体は、次の製造方法によって製造することもできる。すなわち、基材重合体と、ポリマーブロックAおよびポリマーブロックAよりも基材重合体に対する親和性が低いポリマーブロックBとを備えるブロック共重合体、および/または、ポリマーブロックAおよびポリマーブロックAよりも基材重合体に対する親和性が低いポリマーブロックBとを備え、かつ、ポリマーブロックAを少なくとも2箇所に有している複数のブロック共重合体とを加熱下で混合して溶融混合物を調製する工程と、溶融混合物を冷却させることで相分離を生じさせる工程とを備える製造方法により製造することもできる。この製造方法によっても、高分子鎖集合体を構成する高分子鎖の一方の末端が担体である基材に固定されているポリマーブラシの高分子鎖集合体、もしくは両末端のそれぞれが担体である基材に固定されているループ構造のポリマーブラシの高分子鎖集合体を製造することができる。
 基材重合体と、複数のブロック共重合体とを加熱下で混合して溶融混合物を調製する際における加熱温度としては、特に限定されず、基材重合体またはブロック共重合体が溶融する温度、好ましくは基材重合体およびブロック共重合体鎖の両方が溶融する温度とすればよいが、好ましくは40~300℃、より好ましくは80~200℃である。
 得られた溶融混合物を用いて、キャスト法、スピンコート法、ディップコート法などにより製膜した後に、冷却させ、冷却により固化する過程において相分離を生じさせる。溶融混合されていることにより、基材重合体に対して分散状態にある複数のブロック共重合体のうち一部が、溶融状態から固体状態になる過程において、ポリマーブロックAについては、基材重合体と相溶した状態となったままで、ブロック共重合体を構成するポリマーブロックBが、基材重合体と相分離することで、ポリマーブロックAが基材重合体中にあり、かつ、ポリマーブロックBが基材重合体から露出した状態に変化させることができ、これによりループ構造を形成させることができるものである。
 溶融混合物を冷却する方法としては特に限定されないが、製膜した溶融混合物を室温下で静置する方法や、溶融混合物を構成する各成分の溶融温度よりも低い温度にて加温した状態で静置する方法などが挙げられる。
(高分子鎖の数平均分子量および分子量分布指数)
 高分子鎖集合体を構成する高分子鎖の数平均分子量(Mn)は、好ましくは500~10,000,000であり、より好ましくは100,000~10,000,000である。
 高分子鎖集合体における分子量分布指数(PDI=Mw/Mn)は、1.0~2.0が好ましく、1.0~1.5がより好ましい。分子量分布指数が上記範囲であれば、高分子鎖集合体を構成する高分子鎖の最表面まで高密度な状態を維持しうるという効果が期待できる。
 高分子鎖集合体の数平均分子量(Mn)および分子量分布指数(Mw/Mn)は、フッ化水素酸処理により基材から高分子鎖を切り出し、切り出した高分子鎖についてゲル浸透クロマトグラフィー法などのサイズ排除クロマトグラフィー法による分子量分析を行うことで測定することができる。
 また、グラフト重合法を用いて高分子鎖集合体を形成した場合には、高分子鎖の重合反応に際して生成するフリーポリマーが、基材に固定される高分子鎖と等しい分子量を有すると仮定して、そのフリーポリマーについてサイズ排除クロマトグラフィー法により、数平均分子量(Mn)および分子量分布指数(Mw/Mn)を測定し、これをそのまま高分子鎖の数平均分子量(Mn)および分子量分布指数(Mw/Mn)として用いる方法も採用することもできる。なお、数平均分子量(Mn)および分子量分布指数(Mw/Mn)は、基材に固定される高分子鎖と重合反応時に生成するフリーポリマーでほぼ等しいことを確認している。
 フリーポリマーを用いる分子量の測定方法について具体的に説明する。高分子鎖を表面開始リビングラジカル重合で合成する際、重合溶液に遊離開始剤を添加すると、高分子鎖集合体を構成する高分子鎖と同等の分子量および分子量分布を有するフリーポリマーを得ることができる。このフリーポリマーを、サイズ排除クロマトグラフィー法にて分析することにより、数平均分子量(Mn)および分子量分布指数(Mw/Mn)を決定する。
 なお、サイズ排除クロマトグラフィー法での分析は、入手可能な分子量既知の同種単分散の標準試料を用いた較正法、多角度光散乱検出器を用いた絶対分子量評価を行うものである。本明細書では、本明細書の実施例では、数平均分子量(Mn)および重量平均分子量(Mw)の値は、多角度光散乱検出器ならびに各種標準試料の分子量検量線を用いて適切に算定した絶対値で示す。標準試料としては、ポリスチレン標準試料、ポリメチルメタクリレート標準試料、ポリエチレングリコール標準試料などが挙げられる。
 基材表面における高分子鎖の密度は、0.01鎖/nm以上であることが好ましく、0.05鎖/nm以上であることがより好ましく、0.1鎖/nm以上であることが更に好ましく、0.2鎖/nm以上であることが特に好ましい。上限は、特に限定されないが1.0鎖/nm以下とすることができ、0.9鎖/nm以下とすることもできる。
 高分子鎖の密度は、単位面積当たりのグラフト量(W)と高分子鎖集合体の数平均分子量(Mn)を測定し、下記式を用いて求めることができる。
高分子鎖の密度(鎖/nm)=W(g/nm)/Mn×(アボガドロ数)
 式において、Wは単位面積当たりのグラフト量を表し、Mnは高分子鎖集合体の数平均分子量を表す。
 単位面積当たりのグラフト量(W)は、基材がシリコンウエハのような平面基板の場合には、エリプソメトリー法により乾燥状態の膜厚、すなわち、高分子鎖集合体層の乾燥状態における厚みを測定し、バルクフィルムの密度を用いて、単位面積当たりのグラフト量(W)を算出することにより求めることができる。
 高分子鎖集合体の数平均分子量(Mn)の測定方法については、上述した方法にて測定することができる。
 基材表面における高分子鎖の表面占有率(ポリマーの断面積×高分子鎖の密度)は、0.01以上であることが好ましく、0.05以上であることがより好ましく、0.10以上であることがさらに好ましい。表面占有率は、基材表面をグラフト点(1つ目の構成単位)が占める割合を意味し、最密充填で1である。高分子鎖の密度の算出方法については、上述した方法にて測定することができる。ポリマーの断面積は、ポリマーの伸びきり形態における繰り返し単位長さとポリマーのバルク密度を用いて求めることができる。
 基材表面における高分子鎖の表面占有率は、0.08~0.65であることが好ましく、より好ましくは0.1~0.4、さらに好ましくは屋外での着雪氷抑制の観点から0.15~0.25である。
 本実施形態の部材は、ポリマーブラシ構造を有する場合、0℃~-18℃の幅広い範囲で優れた着雪氷抑制効果を得ることができる観点から、上記基材が上記高分子鎖集合体とは別の物質からなる担体であり、上記基材表面における上記高分子鎖の表面占有率が0.08~0.65(好ましくは0.10~0.40、より好ましく0.15~0.40)であることが好ましい。特に、ポリマーブラシ構造を有する場合、表面占有率が上記範囲であると、ブラシの密度が適度な範囲となることで、液状物質の保持力が向上し(特に水と非相溶の液状物質では、保持力が大きく向上する)、サイズ排除効果による氷核形成の抑制を一層向上させることができる。
[B]ボトルブラシ構造を有する部材
 次に、ボトルブラシ構造を有する部材について説明する。
 ボトルブラシ構造は、主鎖から複数の側鎖が分岐していて、全体としてボトルブラシ様の形状をなす分岐高分子構造のことをいう。ボトルブラシ構造は、主鎖が基材を構成し、側鎖が高分子鎖集合体を構成するが、さらに、ボトルブラシ構造が、担体に接着されてボトルブラシ構造を有する部材となってよい。担体については上述したものが挙げられる。また、この場合、ボトルブラシとポリマーブラシの両方を担体に固定または接着してもよい。その場合、ポリマーブラシは濃厚ポリマーブラシであることが好ましい。
 本実施形態の部材は、上記基材である高分子鎖に上記複数の高分子鎖が側鎖として結合したボトルブラシ構造を有する部材が好ましい。
 ボトルブラシ構造を有する部材も、グラフト重合法により得ることができる。このグラフト重合は、予め合成した反応性側鎖(グラフト鎖)を、主鎖となる幹ポリマーに結合させるGrafting-to法、マクロ開始剤(重合開始基を導入した幹ポリマー)の重合開始基から側鎖(グラフト鎖)を成長させるGrafting-from法、マクロモノマー(側鎖構成ポリマーの末端に重合性官能基を有するポリマー)を重合させるGrafting-through法を用いて行うことができる。また、これらの側鎖や幹ポリマーの合成には、リビングアニオン重合、開環メタセシス重合(ROMP)、あるいは汎用性の高いリビングラジカル重合法(LRP)を用いることができる。ボトルブラシ構造を有する部材の好ましい例として、式(11)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000004
 式(11)中、RおよびRは、それぞれ独立に水素原子またはメチル基を表し、Rは置換基を表し、炭素数が1~10のアルキル基であることが好ましい。RおよびRは原子または原子団からなる末端基を表し、水素原子、ハロゲン、重合開始剤由来の官能基などが挙げられる。Xは、OまたはNHを表し、Yは、2価の有機基を表し、nは、10以上の整数を表し、Polymer Aは、高分子鎖を表す。式(11)で表される化合物では、nで括られた構成単位の繰り返し構造がボトルブラシ構造の主鎖に相当し、Polymer Aがボトルブラシ構造の側鎖に相当する。
 Yが表す有機基として、炭素数1~10のアルキレン基、炭素数1~5のオキシアルキレン基(RO)(Rは炭素数1~5のアルキレン基を表す)、このオキシアルキレン基が複数連結した連結構造、または、これらの有機基(炭素数1~10のアルキレン基、炭素数1~5のオキシアルキレン基およびオキシアルキレン基の連結構造)のうちの少なくとも2つの組み合わせからなる2価の有機基などを挙げることができる。ここで、アルキレン基およびオキシアルキレン基のアルキレン基は、直鎖状であっても分枝状であってもよく、環状構造を有していてもよい。アルキレン基の具体例として、エチレン基、プロピレン基、ブチレン基、シクロヘキシレン基を挙げることができる。このアルキレン基およびオキシアルキレン基のアルキレン基は、置換基で置換されていてもよい。置換基として、炭素数1~10のアルキル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基を挙げることができ、これらの置換基はさらに置換基で置換されていてもよい。Polymer Aの説明と好ましい範囲、具体例については、上述した高分子鎖を参照することができる。Polymer Aは、主鎖の構成単位同士で、互いに同一であっても異なっていてもよい。
 ボトルブラシ構造を有する部材について、主鎖を中心軸とし、その中心軸から側鎖(グラフト鎖)を直線状に延ばして、その先端を含む面(仮想外周部)を想定したとき、その部材の外形は、その先端を含む面を側面とする円柱と捉えることができる。こうした外形を有する部材では、側鎖(グラフト鎖)の長さが長くなる程、その側面における側鎖(グラフト鎖)の密度が低下し、側鎖(グラフト鎖)の構造上の自由度が高くなる。その結果、側鎖(グラフト鎖)は自由に折り畳まれ得ることになる。
 ボトルブラシ構造を有する部材において、側鎖の表面占有率(σ)は、下記式により求めることができる。
Figure JPOXMLDOC01-appb-M000005
 上記式中、DPn,graftはグラフト鎖の数平均重合度、xは幹ポリマー単位長さあたりのグラフト鎖数(本/nm)、rは骨格ポリマーの半径(nm)(例えば、PBIEMでは0.8nmである)、aはモノマーの断面積(nm)(例えば、PEGMAでは3.3nm)、lは高分子鎖の繰り返し単位の全長(nm)(例えば、ポリメタクリレートの場合は0.25)であり、2π(DPn,graft・l+r)はボトルブラシの断面の円周(nm)、l/xは隣接するグラフト鎖間の距離(nm)である。上記方法は、Biomacromolecules、2021、22、2505-14を参照することができる。
 側鎖の表面占有率は0~1の値を示し、数値が大きくなる程、ポリマー側面の側鎖先端部が占める割合が大きくなり、側鎖の自由度が制限されることになる。すなわち、側鎖の表面占有率は、側鎖の自由度を反映する数値であり、側鎖の表面占有率(σ)が高い程、側鎖の構造上の自由度が制限される。その結果、側鎖が主鎖に対して、略垂直方向に延びた状態を維持することができ、その構造に特有の性質を示すと推測される。
 ボトルブラシ構造を有する部材の側鎖の表面占有率は0.01以上であることが好ましく、0.05以上であることがより好ましく、0.10以上であることが更に好ましい。表面占有率が上記範囲であると、ブラシの密度が適度な範囲となることで、液状物質の保持力が向上し(特に水と非相溶の液状物質では、保持力が大きく向上する)、サイズ排除効果による氷核形成の抑制を一層向上させることができる。
 また、側鎖の表面占有率は、0.08~0.65であることが好ましく、より好ましくは0.1~0.5、さらに好ましくは0.2~0.4である。
 ボトルブラシ構造を有する部材の側鎖の密度は、0.01鎖/nm以上であることが好ましく、0.05鎖/nm以上であることがより好ましく、0.1鎖/nm以上であることが更に好ましく、0.2鎖/nm以上であることが特に好ましい。上限は、特に限定されないが1.0鎖/nm以下とすることができ、0.9鎖/nm以下とすることもできる。
 ボトルブラシ構造を有する部材の数平均分子量は、1,000~10,000,000であることが好ましく、1,000~1,000,000であることがより好ましく、5,000~500,000であることがさらに好ましい。
 ボトルブラシ構造を有する部材の分子量分布指数(PDI=Mw/Mn)は、1.0~2.0が好ましく、1.0~1.5がより好ましい。分子量分布指数が上記範囲であれば、高分子鎖集合体を構成する高分子鎖の最表面まで高密度な状態を維持しうるという効果が期待できる。
 本実施形態の部材がボトルブラシ構造を有する部材である場合、上記部材が上記基材である高分子鎖に上記複数の高分子鎖が側鎖として結合したボトルブラシ構造を有する部材であり、上記ボトルブラシ構造を有する部材は、側鎖の表面占有率が0.08~0.50(より好ましくは0.10~0.50、さらに好ましく0.15~0.50)であることが好ましい。
[液状物質]
 本実施形態の部材の高分子鎖集合体を含む層は液状物質を保持している。
 液状物質としては、水、イオン液体、フッ素系溶剤、オイル(炭化水素系オイル、シリコーンオイルなど)などが挙げられ、水およびイオン液体から選ばれる少なくとも1種であることが好しい。液状物質は親水性の液状物質であってもよく、疎水性の液状物質であってもよい。親水性の液状物質としては、水、親水性イオン液体などが挙げられる。疎水性の液状物質としては、疎水性イオン液体、フッ素系溶剤、オイルが挙げられる。液状物質は、1種の液状物質のみで構成されていてもよく、2種以上の液状物質の混合物であってもよい。液状物質には、添加剤が含まれていてもよい。
 イオン液体とは、イオン性液体または常温溶融塩とも呼称される、イオン伝導性を有する低融点の塩である。イオン液体の多くは、カチオンとしての有機オニウムイオンと、アニオンとしての有機または無機アニオンとを組み合わせることにより得られる比較的低融点の特性を有するものである。イオン液体の融点は、通常100℃以下、好ましくは室温(25℃)以下である。イオン液体の融点は、示差走査熱量計(DSC)などにより測定することができる。
 イオン液体としては、下記式(20)で表される化合物を用いることができる。このイオン液体の融点は、50℃以下であることが好ましく、25℃以下であることがより好ましい。
Figure JPOXMLDOC01-appb-C000006
 式(20)において、R21、R22、R23およびR24は、各々独立に炭素数1~5のアルキル基、またはR’-O-(CH-で表されるアルコキシアルキル基を表し、R’はメチル基またはエチル基を表し、nは1~4の整数である。R21、R22、R23およびR24は互いに同一であっても異なっていてもよい。また、R21、R22、R23およびR24のいずれか2つが互いに結合して環状構造を形成していてもよい。但し、R21、R22、R23およびR24の少なくとも1つはアルコキシアルキル基である。X21は窒素原子またはリン原子を表し、Yは一価のアニオンを表す。
 R21、R22、R23およびR24における炭素数1~5のアルキル基として、メチル基、エチル基、n-プロピル基、2-プロピル基、n-ブチル基、n-ペンチル基など挙げられる。
 R21、R22、R23およびR24において、R’-O-(CH-で表されるアルコキシアルキル基としては、メトキシメチル基またはエトキシメチル基、2-メトキシエチル基または2-エトキシエチル基、3-メトキシプロピル基または3-エトキシプロピル基、4-メトキシブチル基または4-エトキシブチル基などが好ましい。
 R21、R22、R23およびR24のいずれか2つが互いに結合して環状構造を形成している化合物としては、X21に窒素原子を採用した場合には、アジリジン環、アゼチジン環、ピロリジン環、ピペリジン環などを有する4級アンモニウム塩などが好ましく、X21にリン原子を採用した場合には、ペンタメチレンホスフィン(ホスホリナン)環などを有する4級ホスホニウム塩などが好ましい。また、4級アンモニウム塩としては、置換基として、R’がメチル基であり、nが2の2-メトキシエチル基を少なくとも1つ有するものが好適である。
 Yにおける一価のアニオンとしては、BF 、PF 、AsF 、SbF 、AlCl 、NbF 、HSO 、ClO 、CHSO 、CFSO 、CFCO 、(CFSO、Cl、Br、Iなどが挙げられ、BF 、PF 、(CFSO、CFSO 、またはCFCO であることが好適である。
 イオン液体としては、式(20)のR21がメチル基で、R23およびR24がエチル基で、R24がR’-O-(CH-で表されるアルコキシアルキル基である構造の化合物が好ましく用いられる。
 式(20)で表される化合物のうち、好適に用いられる4級アンモニウム塩および4級ホスホニウム塩の具体例として、以下に示す化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 また、イオン液体としては、イミダゾリウムイオンを含むイオン液体や芳香族系カチオンを含むイオン液体を用いることもできる。
 上記液状物質は水と混和しないことが好ましい。
 水と混和しないとは、室温にて終夜水と液状物質とを攪拌し、室温で1時間静置した後に、液状物質のみを取り出してNMR測定を実施した際、水の含有量が5%以下であることをいう。
 本実施形態の部材において、高分子鎖集合体が水で膨潤せず、上記液状物質が水と混和しないことが好ましい。
 本実施形態の部材において、-8℃の着氷応力と-18℃の着氷応力との差が小さくなり、-18℃近辺での氷核形成および着雪氷の抑制効果に優れる観点から、液状物質と高分子鎖とが水と相溶系高分子鎖(好ましくは、水とポリ(アルキレングリコール)モノ(メタ)アクリレート);イオン液体と非相溶系高分子鎖(好ましくは、Xが窒素原子でありR21とR22とが互いに結合して環状構造を形成しR23が炭素数1~5のアルキル基でありR24がR’-O-(CH-で表されるアルコキシアルキル基である式(20)のイオン液体と炭素数1~8のアルキル基を有するアルキルメタクリレートのモノポリマー);炭化水素系オイルと非相溶系高分子鎖(好ましくは、ポリαオレフィンと炭素数10~15のアルキル基を有するアルキルメタクリレートのモノポリマー)、が好ましい。
 高分子鎖集合体を含む層に液状物質を保持させる方法は特に限定されない。例えば、高分子鎖集合体を含む層の表面に液状物質を塗布した後、静置して保持させる方法や、高分子鎖集合体を含む層を形成した基材を液状物質中に浸漬させる方法などが挙げられる。また、高分子鎖集合体が大気中の水分を取り込んで高分子鎖集合体を含む層中に液状物質である水を保持することもある。
[部材の特性]
 本実施形態の部材は、-18℃における着氷応力が150kPa以下であり、好ましくは100kPa以下、より好ましくは80kPa以下、より好ましくは65kPa以下、さらに好ましくは50kPa以下、さらに好ましくは35kPa以下、特に好ましくは20kPa以下である。
 なお、-18℃における着氷応力は、後述の実施例に記載の方法で測定することができる。
 上記-18℃における着氷応力は、高分子鎖の種類、液状物質の種類、高分子鎖の表面占有率により調整することができる。
 本実施形態の部材の-8℃における着氷応力は、10~50kPaであることが好ましく、より好ましくは10~30kPa、さらに好ましくは0~20kPaである。-8℃における着氷応力が上記範囲であると、0℃~-18℃の幅広い範囲で優れた着雪氷抑制効果を得ることができる。
 なお、-8℃における着氷応力は、後述の実施例に記載の方法で測定することができる。
 上記-8℃における着氷応力は、高分子鎖の種類、液状物質の種類、高分子鎖の表面占有率により調整することができる。
 本実施形態の部材の-18℃における着氷応力と-8℃における着氷応力との差は、100kPa以下であることが好ましく、より好ましくは90kPa以下、さらに好ましくは80kPa以下、さらに好ましくは50kPa以下、さらに好ましくは30kPa以下、特に好ましくは10kPa以下である。差が上記範囲であると、0℃~-18℃の幅広い範囲で優れた着雪氷抑制効果を得ることができ、中でも、高分子鎖として相溶系高分子鎖を用いると、0℃~-20℃で特に優れた着雪氷抑制効果を得ることができる。
 本実施形態の部材は、-18℃における着氷応力が-8℃における着氷応力より高いことが好ましい。
 本明細書において、-18℃における着氷応力と-8℃における着氷応力との差とは、差の絶対値をいう。
 本実施形態の部材表面の25℃の水に対する接触角は、10°以上であることが好ましく、20°以上であることがより好ましく、45°以上であることが更に好ましく、48°以上であることがより一層好ましく、48~80°であることが特に好ましい。接触角が上記範囲であれば、より優れた水滴付着抑制効果、着雪氷抑制効果および氷核形成抑制効果が得られる。本明細書において、部材表面の水に対する接触角の値は、部材表面に水を1μL着摘したのち、着滴1秒後の部材表面の水の接触角を測定して求めた値である。
[部材の形状]
 本実施形態の部材の形状は、特に限定されない。チューブ状、シート状、繊維状、ストリップ状、フィルム状、板状、箔状、膜状、ペレット状、粉末状、粒子状などが挙げられる。
[部材の適用形態]
 本実施形態の部材は、様々な物品に適用することができる。例えば、窓ガラス、車両用ガラス、ミラー、配管、容器などが挙げられる。
 本実施形態の部材は、0℃から-20℃の範囲において着氷応力が大きく変化しないため、0℃から-20℃の広い温度範囲で着雪氷を抑制したい用途に好適に使用することができる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
(実施例1)
 シリコンウエハおよびDSCパン(アルミニウム製)を、アセトン中で30分間、クロロホルム中で30分間および2-プロパノール中で30分間それぞれ超音波洗浄を行ったのち、シリコンウエハおよびDSCパンの両面にUVオゾンを30分間照射した。次に、DSCパンのみシリカコーティングを施した。次にシリコンウエハおよびシリカコートを施したDSCパンを、エタノール中で30分間超音波洗浄した後、(2-ブロモ-2-メチル)プロピオニルオキシプロピルトリエトキシシラン(BPE)/エタノール/アンモニア水=1/89/10(質量比)の混合液に浸漬し、24時間浸漬してシリコンウエハおよびDSCパンに重合開始基を導入した。次に、メトキシポリ(エチレングリコール)メタクリレート(Aldrich製、code 447943、数平均分子量=500)(以下、PEGMA)と、エチル2-ブロモ-2-メチルプロピオネート(以下、EBIB)と、臭化第一銅(以下、CuBr(I)と、臭化第二銅(以下、CuBr(II)と、4,4’-ジノニル-2,2’-ビピリジン(以下、diNbip)との混合物(PEGMA/EBIB/CuBr(I)/CuBr(II)/diNbip=20万/0.1/1036.8/28.8/2344(モル比))の50質量部と、アニソールの50質量部とを入れたフッ素樹脂容器に、上記重合開始基を導入したシリコンウエハおよびDSCパンを入れた。容器を密閉してアルミ袋で覆い、高圧反応装置に入れて400MPa、60℃で2時間重合反応を行った。重合反応終了後、容器からシリコンウエハおよびDSCパンを取り出し、振とう装置を用いてテトラヒドロフランで洗浄した。その後、乾燥することによって、シリコンウエハ表面に、複数の高分子鎖からなるブラシ状の高分子鎖集合体(ポリマーブラシ層)を形成して実施例1の試験体を得た。
 得られた試験体の膜厚を原子間力顕微鏡を用いて、乾燥状態と水浸漬状態で測定した結果、高分子鎖集合体を含む層中に含まれる高分子鎖を100質量部とした場合、水の質量割合は50質量部であった。その後解析をしたところ、シリコンウエハ表面に形成されたポリマーブラシ層の膜厚は1097nm、数平均分子量が665万、分子量分布指数(PDI)が1.43、ポリマー重合率が3%、高分子鎖の密度が0.12鎖/nm、高分子鎖の表面占有率は0.33であった。なお、ポリマーブラシ層の膜厚はエリプソメトリー法で測定した。ポリマーブラシ層の数平均分子量および分子量分布指数は、展開溶媒として10mMのリチウムブロマイドを含むジメチルホルムアミドを用い、検出器として多角度光散乱検出器を用いたゲル浸透クロマトグラフィー法で算出した。また、ポリマー重合率は、H-NMRにて測定した。
 得られたDSCパンに高分子鎖が固定された試料に、水を0.03mg加え、示差走査熱量測定を実施することで、-18℃においても高分子鎖集合体を含む層内に、水が液状で保持されていることを確認した。
(実施例2)
 開始基を固定する際に、BPEをBPE/アセトキシプロピルトリメトキシシラン(APTMS)=75/25(モル比)に変えたこと以外は実施例1と同様にして試験体を得た。
 得られた試験体の膜厚を原子間力顕微鏡を用いて、乾燥状態と水浸漬状態で測定した結果、高分子鎖集合体を含む層中に含まれる高分子鎖を100質量部とした場合、水の質量割合は50質量部であった。その後解析をしたところ、シリコンウエハ表面に形成されたポリマーブラシ層の膜厚は737nm、数平均分子量が665万、分子量分布指数(PDI)が1.43、ポリマー重合率が3%、高分子鎖の密度が0.08鎖/nm、高分子鎖の表面占有率は0.22であった。なお、ポリマーブラシ層の膜厚はエリプソメトリー法で測定した。ポリマーブラシ層の数平均分子量および分子量分布指数は、展開溶媒として10mMのリチウムブロマイドを含むジメチルホルムアミドを用い、検出器として多角度光散乱検出器を用いたゲル浸透クロマトグラフィー法で算出した。また、ポリマー重合率は、H-NMRにて測定した。
 得られたDSCパンに高分子鎖が固定された試料に、水を0.03mg加え、示差走査熱量測定を実施することで、-18℃においても高分子鎖集合体を含む層内に、水が液状で保持されていることを確認した。
(実施例3)
 開始基を固定する際に、BPEをBPE/APTMS=50/50(モル比)に変えたこと以外は実施例1と同様にして試験体を得た。
 得られた試験体の膜厚を原子間力顕微鏡を用いて、乾燥状態と水浸漬状態で測定した結果、高分子鎖集合体を含む層中に含まれる高分子鎖を100質量部とした場合、水の質量割合は50質量部であった。その後解析をしたところ、シリコンウエハ表面に形成されたポリマーブラシ層の膜厚は504nm、数平均分子量が665万、分子量分布指数(PDI)が1.43、ポリマー重合率が3%、高分子鎖の密度が0.05鎖/nm、高分子鎖の表面占有率は0.14であった。なお、ポリマーブラシ層の膜厚はエリプソメトリー法で測定した。ポリマーブラシ層の数平均分子量および分子量分布指数は、展開溶媒として10mMのリチウムブロマイドを含むジメチルホルムアミドを用い、検出器として多角度光散乱検出器を用いたゲル浸透クロマトグラフィー法で算出した。また、ポリマー重合率は、H-NMRにて測定した。
 得られたDSCパンに高分子鎖が固定された試料に、水を0.03mg加え、示差走査熱量測定を実施することで、-18℃においても高分子鎖集合体を含む層内に、水が液状で保持されていることを確認した。
(実施例4)
 開始基を固定する際に、BPEをBPE/APTMS=25/75(モル比)に変えたこと以外は実施例1と同様にして試験体を得た。
 得られた試験体の膜厚を原子間力顕微鏡を用いて、乾燥状態と水浸漬状態で測定した結果、高分子鎖集合体を含む層中に含まれる高分子鎖を100質量部とした場合、水の質量割合は50質量部であった。その後解析をしたところ、シリコンウエハ表面に形成されたポリマーブラシ層の膜厚は314nm、数平均分子量が655万、分子量分布指数(PDI)が1.46、ポリマー重合率が4%、高分子鎖の密度が0.03鎖/nm、高分子鎖の表面占有率は0.09であった。なお、ポリマーブラシ層の膜厚はエリプソメトリー法で測定した。ポリマーブラシ層の数平均分子量および分子量分布指数は、展開溶媒として10mMのリチウムブロマイドを含むジメチルホルムアミドを用い、検出器として多角度光散乱検出器を用いたゲル浸透クロマトグラフィー法で算出した。また、ポリマー重合率は、H-NMRにて測定した。
 得られたDSCパンに高分子鎖が固定された試料に、水を0,03mg加え、示差走査熱量測定を実施することで、-18℃においても高分子鎖集合体を含む層内に、水が液状で保持されていることを確認した。
(実施例5)
 PEGMAをSLMA(商品名:メタクリル酸Sラウリル、ドデシルメタクリレートとトリデシルメタクリレートの混合物、日油社製)に変え、混合比をSLMA/EBIB/CuBr(I)/CuBr(II)/diNbip=10万/1/1015/43.2/2116.4(モル比))としたこと以外は実施例1と同様にして試験体を得た。
 得られた試験体の膜厚を原子間力顕微鏡を用いて、乾燥状態とPAO10(ポリαオレフィン、炭化水素系オイル、商品名:Durasyn 170(PAO10)、(INEOS Oligomers社製))浸漬状態で測定した結果、高分子鎖集合体を含む層中に含まれる高分子鎖を100質量部とした場合、PAO10の質量割合は50質量部であった。その後解析をしたところ、シリコンウエハ表面に形成されたポリマーブラシ層の膜厚は789nm、数平均分子量が405万、分子量分布指数(PDI)が1.11、ポリマー重合率が7%、高分子鎖の密度が0.11鎖/nm、高分子鎖の表面占有率は0.20であった。なお、ポリマーブラシ層の膜厚はエリプソメトリー法で測定した。ポリマーブラシ層の数平均分子量および分子量分布指数は、展開溶媒としてテトラヒドロフランを用い、検出器として多角度光散乱検出器を用いたゲル浸透クロマトグラフィー法で算出した。また、ポリマー重合率は、H-NMRにて測定した。なお、得られた試験体をPAO10に終夜室温にて浸漬した後、余剰分をArブローにて吹き飛ばし、着氷応力試験を実施した。また、作製した高分子鎖集合体の水に対する水中膨潤度は、1.1以下であり、また、H-NMRで解析したところ、PAO10は水と混和しなかった。測定結果を表1に示す。
(実施例6)
・主鎖の重合
 2-(2-ブロモイソブチリルオキシ)エチルメタクリレート(以下、BIEM)のRAFT重合により合成した。アルゴンパージしたグローブボックスで、BIEM(3M)、クミルジチオベンゾエート(CTA)(30mM)およびアゾビスイソブチロニトリル(AIBN)(6mM)のトルエン溶液を調製し、シュレンクフラスコに移した。次に、この溶液を60℃のオイルバスで21時間撹拌した後、0℃で冷却してクエンチし、空気でパージした。得られた溶液をH-NMR分析に供し、転化率を求めた。数平均分子量(Mn)および多分散性指数(Mw/Mn)は、ポリメタクリル酸メチル(PMMA)較正GPCシステムを用いて測定した。重合度(DP)は、BIEMとCTAの転化率および供給モル比に基づいて算出した。得られたポリ2-(2-ブロモイソブチリルオキシ)エチルメタクリレート)(以下、PBIEM)をメタノールで沈殿させて精製し、その後、18時間真空乾燥させて、うすピンクの粉末を得た。Mnは56100、Mw/Mnは1.3、重合度は400であった。
・側鎖の重合
 PBIEMからのPEGMAを原子移動ラジカル重合することで合成した。アルゴンパージしたグローブボックス内で、EBIB(2.4mM)を含むPBIEM(24mM)、PEGMA(0.72M)、Cu(I)Br(38mM)、Cu(II)Br(9.5mM)およびdiNbip(95 mM)のアニソール溶液(20g)を調製し、シュレンクフラスコに移し替えた。次に、溶液を65℃で所定時間攪拌した。重合工程終了後、溶液をDMFで希釈し、PMMA校正したGPC装置で分析した。PEGMAの転化率は、H-NMR分析により求めた。
 PEGMAの転化率は19%であった。Mnは235000、Mw/Mnは1.3、重合度は11であった。
・成膜手法
 ラジカルカップリングによるボトルブラシ膜の作製をした。TDAE(テトラキス(ジメチルアミノ)エチレン)を含むアニソール溶液にボトルブラシを溶解させた。次に、スピンコーター(ミカサ株式会社製)を用いて、BPE((2-ブロモ-2-メチル)プロピオニルオキシプロピルトリエトキシシラン)固定シリコンウエハ上にボトルブラシ溶液を3000rpmの回転速度で30秒間スピンコートした。また、同時にBPE固定DSCパン上にボトルブラシ溶液を滴下することで、DSCパン上にもボトルブラシ膜を作製した。その後、真空中で120℃、2時間加熱して薄膜を架橋させた。その後、薄膜をトルエンに18時間浸漬して洗浄し、表面に残留している物質を除去した。
 得られた試験体の膜厚を原子間力顕微鏡を用いて、乾燥状態と水浸漬状態で測定した結果、高分子鎖集合体を含む層中に含まれる高分子鎖を100質量部とした場合、水の質量割合は50質量部であった。その後解析をしたところ、主鎖表面に形成されたボトルブラシ層の膜厚は200nm、高分子鎖の表面占有率は0.3であった。なお、ボトルブラシ層の膜厚はエリプソメトリー法で測定した。
 得られたDSCパンに高分子鎖が固定された試料に、水を0.03mg加え、示差走査熱量測定を実施することで、-18℃においても高分子鎖集合体を含む層内に、水が液状で保持されていることを確認した。
 測定結果を表1に示す。
(比較例1)
 開始基を固定する際に、BPEをBPE/APTMS=10/90(モル比)に変えたこと以外は実施例1と同様にして試験体を得た。
 得られた試験体の膜厚を原子間力顕微鏡を用いて、乾燥状態と水浸漬状態で測定した結果、高分子鎖集合体を含む層中に含まれる高分子鎖を100質量部とした場合、水の質量割合は50質量部であった。その後解析をしたところ、シリコンウエハ表面に形成されたポリマーブラシ層の膜厚は118nm、数平均分子量が655万、分子量分布指数(PDI)が1.46、ポリマー重合率が4%、高分子鎖の密度が0.01鎖/nm、高分子鎖の表面占有率は0.04であった。なお、ポリマーブラシ層の膜厚はエリプソメトリー法で測定した。ポリマーブラシ層の数平均分子量および分子量分布指数は、展開溶媒として10mMのリチウムブロマイドを含むジメチルホルムアミドを用い、検出器として多角度光散乱検出器を用いたゲル浸透クロマトグラフィー法で算出した。また、ポリマー重合率は、H-NMRにて測定した。
(比較例2)
 開始基を固定する際に、BPEをBPE/APTMS=5/95(モル比)に変えたこと以外は実施例1と同様にして試験体を得た。
 得られた試験体の膜厚を原子間力顕微鏡を用いて、乾燥状態と水浸漬状態で測定した結果、高分子鎖集合体を含む層中に含まれる高分子鎖を100質量部とした場合、水の質量割合は50質量部であった。その後解析をしたところ、シリコンウエハ表面に形成されたポリマーブラシ層の膜厚は80nm、数平均分子量が655万、分子量分布指数(PDI)が1.46、ポリマー重合率が4%、高分子鎖の密度が0.01鎖/nm、高分子鎖の表面占有率は0.02であった。なお、ポリマーブラシ層の膜厚はエリプソメトリー法で測定した。ポリマーブラシ層の数平均分子量および分子量分布指数は、展開溶媒として10mMのリチウムブロマイドを含むジメチルホルムアミドを用い、検出器として多角度光散乱検出器を用いたゲル浸透クロマトグラフィー法で算出した。また、ポリマー重合率は、H-NMRにて測定した。
(比較例3)
 PEGMAをメタクリル酸メチル(MMA)に変え、混合比をMMA/EBIB/CuBr(I)/CuBr(II)/diNbip=20万/1/648/72/1440(モル比))としたことと重合時間を4時間にしたこと以外は実施例1と同様にして試験体を得た。
 得られた試験体の膜厚を原子間力顕微鏡を用いて、乾燥状態と、N-(2-メトキシエチル-N-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド(MEMP-TFSI)(イオン液体)(関東化学社製)浸漬状態で測定した結果、高分子鎖集合体を含む層中に含まれる高分子鎖を100質量部とした場合、MEMP-TFSIの質量割合は50質量部であった。その後解析をしたところ、シリコンウエハ表面に形成されたポリマーブラシ層の膜厚は1030nm、数平均分子量が218万、分子量分布指数(PDI)が1.26、ポリマー重合率が9%、高分子鎖の密度が0.34鎖/nm、高分子鎖の表面占有率は0.19であった。なお、ポリマーブラシ層の膜厚はエリプソメトリー法で測定した。ポリマーブラシ層の数平均分子量および分子量分布指数は、展開溶媒としてテトラヒドロフランを用い、検出器として多角度光散乱検出器を用いたゲル浸透クロマトグラフィー法で算出した。また、ポリマー重合率は、H-NMRにて測定した。なお、得られた試験体を、MEMP-TFSIに浸漬した後、余剰分をArブローにて吹き飛ばし、着氷応力試験を実施した。また、作製した高分子鎖集合体の水に対する水中膨潤度は、1.1以下であったが、H-NMRで解析したところ、MEMP-TFSIは水と混和した。
 測定結果を表1に示す。
(比較例4)
 MMAをSLMAに変え、混合比をSLMA/EBIB/CuBr(I)/CuBr(II)/diNbip=10万/1/1015/43.2/2116.4(モル比))としたことと重合時間を2時間にしたこと以外は比較例3と同様にして試験体を得た。得られた試験体の膜厚を原子間力顕微鏡を用いて、乾燥状態と、MEMP-TFSI浸漬状態で測定した結果、高分子鎖集合体を含む層中に含まれる高分子鎖を100質量部とした場合、MEMP-TFSIの質量割合は50質量部であった。その後解析をしたところ、シリコンウエハ表面に形成されたポリマーブラシ層の膜厚は789nm、数平均分子量が405万、分子量分布指数(PDI)が1.11、ポリマー重合率が7%、高分子鎖の密度が0.11鎖/nm、高分子鎖の表面占有率は0.20であった。なお、ポリマーブラシ層の膜厚はエリプソメトリー法で測定した。ポリマーブラシ層の数平均分子量および分子量分布指数は、展開溶媒としてテトラヒドロフランを用い、検出器として多角度光散乱検出器を用いたゲル浸透クロマトグラフィー法で算出した。また、ポリマー重合率は、H-NMRにて測定した。なお、MEMP-TFSIに得られた試験体を浸漬した後、余剰分をArブローにて吹き飛ばし、着氷応力試験を実施した。また、作製した高分子鎖集合体の水に対する水中膨潤度は、1.1以下であったが、H-NMRで解析したところ、MEMP-TFSIは水と混和した。測定結果を表1に示す。
(比較例5)
 開始基を固定する際に、BPEをBPE/APTMS=5/95(モル比)に変えたこととPEGMAをSLMAに変え、混合比をSLMA/EBIB/CuBr(I)/CuBr(II)/diNbip=10万/1/1015/43.2/2116.4(モル比))としたこと以外は、実施例1と同様に試験体を得た。得られた試験体の膜厚を原子間力顕微鏡を用いて、乾燥状態とPAO10浸漬状態で測定した結果、高分子鎖集合体を含む層中に含まれる高分子鎖を100質量部とした場合、PAO10の質量割合は50質量部であった。その後解析をしたところ、シリコンウエハ表面に形成されたポリマーブラシ層の膜厚は21nm、数平均分子量が380万、分子量分布指数(PDI)が1.12、ポリマー重合率が7%、高分子鎖の密度が0.003鎖/nm、高分子鎖の表面占有率は0.01であった。なお、ポリマーブラシ層の膜厚はエリプソメトリー法で測定した。ポリマーブラシ層の数平均分子量および分子量分布指数は、展開溶媒としてテトラヒドロフランを用い、検出器として多角度光散乱検出器を用いたゲル浸透クロマトグラフィー法で算出した。また、ポリマー重合率は、H-NMRにて測定した。なお、得られた試験体にPAO10に試験体を浸漬した後、余剰分をArブローにて吹き飛ばし、着氷応力試験を実施した。また、作製した高分子鎖集合体の水に対する水中膨潤度は、1.1以下であり、また、H-NMRで解析したところ、PAO10は水と混和しなかった。測定結果を表1に示す。
(実施例7)
 両端のポリジメチルシロキサン(PDMS)で中央部のポリエチレングリコール(PEG)を挟んだ構造を有するマルチブロックポリマー(各PDMSブロックの数平均分子量 5000、PEGブロックの数平均分子量 20000、Polymer Source社(米)製)0.025gをテトラヒドロフラン0.5gに溶解させ、これを基材となるシリコーンゴム(KE-109E、信越化学社製)2.5gを室温で混合した。得られた調製液を真空排気して溶媒を留去したのち、ガラス基板上に2000rpmで30秒間スピンコートした。その後、真空中で150℃、24時間加熱して基材となるシリコーンゴムの架橋反応を完了させることで、ガラス基板表面に、シリコーンゴムを基材とし複数の高分子鎖からなるブラシ状の高分子鎖集合体(ポリマーブラシ層)を形成して実施例7の試験体を得た。得られた試験体を重水浸漬状態で大強度陽子加速器(J-PARCセンター)にて中性子反射で解析をしたところ、高分子鎖の表面占有率は0.60であった。
 得られた試験体に、水を0.03mg加え、示差走査熱量測定を実施することで、-18℃においても高分子鎖集合体を含む層内に、水が液状で保持されていることを確認した。
[評価]
 上記実施例で得られた部材について、下記の測定を行った。
(表面占有率)
 実施例1~6および比較例1~5は段落0089に記載の方法により、実施例7の表面占有率は段落0123に記載の方法により、それぞれ算出した。
(高分子鎖集合体を含む層の膜厚)
 分光エリプトソメリー法(ファイブラボ社製 MASS-105)で室温にて測定した。光学定数などに関しては、メーカー所定の手法に従い、作製した各試験体を用いて作成したファイルを用いた。
(着氷応力)
 実施例、比較例で得られた部材を、顕微鏡用冷却機能付き延伸ステージ(ジャパンハイテック社製)上にセットし、着氷応力測定を実施した。氷柱は、縁にシリコングリスを塗ったアルミ製円柱型(内径6mm)の内側に純水60μLを注入し、これを5℃/minの速さで-20℃まで冷却、30分間保持することで作製した。その後、ステージの設定温度を5℃/minの速さで測定温度まで昇温させて30分間保持した後、試験を実施した。延伸ステージの移動に伴ってステージに取り付けたL字治具がアルミ製の円柱を押すようにセットし、氷柱が剥離した際に延伸ステージのロードセルにかかった荷重から着氷応力を算出した(図1)。ステージ移動速度は10mm/minとした。
(屋外暴露の評価)
 実施例、比較例で得られた部材を北海道北広島市輪厚の屋外暴露場で冬季(2021年11月~2022年3月)期間に傾き角30度となるように設置した。部材への雪の付着量を任意の時間にて、月に一回程度目視にて評価し、総合的に以下のように評価した。
A:ほとんど付着なし
B:半分以上の付着なし
C:半分超付着している
D:全面付着している
Figure JPOXMLDOC01-appb-T000008
 本実施形態の部材は、0℃から-20℃の範囲において着氷応力が大きく変化しないため、0℃から-20℃の広い温度範囲で着雪氷を抑制したい用途に好適に使用することができる。本実施形態の部材は、例えば、窓ガラス、車両用ガラス、ミラー、配管、容器などに用いることができる。

Claims (6)

  1.  基材に固定された複数の高分子鎖で構成されたブラシ状の高分子鎖集合体を含む層を有し、
     前記高分子鎖集合体を含む層は液状物質を保持していて、
     -18℃における着氷応力が150kPa以下である、氷核形成抑制または着雪氷抑制用の部材。
  2.  -18℃における前記着氷応力と-8℃における着氷応力との差が、100kPa以下である、請求項1に記載の部材。
  3.  前記高分子鎖集合体が水で膨潤せず、かつ前記液状物質が水と混和しない、請求項1または2に記載の部材。
  4.  前記基材は前記高分子鎖集合体とは別の物質からなる担体であり、
     前記基材表面における前記高分子鎖の表面占有率が0.08~0.65である、請求項1または2に記載の部材。
  5.  前記部材が、前記基材である高分子鎖に前記複数の高分子鎖が側鎖として結合したボトルブラシ構造を有する部材であり、
     側鎖の表面占有率が0.08~0.65である、請求項1または2に記載の部材。
  6.  基材表面に重合開始基を導入し、前記重合開始基を介して複数の高分子鎖を形成する、請求項1または2に記載の部材の製造方法。
PCT/JP2023/032417 2022-09-05 2023-09-05 氷核形成抑制または着雪氷抑制用の部材 WO2024053649A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-141042 2022-09-05
JP2022141042 2022-09-05

Publications (1)

Publication Number Publication Date
WO2024053649A1 true WO2024053649A1 (ja) 2024-03-14

Family

ID=90191190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032417 WO2024053649A1 (ja) 2022-09-05 2023-09-05 氷核形成抑制または着雪氷抑制用の部材

Country Status (1)

Country Link
WO (1) WO2024053649A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167445A (ja) * 2018-03-23 2019-10-03 国立研究開発法人防災科学技術研究所 難着雪・滑雪粘着フィルム又はシート
WO2021117537A1 (ja) * 2019-12-09 2021-06-17 国立大学法人京都大学 防曇、水滴付着抑制、着氷抑制または氷核形成抑制用の部材
JP2022020472A (ja) * 2020-07-20 2022-02-01 国立大学法人京都大学 熱交換器及び冷凍サイクル装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167445A (ja) * 2018-03-23 2019-10-03 国立研究開発法人防災科学技術研究所 難着雪・滑雪粘着フィルム又はシート
WO2021117537A1 (ja) * 2019-12-09 2021-06-17 国立大学法人京都大学 防曇、水滴付着抑制、着氷抑制または氷核形成抑制用の部材
JP2022020472A (ja) * 2020-07-20 2022-02-01 国立大学法人京都大学 熱交換器及び冷凍サイクル装置

Similar Documents

Publication Publication Date Title
EP3438231B1 (en) Material for slide mechanisms comprising a polymer brush
Kassis et al. XPS studies of fluorinated acrylate polymers and block copolymers with polystyrene
Barbey et al. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization
KR101568157B1 (ko) 배향 제어층 폴리머, 이의 제조 방법 및 이를 포함하는 제품
Wang et al. Self-assembly of catecholic macroinitiator on various substrates and surface-initiated polymerization
JP2006316169A (ja) 固形潤滑材
US11168170B2 (en) Clearance narrowing material, clearance narrowing material composite, and article using same
Sweat et al. A single-component inimer containing cross-linkable ultrathin polymer coating for dense polymer brush growth
Park et al. Robust thick polymer brushes grafted from gold surfaces using bidentate thiol-based atom-transfer radical polymerization initiators
JP2019065284A (ja) Srt材料、複合体およびその製造方法
Yamago et al. Synthesis of concentrated polymer brushes via surface-initiated organotellurium-mediated living radical polymerization
Sohn et al. Tuning surface properties of poly (methyl methacrylate) film using poly (perfluoromethyl methacrylate) s with short perfluorinated side chains
Zuo et al. Ultrastable glassy polymer films with an ultradense brush morphology
WO2024053649A1 (ja) 氷核形成抑制または着雪氷抑制用の部材
WO2021117537A1 (ja) 防曇、水滴付着抑制、着氷抑制または氷核形成抑制用の部材
WO2021117538A1 (ja) 材料および摺動システム
Choi et al. Self-assembly and post-fabrication functionalization of microphase separated thin films of a reactive azlactone-containing block copolymer
Wang et al. Fabrication of polymer brush surfaces with highly-ordered perfluoroalkyl side groups at the brush end and their antibiofouling properties
JP7435978B2 (ja) 熱交換器及び冷凍サイクル装置
Stadermann et al. Functionalized block copolymers for preparation of reactive self‐assembled surface patterns
Zhou et al. Solvent-controlled organization of self-assembled polymeric monolayers on gold: an easy approach for the construction of protein resistant surfaces
TWI813817B (zh) 表面處理膜、其製造方法及物品
Feng et al. Synthesis and characterization of Amine-Epoxy-Functionalized Polystyrene-block-Poly (glycidyl methacrylate) to manage morphology and covarying properties for self-assembly
Telford et al. Robust grafting of PEG-methacrylate brushes from polymeric coatings
Tan et al. Synthesis and characterization of novel acrylic comb-shaped copolymer containing long fluorinated side chains

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863187

Country of ref document: EP

Kind code of ref document: A1