WO2024053408A1 - ユニット管理システム、発電ユニット、管理支援装置およびユニット管理方法 - Google Patents

ユニット管理システム、発電ユニット、管理支援装置およびユニット管理方法 Download PDF

Info

Publication number
WO2024053408A1
WO2024053408A1 PCT/JP2023/030446 JP2023030446W WO2024053408A1 WO 2024053408 A1 WO2024053408 A1 WO 2024053408A1 JP 2023030446 W JP2023030446 W JP 2023030446W WO 2024053408 A1 WO2024053408 A1 WO 2024053408A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
unit
information
power
generation unit
Prior art date
Application number
PCT/JP2023/030446
Other languages
English (en)
French (fr)
Inventor
義基 松田
Original Assignee
カワサキモータース株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カワサキモータース株式会社 filed Critical カワサキモータース株式会社
Publication of WO2024053408A1 publication Critical patent/WO2024053408A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D25/00Controlling two or more co-operating engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels

Definitions

  • the present disclosure relates to a unit management system, a power generation unit, a management support device, and a unit management method.
  • Patent Document 1 discloses a vehicle that is equipped with an internal combustion engine that can be operated using hydrogen as fuel, and is propelled by the rotation of an output shaft of the internal combustion engine being transmitted to drive wheels.
  • an object of the present disclosure is to provide a unit management system, a power generation unit, a management support device, and a unit management method that make it easy to continue the operation of a drive source.
  • a unit management system is a unit management system including a plurality of power generation units that generate electric power and a management support device that receives information from the plurality of power generation units, the unit management system including: identifies an internal combustion engine, a generator that generates electric power using rotational power of the internal combustion engine, a communication interface capable of communicating with the management support device, status information indicating the status of the power generation unit, and the power generation unit. and a unit controller that transmits data in association with unit identification information to the management support device via the communication interface.
  • a power generation unit includes an internal combustion engine, a generator that generates electric power using rotational power of the internal combustion engine, a communication interface, status information indicating a state of the power generation unit, and a power generation unit that identifies the power generation unit. and a unit controller that transmits the information to the external device via the communication interface in association with the unit identification information.
  • a management support device is a management support device that receives information from a plurality of power generation units that generate electric power, and includes, from each power generation unit, unit identification information that identifies each power generation unit; and a communication interface that receives status information indicating the status of each of the power generation units that is linked to the unit identification information; a memory that stores the received status information in association with the unit identification information; A processing circuit that generates management support information for managing the power generation unit corresponding to the unit identification information linked to the state information, based on the state information stored in a memory.
  • a unit management method is a unit management method for managing a plurality of power generation units that generate electric power, the method acquiring status information indicating the status of each power generation unit from each power generation unit. Then, based on the acquired status information, management support information for managing the power generation unit is output.
  • a unit management system a power generation unit, a management support device, and a unit management method that facilitate continuous operation of a drive source.
  • FIG. 1 is a schematic configuration diagram of a mobile body equipped with a unit management system according to a first embodiment.
  • FIG. 2 is a block diagram of a drive system for the moving body in FIG. 1.
  • FIG. (A) is a schematic perspective view showing an example of a power generation unit
  • (B) is a schematic perspective view showing another example of the power generation unit.
  • FIG. 2 is a block diagram showing the flow of information in the unit management system of FIG. 1.
  • FIG. It is a table summarizing the contents of control commands to the internal combustion engine in each power generation unit and an example of the output power corresponding to the control commands. It is a table showing unit identification information and temperature information and maintenance information corresponding to the unit identification information.
  • FIG. 3 is a diagram for explaining a maintenance method for a moving body.
  • FIG. 2 is a schematic configuration diagram of a maintenance management system including a unit management system according to a second embodiment.
  • 10 is a block diagram showing the flow of information in the unit management system of FIG. 9.
  • FIG. It is a diagram showing an example of the structure of data stored by the maintenance support device.
  • FIG. 1 is a schematic configuration diagram of a mobile body 1 equipped with a unit management system S1 according to the first embodiment.
  • the unit management system S1 in this embodiment includes at least one power generation unit 40, at least one fuel supply unit 20, and an integration device 60.
  • the integration device 60 of this embodiment is an example of a management support device. Details of the fuel supply unit 20, power generation unit 40, and integrated device 60 will be described later.
  • a railway vehicle 1 is illustrated as the moving body 1.
  • the railway vehicle 1 includes a car body 2 and a pair of bogies 3 that are disposed near both ends of the car body 2 in the longitudinal direction and support the car body 2.
  • pillow springs 4 are interposed between the car body 2 and each bogie 3, respectively.
  • the railway vehicle 1 is, for example, a passenger car, and the car body 2 has a cabin in which passengers are accommodated, and a driver's cab arranged at an end of the car body 2 in the longitudinal direction.
  • the truck 3 includes a plurality of wheels 3a. Two wheels 3a arranged at intervals in the vehicle width direction are connected by an axle.
  • the trolley 3 may be of an independent wheel type in which the two wheels 3a are not connected by an axle.
  • the railway vehicle 1 is an electric vehicle.
  • the railway vehicle 1 includes at least one electric motor 11 (see FIG. 2) that is a propulsion power generating device.
  • the output shaft of each electric motor 11 is connected to at least one wheel 3a via a power transmission mechanism.
  • Each electric motor 11 rotationally drives a corresponding wheel 3a.
  • the electric motor 11 is fixed to the truck 3.
  • the railway vehicle 1 may employ a car body-mounted cardan drive system. That is, the electric motor 11 may be fixed to the vehicle body 2.
  • the railway vehicle 1 includes an operating device 6 and a vehicle controller 7 configured to be able to communicate with the operating device 6.
  • the operating device 6 includes one or more levers or handles installed in the driver's cab.
  • a request command is sent from the operating device 6 to the vehicle controller 7.
  • the request command includes a driving command and a braking command.
  • the controller 6 includes a travel controller for inputting a travel command, a brake command device for inputting a braking command, and the like. Note that the traveling operation device may be provided separately from the brake operation device, or may be integrated with the brake operation device.
  • the vehicle controller 7 generates an output command for controlling the electric motor 11 mounted on the railway vehicle 1 based on the request command received from the operating device 6. Vehicle controller 7 sends an output command to inverter 14 (see FIG. 2) for controlling the output of electric motor 11. The power necessary to drive the electric motor 11 is supplied from at least one power generation unit 40 .
  • the vehicle controller 7 includes a processor, system memory, and storage memory.
  • the processor includes, for example, a central processing unit (CPU).
  • the system memory is, for example, RAM.
  • Storage memory may include ROM.
  • Storage memory may include a hard disk, flash memory, or a combination thereof.
  • the storage memory stores programs.
  • a plurality of power generation units 40 are mounted on the vehicle body 2.
  • Each power generation unit 40 generates electrical power for supplying at least one electric motor 11 .
  • one fuel supply unit 20 is mounted on the vehicle body 2.
  • the fuel supply unit 20 supplies the power generation unit 40 with fuel necessary for generating electric power.
  • an integration device 60 is mounted on the vehicle body 2. Information about all units, including the power generation unit 40 and the fuel supply unit 20 mounted on the vehicle body 2, is aggregated in the integrated device 60.
  • FIG. 2 is a block diagram of a drive system for driving the electric motor 11. Note that, in FIG. 2, only one electric motor 11 included in the railway vehicle 1 is shown for simplification of the diagram.
  • the fuel supply unit 20, power generation unit 40, and integrated device 60 that constitute the unit management system S1 the destination to which power is supplied from the power generation unit 40 will first be described.
  • the railway vehicle 1 includes a current collecting circuit 12, a power storage body 13, and an inverter 14.
  • a plurality of power generation units 40 of the railway vehicle 1 are electrically connected in parallel to the current collecting circuit 12 via electric cables or the like.
  • the current collection circuit 12 aggregates the power generated by the plurality of power generation units 40.
  • a plurality of power generation units 40 are electrically connected to the power storage body 13 via the current collection circuit 12.
  • the power storage body 13 is charged with electric power generated by the plurality of power generation units 40 .
  • the power storage body 13 is, for example, a battery or a capacitor. Furthermore, power storage body 13 is electrically connected to electric motor 11 via inverter 14 .
  • the inverter 14 is configured to convert DC power into AC power, adjust the voltage, and supply it to the electric motor 11. Inverter 14 controls the output of electric motor 11 based on an output command sent from vehicle controller 7.
  • the fuel supply unit 20 supplies hydrogen gas as fuel to the internal combustion engine 41 of the power generation unit 40.
  • the fuel supply unit 20 includes a first fuel tank 21, a second fuel tank 22, a supply pipe 23, a filling pipe 24, a communication interface 25, a fuel controller 26, a support structure 27, and the like.
  • the fuel controller 26 is also referred to as a fuel ECU (Electronic Control Unit) 26.
  • the first fuel tank 21 and the second fuel tank 22 have the same structure.
  • the first fuel tank 21 and the second fuel tank 22 store hydrogen gas, which is a fuel gas, in a compressed state.
  • the internal pressure of the first fuel tank 21 and the second fuel tank 22 in the full state is higher than atmospheric pressure, and specifically higher than the predetermined intake pressure of the internal combustion engine 41.
  • a first on-off valve 31 that opens and closes a port of the first fuel tank 21 is arranged in the first fuel tank 21 .
  • a second on-off valve 32 that opens and closes a port of the second fuel tank 22 is arranged in the second fuel tank 22 .
  • the first on-off valve 31 and the second on-off valve 32 are each electrically controllable solenoid valves.
  • the supply pipe 23 guides fuel from the first fuel tank 21 and the second fuel tank 22 to the power generation unit 40. Two upstream ends of the supply pipe 23 are connected to the first fuel tank 21 and the second fuel tank 22. Further, one downstream end of the supply pipe 23 includes a supply port 23d.
  • the supply pipe 23 includes a first sub-supply pipe 23a, a second sub-supply pipe 23b, and a main supply pipe 23c.
  • the first sub-supply pipe 23a connects the first fuel tank 21 to the main supply pipe 23c.
  • the second sub supply pipe 23b connects the second fuel tank 22 to the main supply pipe 23c. That is, the first sub-supply pipe 23a and the second sub-supply pipe 23b are branched from the main supply pipe 23c on the upstream side of the main supply pipe 23c.
  • the downstream end of the main supply pipe 23c includes a supply port 23d.
  • a pressure reducing valve 33 is arranged in the main supply pipe 23c.
  • the pressure reducing valve 33 reduces the pressure of the hydrogen gas flowing through the main supply pipe 23c so as to maintain the pressure of the hydrogen gas supplied from the main supply pipe 23c to the internal combustion engine 41 at a predetermined intake pressure.
  • a cutoff valve 34 is arranged at a downstream side of the pressure reducing valve 33 in the main supply pipe 23c.
  • the cutoff valve 34 is arranged in the main supply pipe 23c so as to be able to cut off the supply of hydrogen gas from the main supply pipe 23c to the internal combustion engine 41 in an emergency or the like.
  • the filling pipe 24 is a pipe for introducing fuel into the first fuel tank 21 and the second fuel tank 22 from the outside. One end of the filling pipe 24 is connected to a portion of the main supply pipe 23c upstream of the pressure reducing valve 33. The other end of the filling pipe 24 includes a filling port 24a. A check valve 35 is arranged in the filling pipe 24 to prevent fuel from flowing toward the filling port 24a.
  • the communication interface 25 communicably connects the fuel ECU 26 to an integration device 60 provided outside the fuel supply unit 20.
  • the communication interface 25 is a removable terminal or a communication connector.
  • the communication interface 25 is a known wireless communication device.
  • Fuel ECU 26 controls the first on-off valve 31 and the second on-off valve 32 based on the signal received from the integrated device 60 via the communication interface 25.
  • Fuel ECU 26 includes a processor, system memory, and storage memory.
  • the processor includes, for example, a central processing unit (CPU).
  • the system memory is, for example, RAM.
  • Storage memory may include ROM. Storage memory may include a hard disk, flash memory, or a combination thereof.
  • the storage memory stores programs.
  • Each element 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35 included in the fuel supply unit 20 is fixed to each other and integrated. Specifically, each element 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35 included in the fuel supply unit 20 is supported by a support structure 27 and unitized.
  • the support structure 27 has a rectangular parallelepiped box shape.
  • Each element 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35 (excluding the support structure 27) included in the fuel supply unit 20 is housed in a box-shaped support structure 27. and is directly or indirectly connected and fixed to the support structure 27.
  • the support structure 27 is configured to be detachable from the vehicle body 2 while supporting the fuel tanks 21 and 22. That is, the fuel supply unit 20 is detachably mounted on the vehicle body 2.
  • the fuel supply unit 20 is configured to be replaceable with another fuel supply unit 20 having the same structure.
  • the power generation unit 40 includes an internal combustion engine 41, a fuel pipe 42, a generator (motor/generator) 43, an inverter 44, an electrical interface 45, a communication interface 46, a power controller 47, an alarm 49, and the like.
  • the power controller 47 is also referred to as a power ECU (Electronic Control Unit) 47.
  • the power controller 47 is an example of a unit controller.
  • the internal combustion engine 41 burns fuel gas and converts the combustion energy into rotational energy of the crankshaft 41a.
  • the internal combustion engine 41 is a hydrogen engine configured to use hydrogen gas as fuel.
  • Internal combustion engine 41 is, for example, a multi-cylinder engine.
  • the internal combustion engine 41 includes a throttle device 41b, an ignition device 41c, and a fuel supply device 41d.
  • the throttle device 41b adjusts the intake air amount of the internal combustion engine 41.
  • the throttle device 41b is an electronically controlled throttle device that opens and closes a throttle valve using a motor.
  • the ignition device 41c ignites the air-fuel mixture within the combustion chamber of the internal combustion engine 41.
  • the ignition device 41c is, for example, a spark plug.
  • the fuel supply device 41d supplies fuel into the combustion chamber of the internal combustion engine 41.
  • One end of the fuel pipe 42 is connected to a fuel supply device 41d of the internal combustion engine 41.
  • the other end of the fuel pipe 42 includes a fuel intake port 42a.
  • the fuel intake port 42a of the power generation unit 40 and the supply port 23d of the fuel supply unit 20 described above are connected by a connection pipe 15.
  • the connection pipe 15 is supported by the vehicle body 2, for example. Hydrogen gas is guided from the fuel supply unit 20 to the fuel supply device 41d of the internal combustion engine 41 via the connection pipe 15 and the fuel pipe 42.
  • the generator 43 generates electric power using the rotational power of the internal combustion engine 41.
  • the generator 43 has a rotating shaft 43a coupled to the crankshaft 41a so as to rotate together with the crankshaft 41a.
  • the rotating shaft 43a is provided with a rotor, and includes a stator disposed at a position facing the rotor.
  • the generator 43 is, for example, a three-phase induction motor.
  • the inverter 44 is electrically connected to the generator 43. Inverter 44 converts AC power generated by generator 43 into DC power. Inverter 44 may also be referred to as a converter. Inverter 44 is also electrically connected to electrical interface 45 . Electrical interface 45 electrically connects inverter 44 of power generation unit 40 to power storage body 13 provided outside of power generation unit 40 . In the case of contact power supply, electrical interface 45 is a removable terminal or power connector. In the case of contactless power supply, the electrical interface 45 is a coil.
  • the communication interface 46 communicably connects the power ECU 47 to the integration device 60 provided outside the power generation unit 40.
  • communication interface 46 is a removable terminal or communication connector.
  • communication interface 46 is a known wireless communicator.
  • the power ECU 47 controls the internal combustion engine 41, inverter 44, etc. that are controlled within each power generation unit 40.
  • the controlled object within each power generation unit 40 will be referred to as "unit-side controlled object X.”
  • the power ECU 47 controls the unit-side controlled object X based on the signal received from the integrated device 60 via the communication interface 46.
  • the unit-side controlled object X includes a throttle device 41b, an ignition device 41c, a fuel supply device 41d, and an inverter 44 in the internal combustion engine 41.
  • the unit-side controlled object X may also include an alarm 49, an oil control valve unit 54, etc., which will be described later.
  • the power ECU 47 includes a processor, system memory, and storage memory.
  • the processor includes, for example, a central processing unit (CPU).
  • the system memory is, for example, RAM.
  • Storage memory may include ROM.
  • Storage memory may include a hard disk, flash memory, or a combination thereof.
  • the storage memory stores programs.
  • the power ECU 47 is an example of a unit controller.
  • the power ECU 47 communicates with the integrated device 60 via the communication interface 46. Specifically, the power ECU 47 links state information indicating the state of the power generation unit 40 with unit identification information (unit ID) that identifies the power generation unit 40 and transmits the state information to the integrated device 60 via the communication interface 46. .
  • unit ID unit identification information
  • the condition information includes information regarding age-related damage. Additionally, the status information may include past driving history. For example, the status information includes the rotational speed of the internal combustion engine 41, the torque generated by the internal combustion engine 41, the operating history of the internal combustion engine 41, the amount of power generated by the generator 43, the impact force received by the power generation unit 40 from the outside, or the It may also include information regarding the lifetime of the component.
  • the power ECU 47 receives a power generation instruction from the integrated device 60 via the communication interface 46. Details of the power generation instruction will be described later.
  • the alarm 49 is electrically connected to the power ECU 47.
  • the alarm 49 notifies the state of the power generation unit 40.
  • the alarm 49 includes, for example, a display or a light emitter.
  • the display is a liquid crystal display.
  • the light emitter is an LED.
  • the alarm 49 notifies maintenance information related to maintenance of the power generation unit 40, for example.
  • the maintenance information is, for example, information indicating the necessity or timing of replacement, repair, or inspection of the power generation unit 40 itself or the elements included in the power generation unit 40. Maintenance information is an example of management support information.
  • the power generation unit 40 also includes an oil pump 51, a lubricating oil passage 52, a driving oil passage 53, an oil control valve unit 54, and an oil port 55.
  • the oil pump 51 is mechanically driven in conjunction with the rotation of the crankshaft 41a.
  • the lubricating oil passage 52 guides oil pumped up from the oil pan of the internal combustion engine 41 by the oil pump 51 to various parts such as gears of the internal combustion engine 41 as lubricating oil.
  • a driving oil path 53 branches off from the lubricating oil path 52.
  • One end of the driving oil passage 53 is connected to the lubricating oil passage 52. Further, the other end of the driving oil passage 53 is connected to an oil port 55.
  • the oil port 55 is a fluid interface for outputting oil to the hydraulic actuator 16 provided outside the power generation unit 40.
  • An oil pipe 17 connected to an inflow port of a hydraulic actuator 16 mounted on the vehicle body 2 is removably connected to the oil port 55 .
  • the hydraulic actuator 16 is a hydraulic cylinder or the like that generates braking force.
  • the oil control valve unit 54 is interposed in the drive oil path 53.
  • the oil control valve unit 54 serves as a fluid control device that opens and closes the drive oil passage 53 and controls the oil pressure applied to the hydraulic actuator 16 .
  • the driving oil path 53 does not need to branch from the lubricating oil path 52.
  • oil may be supplied to the drive oil passage 53 by an oil pump different from the oil pump 51 for lubrication.
  • the power generation unit 40 includes at least a circulation device for circulating circulating fluid to the internal combustion engine 41.
  • the circulation device includes a refrigerant pump 56, a cooling channel 57, and a radiator 58.
  • Refrigerant pump 56 discharges refrigerant (for example, water).
  • the refrigerant pump 56 is mechanically driven in conjunction with the rotation of the crankshaft 41a.
  • the refrigerant pump 56 may be driven by another power source.
  • the cooling flow path 57 is a circulation flow path that guides the refrigerant discharged by the refrigerant pump 56 to the internal combustion engine 41 and the like, and returns the refrigerant (corresponding to circulating fluid) that has cooled the internal combustion engine 41 to the refrigerant pump 56.
  • the cooling channel 57 may guide a refrigerant to the generator 43 and the inverter 44 so as to cool the generator 43 and the inverter 44 .
  • the radiator 58 is interposed in the cooling channel 57 and radiates heat from the refrigerant circulating in the cooling channel 57.
  • the power generation unit 40 includes a support structure 48.
  • Each element 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58 included in the power generation unit 40 excluding the support structure 48 is supported by the support structure 48. It is unitized.
  • Each element 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58 (excluding the support structure 48) included in the power generation unit 40 is directly connected to the support structure 48 or indirectly connected and fixed.
  • FIG. 3(A) is a schematic perspective view showing a power generation unit 40 including a horizontally opposed internal combustion engine 41 as an example of the power generation unit 40.
  • FIG. 3(B) is a schematic perspective view showing a power generation unit 40 including a serial type internal combustion engine 41 as another example of the power generation unit 40. Note that, in FIGS. 3A and 3B, only the internal combustion engine 41, generator 43, inverter 44, and electrical interface 45 are shown among the elements of the power generation unit 40 supported by the support structure 48, and the others are not shown. Omitted.
  • the support structure 48 includes a plurality of frames.
  • a plurality of frames of the support structure 48 are connected to surround the elements 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58 of the power generation unit 40.
  • the support structure 48 includes a plurality of upper and lower frames that extend in the vertical direction, and a plurality of horizontal frames that extend in the horizontal direction and are connected to the upper and lower frames.
  • the support structure 48 includes a plate member on which the internal combustion engine 41 is mounted.
  • the support structure 48 may have a structure that supports each element of the power generation unit 40 such as the internal combustion engine 41 and the generator 43 from below, or may have a structure that supports it from above (that is, supports it by hanging). good.
  • the support structures 48 are not arranged side by side in the vertical direction, but as shown by the two-dot chain line in FIG. 3(B), the plurality of support structures 48 are configured to be stackable in the vertical direction. has been done. When stacked vertically, the number of mounting positions for the moving body can be reduced. Further, the plurality of support structures 48 may be configured to be horizontally connectable. That is, they may be arranged side by side in at least one of the front-rear direction and the left-right direction.
  • the support structure 48 is configured to be detachable from the vehicle body 2 while supporting both the internal combustion engine 41 and the generator 43. That is, the power generation unit 40 is detachably mounted on the vehicle body 2.
  • the power generation unit 40 is configured to be exchangeable with another power generation unit 40 having the same structure.
  • the plurality of support structures 48 mounted on the vehicle body 2 have a common structure.
  • the plurality of support structures 48 have the same dimensions in the up-down direction, left-right direction, and front-back direction. Therefore, a certain power generation unit 40 mounted on the vehicle body 2 can be replaced with another power generation unit 40 having the same structure.
  • the power generation unit 40 includes at least one sensor 59 for detecting the state of the power generation unit 40. Information detected by at least one sensor 59 is sent to power ECU 47.
  • the state of the power generation unit 40 is the state of at least one of the elements 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, and 58 included in the power generation unit 40.
  • at least one sensor 59 is shown in one block for simplicity of illustration.
  • the at least one sensor 59 also includes a sensor forming a part of each component 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58 of the power generation unit 40. may be included.
  • At least one sensor 59 includes a temperature sensor that detects the oil temperature, a temperature sensor that detects the temperature of cooling water, a temperature sensor that detects the temperature of the generator 43, a temperature sensor that detects the temperature of the inverter 44, and a temperature sensor that detects the temperature of the inverter 44.
  • 44 includes a current sensor, a rotational speed sensor that detects the rotational speed (rotational speed) of the internal combustion engine 41, a throttle opening sensor, and a strain gauge that detects mechanical loads on mechanical parts and structures of the power generation unit 40. , or a flow rate sensor that detects the flow rate of fuel flowing through the fuel pipe 42.
  • the integration device 60 receives information from the plurality of power generation units 40 and fuel supply units 20.
  • the integrated device 60 includes a communication interface 61, an integrated controller 62, and a display 63.
  • the integrated controller 62 is also referred to as an integrated ECU (Electronic Control Unit) 62.
  • the communication interface 61 connects the integrated ECU 62 to the vehicle controller 7, the power generation unit 40, and the fuel supply unit 20 in a communicable manner.
  • the communication interface 61 is a detachable terminal or communication connector.
  • the communication interface 61 is a known wireless communication device.
  • the integrated ECU 62 communicates information with all of the power generation unit 40 and fuel supply unit 20 mounted on the railway vehicle 1.
  • the integrated ECU 62 includes a processor, system memory, and storage memory.
  • the processor includes, for example, a central processing unit (CPU).
  • the system memory is, for example, RAM.
  • Storage memory may include ROM.
  • Storage memory may include a hard disk, flash memory, or a combination thereof.
  • the storage memory stores programs.
  • the integrated ECU 62 associates the status information and unit identification information received from the power generation unit 40 and the fuel supply unit 20 with each other and stores them in its memory.
  • the display 63 is electrically connected to the integrated ECU 62.
  • the display 63 outputs maintenance information related to maintenance of each power generation unit 40, for example.
  • FIG. 4 is a block diagram showing the flow of communication information of each element in the drive system of FIG. 2.
  • a request command is sent from the operating device 6 to the vehicle controller 7.
  • the vehicle controller 7 generates an output command based on the request command received from the operating device 6, sends it to the inverter 14, etc., and controls the inverter 14 etc. In this way, the rotational driving force generated by the electric motor 11 is controlled.
  • a power consumption source to which power is supplied from the plurality of power generation units 40, such as the electrical components of the vehicle body 2 and the electric motor 11, will be referred to as a power consumption source Y.
  • the vehicle controller 7 acquires power consumption information indicating the power consumption status by the power consumption source Y.
  • the vehicle controller 7 may calculate the power consumption information based on information received from various sensors mounted on the vehicle body 2 (for example, a current sensor included in the inverter 14, etc.), or may receive it from another device. .
  • the vehicle controller 7 requests the unit management system S1 for the power necessary for the power consumption source Y, for example. Specifically, as shown in FIG. 4, the vehicle controller 7 receives information indicating an achievable power value from the integrated ECU 62. The vehicle controller 7 requests the integrated ECU 62 to provide a power value that is less than or equal to the received achievable power value. Vehicle controller 7 sends power consumption information indicating power consumed by power consumption source Y to integrated ECU 62. In other words, based on the request command received from the controller 6, the vehicle controller 7 sends the required power information indicating the required power value required to satisfy the request command to the integrated ECU 62 as power consumption information. For example, the required power value is the power value required by the electric motor 11 to satisfy the request command.
  • the integrated ECU 62 receives requested power information (power consumption information) from the vehicle controller 7. Further, the integrated ECU 62 receives status information from each power generation unit 40. The integrated device 60 sends a power generation instruction as an operation command to each power generation unit 40 based on the state information and requested power information (power consumption information). The power generation instruction includes the required amount of power generation requested from the power generation unit 40. The integrated ECU 62 determines the required power generation amount to be given to each power generation unit 40 based on the state information and the required power information (power consumption information). Each power ECU 47 receives a power generation instruction from the integrated ECU 62 and controls the unit-side controlled object X based on the required power generation amount determined by the integrated ECU 62.
  • the amounts of power generation required of the four power generation units 40 may be different from each other.
  • the power generation instruction may also include a stop instruction requesting to stop power generation.
  • the integrated ECU 62 may not send a power generation instruction or may send a power generation stop instruction to some of the four power generation units 40.
  • the integrated ECU 62 can change the content of the power generation instruction for each power generation unit 40 by comprehensively determining the status of each unit, maintenance information, power generation efficiency, etc. For example, if the total amount of power that can be generated by the four power generation units 40 as a whole is larger than the power supply required for moving the mobile body, the integrated ECU 62 may instruct at least one power generation unit 40 to request a stop.
  • FIG. 5 is a diagram for explaining an example in which the contents of power generation instructions sent to four power generation units 40 are different from each other.
  • FIG. 5 is a table summarizing the contents of power generation instructions to the internal combustion engine 41 in each of the four power generation units 40 and an example of the output power corresponding to the power generation instructions.
  • the four power generation units 40 may be referred to as "unit #1,” “unit #2,” “unit #3,” and “unit #4,” respectively.
  • the power generation instruction to the internal combustion engine 41 and the output power are expressed in a graph. More specifically, FIG. 5 shows a graph of the engine rotational speed and throttle opening over time as an operation command to the internal combustion engine 41.
  • unit #1 and unit #2 receive power generation instructions indicating the same amount of power generation, as shown in FIG. 5, the output power of unit #2 is the same as the output power of unit #1. Since unit #3 received a power generation instruction indicating a lower amount of power generation than units #1 and #2, the output power of unit #3 is a value lower than the output power of unit #1. Furthermore, unit #4 has received a stop instruction from the integrated ECU 62 and is not generating power.
  • the total power generated by the remaining power generation unit 40 which is one less than the plurality of power generation units 40, is set to be larger than the power required to propel the mobile object 1. Therefore, even if an abnormality occurs in one of the plurality of power generation units 40, the movable body 1 can continue to be propelled by the power supply from the remaining power generation units 40. Also, compared to when starting, when running at a constant speed, it is sufficient to provide a propulsive force that resists the resistance force, so compared to when starting, the power supplied by the four power generation units 40 as a whole may be set to be smaller. good.
  • each power generation unit 40 instead of making the reduction in the power generated by each power generation unit 40 the same with respect to the power generated at the time of starting, the number of power generation units 40 that operate to generate electricity may be controlled.
  • each of the power generation units 40 is caused to generate power in an operating range where power generation efficiency is high relative to unit fuel consumption, and an appropriate power generation power is obtained as a whole.
  • power generation efficiency can be improved compared to a case where all the power generation units 40 generate power with the same amount of decrease in power generation.
  • FIG. 6 is a table showing unit identification information and temperature information and maintenance information corresponding to the unit identification information.
  • the temperature information is information indicating the temperature detected by the sensor 59 within the power generation unit 40.
  • the temperature may be the temperature of lubricating oil for the internal combustion engine 41 or the like, cooling water for cooling the internal combustion engine 41 or the like, the generator 43, or the inverter 44.
  • the integrated ECU 62 receives temperature information from each power generation unit 40 as one of the status information. That is, the power ECU 47 links status information (including temperature information) indicating the status of the power generation unit 40 to unit identification information (unit ID) that identifies the power generation unit 40, and sends the status information to the integrated ECU 62 via the communication interface 46. Send.
  • the integrated ECU 62 stores state information indicating the state of the power generation unit 40 in a memory in association with the unit identification information.
  • the integrated ECU 62 determines the amount of power required for each of the four power generation units 40 based on the status information from the four power generation units 40, which are units #1, #2, #3, and #4. Note that basically, the total amount of power requested from each of the four power generation units 40 matches the requested power value received from the vehicle controller 7.
  • the integrated ECU 62 determines whether the temperature corresponding to each power generation unit 40 exceeds a predetermined threshold. For example, if it is determined that the temperature corresponding to unit #4 exceeds a predetermined threshold, the integrated ECU 62 prevents damage (that is, temperature load) to the elements included in unit #4 (for example, the internal combustion engine 41, etc.). In order to suppress the power generation, the unit #4 sends a stop instruction to the unit #4, or sends a power generation instruction to the other power generation units 40, such as units #1, #2, and #3, for a power generation amount lower than the requested power generation amount. send to a stop instruction to the unit #4, or sends a power generation instruction to the other power generation units 40, such as units #1, #2, and #3, for a power generation amount lower than the requested power generation amount. send to a stop instruction to the unit #4, or sends a power generation instruction to the other power generation units 40, such as units #1, #2, and #3, for a power generation amount lower than the requested power generation amount. send to
  • the integrated ECU 62 increases the number of power generation units 40 that are operating to generate electricity, or increases the amount of power generated per one. increase power.
  • a state where the required power value is small such as an inertial running state or a downhill running state
  • some of the power generating units 40 are instructed to generate power in the operating range where power generation efficiency is high, while the remaining power generating units 40 are You may also instruct to stop or suppress output.
  • the integrated ECU 62 determines the output of the power generation unit 40 that has an abnormality or is close to the opportunity for maintenance and inspection and that there is a high possibility that an abnormality will occur. It may also be controlled to lower the Further, the integrated ECU 62 may control the power generation units 40 that stop generating power or suppress the output to be sequentially switched at predetermined intervals in order to prevent uneven driving opportunities. In addition, by accumulating information on identification numbers and abnormal conditions, it becomes easier to understand trends in the occurrence of abnormal conditions, making it easier to optimize maintenance and replacement frequency.
  • the integrated ECU 62 stores maintenance information of the power generation unit 40 in association with unit identification information.
  • the maintenance information may be information received by the integrated ECU 62 from each power generation unit 40, or may be information received by the integrated ECU 62 from outside the railway vehicle 1.
  • information indicating the next maintenance date of the power generation unit 40 is shown as an example of maintenance information.
  • the next maintenance date for the power generation unit 40 is the time to replace it with another power generation unit 40 that has been maintained.
  • the integrated ECU 62 may determine a power generation instruction for a power generation unit 40 whose next maintenance date is close to allow overload. For example, the integrated ECU 62 may determine a power generation instruction for a power generation unit 40 whose next maintenance date is near so as to continue power generation even when the temperature exceeds a predetermined threshold value.
  • FIG. 7 shows an example of an efficiency map of the internal combustion engine 41.
  • the efficiency map in FIG. 7 is a fuel consumption rate map in which the horizontal axis is the engine rotation speed, the vertical axis is the engine torque, and the fuel consumption rate of the internal combustion engine 41 is shown by contour lines. Note that the graph indicated by the thick line in FIG. 7 is an engine performance curve indicating the maximum torque of the internal combustion engine 41.
  • each power generation unit 40 For example, if the four power generation units 40, units #1, #2, #3, and #4, are instructed to generate power by dividing the requested power value from the vehicle controller 7 into four equal parts, each power generation unit It is assumed that the operating point of the internal combustion engine 41 of the unit 40 is the point indicated by the triangle in FIG. This operating point is relatively far away from the high efficiency point, so it can be seen that it is inefficient. In this case, only two of the four units #1, #2, #3, and #4 are instructed to generate power by dividing the requested power value from the vehicle controller 7 into two, and the remaining two When one unit is stopped, the engine operating point becomes the point indicated by x in FIG. 7, which is close to the high efficiency point, and fuel efficiency improves.
  • the integrated ECU 62 may determine the amount of power generation required for each power generation unit 40 from the engine efficiency map stored in its memory. Further, although FIG. 7 shows an efficiency map of the engine, the integrated ECU 62 may determine the amount of power generation required for each power generation unit 40 from the motor efficiency map of the generator 43. Further, for example, the integrated ECU 62 may store at least one of the efficiency map of the internal combustion engine 41 and the efficiency map of the generator 43 of the power generation unit 40 in its memory. Then, the integrated ECU 62 may determine how many power generation units 40 to send the power generation instruction to based on at least one efficiency map and the requested power information received from the vehicle controller 7.
  • integrated ECU 62 may determine which power generation unit 40 to stop based on the requested power information received from vehicle controller 7 .
  • the integrated ECU 62 may determine which power generation unit 40 should stop power generation based on the status information received from each power generation unit 40 .
  • the integrated device 60 not only sends power generation instructions to each power generation unit 40, but also aggregates and outputs maintenance information related to maintenance of each power generation unit 40.
  • the integrated device 60 regularly or irregularly receives status information from each power generation unit 40, and based on the received status information of each power generation unit 40, the integrated device 60 performs maintenance related to each power generation unit 40.
  • the maintenance information is displayed on the display 63.
  • the integrated ECU 62 determines the necessity of maintenance of each power generation unit 40 based on the status information received from each power generation unit 40.
  • the integrated ECU 62 causes the display 63 to display the determined necessity of maintenance as maintenance information.
  • the operator who manages the mobile unit 1 can see the display 63 and understand, for example, the power generation unit 40 that requires maintenance and the timing of maintenance.
  • the integrated ECU 62 sends the determination result of the necessity of maintenance of each power generation unit 40 to the power generation unit 40.
  • the power ECU 47 causes the alarm 49 to notify the received determination result as maintenance information.
  • the alarm 49 is a light emitter
  • the power ECU 47 of the power generation unit 40 that requires maintenance emits light to visually confirm that maintenance is required. This makes it easy for a maintenance worker to find the power generation unit 40 that requires maintenance among the plurality of power generation units 40.
  • FIG. 8 shows the flow of the maintenance method for the railway vehicle 1.
  • the power generation unit 40 and the fuel supply unit 20 will be simply referred to as units 20, 40.
  • the railway vehicle 1 includes multiple maintenance targets, and the multiple maintenance targets include units 20 and 40.
  • the units 20 and 40 and other maintenance targets are maintained separately.
  • the railway vehicle 1 Before starting maintenance work on the railway vehicle 1, the railway vehicle 1 is transported to a maintenance work site, and then all units 20, 40 are removed from the car body 2. All units 20, 40 that are removed from the vehicle body 2 for maintenance may also be referred to as unmaintained units. After all the units 20, 40 are removed, maintenance work is started for maintenance targets other than the units 20, 40.
  • the units 20, 40 removed from the vehicle body 2 will be referred to as old units 20, 40.
  • the old units 20 and 40 are stored in a storage, for example.
  • a plurality of maintained units 20, 40 are stored in the storage.
  • the maintained unit will be referred to as a new unit.
  • the new units 20, 40 stored in the storage also have the same structure as the old units 20, 40. That is, a plurality of replaceable units 20 and 40 are stored in the storage.
  • a maintained unit 20, 40 that is different from the old units 20, 40 is mounted on the railway vehicle 1. That is, before the maintenance work on the old units 20, 40 is completed, the new units 20, 40 are transferred from the storage to the maintenance work area of the railway vehicle 1, and then the new units 20, 40 are mounted on the railway vehicle 1. Ru.
  • the maintenance work on parts other than the old units 20, 40 in the railway vehicle 1 and the installation work of the new units 20, 40 on the railway vehicle 1 are completed, whether the maintenance of the old units 20, 40 is completed or not. Regardless of the situation, the maintenance work on the railway vehicle 1 can be completed and the activities of the railway vehicle 1 can be resumed. In other words, the activity of the railway vehicle 1 can be resumed without waiting for the maintenance work on the old units 20, 40 to be completed. Note that when the maintenance work on the old units 20 and 40 is completed, the old units 20 and 40 are stored in a storage as a maintained unit.
  • a plurality of power generation units 40 are used to disperse power generation sources. This prevents the power supply from being cut off and makes it easier to continue operation compared to the case where a single power source is used.
  • the integrated device 60 also grasps the status of each power generation unit 40. Thereby, even if a plurality of power generation units 40 are used, it is possible to easily manage the power output as a whole and the state of each unit to be appropriate.
  • the integrated device 60 provides operation commands for each power generation unit 40 to each power generation unit 40 based on the received status information of each power generation unit 40, so that the operation of each power generation unit 40 is optimized. easy to change.
  • the integrated device 60 includes a display 63 that displays maintenance information related to the maintenance of each power generation unit 40 based on the received status information of each power generation unit 40. Easy to optimize maintenance.
  • the power generation unit 40 includes a notification device 49 that notifies maintenance information related to maintenance of the power generation unit 40. Therefore, even if a plurality of power generation units 40 having the same shape are arranged, it is easy to understand which power generation unit 40 requires maintenance.
  • the integrated device 60 regularly or irregularly receives status information from each power generation unit 40 and determines whether maintenance of each power generation unit 40 is necessary based on the status information received from each power generation unit 40. Determine gender. Therefore, by prompting the power generation unit 40 to be replaced before it becomes abnormal (output stops), it is easy to continue the activities of the mobile body 1.
  • the power generation units 40 since the plurality of power generation units 40 have the same structure, the power generation units 40 can be easily replaced. Furthermore, maintenance parts for the power generation unit 40 can be easily shared.
  • the integrated device 60 receives power consumption information indicating power consumed by power consumption sources to which power is supplied from the plurality of power generation units 40, and based on the state information and the power consumption information, An operation command is sent to each power generation unit 40. Therefore, the operation of each power generation unit 40 can be easily optimized depending on the power consumption status of the power consumption source.
  • the integrated device 60 that manages the states of the plurality of power generation units 40 also controls the plurality of power generation units 40 based on the state information of the plurality of power generation units 40, the state of the plurality of power generation units 40 is It is possible to realize control according to the
  • the internal combustion engine 41 is configured to be able to use hydrogen gas as fuel, so the purification device for substances contained in exhaust gas can be made small, and the purification device when a plurality of power generation units 40 are arranged can be used. Costs can be reduced. Further, even if a purification device is provided in the power generation unit 40, the frequency of replacement due to deterioration of the purification device can be reduced.
  • the status information includes information regarding damage over time, it is possible to determine abnormality, lifespan, etc. of the components of the power generation unit 40 from the status information.
  • FIG. 9 is a schematic configuration diagram of a maintenance management system 100 including a unit management system S2 according to the second embodiment.
  • the unit management system S2 in this embodiment further includes a maintenance support device 70 disposed outside the mobile body 1.
  • the integration device 60 and the maintenance support device 70 are examples of management support devices.
  • the maintenance management system 100 is a system that maintains and manages the power generation units 40 and fuel supply units 20 mounted on a plurality of moving bodies 1.
  • This maintenance management system 100 allows a maintenance management company to maintain and manage the power generation units 40 and fuel supply units 20 mounted on a plurality of mobile bodies 1 on behalf of the businesses and users who operate the mobile bodies 1. enable.
  • each mobile object 1 is owned by various businesses or individual users.
  • the type of mobile object 1 may not be the railroad vehicle described in the first embodiment, but may be another type of mobile object, such as a bus, a ship, or a utility vehicle.
  • the maintenance support device 70 is used, for example, by a maintenance management company.
  • the maintenance support device 70 includes a communication interface 71, a maintenance support controller 72, and a display 73.
  • the communication interface 71 communicably connects the maintenance support controller 72 to the integrated device 60 via a communication network such as the Internet or LAN.
  • the integration device 60 and the maintenance support device 70 communicate with each other via the relay device 80.
  • the integration device 60 includes a wireless communication device 64 for communicating with the relay device 80 wirelessly.
  • Relay device 80 is connected to the Internet and can communicate with maintenance support device 70 via the Internet.
  • the communication interface 71 may be a wireless communication device that allows the maintenance support device 70 to directly wirelessly communicate with the integrated device 60.
  • the maintenance support controller 72 includes a processor, system memory, and storage memory.
  • the processor includes, for example, a central processing unit (CPU).
  • the system memory is, for example, RAM.
  • Storage memory may include ROM.
  • Storage memory may include a hard disk, flash memory, or a combination thereof.
  • the storage memory stores programs.
  • the display 73 is electrically connected to the maintenance support controller 72.
  • the display 73 outputs maintenance information for each power generation unit 40, for example.
  • FIG. 10 is a block diagram showing the flow of information in the unit management system S2 of FIG. 9.
  • the maintenance support device 70 regularly or irregularly receives status information from each power generation unit 40 through the integration device 60.
  • the maintenance support controller 72 determines the necessity of maintenance of each power generation unit 40 based on the status information received from each power generation unit 40.
  • the maintenance support controller 72 causes the display 73 to display the determined necessity of maintenance as maintenance information.
  • a communication interface for transmitting maintenance information to an external device of the maintenance support device 70 may be provided.
  • the external device is, for example, a terminal 101 (referred to as a user terminal) of the owner or manager of the mobile body 1.
  • the maintenance support controller 72 may send the determined necessity of maintenance to the user terminal 101 as maintenance information.
  • the display 63 and the communication interface are examples of output interfaces.
  • FIG. 11 is a diagram showing an example of the structure of data stored by the maintenance support controller 72.
  • the maintenance support controller 72 stores the received status information in association with unit identification information, user identification information, and mobile object identification information.
  • the user identification information is information for identifying a user who owns or uses the power generation unit 40 corresponding to the unit identification information.
  • the mobile body identification information is information for identifying the mobile body in which the power generation unit 40 corresponding to the unit identification information is mounted. Since the unit identification information is linked to the user identification information or the mobile object identification information, it is easy for the maintenance management company to contact the user of the power generation unit 40 when the power generation unit 40 requires maintenance. . For example, if multiple power generation units 40 mounted on the same mobile body are replaced at the same timing, the period during which the mobile body is stopped can be shortened. The time to replace the power generation unit 40 can be easily determined depending on which mobile body the power generation unit 40 is mounted on.
  • engine operation history includes, for example, data regarding the engine rotational speed (that is, rotational speed), throttle opening, and temporal changes in the amount of fuel supplied by the fuel supply device 41d while the internal combustion engine 41 is in operation.
  • power generation history is data regarding, for example, the temporal transition of the output power of the power generation unit 40.
  • Required power is data regarding the amount of power requested by the power generation unit 40 from the integrated ECU 62, for example.
  • Oil temperature is the temperature of lubricating oil that lubricates the internal combustion engine 41 and the like
  • water temperature is the temperature of the cooling water flowing through the cooling channel 57.
  • next replacement date is data regarding the scheduled replacement date of the power generation unit 40.
  • Component life is data regarding the lifespan and replacement timing of components such as parts included in the power generation unit 40. The "next replacement date” and “parts lifespan” are input by, for example, a maintenance manager.
  • the “cumulative damage amount” is data regarding the amount of damage accumulated in the power generation unit 40 itself or the components included in the power generation unit 40. “Presence or absence of abnormality” is data indicating whether or not an abnormality has occurred in the power generation unit 40 itself or the components included in the power generation unit 40, or whether there is a possibility that an abnormality will occur.
  • the “cumulative damage amount” and the “presence or absence of abnormality” are data generated by the maintenance support controller 72 based on the status information received from each power generation unit 40.
  • a determination program is stored in the memory of the maintenance support controller 72.
  • the processor of the maintenance support controller 72 determines whether maintenance of the power generation unit 40 is necessary by reading the determination program. For example, the maintenance support controller 72 Based on the status information received from each power generation unit 40, "cumulative damage amount” and "presence or absence of abnormality" are generated as maintenance information.
  • the maintenance support controller 72 determines whether the power generation unit 40 is outputting the power as requested based on the "engine operation history", "power generation history”, and “required power”, and determines whether the power generation unit 40 is outputting the power as requested. If it is determined that the power generation unit 40 has not been generated, it is determined that there is a possibility that an abnormality has occurred in the power generation unit 40. Alternatively, for example, the maintenance support controller 72 determines whether the amount of power generated for engine control parameters such as engine speed and throttle opening is low compared to past values (for example, the amount of power generated when it was installed on the mobile object 1). If it is determined that the power generation unit 40 is low, it is determined that there is a possibility that an abnormality has occurred in the power generation unit 40.
  • the maintenance support controller 72 may send the generated maintenance information to the integrated ECU 62 and each power generation unit 40.
  • the integration device 60 may periodically or irregularly receive maintenance information from the maintenance support device 70 and display the maintenance information on the display 63.
  • each power ECU 47 may receive maintenance information generated by the maintenance support controller 72 through the integration device 60.
  • Each power ECU 47 may cause the alarm 49 to notify based on the received maintenance information.
  • the plurality of power generation units 40 can be managed as a whole. For example, delivery, aggregation, and maintenance management of the power generation units 40 can be shared among different mobile bodies and facilities. This allows the work to be performed more efficiently than when each work is performed separately.
  • by consolidating and collectively managing the power generation units 40 that require maintenance regardless of the mobile object or facility it is possible to consolidate maintenance parts and secure a work area, thereby increasing work efficiency. For example, it is easy to increase the amount of power generation units 40 that require maintenance, or increase the number of power generation units 40 that must be maintained at one time.
  • the integrated ECU 62 uses information about the power generation unit 40 (internal combustion engine identification information, generator identification information, total operating period, maintenance history (number of maintenance times, contents)) and the information about the mobile unit so that replacement can be easily predicted.
  • the operation information (operation period after maintenance, type of mobile object, location of movement) may also be accumulated.
  • the mobile body 1 may be a vehicle formation made up of a plurality of railway cars.
  • the fuel supply unit 20 and the power generation unit 40 may be installed only in some of the vehicles included in the vehicle formation.
  • the integration device 60 may be mounted on each vehicle. In this case, the integration device 60 receives only information about the fuel supply unit 20 and power generation unit 40 mounted on the same vehicle, and receives information about the fuel supply unit 20 and power generation unit 40 mounted on the same vehicle. Information about the unit 20 and the power generation unit 40 may not be received.
  • one integration device 60 may be installed for a vehicle formation, and in this case, the integration device 60 collects information on all fuel supply units 20 and power generation units 40 installed in a plurality of vehicles included in the vehicle formation. You may receive it.
  • the mobile body 1 is not limited to a track vehicle, and may be another type of land mobile body equipped with drive wheels.
  • the land vehicle may be a rail car, a vehicle with four or more wheels such as an LTV, a truck, or a bus, or a utility vehicle, a motorcycle, a PTV, or the like.
  • the moving object may be a water moving object or an underwater moving object provided with a propulsion device, or an aerial moving object that flies in the air.
  • waterborne vehicles include ships, tankers, personal watercraft, and the like.
  • An example of the underwater vehicle is a submersible.
  • aerial vehicles include aircraft, helicopters, and drones.
  • the rotating body may be a propeller.
  • the object on which the power generation unit 40 is mounted does not have to be a moving body.
  • the object on which the power generation unit 40 is mounted may be, for example, a building or facility that requires electric power.
  • fuel supply unit 20 is not limited to that described in the above embodiment.
  • fuel supply unit 20 may not include some or all of elements 24, 25, 26, 31, 32, 33, 34, 35.
  • the number of fuel tanks provided in the fuel supply unit may not be two, but may be one, or may be three or more.
  • the fuel supply unit 20 does not need to include the fuel tanks 21 and 22.
  • the fuel tanks 21 and 22 may be fixed to a member on the movable body side without intervening the support structure 27 of the fuel supply unit 20.
  • the fuel supply unit 20 may include a support structure 27, a supply pipe 23 supported by the support structure 27, and the like. If the fuel supply unit is not equipped with a fuel tank, the fuel tank cannot be replaced by replacing the fuel unit, but the maintainability of the supply piping that supplies fuel can be improved. For example, a leak check can be performed on the supply piping of the fuel supply unit in a state where it is separated from the main body of the movable body, making maintenance work easier.
  • the configuration of the power generation unit 40 is not limited to that described in the above embodiment.
  • the power generation unit 40 may not include some or all of the elements 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58.
  • the power generation unit 40 includes the refrigerant pump 56, but the refrigerant pump 56 may be arranged in the vehicle body 2 outside the power generation unit 40.
  • the power generation unit may include a power storage body.
  • the internal combustion engine may use fuel other than hydrogen gas as fuel.
  • the power generation unit and the fuel supply unit may constitute one unit. That is, one of the power generation unit and the fuel supply unit may include all the elements of the other unit.
  • the number and arrangement of the power generation units and fuel supply units included in the mobile body are also not limited to those described in the above embodiments.
  • the mobile body does not need to be equipped with a fuel supply unit.
  • the mobile object may include a fuel tank capable of supplying fuel to the power generation unit.
  • the shapes and structures of the support structures 27 and 48 are not limited to those described in the above embodiments.
  • the support structure 27 of the fuel supply unit 20 does not have to be box-shaped.
  • the support structure 27 may include a plurality of frames, like the support structure 48 of the power generation unit 40.
  • the support structure 48 of the power generation unit 40 does not have to include a plurality of frames as shown in FIG. 3 .
  • the support structure 48 may be box-shaped like the support structure 27 of the fuel supply unit 20.
  • the moving object may be one that moves automatically.
  • the vehicle controller 7 generates an output command for controlling the electric motor 11 mounted on the railway vehicle 1 based on the request command received from the operating device 6.
  • the output command may be generated by executing an automatic driving program stored in the memory.
  • the communication interface 46 of the power generation unit 40 may communicate with the maintenance support device 70 without going through the integration device 60. That is, the power ECU 47 may link state information indicating the state of the power generation unit 40 with unit identification information that identifies the power generation unit 40 and transmit the state information to the maintenance support device 70 via the communication interface 46.
  • Unit management system S2 may not include integration device 60.
  • the management support device of the first embodiment described above may include not only the integration device 60 but also a maintenance support device.
  • the management support device of the second embodiment described above may include only one of the integration device 60 and the maintenance support device 70.
  • the maintenance support controller 72 receives the status information, but the maintenance support controller 72 does not need to receive the status information. That is, the maintenance support controller 72 may receive only the maintenance information generated by the integrated ECU 62 instead of the status information. Thereby, data communication charges between the maintenance support device 70 and the mobile body 1 can be reduced.
  • the integrated ECU 62 or the power ECU 47 of each power generation unit 40 instead of the maintenance support controller 72 generating maintenance information for each power generation unit 40 based on the state information, the integrated ECU 62 or the power ECU 47 of each power generation unit 40 generates part or part of the maintenance information based on the state information. You can generate all of them.
  • the status information and maintenance information are not limited to the information illustrated in FIG. 11, and may be part of the information illustrated in FIG. 11, or may include information other than the information illustrated in FIG.
  • the management support device may also output management support information other than maintenance information.
  • management support information other than maintenance information.
  • information regarding maintenance of the fuel supply unit 20 replacement of the fuel supply unit 20, remaining amount of fuel in the fuel tank, replacement of parts such as filters, etc.
  • the power consumption source Y does not have to be mounted on the moving object.
  • the plurality of power generation units mounted on the mobile body may have the same configuration or may have different configurations.
  • the type, performance, size, etc. of elements such as internal combustion engines and generators included in each power generation unit may differ from one power generation unit to another.
  • the integrated device 60 may control the power generation operation of each power generation unit 40 based on the difference between the power generation units 40.
  • the power generation output may be adjusted as follows. Adjustment may be made using the power generation unit 40 that takes a short time to start. In order to properly carry out depreciation, if there is a new model and an old model, output adjustments may be made to encourage replacement of the old model.
  • circuitry or processing circuitry that includes a combination of .
  • Processors are considered processing circuits or circuits because they include transistors and other circuits.
  • a circuit, unit, or means is hardware that performs the recited functions or is hardware that is programmed to perform the recited functions.
  • the hardware may be the hardware disclosed herein or other known hardware that is programmed or configured to perform the recited functions. If the hardware is a processor, which is considered a type of circuit, the circuit, means, or unit is a combination of hardware and software, and the software is used to configure the hardware or processor.
  • a unit management system comprising a plurality of power generation units that generate electric power and a management support device that receives information from the plurality of power generation units,
  • the power generation unit is internal combustion engine; a generator that generates electric power using the rotational power of the internal combustion engine; a communication interface capable of communicating with the management support device;
  • a unit management system comprising: a unit controller that links state information indicating a state of the power generation unit to unit identification information that identifies the power generation unit, and transmits the state information to the management support device via the communication interface.
  • the system uses a plurality of power generation units to disperse power generation sources. This prevents the power supply from being cut off and makes it easier to continue operation compared to the case where a single power source is used.
  • the management support device also grasps the status of each power generation unit. Thereby, even if a plurality of power generation units are used, it is possible to easily manage the power output as a whole and the state of each unit to be appropriate.
  • the management support device regularly or irregularly receives the status information from each of the power generation units,
  • the management support device includes: a processing circuit that determines the necessity of maintenance of each of the power generation units based on the status information received from each of the power generation units;
  • the unit management system according to any one of aspects 1 to 4, including an output interface that outputs the determined necessity of maintenance as maintenance information.
  • the power generation unit can be easily replaced. In addition, it is easy to standardize maintenance parts.
  • the management support device receives power consumption information indicating power consumed by a power consumption source to which power is supplied from the plurality of power generation units, and based on the state information and the power consumption information, the management support device
  • the unit management system according to any one of aspects 1 to 7, wherein the unit management system sends an operation command to.
  • the plurality of power generation units are mounted on a mobile body,
  • the management support device determines the required power generation amount to be given to each of the power generation units in accordance with a travel command of the mobile object,
  • the unit management system according to any one of aspects 1 to 8, wherein the unit controller of each power generation unit controls the internal combustion engine based on the required power generation amount determined by the management support device.
  • the management support device that manages the states of the plurality of power generation units also controls the plurality of power generation units based on the state information of the plurality of power generation units, so that control according to the state of the plurality of power generation units is performed. realizable.
  • the management support device may include a memory that stores the unit identification information in association with user identification information that identifies a user who owns or uses the power generation unit corresponding to the unit identification information.
  • a power generation unit comprising: a unit controller that links state information indicating a state of the power generation unit to unit identification information that identifies the power generation unit, and transmits the state information to an external device via the communication interface.
  • a management support device that receives information from a plurality of power generation units that generate electric power, a communication interface that receives, from each of the power generation units, unit identification information that identifies each of the power generation units, and status information that indicates the status of each of the power generation units that is linked to the unit identification information; a memory that stores the received status information in association with the unit identification information; a processing circuit that generates management support information for managing the power generation unit corresponding to the unit identification information linked to the state information, based on the state information stored in the memory; Device.
  • a unit management method for managing multiple power generation units that generate electricity comprising: Obtaining status information indicating the status of each of the power generation units from each of the power generation units; A unit management method that outputs management support information for managing the power generation unit based on the acquired status information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transportation (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

ユニット管理システムは、電力を発生させる複数の発電ユニットと、複数の発電ユニットからの情報を受信する管理支援装置と、を備えるユニット管理システムであって、発電ユニットは、内燃機関と、内燃機関の回転動力により電力を発生させる発電機と、管理支援装置と通信可能な通信インタフェースと、発電ユニットの状態を示す状態情報を、発電ユニットを識別するユニット識別情報に紐づけて、通信インタフェースを介して管理支援装置に送信するユニットコントローラと、を含む。

Description

ユニット管理システム、発電ユニット、管理支援装置およびユニット管理方法
 関連出願への相互参照
 本件出願は、2022年9月5日に日本特許庁に出願された特願2022-140955の優先権を主張するものであり、その全体を参照することにより本件出願の一部となすものとして引用する。
 分野
 本開示は、ユニット管理システム、発電ユニット、管理支援装置およびユニット管理方法に関する。
 従来から、内燃機関を搭載した車両が知られている。例えば特許文献1には、水素を燃料として運転可能な内燃機関を搭載し、当該内燃機関による出力軸の回転が駆動輪に伝達されることで推進する車両が開示されている。
特開2008-038680号公報
 内燃機関に異常が生じた場合などには、異常が解消するまで、移動体として動作させることができない場合がある。
 そこで、本開示は、駆動源の動作を継続させやすいユニット管理システム、発電ユニット、管理支援装置およびユニット管理方法を提供することを目的とする。
 本開示の一態様に係るユニット管理システムは、電力を発生させる複数の発電ユニットと、前記複数の発電ユニットからの情報を受信する管理支援装置と、を備えるユニット管理システムであって、前記発電ユニットは、内燃機関と、前記内燃機関の回転動力により電力を発生させる発電機と、前記管理支援装置と通信可能な通信インタフェースと、前記発電ユニットの状態を示す状態情報を、前記発電ユニットを識別するユニット識別情報に紐づけて、前記通信インタフェースを介して前記管理支援装置に送信するユニットコントローラと、を含む。
 本開示の一態様に係る発電ユニットは、内燃機関と、前記内燃機関の回転動力により電力を発生させる発電機と、通信インタフェースと、前記発電ユニットの状態を示す状態情報を、前記発電ユニットを識別するユニット識別情報に紐づけて、前記通信インタフェースを介して外部装置に送信するユニットコントローラと、を含む。
 本開示の一態様に係る管理支援装置は、電力を発生させる複数の発電ユニットからの情報を受信する管理支援装置であって、各前記発電ユニットから、各前記発電ユニットを識別するユニット識別情報、および、前記ユニット識別情報に紐づけられた、各前記発電ユニットの状態を示す状態情報を受信する通信インタフェースと、受信した前記状態情報を、前記ユニット識別情報に紐づけて記憶するメモリと、前記メモリに記憶された前記状態情報に基づいて、前記状態情報に紐づいた前記ユニット識別情報に対応する前記発電ユニットを管理するための管理支援情報を生成する処理回路と、を備える。
 本開示の一態様に係るユニット管理方法は、電力を発生させる複数の発電ユニットを管理するためのユニット管理方法であって、各前記発電ユニットから、各前記発電ユニットの状態を示す状態情報を取得し、取得した前記状態情報に基づいて、前記発電ユニットを管理するための管理支援情報を出力する。
 本開示によれば、駆動源の動作を継続させやすいユニット管理システム、発電ユニット、管理支援装置およびユニット管理方法を提供することができる。
第1実施形態に係るユニット管理システムを搭載した移動体の概略構成図である。 図1の移動体の駆動システムのブロック図である。 (A)は、発電ユニットの一例を示す概略斜視図であり、(B)は、発電ユニットの別の例を示す概略斜視図である。 図1のユニット管理システムにおける情報の流れを示すブロック図である。 各発電ユニットにおける内燃機関への制御指令の内容と当該制御指令に対応する出力電力の一例をまとめた表である。 ユニット識別情報と、当該ユニット識別情報に対応する温度情報および保守情報とを示す表である。 統合ECUの制御方法を説明するための内燃機関の燃料消費率マップの一例を示す。 移動体の保守方法について説明するための図である。 第2実施形態に係るユニット管理システムを含む保守管理システムの概略構成図である。 図9のユニット管理システムにおける情報の流れを示すブロック図である。 保守支援装置により記憶されるデータの構成例を示す図である。
 以下、図面を参照して実施形態を説明する。
 <第1実施形態>
 図1は、第1実施形態に係るユニット管理システムS1を搭載した移動体1の概略構成図である。本実施形態におけるユニット管理システムS1は、少なくとも1つの発電ユニット40と、少なくとも1つの燃料供給ユニット20と、統合装置60とを備える。本実施形態の統合装置60は、管理支援装置の一例である。燃料供給ユニット20、発電ユニット40および統合装置60について、詳細は後述する。
 本実施形態では、移動体1として、鉄道車両1が例示されている。鉄道車両1は、車体2と、車体2の長手方向の両端部寄りに配置されて車体2を支持する一対の台車3とを有する。鉄道車両1では、車体2と各台車3との間にそれぞれ枕ばね4が介在している。
 鉄道車両1は、例えば旅客車であり、車体2は、乗員が収容される客室と、車体2の長手方向の端部に配置された運転室を有する。台車3は、複数の車輪3aを備える。車幅方向に間隔をあけて並ぶ2つの車輪3aは、車軸により連結される。ただし、台車3は、2つの車輪3aが車軸により連結されない独立車輪方式でもよい。
 鉄道車両1は、電動車である。鉄道車両1は、推進用動力発生装置である少なくとも1つの電気モータ11(図2参照)を備える。各電気モータ11の出力軸は、動力伝達機構を介して少なくとも1つの車輪3aと連結される。各電気モータ11は、対応する車輪3aを回転駆動する。電気モータ11は、台車3に固定されている。ただし、鉄道車両1は、車体装架カルダン駆動方式を採用してもよい。すなわち、電気モータ11は、車体2に固定されていてもよい。
 鉄道車両1は、操作器6と、当該操作器6と通信可能に構成された車両コントローラ7を備える。操作器6は、運転室に設置された1以上のレバーまたはハンドルを含む。操作器6に対する運転手の操作入力に応じて、操作器6から車両コントローラ7に要求指令が送られる。要求指令には、走行指令および制動指令が含まれる。操作器6は、走行指令を入力する走行操作器や、制動指令を入力する制動指令器などを含む。なお、走行操作器は制動操作器と別々に設けられていてもよく、一体化されていてもよい。
 車両コントローラ7は、操作器6から受信した要求指令に基づき、鉄道車両1に搭載された電気モータ11を制御するための出力指令を生成する。車両コントローラ7は、電気モータ11の出力を制御するためのインバータ14(図2参照)に出力指令を送る。電気モータ11の駆動に必要な電力は、少なくとも1つの発電ユニット40から供給される。
 車両コントローラ7は、プロセッサ、システムメモリおよびストレージメモリを備える。プロセッサは、例えば、中央演算処理装置(CPU)を含む。システムメモリは、例えば、RAMである。ストレージメモリは、ROMを含み得る。ストレージメモリは、ハードディスク、フラッシュメモリ又はそれらの組合せを含み得る。ストレージメモリは、プログラムを記憶している。
 本実施形態では、車体2に複数、たとえば4つの発電ユニット40が搭載されている。各発電ユニット40は、少なくとも1つの電気モータ11に供給するための電力を発生させる。また、車体2には、1つの燃料供給ユニット20が搭載されている。燃料供給ユニット20は、発電ユニット40に、電力の発生に必要な燃料を供給する。また、車体2には、統合装置60が搭載されている。統合装置60には、車体2に搭載された発電ユニット40および燃料供給ユニット20の全てのユニットの情報が集約される。
 図2は、電気モータ11を駆動するための駆動システムのブロック図である。なお、図2では、図の簡単化のため、鉄道車両1が備える1つの電気モータ11のみ示す。ユニット管理システムS1を構成する、燃料供給ユニット20、発電ユニット40および統合装置60について説明する前に、発電ユニット40からの電力の供給先についてまず説明する。
 鉄道車両1は、集電回路12、蓄電体13、インバータ14を備える。集電回路12には、鉄道車両1の複数の発電ユニット40が、電気ケーブルなどを介して並列に電気的に接続されている。集電回路12は、複数の発電ユニット40で発生した電力を集約する。
 蓄電体13には、集電回路12を介して複数の発電ユニット40が電気的に接続されている。蓄電体13は、複数の発電ユニット40により発生した電力を充電する。蓄電体13は、例えばバッテリまたはキャパシタである。また、蓄電体13は、インバータ14を介して電気モータ11に電気的に接続されている。
 インバータ14は、直流電力を交流電力に変換して電圧調節して電気モータ11に供給するように構成されている。インバータ14は、車両コントローラ7から送られる出力指令に基づき、電気モータ11の出力を制御する。
 (燃料供給ユニットの構成)
 燃料供給ユニット20は、発電ユニット40の内燃機関41に燃料として水素ガスを供給する。図2に示すように、燃料供給ユニット20は、第1燃料タンク21、第2燃料タンク22、供給配管23、充填配管24、通信インタフェース25、燃料コントローラ26、支持構造体27などを備える。なお、燃料コントローラ26は、燃料ECU(Electronic Control Unit)26とも称する。
 第1燃料タンク21および第2燃料タンク22は、互いに同じ構造を有する。第1燃料タンク21および第2燃料タンク22は、燃料ガスとなる水素ガスを圧縮状態で貯留する。満タン状態の第1燃料タンク21および第2燃料タンク22の内圧は、大気圧よりも高く、具体的には内燃機関41の所定吸気圧よりも高い。
 第1燃料タンク21には、第1燃料タンク21のポートを開閉する第1開閉弁31が配置されている。第2燃料タンク22には、第2燃料タンク22のポートを開閉する第2開閉弁32が配置されている。第1開閉弁31および第2開閉弁32は、それぞれ電気的に制御可能な電磁弁である。
 供給配管23は、第1燃料タンク21および第2燃料タンク22から燃料を発電ユニット40に導く。供給配管23の2つの上流側端部は、第1燃料タンク21および第2燃料タンク22に接続されている。また、供給配管23の1つの下流側端部は、供給口23dを含む。
 より詳しくは、供給配管23は、第1副供給配管23a、第2副供給配管23b、主供給配管23cを含む。第1副供給配管23aは、第1燃料タンク21を主供給配管23cに接続している。第2副供給配管23bは、第2燃料タンク22を主供給配管23cに接続している。即ち、第1副供給配管23aおよび第2副供給配管23bは、主供給配管23cの上流側において主供給配管23cから分岐している。主供給配管23cの下流側端部が、供給口23dを含む。
 主供給配管23cには、減圧弁33が配置されている。減圧弁33は、主供給配管23cから内燃機関41に供給される水素ガスの圧力を所定吸気圧に維持するように、主供給配管23cを流れる水素ガスを減圧する。
 主供給配管23cにおける減圧弁33より下流側部分には、遮断弁34が配置されている。遮断弁34は、緊急時などに主供給配管23cから内燃機関41への水素ガスの供給を遮断可能なように主供給配管23cに配置されている。
 充填配管24は、第1燃料タンク21および第2燃料タンク22内に外部から燃料を導くための配管である。充填配管24の一端部は、主供給配管23cにおける減圧弁33より上流側部分に接続されている。充填配管24の他端部は、充填口24aを含む。充填配管24には、燃料が充填口24aに向かって流れることを防止する逆止弁35が配置されている。
 通信インタフェース25は、燃料ECU26を、燃料供給ユニット20の外部に設けられた統合装置60に通信可能に接続する。有線通信の場合には、通信インタフェース25は着脱自在な端子または通信コネクタである。無線通信の場合には、通信インタフェース25は公知の無線通信機である。
 燃料ECU26は、通信インタフェース25を介して統合装置60から受信した信号に基づいて、第1開閉弁31および第2開閉弁32を制御する。燃料ECU26は、プロセッサ、システムメモリおよびストレージメモリを備える。プロセッサは、例えば、中央演算処理装置(CPU)を含む。システムメモリは、例えば、RAMである。ストレージメモリは、ROMを含み得る。ストレージメモリは、ハードディスク、フラッシュメモリ又はそれらの組合せを含み得る。ストレージメモリは、プログラムを記憶している。
 燃料供給ユニット20が含む各要素21,22,23,24,25,26,31,32,33,34,35は、互いに固定されて一体化されている。具体的には、燃料供給ユニット20が含む各要素21,22,23,24,25,26,31,32,33,34,35は、支持構造体27によって支持されてユニット化されている。例えば、支持構造体27は、直方体の箱状である。燃料供給ユニット20が含む各要素21,22,23,24,25,26,31,32,33,34,35(支持構造体27を除く)が、箱状の支持構造体27の中に収容され、支持構造体27に対し直接または間接的に接続され、固定されている。
 支持構造体27は、燃料タンク21,22を支持した状態で車体2に着脱自在に構成されている。すなわち、燃料供給ユニット20は、車体2に対し着脱自在に搭載される。燃料供給ユニット20は、同じ構造の別の燃料供給ユニット20と交換可能に構成される。
 (発電ユニットの構成)
 発電ユニット40は、内燃機関41、燃料配管42、発電機(モータ・ジェネレータ)43、インバータ44、電気インタフェース45、通信インタフェース46、電力コントローラ47、報知器49などを備える。なお、電力コントローラ47は、電力ECU(Electronic Control Unit)47とも称する。電力コントローラ47は、ユニットコントローラの一例である。
 内燃機関41は、燃料ガスを燃焼し、その燃焼エネルギーをクランク軸41aの回転エネルギーに変換する。本実施形態では、内燃機関41は、水素ガスを燃料として使用可能に構成された水素エンジンである。内燃機関41は、例えば多気筒エンジンである。
 内燃機関41は、スロットル装置41b、点火装置41c、燃料供給装置41dを含む。スロットル装置41bは、内燃機関41の吸気量を調節する。例えば、スロットル装置41bは、スロットル弁をモータにより開閉動作させる電子制御スロットル装置である。点火装置41cは、内燃機関41の燃焼室内の混合気に点火する。点火装置41cは、例えば点火プラグである。燃料供給装置41dは、内燃機関41の燃焼室内に燃料を供給する。
 燃料配管42の一端部は、内燃機関41の燃料供給装置41dに接続されている。燃料配管42の他端部は、燃料受入口42aを含む。発電ユニット40の燃料受入口42aと、上述した燃料供給ユニット20の供給口23dとは、接続配管15により接続されている。接続配管15は、例えば車体2に支持される。水素ガスが、燃料供給ユニット20から、接続配管15および燃料配管42を介して内燃機関41の燃料供給装置41dに導かれる。
 発電機43は、内燃機関41の回転動力により電力を発生させる。発電機43は、クランク軸41aと共回転するようにクランク軸41aに結合された回転軸43aを有する。回転軸43aには、ロータが設けられており、当該ロータに対向する位置に配置されたステータを含む。発電機43は、例えば三相誘導電動機である。
 インバータ44は、発電機43に電気的に接続されている。インバータ44は、発電機43により発電された交流電力を直流電力に変換する。インバータ44は、コンバータとも称し得る。また、インバータ44は、電気インタフェース45に電気的に接続されている。電気インタフェース45は、発電ユニット40のインバータ44を、発電ユニット40の外部に設けられた蓄電体13に電気的に接続する。接触給電の場合には、電気インタフェース45は着脱自在な端子又は電力コネクタである。非接触給電の場合には、電気インタフェース45はコイルである。
 通信インタフェース46は、電力ECU47を、発電ユニット40の外部に設けられた統合装置60に通信可能に接続する。有線通信の場合には、通信インタフェース46は着脱自在な端子または通信コネクタである。無線通信の場合には、通信インタフェース46は公知の無線通信機である。
 電力ECU47は、各発電ユニット40内の制御対象である内燃機関41やインバータ44などを制御する。以下、各発電ユニット40内の制御対象を、「ユニット側制御対象X」と称することとする。電力ECU47は、通信インタフェース46を介して統合装置60から受信した信号に基づいて、ユニット側制御対象Xを制御する。ユニット側制御対象Xには、内燃機関41におけるスロットル装置41b、点火装置41c、燃料供給装置41d、および、インバータ44が含まれる。ユニット側制御対象Xに、後述の報知器49やオイル制御弁ユニット54なども含まれてもよい。
 電力ECU47は、プロセッサ、システムメモリおよびストレージメモリを備える。プロセッサは、例えば、中央演算処理装置(CPU)を含む。システムメモリは、例えば、RAMである。ストレージメモリは、ROMを含み得る。ストレージメモリは、ハードディスク、フラッシュメモリ又はそれらの組合せを含み得る。ストレージメモリは、プログラムを記憶している。電力ECU47は、ユニットコントローラの一例である。
 また、電力ECU47は、通信インタフェース46を介して統合装置60と通信する。具体的には、電力ECU47は、発電ユニット40の状態を示す状態情報を、発電ユニット40を識別するユニット識別情報(ユニットID)に紐づけて、通信インタフェース46を介して統合装置60に送信する。
 状態情報は、経年損傷に関する情報を含む。また、状態情報は、過去の運転履歴を含んでもよい。例えば状態情報は、内燃機関41の回転数、内燃機関41の発生トルク、内燃機関41の運転履歴、発電機43の発電量、発電ユニット40が外部から受けた衝撃力、または、発電ユニット40の構成要素の寿命に関する情報を含んでもよい。
 また、電力ECU47は、通信インタフェース46を介して統合装置60から発電指示を受信する。発電指示について、詳細は後述する。
 報知器49は、電力ECU47と電気的に接続されている。報知器49は、発電ユニット40の状態を報知する。報知器49は、例えば表示器または発光器を含む。例えば表示器は、液晶ディスプレイである。例えば発光器はLEDである。報知器49は、例えば発電ユニット40の保守に関連する保守情報を報知する。保守情報には、例えば発電ユニット40自体または当該発電ユニット40が含む要素の交換、修理または点検の必要性または時期を示す情報である。保守情報は、管理支援情報の一例である。
 また、発電ユニット40は、オイルポンプ51、潤滑油路52、駆動油路53、オイル制御弁ユニット54、オイルポート55を備える。
 オイルポンプ51は、クランク軸41aの回転に機械的に連動して駆動される。潤滑油路52は、オイルポンプ51により内燃機関41のオイルパンら汲み上げられたオイルを、潤滑油として内燃機関41のギヤなどの各所へ導く。
 潤滑油路52からは、駆動油路53が分岐している。駆動油路53の一端部は、潤滑油路52に接続されている。また、駆動油路53の他端部は、オイルポート55に接続されている。
 オイルポート55は、発電ユニット40の外部に設けられた油圧アクチュエータ16にオイルを出力するための流体インタフェースである。オイルポート55には、車体2に搭載された油圧アクチュエータ16の流入ポートに接続されたオイル配管17が着脱可能に接続される。油圧アクチュエータ16は、制動力を発生する油圧シリンダなどである。
 オイル制御弁ユニット54は、駆動油路53に介在している。オイル制御弁ユニット54は、駆動油路53を開閉して、油圧アクチュエータ16に付与される油圧を制御する流体制御装置の役目を果たす。
 なお、駆動油路53は、潤滑油路52から分岐していなくてもよい。例えば、駆動油路53には、潤滑用のオイルポンプ51とは別のオイルポンプによりオイルが供給されてもよい。
 また、発電ユニット40は、少なくとも内燃機関41に循環液を循環させるための循環装置を備える。循環装置は、冷媒ポンプ56と、冷却流路57と、ラジエータ58とを含む。冷媒ポンプ56は、冷媒(例えば、水)を吐出する。冷媒ポンプ56は、クランク軸41aの回転に機械的に連動して駆動される。ただし、冷媒ポンプ56は、別の動力源により駆動されてもよい。
 冷却流路57は、冷媒ポンプ56が吐出した冷媒を内燃機関41などに導き、内燃機関41を冷却した冷媒(循環液に対応)を冷媒ポンプ56に戻す循環流路である。冷却流路57は、発電機43やインバータ44を冷却するよう、発電機43やインバータ44に冷媒を導いてもよい。ラジエータ58は、冷却流路57に介在しており、冷却流路57を循環する冷媒の放熱をする。
 発電ユニット40は、支持構造体48を備える。発電ユニット40に含まれて支持構造体48を除く各要素44,45,46,47,49,51,52,53,54,55,56,57,58は、支持構造体48によって支持されてユニット化されている。発電ユニット40が含む各要素44,45,46,47,49,51,52,53,54,55,56,57,58(支持構造体48を除く)が、支持構造体48に対し直接または間接的に接続され、固定されている。
 図3(A)は、発電ユニット40の一例として、水平対向型の内燃機関41を含む発電ユニット40を示す概略斜視図である。図3(B)は、発電ユニット40の別の例として、直列型の内燃機関41を含む発電ユニット40を示す概略斜視図である。なお、図3(A)および(B)では、支持構造体48に支持される発電ユニット40の各要素のうち、内燃機関41、発電機43、インバータ44、電気インタフェース45のみ示し、それ以外は省略する。
 図3に示すように、本実施形態では、支持構造体48は、複数のフレームを含む。支持構造体48の複数のフレームが、発電ユニット40の要素44,45,46,47,49,51,52,53,54,55,56,57,58を取り囲むように連結されている。例えば、支持構造体48は、上下方向に延びる複数の上下フレームと、上下フレームに接続される水平方向に延びる複数水平方向に延びる複数の水平フレームを含む。例えば、支持構造体48は、内燃機関41が載置される板部材を含む。例えば支持構造体48は、内燃機関41および発電機43などの発電ユニット40の各要素を、下から支える構造であってもよいし、上から支える(即ち吊下げ支持する)構造であってもよい。
 本実施形態の鉄道車両1では支持構造体48を上下方向に並べて配置しないが、図3(B)に二点鎖線で示すように、複数の支持構造体48は、上下方向に積み重ね可能に構成されている。上下方向に積み重ねられる場合、移動体に対する取付位置を少なくすることができる。また、複数の支持構造体48は、水平方向に連結可能に構成されてもよい。すなわち前後方向および左右方向の少なくとも一方に並んで配置されてもよい。この場合、上下方向に発電ユニット40を配置する場合に比べて、発電ユニット40を着脱する際に、着脱するべき発電ユニット40以外の発電ユニット40の移動体からの取り外しを不要としやすい。
 支持構造体48は、内燃機関41および発電機43の双方を支持した状態で車体2に着脱自在に構成されている。すなわち、発電ユニット40は、車体2に対し着脱自在に搭載される。発電ユニット40は、同じ構造の別の発電ユニット40と交換可能に構成される。また、車体2に搭載される複数の支持構造体48は、互いに共通の構造を有する。例えば、複数の支持構造体48は、上下方向、左右方向、前後方向の寸法が互いに同じである。従って、車体2に搭載されたある発電ユニット40は、同じ構造の別の発電ユニット40に代替可能である。
 また、発電ユニット40は、当該発電ユニット40の状態を検出するための少なくとも1つのセンサ59を含む。少なくとも1つのセンサ59により検出した情報は、電力ECU47に送られる。
 発電ユニット40の状態とは、言い換えれば、発電ユニット40が含む要素44,45,46,47,49,51,52,53,54,55,56,57,58の少なくとも1つの状態である。図2では、少なくとも1つのセンサ59は、図の簡単化のため、1つのブロックで示される。また、少なくとも1つのセンサ59には、発電ユニット40の各構成要素44,45,46,47,49,51,52,53,54,55,56,57,58の一部を構成するセンサも含まれ得る。
 例えば、少なくとも1つのセンサ59には、油温を検出する温度センサ、冷却水の温度を検出する温度センサ、発電機43の温度を検出する温度センサ、インバータ44の温度を検出する温度センサ、インバータ44が含む電流センサ、内燃機関41の回転数(回転速度)を検出する回転数センサ、スロットル開度センサ、発電ユニット40が有する機械部品や構造体の機械的な負荷を検出するための歪みゲージ、または、燃料配管42を流れる燃料の流量を検出する流量センサ、などが含まれ得る。
 (統合装置の構成)
 図2に戻って、統合装置60は、複数の発電ユニット40および燃料供給ユニット20からの情報を受信する。統合装置60は、通信インタフェース61、統合コントローラ62、表示器63を含む。なお、統合コントローラ62は、統合ECU(Electronic Control Unit)62とも称する。
 通信インタフェース61は、統合ECU62を、車両コントローラ7、発電ユニット40、燃料供給ユニット20に通信可能に接続する。有線通信の場合には、通信インタフェース61は着脱自在な端子または通信コネクタである。無線通信の場合には、通信インタフェース61は公知の無線通信機である。
 統合ECU62は、当該鉄道車両1に搭載された発電ユニット40および燃料供給ユニット20の全てと情報通信する。統合ECU62は、プロセッサ、システムメモリおよびストレージメモリを備える。プロセッサは、例えば、中央演算処理装置(CPU)を含む。システムメモリは、例えば、RAMである。ストレージメモリは、ROMを含み得る。ストレージメモリは、ハードディスク、フラッシュメモリ又はそれらの組合せを含み得る。ストレージメモリは、プログラムを記憶している。
 統合ECU62は、発電ユニット40および燃料供給ユニット20から受信した状態情報およびユニット識別情報を互いに紐づけて、そのメモリに記憶する。
 表示器63は、統合ECU62と電気的に接続されている。表示器63は、例えば、各発電ユニット40の保守に関連する保守情報を出力する。
 (移動体の制御)
 次に、鉄道車両1の走行中における駆動システムの制御の一例を、図4乃至7を参照しつつ説明する。
 図4は、図2の駆動システムにおける各要素の通信情報の流れを示すブロック図である。操作器6に対する運転手の操作入力に応じて、操作器6から車両コントローラ7に要求指令が送られる。
 車両コントローラ7は、操作器6から受信した要求指令に基づき、出力指令を生成し、インバータ14などに送って、インバータ14などを制御する。こうして、電気モータ11により発生する回転駆動力が制御される。車体2の電装品および電気モータ11など、複数の発電ユニット40から電力が供給される電力消費源を、電力消費源Yと称することとする。
 車両コントローラ7は、電力消費源Yによる電力消費状況を示す電力消費情報を取得する。車両コントローラ7は、電力消費情報を、車体2に搭載された各種センサ(例えばインバータ14が含む電流センサなど)から受信した情報に基づき算出してもよいし、別の機器から受信してもよい。
 また、車両コントローラ7は、例えば電力消費源Yに必要な電力をユニット管理システムS1に要求する。具体的には、図4に示すように、車両コントローラ7は、統合ECU62から達成可能な電力値を示す情報を受信する。車両コントローラ7は、受信した達成可能な電力値以下の電力値を、統合ECU62に要求する。車両コントローラ7は、電力消費源Yに消費される電力を示す電力消費情報を統合ECU62に送る。言い換えれば、車両コントローラ7は、操作器6から受信した要求指令に基づき、当該要求指令を満たすために要求される要求電力値を示す要求電力情報を電力消費情報として統合ECU62に送る。例えば要求電力値は、要求指令を満たすために電気モータ11が必要とする電力値である。
 統合ECU62は、車両コントローラ7から要求電力情報(電力消費情報)を受信する。また、統合ECU62は、各発電ユニット40から状態情報を受信する。統合装置60は、状態情報および要求電力情報(電力消費情報)に基づいて、各発電ユニット40に動作指令として発電指示を送る。発電指示は、発電ユニット40に要求する要求発電量を含む。統合ECU62は、状態情報および要求電力情報(電力消費情報)に基づいて、各発電ユニット40に与える要求発電量を決定する。各電力ECU47は、統合ECU62から発電指示を受信し、統合ECU62により決定された要求発電量に基づき、ユニット側制御対象Xを制御する。
 本実施形態では、4つの発電ユニット40に要求される発電量は、互いに異なり得る。また、発電指示は、発電の停止を要求する停止指示も含まれ得る。例えば、統合ECU62は、4つの発電ユニット40の一部のユニットに対し、発電指示を送らないまたは発電の停止指示を送ることもあり得る。統合ECU62は、各ユニットの状態、保守情報、発電効率などを総合的に判断して、発電ユニット40ごとに、発電指示の内容を変え得る。たとえば移動体の移動に必要な供給電力よりも、4つの発電ユニット40全体として発電可能な総発電量が大きい場合、統合ECU62は、少なくとも1つの発電ユニット40に停止要求を指示してもよい。
 図5は、4つの発電ユニット40に送る発電指示の内容が互いに異なる例を説明するための図である。具体的には、図5は、4つの発電ユニット40の各ユニットにおける内燃機関41への発電指示内容と、発電指示に対応する出力電力の一例をまとめた表である。以下、4つの発電ユニット40を、それぞれ「ユニット#1」、「ユニット#2」、「ユニット#3」、「ユニット#4」と称し得る。なお、内燃機関41への発電指示と出力電力は、グラフで表している。より詳しくは、図5では、内燃機関41への動作指令として、エンジン回転数とスロットル開度の時間的推移がグラフで示されている。
 ユニット#1およびユニット#2は、互いに同じ発電量を示す発電指示を受信しため、図5に示すように、ユニット#2の出力電力は、ユニット#1の出力電力と同じである。ユニット#3は、ユニット#1およびユニット#2よりも低い発電量を示す発電指示を受信したため、ユニット#3の出力電力は、ユニット#1の出力電力より低減した値である。また、ユニット#4は、統合ECU62から停止指示を受信しており、発電していない。
 なお、本実施形態では、複数の発電ユニット40から1つ少ない残りの発電ユニット40で発電される総電力が、移動体1を推進させるのに必要な電力よりも大きく設定される。このため、複数の発電ユニット40のうちの1つに異常が生じた場合でも、残余の発電ユニット40からの電力供給によって移動体1の推進を継続することができる。また発進時に比べて、定速走行時においては、抵抗力に抗する推進力を与える程度でよいために、発進時に比べて、4つの発電ユニット40全体として発電による供給電力が小さく設定されてもよい。この場合、発進時における発電電力に対する各発電ユニット40の発電電力の低下幅を同じにするのではなく、発電動作される発電ユニット40の数を制御してもよい。この場合、単位燃料消費に対して発電効率のよい動作領域で発電ユニット40をそれぞれ発電させて、全体として適切は発電力を得る。これによって発電電力の低下幅を同じにしてすべての発電ユニット40を発電させる場合に比べて、発電効率を高めることができる。
 (ユニットごとに発電指示内容を変える例1)
 発電ユニット40の状態または保守情報に基づき発電ユニット40ごとに発電指示の内容を変える例について、図6を参照して説明する。図6は、ユニット識別情報と、当該ユニット識別情報に対応する温度情報および保守情報とを示す表である。例えば、温度情報は、発電ユニット40内のセンサ59により検出された温度を示す情報である。温度は、内燃機関41などの潤滑油、内燃機関41などを冷却するための冷却水、発電機43、または、インバータ44の温度であり得る。
 統合ECU62は、各発電ユニット40から温度情報を状態情報の1つとして受信する。すなわち、電力ECU47は、発電ユニット40の状態を示す状態情報(温度情報を含む)を、発電ユニット40を識別するユニット識別情報(ユニットID)に紐づけて、通信インタフェース46を介して統合ECU62に送信する。統合ECU62は、発電ユニット40の状態を示す状態情報を、ユニット識別情報に紐づけてメモリに記憶する。
 例えば、統合ECU62は、4つの発電ユニット40であるユニット#1、#2、#3、#4からの状態情報に基づき、4つの発電ユニット40の各々に要求する電力量を決定する。なお、基本的には、4つの発電ユニット40の各々に要求する電力量の合計は、車両コントローラ7から受信した要求電力値に一致する。
 例えば、統合ECU62は、各発電ユニット40に対応する温度が、所定の閾値を超えているか否かを判定する。例えばユニット#4に対応する温度が、所定の閾値を超えていると判定した場合には、統合ECU62は、ユニット#4が含む要素(例えば内燃機関41など)へのダメージ(つまり温度負荷)を抑制するために、そのユニット#4へ停止指示を送る、あるいは、他の発電ユニット40であるユニット#1,#2,#3へ要求する発電量より低い発電量の発電指示をそのユニット#4へ送る。
 発進状態のほか、登坂走行状態、積載量が多い状態、牽引状態などの要求電力値が大きい状態を判断すると、統合ECU62は、発電稼働する発電ユニット40の数を増やしたり、1つあたりの発電力を増やしたりする。逆に慣性走行状態、下り坂走行状態などの要求電力値が小さい状態では、発電効率が高い稼動域で発電するよう一部の発電ユニット40に指示しつつ、残余の発電ユニット40に対して発電停止や出力抑制を指示してもよい。
 上述したように統合ECU62は、要求電力に対して、発電可能な電力が大きい場合には、異常が生じていたり、保守点検の機会が近く異常が生じる可能性の高かったりする発電ユニット40の出力を下げるように制御してもよい。また統合ECU62は、運転機会の偏りを防ぐべく、発電停止したり出力抑制したりする発電ユニット40を、所定期間ごとに順次切り替えるように、制御してもよい。そのほか識別番号と異常状態の情報を蓄積することで、異常状態の発生の傾向などを把握しやすくすることができ、保守や交換頻度の最適化を図りやすい。
 また、図6に示すように、統合ECU62は、発電ユニット40の保守情報を、ユニット識別情報に紐づけて記憶する。例えば、保守情報は、統合ECU62が各発電ユニット40から受信した情報であってもよいし、統合ECU62が鉄道車両1の外部から受信した情報であってもよい。図6では、保守情報の一例として、発電ユニット40の次回のメンテナンス日を示す情報が示される。本実施形態では、発電ユニット40の次回のメンテナンス日は、別の保守済みの発電ユニット40との交換時期である。
 例えば、統合ECU62は、次回メンテナンス日が近い発電ユニット40については、過負荷を許容するように、その発電ユニット40の発電指示を決定してもよい。例えば、統合ECU62は、次回メンテナンス日が近い発電ユニット40については、温度が所定の閾値を超えたときでも発電を継続するように、その発電ユニット40の発電指示を決定してもよい。
 (ユニットごとに発電指示内容を変える例2)
 発電効率の観点から発電ユニット40ごとに発電指示の内容を変える例について、図7を参照して説明する。図7は、内燃機関41の効率マップの一例を示す。図7の効率マップは、燃料消費率マップであり、横軸をエンジン回転数、縦軸をエンジントルクとし、内燃機関41の燃料消費率を等高線で示したものである。なお、図7中の太線で示すグラフは、内燃機関41の最大トルクを示すエンジン性能曲線である。
 図7における高効率点から遠ざかるしたがって、効率が悪くなる。このため、燃料消費率の観点からは、発電ユニット40の内燃機関41をできるだけ高効率点に近い領域で運転させることが望ましい。
 例えば、4つの発電ユニット40であるユニット#1,#2,#3,#4に対し、それぞれ、車両コントローラ7からの要求電力値を4等分した電力を発電するよう指示した場合、各発電ユニット40の内燃機関41の動作点が、図7に三角で示す点であったと仮定する。この動作点は、高効率点から比較的離れているため、非効率であることが分かる。この場合、4つのユニット#1,#2,#3,#4のうちの2つのユニットのみに、車両コントローラ7からの要求電力値を2等分にした電力を発電するよう指示し、残り2つのユニットは停止させると、エンジン動作点は、高効率点に近い図7にxで示す点となり、燃費が良くなる。
 このように、統合ECU62は、そのメモリに記憶されたエンジンの効率マップから、各発電ユニット40に求める発電量を決定してもよい。また、図7は、エンジンの効率マップであったが、統合ECU62は、発電機43のモータ効率マップから、各発電ユニット40に求める発電量を決定してもよい。また、例えば、統合ECU62は、そのメモリに、発電ユニット40の内燃機関41の効率マップおよび発電機43の効率マップの少なくとも1つを記憶していてもよい。そして、統合ECU62は、少なくとも1つの効率マップと、車両コントローラ7から受信した要求電力情報に基づき、いくつの発電ユニット40に発電指示を送るかを決定してもよい。言い換えれば、統合ECU62は、車両コントローラ7から受信した要求電力情報に基づき、停止させる発電ユニット40を決定してもよい。統合ECU62は、各発電ユニット40から受信した状態情報に基づき、どの発電ユニット40の発電を停止させるかを決定してもよい。
 (保守情報の報知)
 また、統合装置60は、各発電ユニット40に発電指示を送るだけでなく、各発電ユニット40の保守に関連する保守情報を集約し、出力する。本実施形態では、統合装置60は、定期的または不定期に、各発電ユニット40から状態情報を受信し、受信した各発電ユニット40の状態情報に基づいて、各発電ユニット40の保守に関連する保守情報を表示器63に表示させる。具体的には、統合ECU62は、各発電ユニット40から受信した状態情報に基づき、各発電ユニット40の保守の必要性を判定する。統合ECU62は、判定された保守の必要性を保守情報として表示器63に表示させる。移動体1を管理する事業者は、表示器63を見て、例えば保守が必要な発電ユニット40や保守する時期などを把握できる。
 また、本実施形態では、統合ECU62は、各発電ユニット40の保守の必要性の判定結果を、発電ユニット40に送る。電力ECU47は、受信した判定結果を、保守情報として報知器49に報知させる。例えば報知器49が発光器である場合、保守が必要な発電ユニット40の電力ECU47は、保守が必要であることを視認可能に発光させる。これにより、複数の発電ユニット40のうち、保守が必要な発電ユニット40を保守作業者が見つけやすい。
 (保守方法)
 次に、移動体である鉄道車両1の保守方法について、図8を参照して説明する。鉄道車両1の保守は、例えば定期的に行われたり、鉄道車両1が含む要素に異常が生じたりした場合に実施される。図8には、鉄道車両1の保守方法の流れが示される。以下、発電ユニット40および燃料供給ユニット20を、単にユニット20,40と称することとする。
 鉄道車両1は、複数の保守対象を含み、複数の保守対象には、ユニット20,40が含まれる。本実施形態では、鉄道車両1の保守対象のうち、ユニット20,40と、それら以外の保守対象とが別々に保守される。
 具体的には、鉄道車両1の保守作業に入る前に、鉄道車両1は、保守作業場所に移送され、その後、全てのユニット20,40が車体2から取り外される。保守のために車体2から取り外される全てのユニット20,40は、未保守ユニットともの称し得る。全てのユニット20,40を取り外した後、ユニット20,40以外の保守対象について保守作業が開始される。
 車体2から取り外されたユニット20,40についても、保守作業が開始される。以下、車体2から取り外されたユニット20,40を、旧ユニット20,40と称する。旧ユニット20,40は、保守作業が完了した後、例えば保管庫に保管される。保管庫には、複数の保守済みユニット20,40が保管されている。以下、保守済みユニットを、新ユニットと称する。保管庫に保管される新ユニット20,40も、旧ユニット20,40と同じ構造を有する。すなわち、保管庫には、代替可能なユニット20,40が複数保管されている。
 鉄道車両1から取り外した旧ユニット20,40の保守が完了したか否かに関わらず、鉄道車両1には、旧ユニット20,40とは別の保守済みのユニット20,40が搭載される。すなわち、旧ユニット20,40の保守作業が完了する前に、保管庫から鉄道車両1の保守作業場所に新ユニット20,40が移送され、その後、鉄道車両1に新ユニット20,40が搭載される。
 従って、鉄道車両1における旧ユニット20,40以外の部分の保守作業と、鉄道車両1への新ユニット20,40の取り付け作業とが完了した場合、旧ユニット20,40の保守が完了したか否かに関わらず、鉄道車両1の保守作業を完了して、鉄道車両1活動を再開することができる。つまり、旧ユニット20,40の保守作業の完了を待たずして、鉄道車両1の活動を再開できる。なお、旧ユニット20,40は、保守作業が完了すると、保守済みユニットとして保管庫に保管される。
 (作用効果)
 本実施形態では、移動体1の駆動システムとして、複数の発電ユニット40を用いて電力発生源を分散させる。これによって単一の動力源を用いる場合に比べて、動力供給が断たれることが防がれて継続動作をさせやすい。また統合装置60は、各発電ユニット40の状況をそれぞれ把握する。これによって、複数の発電ユニット40が用いられたとしても、全体として出力される電力や各ユニットの状態が適切となるように管理しやすくすることができる。
 また、本実施形態では、統合装置60は、受信した各発電ユニット40の状態情報に基づいて、各発電ユニット40の動作指令を各発電ユニット40に与えるため、各発電ユニット40の動作をそれぞれ最適化しやすい。
 また、本実施形態では、統合装置60は、受信した各発電ユニット40の状態情報に基づいて、各発電ユニット40の保守に関連する保守情報を表示する表示器63を含むため、各発電ユニット40の保守を最適化しやすい。
 また、本実施形態では、発電ユニット40は、発電ユニット40の保守に関連する保守情報を報知する報知器49を含む。このため、同じ形状の発電ユニット40が複数配置されていたとしても、保守が必要な発電ユニット40を把握しやすい。
 また、本実施形態では、統合装置60が、定期的または不定期に、各発電ユニット40から状態情報を受信し、各発電ユニット40から受信した状態情報に基づき、各発電ユニット40の保守の必要性を判定する。このため、発電ユニット40が異常(出力停止)となる前に交換を促すことで、移動体1の活動を継続しやすい。
 また、本実施形態では、複数の発電ユニット40は、互いに同じ構造を有するため、発電ユニット40の交換を容易に行える。また、発電ユニット40の保守部品を共通化しやすい。
 また、本実施形態では、統合装置60は、複数の発電ユニット40から電力が供給される電力消費源に消費される電力を示す電力消費情報を受信し、状態情報および電力消費情報に基づいて、各発電ユニット40に動作指令を送る。このため、電力消費源の電力消費状況に応じて、各発電ユニット40の動作をそれぞれ最適化しやすい。
 また、本実施形態では、複数の発電ユニット40の状態を管理する統合装置60が、複数の発電ユニット40の状態情報に基づき複数の発電ユニット40の制御も行うため、複数の発電ユニット40の状態に応じた制御を実現できる。
 また、本実施形態では、内燃機関41は、水素ガスを燃料として使用可能に構成されるため、排気ガスに含まれる物質の浄化装置を小さくでき、発電ユニット40の複数配置した際の浄化装置に費やすコストを低減できる。また、仮に発電ユニット40に浄化装置を設けたと場合でも、浄化装置の劣化による交換頻度を低減できる。
 また、本実施形態では、状態情報は、経年損傷に関する情報を含むため、状態情報から、発電ユニット40の構成要素の異常や寿命などを判別できる。
 <第2実施形態>
 次に、第2実施形態に係るユニット管理システムS2について、図9乃至11を参照して説明する。なお、第2実施形態について、第1実施形態の構成要素と同様の構成要素には同じ符号を付し説明を省略する。
 図9は、第2実施形態に係るユニット管理システムS2を含む保守管理システム100の概略構成図である。本実施形態におけるユニット管理システムS2は、移動体1に搭載された発電ユニット40、燃料供給ユニット20および統合装置60に加え、更に移動体1の外部に配置された保守支援装置70を備える。本実施形態において、統合装置60および保守支援装置70が、管理支援装置の一例である。
 保守管理システム100は、複数の移動体1に対して搭載された発電ユニット40および燃料供給ユニット20を保守管理するシステムである。この保守管理システム100は、複数の移動体1に搭載された発電ユニット40および燃料供給ユニット20の保守管理を、移動体1を活動させる事業者やユーザに代わって、保守管理業者が行うことを可能にする。例えば各移動体1は、様々な事業者や個人ユーザにより所有される。例えば、移動体1の種類は、第1実施形態で説明された鉄道車両でなくてもよく、例えばバス、船、ユーティリティビークルなど、別の種類の移動体であってもよい。
 保守支援装置70は、例えば保守管理業者により使用される。保守支援装置70は、通信インタフェース71、保守支援コントローラ72、表示器73を含む。
 通信インタフェース71は、保守支援コントローラ72を、インターネットまたはLANなどの通信ネットワークを介して統合装置60に通信可能に接続する。本実施形態では、統合装置60と保守支援装置70とが、中継装置80を介して互いに通信する。具体的には、統合装置60は、中継装置80と無線により通信するための無線通信機64を備える。中継装置80は、インターネットに接続されており、インターネットを介して保守支援装置70と通信可能である。ただし、通信インタフェース71は、保守支援装置70が統合装置60と直接無線通信することを可能にする無線通信機でもよい。
 保守支援コントローラ72は、プロセッサ、システムメモリおよびストレージメモリを備える。プロセッサは、例えば、中央演算処理装置(CPU)を含む。システムメモリは、例えば、RAMである。ストレージメモリは、ROMを含み得る。ストレージメモリは、ハードディスク、フラッシュメモリ又はそれらの組合せを含み得る。ストレージメモリは、プログラムを記憶している。
 表示器73は、保守支援コントローラ72と電気的に接続されている。表示器73は、例えば、各発電ユニット40の保守情報を出力する。
 図10は、図9のユニット管理システムS2における情報の流れを示すブロック図である。本実施形態では、保守支援装置70が、統合装置60を通じて、定期的または不定期に、各発電ユニット40から状態情報を受信する。
 保守支援コントローラ72は、各発電ユニット40から受信した状態情報に基づき、各発電ユニット40の保守の必要性を判定する。保守支援コントローラ72は、判定された保守の必要性を保守情報として表示器73に表示させる。また、保守支援装置70の外部装置に保守情報を送信する通信インタフェースを備えてもよい。外部装置は、例えば移動体1の所有者または管理者の端末101(ユーザ端末と称する)である。図10に示すように、保守支援コントローラ72は、判定された保守の必要性を保守情報としてユーザ端末101に送ってもよい。表示器63や通信インタフェースは、出力インタフェースの例である。
 図11は、保守支援コントローラ72により記憶されるデータの構成例を示す図である。保守支援コントローラ72は、受信した状態情報を、ユニット識別情報、ユーザ識別情報、移動体識別情報に紐づけて記憶する。
 ユーザ識別情報は、ユニット識別情報に対応する発電ユニット40を所有または使用するユーザを識別するための情報である。移動体識別情報は、ユニット識別情報に対応する発電ユニット40が搭載されている移動体を識別するための情報である。ユニット識別情報に、ユーザ識別情報または移動体識別情報が紐づけられているため、発電ユニット40に保守が必要になった場合に、保守管理業者が、発電ユニット40の使用者に連絡を取りやすい。例えば、同じ移動体に搭載されている複数の発電ユニット40の交換は、同じタイミングで行った方が移動体の活動停止期間を短くできる。発電ユニット40が搭載されるどの移動体に応じて、発電ユニット40の交換時期を決定しやすくなる。
 また、図11の例では、状態情報として、「エンジン運転履歴」、「発電履歴」、「要求電力」、「油温」、「水温」が例示されている。「エンジン運転履歴」は、例えば、内燃機関41稼動中におけるエンジン回転数(つまり回転速度)、スロットル開度、燃料供給装置41dによる燃料供給量の時間的推移に関するデータを含む。また、「発電履歴」は、例えば発電ユニット40の出力電力の時間的推移に関するデータである。「要求電力」は、例えば発電ユニット40が統合ECU62から要求された電力量に関するデータである。「油温」は、内燃機関41などを潤滑する潤滑油の温度であり、「水温」は、冷却流路57を流れる冷却水の温度である。
 また、図11の例では、保守情報として、「次回交換日」、「部品寿命」、「累積ダメージ量」、「異常の有無」が例示されている。「次回交換日」は、発電ユニット40の交換予定日に関するデータである。「部品寿命」は、発電ユニット40が含む部品などの構成要素の寿命や交換時期に関するデータである。「次回交換日」および「部品寿命」は、例えば保守管理業者により入力される。
 「累積ダメージ量」は、発電ユニット40自体または発電ユニット40が含む構成要素に蓄積されたダメージ量に関するデータである。「異常の有無」は、発電ユニット40自体または発電ユニット40が含む構成要素に異常が発生しているか否か、または、異常を発生する可能性があるか否かを示すデータである。「累積ダメージ量」および「異常の有無」は、保守支援コントローラ72が、各発電ユニット40から受信した状態情報に基づき生成するデータである。
 具体的には、保守支援コントローラ72のメモリには、判定プログラムが記憶されている。保守支援コントローラ72のプロセッサが、判定プログラムを読み込むことにより、発電ユニット40の保守の必要性を判定する。例えば、保守支援コントローラ72は、
各発電ユニット40から受信した状態情報に基づき、「累積ダメージ量」および「異常の有無」を保守情報として生成する。
 例えば、保守支援コントローラ72は、「エンジン運転履歴」、「発電履歴」、「要求電力」から、要求通りの電力が発電ユニット40から出力されているか否かを判定し、要求通りに電力が出力されていないと判定した場合には、その発電ユニット40に異常が生じている可能性があると判定する。あるいは、例えば保守支援コントローラ72は、エンジン回転数やスロットル開度などのエンジン制御パラメータに対する発電量が、過去の値(例えば移動体1に搭載した時期の発電量)と比べて低いか否かを判定し、低いと判定した場合には、その発電ユニット40に異常が生じている可能性があると判定する。
 保守支援コントローラ72は、生成した保守情報を、統合ECU62および各発電ユニット40に送ってもよい。例えば統合装置60は、定期的または不定期に、保守支援装置70からから保守情報を受信し、保守情報を表示器63に表示させてもよい。また、各電力ECU47は、統合装置60を通じて、保守支援コントローラ72が生成した保守情報を受信してもよい。各電力ECU47は、受信した保守情報に基づき、報知器49に報知させてもよい。
 このようにもモジュール化された発電ユニット40の使用状況を把握することができるので、複数の発電ユニット40が異なる場所に搭載されたとしても、複数の発電ユニット40全体として管理することができる。たとえば異なる移動体や施設で、発電ユニット40の配送・集約・保守管理を共通化することができる。これによって、それぞれの作業を別々に行う場合に比べて、効率的に作業を行うことができる。また移動体や施設に拘らず、保守が必要な発電ユニット40を集約して一括管理することで、メンテナンス部品の集約化や作業場所の確保を図ることができ、作業効率を高めることができる。たとえば、保守が必要な発電ユニット40の集荷量を高めたり、一度に保守すべき発電ユニット40の数を増やしたりしやすい。
 図9のように複数の移動体を集約して管理することで、交換要件を満たした発電ユニット40の情報を入手することで、他の移動体において同様の条件(稼動期間、稼働状況など)に適合する発電ユニット40を抽出して、交換要件に達しそうなことを見越して、事前に交換を進めやすい。このために統合ECU62は、交換予測しやすいように、発電ユニット40の情報(内燃機関の識別情報、発電機の識別情報、トータル動作期間、保守履歴(保守回数、内容))と、移動体での稼働情報(保守後の動作期間、移動体の種類、移動場所)との情報を合わせて蓄積してもよい。
 <その他の実施形態>
 以上、実施形態について説明したが、上記構成は本発明の趣旨の範囲内で変更、削除および追加することができる。
 例えば移動体1は、複数の鉄道車両が編成された車両編成であってもよい。車両編成が含む車両のうち、一部の車両にのみ燃料供給ユニット20および発電ユニット40が搭載されてもよい。各車両に統合装置60が搭載されてもよく、この場合、統合装置60は、同じ車両に搭載された燃料供給ユニット20および発電ユニット40の情報のみ受信し、他の車両に搭載された燃料供給ユニット20および発電ユニット40の情報は受信しなくてもよい。また、車両編成に対し1つの統合装置60が搭載されてもよく、この場合、統合装置60は、車両編成が含む複数の車両に搭載された全ての燃料供給ユニット20および発電ユニット40の情報を受信してもよい。
 また、移動体1は、軌道車両に限定されず、駆動輪を備える別の種類の陸上移動体であってもよい。例えば、陸上移動体としては、例えば、軌道車のほか、LTV、トラック、バスなどの四輪以上の車輪を備える車両でもよいし、ユーティリティビークル、モータサイクル、PTVなどでもよい。また、移動体は、推進装置を備える水上移動体または水中移動体でもよいし、空中を飛行する空中移動体などであってもよい。水上移動体としては、船、タンカー、パーソナルウォータークラフト等が例示される。水中移動体としては、潜水機などが例示される。空中移動体としては、航空機、ヘリコプター、ドローンなどが例示される。回転体は、プロペラであってもよい。
 発電ユニット40が搭載される対象物は、移動体でなくてもよい。発電ユニット40が搭載される対象物は、例えば電力を必要とする建物や施設でもよい。
 燃料供給ユニット20の構成は、上記実施形態で説明されたものに限定されない。例えば、燃料供給ユニット20は、要素24,25,26,31,32,33,34,35の一部または全部を備えなくてもよい。例えば燃料供給ユニットが備える燃料タンクの数は2つでなくてもよく、1つでもよいし、3つ以上でもよい。
 また、燃料供給ユニット20は、燃料タンク21,22を備えなくてもよい。例えば、燃料タンク21,22は、移動体本体側の部材に対して、燃料供給ユニット20の支持構造体27を介さずに固定されていてもよい。燃料供給ユニット20は、支持構造体27と、当該支持構造体27に支持された供給配管23などを備えていればよい。燃料供給ユニットが燃料タンクを備えていない場合、燃料ユニットの交換作業によって燃料タンクの交換を行うことができないものの、燃料を供給する供給配管のメンテナンス性を向上させることができる。例えば、移動体本体から切り離した状態で、燃料供給ユニットの供給配管に対してリークチェックを行うことができ、メンテンナンス作業を行いやすくなる。
 発電ユニット40の構成は、上記実施形態で説明されたものに限定されない。例えば、発電ユニット40は、要素44,45,46,47,49,51,52,53,54,55,56,57,58の一部または全部を備えなくてもよい。例えば上記実施形態では、発電ユニット40が含む冷媒ポンプ56を備えたが、冷媒ポンプ56は、発電ユニット40の外部において車体2に配置されてもよい。発電ユニットが蓄電体を備えてもよい。内燃機関は、水素ガス以外を燃料としてもよい。
 発電ユニットと燃料供給ユニットとが1つのユニットを構成してもよい。すなわち、発電ユニットと燃料供給ユニットの一方のユニットが、他方のユニットの全ての要素を含んでもよい。
 移動体が備える発電ユニットおよび燃料供給ユニットの各ユニットの数や配置なども、上記実施形態で説明されたものに限定されない。移動体は、燃料供給ユニットを備えなくてもよい。例えば移動体は、発電ユニットに燃料を供給可能な燃料タンクを備えてもよい。
 支持構造体27,48の形状や構造は、上記実施形態で説明されたものに限定されない。燃料供給ユニット20の支持構造体27は、箱状でなくてもよい。例えば支持構造体27は、発電ユニット40の支持構造体48のように、複数のフレームを含む構成であってもよい。発電ユニット40の支持構造体48は、図3に示すような複数のフレームを含む構成でなくてもよい。例えば支持構造体48は、燃料供給ユニット20の支持構造体27のように箱状でもよい。
 移動体は、自動で移動するものであってもよい。例えば、上記実施形態では、車両コントローラ7は、操作器6から受信した要求指令に基づき、鉄道車両1に搭載された電気モータ11を制御するための出力指令を生成したが、車両コントローラ7は、メモリに記憶された自動運転プログラムを実行することにより出力指令を生成してもよい。
 上記の第2実施形態では、発電ユニット40の通信インタフェース46は、統合装置60を介さず、保守支援装置70と通信してもよい。すなわち、電力ECU47は、発電ユニット40の状態を示す状態情報を、発電ユニット40を識別するユニット識別情報に紐づけて、通信インタフェース46を介して保守支援装置70に送信してもよい。ユニット管理システムS2は、統合装置60を含まなくてもよい。
 上記の第1実施形態の管理支援装置は、統合装置60だけでなく、保守支援装置を備えてもよい。上記の第2実施形態の管理支援装置は、統合装置60および保守支援装置70のいずれか一方のみを備える構成であってもよい。
 上記の第2実施形態では、保守支援コントローラ72が、状態情報を受信することが説明されたが、保守支援コントローラ72は、状態情報を受信しなくてもよい。すなわち、保守支援コントローラ72は、状態情報ではなく、統合ECU62が生成した保守情報のみを受信してもよい。これにより、保守支援装置70と移動体1との間のデータ通信料を削減できる。この場合、保守支援コントローラ72が、状態情報に基づき、各発電ユニット40の保守情報を生成する代わりに、統合ECU62または各発電ユニット40の電力ECU47が、状態情報に基づき、保守情報の一部または全部を生成してもよい。状態情報および保守情報は、図11において例示した情報に限定されず、図11に示した情報の一部であってもよいし、図11に示した情報以外の情報を含んでもよい。
 管理支援装置は、保守情報以外の管理支援情報も出力してもよい。発電ユニット40の管理のほかに、燃料供給ユニット20の保守(燃料供給ユニット20の交換や燃料タンク内の燃料の残量、フィルタなどの部品交換に関する情報を管理支援情報として出力してもよい。
 電力消費源Yの例として、移動体の駆動源などが示されたが、電力消費源Yは、移動体に搭載されたものでなくてもよい。
 移動体に搭載される複数の発電ユニットは、互いに同じ構成であってもよいし、互いに異なる構成であってもよい。例えば、発電ユニットが含む内燃機関や発電機などの要素の種類や性能、大きさなどが、発電ユニットごとに異なってもよい。移動体に搭載される複数の発電ユニットが、互いに異なる構成である場合、統合装置60は、各発電ユニット40の違いに基づいて、各発電ユニット40の発電動作を制御してもよい。統合装置60が制御信号を送る発電ユニット40のうち、たとえば、始動までに時間を費やす発電ユニット40と、始動までの時間が短い発電ユニット40が混在する場合には、発電出力の調整については、始動までの時間が短い発電ユニット40を用いて調整されてもよい。減価償却を適正に実施するために、新しい型と古い型とがある場合、古い型の交換を促すような出力調整が図られてもよい。
 本明細書で開示する要素の機能は、開示された機能を実行するよう構成またはプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、または、それらの任意の組み合わせ、を含む回路または処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路または回路と見なされる。本開示において、回路、ユニット、または手段は、列挙された機能を実行するハードウェアであるか、または、列挙された機能を実行するようにプログラムされたハードウェアである。ハードウェアは、本明細書に開示されているハードウェアであってもよいし、あるいは、列挙された機能を実行するようにプログラムまたは構成されているその他の既知のハードウェアであってもよい。ハードウェアが回路の一種と考えられるプロセッサである場合、回路、手段、またはユニットはハードウェアとソフトウェアの組み合わせであり、ソフトウェアはハードウェアまたはプロセッサの構成に使用される。
 [開示態様]
 以下の態様のそれぞれは、好ましい実施形態の開示である。
 [態様1]
 電力を発生させる複数の発電ユニットと、前記複数の発電ユニットからの情報を受信する管理支援装置と、を備えるユニット管理システムであって、
 前記発電ユニットは、
  内燃機関と、
  前記内燃機関の回転動力により電力を発生させる発電機と、
  前記管理支援装置と通信可能な通信インタフェースと、
  前記発電ユニットの状態を示す状態情報を、前記発電ユニットを識別するユニット識別情報に紐づけて、前記通信インタフェースを介して前記管理支援装置に送信するユニットコントローラと、を含む、ユニット管理システム。
 前記構成によれば、システムとして、複数の発電ユニットを用いて電力発生源を分散させる。これによって単一の動力源を用いる場合に比べて、動力供給が断たれることが防がれて継続動作をさせやすい。また管理支援装置は、各発電ユニットの状況をそれぞれ把握する。これによって、複数の発電ユニットが用いられたとしても、全体として出力される電力や各ユニットの状態が適切となるように管理しやすくすることができる。
 [態様2]
 前記管理支援装置は、受信した各前記発電ユニットの状態情報に基づいて、各前記発電ユニットの動作指令を各前記発電ユニットに与える、態様1に記載のユニット管理システム。
 前記構成によれば、各発電ユニットの状況をそれぞれ得ることで、各発電ユニットの動作をそれぞれ最適化しやすい。
 [態様3]
 前記管理支援装置は、受信した各前記発電ユニットの状態情報に基づいて、各前記発電ユニットの保守に関連する保守情報を表示する表示器を含む、態様1または2に記載のユニット管理システム。
 前記構成によれば、各発電ユニットの保守を最適化しやすい。
 [態様4]
 前記発電ユニットは、前記発電ユニットの保守に関連する保守情報を報知する報知器を含む、態様1乃至3のいずれかに記載のユニット管理システム。
 前記構成によれば、同じ形状の発電ユニットが複数配置されていたとしても、保守が必要な発電ユニットを把握しやすい。
 [態様5]
 前記管理支援装置は、定期的または不定期に、各前記発電ユニットから前記状態情報を受信し、
 前記管理支援装置は、
  各前記発電ユニットから受信した前記状態情報に基づき、各前記発電ユニットの保守の必要性を判定する処理回路と、
  判定された保守の必要性を保守情報として出力する出力インタフェースと、を含む、態様1乃至4のいずれかにに記載のユニット管理システム。
 前記構成によれば、発電ユニットが異常(出力停止)となる前に交換を促すことで、電力供給を継続しやすい。
 [態様6]
 前記複数の発電ユニットは、互いに同じ構造を有する、態様1乃至5のいずれかに記載のユニット管理システム。
 前記構成によれば、発電ユニットの交換を容易に行える。また、保守部品を共通化しやすい。
 [態様7]
 前記通信インタフェースは、前記管理支援装置に情報を無線で送信するための無線通信機を含む、態様1乃至6のいずれかに記載のユニット管理システム。
 前記構成によれば、有線接続ではないので、交換や移動が容易である。
 [態様8]
 前記管理支援装置は、複数の前記発電ユニットから電力が供給される電力消費源に消費される電力を示す電力消費情報を受信し、前記状態情報および前記電力消費情報に基づいて、各前記発電ユニットに動作指令を送る、態様1乃至7のいずれかに記載のユニット管理システム。
 前記構成によれば、電力消費源の電力消費状況に応じて、各発電ユニットの動作をそれぞれ最適化しやすい。
 [態様9]
 前記複数の発電ユニットは、移動体に搭載されており、
 前記管理支援装置は、前記移動体の走行指令に応じて、各前記発電ユニットに与える前記要求発電量を決定し、
 各前記発電ユニットの前記ユニットコントローラは、前記管理支援装置により決定された前記要求発電量に基づき、前記内燃機関を制御する、態様1乃至8のいずれかに記載のユニット管理システム。
 前記構成によれば、複数の発電ユニットの状態を管理する管理支援装置が、複数の発電ユニットの状態情報に基づき複数の発電ユニットの制御も行うため、複数の発電ユニットの状態に応じた制御を実現できる。
 [態様10]
 前記内燃機関は、水素ガスを燃料として使用可能に構成される、態様1乃至9のいずれかに記載のユニット管理システム。
 前記構成によれば、排気ガスに含まれる物質の浄化装置を小さくでき、発電ユニットの複数配置した際の浄化装置に費やすコストを低減できる。また、仮に発電ユニットに浄化装置を設けたと場合でも、浄化装置の劣化による交換頻度を低減できる。
 [態様11]
 前記状態情報は、経年損傷に関する情報を含む、態様1乃至10のいずれかに記載のユニット管理システム。
 前記構成によれば、状態情報から、発電ユニットの構成要素の異常や寿命などを判別できる。
 [態様12]
 前記管理支援装置は、前記ユニット識別情報を、前記ユニット識別情報に対応する前記発電ユニットを所有または使用するユーザを識別するユーザ識別情報に紐づけて記憶するメモリを含む、態様1乃至11のいずれかに記載のユニット管理システム。
 前記構成によれば、管理支援装置または当該管理支援装置の管理者から、ユニット交換が必要な発電ユニットを所有するユーザに、ユニット交換が必要であることを通知しやすい。
 [態様13]
  内燃機関と、
  前記内燃機関の回転動力により電力を発生させる発電機と、
  通信インタフェースと、
  前記発電ユニットの状態を示す状態情報を、前記発電ユニットを識別するユニット識別情報に紐づけて、前記通信インタフェースを介して外部装置に送信するユニットコントローラと、を含む、発電ユニット。
 [態様14]
 電力を発生させる複数の発電ユニットからの情報を受信する管理支援装置であって、
 各前記発電ユニットから、各前記発電ユニットを識別するユニット識別情報、および、前記ユニット識別情報に紐づけられた、各前記発電ユニットの状態を示す状態情報を受信する通信インタフェースと、
 受信した前記状態情報を、前記ユニット識別情報に紐づけて記憶するメモリと、
 前記メモリに記憶された前記状態情報に基づいて、前記状態情報に紐づいた前記ユニット識別情報に対応する前記発電ユニットを管理するための管理支援情報を生成する処理回路と、を備える、管理支援装置。
 [態様15]
 電力を発生させる複数の発電ユニットを管理するためのユニット管理方法であって、
  各前記発電ユニットから、各前記発電ユニットの状態を示す状態情報を取得し、
  取得した前記状態情報に基づいて、前記発電ユニットを管理するための管理支援情報を出力する、ユニット管理方法。

Claims (15)

  1.  電力を発生させる複数の発電ユニットと、前記複数の発電ユニットからの情報を受信する管理支援装置と、を備えるユニット管理システムであって、
     前記発電ユニットは、
      内燃機関と、
      前記内燃機関の回転動力により電力を発生させる発電機と、
      前記管理支援装置と通信可能な通信インタフェースと、
      前記発電ユニットの状態を示す状態情報を、前記発電ユニットを識別するユニット識別情報に紐づけて、前記通信インタフェースを介して前記管理支援装置に送信するユニットコントローラと、を含む、ユニット管理システム。
  2.  前記管理支援装置は、受信した各前記発電ユニットの状態情報に基づいて、各前記発電ユニットの動作指令を各前記発電ユニットに与える、請求項1に記載のユニット管理システム。
  3.  前記管理支援装置は、受信した各前記発電ユニットの状態情報に基づいて、各前記発電ユニットの保守に関連する保守情報を表示する表示器を含む、請求項1または2に記載のユニット管理システム。
  4.  前記発電ユニットは、前記発電ユニットの保守に関連する保守情報を報知する報知器を含む、請求項1または2に記載のユニット管理システム。
  5.  前記管理支援装置は、定期的または不定期に、各前記発電ユニットから前記状態情報を受信し、
     前記管理支援装置は、
      各前記発電ユニットから受信した前記状態情報に基づき、各前記発電ユニットの保守の必要性を判定する処理回路と、
      判定された保守の必要性を保守情報として出力する出力インタフェースと、を含む、請求項1または2に記載のユニット管理システム。
  6.  前記複数の発電ユニットは、互いに同じ構造を有する、請求項1または2に記載のユニット管理システム。
  7.  前記通信インタフェースは、前記管理支援装置に情報を無線で送信するための無線通信機を含む、請求項1または2に記載のユニット管理システム。
  8.  前記管理支援装置は、複数の前記発電ユニットから電力が供給される電力消費源に消費される電力を示す電力消費情報を受信し、前記状態情報および前記電力消費情報に基づいて、各前記発電ユニットに動作指令を送る、請求項1または2に記載のユニット管理システム。
  9.  前記複数の発電ユニットは、移動体に搭載されており、
     前記管理支援装置は、前記移動体の走行指令に応じて、各前記発電ユニットに与える前記要求発電量を決定し、
     各前記発電ユニットの前記ユニットコントローラは、前記管理支援装置により決定された前記要求発電量に基づき、前記内燃機関を制御する、請求項1または2に記載のユニット管理システム。
  10.  前記内燃機関は、水素ガスを燃料として使用可能に構成される、請求項1または2に記載のユニット管理システム。
  11.  前記状態情報は、経年損傷に関する情報を含む、請求項1または2に記載のユニット管理システム。
  12.  前記管理支援装置は、前記ユニット識別情報を、前記ユニット識別情報に対応する前記発電ユニットを所有または使用するユーザを識別するユーザ識別情報に紐づけて記憶するメモリを含む、請求項1または2に記載のユニット管理システム。
  13.   内燃機関と、
      前記内燃機関の回転動力により電力を発生させる発電機と、
      通信インタフェースと、
      前記発電ユニットの状態を示す状態情報を、前記発電ユニットを識別するユニット識別情報に紐づけて、前記通信インタフェースを介して外部装置に送信するユニットコントローラと、を含む、発電ユニット。
  14.  電力を発生させる複数の発電ユニットからの情報を受信する管理支援装置であって、
     各前記発電ユニットから、各前記発電ユニットを識別するユニット識別情報、および、前記ユニット識別情報に紐づけられた、各前記発電ユニットの状態を示す状態情報を受信する通信インタフェースと、
     受信した前記状態情報を、前記ユニット識別情報に紐づけて記憶するメモリと、
     前記メモリに記憶された前記状態情報に基づいて、前記状態情報に紐づいた前記ユニット識別情報に対応する前記発電ユニットを管理するための管理支援情報を生成する処理回路と、を備える、管理支援装置。
  15.  電力を発生させる複数の発電ユニットを管理するためのユニット管理方法であって、
      各前記発電ユニットから、各前記発電ユニットの状態を示す状態情報を取得し、
      取得した前記状態情報に基づいて、前記発電ユニットを管理するための管理支援情報を出力する、ユニット管理方法。
PCT/JP2023/030446 2022-09-05 2023-08-24 ユニット管理システム、発電ユニット、管理支援装置およびユニット管理方法 WO2024053408A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-140955 2022-09-05
JP2022140955A JP2024036182A (ja) 2022-09-05 2022-09-05 ユニット管理システム、発電ユニット、管理支援装置およびユニット管理方法

Publications (1)

Publication Number Publication Date
WO2024053408A1 true WO2024053408A1 (ja) 2024-03-14

Family

ID=90191122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030446 WO2024053408A1 (ja) 2022-09-05 2023-08-24 ユニット管理システム、発電ユニット、管理支援装置およびユニット管理方法

Country Status (2)

Country Link
JP (1) JP2024036182A (ja)
WO (1) WO2024053408A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370643A (ja) * 2001-03-05 2002-12-24 Siemens Duewag Schienenfahrzeuge Gmbh 特に近距離交通及び地域的交通における乗客搬送のための駆動される鉄道車両
JP2009127423A (ja) * 2007-11-19 2009-06-11 Mazda Motor Corp 水素エンジンを用いる発電システムの制御装置
JP2015177666A (ja) * 2014-03-17 2015-10-05 レシップホールディングス株式会社 非常用発電装置の制御システム
JP2017002799A (ja) * 2015-06-10 2017-01-05 岩井商事株式会社 水素エンジンシステムの制御装置、水素エンジンシステムおよび発電システム
JP2018206302A (ja) * 2017-06-09 2018-12-27 株式会社ルネッサンス・エナジー・リサーチ エンジン式発電装置の部品交換を管理する管理システム
JP2021107180A (ja) * 2019-12-27 2021-07-29 スズキ株式会社 電動車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370643A (ja) * 2001-03-05 2002-12-24 Siemens Duewag Schienenfahrzeuge Gmbh 特に近距離交通及び地域的交通における乗客搬送のための駆動される鉄道車両
JP2009127423A (ja) * 2007-11-19 2009-06-11 Mazda Motor Corp 水素エンジンを用いる発電システムの制御装置
JP2015177666A (ja) * 2014-03-17 2015-10-05 レシップホールディングス株式会社 非常用発電装置の制御システム
JP2017002799A (ja) * 2015-06-10 2017-01-05 岩井商事株式会社 水素エンジンシステムの制御装置、水素エンジンシステムおよび発電システム
JP2018206302A (ja) * 2017-06-09 2018-12-27 株式会社ルネッサンス・エナジー・リサーチ エンジン式発電装置の部品交換を管理する管理システム
JP2021107180A (ja) * 2019-12-27 2021-07-29 スズキ株式会社 電動車両

Also Published As

Publication number Publication date
JP2024036182A (ja) 2024-03-15

Similar Documents

Publication Publication Date Title
US11225240B2 (en) Hybrid vehicle drive system and method for fuel reduction during idle
AU2005282975B2 (en) Multiple engine locomotive configuration
CA2671005C (en) Auxiliary service pack for a work vehicle
US8260494B2 (en) Method and apparatus to optimize energy efficiency of air compressor in vehicle air brake application
CN105228877B (zh) 用于控制机车编组的设备和方法
US20120143407A1 (en) Method and system for rail vehicle control
US8924052B2 (en) Lead locomotive control of power output by trailing locomotives
US20150283991A1 (en) Hybrid vehicle drive system and method for fuel reduction during idle
US20240075804A1 (en) Electric generator for electric vehicle
US20070000703A1 (en) Hybrid electric powertrain with anti-idle function
JP2018523447A (ja) 動力供給を増大させ、燃料要求を低減させるモーター車両の装備
CN107735938A (zh) 辅助动力产生方法和系统
US20080121444A1 (en) Straddle carrier having a low-emission and low-maintenance turbine drive
CN104837702A (zh) 混合动力电动车辆控制系统和方法
JP2011520675A (ja) 電気式トラクションシステムおよび方法
US8004219B2 (en) Operating method and system for hybrid vehicle
CN109227951B (zh) 一种电动搅拌车
US20200095926A1 (en) Method and systems for an auxiliary power unit
US9160213B2 (en) Method and system for motor thermal protection
US20160167677A1 (en) Railcar having natural gas engine
WO2024053408A1 (ja) ユニット管理システム、発電ユニット、管理支援装置およびユニット管理方法
US20160236693A1 (en) Electric power supply system for machine
WO2024053407A1 (ja) 移動体および保守方法
JP3649103B2 (ja) パラレルハイブリッド電気トラック
RU133791U1 (ru) Тепловоз

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862947

Country of ref document: EP

Kind code of ref document: A1