WO2024051859A1 - 一种水(液体)轮机抽排水(液体)驱动能量转化的多尺度重力储能设施与方法 - Google Patents

一种水(液体)轮机抽排水(液体)驱动能量转化的多尺度重力储能设施与方法 Download PDF

Info

Publication number
WO2024051859A1
WO2024051859A1 PCT/CN2023/123164 CN2023123164W WO2024051859A1 WO 2024051859 A1 WO2024051859 A1 WO 2024051859A1 CN 2023123164 W CN2023123164 W CN 2023123164W WO 2024051859 A1 WO2024051859 A1 WO 2024051859A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy
load
duty
reservoir
water
Prior art date
Application number
PCT/CN2023/123164
Other languages
English (en)
French (fr)
Inventor
陈兴茂
Original Assignee
陈兴茂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈兴茂 filed Critical 陈兴茂
Priority to CN202280056147.5A priority Critical patent/CN117916461A/zh
Publication of WO2024051859A1 publication Critical patent/WO2024051859A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to the field of multi-scale energy storage, specifically a hydraulic turbine (i.e., a reversible hydrogenerator or a hydrogenerator plus a turbine, abbreviated as "water turbine”, the same below) that pumps drainage driving energy between gravity potential energy and electrical energy.
  • a hydraulic turbine i.e., a reversible hydrogenerator or a hydrogenerator plus a turbine, abbreviated as "water turbine”, the same below
  • water turbine i.e., a reversible hydrogenerator or a hydrogenerator plus a turbine
  • Carbon peaking, carbon neutrality plays an important role in national and world sustainable development and environmental protection, climate change, the sustainability and well-being of all centuries, ensuring sustainable energy development, optimizing energy structure, energy conservation, optimizing power quality, reducing It is of great significance in terms of issues such as electric energy waste; energy storage is of great value in China and the world's "carbon peak and carbon neutrality”; the integration of "source, grid, load and storage” including energy storage is an important factor in achieving "carbon peak and carbon neutrality”.
  • An important pillar of the goal of "carbon neutrality” energy storage is used in wind power, solar power generation, power peak shaving and valley filling, improving power quality, improving reliability, improving grid characteristics, meeting the needs of renewable energy, etc. and improving "source-grid-load storage” It plays a decisive role in the economic feasibility or efficiency of the power system.
  • Energy storage devices/facilities are devices/facilities that store energy.
  • Energy storage devices/facilities usually include pumped hydro energy storage, flywheel energy storage, compressed air energy storage, hydrogen and other synthetic fuel energy storage, electrochemical energy storage, and capacitor storage.
  • pumped hydro storage is the most superior, efficient and large-capacity energy storage technology among large-scale energy storage technologies and the current market. It is also the most mature and It is an energy storage technology that is reliable, safe and has a long life, but it has higher losses than this patented technology.
  • This patented multi-scale gravity energy storage method driven by turbine pumping and drainage not only has the same advantages as pumped water storage mentioned above, but also has high overall efficiency, huge energy storage (and is also multi-scale), flexible and reliable, and good operating conditions. It is a safe, reliable and highly competitive energy storage and energy conversion method with multiple features, long life, fast energy conversion, low average comprehensive cost per kilowatt-hour during its lifetime, and the pumped storage method has difficult site selection and is often located in In remote countryside, there are disadvantages such as high construction costs, difficulty in demolition and resettlement, difficulty in transportation, difficulty in wiring, the need to prevent leakage, easy evaporation, long construction period, and large losses (compared to this patented technology), as well as in the countryside.
  • this multi-scale gravity energy storage facility basically takes into account the advantages of pumped hydro storage and basically overcomes the In addition to its shortcomings, the gravity multi-scale energy storage device driven by the turbine pumping and drainage can also take into account multi-scale energy storage methods such as ultra-large, large-scale, medium-scale, and small-scale energy storage. It can also basically achieve extremely low leakage losses. It can even be made leak-free.
  • the present invention provides a multi-scale gravity energy storage facility and method for energy conversion driven by water turbine pumping and drainage, so as to solve the problems raised in the above background technology.
  • a multi-scale gravity energy storage facility for energy conversion driven by water turbine pumping and drainage including rock, sand or ore (including but not limited to denser and more difficult to economically Utilized poor iron ore, poor copper ore, poor lead-zinc ore, manganese ore and other stones, etc.) or soil, soil (when soil and soil are used, the upper part of the heavy-duty reservoir 2 needs to be sealed with a sealing cover Sealed structure), and facilities that store energy by the gravity of high-density materials (including composite and hybrid materials).
  • the facilities include heavy-loaded or super-heavy-loaded materials, heavy- or super-heavy-loaded materials, solid containers, container shells, anti-heavy materials, etc.
  • Multiple closed partition structures on the outer layer of the side of the container carrying tilted and bumped containers and through the partial pressure of water or other liquids (the closed liquid acts as a buffer, including wear-resistant, aging-resistant and damage-resistant seals, backing plates, springs, convenient maintenance structures, etc.) , heavy-duty load-bearing base plates, load-bearing base plate bosses, etc.
  • the water pressure (hydraulic) buffer device at the bottom consists of: the bottom boss has a lateral frame-shaped anti-collision increase and is a lowered sealing water (liquid sealing) ring; Water sealing (liquid sealing) separation frame, sealing strip in the separation frame, sealing strip in the separation frame butt plate, spring of the damper plate, buffer pad under the bottom spring, etc.
  • the multi-scale gravity energy storage facility for energy conversion of the entire turbine pumping and drainage drive is evenly divided into a heavy-loaded reservoir 2, a reversible turbine 1, an ordinary reservoir 3, a reversible turbine 4 and a heavy-loaded reservoir 2.
  • the hydraulic system consists of 5 side fluid pressures.
  • the heavy-loaded water tank 2 is fixedly connected to the reversible turbine 1 (or turbine 1, this article is the same) through the waterproof hammer device (which is installed on the pipeline on the ground) and the electric valve.
  • reversible hydraulic turbine 1 (or hydraulic turbine 1, this article is the same) is fixedly connected to the bottom or lower part of the reservoir 3 through an electric valve and a pipeline;
  • the reservoir 3 is fixedly connected to the reversible turbine 4 (or turbine 4, this article is the same as this) through an electric valve and a pipeline.
  • reversible hydraulic turbine 4 (or hydraulic turbine 4, the same is the same in this article) is connected to the heavy-loaded reservoir 2 through pipelines through electric valves and waterproof hammer devices in sequence.
  • the hydraulic system (see Figure 5) consists of a water tank, electric valve, filter, two-way variable hydraulic pump, one-way valve, relief valve, electromagnetic reversing valve, pressure gauge (pressure indicator), accumulator, pressure relay, etc. (See Figure 5 for the following connections).
  • the filter is connected to a bidirectional variable hydraulic pump
  • one branch of the bidirectional variable hydraulic pump is fixedly connected to the one-way valve, and the other branch is fixedly connected to the overflow valve and the water tank in turn.
  • the one-way valve is fixedly connected to the electromagnetic reversing valve
  • the electromagnetic reversing valve is fixedly connected to the pressure gauge (pressure indicator), the accumulator and two pressure relays in turn;
  • the method uses a device for mutual conversion of gravity potential energy and electrical energy. The steps are as follows:
  • the hydraulic system 5 using water (liquid) as the medium between the heavy load and the side of the reservoir 2 supplies water and pressure to the water (liquid) separation space there (to prevent the heavy load from tilting to one side and becoming a point-line contact. , used to achieve surface contact between the heavy-load container and the heavy-load storage tank through side water pressure when the heavy load is tilted);
  • the heavy load of the reservoir 2 increases, thereby increasing the heavy load potential energy.
  • the reversible turbine obtains electric energy from the power grid to start the reversible turbine and deliver water to the load-bearing reservoir 2.
  • the amount of water (liquid) in the lower part of the reservoir 2 increases.
  • the water (liquid) pressure increases and the heavy load rises;
  • the heavy load can be stopped at any time during its ascent, or when the heavy load reaches the maximum lift, the travel stop touches the travel switch 281 (for insurance purposes, multiple travel stops and travel switches are used, and the travel switches are connected in series in the reversible turbine opening and closing circuit to Realize multiple insurances, then add visual monitoring and manpower monitoring on the upper part of the heavy load, and add a visible transparent liquid connector on the top of the heavy load in Figure 9 to monitor the liquid level on the upper part of the heavy load), so as to realize the stop of the heavy load moving upward;
  • the travel switch 281 for insurance purposes, multiple travel stops and travel switches are used, and the travel switches are connected in series in the reversible turbine opening and closing circuit to Realize multiple insurances, then add visual monitoring and manpower monitoring on the upper part of the heavy load, and add a visible transparent liquid connector on the top of the heavy load in Figure 9 to monitor the liquid level on the upper part of the heavy load), so as to realize the stop of the heavy load moving upward;
  • the upper part of a heavy-loaded side may have leaned against the upper part of the same side of the reservoir 2 before rising, or the upper part of a heavy-loaded side may have leaned against the upper part of the same side of the reservoir during the process of the reversible turbine delivering water to the reservoir 2. , while the lower part on the same side of the heavy load is away from the reservoir 2.
  • the side water (liquid) pressure increases beyond the set value of the pressure relay there.
  • the position distance sensor senses that the distance decreases to exceed the set value
  • the position distance sensing relay Also works, then under program-controlled control, the bidirectional variable hydraulic pump supplies water (liquid) to the closed cavity on the side of the reservoir 2 to increase the pressure to the pressure set by the pressure relay, thereby causing the side of the reservoir 2 to The force is evenly distributed within the cavity facade without any collision.
  • the hydraulic system 5 passes through the left-moving electromagnetic reversing valve and the speed regulating valve due to self-priming, air pressure and The potential energy pressure of water replenishes fluid (such as water) to the corresponding cavity unit between the outer wall of the heavy-duty container and the heavy-duty reservoir 2 (and when replenishing fluid to the side cavity with a reduced gap to adjust the heavy-duty container, this
  • the liquid in the cavity with a gap exceeding the rated value will be discharged to the water tank through the left-moving electromagnetic reversing valve and speed regulating valve at an appropriate speed and pressure, that is, the liquid is squeezed out); in this way, the corresponding cavity unit refill ( (such as water replenishment) is to prevent the heavy-load container from suddenly turning (under the action of the liquid pressure in the lower part of the heavy-load storage tank 2) when it moves, that is, the distance between the outer wall of the heavy-load container and the heavy-
  • the reversible turbine (one or more, the same in this article) stops and brakes, and then closes the electric valve between the turbine and the reservoir 2, and multiple waterproof hammer devices in the pipeline take effect.
  • the reversible turbine one or more, the same in this article stops and brakes, and then closes the electric valve between the turbine and the reservoir 2, and multiple waterproof hammer devices in the pipeline take effect.
  • the reversible hydraulic turbine drives the generator to generate electricity and at the same time supply power to the grid;
  • the multi-scale electric energy (which can be super-massive, huge, large, medium-scale, and small-scale) is converted into heavy-loaded multi-scale potential energy (which can be Super large amount, huge amount, large amount, medium scale, small scale heavy load potential energy, but it is necessary to consider geological safety, safety conditions such as damage prevention of heavy load energy storage pool and energy storage system related parts, safety conditions, etc.).
  • the water supply (liquid) hydraulic system 5 that supplies water (liquid) to the cavity separated between the outside of the heavy-load container and the inside of the reservoir 2 can provide pressurized water (liquid) for this separated cavity to prevent overloading.
  • the heavy load collides with the reservoir 2 in a linear manner, causing the pressure on the outer vertical wall of the heavy load and the inner vertical wall of the reservoir 2 to be evenly distributed;
  • FIG 8 Another preferred solution is: (see Figure 8) , also remove the above components on the outer side of the heavy-duty container, and then install a number of support structures in the gap between the outer wall of the heavy-load container and the inner wall of the heavy-duty energy storage tank 2 to support the roller.
  • Columns including other rolling elements and rollers, the same in the previous and later texts) generate the supporting force of the heavy-load energy storage tank 2 on the heavy-load container, and reduce friction with rolling friction.
  • This structure is shown in Figure 8 (the side of the small gap A heavy-duty energy storage tank with rollers in the cavity between the walls).
  • the bottom boss pressure is uniformly distributed and homogenized.
  • the plan is: the bottom boss of the reservoir 2 needs to be divided into grids or strips. The partitions are divided into separate cavities, and the separated cavities store water (liquid storage). , the water (liquid) in the separation cavity makes the boss plane evenly support the heavy load to protect the bottom boss of the reservoir 2.
  • the outer ring frame of the bottom boss of the reservoir 2 is larger than the bottom boss of the heavy-load container.
  • the heavy-load storage tank 2 has an openable and closable structure (the so-called “open” refers to the lower part of the heavy-load storage tank [that is, the heavy-load storage tank].
  • the sleeve that is, a large water bag, both front and rear
  • the above design ensures that the multi-scale energy storage facility can be reused for a large number of cycles in a safe, reliable, long-term, high-efficiency, high-profit, repairable and maintainable manner.
  • Figure 1 is a schematic diagram of a multi-scale gravity energy storage facility and method for energy conversion driven by water turbine pumping and drainage according to the present invention; where the heavy-load material is at the highest point at the top of the heavy-load, and the top is inside the heavy-load energy storage pool; or in the long-term Under the conditions of safety, long-term reliability, long-term stability, long-term risk-free, and good safety protection, the heavy-duty top can be run to a height that is appropriately higher than the top of the heavy-duty storage tank (not too high and not endangering safety). Both of the above methods require: simultaneously raising the positions of the travel stops paired with multiple travel switches that can trigger automatic alarms to their high dead centers.
  • Measures and related stopping devices that is, the use of multiple safety measures to ensure safety (especially including strict control of the total amount of water or liquid in the pool to ensure that the heavy load will not be pushed too high during energy storage, so that it will not When storing energy, make the heavy load cross the highest dead center and drop the heavy load to the ground. This is another measure to ensure the safety of facilities and equipment.
  • FIG. 2 is a schematic structural diagram of the heavy-duty reservoir 2 in Figure 1 of the present invention.
  • Figure 3 is a partially enlarged structural schematic diagram of the lower part of the heavy-duty reservoir 2 and the stackable (foldable) fully sealed water jacket in Figure 2 of the present invention
  • Figure 4 is a schematic diagram of the detection entrance door and related structures of the heavy-duty reservoir 2 in the present invention.
  • Figure 5 shows the anti-collision hydraulic system of the present invention in which the gap separates the cavity between the heavy load and the side of the reservoir 2.
  • Figure 6 shows the structural component 219 for maintenance and replacement of the outer wall and sealing device of the heavy-duty container in the present invention (four variations are given: 219(A), 219(B), 219(C) and 219(D), but are not limited to these. Four types) and enlarged view of the sealing device.
  • Figure 7 shows a heavy-duty energy storage tank with a small-gap side wall cavity (friction-reducing substances, such as friction-reducing lubricating liquids, etc., are placed in the side-side small-gap cavity between the heavy-duty and heavy-duty energy storage tanks; or both of the above Only good smooth small gap fit between them without placing anti-friction substances).
  • Figure 8 shows a heavy-duty energy storage tank with rollers placed in the cavity between the side walls of the small gap (rolling objects with small friction, such as rollers, etc., are placed in the small gap cavity on the side between the heavy-load and heavy-load energy storage tanks).
  • Figure 9 shows a multi-scale energy storage facility where a hydraulic turbine pumps and drains (liquid) between the bottom and the upper part of a heavy-duty energy storage tank to store energy and generate electricity (a small exhaust hole is provided on the upper sealing cover of the heavy-duty energy storage tank to When the turbine pumps and drains (liquid) between the bottom and the upper part of the heavy-duty energy storage tank to store energy and generate electricity, the upper cavity of the heavy-duty energy storage tank is connected to the atmospheric pressure for inlet and exhaust gases to balance the atmospheric pressure).
  • Figure 10 shows a heavy-duty energy storage tank in which the high-pressure hydraulic hose is placed vertically between the side walls of the heavy-duty energy storage tank (the high-pressure hydraulic hose in the upper part of the heavy-load energy storage tank is longer to facilitate the up and down movement of the heavy load and does not prevent the heavy load from moving up and down. As for the pull being limited and the pull-off phenomenon occurs).
  • Figure 11 is a partial view of the cavity on the side of the heavy-load storage tank where the high-pressure hydraulic hose is placed vertically between the side walls of the heavy-load storage tank (the high-pressure hydraulic hose in the upper part of the heavy-load storage tank is longer to facilitate heavy-duty storage).
  • the load can move up and down, so that the pull will not be limited and the pull-off phenomenon will not occur).
  • Figure 12 is a partial view of a heavy-duty energy storage tank with a water jacket attached to a stacked plate (the uppermost plate and the lowermost plate of the stacked plate in the lower cavity of the heavy-duty storage tank are tightened by bolts It is fixed on the inner wall of the heavy-load energy storage tank, and at the same time, the chute and empty set of sliding bolts are provided on the stacked plates, so that the stacked plates can move and slide each other).
  • FIG 13 is a partial enlarged view of a heavy-duty energy storage tank with a water jacket attached to a stacked plate (the water jacket is a specially made inner reinforced rib (such as steel wire, etc.) that is high-strength and soft, and is large enough to carry heavy loads to the
  • the water jacket i.e. water bag
  • the water jacket at the top dead center is provided with a chute on the stacked plate and a bolt that is set on one of the two connected stacked plates and fixed on the other connected plate. , even if the stacked panels can move and slide each other)
  • Figure 14 shows a liquid (or water) transportation method in which the storage tank 3 is arranged on the upper part of the heavy-duty storage tank, in which the water turbine is a reversible water turbine or a combination of a pumped water storage water turbine and a water turbine generator that generates electricity through drainage.
  • the water turbine is a reversible water turbine or a combination of a pumped water storage water turbine and a water turbine generator that generates electricity through drainage.
  • the heavy load material is at the highest point at the top of the heavy load, the top is inside the heavy load storage tank.
  • any of the multiple travel stops touches any of its corresponding strokes
  • the alarm can be triggered and the heavy-load upward movement can be automatically stopped when the switch or relevant device is touched at the same time; and multiple reminders near the high point should be set below the stroke switch to trigger the alarm device, and then the alarm device should be set near the high point and reaching the high point.
  • Manual alarm measures and related stop devices that is, multiple safety measures are adopted to ensure safety.
  • One solution for the upper end outlet of the pipe that transports water (liquid) is to set it at the top of the heavy-duty storage tank and place it at the top of the heavy-duty storage tank.
  • the upper end of the pipeline transporting water (liquid) is connected to a high-strength, highly reliable, wear-resistant, aging-resistant, and damage-resistant hose; another solution is to set it on the side of the upper part of the heavy-duty storage tank, which is also used to transport water and liquid.
  • the upper end of the pipeline is connected to a hose with high strength, high reliability, wear resistance, aging resistance, and damage resistance (this hose is installed on the guide device or guide rail or regular device to allow the hose to move up and down under heavy loads.
  • the purpose of connecting the hoses of these two solutions is to allow the turbine to pump the water (liquid) in the upper part of the heavy-load storage tank to the lower part of the heavy-load storage tank to store energy, so that it can be basically pumped out to maximize the stored energy;
  • third The first solution is to locate the upper outlet of the water (liquid) pipeline at the top of the heavy-load storage tank, and then open a matching long countersunk hole at the corresponding position on the upper part of the heavy-duty storage tank.
  • the radial size and length of the long countersunk hole should be larger than the matching long countersunk hole.
  • the corresponding radial size and length of the water pipeline should be such that the water pipeline can pump out the water (liquid) during pumping and storage, maximize the storage energy, and be installed to prevent debris, foreign matter, solid matter, etc. from falling into this length.
  • Counterbore filtration, impurity removal and other devices; there is another solution is to set the outlet at the upper end of the pipe conveying water (liquid) at the side of the middle or middle or lower part of the heavy-load storage tank, and then install it on the corresponding side or heavy-duty container.
  • a water conduit should be set up on the corresponding inner side of the load storage tank, and the safety of the heavy-load container, heavy-load storage tank, and various pumped storage-related facilities and equipment should be ensured such as high strength, high durability, high reliability, and high fatigue resistance. Indicators, the above three and other related facilities and equipment must also cooperate with each other at the same time and prevent collision and damage of heavy-load containers and heavy-load storage tanks; here, the first three solutions are recommended first.
  • Another way is to change the water delivery hose in Figure 14 into a retractable water (liquid) pipe (such as a hard pipe). When the heavy load goes down and up, the water (liquid) pipe will expand or contract accordingly. And it can always drain, absorb, and transport water (or liquid).
  • top cover plate in the upper part of Figure 14 is a movable and floatable floating cover plate.
  • This cover plate floats under the action of the liquid in the upper part of the heavy load as the heavy load (as shown in Figure 14) moves up and down.
  • the water (liquid) pipeline can always transport water (liquid) when the turbine is running, so that the gravity energy storage facility can always store energy and generate electricity and discharge energy.
  • FIG. 1 1. Hydraulic turbine; 2. Heavy-duty reservoir; 3. Ordinary reservoir; 4. Hydraulic turbine; 5. Anti-collision hydraulic system for the separation chamber between the heavy-duty and 2 sides of the reservoir;
  • FIG. 2 210. Heavy-duty reservoir 2 maintenance entrance door and door lifting device; 211. Electric valve; 212. Water hammer device; 213. Heavy-duty reservoir wall reinforcement structure; 214 (multiple, such as 214 -1 and 214-2), sensing the point opposite the structural component 219 for maintenance and replacement of the outer wall of the heavy-duty vessel and sealing device on the outer facade of the heavy-duty vessel (directly opposite the 214 indication point, install the heavy-duty container at the opposite point of the 219 component) The distance position of the vertical strip from the top to the bottom of the container is determined by the sensor) and the distance position sensor installation point corresponding to the wear-resistant and wear-resistant lining wall 218 of the heavy-duty container; 215.
  • Hydraulic buffer compartment sealing strips are used for uniform load at the bottom of the heavy-duty pool; 230. Buffer compartment springs are used for equal load to block; 231. Spring; 232. Heavy-duty container sealing liquid water jacket cable; 233. A stackable (foldable) water jacket is used to seal heavy-duty containers; 234. Heavy-duty pool base; 235. Heavy-duty pool reinforced base; 236. Heavy-duty base liquid separation chamber; 237. Heavy-duty base sealing strip against 238, heavy-duty base is evenly loaded with buffer plate; 239, heavy-duty base is evenly loaded with pressure-bearing plate;
  • 210-1 Lifting device for the heavy-duty pool maintenance entrance door
  • 210-2 Main structure door frame of the maintenance entrance door seal
  • 210-4 Maintenance entrance door sealing strip
  • 210-5 Maintenance entrance door;
  • 501 Water tank; 502. Electric valve; 503. Filter; 504. Bidirectional reversible hydraulic pump; 505. One-way valve; 506. Electric reversing valve; 507. Indicator or hydraulic gauge; 508. Accumulator 509. The first pressure relay (low-pressure pressure relay); 510. The second pressure relay (high-pressure pressure relay); 511. Overflow valve; 539. Speed regulating valve; 512. Collect the heavy pressure on the outer facade of the heavy-load container.
  • the distance position sensing relay corresponds to the distance of the point, that is, from 214 (multiple, such as 214-1 and 214-2: through the vertical strip-shaped sensors appearing in pairs from the top to the bottom of the heavy-duty container 214-1(A) and 214-2 (A) and various forms of sensors 214-1(B) and 214-2(B) that can be paired with them respectively to collect distances and process the distances used position sensing relay;
  • 219-1 is the countersunk bolt hole
  • 219-2 is the short pin hole
  • 219-3 is the screw hole for lifting.
  • Figure 7 that is, a heavy-duty energy storage tank with a small gap between the side walls
  • 250 is the small gap cavity between the heavy-duty container and the heavy-duty energy storage tank.
  • the other labels (such as numerical labels, etc.) are shown in the figure. 1 to Figure 6.
  • Figure 9 that is, a multi-scale energy storage facility in which a water [liquid] turbine generator pumps and drains (liquid) between the bottom and the upper part of a heavy-duty energy storage tank to store energy and generate electricity
  • 6 is a small hole containing a balanced atmospheric pressure.
  • Sealing cover, 7 is the foundation
  • 9 is the large-diameter infusion pipe of the water (liquid) turbine generator [such as water pipe, etc.])
  • the other labels (such as number labels, etc.) are as shown in Figures 1 to 6 for their meanings.
  • Figure 10 a heavy-duty storage tank in which the high-pressure hydraulic hose is placed vertically into the cavity between the heavy-load container and the side wall of the storage tank: 270 is used to adjust the size of the side cavity gap between the heavy-load and heavy-duty storage tanks.
  • a high-pressure hydraulic hose that transports liquids (such as water) and transmits power by hydraulic pressure.
  • 6 is a sealing cover with a small hole for balancing air pressure.
  • 9 is a hydraulic generator infusion pipe (such as a water pipe). See the remaining labels (such as numerical labels, etc.) The meaning of the labels in Figures 1 to 6.
  • Figure 11 that is, the high-pressure hydraulic hose is vertically placed into the partial view of the side cavity of the heavy-load storage tank between the side walls of the heavy-load storage tank
  • 270 is used to adjust the side space between the heavy-load and heavy-load storage tanks.
  • It is a high-pressure hydraulic hose with a cavity gap size that transports liquid (such as water) and transmits force by hydraulic pressure.
  • 6 is a sealing cover with a small hole for balancing air pressure
  • 9 is a hydraulic generator infusion pipe (such as a water pipe), and the rest are marked (such as numbers Labels, etc.) See the meanings of labels in Figures 1 to 6.
  • Type sliding bolt (fixed on one of the two stacked plates, but any two stacked plates can slide against each other), 233 is a stackable or foldable giant water jacket for sealing liquids in heavy-duty containers ( The total height of the water jacket is greater than or equal to the sum of the stroke of the heavy-load container and the height of the downwardly protruding boss of the heavy-load container, so that the heavy-load container can rise to the top dead center without damaging the giant water jacket), and the rest are marked ( Such as numerical labels, etc.) See the meanings of the labels in Figures 1 to 6.
  • the present invention provides a technical solution: a multi-scale gravity energy storage facility and method for energy conversion driven by turbine pumping and drainage, including one or more drainage power generation devices 1 (reversible or pumping in pairs).
  • Conventional turbines 1 and 4 Heavy-duty reservoir system 2 as a pumping energy storage device, ordinary reservoir 3, anti-collision buffer hydraulic system device 5 between the inner wall of the reservoir and the side of the heavy-duty container.
  • the heavy-load storage tank system 2 of the pumped energy storage device (that is, the heavy-load storage tank, the same below), please mainly refer to Figure 2 and then refer to Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12 , Figure 13, Figure 14:
  • Pumped energy storage device heavy duty reservoir system 2 including:
  • the inspection entrance door and door lifting device 210 of the heavy-duty water tank 2 are located at the base outside the front of the heavy-duty water tank; the electric valve 211 is connected to the waterproof hammer device 212; the waterproof hammer device 212 is connected to the heavy-duty water tank through a pipeline
  • the outer wall of the heavy-duty container on the outer facade of the heavy-duty container also serves as a structural component for maintenance and replacement of the sealing device 219 relative point (shown in Figure 2 where 214-1 and 214-2 point to the 219 component) is installed from the top to bottom of the heavy-duty container vertical strip-shaped sensor (the distance position is sensed ) device) 214(A) (multiple, such as 214-1(A) and 214-2(A)), and at the same time install sensors ( Distance position sensor) 214(B) (multiple, such as
  • the outer wall of the load container and the structural component 219 for maintenance and replacement of the sealing device are on; the outer wall of the heavy load container and the structural component 219 for the maintenance and replacement of the sealing device are pressed and fixedly connected to the sealing retaining wall of the heavy load container and the reinforcing wall 222 of the heavy load container;
  • the heavy load 220 is carried in the inner wall 221 of the heavy load container;
  • the lightning protection device 223 is installed on the top of the heavy load reservoir;
  • the hydraulic system 5 connects to the space between the inner wall of the reservoir and the side of the heavy load container through multiple hydraulic pipes (such as hydraulic pipes 224) cavity connection;
  • the electric valve 225 is connected to the waterproof hammer device 226; the waterproof hammer device 226 is then connected to the bottom or lower part of the heavy-duty reservoir through a pipeline;
  • the boss 227 at the bottom of the heavy-duty container acts on the bottom of the heavy-duty tank through hydraulic pressure (water pressure)
  • FIG. 9 another design solution for the ordinary reservoir 3 is to set the container space in the vacated upper part of the heavy-duty reservoir 2, that is, the water in the lower part of the heavy-duty reservoir 2 passes through the pipe and is waterproof.
  • the hammer device, electric valve, and hydraulic turbine are connected to the upper part of the heavy-duty reservoir 2 in the empty container, and are partially similar to the ordinary reservoir 3 or the entire energy storage device derived from tap water after evaporation or consumption.
  • Water replenishment (liquid replenishment) facility this structure is shown in Figure 9 [A multi-scale energy storage facility in which a water (liquid) turbine pumps and drains (liquid) between the bottom and the upper part of the heavy-duty energy storage tank to store energy and generate electricity];
  • connection scheme of the hydraulic pipe outlet in the hydraulic system 5 connected to the side wall cavity of the heavy-load reservoir is: through the hydraulic high-pressure hose (via The anti-rust and anti-damage high-strength cables are bundled to prevent the problem of insufficient strength caused by the long drooping length of the high-pressure hose.)
  • the wear-resistant, damage-resistant and aging-resistant sealing strip 215 and the spring pass from the heavy-load energy storage tank 2 over its upper part.
  • the head part of the block 216 (and sealed at the intersection), and is connected to the cavity between the outer wall of the heavy-load container and the inner wall of the heavy-load storage tank 2 to which the high-pressure hoses are respectively connected; in the high-pressure hydraulic hose Transport pressure-containing liquid (such as water) to ensure the pressure-maintaining effect of the liquid (such as water) between the outer vertical wall of the heavy-load container and the inner wall cavity of the heavy-load storage tank 2 (i.e., the heavy-load energy storage tank 2) to ensure that the heavy load is as upright as possible , to reduce friction, this is the preferred solution.
  • This structure is shown in Figure 10 [a heavy-duty energy storage tank in which the high-pressure hydraulic hose is vertically inserted into the cavity between the heavy-load container and the side wall of the energy storage tank].
  • FIG. 9 and Figure 10 Another solution of this patent is: see Figure 9 and Figure 10 , the hydraulic high-pressure pipeline is connected from the inner wall side of the heavy-duty storage tank (i.e. the heavy-duty storage tank 2) to the outer wall of the heavy-duty container where the high-pressure hoses are respectively connected. and the inner wall of the heavy-load energy storage tank 2.
  • Figure 9 and Figure 10 Figure 9.
  • the water [liquid] turbine generator pumps and drains (liquid) between the bottom and the upper part of the heavy-load energy storage tank to store water.
  • Multi-scale energy storage facilities that can generate energy and generate electricity
  • Figure 10 a heavy-duty energy storage tank in which high-pressure hydraulic hoses are vertically inserted into the cavity between the heavy-load container and the side wall of the energy storage tank).
  • the strengthened footings and foundation parts of the lower part of the heavy-duty reservoir 2 can be embedded to a certain depth below the ground surface (i.e., the foundation) to strengthen the outer support structure of the heavy-duty reservoir 2
  • the ground surface i.e., the foundation
  • the overall contour shape of the entire inner side wall of the heavy-load energy storage tank 2 may be a rectangular parallelepiped, a polygonal prism, a cylinder, or other three-dimensional structures.
  • Another preferred solution is to remove the anti-collision hydraulic system of the space separating the cavity between the heavy load and the side of the reservoir 2 (see Figure 7) , and remove the following related components on the outside of the heavy load container: that is, remove the wear-resistant The damage-resistant and aging-resistant sealing strip 215, the spring block 216, the spring 217, the outer wall of the heavy-load container and the structural component 219 for repair and replacement of the sealing device; then, there is a small gap between the outer part of the heavy-load container and the inner part of the heavy-load reservoir 2 Cooperate with each other, and the two are placed in a strictly vertical direction, so as to reduce the friction force between the two caused by the slight tilt of the heavy load, and these two parts are made of high-damage-resistant materials that are resistant to wear and corrosion. (such as high damage-resistant steel materials, etc.), and use water or other substances with small friction coefficients to reduce friction.
  • This structure is shown in Figure 7 ( Figure 7, heavy-duty energy storage tank with a cavity between the side walls with
  • Figures 9 and 10 and the second preferred solution is: see Figure 8 , also remove the above-mentioned 215, 216, 217 and 219 and other related components, and there is a gap between the outer part of the heavy-load container and the inner part of the heavy-load reservoir 2.
  • a number of rollers are placed in the gap to effectively reduce the friction force between the two due to the slight tilt of the heavy load, and the two parts are set to be built in a strictly vertical direction.
  • This structure is shown in Figure 8 ( Figure 8, small gap
  • the cavity between the side walls is a heavy-duty energy storage tank with rollers).
  • the hydraulic buffer partition assembly 228 for load equalization at the bottom of the heavy load pool includes: a hydraulic buffer partition seal 229 for load equalization at the bottom of the heavy load pool, a buffer partition spring block 230 for load equalization, a spring 231, and a liquid separation cavity in the heavy load base. 236.
  • the load equalizing hydraulic buffer partition seal strip 229 at the bottom of the heavy load pool is fastened to the load equalizing buffer partition spring block 230;
  • the spring 231 compresses the load-equalizing buffer partition spring block 230;
  • the heavy-duty pool reinforcement base 235 is fixedly connected to the heavy-duty pool base 234;
  • the hydraulic buffer partition seal strip 229 for uniform load at the bottom of the heavy-duty pool, the buffer partition spring block 230 for equal load, and the heavy-duty pool base seal strip block installation plate 237 constitute a liquid separation chamber at the base of the heavy-duty pool. 236;
  • the heavy-duty pool reinforcement base 235, the heavy-duty pool base 234, the heavy-duty pool base sealing strip and block installation plate 237, the heavy-duty pool base equal load buffer plate 238 and the heavy-duty pool base equal load bearing plate 239. are firmly connected together;
  • the water jacket cable 232 for sealing the heavy-duty container is used to pull the foldable or foldable water jacket 233 for sealing the heavy-duty container to slide up and down along with the heavy-duty container;
  • the outer wall of the heavy-duty container and the structural component 219 for maintenance and replacement of the sealing device are bolted to the sealing retaining wall of the heavy-duty container and the reinforcing wall 222 of the heavy-duty container through the countersunk bolt holes 219-1;
  • the lower part of the heavy-duty container is connected with a horn device 286 that prevents the heavy-duty container from biting the water jacket in the heavy-duty reservoir 2;
  • a foldable and pullable telescopic damage-resistant plate can be set outside the fully sealed water jacket and the horn 286 device to prevent it from being chewed to cooperate with the heavy load.
  • the fully sealed water jacket is folded or folded during movement to further cooperate with its folding-related movements and prevent it from being worn, chewed and damaged.
  • This structure is shown in Figure 12 and Figure 13 ( Figure 12, with water jacket Partial view of the heavy-duty energy storage tank with attached stacked panels) ( Figure 13, partial enlarged view of the heavy-duty energy storage tank with attached stacked panels with water jacket).
  • the maintenance entrance door 210-5 is placed in the main structure door frame 210-2 of the maintenance entrance door seal, and is completely sealed with the maintenance entrance door sealing strip 210-4;
  • the inspection entrance door 210-5 is connected or hinged with the lifting device 210-1 of the heavy-duty pool inspection entrance door using a hook or a steel cable; The pool is sealed;
  • the electric valve 502 is connected to the water tank 501 through a hydraulic pipe; the electric valve 502 is connected to the filter 503 through a hydraulic pipe; the filter 503 is connected to the bidirectional reversible hydraulic pump 504 through the hydraulic pipe; the bidirectional reversible hydraulic pump 504 is connected through The hydraulic pipeline is connected to the one-way valve 505 and the relief valve 511; the one-way valve 505 is connected to the electric reversing valve 506 through the hydraulic pipe; the electric reversing valve 506 is connected to the indicator or hydraulic gauge 507 through the hydraulic pipe; the indicator or The hydraulic gauge 507 is connected to the accumulator 508 through the hydraulic pipeline; through the hydraulic pipeline and the accumulator 508, it is connected in turn to the first pressure relay (low pressure pressure relay) 509, the distance position sensing relay 512, the speed control valve 539 and the second The pressure relay (high pressure pressure relay) 510 is connected; the second pressure relay (high pressure pressure relay) 510 is connected to the cavity on the inner side of the heavy load reservoir
  • the heavy-duty container is A distance position sensor for detecting distance is installed at the corresponding point on the wear-resistant and damage-resistant lining wall 218, that is, multiple distance position sensors (such as 214-1(B) and 214-2(B)) are installed at the position indicated by 214 and Its indication is to install multiple distance position sensors (such as 214-1(A) and 214-2(A)) (such as 214-1 and 214-2: appearing in pairs) at the position facing the 219 component.
  • multiple distance position sensors such as 214-1(B) and 214-2(B)
  • Its indication is to install multiple distance position sensors (such as 214-1(A) and 214-2(A)) (such as 214-1 and 214-2: appearing in pairs) at the position facing the 219 component.
  • the detected sensor and sensors 214-1(A) and 214-1(B), 214-2(A) and 214-2(B), and the anti-collision filled liquid space with side walls of each heavy-duty container Both sides of the cavity are connected to sensors and sensors, and each cavity can be connected to a hydraulic system 5 for program-controlled adjustment of the distance between the outer surface of the heavy-load container and the inner surface of the reservoir 2 and the pressure in the cavity.
  • Liquid pressure the patent of this invention only illustrates a simplified illustration, that is, Figure 1, and other variant designs should also be included in the ownership of this invention);
  • another solution is to eliminate the side hydraulic system 5 that evenly distributes the liquid pressure: when designing and building the heavy-duty container, there should be a minimum clearance between the heavy-duty container and the heavy-duty reservoir 2, and the two should cooperate.
  • the flatness of the surface is excellent, and its mating planes are strictly plumb bob surfaces, and the relevant loads in the heavy-duty container should be basically evenly distributed, and the center of gravity should be basically located in the center of the top view of the heavy-duty container;
  • the position distance sensor and the distance position sensor can be a sensing device that is a combination of steel and other metal materials and an electromagnetic induction device, but this patent is not limited to this case;
  • this hydraulic system 5 can be removed, and a small gap is designed between the outer wall of the heavy-load container and the inner wall of the heavy-load reservoir 2 to reduce other problems caused by the slight tilt of the heavy-load container.
  • a small gap is designed between the outer wall of the heavy-load container and the inner wall of the heavy-load reservoir 2 to reduce other problems caused by the slight tilt of the heavy-load container.
  • water and other small friction coefficient substances are used to further reduce friction.
  • This structure is shown in Figure 7 ( Figure 7, a heavy-duty reservoir with a cavity between the side walls with a small gap);
  • this hydraulic system can be removed, and a number of rollers and their related support structures can be installed between the outer wall of the heavy-load container and the inner wall of the heavy-load reservoir 2 to support the slight movement of the heavy-load container.
  • the tilt causes lateral pressure on the heavy-load storage tank 2 (heavy-load storage tank), and rolling friction is used to reduce the friction of relative motion.
  • This structure is shown in Figure 8 ( Figure 8, the cavity between the side walls of the small gap is roller's heavy-duty accumulator).
  • bolts are connected to the sealing retaining wall of the heavy-load container and the reinforcing wall 222 of the heavy-load container through the countersunk bolt hole 219-1;
  • the second option is to pass the bolt in 219(B) through the countersunk bolt hole 219-1 and the short pin hole 219-2 (very short, because it is convenient for maintenance, disassembly, etc., remember not to forget this short pin during maintenance, disassembly, etc. ) is connected to the sealing retaining wall of the heavy-duty container and the reinforcing wall 222 of the heavy-duty container;
  • 219(C), 219(D) and 219(A) are similar, and 219-1 bolt holes in 219(A), 219(B), 219(C) and 219(D) are designed. length, the bolts must be taken out before lifting out component 219 (for ease of reading, this article is not drawn to scale) so that component 219 can be lifted out again.
  • another structural component 219 is installed for the maintenance and replacement of the outer wall of the heavy-duty container and the sealing device (four variations are given: 219(A), 219(B), 219(C) and 219(D), but are not limited to These four) and sealing devices (including 215, wear-resistant, damage-resistant and aging-resistant sealing strip; 216, spring block; 217, spring, etc.) are fixedly connected to the wear-resistant and damage-resistant lining wall 218 of the heavy-load container , and the surface of the heavy-load container and the inner vertical wall surface of the heavy-load reservoir 2 are smooth surfaces that are wear-resistant and friction-reducing;
  • a gravity energy storage device that can store energy at multiple scales can be used to store multi-scale energy storage facilities such as ultra-large, huge, large, medium-scale, and small-scale (but more consideration needs to be given to geological safety and other safety issues) situation, safety conditions, etc.), the steps are as follows:
  • Adjust the positive three-dimensional position of the heavy load in the reservoir 2 when the turbine pumps water to a certain amount, the stroke stopper that regulates the position of the outer side of the heavy load container is touched to trigger the stroke switch and the distance position sensor, distance position sensing relay and pressure Under the coordination of programmed work of sensors and pressure relays, the hydraulic system used to adjust the pressure and distance between the outer vertical wall 219 of the heavy-load container and the wear-resistant and damage-resistant lining wall 218 of the heavy-load container 2 works to adjust the heavy load in the water storage. Neutral position in pool 2;
  • the leak-proof electric valve is opened, and the electric energy transmitted from the power grid drives the turbine to pump water from the ordinary reservoir 3 (use “water” to generally refer to liquid, hereafter and above referred to as “water”, the ownership of the present invention is also refers to liquid ), the water (liquid) in the lower part of the heavy load reservoir 2 increases, and the heavy load rises. The mechanical energy or electrical energy generated by wind energy, water energy, etc. is converted into the potential energy of the heavy load.
  • the stop energy storage stage when the electric energy driving the turbine stops being delivered and supplied, the energy storage stops.
  • the upper end point of the heavy load rises to the top of the heavy load reservoir 2, the upper end point of the heavy load triggers the installation in the heavy load water storage tank.
  • the travel switch 281 at the top of pool 2 (to ensure safety, multiple travel switches in series should be set up to stop the heavy load from going up). After the travel switch 281 is triggered, the electric energy used to drive the turbine is stopped. At this time, the electric valve to prevent leakage Close to further prevent water leakage. This process is the stop energy storage stage;
  • the energy release (release of potential energy) power generation stage when the heavy load decreases, the electric valve 211 is opened, and the hydraulic pressure converted into the heavy load potential energy drives the hydraulic turbine to rotate, and the hydraulic turbine drives the generator rotor to rotate.
  • the interaction between the generator rotor and the stator The rotation and cutting of magnetic field lines generate electrical energy, which is then transmitted to the power grid through wires. This process is the energy release and power generation stage.
  • the distance position sensor 214 (B) installed at a corresponding point on the wear-resistant and damage-resistant lining wall 218 of the heavy-load container detects that the distance is reduced to too small (that is, a certain part of a certain side of the heavy-load container is close to the heavy load container).
  • the hydraulic pump 504 starts, then the liquid in the liquid tank 501 (such as a water tank) passes through the hydraulic pump 504, the one-way valve 505, the reversing valve 506 and the liquid pipe (water pipe) to the outer wall 219 of the above-mentioned heavy-load container and the heavy-load container wear-resistant
  • the cavity between the damage-resistant lining walls 218 is supplied with liquid, which will increase the cavity pressure;
  • step S5 Due to step S5, the distance between the two vertical side walls of the cavity (the distance between 219 and 218) increases. When the liquid in the cavity increases to a certain value, the pressure in the cavity and the distance between 219 and 218 also increase to a certain value. Then the second pressure relay (high pressure pressure relay) 510 and the distance position sensing relay 512 act, the hydraulic pump stops supplying liquid, and the reversing valve stops in the middle position;
  • each liquid cavity is only connected to one hydraulic pipe connected to the hydraulic system 5, that is, each cavity unit corresponds to each input hydraulic pipe one-to-one. In the figure, two pipes are simply connected and should be removed. one), and when the pressure in the liquid cavity is equal to the set pressure, the electromagnetic reversing valve is in the neutral cut-off state;
  • step S4 proceeds to the step before the parentheses of the aforementioned comment: "The electromagnetic reversing valve is in the neutral cut-off state", the electric valve 502 is closed, and the flow of the valve to the above-mentioned valve due to the cavity gap being smaller than the allowable value is stopped.
  • the cavity unit supplies liquid.
  • step S7 (See Figure 5. This step occurs during the operation and action of another hydraulic system that is the same as the hydraulic system 5 and is connected to the cavity unit described in step S7 [that is, the cavity unit with an enlarged cavity gap].
  • the cavity between the outer wall 219 of the heavy-duty container and the wear-resistant and damage-resistant lining wall 218 of the heavy-duty container (hereinafter referred to as the cavity) increases and exceeds the set value, that is, the distance between 219 and 218 increases, then If the distance position sensor 214 (A) and the distance position sensor 214 (B) detect that the distance is too large, the distance position sensing relay 512 will produce the opposite behavior to the detected distance that is too small; and at this time, the pressure in the cavity will decrease.
  • the first pressure relay (low pressure pressure relay) 509 acts; under the combined action of 512 and 509, the program control device works, the reversing valve 506 moves to the left, and the excess liquid in the cavity unit is in the adjustment mechanism.
  • the liquid tank such as a water tank, water tank
  • the reversing valve 506 and the liquid pipe water pipe
  • the extrusion pressure flows to the liquid tank (such as a water tank, water tank) through the reversing valve 506 and the liquid pipe (water pipe) through the speed regulating and throttling device, and the excess liquid in the cavity is squeezed out and reduced (but the air pressure in the water tank and
  • the water pressure and other pressure caused by gravity ensure that the liquid in the cavity gap is filled at all times, and the excess liquid is squeezed out at an appropriate speed).
  • the hydraulic pump will simultaneously and coordinately move the outer wall of the heavy-load container and the heavy-load container at the same height to the opposite side, that is, the side where the cavity gap is reduced, under program-controlled control. Liquid is supplied to the cavity unit where the gap is reduced between the inner walls of the reservoir. If water is supplied, the cavity gap at the corresponding part on this side (the part where the cavity gap is reduced) increases, which promotes or forces the cavity gap to reach the set point. fixed value (the cavity gap on the side with a large cavity gap will decrease, and the liquid will flow back to the water tank or sink.
  • the electric driving device driven by the power grid drives the hydraulic turbine to rotate (in Figure 1, devices 1 and 4 are hydraulic turbines. Preferably, both can be reversible hydraulic generators, which can be single-stage hydraulic turbines or two-stage or more hydraulic turbines. Or the turbine is a pumping storage turbine and a drainage power generation turbine that appear in pairs. This patent covers various variations, alternative designs, etc.).
  • the turbine pumps water from the ordinary reservoir 3 into the lower part of the heavy-duty reservoir 2 through the pipeline. Then the heavy load and the container as a whole rise; the wear-resistant, wear-resistant and aging-resistant sealing strip 215 slides upward on the wear-resistant and wear-resistant lining wall 218 of the heavy-load container.
  • the sealing strip and the lining wall 218 form a sealed cavity, and are hydraulically
  • the system maintains pressure to prevent the outer wall of the heavy-duty container from colliding with the lining wall 218 (preferably, the lining wall can be made of steel plates or reinforced concrete with a smooth coating that is corrosion-resistant and wear-resistant, but the invention is not limited to steel plates. and reinforced concrete), as the heavy load rises driven by the hydraulic turbine, the electrical energy is converted into the potential energy of the heavy load and its container. This is the energy storage stage;
  • the heavy load container sealing liquid water jacket cable 232 pulls the heavy load container sealing liquid water jacket 233 to rise along the surface of the heavy load container outer wall and lining wall 218;
  • the high-pressure hose passes from top to bottom through the wear-resistant, damage-resistant and aging-resistant sealing strip 215 and part of the head of the spring block 216 (and is sealed at the intersection). It descends at the same time to ensure the pressure-maintaining effect between the outer vertical wall of the heavy-load container and the heavy-load storage tank 2 (i.e., the heavy-load energy storage tank 2) to ensure that the heavy load is as upright as possible and reduce friction.
  • the heavy-load energy storage tank 2 i.e., the heavy-load energy storage tank 2
  • Figure 10 This structure is shown in Figure 10 and Figure 11 (Figure 10, a heavy-duty energy storage tank with a high-pressure hydraulic hose inserted vertically into the cavity between the heavy-load container and the side wall of the energy storage tank) ( Figure 11, a high-pressure hydraulic hose inserted vertically into the heavy-load energy storage tank Partial view of the side cavity of the heavy-duty storage tank between the side walls).
  • FIG 10 and Figure 11 hydraulic high-pressure hoses are connected from the side of the inner wall of the heavy-duty storage tank (i.e., the heavy-duty storage tank 2) to the outside of the heavy-duty container where the high-pressure hoses are respectively connected.
  • the cavity between the wall and the inner wall of the heavy-load storage tank 2 this structure is shown in Figure 10 and Figure 11 ( Figure 10, the heavy-duty storage tank where the high-pressure hydraulic hose is placed vertically into the cavity between the heavy-load container and the side wall of the storage tank Energy pool) ( Figure 11, partial view of the side cavity of the heavy-duty energy storage tank where the high-pressure hydraulic hose is inserted vertically between the side walls of the heavy-duty energy storage tank).
  • the lifting device 210-1 of the heavy-duty pool inspection entrance door uses a hinged hook or a steel cable to lift the inspection entrance door 210-5 to the top dead center, and triggers multiple series-connected travel switches to open the inspection entrance door.
  • the lifting device stops moving. At this time, the space inside the heavy-duty reservoir 2 has been opened, and the maintenance personnel can enter for maintenance;
  • S18-1 same as S17-1, first use the digital twin technology to obtain the electronic model of the entire energy storage facility and the reduced version of the physical model prediction (including the center of gravity model) analysis: when the water in the heavy-duty reservoir 2 is drained Finally, predict which side the heavy load may be slightly biased to, and then use digital or simulated gap detection facilities and other optical facilities and cameras (such as detection through the distance position sensor indicated by 214) for multiple reliable experiments and multiple adjustments. Clearances in parts prone to collision avoid possible collisions (such as preventing collisions between the outer wall of the heavy-load container and the inner wall of the heavy-load reservoir 2, etc.);
  • the electronic model of the entire energy storage facility and the reduced version of the physical model prediction (including the center of gravity model) analysis obtained through digital twin technology After the water in the heavy-load reservoir 2 is drained, the heavy-load prediction Which side may be slightly tilted, and then use digital or simulated gap detection facilities and other optical facilities and cameras (such as detection through the distance position sensor indicated by 214) to perform multiple safety experiments and adjust the gap avoidance of easy-to-collision parts multiple times. Prevent possible collisions (such as preventing collisions between the outer wall of the heavy-duty container and the inner wall of the heavy-duty reservoir 2, etc.);

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种水轮机抽排水驱动能量转化的多尺度重力储能设施与方法,该设施包括重载蓄水池(2)、一台或多台水轮机(1、4)、重载蓄水池与载重设施的侧面压力缓冲结构、重载蓄水池底部的重载缓冲装置、重载蓄水池内壁与载重设施的侧面压力缓冲液压系统装置、普通蓄水池(3)。

Description

一种水(液体)轮机抽排水(液体)驱动能量转化的多尺度重力储能设施与方法 技术领域:
本发明涉及多尺度储能领域,具体为一种水轮机(即可逆式水轮发电机或水轮发电机加水轮机,简写为“水轮机”,下同)抽排水驱动能量在重力势能与电能相互间转化的多尺度重力储能设施与方法。
背景技术:
“碳达峰、碳中和”在国家及世界可持续发展与环境保护、气候变化、全人类永续长存及幸福福祉与保障能源可持续发展、优化能源结构、节能、优化电能质量、减少电能浪费等问题上意义重大;而储能在中国及全球“碳达峰、碳中和”中价值重大;在包括储能在内的“源网荷储”一体化是实现“碳达峰、碳中和”目标的重要支柱,储能在风电、太阳能发电、电力削峰填谷、改善电能质量、提高可靠性、改善电网特性、满足可再生能源需要等及提高“源网荷储用”电力系统经济性可行性或效益效能等方面具有举足轻重的巨大作用。
储能装置/设施是把能量储存起来的装置/设施,储能装置/设施通常有抽水蓄能、飞轮储能、压缩空气储能、氢气与其他合成燃料储能、电化学储能、电容器储能、热能储存、超导储能、电力系统自身储能等,其中抽水蓄能是大规模储能技术中及当前市场上最具优越性、高效、大容量的储能技术,也是最成熟、可靠、安全、长寿命的一种储能技术,但比本专利技术损耗高的一种技术。而氢气与其它合成燃料储能成本高、易燃、易爆;飞轮储能容量有限、损耗较高、能量密度不够高、自放电率高、存储时间有限;电化学储能成本高、部分存在发热问题、比本专利方案及抽水蓄能寿命短很多;压缩空气储能适合场合有限、效率低、气体压缩发热多;电容器储能损耗高、易自放电、成本高、寿命不比像抽水蓄能一样长寿命的本专利方案;超导蓄能能量密度低、具有一定自放电;热储能自损耗大、场合场所局限较大;化学储能效率较低、成本较高;其它小众储能方式亦有很多导致难于大规模推广的劣势,等等。
本专利以水轮机抽排水驱动的多尺度重力储能方式除具有上述与抽水蓄能基本一样的优点外,还是综合效率高、储能量可巨大(又还是多尺度)、机动灵活可靠、运行工况多、寿命长、转换能量快、寿命期内度电平均综合成本较低、安全、可靠、极具竞争力的储能及能量转化方式,且抽水蓄能方式其具有选址很困难,往往在偏僻郊野,且存在建设成本高、拆迁安置难、交通运输难、架线难、需力防渗漏、易蒸发、建设周期长、损耗较大(与本专利技术相比)等缺点,以及郊野拓荒导致建设困难,抽水蓄能也需要考虑地质条件,故本专利继承了抽水蓄能几乎所有的优点,还可以在地质条件允许的非荒野、非郊野建设,这样降低了建设、施工、交通、输运的难度及成本,还选址灵活,也就是说基本克服了抽水蓄能绝大部分缺点、不足之处。
而其它各种储能方式各有各的优点,但基本没有达到抽水蓄能的综合性能、综合效益、综合竞争力,而本多尺度重力储能设施除基本兼顾了抽水蓄能优点及基本克服了其缺点外,本水轮机抽排水驱动的重力多尺度储能设置还可以兼顾超大规模、大规模、中等规模、小规模储能等多尺度储能方式,还基本可以做到泄漏损耗极低,甚至可以做到无泄漏。
发明内容
针对现有技术的不足,本发明提供了一种水轮机抽排水驱动能量转化的多尺度重力储能设施与方法,以解决上述背景技术中提出的问题。
为实现以上目的,本发明通过以下技术方案予以实现:一种水轮机抽排水驱动能量转化的多尺度重力储能设施,包括以岩石、砂石或矿石(包括且不限于密度较大的较难经济利用的贫铁矿石、贫铜矿石、贫铅锌矿石、锰矿石等石头等)或土壤、泥土(当使用土壤和泥土时在重载蓄水池2中重载的上部需要加封密封盖密封结构)、及以高密度物质(包括复合、杂合物质)的重力来蓄能的设施,所述设施包括重载或超重载物质、重物质或超重物质坚固容器、容器外壳、防重载倾斜磕碰的容器侧面外层的及通过水或其它液体分压的多个封闭分隔结构(封闭液体起缓冲作用,包括耐磨损耐老化耐损坏封条、抵板、弹簧、检修便利结构等)、重载的承重底板、承重底板凸台等。重载降落触底后,在底部的水压(液压)缓冲装置组成有:底部凸台侧向框形防磕碰增大的且为降高式的封水(封液)环、底部凸台内封水(封液)分隔框、分隔框内密封条、分隔框内密封条抵板、抵板弹簧、底部弹簧下的缓冲垫板等。
整个水轮机抽排水驱动能量转化的多尺度重力储能设施由承受重载的蓄水池2、可逆式水轮机1、普通蓄水池3、可逆式水轮机4及承受重载的蓄水池2均分侧面的液体压力的液压系统5组成。
进一步地,承受重载的蓄水池2依次经防水锤装置(其安装在地面上的管道上)及电动阀门后与可逆式水轮机1(或水轮机1,本文均与此相同)固定连接。
进一步地,可逆式水轮机1(或水轮机1,本文均与此相同)经电动阀门与蓄水池3底部或下部通过管道固定连通;
进一步地,蓄水池3经电动阀门通过管道与可逆式水轮机4(或水轮机4,本文均与此相同)固定连通。
进一步地,可逆式水轮机4(或水轮机4,本文均与此相同)依次经电动阀门、防水锤装置通过管道与承接重载的蓄水池2固定连通。
液压系统(见图5)由水箱、电动阀门、过滤器、双向变量液压泵、单向阀、溢流阀、电磁换向阀、压力计(压力指示器)、蓄能器、压力继电器等组成(下面连接见图5)。
进一步地,水箱和电动阀门固定连接;
进一步地,电动阀门和过滤器固定连接;
进一步地,过滤器与双向变量液压泵连接;
进一步地,双向变量液压泵一条分支与单向阀固定连接,另一分支依次与溢流阀、水箱固定连接
进一步地,单向阀与电磁换向阀固定连接;
进一步地,电磁换向阀依次与压力计(压力指示器)、蓄能器和两个压力继电器固定连接;
进一步地,经压力继电器再与承受侧向水(液)压力的蓄水池2(承受重载的蓄水池)的侧面的间隙分隔腔单元固定连接。
一种水(液体)轮机抽排水(液体)驱动能量转化的多尺度重力储能设施与方法,该方法使用一种重力势能与电能互相转化的装置,步骤如下:
S1、重载与蓄水池2的侧面的以水(液体)为介质的液压系统5向该处封水(液)分隔空间供水供压(以防止重载倾斜靠向一侧成为点线接触,用来实现重载倾斜时重载容器与重载蓄能池间为通过侧面水压的面接触);
S2、蓄水池2的重载上升,从而重载势能增加阶段:可逆水轮机从电网获取电能以启动可逆水轮机并向承重蓄水池2输水,蓄水池2下部水(液)量增加,水(液)压力增大,重载上升;
S3、重载上升途中可以随时停止,或重载达到最大升程时行程挡块触动行程开关281(为保险起见使用多个行程挡块及行程开关,行程开关在可逆水轮机启闭电路中串联以实现多重保险,再在重载上部增加可视化监控及人力监控,及在图9的重载顶部增加引出可视化的透明液体连通器,以监控重载上部液面高度),以实现重载停止上行;
S4、重载某一侧上部可能在上升前已经靠住蓄水池2的同侧上部,或者重载某侧上部在可逆水轮机向蓄水池2输水过程中靠向同侧蓄水池上部,同时重载同侧下部与蓄水池2远离。重载在靠向蓄水池2时,则侧面水(液)压力增大超过该处压力继电器设定值,同时位置距离传感器感应到距离减小到超过设定值,则位置距离传感继电器也起作用,则在程控控制下双向变量液压泵就向蓄水池2前述侧面封闭空腔供给水量(液体)以增大压力到压力继电器设定的压力,从而使蓄水池2的该侧面在空腔立面内受力均匀、不磕碰。
而当在某一侧的某部位重载容器外立壁与重载蓄水池2间间距增大时,液压系统5就通过左移的电磁换向阀及通过调速阀因自吸、气压和水的势能压力作用向重载容器外立壁与重载蓄水池2间的对应空腔单元补液(如补水)(而当向间隙减小的侧面空腔补液以调正重载容器时,这个间隙超过额定值的空腔内的液体将以适当速度和适当压力经左移的电磁换向阀、调速阀向水箱排出液体,即液体被挤出);这样在此对应空腔单元补液(如补水)的目的在于为防止重载容器运动时(在重载蓄能池2下部液体压力作用下)其突然转向,即重载容器外立壁与重载蓄水池间的间距突然由较大间隙转向小间隙,甚至发生磕碰现象,此以上方案为防止其两者间的突然磕碰;
S5、当蓄能停止时,可逆式水轮机(一个或多个,本文均同)停止及制动,然后关闭水轮机与蓄水池2之间的电动阀门,管道中的多个防水锤装置起作用以防流体液压冲击;
S6、当需蓄能后重载的重力势能转化为电能时,打开可逆式水轮机的专用电动阀门,启动可逆式水轮机(一个或多个,本文均同)发电,水轮机把水(流体液体)排入蓄水池3。
S7、可逆式水轮机带动发电机发电,同时向电网供电;
S8、当蓄水池3中的水量(流体)因蒸发或损失、减少时,就打开此对应电动阀门,启动补水双向液压泵(见图1右下角)对蓄水池3补水。
本发明具备以下有益效果:
(1)通过利用电网电能驱动可逆式水轮机(一个或多个,本文均同)从蓄水池3抽水泵入蓄水池2下部,蓄水池2上部的重载在可逆式水轮机泵入的水(流体)压力作用下沿蓄水池2内壁上升,则多尺度电能(可以为超巨量、巨量、大量、中规模、小规模的电能)转化为重载的多尺度势能(可以为超巨量、巨量、大量、中规模、小规模的重载势能,不过需要考虑地质安全、重载蓄能池及储能系统相关零部件防破损等安全情况、安全条件等)。
(2)通过利用重载的压力加载在蓄水池2中的流体(水)上,增大了流体(水)的压力,激增的水压力把其中产生的动力推动可逆式水轮机转动,从而发电。
(3)为重载容器外侧与蓄水池2内侧间分隔的空腔供给水量(液体)的供水(液体)液压系统5可以为此分隔空腔提供含压水量(液体),以防止重载在水轮机泵入水量而上升时重载与蓄水池2发生点线状磕碰,使重载外立壁与蓄水池2内立壁受压均布、均匀;
优选地另外方案:(见图7)采取去除耐磨耐损耐老化密封条215、弹簧抵块216、弹簧217、重载容器外壁兼密封装置的检修更换密封条之用的结构部件219;然后,重载容器外侧部与重载蓄水池2内侧部间以小间隙配合,以减小重载容器因略微倾斜导致对重载蓄能池2的侧向压力,并以小摩擦系数物质减摩,如水等液体减摩,此结构见图7(含小间隙的侧壁间空腔的重载蓄能池);
再一个优选方案为:(见图8),同样去除重载容器外侧部的以上零部件,然后,在重载容器外侧壁与重载蓄能池2内壁间的间隙安设若干支持结构支持滚柱(含其它滚动体、滚子,前后文中皆同)以此产生重载蓄能池2对重载容器的支持作用力,并以滚动摩擦减摩,此结构见图8(小间隙的侧壁间空腔置滚柱的重载蓄能池)。
(4)对重载外侧立壁与蓄水池2内侧立壁间空腔加以分隔,并使用密封条分隔此间隙(形成分隔空腔),以及用弹簧、抵块(顶块)顶紧以防泄漏,从而有助于重载外立壁与蓄水池2内立壁受压均布、均匀;
(5)蓄水池2检修期间需要在重载落下接触到蓄水池2底部,即此时蓄水池2底部凸台支撑重载,此时需要对重载承载设施容器底座与蓄水池2底部凸台压力进行均布、匀化,方案是:需要对蓄水池2底部凸台分隔成格状或条状,分隔区间内分割有分隔空腔,分隔空腔内存水(存液),由分隔空腔内的水(液体)使凸台平面均匀支撑重载,以保护蓄水池2的底部凸台,蓄水池2底部凸台外圈环形框比重载容器下凸台大一些,并使其高度低于蓄水池2底部凸台内分隔腔中的分隔密封条高度,以避免重载容器下凸台与其相磕碰,分隔密封条由抵块(顶块)和弹簧向上顶住。
(5)由于本设施高度较高,故增设并联连接的避雷针一体化系统。
(6)对没有重载加载的蓄水池3增加额外补水双向变量液压泵(见图1右下角部位装置)和梯子,蓄水池3顶部加设升降机等。
(7)重载蓄能池2内的有可开闭式结构的(所谓“开”指的是重载蓄水池【即重载蓄能池】下部有一个检测检修入口门可以打开,当其关闭时,即为“闭式,此即为“可开闭式”;见图4【重载蓄水池2的检测入口门及相关结构示意图】)、拼接的、全密封的密封大水套(即大水袋,前后皆同)可以极大防渗漏(甚至杜绝渗漏)及使液体压力均匀传递给重载蓄能池2下部各部位、各部件。
以上设计保证该多尺度储能设施可以安全、可靠、长期、高效率、高效益、可维修维护地进行大循环次数的重复使用。
附图说明
图1为本发明一种水轮机抽排水驱动能量转化的多尺度重力储能设施与方法示意图;其中重载物质在重载顶部处于最高点时该顶部处于重载蓄能池的内部;或者在长期安全、长期可靠、长期稳定、长期无风险、做好安全防护等情况下重载顶部可以运行到适当高于重载蓄能池顶部的高度(不可过高、不可危及安全)。以上两种方式均需:同时把多个可触发自动报警的行程开关配对的行程挡块的位置提高到其高止点,当多个行程挡块任一个碰到其对应的任一行程开关时或同时碰到时相关装置时可触发警报并自动停止重载上行;且还要在其下面设置多个接近高点的提醒行程开关触发报警装置,再设置接近高点和到达高点的人工报警措施及相关停止装置,即采用多举措安全措施以保证安全性(特别包括严格控制水池内的水或液体的总量以确保在蓄能时不至于把重载推得过高,从而不至于在蓄能时使重载越过最高止点、使重载掉到地面上来,此为另一个保证设施、设备的安全的措施,还要特别要防止下雨、下雪及其它使水池内水量增加的因素,还要增加防止水量增加和过多减少的措施,比如加装防水量变化的顶盖及加装安全水位线装置,及增加自动预警、自动报警、自动停止与人工观察、人工停止等多措施、多方案综合确保举措)。
图2为本发明图1中重载蓄水池2结构示意图;
图3为本发明图2中重载蓄水池2下部及可叠合式(可折叠式)全密封水套的局部放大结构示意图;
图4为本发明中重载蓄水池2的检测入口门及相关结构示意图;
图5为本发明中重载与蓄水池2侧面间空隙分隔腔的防磕碰液压系统。
图6为本发明中重载容器外壁兼密封装置检修更换用结构部件219(例举四种变型:219(A)、219(B)、219(C)和219(D),但不限于这四种)及密封装置放大图。
图7为含小间隙侧壁空腔的重载蓄能池(重载与重载蓄能池间的侧面小间隙空腔内置入减摩物质,如减摩的润滑液体等;或前述两者间仅良好光滑小间隙配合而不放置减摩物质)。
图8为小间隙侧壁间空腔置滚柱的重载蓄能池(重载与重载蓄能池间的侧面小间隙空腔内置入小摩擦的滚动物体,如滚柱等)。
图9为水轮机在重载蓄能池底部与上部间抽、排水(液体)以蓄能与发电的多尺度蓄能设施(重载蓄能池上部密封盖上设置有小排气孔,用以在水轮机在重载蓄能池底部与上部间抽、排水(液体)以蓄能与发电时,重载蓄能池上部空腔与大气压连通以用来进、排气体平衡大气压)。
图10为高压液压软管竖直置入重载蓄能池侧壁间的重载蓄能池(在重载蓄能池上部的高压液压软管较长,以利于重载的上下移动,不至于出现拉动受限而出现拉断现象)。
图11为高压液压软管竖直置入重载蓄能池侧壁间的重载蓄能池侧部空腔局部视图(在重载蓄能池上部的高压液压软管较长,以利于重载的上下移动,不至于出现拉动受限而出现拉断现象)。
图12为带水套的附挂叠合式板件的重载蓄能池局部视图(在重载蓄能池下部空腔内的叠合式板件的最上部板件及最下部板件通过螺栓紧固在重载蓄能池内壁,同时通过叠合式板件上设置滑槽和空套的可以滑动的螺栓,叠合式板件间可以互相移动、滑移)。
图13为带水套的附挂叠合式板件的重载蓄能池局部放大视图(水套为特制的内带加强筋(如钢丝等)高强度软质的、尺寸大小足够重载上行到上止点的水套(即水袋),叠合式板件上设置滑槽和在连接的两块叠合式板件中的于一块板件上空套、于连接的另一块板件上固定的螺栓,即使叠合式板件间可以互相移动、滑移)
图14为蓄水池3设置在重载蓄能池上部的输送液体(或水)方式,其中水轮机为可逆式水轮机或为抽水蓄能用水轮机与排水发电的水轮发电机的组合。其中重载物质在重载顶部处于最高点时该顶部处于重载蓄能池的内部。以上两种水轮机应用方式均需:同时把多个可触发自动报警的行程开关配对的行程挡块的位置提高到其高止点,当多个行程挡块任一个碰到其对应的任一行程开关时或同时碰到时相关装置时可触发警报并自动停止重载上行;且还要在其下面设置多个接近高点的提醒行程开关触发报警装置,再设置接近高点和到达高点的人工报警措施及相关停止装置,即采用多举措安全措施以保证安全性。
图14蓄水池3设置在重载蓄能池上部的输送液体(或水)方式中输送水(液体)的管道上端出口的其一种方案为设置在重载蓄能池的顶部,并在输送水(液体)的管道上端出口接高强度、高可靠、耐磨、耐老化、耐损坏的软管;另一种方案为设置在重载蓄能池上部的侧面,同样在输送水液体的管道上端出口接高强度、高可靠、耐磨、耐老化、耐损坏的软管(此软管装在导引装置上或导轨上或规正装置上,以使此软管在此重载上下运行时能稳定、可靠的运动使其一直能正常、可靠输水)。此两种方案接软管的目的在于可以使水轮机抽取重载蓄能池上部的水(液体)到重载蓄能池下部来蓄能时基本可以把它抽完,使蓄能量最大;第三种方案为输水(液体)管道上端出口位于重载蓄能池顶端,再在重载上部对应位置上开配合的长沉孔,且长沉孔的径向尺寸及其长度应大于相配合的输水管道相应径向尺寸及长度大小,以使输水管道可以在抽水蓄能时抽完水(液体),使蓄能量最大,以及加装防止杂物、异物、固体物质等掉进此长沉孔的过滤、除杂等装置;还有另一种方案为在输送水(液体)的管道上端出口设置在重载蓄能池中部或中下部的侧面,再在重载容器相应侧面或重载蓄能池相应内侧面设置导水槽,并要确保重载容器和重载蓄能池及各抽水蓄能相关设施、装备的高强度、高耐久性、高可靠性、高耐疲劳性等安全指标,以上三者及其他相关设施、装备还要同时做好相互的配合工作及需要做好重载容器和重载蓄能池防磕碰、防损坏等工作;在此优先推荐前三种方案。另一种方式为把图14的输水软管改为可伸缩的输水(液体)管道(如硬管),在重载下行及上行时,输水(液体)管道随之或伸或缩且一直能排水与吸水、输水(或液体)。再一种方式为在图14上部的顶盖板设计为可活动、可浮起的浮动式盖板,此盖板随重载(如14图)的上下行而在重载上部液体作用下浮起,同时使输水(液体)管道能在水轮机运行时可以一直能输送水(液体)以使此重力储能设施能一直能储能及发电放能。
说明书附图及相关设备、零部件、组成要素的其它说明:
图1中:1、水轮机;2、重载蓄水池;3、普通蓄水池;4、水轮机;5、重载与蓄水池2侧面间空隙分隔腔的防磕碰液压系统;
图2中:210、重载蓄水池2检修入口门及门提升装置;211、电动阀门;212、防水锤装置;213、重载蓄水池池壁加强结构;214(多个,如214-1和214-2)、感知重载容器外立面的重载容器外壁兼密封装置检修更换用结构部件219正对点(在214指示点正对在219部件的正对处安装从重载容器的顶上到底下立式条状的距离位置被感应器)重载容器耐磨耐损衬壁218对应 点的距离的距离位置传感器安装点;215、耐磨耐损耐老化密封条;216、弹簧抵块;217、弹簧;218、重载容器耐磨耐损衬壁;219、重载容器外壁兼密封装置检修更换用结构部件;220、重载;221、重载容器内壁;222、重载容器密封挡壁兼重载容器加强壁;223、避雷装置;224、液压管;225、电动阀门;226防水锤装置;227、重载容器底部凸台;228、重载水池底部均载用液压缓冲分格组件;
图3中:229、重载水池底部均载用液压缓冲分格密封条;230、均载用缓冲分格弹簧抵块;231、弹簧;232、重载容器封液水套拉索;233、重载容器封液用可叠合式(可折叠式)水套;234、重载水池基座;235、重载水池加强底座;236、重载底座液体分隔腔;237、重载底座密封条抵块安装板;238、重载底座均载缓冲板;239重载底座均载承压板;
图4中:210-1、重载水池检修入口门的提升装置;210-2、检修入口门密封主结构门框;210-4、检修入口门密封条;210-5、检修入口门;
图5中:501、水箱;502、电动阀门;503、过滤器;504、双向可逆式液压泵;505、单向阀;506、电动换向阀;507、指示器或液压计;508、蓄能器;509、第一压力继电器(低压压力继电器);510、第二压力继电器(高压压力继电器);511、溢流阀;539、调速阀;512、采集重载容器外立面的重载容器外壁兼密封装置检修更换用结构部件219的正对点(图2中标注为214-1和214-2指示的在219中的正对点)重载容器耐磨耐损衬壁218对应 点的距离的距离位置传感继电器,即从214(多个,如214-1和214-2:通过在 成对出现的从重载容器的顶上到底下立式条状的被感应器214-1(A)和214-2 (A)与可以分别与其配对的各种形式的传感器214-1(B)和214-2(B)间 的作用来采集距离并进行处理后应用的距离位置传感继电器;
图6中:219-1为沉头螺栓孔、219-2为短销孔,219-3为吊装用螺孔。
图7中(即含小间隙的侧壁间空腔的重载蓄能池):250为重载容器与重载蓄能池间的小间隙空腔,其余标注(如数字标注等)见图1至图6。
图8中(即小间隙的侧壁间空腔置滚柱的重载蓄能池):7为地基,250为重载容器与重载蓄能池间的小间隙空腔,251为滚动体,如滚柱等,其余标注(如数字标注等)见图1至图6中标注含义。
图9中(即水【液】轮发电机在重载蓄能池底部与上部间抽、排水(液体)以蓄能与发电的多尺度蓄能设施):6为含平衡大气压的小孔的密封盖,7为地基,9为水(液)轮发电机的大口径输液管【如输水管等】),其余标注(如数字标注等)见图1至图6中标注含义。
图10中(高压液压软管竖直置入重载容器与蓄能池侧壁间空腔的重载蓄能池):270为调节重载与重载蓄能池间侧面空腔间隙大小的、输送液体(如水)以液压传力的高压液压软管,6为带平衡气压小孔的密封盖,9为水轮发电机输液管(如输水管),其余标注(如数字标注等)见图1至图6中标注含义。
图11中(即高压液压软管竖直置入重载蓄能池侧壁间的重载蓄能池侧部空腔局部视图中),270为调节重载与重载蓄能池间侧面空腔间隙大小的、输送液体(如水)以液压传力的高压液压软管,6为带平衡气压小孔的密封盖,9为水轮发电机输液管(如输水管),其余标注(如数字标注等)见图1至图6中标注含义。
图13中和图12中(图13、带水套的附挂叠合式板件的重载蓄能池局部放大视图中)(图12、带水套的附挂叠合式板件的重载蓄能池局部视图):297为用于方便水套叠合及起减摩作用的叠合式板件(有很多块叠合式板件,每块板件高度不高于盛装重载的重载容器下部向下凸起的承载基部的高度,以利于可叠合式板件在重载容器落地叠起时,不至于被重载容器压坏),298为空套在可叠合式板件上的空套式可滑动螺栓(固定在两块叠合板件中的其中一块上,但任两块叠合式板件可以相互滑动),233为重载容器封液用可叠合式或可折叠式巨大水套(该水套总高度大于或等于重载容器行程与重载容器向下凸起的凸台高度之和,以使重载容器能上升到上止点而不破坏该巨型水套),其余标注(如数字标注等)见图1至图6中标注含义。
具体实施方式
下面本文将结合本发明实施例中的附图,对本发明实施例中的技术方案、方法进行清楚、完整地描述,显然,所描述的实施案例仅仅是本发明一部分实施案例,而不是全部的实施案例,其它未列出的相关的、相变通的、相改变的实施案例也包含在本发明专利权属中。
所述实施案例的示例在附图中示出,其中自始至终相同的或类似的标号表示相同的或类似的元件或者具有相同的或类似的功能元件。下面通过参考附图描述的实施案例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
请参阅图1,本发明提供一种技术方案:一种水轮机抽排水驱动能量转化的多尺度重力储能设施与方法,包括一台或多台排水发电装置1(可逆式或抽排成对出现的常规式水轮机1和4)、作为抽水储能装置的重载蓄水池系统2、普通蓄水池3、蓄水池内壁与重载容器的侧面防磕碰缓冲液压系统装置5。
其中抽水储能装置重载蓄水池系统2(即重载蓄能池,下同),请主要参阅图2及然后部分参考图7、图8、图9、图10、图11、图12、图13、图14:
抽水储能装置重载蓄水池系统2,包括:
重载蓄水池2检修入口门及门提升装置210位于在重载蓄水池正面外部靠基座处;电动阀门211连接防水锤装置212;防水锤装置212再通过管道连接到重载蓄水池池底部或下部;重载蓄水池池壁加强结构213与重载容器耐磨耐损衬壁218固结;重载容器外立面的重载容器外壁兼密封装置检修更换用结构部件219相对点(如图2所示214-1和214-2所指正对在219部件上之处)安装从重载容器的顶上到底下立式条状的被感应器(距离位置被感 应器)214(A)(多个,如214-1(A)和214-2(A)),同时重载容器耐磨耐损衬壁218相对点(如图2所示)安装传感器(距离位置传感器)214(B)(多个,如214-1(B)和214-2(B));耐磨耐损耐老化密封条215紧固在弹簧抵块216上;弹簧抵块216被弹簧217顶紧,耐磨耐损耐老化密封条215压紧在重载容器耐磨耐损衬壁218上;耐磨耐损耐老化密封条215、弹簧抵块216及弹簧217安装在重载容器外壁兼密封装置检修更换用的结构部件219上;重载容器外壁兼密封装置检修更换用的结构部件219与重载容器密封挡壁兼重载容器的加强壁222压紧并固定连结;重载容器内壁221内承载重载220;避雷装置223安装在重载蓄水池顶部;液压系统5通过多根液压管(如液压管224)与蓄水池内壁与重载容器的侧面间空腔连接;电动阀门225连接防水锤装置226;防水锤装置226再通过管道连接到重载蓄水池池底部或下部;重载容器底部凸台227通过液压(水压)作用在重载水池底部均载用液压缓冲分格组件228及重载水池其它部位;281为重载及其容器上止点行程开关;
优选地,见图9,普通蓄水池3另一种设计方案为其容器空间设置在重载蓄水池2的上部空出来的位置,即重载蓄水池2下部的水通过管道、防水锤装置及电动阀门、水轮机连接到重载蓄水池2的上部空出来的容器内部位,并设置部分类似于普通蓄水池3或者来源于自来水的整个储能装置的蒸发后或耗损后的补水(补液)设施,此结构见图9【水(液体)轮机在重载蓄能池底部与上部间抽、排水(液体)以蓄能与发电的多尺度蓄能设施】;
优选地,见图10,液压系统5中连接到重载蓄水池(即重载蓄能池,下同)的侧壁空腔的液压管出口的连接方案为:通过液压高压软管(经防锈蚀防损坏的高强度缆绳捆绑,防止因高压软管下垂长度很长导致的强度不足问题)从重载蓄能池2越过其上部往下穿过耐磨耐损耐老化密封条215及弹簧抵块216的头部部分(并在相贯交叉处密封),并连接到高压软管各自分别连接的重载容器外侧壁与重载蓄能池2内壁间的空腔;高压液压软管内输送含压力液体(如水)以保证重载容器外侧立壁和重载蓄水池2(即重载蓄能池2)内壁空腔间的液体(如水)保压效果,以确保重载尽量正立,减小摩擦,此为优选方案,此结构见图10【高压液压软管竖直置入重载容器与蓄能池侧壁间空腔的重载蓄能池】。
本专利另一种方案为:见图9和图10,通过液压高压管道从重载蓄能池(即重载蓄水池2)内壁侧面连接到高压软管各自分别连接的重载容器外侧壁与重载蓄能池2内壁间的空腔,此结构见图9和图10(图9、水【液】轮发电机在重载蓄能池底部与上部间抽、排水(液体)以蓄能与发电的多尺度蓄能设施)(图10、高压液压软管竖直置入重载容器与蓄能池侧壁间空腔的重载蓄能池)。
优选地,见图8和图9,重载蓄水池2下部的经强化强度的基脚、基础部可嵌入地表(即地基)以下一定深度,以重载蓄水池2外侧部支持结构强化以支持降低重载蓄水池2侧围部位的拉应力,增加此储能系统强度及适当、合理降低重载蓄水池2外围部厚度。否则,重载蓄水池2侧围部位需加厚及加强基础部位、基脚部位的强度,以加强侧围部位及基础部位、基脚部位的相关强度部件,包括大力加强重载蓄水池池壁的加强结构213及其外部的支持部等部位,此结构见图8和图9(图8、小间隙的侧壁间空腔置滚柱的重载蓄能池)(图9、水【液】轮发电机在重载蓄能池底部与上部间抽、排水(液体)以蓄能与发电的多尺度蓄能设施)。
优选地,重载蓄能池2整个池内侧立壁的整体轮廓图形状可以为长方体或多面棱柱或圆柱体等各种立体结构。
另外的优选的方案一,(见图7)对于把重载与蓄水池2侧面间空隙分隔腔的防磕碰液压系统去除,及把重载容器外侧部的以下相关部件去除:即去除耐磨耐损耐老化密封条215、弹簧抵块216、弹簧217、重载容器外壁兼密封装置检修更换用结构部件219;然后,重载容器外侧部与重载蓄水池2内侧部间以小间隙配合,及两者设置成严格竖直方向上安置,以此相关方法降低两者间因重载的略倾产生的摩檫力,且这两部位采用耐磨损耐腐蚀的高耐损材料制造(如高耐损钢材料等),并以水或其它摩擦系数小的物质减摩,此结构见图7(图7、含小间隙的侧壁间空腔的重载蓄能池);
优选地,见图9和图10,再其次优选的方案二:见图8,同样去除上述215、216、217和219等相关部件,重载容器外侧部与重载蓄水池2内侧部间的间隙设置安放若干滚柱以滚动摩擦有效降低两者间因重载的略倾产生的摩檫力,且两部件设置成严格竖直方向上建造,此结构见图8(图8、小间隙的侧壁间空腔置滚柱的重载蓄能池)。
(见图9和图10)为防止重载蓄能池2(包括普通蓄水池3)中水(或液体)的挥发或蒸发,整个蓄能池可以除了中部及下部密封外,全部可能导致水(或液体)挥发或蒸发的部位均可密封,包括重载蓄能池2上部,以利于在缺水地区使用,此结构见图9和图10(图9、水【液】轮发电机在重载蓄能池底部与上部间抽、排水(液体)以蓄能与发电的多尺度蓄能设施)(图10、高压液压软管竖直置入重载容器与蓄能池侧壁间空腔的重载蓄能池)。
重载蓄水池2下部局部放大结构示意图,请参阅图3:
重载水池底部均载用液压缓冲分格组件228包括:重载水池底部均载用液压缓冲分格密封条229、均载用缓冲分格弹簧抵块230、弹簧231、重载底座液体分隔腔236、重载底座密封条抵块安装板237、重载底座均载缓冲板238与重载底座均载承压板239等部件;
重载水池底部均载用液压缓冲分格密封条229紧固在均载用缓冲分格弹簧抵块230上;
优选地,弹簧231压紧均载用缓冲分格弹簧抵块230;
优选地,重载水池加强底座235与重载水池基座234固连;
优选地,重载水池底部均载用液压缓冲分格密封条229与均载用缓冲分格弹簧抵块230及重载水池底座密封条抵块安装板237三者构成重载水池底座液体分隔腔236;
优选地,重载水池加强底座235、重载水池基座234、重载水池底座密封条抵块安装板237、重载水池底座均载缓冲板238与重载水池底座均载承压板239五者固连在一起;
优选地,重载容器封液用水套拉索232用于拉动重载容器封液用可叠合式或可折叠式水套233随重载容器上下滑动;
优选地,重载容器外壁兼密封装置检修更换用结构部件219经沉头螺栓孔219-1通过螺栓连接到重载容器密封挡壁兼重载容器加强壁222;
优选地,重载容器下部连接有防重载容器啃咬重载蓄水池2内的水套的角状物装置286;
优选地,见图12和图13,可以在全密封水套及防其被啃咬的角状物286装置外设置可叠合、可拉开的伸缩式耐损坏的板件以配合重载上下运动时全密封水套的叠合或折叠,以进一步配合其折叠相关运动与防止其被磨损,防止其被啃咬及被损坏,此结构见图12和图13(图12、带水套的附挂叠合式板件的重载蓄能池局部视图)(图13、带水套的附挂叠合式板件的重载蓄能池局部放大视图)。
重载蓄水池2的检测入口门及相关结构210示意图,请参阅图4:
优选地,检修入口门210-5置于检修入口门密封主结构门框210-2内,并用检修入口门密封条210-4四周全部密封;
优选地,用挂钩或钢索把检修入口门210-5与重载水池检修入口门的提升装置210-1相连接或铰接;检修入口门密封条210-4采用角形或T形与重载蓄水池相密封;
重载与蓄水池2侧面间空隙分隔腔的防磕碰液压系统,请参阅图5:
图5中,电动阀门502通过液压管道与水箱501连接;电动阀门502通过液压管道与过滤器503连接;过滤器503通过液压管道与双向可逆式液压泵504相连接;双向可逆式液压泵504通过液压管道与单向阀505及溢流阀511连接;单向阀505通过液压管道与电动换向阀506连接;电动换向阀506通过液压管道与指示器或液压计507相连接;指示器或液压计507通过液压管道与蓄能器508相连接;通过液压管道与蓄能器508再依次与第一压力继电器(低压压力继电器)509、距离位置传感继电器512、调速阀539及第二压力继电器(高压压力继电器)510相连接;第二压力继电器(高压压力继电器)510再通过液压管道连接到重载蓄水池2内侧面空腔;重载容器外立面的重载容器外壁兼密封装置检修更换用结构部件219上的对应点安装从重载容器顶上到底下的立式长条状距离位置被感应器,同时,与距离位置被感应器成对地,重载容器耐磨耐损衬壁218上的对应点安装检测距离的距离位 置传感器,即在214指示的位置安装多个距离位置传感器(如,214-1(B)和214-2(B))及其指示正对在219部件正对位置上安装多个距离位置被感应器(如214-1(A)和214-2(A))(,如214-1和214-2:成对出现的被感应器与传感器214-1(A)和214-1(B)、214-2(A)和214-2(B),且每个重载容器侧面立壁的防磕碰的盛满液体的空腔两侧都连接有被感应器与传感器,且每个这个空腔均可连接一套液压系统5进行程控调节重载容器外侧面与蓄水池2内侧面的间距距离和此空腔内的液体压力,本发明专利只例举了一种简化画法的图例,即图1,而其它变型设计也应当包含在本发明权属当中);
优选地,另一种取消均分液体压力的侧面的液压系统5的方案:设计、建造重载容器时使重载容器与重载蓄水池2之间为极小间隙配合,且两者配合面的平面度极好,以及其各相配合平面为严格铅锤面,而且要使重载容器内的各相关载荷基本均布,且重心基本位于重载容器的俯视图的中心位置;
优选地,位置距离被感应器及距离位置传感器可以为钢铁质等金属材料与电磁感应装置的配合传感装置,但本专利权属中不限于这一种情况;
优选的另外方案一:见图7,可以把此液压系统5去除,采用把重载容器外侧壁与重载蓄水池2内侧壁间设计为微小间隙来降低重载容器的略微倾斜导致的其对重载蓄水池的侧向压力,及以水等小摩擦系数物质来进一步减摩,此结构见图7(图7、含小间隙的侧壁间空腔的重载蓄能池);
优选的另外方案二:见图8,可以把此液压系统去除,采取在重载容器外侧壁与重载蓄水池2内侧壁间设置若干滚柱及其相关支撑结构以支持重载容器的略微倾斜导致对重载蓄水池2(重载蓄能池)的侧向压力,及采用滚动摩擦减小相对运动的摩擦,此结构见图8(图8、小间隙的侧壁间空腔置滚柱的重载蓄能池)。
重载容器外壁兼密封装置检修更换用的结构部件219,参阅图2及图6,可知:
优选一,219(A)中通过螺栓经沉头螺栓孔219-1与重载容器密封挡壁兼重载容器的加强壁222相连接;
或者优选二,219(B)中通过螺栓经沉头螺栓孔219-1、短销孔219-2(极短,因为方便检修、拆装等,检修、拆装时切记不能遗忘了这个短销)与重载容器密封挡壁兼重载容器的加强壁222相连接;
或者优选三和优选四,219(C)、219(D)和219(A)类似,另外设计219(A)、219(B)、219(C)和219(D)中219-1螺栓孔长度时,要在吊出部件219前能把螺栓取出(为便于阅读,本文没有按比例绘图),以便再吊出部件219。
优选地,另一种安装重载容器外壁兼密封装置检修更换用结构部件219(例举四种变型:219(A)、219(B)、219(C)和219(D),但不限于这四种)及密封装置(包括215、耐磨耐损耐老化密封条;216、弹簧抵块;217、弹簧,等等)的方法是固定连接在重载容器耐磨耐损衬壁218上,而重载容器表面及重载蓄水池2内侧立壁表面为耐磨减摩的光面;
一种水(液体)轮机抽排水(液体)驱动能量转化的多尺度重力储能设施与方法
使用一种能多尺度储存能量的重力储能装置,是可以做成储存超巨量、巨量、大量、中等规模、小规模等多尺度能量储存设施的装置(不过需要多考虑地质安全等安全情况、安全条件等),步骤如下:
一、简述:
调整重载在蓄水池2中正立体位阶段:在水轮机抽水到一定量时通过调控重载容器外侧面位置的行程挡块触碰触发行程开关及通过距离位置传感器、距离位置传感继电器及压力传感器、压力继电器的程序化工作协调下,用于调节重载容器外立壁219与蓄水池2重载容器耐磨耐损衬壁218间压力与距离的液压系统工作以调整重载在蓄水池2中正立体位;
在储能阶段:防漏水的电动阀门打开,电网输送来的电能驱动水轮机从普通蓄水池3抽水(以“水”泛指液体,以下及以上简称为“水”,本发明 权属也同时指液体),则重载蓄水池2下部内的水(液体)增加,重载则上升,风能、水能等产生的机械能或电能转化为重载的势能,此为储能阶段;
在停止储能阶段:当驱动水轮机的电能停止输送供应,则储能停止,当重载的上端点上升到重载蓄水池2的顶点时,重载的上端点触发安装在重载蓄水池2顶点的行程开关281(为确保安全,应设置多个串联的行程开关以停止重载上行),触发行程开关281后,则用于驱动水轮机的电能停供,这时防漏水的电动阀门关闭,进一步防止漏水,这个过程为停止储能阶段;
在释能(释放势能)发电阶段:在重载下降时,电动阀门211等打开,重载势能转化的水压压力能推动水轮机转动,水轮机则带动发电机转子转动,发电机转子与定子的相互转动切割磁力线产生电能,后面接着通过电线向电网输电,则这个过程为释能发电阶段。
二、详细步骤:
调整重载在蓄水池2中正立体位阶段:
S1、电动阀502打开;
S2、当214指示的距离位置被感应器214(A)(在重载容器外壁兼密封装置检修更换用结构部件219上,且为从重载容器顶上到底下的立式长条状)被在重载容器耐磨耐损衬壁218上的对应点安装的检测距离的距离位置传感 器214(B)检测到距离减小到过小时(即重载容器某侧的某部位靠向重载容器的相应侧的相应部位时)(液压系统动作见图5):则重载容器外壁219与重载容器耐磨耐损衬壁218间的空腔液体压力增大,则第二压力继电器(高压压力继电器)510动作;且因为此空腔内的立壁侧面间距减小,则距离位置被感应器214(A)被距离位置传感器214(B)检测到距离小过允许值,则距离位置传感继电器512动作;由于第二压力继电器(高压压力继电器)510和距离位置传感继电器512两者的动作经程控处理后导致图5中换向阀506右移;
S3、液压泵504启动,则液体箱501(如水箱)中液体经液压泵504、单向阀505、换向阀506及液体管(水管)向上述重载容器外壁219与重载容器耐磨耐损衬壁218间的空腔供液,这样将使空腔压力增大;
S4、因S5步骤则空腔两竖向侧壁(219与218间距离)间距增大,当空腔内液体增加到一定的时候,空腔内压力及219与218间间距也增加到一定数值,则第二压力继电器(高压压力继电器)510和距离位置传感继电器512动作,则液压泵停止供液,换向阀停止在中间位;
即:(如图1和图2所示)若距离位置传感器探测到重载容器外壁219与重载容器耐磨耐损衬壁218间的距离恰好等于程控设备设定好数值时(当使用此方法时,每个该液体空腔只接一根连接液压系统5的液压管子,即每个空腔单元与每根输入液压管一一对应,图中为简便连接了两根管子,应去除一根),而该液体空腔内的压力等于设定好的压力时,则电磁换向阀处在中位截止状态;
(参看图2:同时还要协调地把在同一高度的、重载容器另一侧的【即空腔单元间隙增大的一侧,空腔单元间隙减小的对侧】、重载容器外立壁与重载蓄水池内壁间的空腔对应单元中的多余液体排出到水箱,直到位置距离传感器感应到的此空腔单元的间隙值达到设定值,此空腔单元的压力值也要达到设定压力值);
S5、当S4步骤进行到前述注释的括号前的这一步:“则电磁换向阀处在中位截止状态”时,则电动阀门502关闭,则停止向上述因空腔间隙小过允许值的空腔单元供液。
S6、同时蓄能器508提供保压服务;
S7、(见图5,此步骤在与S7步所述的空腔单元相连接的【即空腔间隙变大的空腔单元】、与液压系统5相同的另一个液压系统运行、动作)相类似地,如果上述重载容器外壁219与重载容器耐磨耐损衬壁218间的空腔(以下简称空腔)增大且超过设定值,即219与218间的间距增大,则距离位置被感应器214(A)被距离位置传感器214(B)检测到距离过大,则距离位置传感继电器512产生与检测到距离过小时的相反行为;且此时此空腔内压力减小,则第一压力继电器(低压压力继电器)509动作;在512及509的联合作用下,程控装置起作用,换向阀506左移,则此空腔单元内的多余液体在调正机制的挤压下(因另一侧空腔单元间的空隙小,则那侧间隙补液,导致重载容器承受调正机制作用力,这将引起在空腔空隙增大的这一侧内的液体受到挤出压力)经换向阀506及液体管(水管)经调速、节流装置流向液体箱(如水箱、水槽),则空腔内多余液体挤出而减少(但要以水箱内气压及重力造成的水压等压力保证空腔间隙内液体随时处于充满状态,并把多余的液体以适当速度挤出)。
即:液压泵在程控控制下会同时协调地向在同一高度的、重载容器另一侧的(即对侧,即空腔间隙减小的那一侧)、重载容器外立壁与重载蓄水池内壁间减小间隙的空腔单元中供液,如供水,则此侧此对应部位(空腔间隙减小的部位)的空腔间隙增加,则促使或迫使该空腔间隙达到设定值(则空腔间隙大的侧的空腔间隙会减小,则液体回流到水箱或水槽。注:该位置距离通过位置距离传感器感应得到),且另一侧的大的空腔间隙的单元的液体是经左移的电磁换向阀、调速阀回流到水箱,则前述大的间隙的、且超过额定值的侧的空腔单元间隙将减小;
则该空腔间隙中219与218间的间距减小到指定值,空腔内压力也达到指定值,换向阀再停止到中间位置,管控开闭液压管道内液体流动的电动阀也关闭;
在储能阶段:
请参阅图1至图4,当在储能阶段:
S8、重载蓄水池2的检测入口门210关闭,该门密封条210-4四周均自动密封;
S9、电动阀门211及225打开;
S10、电网供电驱动电动驱动装置带动水轮机转动(在图1中装置1和4为水轮机,优选地,两者可以同为可逆式水轮发电机,可以为单级水轮机或两级及以上水轮机,或者水轮机为成对出现的抽水蓄能水轮机与排水发电水轮机,本专利权属涵盖各种变型、变方案设计等),水轮机从普通蓄水池3抽水经管道进入重载蓄水池2下部,则重载及其容器整体上升;耐磨耐损耐老化密封条215在重载容器耐磨耐损衬壁218面上作向上滑动,该密封条及衬壁218形成密封空腔,并由液压系统保压,以防重载容器外壁与衬壁218磕碰(优选地,该衬壁可以为有耐腐蚀耐磨损的光滑的涂层的钢板或钢筋混凝土制作,但本发明权属不仅限于钢板和钢筋混凝土),随着重载在水轮机驱动下上升,电能就转化为重载及其容器的势能,此为储能阶段;
S11、在重载上升过程中,重载容器封液水套拉索232拉动重载容器封液用可叠合式或可折叠式水套233沿重载容器外壁与衬壁218表面上升;
在停止储能阶段:
S12、在停止向水轮机供电时,水轮机就停止转动,水轮机停止向重载蓄水池2输水,重载就停止上升,电动阀门211和225关闭,则停止储能;
S13、若重载容器外壁上升到重载蓄水池2的顶端,即到达上止点时,就会触发串联的多个行程开关281,则切断驱动水轮机的电源输送,则水轮机停止转动,则停止输水进入重载蓄水池2,重载停止上升,电动阀门211和225关闭,这就停止了储能;
在释能(释放势能)发电阶段:
S13、打开电动阀门211和225。优选地,当多个水轮机(如水轮机1和4,但本发明权属中不限于两个水轮机及不限于两个电动阀门)均为可逆水轮机时,所有该电动阀门均打开;优选地,当有的水轮机专门用于抽水蓄能、另有的水轮机又专门另用于排水发电时,就打开重载蓄水池2与排水发电的水轮机间的电动阀门及该侧通往普通蓄水池3管道上的电动阀门,以准备发电);
S14、启动水轮机以驱动发电装置,同时重载容器及重载下降;
同时(优选的方案),见图10和图11,从上向下穿过耐磨耐损耐老化密封条215及弹簧抵块216的部分头部(并在交叉处密封)的高压软管也同时下降,以保证重载容器外立壁和重载蓄水池2(即重载蓄能池2)间的保压效果,以确保重载尽量正立,减小摩擦,此结构见图10和图11(图10、高压液压软管竖直置入重载容器与蓄能池侧壁间空腔的重载蓄能池)(图11、高压液压软管竖直置入重载蓄能池侧壁间的重载蓄能池侧部空腔局部视图)。
本专利另一种方案为:见图10和图11,通过液压高压软管从重载蓄能池(即重载蓄水池2)内壁侧面连接到高压软管各自分别连接的重载容器外侧壁与重载蓄能池2内壁间的空腔,此结构见图10和图11(图10、高压液压软管竖直置入重载容器与蓄能池侧壁间空腔的重载蓄能池)(图11、高压液压软管竖直置入重载蓄能池侧壁间的重载蓄能池侧部空腔局部视图)。
在停止发电阶段:
S15、需要停止发电时就关停水轮机,水轮机停止驱动发电装置;
S16、见图2:当重载容器底部凸台227通过液压(水压)作用在重载水池底部均载用液压缓冲分格组件228及重载水池其它部位时,重载及重载容器停止下降,水轮机停止转动,这时是重载及重载容器的下止点时刻,这就会使该发电设施停止发电,该分步具体步骤为(见图3):重载容器底部凸台227下降接触到并压紧液压缓冲分格密封条229,液压缓冲分格密封条229压紧均载用缓冲分格弹簧抵块230,则弹簧231压缩,重载底座液体分隔腔236内液体(水)压缩,则该分隔腔236内液体产生压力,则整个重载水池底部均载用液压缓冲分格组件228(见图2)承载整个重载及重载容器,整个重载蓄水池2内全部重载及载荷通过液压(水压)又加载传递到重载底座密封条抵块安装板237、重载底座均载缓冲板238、重载底座均载承压板239与重载水池加强底座235、重载水池基座234;
重载蓄水池2的检修、检查阶段:
S17、重载蓄水池2池内部检修、检查:
S17-1、先通过数字孪生技术得到的该整个储能设施的电子模型及缩小版实体模型预测(包括重心模型)分析:当把重载蓄水池2内的水排干后,预测重载可能略微偏向某一边,再通过数显的或模拟的间隙探测设施及其它光学设施及摄像头等(如通过214所指示的距离位置传感器来探测)多次稳妥实验及多次调整易磕碰部位间隙以避开可能发生的磕碰现象(如防止重载容器外壁与重载蓄水池2内壁的磕碰现象等);
S17-2、先通过水轮机发电,使重载容器底部凸台227下降到下止点,然后把重载蓄水池2下部剩余的液体(水)放干(注意应把重载蓄水池2下部连通大气,为防止因大气压导致蓄水池2内部残存的水放不出来,只需在重载蓄水池2下部或底部另接一根耐压的牢靠的水管,再连接防水锤装置,在出口处安装电动阀门,并在非检修期间用电动阀门关闭,而在检修期间电动阀门打开,并另接水泵把水抽向普通蓄水池3。因该技术简单,故本发明省略,但其也是必须的,本描述的技术方案及其变型涵盖在本专利权属当中),其中应当根据需求先后关闭各电动阀门。
S17-3、见图4:重载水池检修入口门的提升装置210-1用铰接的挂钩或钢索提升检修入口门210-5到上止点,触动多个串联的行程开关,检修入口门的提升装置停止运动,此时已经打开了重载蓄水池2池里面的空间,则检修人员可以进入检修;
S17-4、检修重载蓄水池2相关零部件等,特别是易损件,如密封件、密封用的巨大的水套等;
S18、重载容器外壁兼密封装置检修更换用结构部件219检修、检查:
S18-1、同S17-1,先通过数字孪生技术得到的该整个储能设施的电子模型及缩小版实体模型预测(包括重心模型)分析:当把重载蓄水池2内的水排干后,预测重载可能略微偏向哪一边,再通过数显的或模拟的间隙探测设施及其它光学设施及摄像头等(如通过214所指示的距离位置传感器来探测)多次稳妥实验及多次调整易磕碰部位间隙避开可能发生的磕碰现象(如防止重载容器外壁与重载蓄水池2内壁的磕碰现象等);
S18-2、类似于S17,先排出重载蓄水池2内所有的水(液体),重载容器底部凸台227下降到下止点,整个重载水池底部均载用液压缓冲分格组件228(见图2)承载整个重载及重载容器,全部重载压力再传递给重载水池加强底座235、重载水池基座234;
S18-3、拆除重载容器外壁兼密封装置检修更换用结构部件219中螺栓孔219-1内的螺栓、及短销孔219-2内的短销(切记:如果有短销的话,部件219需要先沿销孔轴线移动比短销长度略长距离,再吊装部件219);拆除重载容器外壁兼密封装置检修更换用结构部件219中螺栓孔219-1内的防松垫圈和防泄漏垫圈;
S18-4、在重载容器外壁兼密封装置检修更换用结构部件219中的螺孔219-3中安装起吊用螺栓吊环;
S18-5、起吊重载容器外壁兼密封装置检修更换用结构部件219;
S18-6、检查、检修重载容器外壁兼密封装置检修更换用结构部件219及重载蓄水池2等相关零部件等,特别是易损件,如密封件等;
S19、重载容器与蓄水池2侧面间空隙分隔腔的防磕碰液压系统的检修
S19-1、先通过数字孪生技术得到的该整个储能设施的电子模型及缩小版实体模型预测(包括重心模型)分析:当把重载蓄水池2内的水排干后,预测重载可能略微偏向哪一边,再通过数显的或模拟的间隙探测设施及其它光学设施及摄像头等(如通过214所指示的距离位置传感器来探测)多次稳妥实验及多次调整易磕碰部位间隙避开可能发生的磕碰现象(如防止重载容器外壁与重载蓄水池2内壁的磕碰现象等);
S19-2、类似于S17,先排出重载蓄水池2内所有的水(液体),重载容器底部凸台227下降到下止点,整个重载水池底部均载用液压缓冲分格组件228(见图2)承载整个重载及重载容器,全部重载压力再传递给重载水池加强底座235、重载水池基座234;
S19-3、检查、检修重载与蓄水池2侧面间空隙分隔腔的防磕碰液压系统。
以上所述,仅为本发明一种较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案、说明书及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (2)

  1. 该储能方法,使用权利要求如下任一项所述的多尺度储能装置权利特征要求,其特征在于:
    1、通过以水轮机(即水轮发电机,包括可逆式水轮发电机,本专利内均与此相同)、电动设备及发电设备为机械与电器设备的媒介的协同配合,经重载蓄水池2(即重载蓄能池,下同)中的全密封的巨大水套(即水袋,前后皆同)为主要密封设施的密封,并经可叠合、可拉开的伸缩式耐损坏的板件的伸缩叠合加于导引(以进一步防止水套损坏),且经防水锤装置防止水锤效应后,以重载蓄水池2中的重载势能与电能的相互转化为基本原理;
    2、本发明专利承受重载的蓄水池2均分侧面的液体压力的液压系统5由采用液压分压系统的原理组成,且以此防止重载容器磕碰重载蓄水池2的内壁;
    3、重载与重载蓄水池2底部的防磕碰原理见说明书图2:当重载容器底部凸台227(一个此凸台或多个阵列式此类凸台)分压的原理在于以重载水池底部均载用液压缓冲分格组件228及重载水池其它部件通过液压(水压)作用分压;
    4、通过可以达成全密封可叠合式的、用以密封液体且支撑重载容器的水套233来密封重载蓄水池2内的液压流体;以重载容器封液水套拉索232拉动水套233沿重载容器耐磨耐损衬壁218滑动;水套233并在重载蓄水池2底部紧固,以及用紧固件紧固水套233的各个分开的部件(即水套233为部件分开制造且组合而成),以组成一个完整的巨大水套;优选地,重载容器下部连接有防重载容器啃咬重载蓄水池2内的水套的角状物装置286;
    优选地,可以在全密封水套及防其被啃咬的角状物286装置外设置可叠合、可拉开的伸缩式耐损坏的板件以配合重载上下运动时全密封水套的叠合或折叠,以进一步配合其折叠相关运动与防止其被磨损,防止其被啃咬及被损坏。
    5、为检修方便特设置重载蓄水池2的检测入口门及相关结构210,此门可以为上下吊运方式开闭,亦可为以铰链铰接转动式开闭,并用角形或T形密封条密封,防止泄漏;
    6、重载通过重载容器装载,且重载容器通过重载蓄水池2下部的水套把重载产生的压力均匀传递到重载蓄水池2下部各部位,以减小局部压强,防止破损。
    7、承受重载的蓄水池2均分侧面的液体压力的液压系统5(以下简称液压系统5)通过管道连接到重载容器外壁与重载蓄水池2侧壁之间(以下简称“侧壁间”)的缝隙空腔(优选地,每个该缝隙空腔应只接一个液压系统5,本文图1和图2示例的是一种节约成本且采用程控设备的装置,而采用接了两根管子的方案),当距离位置传感器感应到上述侧壁间距离超过最小设定值且空腔内压力大于高压压力继电器510设定值时,液压系统5向上述侧壁间空腔输送液体(如水),直至达到位置距离传感器的距离设定值;当上述侧壁间缝隙距离位置传感器感应到距离位置超过最大设定值且压力传感器感应到上述空腔内压力减小到设定值时,上述空腔向液压系统5的水箱回水,直到距离位置传感器感应到上述侧壁间距离减小达到设定值为止;若距离位置传感器感应到距离位置超过允许的最大设定值且压力传感器感应到压力恰好等于大气压,以及传感器感应到没有液体(如水)浸润时(如传感器感应磁阻变化,不是液体(水)的磁阻了,而是空气的磁阻了),则此时对应的液压系统处于停止工作(且经检测经检修判定安全后可以手动恢复工作),则使电磁换向阀506处于中位停止状态,此为防止当重载容器外壁没有与重载蓄水池2侧壁、耐磨耐损耐老化密封条215三者形成密闭空腔时,且经检经测判定安全后可以手动恢复工作;及重载容器还在重载蓄水池2的下部,连接在重载蓄水池2外侧上部的液压系统5的管道就不能向外输出液体(水),也不能向液压系统5内的水箱输液(水),液压系统应处于停止工作状态,但经检测检修经判定安全后可以手动恢复工作。
    8、优选地,普通蓄水池3的另一种设计方案为设置在重载蓄水池2的上部空出来的位置,即重载蓄水池2下部的水通过管道、防水锤装置、电动阀门及水轮机连接到重载蓄水池2的上部空出来的部位;
    9、优选地,另一种取消均分液体压力的侧面的液压系统5的方案:设计、建造重载容器时使重载容器与重载蓄水池2之间为极小间隙或较小间隙配合,且两者配合面的平面度极好,以及其各相配合平面为严格铅锤面,而且要使重载容器内的各相关载荷基本均布,且重心基本位于重载容器的俯视图的中心位置;
    10、优选地,另一种安装重载容器外壁兼密封装置检修更换用结构部件219(例举四种变型:219(A)、219(B)、219(C)和219(D),但不限于这四种)及密封装置(包括215、耐磨耐损耐老化密封条;216、弹簧抵块;217、弹簧,等等)的方法是固定连接在重载容器耐磨耐损衬壁218上,而重载容器表面为耐磨减摩的光面;
    11、优选地,重载蓄水池2的下部的基脚、基础部可嵌入地表之下一定深度,以适当减小重载蓄水池2外部的厚度,从而以其外侧部的综合作用力辅助强化支持以降低重载蓄水池2侧围部受到的拉应力。
    12、另外的优选地方案一,把重载容器外侧部的以下相关部件、及重载与蓄水池2侧面间空隙分隔腔的防磕碰液压系统去除:即去除耐磨耐损耐老化密封条215、弹簧抵块216、弹簧217、重载容器外壁兼密封装置检修更换用结构部件219;然后,重载容器外侧部与重载蓄水池2内侧部间以小间隙配合,及两者设置成严格竖直方向上安置,以此相关方法降低两者间因重载的略倾产生的摩檫力,且这两部位采用耐磨损耐腐蚀的高耐损材料制造(如高耐损钢材料等),并以水或其它摩擦系数小的物质减摩;
    再其次优选的方案二:同样去除上述部件215、216、217和219等相关部件,重载容器外侧部与重载蓄水池2内侧部间的间隙设置若干滚柱或滚动体、滚子以此滚动摩擦降低两者间因重载的略倾产生的摩檫力,且两部件设置成严格竖直方向上建造。
    13、为防止水(或液体)的挥发或蒸发,重载蓄能池2、普通蓄水(液体)池3全部部位可以密封(除了两者中需要和大气压联通以平衡大气压的上部外,处理措施为留出小孔以平衡大气压,防止大气压对水轮机抽排水蓄能与发电的负作用),以利缺水地区使用。
    14、以高密度物质或较高密度物质或各种此类物质组合装载在在高强度、高可靠、高耐磨、有效减摩的重载容器中。
  2. 一种水(液体)轮机抽排水(液体)驱动能量转化的多尺度重力储能设施与方法,该设施的发明专利技术特征在于:
    1、整个水轮机抽排水驱动能量转化的多尺度重力储能设施由承受重载的蓄水池2、水轮机1和水轮机4(为可逆式水轮机或者普通水轮机,若为普通水轮机,则一部分水轮机用于抽水蓄能,另一部分则用于排水发电;也可以为只使用可逆式水轮机驱动;水轮机可以为单级水轮机或两级及以上水轮机)、蓄水池3及承受重载的蓄水池2均分侧面的液体压力的液压系统5组成(或不用此装置;或用相类似的其它装置)。
    2、承受重载的蓄水池2通过防水锤装置与可逆式水轮机1(或既有抽水蓄能,又有排水发电的水轮机组成的非可逆式水轮机,本文均与此相同)固定连接,重载容器重力以全密封的水套以液压力支承,及以对全密封水套抽排水(或液体)蓄能与发电。
    3、进一步地,可逆式水轮机4(或普通抽水蓄能水轮机4,及另设排水发电水轮机的装置,本文均与此相同)经电动阀门、防水锤装置通过管道与承接重载的蓄水池2固定连通。水轮机一头连着重载蓄水池2,另一头连着普通蓄水池3;
    4、重载通过液体的液压由重载蓄水池2承载,并通过防水锤装置化解重载蓄水池2可能发生的水锤效应;
    5、重载蓄水池2中的下部由密封水套(可以为拼接式或整体式水套,水套即水袋,前后皆同)组成,其主要包括重载容器封液水套拉索232、支承重载容器的封液用的可叠合式水套233、紧固件、柔软的水套基体物质(如橡胶、聚合物、高分子材料等)及其加强筋(如钢丝等)等组成;
    6、重载蓄水池2底部有重载水池底部均载用液压缓冲分格228(其组成重载底座液体分隔腔236),其主要包括:重载水池底部均载用液压缓冲分格密封条229、均载用缓冲分格弹簧抵块230、弹簧231、重载底座密封条抵块安装板237等组成;
    7、重载水池底部均载用液压缓冲分格228下部有重载水池基座234、重载水池加强底座235、重载底座均载缓冲板238、重载底座均载承压板239中某种或几种结构组成;
    8、液压系统5由水箱501、电动阀门502、过滤器503、液压泵504(如双向变量液压泵)、单向阀505、溢流阀511、电磁换向阀506、压力计(压力指示器)507、蓄能器508、压力继电器509和510、距离位置传感继电器512(如电磁感应式传感器)等组成(或者由相类似的几种元器件、部件组成)。
    水箱、电动阀门、过滤器和双向变量液压泵连接;
    进一步地,双向变量液压泵一条分支与单向阀固定连接,另一分支依次与溢流阀、水箱固定连接;进一步地,电磁换向阀与压力计(压力指示器)、蓄能器和两个压力继电器固定连接;
    进一步地,经压力继电器再与承受侧向水(液)压力的蓄水池2(承受重载的蓄水池)的侧面分压分隔腔单元固定连接。
    9、重载蓄水池2的检测入口门及相关结构210:
    9.1方案一、检修入口门210-5置于检修入口门密封主结构门框210-2(210-3为其剖面图)内,并用检修入口门密封条210-4于四周全密封;用挂钩或钢索把检修入口门210-5与重载水池检修入口门的提升装置210-1相连接或铰接;检修入口门密封条210-4采用角形或T形与重载蓄水池相密封;
    9.2方案二、检修入口门采用铰链与重载蓄水池2相连接,并用检修入口门密封条210-4采用角形或T形与重载蓄水池相密封;
    10、优选地,液压系统5中连接到重载蓄水池(即重载蓄能池,下同)的侧壁空腔的液压管出口的连接方法为:为防止重载上升下降时液压管出口在侧面可能导致的设计安装的不便,又为增大重载行程,通过液压高压软管(经防锈蚀防损坏的高强度缆绳捆绑,防止因高压软管下垂长度很长导致的强度不足问题)从重载蓄能池2上部往下穿过耐磨耐损耐老化密封条215及弹簧抵块216的部分头部连接到高压软管各自分别连接的重载容器外侧壁与重载蓄能池2内壁间的空腔,并在各输液(水)用的高压软管各自与215部件和216部件相贯的交叉处密封。
PCT/CN2023/123164 2022-09-05 2023-10-22 一种水(液体)轮机抽排水(液体)驱动能量转化的多尺度重力储能设施与方法 WO2024051859A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280056147.5A CN117916461A (zh) 2022-09-05 2023-10-22 一种水(液体)轮机抽排水(液体)驱动能量转化的多尺度重力储能设施与方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211075262.5 2022-09-05
CN202211075262.5A CN115478973A (zh) 2022-09-05 2022-09-05 一种水(液体)轮机抽排水(液体)驱动能量转化的多尺度重力储能设施与方法

Publications (1)

Publication Number Publication Date
WO2024051859A1 true WO2024051859A1 (zh) 2024-03-14

Family

ID=84423391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123164 WO2024051859A1 (zh) 2022-09-05 2023-10-22 一种水(液体)轮机抽排水(液体)驱动能量转化的多尺度重力储能设施与方法

Country Status (2)

Country Link
CN (2) CN115478973A (zh)
WO (1) WO2024051859A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118549287A (zh) * 2024-07-26 2024-08-27 中国长江电力股份有限公司 一种混流式水轮机顶盖空蚀模拟试验装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115478973A (zh) * 2022-09-05 2022-12-16 陈兴茂 一种水(液体)轮机抽排水(液体)驱动能量转化的多尺度重力储能设施与方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352371A (ja) * 1999-06-08 2000-12-19 Mitsubishi Heavy Ind Ltd 圧縮空気貯蔵複合発電システム
US20050279085A1 (en) * 2004-06-18 2005-12-22 Moore George V Energy conversion system
CN103114564A (zh) * 2013-02-01 2013-05-22 华北电力大学 基于压缩空气储能的虚拟抽水蓄能电站及储能发电方法
CN203594555U (zh) * 2013-12-19 2014-05-14 梁文青 一种高压液能重力发电系统
CN105569910A (zh) * 2016-03-01 2016-05-11 华北电力大学 基于重物增压技术的抽水蓄能发电系统
CN115478973A (zh) * 2022-09-05 2022-12-16 陈兴茂 一种水(液体)轮机抽排水(液体)驱动能量转化的多尺度重力储能设施与方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352371A (ja) * 1999-06-08 2000-12-19 Mitsubishi Heavy Ind Ltd 圧縮空気貯蔵複合発電システム
US20050279085A1 (en) * 2004-06-18 2005-12-22 Moore George V Energy conversion system
CN103114564A (zh) * 2013-02-01 2013-05-22 华北电力大学 基于压缩空气储能的虚拟抽水蓄能电站及储能发电方法
CN203594555U (zh) * 2013-12-19 2014-05-14 梁文青 一种高压液能重力发电系统
CN105569910A (zh) * 2016-03-01 2016-05-11 华北电力大学 基于重物增压技术的抽水蓄能发电系统
CN115478973A (zh) * 2022-09-05 2022-12-16 陈兴茂 一种水(液体)轮机抽排水(液体)驱动能量转化的多尺度重力储能设施与方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118549287A (zh) * 2024-07-26 2024-08-27 中国长江电力股份有限公司 一种混流式水轮机顶盖空蚀模拟试验装置

Also Published As

Publication number Publication date
CN117916461A (zh) 2024-04-19
CN115478973A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2024051859A1 (zh) 一种水(液体)轮机抽排水(液体)驱动能量转化的多尺度重力储能设施与方法
US7770331B2 (en) Potential energy storage system
CN201961933U (zh) 利用可再生能源发电的电梯
CN105804021B (zh) 液压驱动景观合页活动坝系统
GB2594526A (en) Energy storage system
CN101844722A (zh) 一种无源势能低能耗电梯
GB2553662A (en) Twin, double piston water / fluid, pump
CN207110015U (zh) 一种带有自动粉碎功能的一体化预制泵站
CN108221888B (zh) 一种升鱼机集鱼系统装置
CN201722035U (zh) 一种无源势能低能耗电梯
CN109185082A (zh) 重力储能系统
CN107653911B (zh) 一种监视阀室的蓄电池井及其使用方法
CN117536761A (zh) 一种水(液体)轮机抽排水(液体)驱动能量转化的多尺度重力储能设施与方法
CN211777805U (zh) 一种水力恒压储释能系统
CN106640566A (zh) 路面压力发电系统及公路压力发电装置
CN201592936U (zh) 跃层户型室内升降楼梯
CN201703946U (zh) 一种势能电梯
BG113662A (bg) Хидравлична гравитационна система за съхранение и отдаване на енергия
BG4438U1 (bg) Хидравлична гравитационна система за съхранение и отдаване на енергия
CN216121813U (zh) 重力钢球位移式自动储能电站
TWI840179B (zh) 抽蓄式水力儲電井
CN214170754U (zh) 一种液体动力的压缩空气发生装置
CN219863290U (zh) 节能环保门式桁架结构料场
CN107246048B (zh) 一种快速泄水抗震屋顶水箱、快速泄水方法及水回用装置
CN114738169A (zh) 一种基于水能高效利用的能量管理系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280056147.5

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862552

Country of ref document: EP

Kind code of ref document: A1