WO2024051837A1 - 校准电路及方法、移相电路、射频收发电路、雷达及设备 - Google Patents
校准电路及方法、移相电路、射频收发电路、雷达及设备 Download PDFInfo
- Publication number
- WO2024051837A1 WO2024051837A1 PCT/CN2023/117835 CN2023117835W WO2024051837A1 WO 2024051837 A1 WO2024051837 A1 WO 2024051837A1 CN 2023117835 W CN2023117835 W CN 2023117835W WO 2024051837 A1 WO2024051837 A1 WO 2024051837A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- signal
- circuit
- radio frequency
- calibration
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000005070 sampling Methods 0.000 claims abstract description 30
- 230000010363 phase shift Effects 0.000 claims description 191
- 238000012545 processing Methods 0.000 claims description 67
- 238000006243 chemical reaction Methods 0.000 claims description 53
- 230000005540 biological transmission Effects 0.000 claims description 38
- 230000005855 radiation Effects 0.000 claims description 12
- 230000008054 signal transmission Effects 0.000 claims description 3
- 230000003321 amplification Effects 0.000 claims description 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 2
- 230000010355 oscillation Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 13
- 238000001514 detection method Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000018199 S phase Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/282—Transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
- G01S7/4021—Means for monitoring or calibrating of parts of a radar system of receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/10—Systems for measuring distance only using transmission of interrupted, pulse modulated waves
- G01S13/26—Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
- G01S13/28—Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
- G01S13/284—Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses
- G01S13/288—Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses phase modulated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/03—Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
- G01S7/032—Constructional details for solid-state radar subsystems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/285—Receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/35—Details of non-pulse systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/35—Details of non-pulse systems
- G01S7/352—Receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
- G01S7/4008—Means for monitoring or calibrating of parts of a radar system of transmitters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03C—MODULATION
- H03C3/00—Angle modulation
- H03C3/38—Angle modulation by converting amplitude modulation to angle modulation
- H03C3/40—Angle modulation by converting amplitude modulation to angle modulation using two signal paths the outputs of which have a predetermined phase difference and at least one output being amplitude-modulated
- H03C3/406—Angle modulation by converting amplitude modulation to angle modulation using two signal paths the outputs of which have a predetermined phase difference and at least one output being amplitude-modulated using a feedback loop containing mixers or demodulators
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/16—Networks for phase shifting
Definitions
- Embodiments of the present disclosure relate to but are not limited to the field of radio frequency technology, and in particular, to a calibration circuit for a phase shifter, a calibration method, a phase shift circuit, a radio frequency transmitting circuit, a radio frequency receiving circuit, a radar sensor and an electronic device.
- Integrated circuit also known as chip, is a way to miniaturize circuits in electronics and is often manufactured on the surface of a semiconductor wafer.
- the chip includes a die manufactured using a semiconductor manufacturing process and a packaging structure.
- the radio frequency chip structure usually includes a phase shifter (Phaser) for adjusting the phase of the wave.
- RF phase shifter has the function of adjusting the phase of RF signals and is an important component of RF and microwave transceiver systems.
- phase shifters usually requires the use of additional instruments such as network analyzers and complex testing methods.
- the measurement cost is high and is limited by the environment.
- Embodiments of the present disclosure provide a calibration circuit, calibration method, phase shift circuit, radio frequency transmitting circuit, radio frequency receiving circuit, radar sensor and electronic equipment for a phase shifter, and achieve accurate calibration of the phase shifter without relying on measuring instruments.
- embodiments of the present disclosure provide a calibration circuit for a phase shifter, which includes a phase acquisition circuit and a phase calibration circuit, wherein: the phase acquisition circuit, coupled to the phase shifter, is configured to utilize The first baseband signal modulates the radio frequency sampling signal collected from the phase shifter, and outputs a second baseband signal containing an actual phase; the actual phase is the phase of the radio frequency signal output by the phase shifter; A phase calibration circuit, coupled to the phase acquisition circuit to receive the second baseband signal, is configured to obtain the actual phase in the second baseband signal, based on the difference between the actual phase and the preset phase shift phase. Phase deviation determines and stores calibration phase information, so that the phase calibration circuit generates a phase shift control signal sent to the phase shifter based on the calibration phase information.
- embodiments of the present disclosure also provide a phase shift circuit, which includes a phase shift controller, a phase shifter, and a calibration circuit as described in the first aspect, wherein: the calibration circuit is coupled to the The phase shifter is configured to send a phase shift control signal to the phase shifter through a phase shift controller in a calibration state; the phase shift controller is coupled to the calibration circuit and the phase shifter and is configured to be in a working state Receive a phase shift instruction including a phase shift phase, and output a phase shift control signal according to the calibration phase information stored corresponding to the phase shift phase; the phase shifter is configured to shift the radio frequency signal according to the phase shift control signal. Phase processing.
- embodiments of the present disclosure also provide a radio frequency transmission circuit, including a local oscillator circuit, a phase shift circuit as described in the above example, and a transmitting antenna system.
- the local oscillator circuit outputs the generated radio frequency transmission signal.
- the phase shift circuit which shifts the phase of the radio frequency transmission signal and inputs it into the transmission antenna system to convert it into an electromagnetic waves are radiated.
- embodiments of the present disclosure also provide a radio frequency receiving circuit, which includes a receiving antenna system, a phase shift circuit as described in the above example, a local oscillator circuit and a mixer.
- the receiving antenna system converts electromagnetic waves into The radio frequency receiving signal is phase-shifted by the phase shifting circuit, and then input into the mixer with the local oscillator signal output by the local oscillator circuit to output a down-converted difference frequency signal.
- embodiments of the present disclosure also provide a radar sensor, which includes a radio frequency transmitting circuit as described in the above example, and/or a radio frequency receiving circuit as described in the above example.
- an embodiment of the present disclosure also provides an electronic device, which includes a phase shift circuit as described in the above example, a radio frequency transmitting circuit as described in the above example, a radio frequency receiving circuit as described in the above example, and a radio frequency receiving circuit as described in the above example. At least one of the radar sensors described in the example.
- embodiments of the present disclosure also provide a calibration method for a phase shifter, which includes: obtaining a radio frequency signal carrying an actual phase output by the phase shifter; and modulating the radio frequency signal using a first baseband signal. Processing; down-convert the modulated radio frequency signal to baseband to obtain a second baseband signal containing the actual phase; obtain the actual phase in the second baseband signal, and calculate the actual phase according to the difference between the actual phase and the preset phase shift phase. Phase deviation determines the calibration phase of the phase shifter, and sends a phase shift control signal to the phase shifter according to the calibration phase.
- Figure 1 is a schematic diagram of a calibration circuit provided by an embodiment of the present disclosure
- Figure 2 is a schematic diagram of another calibration circuit provided by an embodiment of the present disclosure.
- Figure 3 is a schematic diagram of yet another calibration circuit provided by an embodiment of the present disclosure.
- Figure 4 is a schematic diagram of yet another calibration circuit provided by an embodiment of the present disclosure.
- Figure 5 is a schematic diagram of yet another calibration circuit provided by an embodiment of the present disclosure.
- Figure 6 is a schematic diagram of yet another calibration circuit provided by an embodiment of the present disclosure.
- Figure 7 is a schematic diagram of a phase calibration circuit provided by an embodiment of the present disclosure.
- Figure 8 is a schematic diagram of a radio frequency transmitting circuit provided by an embodiment of the present disclosure.
- Figure 9 is a schematic diagram of a radio frequency receiving circuit provided by an embodiment of the present disclosure.
- FIG. 10 is a schematic diagram of another radio frequency transmitting circuit provided by an embodiment of the present disclosure.
- FIG. 11 is a schematic diagram of another radio frequency receiving circuit provided by an embodiment of the present disclosure.
- Figure 12 is a schematic diagram of yet another radio frequency transmitting circuit provided by an embodiment of the present disclosure.
- Figure 13 is a flow chart of a calibration method for a phase shifter provided by an embodiment of the present disclosure
- FIG. 14 is a schematic structural diagram of a phase shift circuit provided by an embodiment of the present disclosure.
- the term “coupled” or “coupled” may have several different meanings depending on the context in which the term is used.
- the term coupled may have the meaning of mechanical coupling or electrical coupling.
- the term “coupled” or “coupled” may mean that two elements or devices may be connected to each other directly or via one or more intervening elements or devices via electrical elements, electrical signals, or mechanical elements (such as but without limitation, wires or cables, depending on the actual application) are connected to each other.
- the coupling described herein includes, for example, direct electrical connection, electrical induction connection, or optical coupling connection.
- the electrical connection between two electrical devices is achieved using the connection method used in the semiconductor manufacturing process.
- a non-contact connection method such as an optocoupler component or an inductive sensing component is used to realize the signal connection between two electrical devices.
- a non-contact connection method such as an optocoupler component or an inductive sensing component is used to realize the signal connection between two electrical devices.
- Another example is using the connection method between chip pins and slots to assist in electrical connection or signal connection between two electrical devices.
- configuring a phase shifter in a radar sensor can not only perform phase-controlled radiation without changing the configuration of hardware circuits such as antennas, but also effectively reduce interference between radars.
- the phase shifter is a circuit that uses adjustable electrical parameters of the received phase shift control signal to adjust the phase of the radio frequency signal.
- the adjustable electrical parameter is, for example, the voltage, duty cycle, or current of the control signal.
- the phase shifter may be a quadrature phase shifter that utilizes amplitude changes of quadrature signals in a quadrature circuit to adaptively adjust the phase of the radio frequency signal to output a phase-carrying radio frequency signal.
- the phase shifter may be a transmission line phase shifter, which includes at least one group of phase shifting units. Wherein, the phase shifting unit includes a transmission line phase shifting unit, a capacitor circuit and an adjustable circuit.
- the transmission line phase shifting unit includes a transmission line for transmitting radio frequency signals and may also include a reference ground line.
- the transmission line phase shifting unit utilizes line spacing changes and/or capacitance changes between the transmission lines or between the transmission lines and the reference ground line to adjust the phase of the transmitted radio frequency signal.
- the transmission line phase-shifting unit includes a single-ended transmission line and two sets of reference ground lines, where there is a line spacing between different groups of the two sets of reference ground lines.
- the transmission line phase shifting unit includes two groups of differential transmission lines, wherein different groups of the two groups of differential transmission lines have a line spacing between them.
- the transmission line phase-shifting unit is formed by using line spacing to have at least two phase-shifting states.
- the capacitive circuit is connected between the transmission lines in one of the phase-shifted states to enable impedance matching when switching between different phase-shifted states.
- the adjustable circuit is used to adjust the transmission line phase shift unit and/or the capacitor circuit according to the control signal to select one of the phase shift states and output a radio frequency signal corresponding to the actual phase of the phase shift state.
- the adjustable circuit is, for example, a circuit formed by at least one or more combinations of an adjustable resistor circuit, an adjustable capacitor circuit and a MOS (Metal Oxide Semiconductor) tube, which is controlled by the adjustable circuit of the above-mentioned phase-shifted control signal. Parameter control.
- phase shifter When the above-mentioned phase shifter actually works, due to factors such as device design, manufacturing process, operating temperature, and operating electromagnetic environment, there is a phase difference between the actual phase shifted by the phase shifter and the preset phase shift phase. error; the phase Bit errors may affect the accuracy of measured physical quantities during subsequent signal processing of radar sensors. Therefore, the calibration circuit of the phase shifter is configured in the radar sensor. Before calibration, the RF phase shifter needs to be accurately measured to determine the size of the error. By changing the settings of the RF phase shifter, the error meets the requirements.
- the phase shifter When receiving the phase shift control signal, the phase shifter uses the calibration circuit to compensate The phase deviation of the corresponding phase shift phase is used to output a radio frequency signal that is most consistent with the preset phase shift phase in the phase shift control signal, thereby achieving the purpose of calibration.
- additional network analyzers and other instruments In the millimeter wave and microwave frequency bands, the cost of such measurements is very high.
- instruments since instruments must be used for measurement, it means that the measurement is very limited by the environment, and real measurements and calibration cannot be completed during use. The limitations are very obvious. .
- FIG. 1 shows a calibration circuit 20 for a phase shifter 10 provided by an embodiment of the present disclosure, including a phase acquisition circuit 21 and a phase calibration circuit 22.
- the phase acquisition circuit 21 is coupled to the phase shifter 10 and is configured to acquire The radio frequency signal output by the phase shifter 10 is used to obtain a radio frequency sampling signal.
- the first baseband signal is used to modulate the radio frequency sampling signal collected from the phase shifter 10, and the obtained modulated signal is down-converted to baseband (as shown in Figure 1 As described above, the local oscillator signal can be used to perform down-conversion processing on the radio frequency sampling signal) to obtain a second baseband signal containing the actual phase; wherein the frequency of the second baseband signal is determined based on the frequency of the first baseband signal, so The actual phase is the phase of the radio frequency signal output by the phase shifter.
- the phase calibration circuit 22 is coupled to the phase acquisition circuit 21 to receive the second baseband signal, and is configured to extract the actual phase in the second baseband signal, based on the difference between the actual phase and the preset phase shift phase. The phase deviation determines and stores the calibration phase information, so that the phase calibration circuit 22 generates a phase shift control signal sent to the phase shifter according to the calibration phase information.
- the first baseband signal is an intermediate frequency signal or a low frequency signal with a preset initial phase.
- the preset initial phase can be configured by being stored in memory (or external instructions) in advance; it is detected by the phase calibration circuit by synchronously sending the first baseband signal to the phase calibration circuit.
- the preset initial phase of the first baseband signal is, for example, between 0° and 180° (including at least one endpoint value).
- the actual phase of the radio frequency sampling signal is used to perform mixing signal modulation through the first baseband signal, so that the modulated signal obtained after modulation carries the actual phase of the radio frequency sampling signal.
- the local oscillator signal is a radio frequency signal input to the phase shifter, which is usually a radio frequency signal with a fixed phase (such as 0° phase). After the phase shifter shifts the phase of the local oscillator signal, it outputs a radio frequency signal carrying the actual phase.
- the modulated signal is down-converted using the local oscillator signal to obtain a second baseband signal containing an actual phase.
- the phase of the second baseband signal is the actual phase obtained after being phase-shifted by the phase shifter, or the sum (or difference) of the actual phase and the preset initial phase.
- the phase deviation between the obtained actual phase and the preset phase shift phase can be determined, and a calibration phase corresponding to the preset phase shift phase can be generated accordingly.
- the calibration phase information can be described as the phase deviation and the corresponding phase shift phase; or the phase value corresponding to the preset phase shift phase after being compensated by the phase deviation; or according to the phase deviation and the preset phase
- the unit phase deviation corresponding to the unit phase shift step is calculated based on the calibration relationship between the phase shift phases.
- the phase shift controller When the controller in the radar sensor generates a phase shift instruction including a phase shift phase according to the phase control mode, the phase shift controller (or calibration circuit) generates a phase shift control signal consistent with the phase shift phase based on the calibration phase information. .
- the phase shifter receives the phase shift control signal, the adjustable circuit in the phase shifter is adjusted according to the phase shift control signal to achieve accurate phase shift.
- the phase shift control signal is, for example, in the form of pulse width or voltage amplitude, used to describe the calibrated phase shift, so that the phase shift of the radio frequency signal output by the phase shifter complies with the phase shift phase of the phase shift instruction. .
- the phase acquisition circuit is a circuit that acquires phase information contained in a radio frequency signal.
- the phase acquisition circuit includes: a radio frequency acquisition circuit 211, a modulation circuit 212, and a frequency conversion circuit 213.
- the first baseband signal may be provided by an external circuit or generated by the baseband signal generating circuit 214 shown in FIG. 2 .
- the radio frequency acquisition circuit 211 is coupled to the phase shifter 10 and is configured to collect the radio frequency signal output by the phase shifter 10 to output a radio frequency sampling signal;
- the modulation circuit 212 is coupled to the radio frequency acquisition circuit 211
- Heki Band signal generation circuit 214 (optional) is configured to use the first baseband signal to modulate the radio frequency sampling signal to generate a modulation signal containing the actual phase;
- the frequency conversion circuit 213 is coupled to the modulation circuit 212 and
- the local oscillator circuit 30 (optional, in other embodiments, the local oscillator signal can be provided by an external circuit) is configured to use the local oscillator signal to perform down-conversion processing on the modulated signal to generate a second baseband signal containing the actual phase.
- the baseband signal generating circuit 214 is coupled to the modulation circuit 212 and is configured to generate a first baseband signal.
- a modulation method is used to mix the radio frequency signal phase-shifted by the phase shifter and the first baseband signal, so that the mixed radio frequency signal carries the phase information in the original radio frequency signal, and then through the following Frequency conversion processing, that is, subtractive mixing, can obtain a second baseband signal carrying phase information to achieve the purpose of converting the phase information carried in the radio frequency acquisition signal to a baseband signal, so that the lower frequency baseband signal to extract the phase information.
- the phase extraction method using the orthogonal second baseband signal can achieve an effect of smaller extracted phase error.
- the radio frequency acquisition circuit is a circuit that obtains radio frequency signals.
- the radio frequency acquisition circuit is electrically connected to the output of the phase shifter.
- the radio frequency acquisition circuit includes a coupler for outputting a single radio frequency signal or a coupler for outputting orthogonal radio frequency signals.
- the radio frequency acquisition circuit acquires the radio frequency acquisition signal through inductive coupling.
- the radio frequency acquisition circuit includes, for example, coupling lines and impedance matching circuits.
- the modulation circuit is a circuit that modulates radio frequency sampling signals.
- the modulation method is, for example, analog linear modulation, and frequency modulation is achieved through modulation.
- the first baseband signal is modulated into a radio frequency sampling signal through frequency modulation processing.
- the modulation circuit includes, for example, a mixer, such as a quadrature mixer or a mixer (single input single output).
- the frequency conversion circuit is a single-sideband mixing circuit.
- the radio frequency signal is modulated (for example, down-converted) to a baseband signal (for example, a low-frequency band signal) through frequency conversion processing.
- the frequency conversion circuit can be implemented using a quadrature mixer or a single-ended mixer. After the down-conversion process, the output second baseband signal becomes a low-frequency band signal containing actual phase information in the radio frequency signal, which facilitates the phase calibration circuit to extract the phase information.
- the baseband signal generation circuit is a circuit used to generate the first baseband signal, which can be an external baseband circuit, or integrated in the radio frequency chip together with the phase shifter and the calibration circuit.
- the calibration circuit is connected to the baseband signal generating circuit through the inside of the chip or using wires outside the chip to receive the first baseband signal.
- the radio frequency acquisition circuit 211 may be a first quadrature coupler.
- the first quadrature coupler includes an in-phase output end (or first output) for outputting an in-phase radio frequency sampling signal. terminal) and a quadrature output terminal (or second output terminal) for outputting a quadrature radio frequency sampling signal.
- the first baseband signal is an orthogonal signal, which includes an in-phase first baseband signal and a quadrature third A baseband signal.
- the modulation circuit 212 includes two modulators, each modulator is independently connected to an output end of the first orthogonal coupler, and the modulation signal output by the modulation circuit is also an orthogonal signal.
- the first modulator is connected to the in-phase output terminal of the first quadrature coupler, and the second modulator is connected to the quadrature output terminal of the first quadrature coupler.
- the first modulator is configured to use the in-phase first baseband signal to modulate the in-phase radio frequency sampling signal; the second modulator is configured to use the quadrature first baseband signal to modulate the quadrature radio frequency sampling signal.
- modulation For example, as shown in FIG. 3 , the first orthogonal coupler 211 is coupled to the phase shifter 10 and is configured to collect the radio frequency signal output by the phase shifter 10 and output a differential radio frequency sampling signal with a phase difference of 90 degrees. , that is, in-phase RF sampling signal and quadrature RF sampling signal.
- the modulator 2121 is a first mixer that processes in-phase signals; the modulator 2122 is a first mixer that processes quadrature signals.
- the baseband signal generation circuit 214 is coupled to the first mixer 2121 and is configured to output an in-phase first baseband signal to the first mixer 2121, and the baseband signal generation circuit 214 is coupled to the first mixer 2122 and is configured to output to the first mixer 2121.
- the first mixer 2122 outputs a quadrature first baseband signal.
- the first mixer 2121 modulates the in-phase radio frequency sampling signal and the in-phase first baseband signal to generate an in-phase modulation signal including the actual phase, and the first mixer 2122 modulates the quadrature radio frequency sampling signal and the quadrature first baseband signal. Modulation, generating a quadrature modulated signal that contains actual quadrature phases. Among them, the phase difference between the actual quadrature phase and the actual phase is 90°.
- the frequency conversion circuit includes a second mixer for implementing down-conversion.
- the second mixer receives a modulated signal and a local oscillator signal to perform a down-conversion operation using the modulated signal and the local oscillator signal, and outputs a second baseband Signal.
- the frequency conversion circuit 213 uses the local oscillator signal to perform down-conversion processing on the orthogonal modulation signals to obtain an orthogonal second baseband signal (the second baseband signal includes an in-phase second baseband signal). signal and a quadrature second baseband signal).
- the frequency conversion circuit 213 includes two second mixers (not shown).
- the two second mixers use the same local oscillator signal to separately down-convert the in-phase modulation signal and the quadrature modulation signal.
- To obtain the in-phase second baseband signal and the quadrature second baseband signal The in-phase second baseband signal and the quadrature second baseband signal both carry the actual phase in the radio frequency acquisition signal, and the phase difference between the in-phase second baseband signal and the quadrature second baseband signal is 90°.
- each signal transmission path in the phase acquisition circuit may further include a first amplifier for signal amplification.
- the first amplifier may be coupled between the modulation circuit and the frequency conversion circuit.
- a first amplifier is coupled between the first mixer (2121, 2122) and the frequency conversion circuit 213, and is configured to adjust the modulation signal (such as an in-phase modulation signal) output by the modulation circuit (such as the first mixer). and quadrature modulation signal) are amplified and then input into the frequency conversion circuit 213.
- the first amplifier 215 is located on two transmission paths for transmitting orthogonal signals.
- the radio frequency acquisition circuit includes a single-ended coupler 211'
- the modulation circuit includes a single-ended third mixer 212'.
- the single-ended coupler 211 ' is coupled to the phase shifter 10 and is configured to collect the radio frequency signal output by the phase shifter 10
- the baseband signal generation circuit 214' is coupled to the third mixer 212' and is configured to The frequency converter 212' outputs a first baseband signal
- the third mixer 212' is coupled to the single-ended coupler 211' and the baseband signal generation circuit 214', and is configured to modulate the radio frequency sampling signal and the first baseband signal to generate a signal containing The actual phase of the modulated signal.
- the modulated signal is a single-ended signal.
- the frequency conversion circuit 213' includes a second orthogonal coupler 2133 and a fourth mixer (2131, 2132), wherein the second orthogonal coupler
- the coupler 2133 is coupled to the local oscillator circuit 30 and is configured to collect the local oscillator signal output by the local oscillator circuit 30 and output an in-phase local oscillator signal and a quadrature local oscillator signal with a phase difference of 90 degrees.
- the second quadrature coupler 2133 It includes an in-phase output end for outputting an in-phase local oscillator signal and a quadrature output end for outputting a quadrature local oscillator signal; the fourth mixer 2131 is coupled to the in-phase output end of the second quadrature coupler 2133 and the third Between the mixers 212', it is configured to use the in-phase local oscillator signal output by the second quadrature coupler 2133 to perform down-conversion processing on the single-ended modulation signal output by the third mixer 212' to generate a signal containing the actual phase.
- the fourth mixer 2132 is coupled between the quadrature output end of the second quadrature coupler 2133 and the third mixer 212', and is configured to utilize the output of the second quadrature coupler 2133
- the quadrature local oscillator signal performs down-conversion processing on the modulated signal output by the third mixer 212' to generate a quadrature second baseband signal containing the actual phase.
- the second baseband signal is a quadrature signal including an actual phase, which includes an in-phase second baseband signal and a quadrature second baseband signal.
- the modulation circuit 212 may further include an orthogonal circuit (not shown) to convert the single-ended modulation signal output by the third mixer 212' into an orthogonal signal, that is, The modulation circuit outputs in-phase modulation signals and quadrature modulation signals. In this way, the frequency conversion circuit in the example of FIG. 3 or 4 can be used to output an orthogonal second baseband signal.
- the phase acquisition circuit can also include a second amplifier (not shown).
- the second amplifier can be coupled to Between the third mixer 212' and the frequency conversion circuit 213', it is configured to amplify and split the modulation signal output by the third mixer 212' and then output it.
- the second amplifier may be coupled to a transmission path between the third mixer 212 ′ and the fourth mixer ( 2131 , 2132 ) for transmitting a single-ended modulated signal.
- the second amplifier amplifies and quadrature-splits the modulated signal output by the third mixer 212' and then outputs it to the fourth mixer 2131 and the fourth mixer 2132 respectively.
- phase calibration circuit After obtaining the second baseband signal, use the phase calibration circuit to extract the actual phase carried in the second baseband signal, and determine and store the calibration phase information based on the phase deviation between the actual phase and the preset phase shift phase, so that The phase calibration circuit generates and sends a phase shift control signal to the phase shifter according to the calibration phase information.
- the preset phase shift phase is set based on the actual phase to be calibrated.
- the phase calibration circuit extracts the actual phase from the second baseband signal, and the actual phase is obtained by the phase shifter phase-shifting the radio frequency signal according to the phase-shifted phase before calibration.
- the phase calibration circuit determines the phase deviation between the preset phase shift phase and the actual phase, it can obtain the calibration phase information of the phase shifter corresponding to the phase shift phase.
- the calibration phase information can make the actual phase of the radio frequency signal output by the calibrated phase shifter in a non-calibrated state (such as a working state) closer to the preset phase shift phase information than before calibration. This is, for example, the determined phase deviation, or compensation information determined based on the phase deviation.
- the compensation information is determined according to the type of the phase shifter and/or the calibration strategy, etc.
- the calibration strategy is set based on testing the phase shifter multiple times. Among them, factors to be considered in the calibration strategy include but are not limited to at least one of the following: phase shift changes of the phase shifter in different phase intervals, phase shift effects of temperature on the phase shifter, systematic errors of the phase shifter, etc.
- the type of the phase shifter is, for example, an IQ quadrature phase shifter, a transmission line phase shifter, or a switching phase shifter.
- the compensation information includes, for example: compensation electrical parameters corresponding to the phase shift phase determined according to the determined phase deviation. Compensation electrical parameters include compensation voltage, compensation duty cycle, or compensation current, etc.
- the calibration circuit of the phase shifter calculates corresponding compensation information according to the preset minimum value of the phase shift phase, the unit phase shift phase, or the maximum value of the phase shift phase, and stores the same.
- the compensation information also includes, for example: any other phase-shifting phases between any two phase-shifting phases and corresponding other compensations determined based on any two phase-shifting phases and two phase deviations detected by the calibration circuit. electrical parameters (or other phase deviations).
- the phase shifter includes N cascaded transmission line phase shifters, and the multiple transmission line phase shifters provide phase shift according to the unit phase shift phase ⁇ °. The phase shifter is detected by the calibration circuit when the phase shift is 0°.
- the corresponding phase deviation is And the phase deviation corresponding to the (N ⁇ )° phase shift phase is
- the phase deviation using the phase shift of each transmission line phase shifter can be equally divided into the total phase deviation.
- the phase calibration circuit 22 uses digital signal processing to extract the actual phase to be calibrated.
- the phase calibration circuit 22 includes: an analog-to-digital converter (ADC) 221 and a digital signal processor 222.
- ADC analog-to-digital converter
- the ADC 221 is coupled to the phase acquisition circuit 20 and is configured to perform analog-to-digital conversion on the second baseband signal and output a corresponding second baseband digital signal.
- the digital signal processor 222 is coupled to the ADC 221 and is configured to determine the phase deviation of the phase shifter by detecting the phase difference between the preset phase shift phase and the actual phase in the second baseband digital signal; And, the phase deviation or the compensation information determined according to the phase deviation is stored as the calibration phase information for the phase calibration circuit to generate the phase shift control signal.
- the digital signal processor determines the phase difference by extracting the actual phase in the second baseband digital signal in the time domain or frequency domain. For example, the digital signal processor converts the coordinate system of the second baseband digital signal from the time-amplitude coordinate system to the phase-frequency coordinate system to obtain the actual phase represented by the amplitude. The phase difference between the preset phase shift phase and the above-mentioned actual phase is thus calculated.
- the digital signal processor uses time domain-frequency domain conversion to directly obtain the actual phase.
- the digital signal processor uses time domain-frequency domain conversion to obtain a phase value including the initial phase and the actual phase, and uses the signal demodulation method to use the phase value of the first baseband signal.
- Initial phase to extract the actual phase.
- the initial phase of the first baseband signal may be preset in the digital signal processor for use in demodulation.
- the ADC is further configured to receive a first baseband signal, perform analog-to-digital conversion on the first baseband signal, and output a corresponding first baseband digital signal; the digital signal processing The detector is arranged to extract said actual phase by detecting the phase difference between the first baseband digital signal and the second baseband digital signal.
- the ADC may include two analog-to-digital conversion circuits to respectively digitize the first baseband signal and the second baseband signal; and the digital signal processor uses a digital signal demodulation method to digitize the first baseband digital signal and the second baseband digital signal. Demodulate to obtain the actual phase; calculate the phase difference between the actual phase and the preset phase shift phase; and obtain calibration phase information using at least one phase difference obtained from at least one calibration, and store it.
- the phase calibration circuit performs a separate phase difference calculation on each channel of the second baseband signal, and uses the phase difference between each channel and the orthogonal signal to have a 90° phase difference. This feature allows the error caused by the initial phase of the local oscillator signal in the phase difference to be removed in one calibration, thus improving the calibration accuracy.
- the digital signal processor 222 acquires the second baseband signal in the following manner. Actual phases in the two baseband signals: obtain the first actual phase in the in-phase second baseband signal and the second actual phase in the quadrature second baseband signal, obtain the first actual phase and the second actual phase The mean of the actual phases yields the final actual phase.
- the calibration phase information obtained by using any of the above examples is used by a phase shift circuit including any of the aforementioned phase shifters, so that when the phase shift circuit receives a phase shift command, the phase shifter can be controlled to convert the received radio frequency signal The phase is converted into the calibrated actual phase. The actual phase after calibration is closer to the phase shift phase set in the phase shift command.
- the phase shift circuit includes a calibration circuit, a phase shift controller, and a phase shifter as provided in any of the above examples.
- the phase shift controller can be integrated in the digital signal processor in the calibration circuit, or in an independent circuit connected to the digital signal processor.
- the embodiment of the present disclosure also provides a phase shift circuit including a phase shifter 10 , a calibration circuit 20 , and a phase shift controller 40 .
- the calibration circuit 20 is coupled to the phase shifter 10 and is configured to perform the phase calibration operation on the phase shifter 10 as provided in any of the above examples in the calibration state 1.
- the phase shift controller 40 is coupled to the calibration circuit 20 and the phase shifter 10, and receives a phase shift instruction during the working state 2.
- the phase shift controller 40 is configured to shift the phase according to the phase shift instruction. , and its corresponding stored calibration phase information, outputs a phase shift control signal to the phase shifter 10 .
- the phase shifter 10 is configured to perform phase shifting processing on the radio frequency signal according to the phase shifting control signal.
- the phase shift controller 40 may be shared with the digital signal processor in the calibration circuit, or may be configured separately and share the same memory area with the digital signal processor.
- the radar sensor generates a phase shift instruction according to the configured phase shift strategy, and the phase shift instruction includes the phase shift phase to be executed by the phase shift circuit.
- the phase shift controller extracts the phase shift phase in the corresponding phase shift instruction through interaction with the memory, obtains the calibration phase information corresponding to the phase shift phase, and converts it into a phase shift control signal that can be identified by the phase shifter, For example, voltage signal, current signal, or pulse width modulation (Pulse Width Modulation, PWM) signal, etc.
- PWM pulse width modulation
- the phase shift control signal is intended to control the adjustable circuit in the phase shifter 10 to adjust the phase of the radio frequency signal received by the phase shifter to the phase shift phase, thereby reducing errors caused by factors such as the external environment, operating voltage, and manufacturing processes. Phase shifter phase shift deviation.
- the embodiment of the present disclosure also provides a radio frequency transmission circuit, which may be called a radio frequency transmission system, which includes a local oscillator circuit, a phase shift circuit according to any of the preceding embodiments, and a transmitting antenna system.
- the local oscillator circuit shifts the phase of the generated radio frequency signal through the phase shift circuit and then inputs it into the transmitting antenna system to convert it into electromagnetic waves for radiation.
- the local oscillator circuit in the calibration state, the local oscillator circuit generates a radio frequency signal and sends it to the phase shift circuit. After phase shifting, the phase shift circuit transmits the electromagnetic wave signal through the transmitting antenna system.
- the calibration circuit in the phase shift circuit can adjust the phase shifter. Perform at least one calibration operation.
- the calibration circuit obtains the radio frequency signal corresponding to the preset phase shift phase ⁇ i output by the phase shifter at the i-th time, and uses any of the methods mentioned above to obtain the relationship between the actual phase ⁇ 'i and the phase shift phase ⁇ i of the radio frequency signal.
- the phase difference ⁇ i is stored as the corresponding calibration phase information.
- the calibration circuit re-executes the calibration operation at different times (such as the i+1th moment, the i+2th moment, etc.) using different phase shifting phases ⁇ (i+1), ⁇ (i+2), etc., to The obtained different phase differences are used to determine the calibration phase information corresponding to any phase shift phase, or to determine the calibration phase information corresponding to the phase shift phase obtained based on different phase shift steps.
- the phase shift controller reads the corresponding calibration phase information according to the received phase shift command, and generates a phase shift control signal, which is fed back to the phase shifter.
- the phase shifter outputs the calibrated phase shift value. Radio frequency signal, so that the phase shift phase of the output radio frequency signal conforms to the preset phase shift phase set by the phase shift instruction.
- the radio frequency signal output by the phase shift circuit is output to the transmitting antenna system.
- the transmitting antenna system converts the radio frequency signal provided by the signal transmitter (such as a local oscillator circuit) into electromagnetic waves and radiates them to free space through electromagnetic conversion.
- the transmitting antenna system includes a radiating part and a feeding part.
- the radiation part is usually implemented in a patterned form on the metal layer in the integrated circuit.
- the radiation part includes, for example, a radiation structure of a patch or a radiation structure of a gap.
- the feed part is coupled between the signal transmitter and the radiation part, and is used to transmit changing electrical signals.
- the feeding part transmits the changing electrical signal (frequency multiplied and phase-shifted radio frequency signal) output by the signal generator to the radiation part, so that the radiation part can convert the changing electrical signal into an electromagnetic wave.
- the radio frequency transmitting circuit can change the radiation direction of the transmitting antenna without adjusting the structure of the transmitting antenna system, thereby achieving phase control and reducing radar interference.
- an embodiment of the present disclosure also provides a radio frequency receiving circuit, including a receiving antenna system, a phase shift circuit according to any of the foregoing embodiments, a local oscillator circuit and a mixer.
- the receiving antenna system converts electromagnetic waves into Converted into a radio frequency receiving signal (or radio frequency signal), the radio frequency receiving signal is phase-shifted by the phase shift circuit, and then input into the mixer with the local oscillator signal output by the local oscillator circuit, and the difference frequency is output after down-conversion Signal.
- the calibration process of the phase shifting circuit in the radio frequency receiving circuit is the same or similar to that of the phase shifting circuit in the radio frequency transmitting circuit.
- the phase shifting circuit in the radio frequency receiving circuit has the same or similar working process as the phase shifting circuit in the radio frequency transmitting circuit.
- the structure of the transmitting antenna system in the radio frequency transmitting circuit is similar.
- the receiving antenna system converts electromagnetic waves in a specific frequency band in free space into radio frequency receiving signals.
- the receiving antenna system outputs the radio frequency receiving signal to the phase shifting circuit.
- the radio frequency receiving circuit can change the detection direction of the receiving antenna without adjusting the structure of the receiving antenna system, thereby achieving phase control and reducing radar interference.
- radio frequency transmitting circuits and radio frequency receiving circuits including phase shift circuits are illustrated below through some application embodiments.
- the radio frequency transmission circuit includes a local oscillator circuit 401, a phase shift circuit (including a phase shifter 402 and a calibration circuit), a power amplifier 404 and a transmit antenna system.
- the dotted line in the figure is the calibration circuit.
- the calibration circuit includes a quadrature coupler 403 (that is, the aforementioned radio frequency acquisition circuit), a quadrature mixer 405 (that is, the aforementioned modulation circuit), an amplifier 406, a mixer 407 (that is, the aforementioned frequency conversion circuit) and a baseband Generation and processing circuit 408 (which is a synthesis of the aforementioned baseband signal generation circuit and phase calibration circuit).
- the orthogonal coupler 403 couples the output signal of the phase shifter 402 according to a certain proportion.
- the coupled signal is guaranteed to be large enough to accurately reflect the output performance of the phase shifter 402, but will not couple out too large a signal.
- the signal affects the operation of the power amplifier.
- the output of the quadrature coupler 403 is a pair of radio frequency signals with a phase difference of 90 degrees, or radio frequency acquisition signals (i.e., IRF and QRF in the figure, are high-frequency signals);
- the baseband generation and processing circuit 408 generates a first baseband signal (ie, IIF and QIF in the figure) for providing calibration.
- the frequency of the first baseband signal can range from tens of KHz to hundreds of MHz.
- the first baseband The signal is a low-frequency band signal, so the signal can be easily processed (for example, phase extraction).
- the first baseband signal generated by the baseband generation and processing circuit 408 and the radio frequency signal output by the quadrature coupler 403 are mixed in the quadrature mixer 405 (IRF-IIF, QRF-QIF, or IRF+IIF, QRF+ QIF) can generate two signals with single sideband characteristics, that is, the aforementioned modulated signals, which are amplified by the amplifier 406 and then input into the mixer 407.
- the mixer 407 also receives the local oscillator signal from the local oscillator circuit 401.
- the mixer 407 performs down-conversion processing and outputs two second baseband signals Vout.
- the Vout has the same frequency as the IIF and QIF. , and the Vout contains the phase information output by the phase shifter 402.
- the phase shifter 402 is adjusted to change the phase of the radio frequency signal by a certain degree, the phase of Vout will also change by a corresponding degree, and due to the frequency of Vout It is very low, so it can be easily measured and recorded accurately in the baseband generation and processing circuit 408 to obtain the phase output by the phase shifter 402.
- the baseband generation and processing circuit 408 obtains the phases of the two second baseband signals respectively, and obtains the actual phase of the radio frequency signal through averaging processing.
- the baseband generation and processing circuit 408 can send a corresponding phase shift control signal according to the phase error, and the phase shifter 402 can adjust according to the phase shift control signal until the error converges to an acceptable level. This enables precise calibration of the RF phase shifter.
- the phase of the second baseband signal Vout can be used to track the phase characteristics of the phase shifter. By measuring the phase change of Vout, the phase change of the phase shifter can be known. Therefore, when the phase change of Vout is found to be When the expectations are not met, the phase shifter is adjusted through the feedback signal, that is, the phase shift control signal.
- the baseband generation and processing circuit 408 also integrates a phase shift controller to generate a phase shift control signal according to the stored calibration phase information after calibration.
- the phase shift control signal controls the phase of the radio frequency signal output by the phase shifter to be the calibrated shifted phase phase.
- the local oscillator circuit 401 generates a radio frequency signal and outputs it to the phase shifter 402.
- the baseband generation and processing circuit 408 Under the control of the upper layer's phase shift instruction, the baseband generation and processing circuit 408 outputs to the phase shifter 402 according to the phase shift in the phase shift instruction.
- Phase shift control signal where the phase shift control signal represents the calibrated phase shift phase information.
- the phase shifter 402 outputs a radio frequency signal that conforms to the phase shift phase according to the phase shift control signal and inputs it to the power amplifier 404.
- the power amplifier 404 converts the radio frequency signal into The output power of the signal is amplified to drive the transmitting antenna system to convert the radio frequency signal into electromagnetic waves and radiate them into free space.
- the radio frequency receiving circuit includes a receiving antenna system, a low noise amplifier 409, a phase shift circuit (including a phase shifter and a calibration circuit), a local oscillator circuit and a receiver mixer 410.
- the receiving antenna system receives external radio frequency or microwave signals, the low noise amplifier 409 amplifies the signal, the phase shift circuit adjusts the phase of the signal, and finally the receiver mixer 410 downconverts the signal and outputs an intermediate frequency signal.
- the phase shift circuit includes a phase shifter 402 and a calibration circuit.
- the calibration circuit is within the dotted line in the figure.
- the calibration circuit includes a quadrature coupler 403, a quadrature mixer 405, an amplifier 406, a mixer 407, and baseband generation and processing circuitry 408.
- the orthogonal coupler 403 couples the output signal of the phase shifter 402 according to a certain proportion.
- the coupled signal is guaranteed to be large enough to accurately reflect the output performance of the phase shifter, but does not couple out an excessively large signal. And affect the work of the power amplifier.
- the output of the quadrature coupler 403 is a pair of radio frequency acquisition signals with a phase difference of 90 degrees (i.e., I RF and Q RF in the figure, which are high-frequency signals); the baseband generation and processing circuit 408 generates a signal for calibration
- the frequency of the first baseband signal ie, I IF and Q IF in the figure
- the mixer 407 After the first baseband signal generated by the baseband generation and processing circuit 408 and the RF acquisition signal output by the quadrature coupler 403 are mixed in the quadrature mixer 405, two signals with single sideband characteristics can be generated, that is, the aforementioned
- the modulated signal is amplified by amplifier 406 and then input into mixer 407.
- the mixer 407 also receives the local oscillator signal from the local oscillator circuit 401 (the local oscillator circuit can use the local oscillator circuit in the radio frequency transmitting circuit).
- the mixer 407 performs down-conversion processing and outputs two second baseband signals Vout. , the Vout has the same frequency as I IF and Q IF , and the Vout contains the output phase information of the phase shifter 402 .
- the phase shifter 402 When the phase shifter 402 is adjusted to change the phase of the radio frequency signal by a certain degree, the phase of Vout will also change by a corresponding degree, and because the frequency of Vout is very low, it can be easily measured accurately in the baseband generation and processing circuit 408 and record to obtain the phase output by the phase shifter 402.
- the baseband generation and processing circuit 408 obtains the phases in the two second baseband signals respectively, and obtains the actual phase of the radio frequency signal through averaging processing.
- the baseband generation and processing circuit 408 can A corresponding phase shift control signal is sent according to the phase error, and the phase shifter 402 can be adjusted according to the phase shift control signal until the error converges to an acceptable level. This enables precise calibration of the RF phase shifter.
- the baseband generation and processing circuit 408 also integrates a phase shift controller to generate a phase shift control signal according to the stored calibration phase information after calibration.
- the phase shift control signal controls the phase of the radio frequency signal output by the phase shifter to be the calibrated shifted phase phase.
- the local oscillator circuit 401 in the working state, the local oscillator circuit 401 generates radio frequency
- the frequency signal is output to the phase shifter 402 and the receiver mixer 410, and the receiving antenna system converts the electromagnetic wave in the free space into a radio frequency reception signal, which is amplified by the low noise amplifier 409 and then output.
- the baseband generation and processing circuit 408 outputs a phase shift control signal to the phase shifter 402 according to the phase shift phase in the phase shift instruction, where the phase shift control signal represents the calibrated phase shift phase information
- the phase shifter 402 outputs a radio frequency reception signal that conforms to the phase shift phase according to the phase shift control signal and inputs it to the receiver mixer 410.
- the receiver mixer 410 uses the local oscillator signal to perform the phase shift on the radio frequency reception signal. Downconversion processing to output a baseband signal carrying phase-shifted information.
- the baseband signal is used for subsequent circuits to calculate information about the target object detected in the radiation direction under the control of the phase shift controller.
- the radio frequency transmitting circuit includes a local oscillator circuit 501, a phase shifting circuit, a power amplifier 504 and a transmitting antenna system.
- the phase shifting circuit includes a phase shifter 502 and a calibration circuit.
- the calibration circuit is within the dotted line in the figure.
- the calibration circuit of this embodiment includes a single-ended coupler 503 (i.e., the aforementioned radio frequency acquisition circuit), a mixer 505 (i.e., the aforementioned modulation circuit), an amplifier 506, and a frequency conversion circuit (including an orthogonal coupler 507 and Quadrature mixer 508) and baseband generation and processing circuit 509.
- the single-ended coupler 503 couples out the output signal of the phase shifter 502 according to a certain proportion and inputs it into the mixer 505.
- the baseband generation and processing circuit 509 generates the first baseband signal for providing calibration (i.e., V IF in the figure).
- V IF the first baseband signal generated by the baseband generation and processing circuit 509 and the radio frequency acquisition signal output by the single-ended coupler 503 are mixed in the mixer 505 (V RF -V IF or V RF +V IF )
- a signal with The modulation signal, a signal with single sideband characteristics is amplified by the amplifier 506 and then sent to the quadrature mixer 508 .
- the quadrature mixer 508 also receives the local oscillator signal from the local oscillator circuit 501.
- the local oscillator signal output by the local oscillator circuit 501 passes through the quadrature coupler 507 to produce two paths with a phase difference of 90 when entering the calibration circuit.
- degree of the local oscillator signal i.e., I RF and Q RF in the figure
- the quadrature mixer 508 performs down-conversion processing to obtain baseband signals I out and Q out with an orthogonal relationship.
- the I out and Q out are related to V IF has the same frequency and contains the phase information output by the phase shifter 502 . I out and Q out can be accurately measured and the phase recorded in the baseband generation and processing circuit 408 to obtain the phase of the phase shifter 502 output.
- the baseband generation and processing circuit 408 obtains the phases of the two second baseband signals respectively, and obtains the actual phase of the radio frequency signal through averaging processing.
- the baseband generation and processing circuit 509 can send a corresponding phase shift control signal according to the phase error, and the phase shifter 502 can adjust according to the phase shift control signal until the error converges to an acceptable level. This enables precise calibration of the RF phase shifter.
- the radio frequency receiving circuit includes a receiving antenna system, a low noise amplifier 510, a phase shift circuit, a local oscillator circuit and a receiver mixer 511.
- the phase shift circuit includes a phase shifter 502 and a calibration circuit.
- the calibration circuit is within the dotted line in the figure.
- the calibration circuit includes a single-ended coupler 503, a mixer 505, an amplifier 506, a quadrature mixer 508, a quadrature coupler 507, and baseband generation and processing circuitry 509.
- the output end of the phase shifter in the calibration circuit of this embodiment uses a single-ended coupler 503.
- the single-ended coupler 503 outputs a radio frequency acquisition signal (ie, V RF in the figure, which is a high-frequency signal).
- the baseband generates
- the processing circuit 509 generates a first baseband signal for calibration (i.e., V IF in the figure).
- the first baseband signal generated by the baseband generation and processing circuit 509 and the radio frequency acquisition signal output by the single-ended coupler 503 are mixed in the mixer 505
- the mixing operation is performed, and the obtained modulated signal is amplified by the amplifier 506 and then input into the quadrature mixer 508 .
- the quadrature mixer 508 also receives the local oscillator signal from the local oscillator circuit 501 (the local oscillator circuit can use the local oscillator circuit in the radio frequency transmitting circuit).
- the local oscillator signal output by the local oscillator circuit 501 is When entering the calibration circuit, the quadrature coupler 507 generates two local oscillator signals with a phase difference of 90 degrees (i.e., I RF and Q RF in the figure).
- the quadrature mixer 508 performs down-conversion processing to obtain an orthogonal relationship.
- the baseband signals I out and Q out have the same frequency as V IF and contain the output phase information of the phase shifter 502 . Since the frequencies of I out and Q out are very low, they can be easily measured and recorded accurately in the baseband generation and processing circuit 509 to obtain the actual phase of the phase shifter 502 .
- the baseband generation and processing circuit 509 can send a corresponding phase shift control signal according to the phase error, and the phase shifter 502 can adjust according to the phase shift control signal until the error converges to an acceptable level. This enables precise calibration of the RF phase shifter.
- the calibration circuit includes a single-ended coupler (i.e., the aforementioned radio frequency acquisition circuit), a first mixer (i.e., the aforementioned modulation circuit) ), amplifier, second mixer (i.e., the aforementioned frequency conversion circuit) and baseband generation and processing circuit (including the aforementioned baseband signal generation circuit and phase calibration circuit).
- a single-ended signal processing method is used, through a single-ended coupler A radio frequency acquisition signal is coupled out and mixed with the first baseband signal output by the baseband generation and processing circuit.
- the modulated signal obtained after mixing is amplified by an amplifier and then input into the second mixer for down-conversion processing to obtain the second baseband
- the second baseband signal contains the actual phase information of the phase shifter.
- the baseband generation and processing circuit extracts the phase information, performs error judgment, and sends a phase shift control signal to the phase shifter based on the judgment result.
- the radio frequency receiving circuit can adopt a similar configuration, which will not be described again in this embodiment.
- an embodiment of the present disclosure also provides a calibration method for a phase shifter, as shown in Figure 13, including the following steps:
- Step S1 obtain the radio frequency signal carrying the actual phase output by the phase shifter
- Step S2 Use the first baseband signal to modulate the radio frequency signal
- Step S3 down-convert the modulated radio frequency signal to baseband to obtain a second baseband signal containing the actual phase
- Step S4 Obtain the actual phase in the second baseband signal, determine the calibration phase of the phase shifter based on the phase deviation between the actual phase and the preset phase shift phase, and determine the calibration phase according to the calibration phase.
- the phase shifter sends a phase shift control signal.
- the embodiment of the present disclosure also provides a radar sensor, which may include the aforementioned radio frequency transmitting circuit and/or radio frequency receiving circuit.
- the radar sensor uses the detection signal wave emitted by the radio frequency transmitting circuit and the echo signal wave received by the radio frequency receiving circuit to measure the physical quantity between it and the surrounding environment target, for example, measuring relative speed, relative angle, relative distance, and measuring At least one of the three-dimensional contours of the target, etc.
- the radar sensor includes: a radio frequency transmitting circuit and/or a radio frequency receiving circuit.
- the radio frequency transmitting circuit and the radio frequency receiving circuit determine the circuit structure according to the surrounding environment measured by the radar sensor, so as to send out the detection signal wave in the preset frequency band or fixed frequency, and receive the response in the preset frequency band or fixed frequency. wave signal wave, and perform signal processing on the corresponding changing electrical signal.
- the radio frequency transmitting circuit or the radio frequency receiving circuit is the corresponding circuit provided by any of the above examples to achieve phase control detection or reduce radar interference.
- the radio frequency transmitting circuit generates a chirp signal (such as a Frequency Modulated Continuous Wave (FMCW) signal) according to a preset continuous frequency modulation method; the radio frequency transmit signal is obtained through frequency multiplication processing, and is shifted using a phase shift circuit After phase processing, it is fed to the transmitting antenna to transmit the corresponding detection signal wave.
- a chirp signal such as a Frequency Modulated Continuous Wave (FMCW) signal
- FMCW Frequency Modulated Continuous Wave
- the radio frequency transmit signal is obtained through frequency multiplication processing, and is shifted using a phase shift circuit After phase processing, it is fed to the transmitting antenna to transmit the corresponding detection signal wave.
- an echo signal wave is formed.
- the echo signal wave is converted into a radio frequency reception signal through the receiving antenna.
- the radio frequency receiving circuit is configured to use the radio frequency transmission signal (i.e.
- the radar sensor may further include a signal processor, which may be connected to the radio frequency receiving circuit and configured to extract measurement information from the baseband digital signal through signal processing and output measurement data. Since the measurement data contains the phase shift, it can help determine the angle information of the detected target, etc.
- the signal processing includes performing digital signal processing calculations such as phase, frequency, time domain, etc. on at least one signal to be processed provided by at least one receiving antenna.
- the measurement data includes at least one of the following: distance data used to represent the relative distance of the at least one detected target; speed data used to represent the relative speed of the at least one detected target; used to represent the detected Angle data of the relative angle of at least one target, etc.
- an embodiment of the present disclosure also provides an electronic device including at least one of the foregoing phase shift circuit, the foregoing radio frequency transmitting circuit, the foregoing radio frequency receiving circuit, and the foregoing radar sensor.
- the electronic device includes: a device body; and at least one radio device among the phase shifting circuit, radio frequency transmitting circuit, radio frequency receiving circuit, or radar sensor of the above embodiments, which is disposed on the device body.
- the device body is a structure that carries a radio device and is signal-connected to the radio device.
- the radio device implements functions such as target detection and/or communication within the range of beam scanning by transmitting and/or receiving radio signals that have been phase-shifted by the phase shifter to provide detection target information and/or to the device body. communicate information to assist or even control the operation of the device itself.
- the above-mentioned electronic device including a device body and the aforementioned at least one radio device may be used in applications such as smart residences, transportation, smart homes, consumer electronics, monitoring, industrial automation, in-cabin detection and health care, etc. components and products in the field.
- the device body can be intelligent transportation equipment (such as cars, bicycles, motorcycles, ships, subways, trains, etc.), security equipment (such as cameras), liquid level/flow rate detection equipment, smart wearable devices (such as bracelets, glasses, etc.), smart home equipment (such as sweeping robots, door locks, TVs, air conditioners, smart lights, etc.), various communication devices (such as mobile phones, tablets, etc.), as well as barriers such as gates, smart traffic lights, smart indicators, etc. signs, traffic cameras and various industrial robotic arms (or robots), etc. It can also be various instruments used to detect vital characteristic parameters and various equipment equipped with the instruments, such as car cabin detection, indoor personnel monitoring, smart medical equipment, consumer electronics equipment, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
一种用于移相器(10)的校准电路(20)、校准方法、移相电路、射频发射电路、射频接收电路、雷达传感器及电子设备。用于移相器(10)的校准电路(20)包括相位采集电路(21)和相位校准电路(22),其中:相位采集电路(21)耦接于移相器(10),设置为采集移相器(10)输出的射频信号,并利用第一基带信号对采集于移相器(10)的射频采样信号进行调制,将调制后得到的调制信号下变频至基带,得到包含实际相位的第二基带信号;相位校准电路(22)耦接于相位采集电路(21),设置为获取第二基带信号中的实际相位,根据实际相位与预设的移相相位之间的相位偏差,确定移相器(10)的校准相位信息,根据校准相位信息生成向移相器(10)发送的移相控制信号。
Description
本申请要求2022年09月08日递交到中国专利局的,申请号为202211100529.1的中国专利申请的优先权,其内容应理解为通过引用的方式并入本申请中。
本公开实施例涉及但不限于射频技术领域,尤其涉及一种用于移相器的校准电路、校准方法、移相电路、射频发射电路、射频接收电路、雷达传感器及电子设备。
集成电路(integrated circuit,IC),又称芯片(chip),在电子学中是一种将电路小型化的方式,并时常制造在半导体晶圆表面上。芯片包含利用半导体制造工艺而制造的裸片(die),以及封装结构。在射频芯片结构中通常包括用于对波的相位进行调整移相器(Phaser)。射频移相器具有对射频信号相位进行调整的功能,是射频和微波收发系统的重要组件。
然而,移相器的校准通常需要使用额外的网络分析仪等仪器以及复杂的测试手段,测量成本高,且受限于环境。
发明内容
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种用于移相器的校准电路、校准方法、移相电路、射频发射电路、射频接收电路、雷达传感器及电子设备,不依赖测量仪器实现移相器精准校准。
一方面,本公开实施例提供了一种用于移相器的校准电路,其包括相位采集电路和相位校准电路,其中:所述相位采集电路,耦接于所述移相器,设置为利用第一基带信号对采集于所述移相器的射频采样信号进行调制,并输出包含实际相位的第二基带信号;所述实际相位为所述移相器所输出的射频信号的相位;所述相位校准电路,耦接于所述相位采集电路以接收所述第二基带信号,设置为获取所述第二基带信号中的实际相位,根据所述实际相位与预设的移相相位之间的相位偏差,确定并存储校准相位信息,以便所述相位校准电路根据所述校准相位信息生成向所述移相器发送的移相控制信号。
另一方面,本公开实施例还提供了一种移相电路,其包括移相控制器,移相器,以及如第一方面所述的校准电路,其中:所述校准电路,耦接于所述移相器,用于在校准状态下通过移相控制器向移相器发送移相控制信号;所述移相控制器,耦接于所述校准电路和移相器,设置为在工作状态下接收包含移相相位的移相指令,根据所述移相相位对应存储的校准相位信息,输出移相控制信号;所述移相器,设置为按照所述移相控制信号对射频信号进行移相处理。
另一方面,本公开实施例还提供了一种射频发射电路,包括本振电路、如上述示例中所述的移相电路以及发射天线系统,所述本振电路将所生成的射频发射信号输出至所述移相电路,所述移相电路将所述射频发射信号移相并输入所述发射天线系统,以转换成电磁
波予以辐射。
另一方面,本公开实施例还提供了一种射频接收电路,其包括接收天线系统、如上述示例所述的移相电路、本振电路和混频器,所述接收天线系统将电磁波转换为射频接收信号,所述射频接收信号通过所述移相电路移相后,与所述本振电路输出的本振信号输入混频器,以输出经下变频后的差频信号。
另一方面,本公开实施例还提供了一种雷达传感器,其包括如上述示例所述的射频发射电路,和/或如上述示例所述的射频接收电路。
再一方面,本公开实施例还提供了一种电子设备,其包括如上述示例所述的移相电路、如上述示例所述的射频发射电路、如上述示例所述的射频接收电路以及如上述示例所述的雷达传感器中的至少一种。
再一方面,本公开实施例还提供了一种移相器的校准方法,其包括:获取移相器所输出的携带有实际相位的射频信号;利用第一基带信号对所述射频信号进行调制处理;将调制后的射频信号下变频至基带,得到包含实际相位的第二基带信号;获取所述第二基带信号中的实际相位,根据所述实际相位与预设的移相相位之间的相位偏差,确定所述移相器的校准相位,根据所述校准相位向所述移相器发送移相控制信号。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。附图中各部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
图1为本公开实施例提供的一种校准电路的示意图;
图2为本公开实施例提供的另一种校准电路的示意图;
图3为本公开实施例提供的再一种校准电路的示意图;
图4为本公开实施例提供的再一种校准电路的示意图;
图5为本公开实施例提供的再一种校准电路的示意图;
图6为本公开实施例提供的再一种校准电路的示意图;
图7为本公开实施例提供的一种相位校准电路的示意图;
图8为本公开实施例提供的一种射频发射电路的示意图;
图9为本公开实施例提供的一种射频接收电路的示意图;
图10为本公开实施例提供的另一种射频发射电路的示意图;
图11为本公开实施例提供的另一种射频接收电路的示意图;
图12为本公开实施例提供的再一种射频于发射电路的示意图;
图13为本公开实施例提供的用于移相器的校准方法的流程图;
图14为本公开实施例提供的移相电路的结构示意图。
详述
本公开描述了多个实施例,但是该描述是示例性的,而不是限制性的,并且对于本领域的普通技术人员来说,在本公开所描述的实施例包含的范围内可以有更多的实施例和实现方案。尽管在附图中示出了许多可能的特征组合,并在详述中进行了讨论,但是所公开的特征的许多其它组合方式也是可能的。除非特意加以限制的情况以外,任何实施例的任何特征或元件可以与任何其它实施例中的任何其他特征或元件结合使用,或可以替代任何其它实施例中的任何其他特征或元件。
本公开包括并设想了与本领域普通技术人员已知的特征和元件的组合。本公开已经公开的实施例、特征和元件也可以与任何常规特征或元件组合,以形成由权利要求限定的技术方案。任何实施例的任何特征或元件也可以与来自其它技术方案的特征或元件组合,以形成另一个由权利要求限定的技术方案。因此,应当理解,在本公开中示出和/或讨论的任何特征可以单独地或以任何适当的组合来实现。因此,除了根据所附权利要求及其等同替换所做的限制以外,实施例不受其它限制。此外,可以在所附权利要求的保护范围内进行各种修改和改变。
本公开实施例中,术语“耦接的”或“耦接”根据使用该术语的上下文可以具有几种不同的含义。例如,术语耦接可以具有机械耦接或电气耦接的含义。如本文所使用的,术语“耦接的”或“耦接”可以表示两个元件或器件可以彼此直接连接或通过一个或多个中间元件或器件经由电气元件、电信号或机械元件(例如但不限于,电线或电缆,这取决于实际应用)彼此连接。本文中所述的耦接例如包括:直接的电连接、电感应连接、或光耦连接等。例如,利用半导体制造工艺中所使用的连接方式实现两个电器件之间的电连接。又如,利用光耦组件、或电感感应组件等非接触的连接方式实现两个电器件之间的信号连接。再如,利用芯片引脚和插槽之间的连接方式辅助两个电器件之间电连接或信号连接等。
以雷达传感器为例,在雷达传感器中配置移相器既可以在不改变天线等硬件电路配置的情况下进行相控辐射,又可以有效减少雷达之间干扰。
在本公开实施例,所述移相器为一种利用所接收的移相控制信号的可调电参数,将射频信号进行相位调整的电路。其中,该可调电参数例如为控制信号的电压、占空比、或电流等。在一些示例中,移相器可以为一种正交移相器,其利用正交电路中正交信号的幅值变化来适应性调整射频信号的相位,以输出携带有相位的射频信号。在又一些示例中,所述移相器可以为一种传输线移相器,其包括至少一组移相单元。其中,该移相单元包括传输线移相单元、电容电路和可调电路。该传输线移相单元包括传输射频信号的传输线,还可以包括参考地线。该传输线移相单元利用传输线之间、或传输线与参考地线之间的线间距变化和/或电容变化,来调整所传输的射频信号的相位。例如,传输线移相单元包括单端传输线和两组参考地线,其中两组参考地线中不同组的参考地线之间具有线间距。又例如,传输线移相单元包括两组差分传输线,其中两组差分传输线中不同组的差分传输线之间具有线间距。利用线间距来形成传输线移相单元具有至少两种移相状态。电容电路连接在其中一种移相状态的传输线之间,以使得在不同移相状态切换时进行阻抗匹配。所述可调电路用于根据控制信号调整传输线移相单元和/或电容电路,以选择其中一种移相状态,并输出对应移相状态的实际相位的射频信号。其中,该可调电路例如为可调电阻电路、可调电容电路和MOS(Metal Oxide Semiconductor)管中的至少一种或多种组合所形成的电路,其受上述移相控制信号的可调电参数的控制。
上述移相器在实际工作时,因器件的设计、制造工艺、工作温度和工作电磁使用环境等因素影响,而使得移相器所移相的实际相位与预设的移相相位之间具有相位误差;该相
位误差对雷达传感器在进行后续信号处理中,有可能影响测量物理量的准确度。因此,雷达传感器中配置有移相器的校准电路。在进行校准之前需要对射频移相器进行精准的测量以确定误差的大小,通过改变射频移相器的设置使误差符合要求,当接收到移相控制信号时,移相器利用校准电路,补偿相应移相相位的相位偏差,以输出与移相控制信号中的预设的移相相位最相符的射频信号,从而达到校准目的。但是,在这一过程中,通常需要使用额外的网络分析仪等仪器以及复杂的测量手段,而在毫米波和微波频段,这样的测量成本是十分高昂的。另外,由于必须使用仪器来测量,也就意味着该测量十分受限于环境,无法在使用过程中完成真实的测量并校准,局限性非常明显。。
图1为本公开实施例提供的用于移相器10的校准电路20,包括相位采集电路21和相位校准电路22,其中:所述相位采集电路21耦接于移相器10,设置为采集移相器10输出的射频信号,得到射频采样信号,利用第一基带信号对采集于所述移相器10的射频采样信号进行调制,将所得到的调制信号下变频至基带(如图1所述,可利用本振信号对射频采样信号进行下变频处理),得到包含实际相位的第二基带信号;其中,所述第二基带信号的频率是基于第一基带信号的频率而确定的,所述实际相位为所述移相器所输出的射频信号的相位。所述相位校准电路22耦接于相位采集电路21以接收所述第二基带信号,设置为提取所述第二基带信号中的实际相位,根据所述实际相位与预设的移相相位之间的相位偏差确定并存储校准相位信息,以便所述相位校准电路22根据所述校准相位信息生成向所述移相器发送的移相控制信号。
其中,所述第一基带信号为具有预设初始相位的中频信号或低频信号。该预设初始相位可以通过预先存储在存储器(或外部指令)等方式来配置;通过将所述第一基带信号同步发送至相位校准电路,由所述相位校准电路进行检测得到。所述第一基带信号的预设初始相位例如在0°至180°之间(包含至少一个端点值)。利用信号调制方式,利用射频采样信号的实际相位,通过第一基带信号进行混频的信号调制,以使得调制后得到的调制信号携带射频采样信号的实际相位。
所述本振信号为输入移相器的射频信号,其通常为具有固定相位(如0°相位)的射频信号。移相器将本振信号进行移相后,输出携带有所述实际相位的射频信号。利用所述本振信号对所述调制信号进行下变频处理,得到包含实际相位的第二基带信号。其中,第二基带信号的相位为经移相器移相后得到的实际相位、或实际相位与预设初始相位之和(或之差)。利用预设的移相相位来检测第二基带信号的相位,可以确定所得到的实际相位与预设的移相相位之间的相位偏差,并据此生成对应预设的移相相位的校准相位信息。其中,所述校准相位信息可以描述成所述相位偏差和对应的移相相位;或者对应预设的移相相位的经所述相位偏差补偿后的相位值;或者按照所述相位偏差和预设的移相相位之间的校准关系而计算得到的单位移相步进所对应的单位相位偏差。
当雷达传感器中的控制器根据相控模式产生包含移相相位的移相指令时,移相控制器(或校准电路)根据所述校准相位信息,生成符合所述移相相位的移相控制信号。当移相器接收到移相控制信号时,根据移相控制信号调整移相器中的可调电路,以实现准确移相的目的。所述移相控制信号例如是脉宽或电压幅值等形式,以用于描述经校准的移相相位,以使得移相器所输出的射频信号的相位偏移符合移相指令的移相相位。
在一示例性实施例中,相位采集电路为一种获取射频信号中包含的相位信息的电路。如图2所示,所述相位采集电路包括:射频采集电路211、调制电路212、变频电路213。其中,第一基带信号可以由外部电路提供,或者由图2中所示的基带信号生成电路214所生成。其中:射频采集电路211耦接于所述移相器10,设置为采集所述移相器10输出的射频信号,以输出射频采样信号;所述调制电路212耦接于所述射频采集电路211和基
带信号生成电路214(可选),设置为利用所述第一基带信号对所述射频采样信号进行调制,生成包含实际相位的调制信号;所述变频电路213耦接于所述调制电路212和本振电路30(可选,在其他实施例中,本振信号可由外部电路提供),设置为利用所述本振信号对所述调制信号进行下变频处理,生成包含实际相位的第二基带信号;所述基带信号生成电路214耦接于所述调制电路212,设置为生成第一基带信号。
在本实施例中,采用将移相器移相后的射频信号与第一基带信号进行混频的调制方式,使得混频后的射频信号携带了原始的射频信号中的相位信息,再通过下变频处理即减法混频,即可获得携带有相位信息的第二基带信号,以实现将所述射频采集信号中所携带的相位信息转换至基带信号的目的,以便藉由较低频率的基带信号来提取所述相位信息。在此,相比利用单端的第二基带信号来进行相位提取方式,利用正交的第二基带信号来进行的相位提取方式能够实现所提取的相位误差更小的效果。
射频采集电路为一种获取射频信号的电路。在一些示例中,射频采集电路电连接移相器的输出端。例如,所述射频采集电路包括用于输出单路射频信号的耦合器、或用于输出正交射频信号的耦合器。在另一些示例中,所述射频采集电路通过感应耦合的方式获取射频采集信号。所述射频采集电路包括例如耦合线和阻抗匹配电路等。
调制电路为一种对射频采样信号进行调制的电路。在本示例中,所述调制的方式例如为模拟的线性调制,通过调制实现调频,例如,通过调频处理将第一基带信号调制到射频采样信号。调制电路包括例如混频器,例如正交混频器或者混频器(单输入单输出)。
变频电路为一种单边带的混频电路,在本示例中,通过变频处理实现将射频信号调制(例如下变频)到基带信号(例如低频带信号)。变频电路可以采用正交混频器或单端混频器实现。通过下变频处理后,使得输出的第二基带信号成为一个包含射频信号中实际相位信息的低频带信号,便于相位校准电路提取相位信息。
基带信号生成电路是一种用于生成第一基带信号的电路,可以为外部的基带电路,或者与移相器和校准电路一起集成在射频芯片中。校准电路通过芯片内部,或利用芯片外部的导线连接所述基带信号生成电路,以接收第一基带信号。
在一示例性实施例中,所述射频采集电路211可以为第一正交耦合器,所述第一正交耦合器包括用于输出同相射频采样信号的同相向输出端(或称第一输出端)和用于输出正交射频采样信号的正交输出端(或称第二输出端),相应地,所述第一基带信号为正交信号,其包括同相第一基带信号和正交第一基带信号。所述调制电路212包括两个调制器,每一调制器单独接入第一正交耦合器的一个输出端,所述调制电路输出的调制信号也为正交信号。其中,第一调制器连接该第一正交耦合器的同相输出端,第二调制器连接该第一正交耦合器的正交输出端。该第一调制器设置为利用所述同相第一基带信号对所述同相射频采样信号进行调制;该第二调制器设置为利用所述正交第一基带信号对所述正交射频采样信号进行调制。例如,如图3所示,第一正交耦合器211耦接于所述移相器10,设置为采集所述移相器10输出的射频信号,输出相位相差90度的差分的射频采样信号,即同相射频采样信号和正交射频采样信号。调制器2121为处理同相信号的第一混频器;调制器2122为处理正交信号的第一混频器。基带信号生成电路214耦接于第一混频器2121,设置为向第一混频器2121输出同相第一基带信号,以及基带信号生成电路214耦接于第一混频器2122,设置为向第一混频器2122输出正交第一基带信号。第一混频器2121对同相射频采样信号与同相第一基带信号进行调制,生成包含实际相位的同相调制信号,以及第一混频器2122对正交射频采样信号与正交第一基带信号进行调制,生成包含实际正交相位的正交调制信号。其中,实际正交相位与实际相位之间的相位差为90°。
所述变频电路包括用于实现下变频的第二混频器,该第二混频器接收调制信号和本振信号,以利用该调制信号和本振信号执行下变频操作,并输出第二基带信号。在如图3所示的示例中,变频电路213利用本振信号分别对正交的调制信号进行下变频处理,以得到正交的第二基带信号(所述第二基带信号包括同相第二基带信号和正交第二基带信号)。例如,变频电路213中包括两个第二混频器(未予图示),该两个第二混频器利用同一本振信号分别对同相调制信号和正交调制信号进行单独下变频处理,以得到同相第二基带信号和正交第二基带信号。其中同相第二基带信号和正交第二基带信号中均携带射频采集信号中的实际相位,以及同相第二基带信号和正交第二基带信号之间的相位差为90°。
可选地,所述相位采集电路中的每一信号传输路径上还可以包括用于进行信号放大的第一放大器,示例性地,该第一放大器可以耦接于调制电路和变频电路之间。例如第一放大器耦接于所述第一混频器(2121,2122)与所述变频电路213之间,设置为对调制电路(例如第一混频器)输出的调制信号(例如同相调制信号和正交调制信号)进行放大后输入变频电路213。如图4所示,当包括第一放大器215时,该第一放大器215位于用于传输正交信号的两路传输路径上。
在又一示例性实施例中,所述射频采集电路包括单端耦合器211’,所述调制电路包括单端的第三混频器212’,如图5所示,所述单端耦合器211’耦接于所述移相器10,设置为采集所述移相器10输出的射频信号;所述基带信号生成电路214’耦接于第三混频器212’,设置为向第三混频器212’输出第一基带信号;第三混频器212’耦接于单端耦合器211’和基带信号生成电路214’,设置为对射频采样信号与第一基带信号进行调制,生成包含实际相位的调制信号。该调制信号为单端信号。
以调制信号为单端信号为例,如图6所示,所述变频电路213’包括第二正交耦合器2133和第四混频器(2131,2132),其中,所述第二正交耦合器2133耦接于本振电路30,设置为采集本振电路30输出的本振信号,输出相位相差90度的同相本振信号和正交本振信号,所述第二正交耦合器2133包括用于输出同相本振信号的同相输出端和用于输出正交本振信号的正交输出端;第四混频器2131耦接于第二正交耦合器2133的同相输出端和第三混频器212’之间,设置为利用第二正交耦合器2133输出的同相本振信号对所述第三混频器212’输出的单端的调制信号进行下变频处理,生成包含实际相位的同相第二基带信号;第四混频器2132耦接于第二正交耦合器2133的正交输出端和第三混频器212’之间,设置为利用第二正交耦合器2133输出的正交本振信号对第三混频器212’输出的所述调制信号进行下变频处理,生成包含实际相位的正交第二基带信号。在此,第二基带信号为包含实际相位的正交信号,其包括同相第二基带信号和正交第二基带信号。
在另一些示例中,所述调制电路212还可以包括正交电路(未予图示),以将所述第三混频器212’所输出的单端的调制信号转换为正交信号,即使得调制电路输出同相调制信号和正交调制信号。如此,利用图3或4示例中的变频电路可以输出正交的第二基带信号。
可选地,在图5或图6所示实施例基础上,所述相位采集电路还可以包括第二放大器(未予图示),在图5所示示例中,该第二放大器可以耦接于所述第三混频器212’与变频电路213’之间,设置为对第三混频器212’输出的调制信号进行放大和分路后输出。在图6所示示例中,该第二放大器可以耦接于所述第三混频器212’与第四混频器(2131,2132)之间的用于传输单端的调制信号的一路传输路径中,该第二放大器对第三混频器212’输出的调制信号进行放大和正交分路后分别输出至第四混频器2131和第四混频器2132。
在得到第二基带信号后,利用相位校准电路提取第二基带信号中所携带的实际相位,并根据所述实际相位与预设的移相相位之间的相位偏差,确定并存储校准相位信息,以便
相位校准电路根据所述校准相位信息生成向所述移相器发送移相控制信号。其中,所述预设的移相相位是基于待校准的实际相位而设置的。
在一次校准操作中,相位校准电路从第二基带信号中提取实际相位,该实际相位是移相器在校准前根据移相相位而对射频信号进行移相得到的。相位校准电路当确定预设的移相相位与实际相位的相位偏差时,即可得到移相器对应该移相相位的校准相位信息。为此,该校准相位信息可使经校准后的移相器在非校准状态下(如工作状态下)所输出的射频信号的实际相位相比于校准前更接近预设移相相位的信息,其例如为所确定的相位偏差,或者根据相位偏差而确定的补偿信息。
在此,所述补偿信息根据移相器的类型和/或校准策略等而确定,所述校准策略是根据多次测试移相器而设置的。其中,该校准策略的考虑因素包括但不限于以下至少一种:移相器在不同相位区间内的移相变化、温度对移相器的移相影响、移相器的系统误差等。所述移相器的类型例如为IQ正交移相器、传输线移相器、或开关移相器等。所述补偿信息例如包括:根据所确定的相位偏差而确定的对应移相相位的补偿电参数。补偿电参数包括补偿电压、补偿占空比、或补偿电流等。例如,移相器的校准电路按照预设的移相相位最小值、单位移相相位、或移相相位最大值分别计算对应的补偿信息,并予以存储。所述补偿信息还例如包括:根据任意两个移相相位及其经校准电路检测的两个相位偏差,而确定的该两个移相相位之间的任意其他移相相位及所对应的其他补偿电参数(或其他相位偏差)。以移相器包括N个级联的传输线移相器,且多个传输线移相器按照单位移相相位Φ°来提供相移为例,该移相器经校准电路检测0°移相相位所对应的相位偏差为以及(NΦ)°移相相位所对应的相位偏差为利用每个传输线移相器的移相相位的相位偏差可以等分于总的相位偏差即如此,根据来确定每一个传输线移相器的补偿信息。
在示例性实施例中,如图7所示,所述相位校准电路22利用数字信号处理方式来提取待校准的实际相位。为此,相位校准电路22包括:模数转换器(Analog-to-Digital Converter,ADC)221和数字信号处理器222。
所述ADC 221耦接于所述相位采集电路20,设置为将所述第二基带信号进行模数转换,并输出相应的第二基带数字信号。
数字信号处理器222耦接于所述ADC 221,设置为通过检测预设的移相相位和第二基带数字信号中的实际相位之间的相位差,来确定所述移相器的相位偏差;以及,将所述相位偏差或根据所述相位偏差确定的补偿信息存储成所述校准相位信息,以供所述相位校准电路产生所述移相控制信号。
在此,所述数字信号处理器通过在时域或频域内提取第二基带数字信号中的实际相位,来确定所述相位差。例如,数字信号处理器将第二基带数字信号的坐标系由时间-幅度坐标系转换至相位-频率坐标系,以得到利用幅值表示的实际相位。由此计算预设的移相相位与上述实际相位之间的相位差。
在第一基带信号的初始相位为0°的示例中,数字信号处理器利用时域-频域转换直接得到实际相位。
在第一基带信号的初始相位不为0°的示例中,数字信号处理器利用时域-频域转换得到包含初始相位和实际相位的相位值,并通过信号解调方式利用第一基带信号的初始相位来提取实际相位。为此,在一些示例中,第一基带信号的初始相位可预设在数字信号处理器中,以便解调时使用。在另一些示例中,所述ADC还设置为接收第一基带信号,以将所述第一基带信号进行模数转换,并输出相应的第一基带数字信号;所述数字信号处理
器设置为通过检测第一基带数字信号和第二基带数字信号的相位差来提取所述实际相位。在此,ADC可以包括两路模数转换电路,以分别数字化第一基带信号和第二基带信号;以及数字信号处理器利用数字信号解调方式,对第一基带数字信号和第二基带数字信号进行解调,以得到实际相位;计算出实际相位与预设的移相相位之间的相位差;以及利用至少一次校准所得到的至少一个相位差得到校准相位信息,并予以存储。
在第二基带信号为正交信号的示例中,相位校准电路对第二基带信号中的每一路进行单独的相位差计算,以及利用每一路相位差和正交信号之间具有90°相位差的特点,使得在一次校准中,可以去除相位差中本振信号的初始相位所带来的误差,由此提高校准精度。
在如图4或图6所示实施例中,当相位采集电路输出的第二基带信号包括同相第二基带信号和正交第二基带信号时,数字信号处理器222采用以下方式获取所述第二基带信号中的实际相位:获取所述同相第二基带信号中的第一实际相位和所述正交第二基带信号中的第二实际相位,取所述第一实际相位和所述第二实际相位的均值得到最终的实际相位。
利用上述任一示例所得到的校准相位信息供包括前述任一移相器的移相电路使用,以使得当移相电路接收到一移相指令时,能够控制移相器将所接收的射频信号的相位转换为经校准后的实际相位。经校准后的实际相位更接近于移相指令中设置的移相相位。
所述移相电路包括如上任一示例所提供的校准电路,移相控制器,以及移相器。其中,移相控制器可以集成在校准电路中的数字信号处理器中,或者与数字信号处理器连接的独立电路中。如图14所示,本公开实施例还提供了包括移相器10、校准电路20、和移相控制器40的移相电路。其中,所述校准电路20耦接于移相器10,设置为在校准状态①下对所述移相器10进行如上任一示例所提供的相位校准操作。所述移相控制器40耦接于所述校准电路20和移相器10,并在工作状态②期间接收移相指令,所述移相控制器40设置为根据移相指令中的移相相位,及其对应存储的校准相位信息,向移相器10输出移相控制信号。所述移相器10设置为按照所述移相控制信号对射频信号进行移相处理。
在此,移相控制器40可与校准电路中的数字信号处理器共用,或者单独配置且与数字信号处理器共享同一存储区域。以所述移相电路集成在雷达传感器中为例,雷达传感器根据所配置的移相策略而产生移相指令,该移相指令中包含待移相电路执行的移相相位。移相控制器通过与存储器的交互提取所述对应移相指令中的移相相位,获取与移相相位对应的校准相位信息,并将其转换成可供移相器识别的移相控制信号,例如电压信号、电流信号、或脉冲宽度调制(Pulse Width Modulation,PWM)信号等。该移相控制信号旨在控制移相器10中的可调电路将移相器所接收的射频信号的相位调整成移相相位,从而减少因外部环境、工作电压、制造工艺等因素所引起的移相器移相偏差。
在示例性实施例中,本公开实施例还提供了一种射频发射电路,或可以称为射频发射系统,其包括本振电路、前述任一实施例的移相电路以及发射天线系统,所述本振电路将所生成的射频信号通过所述移相电路移相后输入所述发射天线系统,以转换成电磁波予以辐射。例如,在校准状态下,本振电路生成射频信号发送给移相电路,移相电路移相后通过发射天线系统发射电磁波信号,在此过程中,移相电路中的校准电路可以对移相器进行至少一次校准操作。例如,校准电路在第i时刻得到移相器输出的对应预设的移相相位θi的射频信号,利用前述提及的任一方式得到射频信号的实际相位θ’i与移相相位θi之间的相位差△θi,并由此存储为相应的校准相位信息。校准电路按照校准策略,在不同时刻(如第i+1时刻、第i+2时刻等)利用不同的移相相位θ(i+1)、θ(i+2)等重新执行校准操作,以利用所得到的不同相位差来确定任一移相相位所对应的校准相位信息,或者来确定基于不同移相步进而得到的移相相位所对应的校准相位信息。
在工作状态下,移相控制器根据所接收到的移相指令读取相应的校准相位信息,并生成移相控制信号,反馈给移相器,移相器输出经校准后的移相相位的射频信号,以使得所输出的射频信号的移相相位符合移相指令所设置的预设的移相相位。
在射频发射电路中,移相电路所输出的射频信号输出至发射天线系统。发射天线系统是通过电磁转换,将信号发射器(例如本振电路)所提供的射频信号转换为电磁波辐射到自由空间。为了实现电磁转换,发射天线系统包括辐射部分和馈电部分。其中,辐射部分通常以图案化形式实现于集成电路中的金属层。所述辐射部分例如包括贴片的辐射结构、或缝隙的辐射结构。所述馈电部分耦接于信号发射器和辐射部分之间,用来传输变化的电信号。例如,馈电部分将信号发生器所输出的变化电信号(经过倍频且移相后的射频信号)传输至辐射部分,使得辐射部分能够将变化电信号转换为利电磁波。
利用移相器,射频发射电路可在不调整发射天线系统的结构的情况下,改变发射天线的辐射方向,从而实现相控和减少雷达干扰的目的。
在示例性实施例中,本公开实施例还提供了一种射频接收电路,包括接收天线系统、前述任一实施例的移相电路、本振电路和混频器,所述接收天线系统将电磁波转换为射频接收信号(或称射频信号),所述射频接收信号通过所述移相电路移相后,与所述本振电路输出的本振信号输入混频器,经下变频后输出差频信号。在校准状态下,所述射频接收电路中的移相电路与射频发射电路中的移相电路的校准过程相同或相似。在工作状态下,所述射频接收电路中的移相电路与射频发射电路中的移相电路的工作过程相同或相似。
在射频接收电路中,与射频发射电路中的发射天线系统的结构相似,接收天线系统是将自由空间中特定频段的电磁波转换成射频接收信号。与上述射频发射电路不同的是,在射频接收电路中,接收天线系统将射频接收信号输出至移相电路。以雷达传感器中包括射频接收电路为例,利用移相器,射频接收电路可以在不调整接收天线系统的结构的情况下,改变接收天线探测方向,从而实现相控和减少雷达干扰的目的。
下面通过一些应用实施例,对包括移相电路的射频发射电路和射频接收电路实施例进行举例说明。
如图8所示,为本公开实施例提供的一种射频发射电路,该射频发射电路包括本振电路401,移相电路(包括移相器402和校准电路),功率放大器404和发射天线系统,图中虚线内为校准电路。在本示例中,校准电路包括了正交耦合器403(即前述射频采集电路)、正交混频器405(即前述调制电路)、放大器406、混频器407(即前述变频电路)和基带产生与处理电路408(为前述基带信号生成电路和相位校准电路的合成)。其中,正交耦合器403将移相器402的输出信号按一定比例耦合出来,所耦合出的信号既保证足够大,能准确反映移相器402的输出性能,又不至于耦合出过大的信号而影响功率放大器的工作,在本示例中,正交耦合器403的输出是一对相位相差90度的射频信号或称射频采集信号(即图中的IRF和QRF,为高频信号);基带产生与处理电路408产生用于提供校准的第一基带信号(即图中的IIF和QIF),该第一基带信号的频率可在几十KHz到几百MHz内取值,由于第一基带信号属于低频带信号,因此可以易于对该信号进行处理(例如提取相位)。基带产生与处理电路408生成的第一基带信号与正交耦合器403输出的射频信号在正交混频器405中进行混频操作(IRF-IIF、QRF-QIF,或IRF+IIF、QRF+QIF)后可以生成两路具有单边带特性的信号,即前述调制信号,经过放大器406放大后输入混频器407。混频器407同时也接收来自本振电路401的本振信号,混频器407进行下变频处理,输出两个第二基带信号Vout,通过下变频处理使该Vout与IIF和QIF具有相同的频率,且该Vout包含了移相器402输出的相位信息。当调整移相器402使射频信号的相位变化一定度数时,Vout的相位也会变化相应的度数,并且由于Vout的频率
很低,因此可以很方便的在基带产生与处理电路408中进行精确测量并记录,以获得移相器402输出的相位。基带产生与处理电路408分别获取两路第二基带信号中的相位,通过均值处理得到射频信号实际相位,当移相器402实际相位与目标相位即预设的移相相位相比具有误差时,基带产生与处理电路408可以根据相位误差发送相应的移相控制信号,移相器402可以根据移相控制信号进行调节,直到误差收敛到可接受的程度。由此实现对射频移相器的精确校准。
本实施例,利用第二基带信号Vout的相位能够跟踪移相器的相位的特点,通过测量Vout相位变化量就能知道移相器的相位变化量,由此,当发现Vout的相位变化量与预期不符时,通过反馈信号即移相控制信号调节移相器。
基带产生与处理电路408还集成移相控制器,以在校准后按照所存储的校准相位信息产生移相控制信号,移相控制信号控制移相器输出的射频信号的相位是经校准后的移相相位。在工作状态,本振电路401产生射频信号并输出至移相器402,在上层的移相指令的控制下,基带产生与处理电路408根据移相指令中的移相相位向移相器402输出移相控制信号,其中移相控制信号表示经校准的移相相位信息,移相器402根据该移相控制信号输出符合移相相位的射频信号并输入至功率放大器404,由功率放大器404将射频信号的输出功率放大以驱动发射天线系统将射频信号转换成电磁波辐射到自由空间。
如图9所示,为本公开实施例提供的一种射频接收电路。该射频接收电路包括接收天线系统,低噪声放大器409,移相电路(包括移相器和校准电路)、本振电路和接收机混频器410。接收天线系统接收外界的射频或微波信号,低噪声放大器409对该信号进行放大,移相电路对该信号的相位进行调整,最后接收机混频器410对该信号进行下变频并输出中频信号。在本示例中,移相电路包括移相器402和校准电路,图中虚线内为校准电路。在本示例中,校准电路包括正交耦合器403、正交混频器405、放大器406、混频器407和基带产生与处理电路408。其中,正交耦合器403将移相器402的输出信号按一定比例耦合出来,所耦合出的信号既保证足够大,能准确反映移相器的输出性能,又不至于耦合出过大的信号而影响功率放大器的工作。在本示例中,正交耦合器403的输出是一对相位相差90度的射频采集信号(即图中的IRF和QRF,为高频信号);基带产生与处理电路408产生用于校准的第一基带信号(即图中的IIF和QIF),该第一基带信号的频率可在几十KHz到几百MHz内取值,以易于对其进行处理。基带产生与处理电路408生成的第一基带信号与正交耦合器403输出的射频采集信号在正交混频器405中进行混频操作后可以生成两路具有单边带特性的信号,即前述调制信号,经过放大器406放大后输入混频器407。混频器407同时也接收来自本振电路401(该本振电路可以使用射频发射电路中的本振电路)的本振信号,混频器407进行下变频处理,输出两个第二基带信号Vout,该Vout与IIF和QIF具有相同的频率,且该Vout包含了移相器402的输出相位信息。当调整移相器402使射频信号的相位变化一定度数时,Vout的相位也会变化相应的度数,并且由于Vout的频率很低,因此可以很方便得在基带产生与处理电路408中进行精确测量并记录,以获得移相器402输出的相位。基带产生与处理电路408分别获取两路第二基带信号中的相位,通过均值处理得到射频信号实际相位,当移相器402实际相位与目标相位相比具有误差时,基带产生与处理电路408可以根据相位误差发送相应的移相控制信号,移相器402可以根据移相控制信号进行调节,直到误差收敛到可接受的程度。由此实现对射频移相器的精确校准。
基带产生与处理电路408还集成移相控制器,以在校准后按照所存储的校准相位信息产生移相控制信号,移相控制信号控制移相器输出的射频信号的相位是经校准后的移相相位。以雷达传感器中包括前述任一射频接收电路为例,在工作状态,本振电路401产生射
频信号并输出至移相器402和接收机混频器410,以及接收天线系统将自由空间中的电磁波转换为射频接收信号并经由低噪声放大器409放大后输出。在上层的移相指令的控制下,基带产生与处理电路408根据移相指令中的移相相位向移相器402输出移相控制信号,其中移相控制信号表示经校准的移相相位信息,移相器402根据该移相控制信号输出符合移相相位的射频接收信号并输入至接收机混频器410,由接收机混频器410利用本振信号对该移相后的射频接收信号进行下变频处理,以输出携带有移相信息的基带信号。该基带信号用以供后续电路计算在该移相控制器的控制下的辐射方向所探测的目标物体的信息。
如图10所示,为本公开实施例提供的另一种射频发射电路。该射频发射电路包括本振电路501,移相电路、功率放大器504和发射天线系统,其中移相电路包括移相器502和校准电路,图中虚线内为校准电路。相比于图8,本实施例校准电路中包括单端耦合器503(即前述射频采集电路)、混频器505(即前述调制电路)、放大器506、变频电路(包括正交耦合器507和正交混频器508)和基带产生与处理电路509。单端耦合器503将移相器502的输出信号按一定比例耦合出来,输入混频器505,基带产生与处理电路509产生用于提供校准的第一基带信号(即图中的VIF),基带产生与处理电路509生成的第一基带信号与单端耦合器503输出的射频采集信号在混频器505中进行混频操作(VRF-VIF或VRF+VIF)后可生成具有单边带特性的信号——调制信号,经过放大器506放大后送入正交混频器508。正交混频器508同时也接收来自本振电路501的本振信号,在本示例中,本振电路501输出的本振信号在进入校准电路时经过正交耦合器507产生两路相位相差90度的本振信号(即图中的IRF和QRF),正交混频器508进行下变频处理,得到具有正交关系的基带信号Iout和Qout,该Iout和Qout与VIF具有相同的频率,且包含了移相器502输出的相位信息。可以在基带产生与处理电路408中对Iout和Qout进行精确测量并记录相位,以获得移相器502输出的相位。基带产生与处理电路408分别获取两路第二基带信号中的相位,通过均值处理得到射频信号实际相位,当测量后移相器502实际相位与目标相位相比具有误差时,基带产生与处理电路509可以根据相位误差发送相应的移相控制信号,移相器502可以根据移相控制信号进行调节,直到误差收敛到可接受的程度。由此实现对射频移相器的精确校准。
如图11所示,为本公开实施例提供的另一种射频接收电路。该射频接收电路包括接收天线系统,低噪声放大器510,移相电路、本振电路和接收机混频器511。在本示例中,移相电路包括移相器502和校准电路,图中虚线内为校准电路。在本示例中,校准电路包括单端耦合器503、混频器505、放大器506、正交混频器508、正交耦合器507以及基带产生与处理电路509。相比于图9,本实施例校准电路中移相器输出端采用单端耦合器503,单端耦合器503输出射频采集信号(即图中的VRF,为高频信号),基带产生与处理电路509产生用于校准的第一基带信号(即图中的VIF),基带产生与处理电路509生成的第一基带信号与单端耦合器503输出的射频采集信号在混频器505中进行混频操作,得到的调制信号再经过放大器506放大后输入正交混频器508。正交混频器508同时也接收来自本振电路501(该本振电路可以使用射频发射电路中的本振电路)的本振信号,在本示例中,本振电路501输出的本振信号在进入校准电路时经过正交耦合器507产生两路相位相差90度的本振信号(即图中的IRF和QRF),正交混频器508进行下变频处理,得到具有正交关系的基带信号Iout和Qout,该Iout和Qout与VIF具有相同的频率,且包含了移相器502的输出相位信息。由于Iout和Qout的频率很低,因此可以很方便得在基带产生与处理电路509中进行精确测量并记录,以获得移相器502实际相位,当移相器502实际相位与目标相位相比具有误差时,基带产生与处理电路509可以根据相位误差发送相应的移相控制信号,移相器502可以根据移相控制信号进行调节,直到误差收敛到可接受的程度。由此实现对射频移相器的精确校准。
如图12所示,为本公开实施例提供的另一种射频发射电路,在本示例中,校准电路包括单端耦合器(即前述射频采集电路)、第一混频器(即前述调制电路)、放大器、第二混频器(即前述变频电路)和基带产生与处理电路(包括前述基带信号生成电路和相位校准电路),本示例中采用单端信号的处理方式,通过单端耦合器耦合出一路射频采集信号,并与基带产生与处理电路输出的第一基带信号进行混频,混频后得到的调制信号通过放大器放大后输入第二混频器进行下变频处理,得到第二基带信号,第二基带信号中包含移相器的实际相位信息,由基带产生与处理电路提取该相位信息,并进行误差判断,根据判断结果向移相器发送移相控制信号。射频接收电路可采用类似的配置,本实施例不再赘述。
在示例性实施例中,本公开实施例还提供了一种用于移相器的校准方法,如图13所示,包括以下步骤:
步骤S1,获取移相器所输出的携带有实际相位的射频信号;
步骤S2,利用第一基带信号对所述射频信号进行调制处理;
步骤S3,将调制后的射频信号下变频至基带,得到包含实际相位的第二基带信号;
步骤S4,获取所述第二基带信号中的实际相位,根据所述实际相位与预设的移相相位之间的相位偏差,确定所述移相器的校准相位,根据所述校准相位向所述移相器发送移相控制信号。
所述方法的实现主体、实现过程以及效果参见前述实施例中描述,此处不再赘述。
在示例性实施例中,本公开实施例还提供了一种雷达传感器,该雷达传感器可以包括前述射频发射电路和/或射频接收电路。所述雷达传感器利用射频发射电路所发射的探测信号波和射频接收电路所接收的回波信号波测量其与周围环境目标之间的物理量,例如,测量相对速度、相对角度、相对距离,以及测量目标的三维轮廓中的至少一种等。
示例性地,所述雷达传感器包括:射频发射电路和/或射频接收电路。在此,射频发射电路和射频接收电路均依据雷达传感器所测量的周围环境而确定电路结构,以在预设频段、或定频发出探测信号波,并在预设频段、或定频接收回波信号波,以及对相应的变化电信号进行信号处理。其中,所述射频发射电路、或射频接收电路为上述任一示例所提供的相应电路,以实现相控探测或减少雷达干扰。
例如,所述射频发射电路按照预设的连续调频方式生成一个chirp信号(如调频连续波(Frequency Modulated Continuous Wave,FMCW)信号);通过倍频处理得到射频发射信号,并利用移相电路进行移相处理后馈电至发射天线,以发射相应的探测信号波。当探测信号波被物体反射时,形成回波信号波。通过接收天线将回波信号波转换成射频接收信号。所述射频接收电路设置为利用射频发射信号(即前述本振信号)将射频接收信号进行下变频、滤波、模数转换等处理,以输出表示探测信号波和回波信号波之间差频的基带数字信号。雷达传感器还可包括信号处理器,所述信号处理器可以与所述射频接收电路连接,设置为通过信号处理从所述基带数字信号中提取测量信息,并输出测量数据。该测量数据由于包含了移相相位,因此可以帮助确定所探测的目标的角度信息等。其中,所述信号处理包括基于对至少一路接收天线所提供的至少一路待处理信号进行相位、频率、时域等数字化信号处理计算。所述测量数据包括以下至少一种:用于表示所探测到的至少一个目标的相对距离的距离数据;用于表示所探测到的至少一个目标的相对速度的速度数据;用于表示所探测到的至少一个目标的相对角度的角度数据等。
在示例性实施例中,本公开实施例还提供了一种包括前述移相电路、前述射频发射电路、前述射频接收电路以及前述雷达传感器中的至少一种的电子设备。
示例性地,该电子设备包括:设备本体;以及设置于设备本体上的如上述实施例的移相电路、射频发射电路、射频接收电路、或雷达传感器中的至少一种无线电器件。其中所述设备本体为承载无线电器件、并与无线电器件信号连接的结构。所述无线电器件通过发射和/或接收经移相器移相处理的无线电信号,实现诸如在波束扫描的范围内进行目标检测和/或通信等功能,以向设备本体提供检测目标信息和/或通讯信息,进而辅助甚至控制设备本体的运行。
在一个可选的实施例中,上述包含设备本体和前述至少一个无线电器件的电子设备可为应用于诸如智能住宅、交通、智能家居、消费电子、监控、工业自动化、舱内检测及卫生保健等领域的部件及产品。例如,该设备本体可为智能交通运输设备(如汽车、自行车、摩托车、船舶、地铁、火车等)、安防设备(如摄像头)、液位/流速检测设备、智能穿戴设备(如手环、眼镜等)、智能家居设备(如扫地机器人、门锁、电视、空调、智能灯等)、各种通信设备(如手机、平板电脑等)等,以及诸如道闸、智能交通指示灯、智能指示牌、交通摄像头及各种工业化机械臂(或机器人)等,也可为用于检测生命特征参数的各种仪器以及搭载该仪器的各种设备,例如汽车舱内检测、室内人员监控、智能医疗设备、消费电子设备等。
Claims (20)
- 一种用于移相器的校准电路,包括相位采集电路和相位校准电路,其中:所述相位采集电路,耦接于所述移相器,设置为利用第一基带信号对采集于所述移相器的射频采样信号进行调制,并输出包含实际相位的第二基带信号;所述实际相位为所述移相器所输出的射频信号的相位;所述相位校准电路,耦接于所述相位采集电路以接收所述第二基带信号,设置为获取所述第二基带信号中的实际相位,根据所述实际相位与预设的移相相位之间的相位偏差确定并存储校准相位信息,以便所述相位校准电路根据所述校准相位信息生成向所述移相器发送的移相控制信号。
- 根据权利要求1所述的校准电路,其中,所述相位采集电路所输出的第二基带信号为正交信号。
- 根据权利要求1所述的校准电路,其中,所述相位采集电路包括射频采集电路、调制电路、及变频电路,其中:所述射频采集电路,耦接于所述移相器,设置为采集所述移相器输出的射频信号以输出射频采样信号;所述调制电路,耦接于所述射频采集电路,并接收所述第一基带信号,设置为利用所述第一基带信号调制所述射频采样信号,以输出包含所述实际相位的调制信号;所述变频电路,耦接于所述调制电路,并接收本振信号,设置为利用所述本振信号对所述调制信号进行下变频处理,生成包含实际相位的第二基带信号。
- 根据权利要求3所述的校准电路,其中,所述第一基带信号为正交信号,包括同相第一基带信号和正交第一基带信号;所述射频采集电路包括第一正交耦合器,所述第一正交耦合器包括同相输出端和正交输出端,所述调制电路包括连接所述同相输出端的第一调制器以及连接所述正交输出端的第二调制器,其中:所述第一正交耦合器耦接于所述移相器,设置为采集所述移相器输出的射频信号,以使得所输出的射频采样信号为正交信号,包括同相射频采样信号和正交射频采样信号;所述第一调制器设置为利用所述同相第一基带信号对所述同相射频采样信号进行调制,所述第二调制器设置为利用所述正交第一基带信号对所述正交射频采样信号进行调制,所述第一调制器和所第二调制器使得所述调制电路输出的调制信号也为正交信号。
- 根据权利要求3所述的校准电路,其中,所述第一基带信号为一路信号;所述射频采集电路包括单端耦合器,所述单端耦合器耦接于所述移相器,设置为采集所述移相器输出的射频信号以输出射频采样信号;以及所述调制电路设置为利用所述第一基带信号对来自所述单端耦合器的射频采样信号进行调制,以输出所述调制信号;其中,所述调制信号为一路信号或正交信号。
- 根据权利要求3所述的校准电路,其中,所述调制信号为正交信号;所述变频电路包括多个第一混频器,每个第一混频器接收所述调制信号中的一路信号;其中,每一第一混频器利用所述本振信号对所述调制信号中的相应一路信号进行下变频处理,以使得所述变频电路所输出的第二基带信号为正交信号。
- 根据权利要求3所述的校准电路,其中,所述调制信号为一路信号;所述变频电路包括第二正交耦合器和两个第二混频器,其中,所述第二正交耦合器,耦接于本振电路,设置为将所述本振电路输出的一路本振信号转换为正交信号,并予以输出,所述第二正交耦合器包括用于输出同相本振信号的同相输出端和用于输出正交本振信号的正交输出端;一个第二混频器与所述用于输出同相本振信号的同向输出端连接,设置为利用所述同向本振信号对所述调制信号进行下变频处理,另一个第二混频器与所述用于输出正交本振信号的正交输出端连接,设置为利用所述正交本振信号对所述调制信号进行下变频处理,两个第二混频器使得所述变频电路所输出的第二基带信号为均包含实际相位的正交第二基带信号。
- 根据权利要求1所述的校准电路,其中,所述相位采集电路中的每一信号传输路径上设置有放大器以进行信号放大。
- 根据权利要求8所述的校准电路,其中,所述放大器所放大的信号为所述调制信号。
- 根据权利要求8所述的校准电路,其中,所述信号传输路径包括用于传输单端信号的一路传输路径,或者用于传输正交信号的两路传输路径。
- 根据权利要求1所述的校准电路,其中,所述相位校准电路包括:ADC和数字信号处理器;所述ADC耦接于所述相位采集电路,设置为将所述第二基带信号进行模数转换,并输出相应的第二基带数字信号;数字信号处理器耦接于所述ADC,设置为通过检测预设的移相相位和第二基带数字信号中的实际相位之间的相位差,来确定所述移相器的相位偏差;以及,将所述相位偏差或根据所述相位偏差确定的补偿信息存储成所述校准相位信息,以供所述相位校准电路产生所述移相控制信号。
- 根据权利要求11所述的校准电路,其中,所述ADC还设置为接收第一基带信号,以将所述第一基带信号进行模数转换,并输出相应的第一基带数字信号;所述数字信号处理器设置为通过检测第一基带数字信号和第二基带数字信号的相位差来提取所述实际相位。
- 根据权利要求11所述的校准电路,其中,所述数字信号处理器在频域内检测所述预设的移相相位和实际相位之间的相位差。
- 一种移相电路,包括移相控制器,移相器,以及如权利要求1-13中任一项所述的校准电路,其中:所述校准电路,耦接于所述移相器,用于在校准状态下通过移相控制器向移相器发送移相控制信号;所述移相控制器,耦接于所述校准电路和移相器,设置为在工作状态下接收包含移相相位的移相指令,根据所述移相相位对应存储的校准相位信息,输出移相控制信号;所述移相器,设置为按照所述移相控制信号对射频信号进行移相处理。
- 根据权利要求14所述的移相电路,其中,所述移相器包括IQ移相器或传输线移相器。
- 一种射频发射电路,包括本振电路、如权利要求14或15所述的移相电路以及发射天线系统,所述本振电路将所生成的射频发射信号输出至所述移相电路,所述移相电路将所述射频发射信号移相并输入所述发射天线系统,以转换成电磁波予以辐射。
- 一种射频接收电路,包括接收天线系统、如权利要求14或15所述的移相电路、本振电路和混频器,所述接收天线系统将电磁波转换为射频接收信号,所述射频接收信号通过所述移相电路移相后,与所述本振电路输出的本振信号输入混频器,以输出经下变频后的差频信号。
- 一种雷达传感器,包括如权利要求16所述的射频发射电路,和/或如权利要求17所述的射频接收电路。
- 一种电子设备,包括如权利要求14或15所述的移相电路、如权利要求16所述的射频发射电路、如权利要求17所述的射频接收电路以及如权利要求18所述的雷达传感器中的至少一种。
- 一种移相器的校准方法,包括:获取移相器所输出的携带有实际相位的射频信号;利用第一基带信号对所述射频信号进行调制处理;将调制后的射频信号下变频至基带,得到包含实际相位的第二基带信号;获取所述第二基带信号中的实际相位,根据所述实际相位与预设的移相相位之间的相位偏差,确定所述移相器的校准相位,根据所述校准相位向所述移相器发送移相控制信号。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP23847858.0A EP4369027A1 (en) | 2022-09-08 | 2023-09-08 | Calibration circuit and method, phase-shifting circuit, radio-frequency transmitting circuit, radio-frequency receiving circuit, radar, and device |
US18/431,677 US20240175980A1 (en) | 2022-09-08 | 2024-02-02 | Calibration circuit and method, phase-shift circuit, radio-frequency transceiver circuit, radar and device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211100529.1 | 2022-09-08 | ||
CN202211100529.1A CN117706491A (zh) | 2022-09-08 | 2022-09-08 | 校准电路及方法、移相电路、射频收发电路、雷达及设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/431,677 Continuation US20240175980A1 (en) | 2022-09-08 | 2024-02-02 | Calibration circuit and method, phase-shift circuit, radio-frequency transceiver circuit, radar and device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024051837A1 true WO2024051837A1 (zh) | 2024-03-14 |
Family
ID=89940866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/117835 WO2024051837A1 (zh) | 2022-09-08 | 2023-09-08 | 校准电路及方法、移相电路、射频收发电路、雷达及设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240175980A1 (zh) |
EP (1) | EP4369027A1 (zh) |
CN (1) | CN117706491A (zh) |
WO (1) | WO2024051837A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08237323A (ja) * | 1995-02-28 | 1996-09-13 | Ando Electric Co Ltd | 直交変調器の位相誤差補正方式 |
JPH11109021A (ja) * | 1997-10-02 | 1999-04-23 | Toshiba Corp | レーダ受信装置および位相誤差補正回路 |
CN106663871A (zh) * | 2014-11-19 | 2017-05-10 | 华为技术有限公司 | 相位校准方法和装置 |
CN110927453A (zh) * | 2019-11-28 | 2020-03-27 | 加特兰微电子科技(上海)有限公司 | 移相器的测试装置及测试方法 |
US20210156983A1 (en) * | 2019-11-22 | 2021-05-27 | Infineon Technologies Ag | Phase measurement in a radar system |
CN113242046A (zh) * | 2016-11-25 | 2021-08-10 | 华为技术有限公司 | 一种极化相控阵列发射机及移动终端 |
-
2022
- 2022-09-08 CN CN202211100529.1A patent/CN117706491A/zh active Pending
-
2023
- 2023-09-08 WO PCT/CN2023/117835 patent/WO2024051837A1/zh unknown
- 2023-09-08 EP EP23847858.0A patent/EP4369027A1/en active Pending
-
2024
- 2024-02-02 US US18/431,677 patent/US20240175980A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08237323A (ja) * | 1995-02-28 | 1996-09-13 | Ando Electric Co Ltd | 直交変調器の位相誤差補正方式 |
JPH11109021A (ja) * | 1997-10-02 | 1999-04-23 | Toshiba Corp | レーダ受信装置および位相誤差補正回路 |
CN106663871A (zh) * | 2014-11-19 | 2017-05-10 | 华为技术有限公司 | 相位校准方法和装置 |
CN113242046A (zh) * | 2016-11-25 | 2021-08-10 | 华为技术有限公司 | 一种极化相控阵列发射机及移动终端 |
US20210156983A1 (en) * | 2019-11-22 | 2021-05-27 | Infineon Technologies Ag | Phase measurement in a radar system |
CN110927453A (zh) * | 2019-11-28 | 2020-03-27 | 加特兰微电子科技(上海)有限公司 | 移相器的测试装置及测试方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4369027A1 (en) | 2024-05-15 |
CN117706491A (zh) | 2024-03-15 |
US20240175980A1 (en) | 2024-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10594279B2 (en) | Combining power amplifiers at millimeter wave frequencies | |
US10983193B2 (en) | Communication unit, integrated circuits and methods for cascading integrated circuits | |
US20220236096A1 (en) | Radar Fill Level Measurement Device with a Radar System-on-chip | |
US10928499B2 (en) | Millimeter-wave radar sensor system for gesture and movement analysis | |
US20190120931A1 (en) | Millimeter-wave System-in-Package for Parking Assistance | |
US20180164429A1 (en) | Millimeter-wave sensor system for parking assistance | |
Deferm et al. | A 120 GHz fully integrated 10 Gb/s short-range star-QAM wireless transmitter with on-chip bondwire antenna in 45 nm low power CMOS | |
CN103064080B (zh) | 一种连续波目标引导雷达 | |
CN108535540B (zh) | 一种磁控管雷达发射频率瞬时测量的方法 | |
CN107110955B (zh) | 用于校准雷达系统的方法 | |
CN106130576A (zh) | 具有功率传感器校准的rf前端 | |
US12111350B2 (en) | Method and apparatus for RF built-in test system for a beamforming module in a radar system | |
CN108597234A (zh) | 一种基于高分辨率雷达的智能交通检测仪 | |
Na et al. | Leggiero: Analog wifi backscatter with payload transparency | |
CN110824464A (zh) | 一种微波传感器及智能探测装置 | |
WO2024051837A1 (zh) | 校准电路及方法、移相电路、射频收发电路、雷达及设备 | |
Huang et al. | Hand-gesture sensing Doppler radar with metamaterial-based leaky-wave antennas | |
CN113433540A (zh) | 一种用于fmcw调制的相位差检测设备 | |
CN113841066A (zh) | 特别用于车辆中的相干多基地雷达系统 | |
Lin et al. | Review—semiconductor integrated radar for sensing applications | |
CN214540004U (zh) | 一种雷达传感器系统结构 | |
CN211979195U (zh) | 一种微波传感器及智能探测装置 | |
CN112415477A (zh) | 一种雷达传感器系统结构 | |
Arab et al. | Design and characterization of a 77 GHz six-port modulator for an automobile radar | |
Wibbing et al. | A cost-efficient 61 GHz high-resolution radar sensor for industrial positioning and distance measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2023847858 Country of ref document: EP Effective date: 20240207 |