WO2024051775A1 - 一种通信方法和通信装置 - Google Patents

一种通信方法和通信装置 Download PDF

Info

Publication number
WO2024051775A1
WO2024051775A1 PCT/CN2023/117457 CN2023117457W WO2024051775A1 WO 2024051775 A1 WO2024051775 A1 WO 2024051775A1 CN 2023117457 W CN2023117457 W CN 2023117457W WO 2024051775 A1 WO2024051775 A1 WO 2024051775A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
domain resource
terminal
access network
information
Prior art date
Application number
PCT/CN2023/117457
Other languages
English (en)
French (fr)
Inventor
林云龙
谭婷
丁苏颖
蒲松
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024051775A1 publication Critical patent/WO2024051775A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the embodiments of the present application relate to the field of communication, and more specifically, to a communication method and a communication device.
  • Atmospheric waveguide is a natural phenomenon that occurs under specific meteorological and geographical conditions. In the troposphere of the Earth's atmosphere, there is a temperature inversion or a layer where water vapor decreases sharply with height. In this layer, electromagnetic waves can propagate through super-refraction. Most of the radio wave radiation is limited to this layer, similar to the propagation of electromagnetic waves in waveguides. Atmospheric ducting usually occurs in the boundary atmosphere below 300m altitude. The propagation loss of electromagnetic waves in atmospheric waveguides is very small, which can realize ultra-long-distance propagation of electromagnetic waves. The propagation distance of electromagnetic waves is much higher than the normal radiation range.
  • the uplink signal and the downlink signal are time-division multiplexed, and a guard period (GP) is set to prevent the downlink signal from interfering with the uplink signal.
  • the downlink signal is from the base station to the terminal, and the transmitted signal is the downlink signal; the uplink signal is from the terminal to the base station, and the transmitted signal is the uplink signal.
  • the downlink signal of the remote base station When atmospheric waveguide occurs, the downlink signal of the remote base station still has high intensity after ultra-long-distance transmission of tens or hundreds of kilometers.
  • the propagation delay of the downlink signal exceeds the length of the guard interval and falls into the uplink of the near-end base station.
  • the downlink signal of the remote base station Within the signal reception window, the downlink signal of the remote base station will cause serious interference to the uplink signal of the near-end base station. This interference may be called far-end interference.
  • This application provides a communication method and communication device, which help reduce interference.
  • a communication method is provided.
  • the method can be executed by an access network device or by a module or unit in the access network device.
  • the access network device For convenience of description, it will be collectively referred to as the access network device below.
  • the methods include:
  • the access network device determines first information, which is used to configure the time domain resource of the sounding reference signal SRS to be migrated from the first time domain resource to the second time domain resource.
  • the intensity of the remote interference on the second time domain resource is less than the intensity of the remote interference on the first time domain resource; the access network device sends the first information to the terminal.
  • the access network equipment can move the more important sounding reference signal (SRS) to a location with less interference and reduce the remote interference suffered by the SRS.
  • SRS sounding reference signal
  • the BF beam can be made more accurate, which helps to improve the beam signal-to-noise ratio of the terminal, improve downlink throughput and other performances, and reduce the impact of remote interference on the uplink transmission of access network equipment.
  • the method further includes: the access network device sends the first cell where the terminal is located Set to bar state; the access network device migrates all terminals in the first cell to the second cell; the access network device sends the first information to the terminal, including: when the terminal re-accesses When the access network device is in the first cell, the access network device sends the first information to the terminal.
  • the second cells corresponding to different terminals may be the same or different.
  • Existing remote interference avoidance technology does not dynamically adjust the SRS channel and other channels based on interference. It can only perform configuration adjustments based on the channel structure.
  • the existing technology cannot allow two channel structures to exist in the same cell at the same time. It is necessary to delete the entire cell resources and then establish a new cell to achieve the purpose of adjusting the channel structure.
  • the channel can be adjusted online through user migration, and then the user can automatically migrate back based on mobility, so as to dynamically adjust the channel online according to interference to avoid remote interference.
  • the second cell is a cell of the first cell.
  • the surrounding cells, and/or the second cell and the first cell are cells of different standards.
  • the first symbol of the second time domain resource is the same as the first symbol used to transmit the physical uplink shared channel (PUSCH).
  • the last symbols of the three time domain resources are adjacent, and the first symbol of the second time domain resource is used to transmit the first SRS.
  • the first SRS is converted by the terminal from the PUSCH to the first SRS.
  • the SRS of the antenna is not switched.
  • the access network device when the second time domain resource is adjacent to the third time domain resource used to transmit the physical uplink shared channel PUSCH, the access network device can be adjacent to the third time domain resource of the second time domain resource.
  • the SRS that does not require antenna switching is prioritized on the first symbol (or first symbol), thereby avoiding the need to reserve antenna switching time and saving resource overhead.
  • the first SRS is used to determine a transmission method of PUSCH based on a code book (code book, CB).
  • the method further includes: the access network device sending a signal to the terminal according to the intensity of remote interference on the fourth time domain resource. Send second information, where the second information is used to schedule the fourth time domain resource, where the fourth time domain resource includes the first time domain resource and the time slot in which the first time domain resource is located. Guard interval symbol.
  • the access network equipment can use the fourth time domain resource to transmit PUSCH according to the intensity of remote interference, which helps to improve PUSCH resources and improve uplink performance.
  • the first time domain resource is after the guard interval symbol; when the remote end on the last symbol of the guard interval symbol When the intensity of interference is greater than the preset threshold, the second information is used to schedule the terminal not to transmit the physical uplink shared channel PUSCH on the first time domain resource and the guard interval symbol; when the When the intensity of far-end interference on the last symbol is less than the preset threshold and the intensity of far-end interference on the first symbol in the guard interval symbols is greater than the preset threshold, the second information is used to schedule the terminal PUSCH is transmitted on the first time domain resource and PUSCH is not transmitted on the guard interval symbol; when the intensity of far-end interference on the first symbol in the guard interval symbol is less than a preset threshold, the third The second information is used to schedule the terminal to transmit the PUSCH on the symbol after the second symbol in the first time domain resource and the guard interval symbol.
  • the access network equipment can flexibly adjust the resources that can be used to transmit PUSCH in the fourth time domain resource according to the intensity of remote interference, maximizing the use of uplink resources, improving PUSCH resources and improving uplink performance.
  • the method further includes: the access network device sending a signal to the access network device according to the distance between the terminal and the access network device.
  • the terminal sends second information, the second information is used to schedule a fourth time domain resource, and the fourth time domain resource includes the first time domain resource and the time slot in which the first time domain resource is located. Guard interval symbol.
  • the access network equipment can use the fourth time domain resource to transmit PUSCH according to the distance between the terminal and the access network equipment, which helps to improve PUSCH resources and improve uplink performance.
  • the second information when the terminal is a near-point terminal, the second information is used to schedule the terminal in the first time domain resource and The physical uplink shared channel PUSCH is transmitted on part of the guard interval symbols; when the terminal is a midpoint terminal, the second information is used to schedule the terminal to transmit PUSCH on the first time domain resource, and Do not transmit PUSCH on the guard interval symbols; when the terminal is a remote terminal, the second information is used to schedule the terminal not to transmit PUSCH on the first time domain resource and the guard interval symbols.
  • the access network equipment can flexibly adjust the resources that can be used to transmit PUSCH in the fourth time domain resource according to the distance between the terminal and the access network equipment, maximizing the use of uplink resources, improving PUSCH resources and improving uplink performance. .
  • the method further includes: the access network device determines the third time domain resource based on the intensity of remote interference on the fourth time domain resource. 2. Information.
  • a communication device which is used to perform the method provided by any of the above aspects or its implementation.
  • the device may include units and/or modules, such as a processing unit and/or a communication unit, for executing the method provided by any of the above aspects or implementations thereof.
  • the device is access network equipment.
  • the communication unit may be a transceiver, or an input/output interface, or a communication interface; the processing unit may be at least one processor.
  • the transceiver is a transceiver circuit.
  • the input/output interface is an input/output circuit.
  • the device is a chip, chip system or circuit used in access network equipment.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or Related circuits, etc.;
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • a communication device which device includes: a memory for storing a program; and at least one processor for executing the computer program or instructions stored in the memory to execute any of the above aspects or the implementation provided by it. method.
  • the device is access network equipment.
  • the device is a chip, chip system or circuit used in access network equipment.
  • a communication device in a fourth aspect, includes: at least one processor and a communication interface.
  • the at least one processor is used to obtain computer programs or instructions stored in a memory through the communication interface to execute any one of the above aspects or The methods provided for its implementation.
  • the communication interface can be implemented by hardware or software.
  • the device further includes the memory.
  • a fifth aspect provides a processor for executing the methods provided in the above aspects.
  • processor output, reception, input and other operations can be understood as processor output, reception, input and other operations.
  • transmitting and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a computer-readable storage medium stores program code for device execution.
  • the program code includes a method for executing any of the above aspects or its implementation.
  • a computer program product containing instructions is provided.
  • the computer program product When the computer program product is run on a computer, it causes the computer to execute the method provided by any of the above aspects or its implementation.
  • a chip in an eighth aspect, includes a processor and a communication interface.
  • the processor reads instructions stored in the memory through the communication interface and executes the method provided by any of the above aspects or its implementation.
  • the communication interface can be implemented by hardware or software.
  • the chip also includes a memory, in which computer programs or instructions are stored.
  • the processor is used to execute the computer programs or instructions stored in the memory.
  • the processor is used to execute Methods provided by any of the above aspects or their implementations.
  • a communication system including the above access network equipment.
  • Figure 1 is a schematic diagram of a network architecture suitable for embodiments of the present application.
  • Figure 2 is a schematic flow chart of the communication method 200 proposed in this application.
  • Figure 3 is a schematic diagram of the interference intensity of GAP/SRS/U symbols in the NR remote interference scenario.
  • Figure 4 is a schematic diagram of active remote interference avoidance of the present application.
  • Figure 5 is a schematic diagram of the channels included in S slot (time slot) and U slot before and after SRS migration.
  • FIG. 6 is a schematic diagram of the SRS migration process of this application.
  • Figure 7 is a comparison chart of downlink throughput.
  • Figure 8 is a schematic diagram of a traditional solution to reserve antenna protection symbols.
  • Figure 9 is a schematic diagram of three configurations of symbols in S slot.
  • Figure 10 is a flow chart for the base station to flexibly configure the original SRS symbols and G symbols.
  • Figure 11 is a schematic diagram of the interference caused by far-end interference to near-point users and far-point users.
  • Figure 12 is an example of determining the configuration of symbols in S slot according to the distance between the user and the base station.
  • Figure 13 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • Figure 14 is another structural schematic diagram of the device provided by the embodiment of the present application.
  • for indicating or “indicating” may include direct indicating and indirect indicating, or “for indicating”.
  • “show” or “indicate” may indicate explicitly and/or implicitly. For example, when describing a certain information to indicate information I, it may include that the information directly indicates I or indirectly indicates I, but does not represent the information must carry I.
  • the implicit indication may be based on the location and/or resources used for transmission; the explicit indication may be based on one or more parameters, and/or one or more indexes, and/or one or more the bit pattern it represents.
  • the technology is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described by “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • Pre-definition can be achieved by pre-saving corresponding codes, tables, or other methods that can be used to indicate relevant information in the device.
  • This application does not limit the specific implementation method.
  • "saving” may refer to saving in one or more memories.
  • the type of memory can be any form of storage medium, and this application is not limited thereto.
  • the "protocol” involved in the embodiments of this application may refer to standard protocols in the communication field, which may include, for example, long term evolution (LTE) protocols, new radio (NR) protocols, and applications in future communication systems. related agreements, this application does not limit this.
  • LTE long term evolution
  • NR new radio
  • At least one means one or more, and “plurality” means two or more.
  • “And/or” describes the association of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an “or” relationship.
  • “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b and c can mean: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , b and c.
  • a, b and c can be single or multiple respectively.
  • network element A sending messages, information or data to network element B, and network element B receiving messages, information or data from network element A are intended to illustrate the messages, information or data. It is to be sent to which network element, and it does not limit whether they are sent directly or indirectly through other network elements.
  • Embodiments of the present application can be applied to various communication systems.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • PLMN public land mobile network
  • 5th generation, 5G fifth generation
  • 6th generation, 6G sixth generation
  • the 5G system in this application includes a non-standalone (NSA) 5G mobile communication system or a standalone (SA) 5G mobile communication system.
  • NSA non-standalone
  • SA standalone
  • Embodiments of the present application can also be applied to non-terrestrial network (NTN) communication systems such as satellite communication systems.
  • NTN non-terrestrial network
  • Embodiments of the present application can also be applied to device-to-device (D2D) communication systems, sidelink (SL) communication systems, machine-to-machine (M2M) communication systems, and machine-type communications (machine type communication, MTC) system, Internet of things (IoT) communication system, vehicle to everything (V2X) communication system, unmanned aerial vehicle (UAV) communication system or other communication systems .
  • D2D device-to-device
  • SL sidelink
  • M2M machine-to-machine
  • MTC machine-type communications
  • IoT Internet of things
  • V2X vehicle to everything
  • UAV unmanned aerial vehicle
  • Figure 1 shows a schematic diagram of a communication system.
  • FIG. 1 is a schematic architectural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes wireless
  • the access network 100 and the core network 200, optionally, the communication system 1000 may also include the Internet 300.
  • the radio access network 100 may include at least one radio access network device (110a and 110b in Figure 1), and may also include at least one terminal (120a-120j in Figure 1).
  • the terminal is connected to the wireless access network equipment through wireless means, and the wireless access network equipment is connected to the core network through wireless or wired means.
  • the core network equipment and the radio access network equipment can be independent and different physical devices, or the functions of the core network equipment and the logical functions of the radio access network equipment can be integrated on the same physical device, or they can be one physical device.
  • Figure 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Figure 1 .
  • the terminal device involved in the embodiment of the present application can also be called a terminal, and can be a device with wireless transceiver functions. It can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed on water (such as Ships, etc.); can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal device may be a user equipment (UE), where the UE includes a handheld device, a vehicle-mounted device, a wearable device or a computing device with wireless communication functions.
  • the UE may be a mobile phone, a tablet computer, or a computer with wireless transceiver functions.
  • the terminal device can also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in driverless driving, a wireless terminal in telemedicine, or a smart terminal.
  • the device used to implement the function of the terminal may be a terminal; it may also be a device that can support the terminal to implement the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device for realizing the function of the terminal is a terminal, and the terminal is a UE as an example to describe the technical solution provided by the embodiment of the present application.
  • the wireless access network equipment involved in the embodiments of this application is, for example, a base station (BS).
  • the BS may be a device deployed in the wireless access network and capable of wireless communication with terminals.
  • Wireless access network equipment includes but is not limited to base stations in the above communication systems, evolved base stations (evolved NodeB, eNodeB), transmission reception points (TRP), and next-generation base stations in 5G mobile communication systems. (next generation NodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the access network equipment in the open access network ORAN (open RAN, ORAN) system or the access network equipment Modules, base stations in future mobile communication systems or access nodes in WiFi systems, etc.
  • the access network equipment may also be a module or unit that can implement some functions of the base station.
  • the access network equipment may be a centralized unit (CU), a distributed unit (DU), CU-control plane (CP), CU-user plane (CP), as described below. UP), or wireless unit (radio unit, RU), etc.
  • CU can also be called O-CU
  • DU can also be called open (open, O)-DU
  • CU-CP can also be called O-CU-CP
  • CU-UP can also be called O-CUP-UP
  • RU can also be called O-RU.
  • the access network equipment may be a macro base station (110a in Figure 1), a micro base station or an indoor station (110b in Figure 1), a relay node or a donor node, or a cloud radio access network (cloud radio Wireless controller in access network (CRAN) scenario.
  • the access network device can also be a server, a wearable device, or a vehicle-mounted device.
  • the access network equipment in vehicle to everything (V2X) technology can be a road side unit (RSU).
  • Multiple access network devices in the communication system may be base stations of the same type or different types of base stations.
  • the base station can communicate with the terminal, or it can communicate with the terminal through the relay station.
  • a terminal can communicate with multiple base stations in different access technologies.
  • the device for realizing the function of the wireless access network device may be a wireless access network device; it may also be a device that can support the wireless access network device to realize the function, such as a chip system, and the device may be Installed in wireless access network equipment.
  • the device used to implement the functions of the wireless access network equipment is the wireless access network equipment. Taking the wireless access network equipment as a base station as an example, the technology provided by the embodiments of the present application is described. plan.
  • Wireless communication between communication devices may include: wireless communication between wireless access network devices and terminals, wireless communication between wireless access network devices and wireless access network devices, and wireless communication between terminals.
  • wireless communication can also be referred to as “communication”
  • communication can also be described as "data transmission”, “information transmission” or “transmission”.
  • the near-end base station detects remote interference from the remote base station, the near-end base station sends a remote interference management reference signal (RIM-RS) 1 to the remote base station. ; After receiving RIM-RS 1, the remote base station reduces the symbols used for downlink in order to eliminate interference to the near-end base station, and sends RIM-RS 2 to the near-end base station; near-end The base station keeps sending RIM-RS 1 until no more RIM-RS 2 is received from the remote base station.
  • RIM-RS remote interference management reference signal
  • the remote base station can continuously adjust the number of symbols used for downlink according to RIM-RS 1 until it no longer affects the near-end base station. It can be seen that the current solution to avoid remote interference relies on mutual detection of RIM-RS between the remote base station and the near-end base station, and reduces the symbols sent in the downlink through the remote base station to eliminate the impact on the near-end base station.
  • the above solution strongly relies on the remote base station and the near-end base station to cooperate to open mutual detection and identify remote interference. It is difficult to negotiate in a multinational/cross-vendor equipment scenario, such as between multiple overseas countries. It is easy to cause mutual interference, but the spectrum allocation is different, and it is difficult to coordinate the interests of operators, and it is impossible to carry out coordinated detection and avoidance of interference sources.
  • the RIM-RS used for interference source detection may not be sent, resulting in the failure to trigger interference source avoidance.
  • the RIM-RS capacity is affected by the interference signal, resulting in the inability to correctly demodulate and affecting the detection probability of the interference source.
  • this application proposes a communication method and communication device that can reduce the impact of remote interference on the uplink transmission of access network equipment.
  • Figure 2 is a schematic flow chart of the communication method 200 proposed in this application.
  • Method 200 includes at least part of the following.
  • Step 201 When remote interference is detected, the access network device determines the first information.
  • the first information is used to configure the time domain resource of the sounding reference signal (SRS) to be migrated from the first time domain resource to the second time domain resource, and the intensity of the far-end interference on the second time domain resource is is less than the intensity of far-end interference on the first time domain resource.
  • SRS sounding reference signal
  • the access network device can migrate the SRS to a time domain resource with less or no interference.
  • This application does not limit the way access network equipment detects remote interference. For example, by judging the interference level and characteristics on the uplink symbols of the access network equipment, if the interference status changes from no interference to interference, the interference characteristics will show a "slope" characteristic, that is, the interference level of the left symbol is higher than the interference level of the right symbol. High, the judgment result that the access network equipment is subject to remote interference is obtained.
  • This detection process can be implemented by an algorithm in the access network equipment, or it can be manually determined whether the interference has changed through statistical results on uplink symbols.
  • Step 202 The access network device sends the first information to the terminal.
  • the terminal receives the first information sent by the access network device.
  • the access network equipment reconfigures the time domain position of the SRS for the terminal.
  • the access network equipment when remote interference is detected, the access network equipment can move the more important SRS to a location with less interference and reduce the remote interference suffered by the SRS.
  • the BF beam After the SRS channel interference is reduced, the BF beam can be It is more accurate, helps to improve the beam signal-to-noise ratio of the terminal, improves downlink throughput and other performances, and reduces the impact of remote interference on the uplink transmission of access network equipment.
  • method 200 may also include: before the access network device sends the first information to the terminal, the access network device sets the first cell where the terminal is located as a bar. State; migrate all terminals in the first cell to the second cell.
  • Step 202 includes: when the terminal re-accesses the first cell, the access network device sends the first information to the terminal.
  • Existing remote interference avoidance technology does not dynamically adjust the SRS channel and other channels based on interference. It can only perform configuration adjustments based on the channel structure.
  • the existing technology cannot allow two channel structures to exist in the same cell at the same time. It is necessary to delete the entire cell resources and then establish a new cell to achieve the purpose of adjusting the channel structure.
  • the channel can be adjusted online through user migration, and then the user can automatically migrate back based on mobility, so as to dynamically adjust the channel online according to interference to avoid remote interference.
  • the second cell is a surrounding cell of the first cell, and/or the second cell and the first cell are cells of different standards.
  • the first symbol of the second time domain resource is adjacent to the last symbol of the third time domain resource used to transmit PUSCH, and the first symbol of the second time domain resource is used to transmit the first SRS.
  • One SRS is an SRS that does not switch antennas when the terminal switches from PUSCH to the first SRS.
  • the first SRS is used to determine the transmission mode of PUSCH based on the codebook CB.
  • the access network device when the second time domain resource is adjacent to the third time domain resource used to transmit the physical uplink shared channel PUSCH, the access network device can be adjacent to the third time domain resource of the second time domain resource.
  • the SRS that does not require antenna switching is prioritized on the first symbol (or first symbol), thereby avoiding the need to reserve antenna switching time and saving resource overhead.
  • the method 200 may also include: step 203, the access network device sends second information to the terminal, where the second information is used to schedule the fourth time domain resource, and the second information is used to schedule the fourth time domain resource.
  • the four time domain resources include the first time domain resource and the guard interval symbols of the time slot in which the first time domain resource is located. In this way, the access network equipment reuses the fourth time domain resources to transmit PUSCH, which helps to increase PUSCH resources and improve uplink performance.
  • step 203 includes: the access network device sends the second information to the terminal according to the intensity of the far-end interference on the fourth time domain resource.
  • the access network equipment can use the fourth time domain resource to transmit PUSCH according to the intensity of remote interference, which helps to increase PUSCH resources and improve uplink performance.
  • the first time domain resource is after the guard interval symbol.
  • the second information is used to schedule the terminal not to transmit physical uplink sharing on the first time domain resource and the guard interval symbols.
  • the second information is Scheduling the terminal to transmit PUSCH on the first time domain resource and not transmit PUSCH on the guard interval symbol; when the intensity of the far-end interference on the first symbol in the guard interval symbol is less than a preset threshold, the second information is used for scheduling
  • the terminal transmits PUSCH on the symbol after the second symbol in the first time domain resource and the guard interval symbol.
  • the first symbol may be any symbol among the guard interval symbols except the first and last symbols.
  • the access network equipment can flexibly adjust the resources that can be used to transmit PUSCH in the fourth time domain resource according to the intensity of remote interference, maximizing the use of uplink resources, improving PUSCH resources and improving uplink performance.
  • method 200 may also include: step 203,
  • step 203 includes: the access network device sends second information to the terminal according to the distance between the terminal and the access network device.
  • Far-end interference has the greatest impact on far-point users and the least impact on near-point users.
  • the access network equipment can use the fourth time domain resource to transmit PUSCH according to the distance between the terminal and the access network equipment, which helps to improve PUSCH resources and improve uplink performance.
  • the second information when the terminal is a near-point terminal, the second information is used to schedule the terminal to transmit PUSCH on part of the first time domain resource and guard interval symbols; when the terminal is a mid-point terminal, the second information is used to schedule The terminal transmits PUSCH on the first time domain resource and does not transmit PUSCH on the guard interval symbols; when the terminal is a remote terminal, the second information is used to schedule the terminal not to transmit PUSCH on the first time domain resource and guard interval symbols. It should be noted that the above example only divides the utilization of fourth time domain resources into three levels as an example, and it can be divided into more or fewer levels.
  • the access network equipment can flexibly adjust the resources that can be used to transmit PUSCH in the fourth time domain resource according to the distance between the terminal and the access network equipment, maximizing the use of uplink resources, improving PUSCH resources and improving uplink performance. .
  • the method 200 further includes: the access network device based on the remote interference on the fourth time domain resource. Strength, determine the second information.
  • the GAP symbol or the G symbol represents the guard interval symbol
  • the U symbol represents the uplink symbol
  • the D symbol represents the downlink symbol.
  • Interference may refer to remote interference
  • the base station may correspond to the access network equipment mentioned above.
  • FIG. 3 is a schematic diagram of the interference intensity of GAP/SRS/U symbols in the NR remote interference scenario. As shown in Figure 3, S slot (time slot) is most susceptible to interference and has the greatest impact.
  • This application identifies the far-end interference, dynamically moves the SRS to a position away from the interference, and dynamically uses the GAP symbol of the S slot and the original SRS symbol for PUSCH scheduling according to the S slot interference level.
  • Figure 4 is a schematic diagram of active remote interference avoidance of the present application.
  • Figure 5 Before and after SRS migration, after expanding S slot and U slot, the detailed diagram including the channel is shown in Figure 5.
  • the default state in Figure 5 is a schematic diagram of the channels included in S slot and U slot before SRS migration. It can be seen that SRS is transmitted in S slot; the SRS migration state is a schematic diagram of the channels included in S slot and U slot after SRS migration. It can be seen that SRS Transmitted in U slot.
  • the following describes the overall design and process of triggering the SRS migration avoidance solution based on remote interference identification.
  • the base station identifies remote interference on UL symbols and needs to adjust the configuration of the cell channel according to the interference.
  • this application designed the migration process as shown in Figure 6. Through the migration process of this application, it can be ensured that online users are not directly interrupted. This is achieved by redirecting the users away and adjusting the resources before the users are connected again.
  • FIG. 6 is a schematic diagram of the SRS migration process of this application.
  • Step 1 Interference detection and judgment.
  • gNodeB determines the interference level and characteristics on the uplink symbol. If the interference status changes from no interference to interference, the interference characteristics will show a "slope" characteristic, that is, the interference level of the left symbol is higher than that of the right interference. If the level is high, the gNodeB is subject to remote interference. This detection and judgment can be implemented by the gNodeB algorithm, or it can be manually judged whether the interference has changed through the statistical results on the uplink symbols.
  • the SRS resources can be manually reconfigured (such as through network management equipment, etc.).
  • the detection and judgment can be implemented by the gNodeB algorithm (corresponding to the branch of performing automatic interference judgment)
  • the following steps 2 to 4 can be performed subsequently.
  • Step 2 bar community, release online users.
  • the community enters the Bar state and new users are prohibited from accessing/cutting in.
  • the cell begins to release all online users, switches or redirects users to surrounding cells/surrounding standards, and prepares for the following steps to adjust channels.
  • Step 3 Reconfigure the channel structure and location of the SRS channel. Realize dynamic adjustment of SRS to the corresponding position.
  • Step 4 Release the community bar status and allow the user to re-enter. After the channel structure is adjusted, the cell is released from the bar state, and users automatically migrate back based on mobility to complete the adjustment.
  • this application provides a method of avoiding remote interference through SRS migration after identifying interference, migrating the SRS channel to a location with less interference through identification of interference, and reducing the interference suffered by the SRS.
  • the BF beam is made more accurate, the beam signal-to-noise ratio of the UE is improved, and the downlink throughput and other performances are improved.
  • the downlink throughput (NR Downlink Throughput) before and after applying the method of this application is shown in Figure 7. It can be seen that after applying the method of this application, the downlink throughput can be basically the same as the downlink throughput without SRS interference.
  • Embodiment 2 Based on Embodiment 1, Embodiment 2 provides: when the SRS is allocated on the U slot, a solution for switching symbols between the PUSCH and the SRS without reservation for the selected terminal is provided.
  • the SRS is divided into CBs on the first symbol first, so that the Tianxuan terminal does not need to reserve antenna switching time when switching between PUSCH and SRS, and can save one symbol overhead.
  • SRS and PUSCH are in the same slot.
  • ASs are dynamically allocated to different symbols, one symbol needs to be reserved as protection for antenna switching when allocating ASs.
  • the SRS preferentially divides the CB into the first symbol next to the PUSCH, thereby achieving the effect of protecting symbols that do not require fixed reserved antenna switching.
  • the Tianxuan UE does not need to reserve antenna switching time during PUSCH and SRS switching, saving 1 symbol overhead.
  • the occupation is reduced by 1 symbol, and the overhead is reduced by about 2 to 4% (depending on different allocation ratios).
  • Embodiment 3 Based on Embodiment 1 and/or Embodiment 2, Embodiment 3 provides: after the SRS migrates from the S slot to the U slot, a method for PUSCH scheduling is performed in the S slot according to the interference extreme.
  • GAP symbols are occupied in the S slot to adjust U.
  • interference will affect individual symbols and can only be occupied in low-interference symbols.
  • the symbols in S slot in Embodiment 3 may have three configurations as shown in Figure 9.
  • G symbols 7 and 8 and the original SRS symbols can be occupied to transmit uplink signals.
  • This configuration can be called the "highest gear”; in the configuration shown in the second row, the original SRS symbols can be occupied to transmit uplink signals.
  • This configuration It can be called the "middle gear”; in the configuration shown in the third row, G symbols and original SRS symbols cannot be occupied to transmit uplink signals, and this configuration can be called the "shortest gear”.
  • the configuration shown in the first row can be used
  • the configuration shown in the middle row can be used
  • when there is high interference the configuration shown in the third row can be used.
  • the base station can execute the process shown in Figure 10.
  • Figure 10 is a flow chart for the base station to flexibly configure the original SRS symbols and G symbols.
  • the base station performs interference detection on the symbols in S slot and reports periodically; when the power of the last G symbol in S slot (i.e. symbol 9) is greater than or equal to the threshold value, it is determined to use the "shortest gear" bit", when the power of the last G symbol in S slot is less than the threshold value, it can be further judged whether the power of the second G symbol in S slot (i.e. symbol 7) is less than the threshold value; when the power of the second G symbol in S slot is less than the threshold value; When the power of the second G symbol (i.e. symbol 7) in S slot is greater than or equal to the threshold value, determine whether the "middle gear" is used. When the power of the second G symbol (i.e. symbol 9) is greater than or equal to the threshold value, it is determined to use the "shortest gear" bit", when the power of the last G symbol in S slot is less than the threshold value, it can be further judged whether the power of the second G symbol in S slot (i.e. symbol 7) is less than the threshold value
  • far-end interference is more likely to affect upper-layer beams and has less impact on lower-layer beams than upper-layer beams.
  • Near-point users usually occupy lower-layer beams, and far-point users usually occupy upper-layer beams. Therefore, far-end interference has less impact on near-point users than far-point users.
  • S slot is interfered with, far-point users have the greatest impact, while near-point users can still be scheduled. It is hoped that near-point users can make full use of high-interference symbols.
  • the base station can determine the configuration of symbols in S slot based on the distance between the user and the base station. For example, for near-point users, the "highest gear” as shown in Figure 9 can be used; for mid-point users, the “middle gear” as shown in Figure 9 can be used; for far-point users, the "shortest gear” can be used. gear”.
  • Figure 12 shows an example in which the base station can determine the configuration of the symbols in the S slot according to the distance between the user and the base station.
  • Figure 12 for near-point large package users, you can use the "highest gear” shown in Figure 9; for mid-point large package users, you can use the "middle gear” shown in Figure 9; for far-point large package users, you can use the "middle gear” shown in Figure 9; Small package users can use the "shortest gear”.
  • the length of the symbols in the S slot can be adjusted more flexibly according to the interference information according to the moderate interference, which can maximize the use of uplink symbols, improve PUSCH resources and improve uplink performance.
  • the device in Figure 13 or Figure 14 includes corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in this application can be implemented in the form of hardware or a combination of hardware and computer software.
  • FIGS 13 and 14 are schematic structural diagrams of possible devices provided by embodiments of the present application. These devices can be used to implement the functions of the access network equipment in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
  • the device 10 includes a transceiver unit 11 and a processing unit 12 .
  • the transceiver unit 11 can implement corresponding communication functions, and the processing unit 12 is used for data processing.
  • the transceiver unit 11 may also be called a communication interface or communication unit.
  • the device 10 may also include a storage unit (not shown in Figure 13), which may be used to store instructions and/or data, and the processing unit 12 may read the instructions and/or data in the storage unit, So that the device implements the foregoing method embodiment.
  • a storage unit not shown in Figure 13
  • the processing unit 12 may read the instructions and/or data in the storage unit, So that the device implements the foregoing method embodiment.
  • the device 10 can be used to perform the actions performed by the access network device in the above method embodiment.
  • the device 10 can be an access network device or a component that can be configured in the access network device.
  • the transceiver unit 11 is used to To perform operations related to transceiver processing of the access network device in the above method embodiment, the processing unit 12 is configured to perform operations related to processing of the access network device in the above method embodiment.
  • the processing unit 12 is used to: when detecting remote interference, determine the first information, and the first information is used to The time domain resource configured with the sounding reference signal SRS is migrated from the first time domain resource to the second time domain resource, and the intensity of the remote interference on the second time domain resource is smaller than the remote interference on the first time domain resource.
  • the strength; the transceiver unit 11 is used to: send the first information to the terminal.
  • the processing unit 12 before sending the first information to the terminal, is also configured to: set the first cell where the terminal is located to a bar-bar state; and migrate all terminals in the first cell to the bar state. Second district.
  • the transceiver unit 11 is specifically configured to: when the terminal re-accesses the first cell, send the first information to the terminal.
  • the second cell is a surrounding cell of the first cell, and/or the second cell and the first cell are cells of different standards.
  • the first symbol of the second time domain resource is adjacent to the last symbol of the third time domain resource used to transmit the physical uplink shared channel PUSCH, and the first symbol of the second time domain resource is Used to transmit a first SRS, where the first SRS is an SRS that does not switch antennas when the terminal switches from the PUSCH to the first SRS.
  • the first SRS is used to determine the transmission mode of PUSCH based on the codebook CB.
  • the transceiver unit 11 is further configured to: send second information to the terminal according to the intensity of remote interference on the fourth time domain resource, where the second information is used to perform processing on the fourth time domain resource.
  • Scheduling, the fourth time domain resource includes the first time domain resource and a guard interval symbol of the time slot in which the first time domain resource is located.
  • the first time domain resource is after the guard interval symbol; when the intensity of far-end interference on the last symbol in the guard interval symbol is greater than a preset threshold, the second information is used Scheduling the terminal not to transmit the physical uplink shared channel PUSCH on the first time domain resource and the guard interval symbol; when the intensity of far-end interference on the last symbol in the guard interval symbol is less than a preset threshold, and When the intensity of far-end interference on the first symbol among the guard interval symbols is greater than a preset threshold, the second information is used to schedule the terminal to transmit PUSCH on the first time domain resource and not to transmit the PUSCH on the first time domain resource.
  • PUSCH is transmitted on guard interval symbols; when the intensity of far-end interference on the first symbol in the guard interval symbols is less than a preset threshold, the second information is used to schedule the terminal in the first time domain resource. and PUSCH is transmitted on the symbol after the second symbol among the guard interval symbols.
  • the transceiver unit 11 is further configured to: send second information to the terminal according to the distance between the terminal and the access network device, where the second information is used to perform processing on the fourth time domain resource.
  • the fourth time domain resource includes the first time domain resource and a guard interval symbol of the time slot in which the first time domain resource is located.
  • the second information is used to schedule the terminal to transmit the physical uplink shared channel PUSCH on the first time domain resource and part of the guard interval symbols;
  • the second information is used to schedule the terminal to transmit PUSCH on the first time domain resource and not to transmit PUSCH on the guard interval symbol;
  • the terminal is a remote
  • the second information is used to schedule the terminal not to transmit PUSCH on the first time domain resource and the guard interval symbol.
  • the processing unit 12 is also configured to determine the second information according to the intensity of far-end interference on the fourth time domain resource.
  • transceiver unit 710 and processing unit 720 For a more detailed description of the above-mentioned transceiver unit 710 and processing unit 720, reference may be made to the relevant descriptions in the above-mentioned method embodiments, which will not be described again here.
  • the device 20 includes a processor 21 .
  • the processor 21 is coupled to a memory 23 for storing instructions.
  • the processor 21 is used to execute instructions in the memory 23 to implement the functions of the above-mentioned processing unit 12 .
  • the device 20 further includes a memory 23 .
  • the device 20 also includes an interface circuit 22.
  • the processor 21 and the interface circuit 22 are coupled to each other.
  • the interface circuit 22 may be a transceiver or an input-output interface.
  • the processor 21 is used to execute instructions to realize the functions of the above-mentioned processing unit 12, and the interface circuit 22 is used to realize the functions of the above-mentioned transceiver unit 11.
  • the chip implements the functions of the access network equipment in the above method embodiment.
  • the chip receives information from other modules (such as radio frequency modules or antennas) in the access network equipment, and the information is sent to the access network equipment by other devices; or, the chip sends information to other modules (such as radio frequency modules) in the access network equipment. module or antenna) to send information, which is sent by the access network equipment to other devices.
  • the application also provides a communication device, including a processor, the processor is coupled to a memory, the memory is used to store computer programs or instructions and/or data, the processor is used to execute the computer programs or instructions stored in the memory, or read the memory storage data to perform the methods in each of the above method embodiments.
  • a communication device including a processor, the processor is coupled to a memory, the memory is used to store computer programs or instructions and/or data, the processor is used to execute the computer programs or instructions stored in the memory, or read the memory storage data to perform the methods in each of the above method embodiments.
  • the communication device includes memory.
  • the memory is integrated with the processor, or is provided separately.
  • the present application also provides a computer-readable storage medium on which are stored computer instructions for implementing the methods executed by the access network equipment in each of the above method embodiments.
  • This application also provides a computer program product, which includes instructions.
  • the instructions are executed by a computer, the methods executed by the access network equipment in each of the above method embodiments are implemented.
  • This application also provides a communication system, which includes the access network equipment in the above embodiments.
  • processor in the embodiment of the present application can be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware or by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory In memory, register, hard disk, mobile hard disk, compact disc read-only memory (CD-ROM) or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in the access network equipment.
  • the processor and the storage medium may also exist as discrete components in the access network device.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, a network device, a user equipment, or other programmable device.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another.
  • the computer program or instructions may be transmitted from a website, computer, A server or data center transmits via wired or wireless means to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media.
  • the available media may be magnetic media, such as floppy disks, hard disks, and tapes; optical media, such as digital video optical disks; or semiconductor media, such as solid-state hard drives.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法和通信装置,所述方法包括:当检测到远端干扰时,接入网设备确定第一信息,所述第一信息用于配置SRS的时域资源由第一时域资源迁移至第二时域资源,所述第二时域资源上的远端干扰的强度小于所述第一时域资源上的远端干扰的强度;所述接入网设备向终端发送第一信息。基于上述方法,当检测到远端干扰时,接入网设备可以将比较重要的SRS迁移至干扰较小的位置,并减少SRS所受到的远端干扰,SRS信道干扰减少后,可以使BF波束更准确,有助于改善终端的波束信噪比,提升下行吞吐量等性能,降低远端干扰对接入网设备的上行传输的影响。

Description

一种通信方法和通信装置
本申请要求申请日为2022年09月09日、申请号为202211105828.4、申请名称为“一种通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种通信方法和通信装置。
背景技术
大气波导为特定气象、地理条件下发生的自然现象。地球大气层的对流层中存在逆温或水汽随高度急剧变小的层,在该层中电磁波可以形成超折射传播,大部分电波辐射被限制在这一层内,类似于电磁波在波导中传播。大气波导通常发生在300m高度以下的边界大气中。电磁波在大气波导中传播损耗很小,可实现电磁波的超远距离传播,电磁波的传播距离远高于正常辐射范围。
在时分双工(time division duplex,TDD)系统中,上行信号和下行信号时分复用,并且通过设置保护间隔(guard period,GP)来避免下行信号干扰上行信号。其中,基站到终端为下行,传输的信号为下行信号;终端到基站为上行,传输的信号为上行信号。
当大气波导发生时,远端基站的下行信号经数十或数百公里的超远距离传输后仍具有较高强度,该下行信号的传播时延超过保护间隔长度,落入近端基站的上行信号的接收窗内,远端基站的下行信号对近端基站的上行信号会造成严重干扰。该干扰可以称为远端干扰。
因此,如何降低远端干扰对近端基站的上行信号的影响成为亟需解决的问题。
发明内容
本申请提供了一种通信方法和通信装置,有助于降低干扰。
第一方面,提供了一种通信方法,所述方法可以由接入网设备执行,也可以由接入网设备中的模块或单元执行,为了描述方便,下文统一称为接入网设备。
所述方法包括:
当检测到远端干扰时,接入网设备确定第一信息,所述第一信息用于配置探测参考信号SRS的时域资源由第一时域资源迁移至第二时域资源,所述第二时域资源上的远端干扰的强度小于所述第一时域资源上的远端干扰的强度;所述接入网设备向终端发送第一信息。
基于上述方法,当检测到远端干扰时,接入网设备可以将比较重要的探测参考信号(sounding reference signal,SRS)迁移至干扰较小的位置,并减少SRS所受到的远端干扰,SRS信道干扰减少后,可以使BF波束更准确,有助于改善终端的波束信噪比,提升下行吞吐量等性能,降低远端干扰对接入网设备的上行传输的影响。
结合第一方面,在一种可能的实现方式中,在所述接入网设备向终端发送第一信息之前,所述方法还包括:所述接入网设备将所述终端所在的第一小区设置为禁止bar状态;所述接入网设备将所述第一小区中的全部终端迁移至第二小区;所述接入网设备向终端发送第一信息,包括:当所述终端重新接入所述第一小区时,所述接入网设备向所述终端发送所述第一信息。
其中,不同的终端对应的第二小区可以相同也可以不同。
现有的远端干扰避让技术,并无根据干扰动态进行SRS信道以及其他信道调整的做法,只可固定根据信道结构进行配置调整。且网络信道调整,现有技术无法在同一个小区同时存在两种信道结构,不得不进行小区资源整体删除后再建立新小区,以达到调整信道结构的目的。基于上述方法,可在线通过用户迁移再调整信道,再使用户自动基于移动性迁移回来的方案,达到动态根据干扰在线调整信道,以避让远端干扰。
结合第一方面或其任意实现方式,在另一种可能的实现方式中,所述第二小区为所述第一小区的 周边小区,和/或,所述第二小区和所述第一小区为不同制式的小区。
结合第一方面或其任意实现方式,在另一种可能的实现方式中,所述第二时域资源的第一个符号与用于传物理上行共享信道(physical uplink shared channel,PUSCH)的第三时域资源的最后一个符号相邻,所述第二时域资源的第一个符号用于传输第一SRS,所述第一SRS为所述终端由所述PUSCH转换为所述第一SRS时不切换天线的SRS。
基于上述方法,当第二时域资源与用于传输物理上行共享信道PUSCH的第三时域资源相邻时,接入网设备可以在第二时域资源的与第三时域资源紧挨着的第一个符号(或称首符号)上优先分配不用切换天线的SRS,从而避免预留天线转换时间,节省资源开销。
结合第一方面或其任意实现方式,在另一种可能的实现方式中,所述第一SRS用于确定基于码本(code book,CB)的PUSCH的传输方式。
结合第一方面或其任意实现方式,在另一种可能的实现方式中,所述方法还包括:所述接入网设备根据第四时域资源上的远端干扰的强度,向所述终端发送第二信息,所述第二信息用于对所述第四时域资源进行调度,所述第四时域资源包括所述第一时域资源和所述第一时域资源所在时隙的保护间隔符号。
基于上述方法,接入网设备可以根据远端干扰的强度,利用第四时域资源传输PUSCH,有助于提升PUSCH资源和提升上行性能。
结合第一方面或其任意实现方式,在另一种可能的实现方式中,所述第一时域资源在所述保护间隔符号之后;当所述保护间隔符号中的最后一个符号上的远端干扰的强度大于预设阈值时,所述第二信息用于调度所述终端不在所述第一时域资源和所述保护间隔符号上传输物理上行共享信道PUSCH;当所述保护间隔符号中的最后一个符号上的远端干扰的强度小于预设阈值、且所述保护间隔符号中的第一符号上的远端干扰的强度大于预设阈值时,所述第二信息用于调度所述终端在所述第一时域资源上传输PUSCH、以及不在所述保护间隔符号上传输PUSCH;当所述保护间隔符号中的第一符号上的远端干扰的强度小于预设阈值时,所述第二信息用于调度所述终端在所述第一时域资源和所述保护间隔符号中在所述第二个符号之后的符号上传输PUSCH。
基于上述方法,接入网设备可以灵活地根据远端干扰的强度,调整第四时域资源中可以用于传输PUSCH的资源,可最大化利用上行资源,提升PUSCH资源和提升上行性能。
结合第一方面或其任意实现方式,在另一种可能的实现方式中,所述方法还包括:所述接入网设备根据所述终端与所述接入网设备之间的距离,向所述终端发送第二信息,所述第二信息用于对第四时域资源进行调度,所述第四时域资源包括所述第一时域资源和所述第一时域资源所在时隙的保护间隔符号。
远端干扰对于远点用户影响最大,对于近点用户影响最小。基于上述方法,接入网设备可以根据终端与接入网设备的距离,利用第四时域资源传输PUSCH,有助于提升PUSCH资源和提升上行性能。
结合第一方面或其任意实现方式,在另一种可能的实现方式中,当所述终端为近点终端时,所述第二信息用于调度所述终端在所述第一时域资源和所述保护间隔符号的部分符号上传输物理上行共享信道PUSCH;当所述终端为中点终端时,所述第二信息用于调度所述终端在所述第一时域资源上传输PUSCH、以及不在所述保护间隔符号上传输PUSCH;当所述终端为远点终端时,所述第二信息用于调度所述终端不在所述第一时域资源和所述保护间隔符号上传输PUSCH。
基于上述方法,接入网设备可以灵活地根据终端与接入网设备的距离,调整第四时域资源中可以用于传输PUSCH的资源,可最大化利用上行资源,提升PUSCH资源和提升上行性能。
结合第一方面或其任意实现方式,在另一种可能的实现方式中,所述方法还包括:所述接入网设备根据第四时域资源上的远端干扰的强度,确定所述第二信息。
第二方面,提供了一种通信装置,该装置用于执行上述任意一方面或其实现方式提供的方法。具体地,该装置可以包括用于执行上述任意一方面或其实现方式提供的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为接入网设备。当该装置为接入网设备时,通信单元可以是收发器,或,输入/输出接口,或者通信接口;处理单元可以是至少一个处理器。可选地,收发器为收发电路。可选地,输入/输出接口为输入/输出电路。
在另一种实现方式中,该装置为用于接入网设备中的芯片、芯片系统或电路。当该装置为用于接入网设备中的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第三方面,提供了一种通信装置,该装置包括:存储器,用于存储程序;至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述任意一方面或其实现方式提供的方法。
在一种实现方式中,该装置为接入网设备。
在另一种实现方式中,该装置为用于接入网设备中的芯片、芯片系统或电路。
第四方面,提供了一种通信装置,该装置包括:至少一个处理器和通信接口,该至少一个处理器用于通过该通信接口获取存储在存储器的计算机程序或指令,以执行上述任意一方面或其实现方式提供的方法。该通信接口可以由硬件或软件实现。
在一种实现方式中,该装置还包括该存储器。
第五方面,提供了一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,那么可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第六方面,提供了一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述任意一方面或其实现方式提供的方法。
第七方面,提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述任意一方面或其实现方式提供的方法。
第八方面,提供了一种芯片,芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述任意一方面或其实现方式提供的方法。该通信接口可以由硬件或软件实现。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述任意一方面或其实现方式提供的方法。
第九方面,提供了一种通信系统,包括上文的接入网设备。
附图说明
图1是适用于本申请的实施例的一种网络架构的示意图。
图2是本申请提出的通信方法200的示意性流程图。
图3是NR远端干扰场景下GAP/SRS/U符号的干扰强度的示意图。
图4是本申请的主动远端干扰避让的示意图。
图5是SRS迁移前后S slot(时隙)和U slot包含的信道的示意图。
图6是本申请的SRS迁移流程的示意图。
图7是下行吞吐量对比图。
图8是传统方案预留天线保护符号的示意图。
图9是S slot中的符号的三种配置的示意图。
图10为基站灵活配置原SRS符号和G符号的流程图。
图11是远端干扰对近点用户和远点用户的干扰的示意图。
图12是根据用户与基站的距离确定S slot中的符号的配置的一个示例。
图13是本申请的实施例提供的装置的一种结构示意图。
图14是本申请的实施例提供的装置的另一种结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
为便于理解本申请实施例,在介绍本申请的实施例之前,先做出以下几点说明。
在本申请中,“用于指示”或“指示”可以包括用于直接指示和用于间接指示,或者说“用于指 示”或“指示”可以显式地和/或隐式地指示。例如,当描述某一信息用于指示信息I时,可以包括该信息直接指示I或间接指示I,而并不代表该信息中一定携带有I。又例如,隐式指示可以基于用于传输的位置和/或资源;显式指示可以基于一个或多个参数,和/或一个或多个索引,和/或一个或多个它所表示的位模式。
本申请对很多特性所列出的定义仅用于以举例方式来解释该特性的功能,其详细内容可以参考现有技术。
下文示出的实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
“预先定义”可以通过在设备中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。其中,“保存”可以是指,保存在一个或者多个存储器中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括长期演进(long term evolution,LTE)协议、新无线(new radio,NR)协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请将围绕包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
在本申请实施例中,“示例的”、“例如”、“示例性地”、“作为(另)一个示例”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
在本申请实施例中,涉及网元A向网元B发送消息、信息或数据,以及网元B接收来自网元A的消息、信息或数据的相关描述,旨在说明该消息、信息或数据是要发给哪个网元,而并不限定它们之间是直接发送还是经由其他网元间接发送。
在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备会做出相应的处理,并非是限定时间,且也不要求设备在实现时一定要有判断的动作,也不意味着存在其它限定。
本申请的实施例可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、公共陆地移动网络(public land mobile network,PLMN)、第五代(5th generation,5G)系统、第六代(6th generation,6G)系统或未来的通信系统等。本申请中的5G系统包括非独立组网(non-standalone,NSA)的5G移动通信系统或独立组网(standalone,SA)的5G移动通信系统。本申请的实施例还可以应用于卫星通信系统等非陆地通信网络(non-terrestrial network,NTN)通信系统。本申请的实施例还可以应用于设备到设备(device to device,D2D)通信系统、侧行链路(sidelink,SL)通信系统、机器到机器(machine to machine,M2M)通信系统、机器类型通信(machine type communication,MTC)系统、物联网(Internet of things,IoT)通信系统、车联万物(vehicle to everything,V2X)通信系统、无人机(uncrewed aerial vehicle,UAV)通信系统或者其他通信系统。
作为示例,图1示出了一种通信系统的示意图。
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接 入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
本申请实施例涉及到的终端设备还可以称为终端,可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE),其中,UE包括具有无线通信功能的手持0式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端,以终端是UE为例,描述本申请实施例提供的技术方案。
本申请实施例涉及到的无线接入网设备,例如基站(base station,BS),BS可以是一种部署在无线接入网中能够和终端进行无线通信的设备。无线接入网设备包括但不限于上述通信系统中的基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、开放接入网ORAN(open RAN,ORAN)系统中的接入网设备或者接入网设备的模块、未来移动通信系统中的基站或WiFi系统中的接入节点等。接入网设备也可以是能够实现基站部分功能的模块或单元。例如,接入网设备可以是下文描述的集中式单元(central unit,CU),分布式单元(distributed unit,DU),CU-控制面(control plane,CP),CU-用户面(user plane,UP),或者无线单元(radio unit,RU)等。其中,在ORAN系统中,CU还可以称为O-CU,DU还可以称为开放(open,O)-DU,CU-CP还可以称为O-CU-CP,CU-UP还可以称为O-CUP-UP,RU还可以称为O-RU。所述接入网设备可以是宏基站(如图1中的110a),微基站或室内站(如图1中的110b),中继节点或施主节点,或者是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。可选的,接入网设备还可以是服务器,可穿戴设备,或车载设备等。例如,车辆外联(vehicle to everything,V2X)技术中的接入网设备可以为路侧单元(road side unit,RSU)。通信系统中的多个接入网设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端进行通信,也可以通过中继站与终端进行通信。终端可以与不同接入技术中的多个基站进行通信。本申请实施例中,用于实现无线接入网设备的功能的装置可以是无线接入网设备;也可以是能够支持无线接入网设备实现该功能的装置,例如芯片系统,该装置可以被安装在无线接入网设备中。在本申请实施例提供的技术方案中,以用于实无线接入网设备的功能的装置是无线接入网设备,以无线接入网设备是基站为例,描述本申请实施例提供的技术方案。
本申请实施例提供的技术方案可以应用于通信设备间的无线通信。通信设备间的无线通信可以包括:无线接入网设备和终端间的无线通信、无线接入网设备和无线接入网设备的无线通信以及终端和终端间的无线通信。其中,在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。
如背景技术中提到的,当远端干扰发生时,远端基站的下行信号对近端基站的上行信号会造成严重干扰。一种规避远端干扰的方案为:当近端基站在检测到远端基站的远端干扰时,近端基站向远端基站发送远端干扰管理参考信号(remote interference management,RIM-RS)1;远端基站在接收到RIM-RS 1后减少用于下行的符号,以期消除对近端基站的干扰,并向近端基站发送RIM-RS 2;近端 基站保持发送RIM-RS 1直到接收不到来自远端基站的RIM-RS 2。这样,远端基站可以根据RIM-RS 1不断调整用于下行的符号数,直到对近端基站不再产生影响。可知,当前规避远端干扰的方案依赖于RIM-RS在远端基站和近端基站之间的互相检测,并通过远端基站减少下行发送的符号,消除对近端基站的影响。
针对上述方案,首先,上述方案强依赖于远端基站和近端基站两端协同打开互检并识别远端干扰,在跨国/跨厂家设备的场景下协商困难,如海外多个国家之间,容易形成相互干扰,但是频谱分配各不相同,运营商利益难以协调,无法展开协同检测并进行干扰源规避。其次,对于不对称不互异的干扰场景,可能导致用于干扰源检测的RIM-RS无法送成,导致无法触发干扰源规避。此外,在干扰抬升的情况下,RIM-RS容量被干扰信号影响,导致无法正确解调,影响干扰源的检出概率。
针对上述问题,本申请提出了一种通信方法和通信装置,能够降低远端干扰对接入网设备的上行传输的影响。
下面对本申请提的通信方法进行描述。
图2是本申请提出的通信方法200的示意性流程图。
方法200包括以下内容的至少部分内容。
步骤201,当检测到远端干扰时,接入网设备确定第一信息。
其中,第一信息用于配置探测参考信号(sounding reference signal,SRS)的时域资源由第一时域资源迁移至第二时域资源,所述第二时域资源上的远端干扰的强度小于所述第一时域资源上的远端干扰的强度。
即当检测到远端干扰时,接入网设备可以将SRS迁移到干扰较小或没有干扰的时域资源上。
本申请不限定接入网设备检测远端干扰的方式。例如,通过判断接入网设备的上行符号上的干扰水平和特征,若干扰状态由无干扰到有干扰的变化,干扰特征上呈现“斜坡”状的特性,即左边符号干扰水平比右边干扰水平高,得到该接入网设备受到远端干扰的判断结果。该检测过程可以是由接入网设备中的算法实现的,也可以通过上行符号上的统计结果,由人工判断干扰是否发生变化。
步骤202,接入网设备向终端发送第一信息。
相应地,终端接收接入网设备发送的第一信息。
即接入网设备为终端重新配置SRS的时域位置。
基于上述方法,当检测到远端干扰时,接入网设备可以将比较重要的SRS迁移至干扰较小的位置,并减少SRS所受到的远端干扰,SRS信道干扰减少后,可以使BF波束更准确,有助于改善终端的波束信噪比,提升下行吞吐量等性能,降低远端干扰对接入网设备的上行传输的影响。
可选地,在本申请的另一些实现方式中,方法200还可以包括:在接入网设备向终端发送第一信息之前,接入网设备将所述终端所在的第一小区设置为禁止bar状态;将所述第一小区中的全部终端迁移至第二小区。
步骤202包括:当所述终端重新接入所述第一小区时,所述接入网设备向所述终端发送所述第一信息。
现有的远端干扰避让技术,并无根据干扰动态进行SRS信道以及其他信道调整的做法,只可固定根据信道结构进行配置调整。且网络信道调整,现有技术无法在同一个小区同时存在两种信道结构,不得不进行小区资源整体删除后再建立新小区,以达到调整信道结构的目的。基于上述方法,可在线通过用户迁移再调整信道,再使用户自动基于移动性迁移回来的方案,达到动态根据干扰在线调整信道,以避让远端干扰。
可选地,第二小区为第一小区的周边小区,和/或,第二小区和第一小区为不同制式的小区。
可选地,第二时域资源的第一个符号与用于传输PUSCH的第三时域资源的最后一个符号相邻,第二时域资源的第一个符号用于传输第一SRS,第一SRS为所述终端由PUSCH转换为第一SRS时不切换天线的SRS。
可选地,第一SRS用于确定基于码本CB的PUSCH的传输方式。
基于上述方法,当第二时域资源与用于传输物理上行共享信道PUSCH的第三时域资源相邻时,接入网设备可以在第二时域资源的与第三时域资源紧挨着的第一个符号(或称首符号)上优先分配不用切换天线的SRS,从而避免预留天线转换时间,节省资源开销。
可选地,在本申请的另一些实现方式中,方法200还可以包括:步骤203,接入网设备向终端发送第二信息,其中第二信息用于对第四时域资源进行调度,第四时域资源包括所述第一时域资源和所述第一时域资源所在时隙的保护间隔符号。这样,接入网设备重新利用第四时域资源传输PUSCH,有助于提升PUSCH资源和提升上行性能。
一种可能的实现方式,步骤203包括:接入网设备根据第四时域资源上的远端干扰的强度,向终端发送第二信息。这样,接入网设备可以根据远端干扰的强度,利用第四时域资源传输PUSCH,有助于提升PUSCH资源和提升上行性能。
作为一个示例,第一时域资源在所述保护间隔符号之后。当保护间隔符号中的最后一个符号上的远端干扰的强度大于预设阈值时,第二信息用于调度所述终端不在所述第一时域资源和所述保护间隔符号上传输物理上行共享信道PUSCH;当保护间隔符号中的最后一个符号上的远端干扰的强度小于预设阈值、且保护间隔符号中的第一符号上的远端干扰的强度大于预设阈值时,第二信息用于调度终端在第一时域资源上传输PUSCH、以及不在保护间隔符号上传输PUSCH;当保护间隔符号中的第一符号上的远端干扰的强度小于预设阈值时,第二信息用于调度终端在所述第一时域资源和所述保护间隔符号中在第二个符号之后的符号上传输PUSCH。需要指出的是,上述示例仅将第四时域资源的利用分为三档为例,可以为更多或更少的档位划分。
可选地,第一符号可以为保护间隔符号中的出第一个和最后一个符号以外的任意一个符号。
这样,接入网设备可以灵活地根据远端干扰的强度,调整第四时域资源中可以用于传输PUSCH的资源,可最大化利用上行资源,提升PUSCH资源和提升上行性能。
可选地,在本申请的另一些实现方式中,方法200还可以包括:步骤203,
另一种可能的实现方式,步骤203包括:接入网设备根据终端与接入网设备之间的距离,向终端发送第二信息。远端干扰对于远点用户影响最大,对于近点用户影响最小。基于上述方法,接入网设备可以根据终端与接入网设备的距离,利用第四时域资源传输PUSCH,有助于提升PUSCH资源和提升上行性能。
作为一个示例,当终端为近点终端时,第二信息用于调度终端在第一时域资源和保护间隔符号的部分符号上传输PUSCH;当终端为中点终端时,第二信息用于调度终端在第一时域资源上传输PUSCH、以及不在保护间隔符号上传输PUSCH;当终端为远点终端时,第二信息用于调度终端不在第一时域资源和保护间隔符号上传输PUSCH。需要指出的是,上述示例仅将第四时域资源的利用分为三档为例,可以为更多或更少的档位划分。
基于上述方法,接入网设备可以灵活地根据终端与接入网设备的距离,调整第四时域资源中可以用于传输PUSCH的资源,可最大化利用上行资源,提升PUSCH资源和提升上行性能。
可选地,在接入网设备根据终端与接入网设备之间的距离,向终端发送第二信息之前,方200还包括:接入网设备根据第四时域资源上的远端干扰的强度,确定第二信息。
下面结合具体的场景,对本申请的通信方法进行描述。在下文中,GAP符号或G符号表示保护间隔符号、U符号表示上行符号、D符号表示下行符号,干扰可以指代远端干扰,基站可以对应于上文的接入网设备。
本申请主要解决在远端干扰场景不依赖双方互检而进行规避干扰,如何实现在受干扰端通过干扰识别,进而主动避让干扰的问题,设计SRS根据干扰动态迁移的方式;受扰端如何识别并根据干扰动态调整SRS的信道位置等,并根据优化的SRS信道位置,处理与其他信道协同的方案。图3是NR远端干扰场景下GAP/SRS/U符号的干扰强度的示意图。如图3所指示,S slot(时隙)最容易受到干扰,且干扰影响程度也最大。
本申请通过识别远端干扰,将SRS动态迁移到远离干扰的位置上,并根据S slot干扰水平,动态将S slot的GAP符号及原SRS符号用于PUSCH调度。
下面结合具体实施例图4~12,对上述实施例图2中的通信方法进行详细的说明,实施例图4~12与实施例图2的步骤之间也可以相互引用,术语概念也可以相互引用。
图4是本申请的主动远端干扰避让的示意图。
如图4所示,远端基站的D slot 5和6会干扰近端基站的s slot,此时,近端基站可以将SRS由原来的s slot迁移到U slot 9,从而避免远端基站的D slot 5和6对SRS的干扰。需要注意的是,图4呈 现的为8:2配比的上下行配比示意图。
在SRS迁移前后,将S slot和U slot展开后,包含信道的详细示意如图5所示。其中,图5中的默认状态为SRS迁移前S slot和U slot包含的信道的示意图,可见SRS在S slot传输;SRS迁移状态为SRS迁移后S slot和U slot包含的信道的示意图,可见SRS在U slot传输。
实施例1
下面对基于远端干扰识别而触发SRS迁移避让方案的整体设计及流程进行描述。
(1)基于干扰识别方案设计及流程如图所示。
在本申请中,基站通过在UL符号上识别到远端干扰,并需要根据干扰来调整小区信道的配置方式,但是对于小区在线用户,无法对一个小区同时存在如图5所示的两种信道结构的调度。
因此,本申请设计了如图6所示的迁移流程。通过本申请的迁移流程,可以保证在线用户不直接中断,采用重定向迁走用户,调整资源后,用户再接进来的方式来实现。
图6是本申请的SRS迁移流程的示意图。
步骤一:干扰检测和判断。在干扰的受扰端,通过gNodeB判断上行符号上的干扰水平和特征,若干扰状态由无干扰到有干扰的变化,干扰特征上呈现“斜坡”状的特性,即左边符号干扰水平比右边干扰水平高,得到该gNodeB受到远端干扰的判断结果。该检测和判断可以是由gNodeB算法来实现,也可以通过上行符号上的统计结果,由人工判断干扰是否发生变化。
当人工判断干扰是否发生变化时(对应于不执行自动干扰判断的分支),后续若人工判断发生了远端干扰,可以人工重新配置SRS资源(如通过网管设备等)。当该检测和判断可以是由gNodeB算法来实现时(对应于执行自动干扰判断的分支),后续可以执行以下的步骤二至步骤四。
步骤二:bar小区,释放在线用户。小区进入Bar状态,禁止新用户接入/切入。小区开始释放所有在线用户,切换或重定向用户到周边小区/周边制式,为下面步骤调整信道做准备。
步骤三:重新配置SRS信道等信道结构和位置。实现动态调整SRS到对应位置上。
步骤四:解除小区bar状态,用户重入。调整完成信道结构后,小区解除bar状态,用户基于移动性自动迁移回来,完成调整。
这样,本申请提供了识别干扰后通过SRS迁移来避让远端干扰的方法,通过干扰的识别迁移SRS信道到干扰小的位置上,并减少SRS所受到的干扰。SRS信道干扰减少后,使BF波束更准确,改善了UE的波束信噪比,提升了下行吞吐量等性能。应用本申请的方法前后的下行吞吐量(NR Downlink Throughput)如图7所示。可以看出,应用本申请的方法后,下行吞吐量基本可与没有SRS干扰时的下行吞吐量持平。
实施例2
基于实施例1,实施例2提供:当SRS在U slot上分配时,PUSCH与SRS之间,一种天选终端免预留切换符号的方案。
具体地,PUSCH与SRS转换时,可能遇到天线切换,需预留天线转换时间,传统方案需要预留1个符号保护,如图8所示。在实施例2的方案中,SRS优先在首符号上分CB,这样天选终端在PUSCH与SRS转换时不需预留天线转换时间,可以节省1个符号开销。
现有技术中,SRS和PUSCH在同一个slot中,对于天选终端,因为AS动态在不同的符号分配,在分配AS时需要预留一个符号作为天线切换的保护。基于实施例2通过优化SRS的AS/CB分配方式,SRS优先在挨着PUSCH的首符号上分CB,达到不需要固定预留天线转换的保护符号的效果。基于实施例2,天选UE在PUSCH与SRS转换不需预留天线转换时间,节省1个符号开销。对于PUSCH的占用减少1个符号,开销减少约2~4%(根据不同配比)。
实施例3
基于实施例1和/或实施例2,实施例3提供:SRS在从S slot迁移到U slot后,在S slot根据干扰极致进行PUSCH调度的方法。
一种可行的方式具体如下。
在SRS迁移走后,在S slot占用GAP符号来调U,然而干扰会影响个别符号,只能在低干扰符号占用。
示例性地,实施例3中的S slot中的符号可以有如图9所示的三种配置。在第一行所示的配置中, 可以占用G符号7和8、以及原SRS符号来传输上行信号,该配置可以称为“最高档位”;在第二行所示的配置中,可以占用原SRS符号来传输上行信号,该配置可以称为“中间档位”;在第三行所示的配置中,不能占用G符号和原SRS符号来传输上行信号,该配置可以称为“最短档位”。其中,低干扰时,可以使用第一行所示的配置,部分干扰时可以使用中间一行所示的配置,高干扰时可以使用第三行所示的配置。
为实现图3所示的效果,基站可以执行如图10所示的流程。
图10为基站灵活配置原SRS符号和G符号的流程图。
如图10所示,基站对S slot中的符号进行干扰检测,并周期上报;当S slot中的最后一个G符号(即符号9)的功率大于或者等于门限值时,确定使用“最短档位”,当S slot中的最后一个G符号的功率小于门限值时,可以进一步判断当S slot中的第二个G符号(即符号7)的功率是否小于门限值;当S slot中的第二个G符号(即符号7)的功率大于或者等于门限值时,确定使用“中间档位”,当S slot中的第二个G符号(即符号7)的功率是否小于门限值时,确定使用“最高档位”;在确定了S slot中的符号的配置后,可以向档位通知模块按照相应档位调度S slot(即档位生效)。
另一种可行的方式具体如下。
如图11所示,远端干扰更可能会影响上层波束,对下层波束的影响小于上层波束。而近点用户通常占用下层波束,远点用户通常占用上层波束,因此远端干扰对近点用户的影响较小,低于远点用户的影响较大。在S slot受干扰时,远点用户影响最大,近点用户仍可调度,希望近点用户充分利用高干扰符号。
基于此,基站可以根据用户与基站的距离,确定S slot中的符号的配置。示例性地,对于近点用户,可以使用如图9所示的“最高档位”,对于中点用户,可以使用图9所示的“中间档位”;对于远点用户,可以使用“最短档位”。
示例性地,图12示出了,基站可以根据用户与基站的距离,确定S slot中的符号的配置的一个示例。如图12所示,对于近点大包用户,可以使用如图9所示的“最高档位”,对于中点大包用户,可以使用图9所示的“中间档位”;对于远点小包用户,可以使用“最短档位”。
这样,基于本实施例3,可以更加灵活地根据干扰信息,将S slot中的符号按干扰适度不同适当调整长度,可最大化利用上行的符号,提升PUSCH资源和提升上行性能。
上文结合图2至图12,详细描述了本申请提供的方法,下面将结合图13至图14,详细描述本申请的装置实施例。
可以理解的是,为了实现上述实施例中功能,图13或图14中的装置包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。
图13和图14为本申请的实施例提供的可能的装置的结构示意图。这些装置可以用于实现上述方法实施例中接入网设备的功能,因此也能实现上述方法实施例所具备的有益效果。
如图13所示,装置10包括收发单元11和处理单元12。收发单元11可以实现相应的通信功能,处理单元12用于进行数据处理。收发单元11还可以称为通信接口或通信单元。
可选地,该装置10还可以包括存储单元(图13中未示出),该存储单元可以用于存储指令和/或数据,处理单元12可以读取存储单元中的指令和/或数据,以使得装置实现前述方法实施例。
该装置10可以用于执行上文方法实施例中接入网设备所执行的动作,这时,该装置10可以为接入网设备或者可配置于接入网设备的部件,收发单元11用于执行上文方法实施例中接入网设备的收发相关的操作,处理单元12用于执行上文方法实施例中接入网设备处理相关的操作。
作为一种设计,当装置10用于实现上述方法实施例中接入网设备的功能时,处理单元12用于:当检测到远端干扰时,确定第一信息,所述第一信息用于配置探测参考信号SRS的时域资源由第一时域资源迁移至第二时域资源,所述第二时域资源上的远端干扰的强度小于所述第一时域资源上的远端干扰的强度;收发单元11用于:向终端发送第一信息。
可选地,在向终端发送第一信息之前,所述处理单元12还用于:将所述终端所在的第一小区设置为禁止bar状态;将所述第一小区中的全部终端迁移至第二小区。收发单元11具体用于:当所述终端重新接入所述第一小区时,向所述终端发送所述第一信息。
可选地,所述第二小区为所述第一小区的周边小区,和/或,所述第二小区和所述第一小区为不同制式的小区。
可选地,所述第二时域资源的第一个符号与用于传输物理上行共享信道PUSCH的第三时域资源的最后一个符号相邻,所述第二时域资源的第一个符号用于传输第一SRS,所述第一SRS为所述终端由所述PUSCH转换为所述第一SRS时不切换天线的SRS。
可选地,所述第一SRS用于确定基于码本CB的PUSCH的传输方式。
可选地,收发单元11还用于:根据第四时域资源上的远端干扰的强度,向所述终端发送第二信息,所述第二信息用于对所述第四时域资源进行调度,所述第四时域资源包括所述第一时域资源和所述第一时域资源所在时隙的保护间隔符号。
可选地,所述第一时域资源在所述保护间隔符号之后;当所述保护间隔符号中的最后一个符号上的远端干扰的强度大于预设阈值时,所述第二信息用于调度所述终端不在所述第一时域资源和所述保护间隔符号上传输物理上行共享信道PUSCH;当所述保护间隔符号中的最后一个符号上的远端干扰的强度小于预设阈值、且所述保护间隔符号中的第一符号上的远端干扰的强度大于预设阈值时,所述第二信息用于调度所述终端在所述第一时域资源上传输PUSCH、以及不在所述保护间隔符号上传输PUSCH;当所述保护间隔符号中的第一符号上的远端干扰的强度小于预设阈值时,所述第二信息用于调度所述终端在所述第一时域资源和所述保护间隔符号中在所述第二个符号之后的符号上传输PUSCH。
可选地,收发单元11还用于:根据所述终端与所述接入网设备之间的距离,向所述终端发送第二信息,所述第二信息用于对第四时域资源进行调度,所述第四时域资源包括所述第一时域资源和所述第一时域资源所在时隙的保护间隔符号。
可选地,当所述终端为近点终端时,所述第二信息用于调度所述终端在所述第一时域资源和所述保护间隔符号的部分符号上传输物理上行共享信道PUSCH;当所述终端为中点终端时,所述第二信息用于调度所述终端在所述第一时域资源上传输PUSCH、以及不在所述保护间隔符号上传输PUSCH;当所述终端为远点终端时,所述第二信息用于调度所述终端不在所述第一时域资源和所述保护间隔符号上传输PUSCH。
可选地,处理单元12还用于:根据第四时域资源上的远端干扰的强度,确定所述第二信息。
关于上述收发单元710和处理单元720更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
如图14示,装置20包括处理器21。处理器21与存储器23耦合,存储器23用于存储指令。当装置20用于实现上文所述的方法时,处理器21用于执行存储器23中的指令,以实现上述处理单元12的功能。
可选地,装置20还包括存储器23。
可选地,装置20还包括接口电路22。处理器21和接口电路22之间相互耦合。可以理解的是,接口电路22可以为收发器或输入输出接口。当装置20用于实现上文所述的方法时,处理器21用于执行指令,以实现上述处理单元12的功能,接口电路22用于实现上述收发单元11的功能。
示例性地,当装置20为应用于接入网设备的芯片时,该芯片实现上述方法实施例中接入网设备的功能。该芯片从接入网设备中的其它模块(如射频模块或天线)接收信息,该信息是其他装置发送给接入网设备的;或者,该芯片向接入网设备中的其它模块(如射频模块或天线)发送信息,该信息是接入网设备发送给其他装置的。
本申请还提供一种通信装置,包括处理器,该处理器与存储器耦合,存储器用于存储计算机程序或指令和/或数据,处理器用于执行存储器存储的计算机程序或指令,或读取存储器存储的数据,以执行上文各方法实施例中的方法。可选地,处理器为一个或多个。可选地,该通信装置包括存储器。可选地,存储器为一个或多个。可选地,该存储器与该处理器集成在一起,或者分离设置。
本申请还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由接入网设备执行的方法的计算机指令。
本申请还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由接入网设备执行的方法。
本申请还提供一种通信系统,该通信系统包括上文各实施例中的接入网设备。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、只读光盘存储器(compact disc read-only memory,CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
除非另有说明,本申请实施例所使用的所有技术和科学术语与本申请的技术领域的技术人员通常理解的含义相同。本申请中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请的范围。应理解,上述为举例说明,上文的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将申请实施例限制于所示例的具体数值或具体场景。本领域技术人员根据上文所给出的例子,显然可以进行各种等价的修改或变化,这样的修改和变化也落入本申请实施例的范围内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种通信方法,其特征在于,所述方法包括:
    当检测到远端干扰时,接入网设备确定第一信息,所述第一信息用于配置探测参考信号SRS的时域资源由第一时域资源迁移至第二时域资源,所述第二时域资源上的远端干扰的强度小于所述第一时域资源上的远端干扰的强度;
    所述接入网设备向终端发送第一信息。
  2. 根据权利要求1所述的方法,其特征在于,
    在所述接入网设备向终端发送第一信息之前,所述方法还包括:
    所述接入网设备将所述终端所在的第一小区设置为禁止bar状态;
    所述接入网设备将所述第一小区中的全部终端迁移至第二小区;
    所述接入网设备向终端发送第一信息,包括:
    当所述终端重新接入所述第一小区时,所述接入网设备向所述终端发送所述第一信息。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第二小区为所述第一小区的周边小区,和/或,所述第二小区和所述第一小区为不同制式的小区。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述第二时域资源的第一个符号与用于传输物理上行共享信道PUSCH的第三时域资源的最后一个符号相邻,所述第二时域资源的第一个符号用于传输第一SRS,所述第一SRS为所述终端由所述PUSCH转换为所述第一SRS时不切换天线的SRS。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第一SRS用于确定基于码本CB的PUSCH的传输方式。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备根据第四时域资源上的远端干扰的强度,向所述终端发送第二信息,所述第二信息用于对所述第四时域资源进行调度,所述第四时域资源包括所述第一时域资源和所述第一时域资源所在时隙的保护间隔符号。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第一时域资源在所述保护间隔符号之后;
    当所述保护间隔符号中的最后一个符号上的远端干扰的强度大于预设阈值时,所述第二信息用于调度所述终端不在所述第一时域资源和所述保护间隔符号上传输物理上行共享信道PUSCH;
    当所述保护间隔符号中的最后一个符号上的远端干扰的强度小于预设阈值、且所述保护间隔符号中的第一符号上的远端干扰的强度大于预设阈值时,所述第二信息用于调度所述终端在所述第一时域资源上传输PUSCH、以及不在所述保护间隔符号上传输PUSCH;
    当所述保护间隔符号中的第一符号上的远端干扰的强度小于预设阈值时,所述第二信息用于调度所述终端在所述第一时域资源和所述保护间隔符号中在所述第二个符号之后的符号上传输PUSCH。
  8. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备根据所述终端与所述接入网设备之间的距离,向所述终端发送第二信息,所述第二信息用于对第四时域资源进行调度,所述第四时域资源包括所述第一时域资源和所述第一时域资源所在时隙的保护间隔符号。
  9. 根据权利要求8所述的方法,其特征在于,
    当所述终端为近点终端时,所述第二信息用于调度所述终端在所述第一时域资源和所述保护间隔符号的部分符号上传输物理上行共享信道PUSCH;
    当所述终端为中点终端时,所述第二信息用于调度所述终端在所述第一时域资源上传输PUSCH、以及不在所述保护间隔符号上传输PUSCH;
    当所述终端为远点终端时,所述第二信息用于调度所述终端不在所述第一时域资源和所述保护间隔符号上传输PUSCH。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述接入网设备根据第四时域资源上的远端干扰的强度,确定所述第二信息。
  11. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述装置执行如权利要求1至10中任一项所述的方法。
  12. 根据权利要求11所述的装置,其特征在于,所述装置还包括所述存储器。
  13. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至10中任一项所述的方法。
  14. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至10中任一项所述的方法的指令。
  15. 一种通信系统,其特征在于,包括:用于执行如权利要求1至10中任一项所述的方法的接入网设备。
PCT/CN2023/117457 2022-09-09 2023-09-07 一种通信方法和通信装置 WO2024051775A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211105828.4 2022-09-09
CN202211105828.4A CN117693027A (zh) 2022-09-09 2022-09-09 一种通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2024051775A1 true WO2024051775A1 (zh) 2024-03-14

Family

ID=90127165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117457 WO2024051775A1 (zh) 2022-09-09 2023-09-07 一种通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN117693027A (zh)
WO (1) WO2024051775A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108076514A (zh) * 2016-11-07 2018-05-25 中国移动通信有限公司研究院 一种上下行时隙调整方法、集中管理设备和基站
CN110891316A (zh) * 2018-09-10 2020-03-17 华为技术有限公司 一种时域资源配置方法及接入网设备
WO2022027352A1 (zh) * 2020-08-05 2022-02-10 华为技术有限公司 一种抑制远端干扰的方法、装置以及设备
WO2022042119A1 (zh) * 2020-08-27 2022-03-03 中兴通讯股份有限公司 Srs时域资源的动态选择方法和装置、存储介质及电子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108076514A (zh) * 2016-11-07 2018-05-25 中国移动通信有限公司研究院 一种上下行时隙调整方法、集中管理设备和基站
CN110891316A (zh) * 2018-09-10 2020-03-17 华为技术有限公司 一种时域资源配置方法及接入网设备
WO2022027352A1 (zh) * 2020-08-05 2022-02-10 华为技术有限公司 一种抑制远端干扰的方法、装置以及设备
WO2022042119A1 (zh) * 2020-08-27 2022-03-03 中兴通讯股份有限公司 Srs时域资源的动态选择方法和装置、存储介质及电子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "SRS enhancement for TDD CJT and 8 Tx operation", 3GPP TSG RAN WG1 #109-E R1-2205018, 29 April 2022 (2022-04-29), XP052191693 *

Also Published As

Publication number Publication date
CN117693027A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
EP3737191A1 (en) Method, apparatus and system for sending and receiving uplink data
WO2019192336A1 (zh) 功率控制方法、装置和系统
KR20210050442A (ko) Ue에 대한 신호 송신 방법 및 디바이스
US20220210801A1 (en) Pending sr cancellation method and apparatus
US20240064655A1 (en) Power Control Method and Apparatus
JP2021520670A (ja) ビーム選択優先度
EP4355001A1 (en) Method for accessing network, and communication apparatus
WO2024051775A1 (zh) 一种通信方法和通信装置
CN111919472B (zh) 用于bwp的随机接入响应
KR20180065612A (ko) 서버 및 서버에 의해 수행되는 무선 통신 네트워크의 제어 방법
WO2022253150A1 (zh) 数据传输方法及装置
US20220022049A1 (en) Method, system, and apparatus for sharing dynamic frequency in mobile communication system
US11363594B2 (en) Time-domain resource determination method and apparatus, and computer storage medium
CN116782407A (zh) 一种免调度资源配置的方法和装置
WO2021029049A1 (ja) 端末及び通信方法
CN109076594A (zh) 一种低功耗终端接入网络的方法及装置
CN113543323A (zh) 数据传输的方法和装置
EP4181601A1 (en) Information transmission method and communication apparatus
US20240049300A1 (en) Random access method, communication apparatus, and communication system
EP4369812A1 (en) Resource determination method, apparatus and device, and medium, chip, product and program
US20230276453A1 (en) Uplink transmission method and communication apparatus
US20240072944A1 (en) Method and device for configuring available harq process of logical channel
WO2024114549A1 (zh) 通信方法和装置
WO2022236636A1 (zh) 高空平台站-地面通信系统中的电子设备
CN116456502A (zh) 随机接入的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862469

Country of ref document: EP

Kind code of ref document: A1