WO2024051595A1 - 植入式生物传感器及其制备方法 - Google Patents

植入式生物传感器及其制备方法 Download PDF

Info

Publication number
WO2024051595A1
WO2024051595A1 PCT/CN2023/116505 CN2023116505W WO2024051595A1 WO 2024051595 A1 WO2024051595 A1 WO 2024051595A1 CN 2023116505 W CN2023116505 W CN 2023116505W WO 2024051595 A1 WO2024051595 A1 WO 2024051595A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
implantable biosensor
working electrode
electrically connected
wires
Prior art date
Application number
PCT/CN2023/116505
Other languages
English (en)
French (fr)
Inventor
程荣恩
钱成
刘佳梅
周静
Original Assignee
苏州百孝医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州百孝医疗科技有限公司 filed Critical 苏州百孝医疗科技有限公司
Publication of WO2024051595A1 publication Critical patent/WO2024051595A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14503Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive

Definitions

  • the present application relates to the field of biosensors, for example, to an implantable biosensor and a preparation method thereof.
  • Enzyme-based electrochemical sensors convert the biochemical reaction signal of the analyte under the catalysis of the corresponding enzyme into a measurable physical signal, such as an electrical signal, and the size or strength of the electrical signal depends on the concentration of the analyte, thereby achieving The measurement of analyte concentration is sometimes called a biosensor.
  • This biosensor is widely used for analyte detection in clinical, environmental, agricultural and biotechnology applications.
  • Analytes that can be measured clinically in human fluids include, for example, glucose, lactate, cholesterol, bilirubin, and amino acids.
  • the detection of analytes in, for example, human blood or interstitial fluid is important for the diagnosis and monitoring of many diseases.
  • biosensors that detect analyte concentration through electrical signals such as amperometric (current-type) biosensors
  • amperometric glucose biosensors glucose is oxidized by oxygen in body fluids through a reaction catalyzed by glucose oxidase, which generates gluconolactone and hydrogen peroxide, which is then electrically oxidized to form a Glucose concentration-related electrical signals.
  • the first generation of biosensing technology indirectly monitors glucose by electrochemically detecting the hydrogen peroxide generated during the catalytic oxidation of glucose by glucose oxidase.
  • the electrochemical detection of hydrogen peroxide requires a high detection potential.
  • a biosensor based on platinum or platinum alloy has a detection potential of hydrogen peroxide of 500 millivolts (mV) to 700 millivolts (mV). )
  • mV millivolts
  • mV millivolts
  • mV millivolts
  • mV millivolts
  • mV millivolts
  • mV millivolts
  • the second generation biosensing technology achieves direct electrochemical detection of glucose by introducing redox mediators into glucose biosensors.
  • glucose oxidase has a large molecular weight (about 160 kilodaltons (KDa)).
  • KDa kilodaltons
  • the three-dimensional structure of its catalytic active center is very complex and is located inside the glucose oxidase, and is deeply surrounded by various peptide chains. Deeply wrapped, glucose oxidase cannot directly exchange electrons with the electrode.
  • glucose oxidase can exchange electrons with the electrode through these electron mediators without the need for No hydrogen peroxide is generated. Based on this, glucose detection can be achieved at a lower potential, thereby greatly improving the anti-interference ability of the implantable continuous glucose monitoring system, especially the anti-interference ability of commonly used antipyretics such as acetaminophen.
  • electron mediators such as ferrocene derivatives, phthalocyanine salts, etc.
  • this application provides an implantable biosensor and a preparation method thereof.
  • an implantable biosensor including an insulating substrate, a plurality of wires, a working electrode, a reference electrode, and a reaction enzyme:
  • the plurality of conductors are located on the insulating substrate and are insulated from each other;
  • the working electrode is electrically connected to one of the plurality of conductors, the reference electrode is electrically connected to another of the plurality of conductors, and the working electrode is insulated from the reference electrode;
  • the reaction enzyme is arranged on the working electrode;
  • the working electrode includes an electron mediator type catalytic activation film
  • the electron mediator type catalytic activation film includes conductive ink and an electron mediator dispersed in it
  • the electron mediator type catalytic activation film does not contain a reaction enzyme, that is No enzymatic reaction occurs within the electron mediator catalytic activation membrane.
  • the working electrode is an electron mediator catalytic activation membrane, that is, the electron mediator catalytic activation membrane serves as the working electrode.
  • the electron mediator type catalytic activation film includes conductive ink and electron mediators dispersed therein.
  • the electron mediator type catalytic activation film does not contain reaction enzymes, that is, no enzymatic reaction occurs in the electron mediator type catalytic activation film.
  • the reference electrode has a known and constant electrode potential, which provides and maintains a fixed reference potential for the working electrode.
  • the reference electrode is a silver/silver chloride electrode.
  • the implantable biosensor further includes a counter electrode, the counter electrode is electrically connected to another of the plurality of wires, and the counter electrode is connected to the working electrode and the reference The electrodes are all insulated.
  • the counter electrode and the working electrode form a loop to make the current on the working electrode flow smoothly to ensure that the reaction on the working electrode occurs.
  • the implantable biosensor further includes an insulating layer covering the surfaces of the plurality of wires.
  • the electron mediator is at least one of ferrocene derivatives, cobalt phthalocyanine, copper phthalocyanine, iron phthalocyanine, osmium ligands and thionine.
  • the weight of the conductive ink is 100% by weight, and the electronic mediator content is 0.5-20% by weight.
  • the electron mediator type catalytic activation membrane undergoes a biocompatibility test according to the ISO10993 standard, and no electron mediator is detected in the leachable matter.
  • the implantable biosensor disclosed in the present application is leached in a polar solvent or a non-polar solvent for 72 hours (h) at 50 degrees Celsius (°C), and gas chromatography-mass spectrometry (Gas Chromatography) is used.
  • gas chromatography-mass spectrometry Gas chromatography-mass spectrometry
  • GC-MS Gas Chromatography-mass spectrometry
  • LC-MS Liquid Chromatography-Mass Spectrometry
  • ICP-MS Inductively Coupled Plasma-Mass Spectrometry
  • the reaction enzyme is glucose oxidase
  • the implantable biosensor is an implantable glucose sensor
  • the electron mediator is not included in the reaction enzyme.
  • the implantable biosensor disclosed in this application indirectly monitors the concentration of the analyte by detecting the content of the product generated by the analyte under enzyme catalysis through electrochemical methods.
  • the implantable biosensor is a hydrogen peroxide sensitive sensor.
  • the reference electrode is a silver/silver chloride electrode
  • the detection potential of hydrogen peroxide by the implantable biosensor is -200mV to +200mV.
  • the implantable biosensor further includes a diffusion-limiting membrane, the diffusion-limiting membrane is configured to cover the reaction enzyme, and the diffusion-limiting membrane is a non-oxygen diffusion-limiting membrane, that is, it allows oxygen to pass through A membrane that restricts the passage of other molecules of a certain type. Oxygen passing through the diffusion-limiting membrane can participate in or promote the enzymatic reaction of the analyte.
  • the diffusion-limiting membrane can control the glucose concentration reaching the reaction enzyme, so that the glucose concentration on both sides of the diffusion-limiting membrane can be maintained at a fixed concentration difference, so that the reaction enzyme can detect a higher glucose concentration before saturation; on the other hand, it can control Possible leachables in the reaction enzyme enter the organism; thirdly, the diffusion-limited membrane can allow oxygen to pass through.
  • the number of the working electrodes is multiple, and different working electrodes are electrically connected to different wires among the plurality of wires; accordingly, different reaction enzymes are provided on each working electrode, so that the reaction can be realized. The contents of different reactants were detected.
  • the conductor and the electrode electrically connected thereto are made of the same material, that is, one of the plurality of conductors is made of the same material as the working electrode, and a part of the conductor serves as the working electrode.
  • an electron mediator type catalytic activation film is placed (such as printed) on the surface of an insulating substrate, part of which can be used as a wire, and part of which can be used as a working electrode; another wire among the multiple wires has the same material as the reference electrode, and a part of the wire
  • a reference electrode for example, silver/silver chloride is placed (such as printed) on the surface of an insulating substrate, part of which can be used as a conductor, and part of which can be used as a reference electrode; another of the plurality of conductors is made of the same material as the counter electrode.
  • a part of the wire serves as a counter electrode.
  • metal copper is disposed (such as vapor deposition) on the surface of the insulating substrate.
  • a part of the wire can serve as a wire and a part of it can serve as a counter electrode. According to this solution, it is unnecessary to set up the working electrode, reference electrode and counter electrode again, and at the same time, the thickness of the sensor can be reduced.
  • a method for preparing the above-mentioned implantable biosensor in which the wires and the electrodes electrically connected thereto are made of different materials, including:
  • a plurality of wires insulated from each other are provided in the length direction of the insulating substrate;
  • a working electrode and a reference electrode that are insulated from each other are provided at any end of the plurality of conductors or at one end away from the through hole, and the working electrode and the reference electrode are respectively electrically connected to the plurality of conductors;
  • a pair of electrodes is provided, the counter electrode is electrically connected to the wire, and the counter electrode is insulated from both the working electrode and the reference electrode;
  • a plurality of conductive contacts that are insulated from each other are formed at the through hole or at one end away from the electrode, and the plurality of conductive contacts are electrically connected to a plurality of the conductors respectively;
  • the reaction enzyme is covered with a diffusion limiting membrane.
  • a method for preparing the above-mentioned implantable biosensor is also disclosed, wherein the wire and the electrode electrically connected thereto are made of the same material, including:
  • a plurality of conductors insulated from each other are arranged in the length direction of the insulating substrate, and any end of the plurality of conductors or an end far away from the through hole is provided as a working electrode and a reference electrode;
  • a pair of electrodes is provided, the counter electrode is electrically connected to the wire, and the counter electrode is insulated from both the working electrode and the reference electrode;
  • a plurality of conductive contacts that are insulated from each other are formed at the through hole or at one end away from the electrode, and the plurality of conductive contacts are electrically connected to a plurality of the conductors respectively;
  • the reaction enzyme is covered with a diffusion limiting membrane.
  • the conductors can be disposed on the surface of the insulating substrate through physical/chemical deposition methods, or printing/dispensing and other related technologies. Multiple conductors can be disposed on the surface of the insulating substrate by, for example, stacking, parallel arrangement, etc. Multiple conductors on the same side or both sides can be insulated by, for example, physical separation or by printing or coating an insulating layer.
  • Figure 1 is a schematic cross-sectional structural diagram of an implantable biosensor disclosed in an embodiment of the present application
  • Figure 2 is a schematic cross-sectional structural diagram of an implantable biosensor disclosed in another embodiment of the present application.
  • Figure 3 is a schematic cross-sectional structural diagram of an implantable biosensor disclosed in another embodiment of the present application.
  • Figure 4 is a schematic cross-sectional structural diagram of an implantable biosensor disclosed in another embodiment of the present application.
  • Figure 5 is a schematic top view of the implantable biosensor disclosed in Figure 4.
  • Figure 6 is a comparative cyclic voltammogram of an implanted biosensor disclosed in an embodiment of the present application and an implanted biosensor that does not contain an electron mediator in the working electrode;
  • Figure 7 is a glucose response test curve of an implantable biosensor disclosed in an embodiment of the present application.
  • Figure 8 is an anti-interference test curve of an implantable biosensor disclosed in an embodiment of the present application.
  • Figure 9 is a 14-day glucose concentration chart of the implantable biosensor disclosed in an embodiment of the present application.
  • conductive ink in this application refers to a conductive ink made of conductive materials (such as gold, silver, copper, carbon and other granular or flake materials) dispersed in a connecting material (such as resin and other materials) with conductive properties.
  • the paste mixture commonly known as paste ink, is cured by (ultraviolet) light or heat depending on the type of binder. It has a certain degree of conductivity and can be used for printing conductive points or conductive lines.
  • Gold-based conductive ink, silver-based conductive ink, copper-based conductive ink, carbon-based conductive ink, etc. have been commercialized and used for printed circuits, electrodes, plating bottom layers, keyboard contacts and other materials.
  • electron mediator in this application refers to a molecular conductor that transfers electrons generated during an enzyme reaction from the enzyme reaction center to the electrode surface, causing the electrode to produce corresponding current changes. It is also called an electron mediator or mediator. , electron transfer mediator, electron transfer mediator, etc.
  • first”, “second”, “third”, “fourth” and other similar terms used in this application refer to labels used to distinguish different units, and may not necessarily have a sequence according to their numerical labels. Meanings, for example, can in some cases be interchanged arbitrarily with each other.
  • silver/silver chloride is used as the reference electrode 113 to obtain test data.
  • an implantable biosensor 10 is disclosed.
  • the preparation steps of the implantable biosensor 10 are as follows:
  • strip-shaped insulating substrate 100 (strip-shaped) used in this application refers to the approximate shape of the implantable biosensor 10 after the preparation is completed.
  • the selected insulating substrate 100 is a strip-shaped substrate. shape, or after batch preparation of the implantable biosensor 10, the implanted biosensor 10 is die-cut, and the die-cut shape is a strip.
  • the material of the insulating substrate 100 can be, for example, polyurethane, nylon, polyethylene terephthalate (PET), etc.;
  • a first working electrode 111 and a reference electrode 113 are respectively provided on their surfaces. This end can also be called the sensing end of the implanted biosensor 10 ;
  • First The wire 101 is electrically connected to the first working electrode 111, and the second wire 102 is electrically connected to the reference electrode 113;
  • the diffusion limiting film 121 covers the first reaction enzyme 1110 with the diffusion limiting film 121 , for example, cover one end of the implantable biosensor 10 with the diffusion limiting film 121 .
  • the diffusion limiting film 121 may be covered only on the surface of the first reaction enzyme 1110 .
  • the above first conductor 101 can be formed by one of the mature processes in the related art, such as physical/chemical vapor deposition, dipping, screen printing, inkjet printing, scraping, contact dispensing, etc. , the second wire 102, the first working electrode 111, the reference electrode 113, the first reaction enzyme 1110, the insulating layer 105 and the diffusion limiting film 121, etc.
  • the first conductor 101 and the second conductor 102 may be formed by physical/chemical vapor deposition, for example, to form a single metal conductor, or conductive particles may be dispersed in an organic solvent or polymer and solidified to form a composite conductor.
  • the first reaction enzyme 1110 does not contain an electron mediator.
  • the first working electrode 111 is formed by dispersing the electron mediator in conductive ink and curing it.
  • the electron mediator can be at least one of, for example, ferrocene derivatives, cobalt phthalocyanine, copper phthalocyanine, iron phthalocyanine, osmium ligands and thionine, based on 100% by weight relative to the weight of the conductive ink.
  • the electron mediator content is 0.5 to 20% by weight.
  • the reference electrode 113 may be an electrode with a known and constant potential, such as a silver/silver chloride electrode.
  • the diffusion limiting film 121 may be, for example, a polyvinylpyridine-based polymer, polyvinylimidazole, polyacrylate, polyurethane, polyetherurethane, silicone, or a combination thereof.
  • first conductor 101 and the second conductor 102 may be disposed parallel to each other on an insulating layer.
  • insulation between them can be achieved by, for example, physical separation or by printing or coating insulating walls.
  • an implantable biosensor 10 in which the first wire 101 and the first working electrode 111 are made of the same material, and the second wire 102 and the reference electrode 113 are made of the same material.
  • the first wire 101 is an electron mediator type catalytic activation film (conductive ink containing an electron mediator, the content of the electron mediator is 0.5 to 20% by weight of the conductive ink, and does not include the first reaction enzyme 1110 or the second reaction enzyme 1120 ), the second conductor 102 is silver/silver chloride.
  • one end of the implanted biosensor 10 is covered with a diffusion limiting membrane 121 .
  • an implantable biosensor 10 is disclosed.
  • a through hole 116 is opened on one end of the insulating substrate 100 and runs through both sides.
  • the second wire 102 provided on one side of the insulating substrate 100 passes through the through hole 116.
  • a conductive contact 115 is formed on one side; by arranging the structure of the insulating layer 105, the conductive contact 115 is also formed on the first conductor 101, and the remaining structure and preparation method are similar to Figure 2.
  • the material of the conductive contact 115 may be the same as or different from the first conductor 101 and the second conductor 102 respectively.
  • one end of the implanted biosensor 10 is covered with a diffusion limiting membrane 121 .
  • the conductive contact 115 may be disposed through the through hole 116 and be electrically connected to the second conductor 102 .
  • an implantable biosensor 10 including: an insulating substrate 100, a plurality of wires insulated from each other provided on the insulating substrate 100, and a plurality of wires provided on the same side of the insulating substrate 100 through a through hole 116 and connected to a plurality of wires.
  • the plurality of wires include a first wire 101 (electron mediator type catalytic activation film), a second wire 102 (electron mediator type catalytic activation film), a third wire 103 (silver/silver chloride), and a fourth wire 104
  • the material is not limited, as long as it is conductive and corrosion-resistant
  • multiple reaction enzymes include a first reaction enzyme 1110 arranged on the surface of the first wire 101 and a second reaction enzyme arranged on the surface of the second wire 102 Enzyme 1120, in which the part in contact between the first wire 101 and the first reaction enzyme 1110 serves as the first working electrode 111, the part in contact between the second wire 102 and the second reaction enzyme 1120 serves as the second working electrode 112, and the exposed part of the third wire 103 As the reference electrode 113, the exposed portion of the fourth wire 104 serves as the counter electrode 114.
  • the remaining structures and preparation methods are similar to Figure 3.
  • more wires may be included, as well as reaction enzymes disposed on the surface of the wires (none of which contain electron mediators); in some other embodiments, multiple conductive contacts 115 may be selectively disposed on On both sides of the insulating substrate 100, the number of conductive contacts 115 on both sides can be the same or different, and the positions can be symmetrical or asymmetrical to each other; in some other embodiments, one end of the implanted biosensor 10 is covered with a diffusion limiting film 121 .
  • this application refers to the structure of the implantable biosensor 10 shown in Figure 2 of the present application (for example, the first wire 101 is an electron mediator type catalytic activation film, in which the electron mediator is an osmium ligand, and the content is 12% by weight of the conductive ink, the sensing end of the implanted biosensor 10 is covered with a diffusion limiting film 121), the legend "Comparative Example” is that the working electrode does not contain an electron mediator, and the rest is similar to the “this application”.
  • the experimental conditions were room temperature, and the solution used was Glucose-Phosphate-Buffered Saline (G-PBS) with a glucose concentration of 1 mmol per liter (mmol/L).
  • G-PBS Glucose-Phosphate-Buffered Saline
  • the first wire 101 is an electron mediator type catalytic activation film, in which the electron mediator is an osmium complex.
  • the content is 12% by weight of the conductive ink.
  • the sensing end of the implantable biosensor 10 is covered with a diffusion limiting film 121).
  • a redox peak appears at a lower potential, and the peak potential is about -150mV.
  • the working potential of the disclosed implantable biosensor can be a negative potential; in the comparative example, the working electrode does not contain an electronic mediator, within the preset voltage range (-0.5 volts (V) ⁇ +0.1 volts (V)) There is no redox peak, which means that the working electrode of the sensor in this solution has no catalytic activity and cannot react under this condition.
  • the implantable biosensor disclosed in the present application (the structure of the implantable biosensor 10 shown in Figure 2 , for example, the first wire 101 is an electron mediator type catalytic activation film, in which the electron mediator is an osmium ligand, and the content is 12% by weight of the conductive ink.
  • the sensing end of the implanted biosensor 10 is covered with a diffusion limiting film 121) with Better glucose response test performance, linear correlation coefficient R2 is greater than 0.99.
  • the implantable biosensor disclosed in the present application (the implanted biosensor shown in Figure 2 10 structure, for example, the first wire 101 is an electron mediator type catalytic activation film, in which the electron mediator is an osmium ligand with a content of 12% by weight of the conductive ink.
  • the sensing end of the implantable biosensor 10 is covered with a diffusion limiting film 121 ) anti-interference performance.
  • the solution is glucose buffer solution (G-PBS) with a glucose concentration of 5 mmol/L.
  • G-PBS glucose buffer solution
  • the time point and sequence of adding interfering substances are: after testing in 5mmol/L glucose buffer (G-PBS) for 600 seconds (s), add 1mmol/L acetaminophen, test for 180s, and then test again. Add 0.1mmol/L ascorbic acid and test for 180s, then add 0.1mmol/L uric acid and test for 180s.
  • Figure 9 shows the structure of the implantable biosensor of the present application (the implantable biosensor 10 shown in Figure 2.
  • the first wire 101 is an electron mediator type catalytic activation membrane, in which the electron mediator is an osmium ligand, and the content is 12% by weight of the conductive ink, the sensing end of the implanted biosensor 10 is covered with a diffusion limiting film 121), and the glucose concentration chart was tested for 14 days. The chart results show that the 14-day full cycle wearing effect is good.
  • the electron mediator of this application is dispersed in the conductive ink.
  • the connecting material (such as resin and other materials) in the conductive ink forms a good package for the electron mediator, which has better stability and is not prone to migration of the electron mediator. .
  • the implantable biosensor 10 has better electron transfer effect during the working process;
  • reaction enzyme In the related art, an electronic mediator is introduced into the reaction enzyme, and the enzyme solution is conductive during configuration.
  • special attention needs to be paid to the mutual conduction between wires or electrodes; while the implantable device disclosed in this application
  • the reaction enzyme in the biosensor 10 does not contain electron mediators and is not conductive by itself, so the setting of the reaction enzyme is simpler. For example, using coating processes such as dipping and pulling, the yield, efficiency and qualification rate can be greatly improved;
  • the solution disclosed in this application is a biosensor with lower reaction potential and strong anti-interference ability, which is developed based on the first-generation biosensing technology. It can also overcome the risks of low enzyme activity and migration of electron mediators in second-generation biosensing technology.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Emergency Medicine (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本申请提供了一种植入式生物传感器及其制备方法,其中植入式生物传感器包括绝缘基板、多个导线、与多个导线中的不同导线电连接并相互绝缘设置的工作电极和参比电极、以及设置在工作电极上的反应酶。其中工作电极包括电子介体型催化活化膜,其包括导电油墨和分散于导电油墨中的电子介体,该电子介体型催化活化膜不包含所述反应酶。本申请还公开了上述植入式生物传感器的制备方法。

Description

植入式生物传感器及其制备方法
本公开要求在2022年9月5日提交中国专利局、申请号为202211078366.1的中国专利的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及生物传感器领域,例如涉及一种植入式生物传感器及其制备方法。
背景技术
基于酶的电化学传感器,是将分析物在对应酶催化作用下的生化反应信号转换为可测量的物理信号,例如电信号,而电信号的大小或强弱依赖于分析物的浓度,从而实现对分析物浓度的测量,有时也称该类传感器为生物传感器。
这种生物传感器广泛用于临床,环境,农业和生物技术应用中的分析物检测。可以在临床中测定人体液中测量的分析物包括例如葡萄糖,乳酸,胆固醇,胆红素和氨基酸等。在诸如人体血液或组织间液中分析物的检测对于许多疾病的诊断和监测很重要。
由于许多重要生物分析物的生化反应都涉及电子转移(例如,葡萄糖与葡萄糖氧化酶的反应),通过电信号检测分析物浓度的生物传感器,例如安培型(电流型)生物传感器,因此引起了研究者的特别关注。在安培型葡萄糖生物传感器的示例中,葡萄糖通过葡萄糖氧化酶催化的反应被体液中的氧气氧化,该反应生成葡糖酸内酯和过氧化氢,然后过氧化氢被电氧化形成与体液中的葡萄糖浓度相关的电信号。
基于上述生物传感器技术的发展,以葡萄糖浓度检测领域为例,形成了至少两代生物传感技术。
第一代生物传感技术,是通过电化学方法检测葡萄糖在葡萄糖氧化酶催化氧化过程中生成的过氧化氢来间接地对葡萄糖进行监测。
由于电化学方法检测过氧化氢对电极的要求非常苛刻,只有铂或铂合金等极少数几种材料能用于这类葡萄糖生物传感器的制作,这就大大地增加了植入式持续葡萄糖监测系统的传感器的成本。
另外,过氧化氢的电化学检测要求较高的检测电位,例如,以铂或铂合金为基材的生物传感器,对过氧化氢的检测电位为500毫伏(mV)~700毫伏(mV), 如此高的检测电位大大地降低了植入式生物传感器的抗干扰能力,特别是对常用的退烧药如乙酰氨基酚的抗干扰能力。
第二代生物传感技术,是通过在葡萄糖生物传感器中引入氧化还原媒介体来实现对葡萄糖进行直接的电化学检测。与普通的蛋白质分子不同,葡萄糖氧化酶的分子量较大(约160千道尔顿(KDa)),其催化活性中心的立体结构非常复杂而且位于葡萄糖氧化酶的内部,并被各种肽链深深地包裹着,因此,葡萄糖氧化酶不能直接与电极进行电子交换。
已有研究学者发现在葡萄糖生物传感器的酶层中引入电子介体(如二茂铁衍生物、酞菁盐等),葡萄糖氧化酶可以通过这些电子介体实现与电极进行电子交换,不需要也不会生成过氧化氢。基于此,葡萄糖的检测可以在较低的电位下实现,从而大大地提高了植入式持续葡萄糖监测系统的抗干扰能力,特别是对常用的退烧药如乙酰氨基酚的抗干扰能力。
由于这类葡萄糖监测系统是通过电子介体对葡萄糖进行直接的电化学检测,其灵敏度也得到了显著的改善。
在酶层中引入电子介体,会导致酶层的整体稳定性比较差。受限于对酶性能的影响,一方面,交联(也即利用连接分子将酶相互连在一起形成高分子)可能导致酶活性的降低;另一方面,不可以在酶层中添加油性的耐水性树脂材料,所以对电子的固定能力比较差;此外,由于电子介体大多数为小分子物质,存在从植入式生物传感器中迁移渗出的风险,给植入式生物传感器的性能带来相当多的不确定性。
发明内容
针对上述相关植入式生物传感器存在的问题之一,本申请提供了一种植入式生物传感器及其制备方法。
根据本申请公开的第一方面,提供了一种植入式生物传感器,包括绝缘基板、多个导线、工作电极、参比电极、以及反应酶:
所述多个导线位于所述绝缘基板上且彼此绝缘;
所述工作电极与所述多个导线中的一导线电连接,所述参比电极与所述多个导线中的另一导线电连接,所述工作电极与所述参比电极绝缘设置;
所述反应酶设置在所述工作电极上;
其中,工作电极包括电子介体型催化活化膜,电子介体型催化活化膜包括导电油墨和分散于其中的电子介体,电子介体型催化活化膜不包含反应酶,即 在电子介体型催化活化膜内不发生酶促反应。
在一实施例中,工作电极为电子介体型催化活化膜,即电子介体型催化活化膜作为工作电极。电子介体型催化活化膜包括导电油墨和分散于其中的电子介体,电子介体型催化活化膜不包含反应酶,即在电子介体型催化活化膜内不发生酶促反应。
其中,参比电极具有已知和恒定的电极电位,为工作电极提供并保持一个固定的参比电势,例如参比电极为银/氯化银电极。
在一实施例中,所述植入式生物传感器还包括对电极,所述对电极与所述多个导线中的又一导线电连接,所述对电极与所述工作电极及所述参比电极均绝缘设置。
其中,对电极与工作电极组成回路,使工作电极上电流畅通,以保证在工作电极上的反应发生。
在一实施例中,所述植入式生物传感器还包括覆盖多个导线表面的绝缘层。
在一实施例中,所述电子介体为二茂铁衍生物、酞菁钴、酞菁铜、酞菁铁、锇配体和硫堇中的至少一种。
在一实施例中,所述导电油墨的重量为100重量%计,电子介体含量为0.5~20重量%。
在一实施例中,电子介体型催化活化膜根据ISO10993标准进行生物相容性测试,在可沥滤物中未检出电子介体。示例性的,在50摄氏度(℃)下,将本申请公开的植入式生物传感器在极性溶剂或者非极性溶剂中浸提72小时(h),应用气相色谱-质谱联用法(Gas Chromatography-Mass Spectrometry,GC-MS)、液相色谱-质谱联用法(Liquid Chromatography-Mass Spectrometry,LC-MS)、电感耦合等离子体-质谱联用法(Inductively Coupled Plasma-Mass Spectrometry,ICP-MS)等分析方法进行检测,在结果中未检出电子介体。
在一实施例中,所述反应酶为葡萄糖氧化酶,所述植入式生物传感器为植入式葡萄糖传感器。
在一实施例中,所述反应酶中不包含所述电子介体。本申请公开的植入式生物传感器是通过电化学方法检测分析物在酶催化作用下生成的产物含量来间接地对分析物浓度进行监测。
在一实施例中,所述植入式生物传感器为过氧化氢敏感型传感器。
在一实施例中,所述参比电极为银/氯化银电极,所述植入式生物传感器对过氧化氢的检测电位为-200mV~+200mV。
在一实施例中,所述植入式生物传感器还包括扩散限制膜,所述扩散限制膜设置为覆盖所述反应酶,所述扩散限制膜为非氧扩散限制性膜,即允许氧透过并限制其他某一类分子透过的膜。透过扩散限制膜的氧可以参与或促进分析物在酶催化下的反应。扩散限制膜一方面可以控制到达反应酶的葡萄糖浓度,使扩散限制膜的两侧葡萄糖浓度维持在一个固定浓度差,进而使反应酶在饱和之前能够检测较高的葡萄糖浓度;另一方面可以控制反应酶中可能存在的溶出物进入生物体;第三方面,扩散限制膜可以允许氧透过。
在一实施例中,所述工作电极的数量为多个,不同工作电极与所述多个导线中的不同导线电连接;相应地,每个工作电极上设置不同的反应酶,这样可以实现对不同反应物的含量进行检测。
在一实施例中,导线和与之电连接的电极材质相同,即多个导线中的一个导线与工作电极材质相同,该导线的一部分作为工作电极。例如,将电子介体型催化活化膜设置(如印刷)在绝缘基板表面,其一部分可作为导线,一部分可作为工作电极;多个导线中的另一个导线与参比电极材质相同,该导线的一部分作为参比电极,例如,将银/氯化银设置(如印刷)在绝缘基板表面,其一部分可作为导线,一部分可作为参比电极;多个导线中的另一个导线与对电极材质相同,该导线的一部分作为对电极,例如,将金属铜设置(如气相沉积)在绝缘基板表面,其一部分可作为导线,一部分可作为对电极。依据该方案,可以免去再次设置工作电极、参比电极和对电极,同时还能减小传感器的厚度。
根据本申请公开的第二方面,公开了一种上述植入式生物传感器的制备方法,其中导线和与之电连接的电极材质不同,包括:
准备一条形绝缘基板,在所述绝缘基板一端开设贯穿两侧的通孔;
在所述绝缘基板长度方向上设置彼此绝缘的多个导线;
在多个所述导线任意一端或远离所述通孔的一端设置彼此绝缘的工作电极和参比电极,所述工作电极和所述参比电极分别与多个所述导线电连接;
在所述工作电极上设置反应酶;
设置一对电极,所述对电极与所述导线电连接,所述对电极与所述工作电极及所述参比电极均绝缘;
在所述通孔处或远离电极一端形成相互间绝缘的多个导电触点,多个所述导电触点分别电连接多个所述导线;
对多个导线的表面进行绝缘处理;
在所述反应酶上覆盖扩散限制膜。
根据本申请公开的第三方面,还公开了一种上述植入式生物传感器的制备方法,其中导线和与之电连接的电极材质相同,包括:
准备一条形绝缘基板,在所述绝缘基板一端开设贯穿两侧的通孔;
在所述绝缘基板长度方向上设置彼此绝缘的多个导线,多个所述导线任意一端或远离所述通孔的一端被设置为工作电极和参比电极;
在所述工作电极上设置反应酶;
设置一对电极,所述对电极与所述导线电连接,所述对电极与所述工作电极及所述参比电极均绝缘;
在所述通孔处或远离电极一端形成相互间绝缘的多个导电触点,多个所述导电触点分别电连接多个所述导线;
对多个导线的表面进行绝缘处理;
在所述反应酶上覆盖扩散限制膜。
在一实施例中,导线可以通过物理/化学沉积法、或印刷/点胶等相关技术中常规的方式设置在绝缘基板表面;多个导线可以采用例如层叠、平行设置等方式设置在绝缘基板的同一侧或两侧,多个导线之间可以采用例如物理分离或采用印刷、涂布绝缘层的方式实现绝缘。
附图说明
为便于本领域技术人员理解本申请,提供如下附图。
图1为本申请一实施例公开的植入式生物传感器剖面结构示意图;
图2为本申请另一实施例公开的植入式生物传感器剖面结构示意图;
图3为本申请另一实施例公开的植入式生物传感器剖面结构示意图;
图4为本申请另一实施例公开的植入式生物传感器剖面结构示意图;
图5为图4公开的植入式生物传感器的俯视示意图;
图6为本申请一实施例公开的植入式生物传感器与工作电极中不含有电子介体的植入式生物传感器的对比循环伏安图;
图7为本申请一实施例公开的植入式生物传感器的葡萄糖响应测试曲线;
图8为本申请一实施例公开的植入式生物传感器的抗干扰测试曲线;
图9为本申请一实施例公开的植入式生物传感器的佩戴测试14天葡萄糖浓度图谱。
附图标记:
10、植入式生物传感器;100、绝缘基板;101、第一导线;102、第二导线;
103、第三导线;104、第四导线;105、绝缘层;111、第一工作电极;1110、第一反应酶;112、第二工作电极;1120、第二反应酶;113、参比电极;114、对电极;115、导电触点;116、通孔;121、扩散限制膜。
具体实施方式
本申请中的术语“导电油墨”,是指用导电材料(例如金、银、铜和碳等颗粒或片状材料等)分散在连结料(例如树脂等材料)中制成的具有导电性能的糊状混合物,俗称糊剂油墨,依据连结料的不同种类通过(紫外)光或热进行固化,具有一定程度导电性质,可作为印刷导电点或导电线路用。金系导电油墨、银系导电油墨、铜系导电油墨、碳系导电油墨等已实现商业化销售,用于印刷电路、电极、电镀底层、键盘接点等材料。
本申请中的术语“电子介体”,是指将酶反应过程中产生的电子从酶反应中心转移到电极表面,使电极产生相应电流变化的分子导电体,也称为电子媒介体、媒介体、电子传递介体、电子转移媒介体等。
此外,本申请使用的术语“第一”、“第二”、“第三”、“第四”等类似用语,是指用于区分不同单元的标签,并且根据它们的数字标号可不一定具有顺序含义,例如,在一些情况下可以相互间任意调换。
在本申请的各实施例中,涉及到对植入式生物传感器10性能测试的,均是以银/氯化银作为参比电极113来获得测试数据的。
参见图1,公开了一种植入式生物传感器10,植入式生物传感器10的制备步骤如下:
(1)准备一条形绝缘基板100;本申请使用的术语“条形”,指的是在植入式生物传感器10制备完成后大致的形状为条形,例如,所选的绝缘基板100为条形,或者,在批量制备完植入式生物传感器10后经模切,模切的形状为条形。绝缘基板100的材质可以采用例如聚氨酯、尼龙、聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET)等;
(2)在绝缘基板100的两侧分别设置两根彼此绝缘的导线:第一导线101和第二导线102;
(3)在第一导线101和第二导线102的同一端,在其表面上分别设置第一工作电极111和参比电极113,该端也可称为植入式生物传感器10的感测端;第一 导线101与第一工作电极111电连接,第二导线102与参比电极113电连接;
(4)在第一工作电极111的表面设置第一反应酶1110;
(5)在第一导线101和第二导线102表面未设置电极的部分区域,进行绝缘处理,例如,设置绝缘层105;在第一导线101和第二导线102远离第一工作电极111或参比电极113的一端,保留部分区域未进行绝缘处理,该区域可作为与其他电子设备电连接的导电触点115,该端也可称为植入式生物传感器10的电连接端;
(6)在第一反应酶1110上覆盖扩散限制膜121,例如,在植入式生物传感器10的一端覆盖扩散限制膜121。在其他一些实施例中,可以仅在第一反应酶1110的表面覆盖扩散限制膜121。
在一实施例中,可以通过相关技术中已经成熟的工艺,例如物理/化学气相沉积、浸渍、丝网印刷、喷墨打印、刮涂、接触点胶等手段之一形成上述中第一导线101、第二导线102、第一工作电极111、参比电极113、第一反应酶1110、绝缘层105和扩散限制膜121等。
第一导线101和第二导线102可以采用例如物理/化学气相沉积形成单一金属导线,或将导电颗粒分散于有机溶剂或聚合物中经固化而形成复合导线。第一反应酶1110中不包含电子介体。
第一工作电极111为将电子介体分散于导电油墨中经固化而成,依据导电油墨中所采用的树脂种类,可以采用例如紫外固化、热固化等方式。其中,电子介体可以采用例如二茂铁衍生物、酞菁钴、酞菁铜、酞菁铁、锇配体和硫堇中的至少一种,相对于导电油墨的重量为100重量%计,电子介体含量为0.5~20重量%。
参比电极113可以选用具有已知和恒定电位的电极,例如银/氯化银电极。
扩散限制膜121可以采用例如基于聚乙烯基吡啶的聚合物、聚乙烯基咪唑、聚丙烯酸酯、聚氨酯、聚醚氨基甲酸酯、硅树脂或它们的组合。
尽管图1中以层叠的方式示出第一导线101和第二导线102的相对位置,在其他一些实施例中,第一导线101和第二导线102可以采用例如相互间平行的方式设置在绝缘基板100的同一侧,他们之间可以采用例如物理分离或采用印刷、涂布绝缘壁的方式实现绝缘。
参见图2,公开了一种植入式生物传感器10,其中第一导线101与第一工作电极111的材质相同,第二导线102与参比电极113的材质相同。例如,第一导线101为电子介体型催化活化膜(含有电子介体的导电油墨,电子介体的含量为导电油墨的0.5~20重量%,不包含第一反应酶1110或第二反应酶1120),第二导线 102为银/氯化银。
这样,可以免去设置第一工作电极111与参比电极113的步骤,其余结构和制备方法与图1类似。在其他一些实施例中,在植入式生物传感器10的一端覆盖有扩散限制膜121。
参见图3,公开了一种植入式生物传感器10,在绝缘基板100一端开设贯穿两侧的通孔116,设置于绝缘基板100一侧的第二导线102通过通孔116,在绝缘基板100另一侧形成导电触点115;通过设置绝缘层105的结构,在第一导线101上也形成导电触点115,其余结构和制备方法与图2类似。导电触点115的材质可以分别与第一导线101、第二导线102相同或不同。在其他一些实施例中,在植入式生物传感器10的一端覆盖有扩散限制膜121。在其他一些实施例中,可以将导电触点115设置为穿过通孔116,并与第二导线102电连接。
参见图4和图5,公开了一种植入式生物传感器10,包括:绝缘基板100,设置在绝缘基板100上彼此绝缘的多个导线,设置在绝缘基板100的同一侧通过通孔116与多个导线电连接的多个导电触点115,设置在多个导线之间及表面以使其绝缘隔开及绝缘保护的绝缘层105,和设置在多个导线表面的多个反应酶,多个反应酶中均不包含电子介体。
其中,多个导线包括第一导线101(电子介体型催化活化膜)、第二导线102(电子介体型催化活化膜)、第三导线103(银/氯化银)、和第四导线104(材质不限,能导电耐腐蚀即可);多个反应酶(均不包含电子介体)包含设置在第一导线101表面的第一反应酶1110、设置在第二导线102表面的第二反应酶1120,其中,第一导线101与第一反应酶1110接触部分作为第一工作电极111,第二导线102与第二反应酶1120接触部分作为第二工作电极112,第三导线103的外露部分作为参比电极113,第四导线104的外露部分作为对电极114。其余结构和制备方法与图3类似。
在其他一些实施例中,可以包含更多的导线,以及设置在导线表面的反应酶(均不包含电子介体);在其他一些实施例中,多个导电触点115可以选择性地设置在绝缘基板100的两侧,两侧导电触点115的数量可以相同或不同,位置可以相互对称或不对称;在其他一些实施例中,在植入式生物传感器10的一端覆盖有扩散限制膜121。
参见图6,示出本申请公开的方案与工作电极中不含有电子介体的植入式生物传感器的对比循环伏安图。
其中,图例“本申请”是具有本申请中图2所示的植入式生物传感器10结构(例如第一导线101为电子介体型催化活化膜,其中电子介体为锇配体,含量为 导电油墨的12重量%,植入式生物传感器10的感测端覆盖有扩散限制膜121),图例“对比例”是工作电极中不含有电子介体、其余与“本申请”类似。
实验条件为室温,采用的溶液为葡萄糖浓度为1毫摩尔每升(mmol/L)的葡萄糖缓冲液(Glucose-Phosphate-Buffered Saline,G-PBS)。
从图6中可知,采用本申请公开的植入式生物传感器(图2所示的植入式生物传感器结构10,例如第一导线101为电子介体型催化活化膜,其中电子介体为锇配体,含量为导电油墨的12重量%,植入式生物传感器10的感测端覆盖有扩散限制膜121)在较低的电位就出现了氧化还原峰,峰值电位是-150mV左右,因此本申请所公开植入式生物传感器的工作电位可以为负电位;而作为对比例中的工作电极中不含有电子介体的方案中,在预设电压范围内(-0.5伏特(V)~+0.1伏特(V))没有出现氧化还原峰,也即说明该方案中传感器工作电极没有催化活性,该条件下不可以反应。
参见图7,示出了在-100mV的工作电位下的葡萄糖响应测试曲线,可见,在该电位下,采用本申请公开的植入式生物传感器(图2所示的植入式生物传感器10结构,例如第一导线101为电子介体型催化活化膜,其中电子介体为锇配体,含量为导电油墨的12重量%,植入式生物传感器10的感测端覆盖有扩散限制膜121)具有较好的葡萄糖响应测试性能,线性相关系数R2大于0.99。
参见图8,示出了在-100mV的工作电位下,向葡萄糖缓冲液(G-PBS)中加入干扰物质时,本申请公开的植入式生物传感器(图2所示的植入式生物传感器10结构,例如第一导线101为电子介体型催化活化膜,其中电子介体为锇配体,含量为导电油墨的12重量%,植入式生物传感器10的感测端覆盖有扩散限制膜121)的抗干扰性能。
其中,溶液为葡萄糖浓度为5mmol/L的葡萄糖缓冲液(G-PBS)。示例性的,干扰物质加入时间点和顺序为:在5mmol/L的葡萄糖缓冲液(G-PBS)中测试600秒(s)后,加入1mmol/L的对乙酰氨基酚,测试180s,然后再加入0.1mmol/L的抗坏血酸,测试180s,然后再加入0.1mmol/L尿酸,测试180s。
从测试曲线可见,加入干扰物质后对本申请公开的植入式生物传感器的灵敏度响应没有什么影响,在该电位下(-100mV),干扰物质例如乙酰氨基酚,抗坏血酸,尿酸都不会对传感器的测试产生影响。
图9示出了本申请植入式生物传感器(图2所示的植入式生物传感器10结构,例如第一导线101为电子介体型催化活化膜,其中电子介体为锇配体,含量为导电油墨的12重量%,植入式生物传感器10的感测端覆盖有扩散限制膜121)的佩戴测试14天葡萄糖浓度图谱,图谱结果表明14天全周期佩戴效果良好。
与相关技术相比,本申请所公开的方案至少具有如下优点之一:
(1)本申请电子介体分散于导电油墨中,导电油墨中的连结料(例如树脂等材料)对电子介体形成很好的包裹,其稳定性更好,不容易发生电子介体的迁移。此外,得益于导电油墨中导电材料的参与,其导电性更好,植入式生物传感器10在工作过程中电子传递效果更好;
(2)相关技术中在反应酶中引入电子介体,在配置时酶溶液是导电的,设置反应酶时需要特别注意导线或电极之间相互导通的问题;而本申请所公开植入式生物传感器10中的反应酶不包含电子介体,本身不导电,所以反应酶的设置更加简单,例如采用浸渍提拉等涂布工艺,可以大大提高产率,效率和合格率;
(3)相关技术中在反应酶中引入电子介体,需要特别关注氧气的影响,比如当反应酶为葡萄糖氧化酶时,检测介质中的氧气和电子介体会形成竞争反应,氧气成为电子介体的一个干扰物,氧气的存在会减少降低电子介体的传递活性。为了解决氧气的干扰,一方面需要通过外膜来限制氧气的进入,另一方面需要提高电子介体的催化能力,制备工艺复杂。而本申请所公开植入式生物传感器10,同样当反应酶为葡萄糖氧化酶时,氧气是酶促反应的参与物质,已有成熟的外膜系统可以控制葡萄糖的渗透而不限制氧气的渗透,制备技术及工艺更加简单;
(4)有别于相关的第二代生物传感技术,本申请公开的方案是在第一代生物传感技术基础上发展的具有较低反应电位的生物传感器、抗干扰物能力强,同时还能克服第二代生物传感技术存在的酶活性低、电子介体迁移等风险。

Claims (14)

  1. 一种植入式生物传感器(10),所述植入式生物传感器(10)包括绝缘基板(100)、多个导线、工作电极、参比电极(113)、以及反应酶;
    所述多个导线位于所述绝缘基板(100)上且彼此绝缘;
    所述工作电极与所述多个导线中的一导线电连接,所述参比电极(113)与所述多个导线中的另一导线电连接,所述工作电极与所述参比电极(113)绝缘设置;
    所述反应酶设置在所述工作电极上;
    其中,所述工作电极包括电子介体型催化活化膜,所述电子介体型催化活化膜包括导电油墨和分散于所述导电油墨中的电子介体,所述电子介体型催化活化膜不包含所述反应酶。
  2. 根据权利要求1所述的植入式生物传感器(10),其中,所述电子介体为二茂铁衍生物、酞菁钴、酞菁铜、酞菁铁、锇配体和硫堇中的至少一种。
  3. 根据权利要求1所述的植入式生物传感器(10),其中,所述导电油墨的重量为100重量%计,所述导电油墨中的电子介体含量为0.5~20重量%。
  4. 根据权利要求1所述的植入式生物传感器(10),其中,所述电子介体型催化活化膜根据ISO10993标准进行生物相容性测试,在可沥滤物中未检出所述电子介体。
  5. 根据权利要求1所述的植入式生物传感器(10),其中,所述反应酶为葡萄糖氧化酶。
  6. 根据权利要求1所述的植入式生物传感器(10),其中,所述反应酶中不包含所述电子介体。
  7. 根据权利要求1所述的植入式生物传感器(10),其中,所述植入式生物传感器(10)为过氧化氢敏感型传感器。
  8. 根据权利要求7所述的植入式生物传感器(10),其中,所述参比电极(113)为银/氯化银电极,所述植入式生物传感器(10)对过氧化氢的检测电位为-200毫伏~+200毫伏。
  9. 根据权利要求1所述的植入式生物传感器(10),所述植入式生物传感器(10)还包括扩散限制膜(121),所述扩散限制膜(121)设置为覆盖所述反应酶,所述扩散限制膜(121)为非氧扩散性限制膜。
  10. 根据权利要求1所述的植入式生物传感器(10),其中,所述工作电极的数量为多个,不同工作电极与所述多个导线中的不同导线电连接,每个所述工作电极上对应设置有不同的反应酶。
  11. 根据权利要求1所述的植入式生物传感器(10),所述植入式生物传感器(10)还包括对电极(114),所述对电极(114)与所述多个导线中的又一导线电连接,所述对电极(114)与所述工作电极及所述参比电极(113)均绝缘设置。
  12. 根据权利要求1所述的植入式生物传感器(10),其中,所述导线和与所述导线电连接的电极材质相同。
  13. 一种如权利要求1-11之一所述的植入式生物传感器(10)的制备方法,其中导线和与之电连接的电极材质不同,包括:
    准备一条形绝缘基板(100),在所述绝缘基板(100)一端开设贯穿两侧的通孔(116);
    在所述绝缘基板(100)长度方向上设置彼此绝缘的多个导线;
    在多个所述导线任意一端或远离所述通孔(116)的一端设置彼此绝缘的工作电极和参比电极(113),所述工作电极和所述参比电极(113)分别与多个所述导线电连接;
    在所述工作电极上设置反应酶;
    设置一对电极(114),所述对电极(114)与所述多个导线中的一导线电连接,所述对电极(114)与所述工作电极及所述参比电极(113)均绝缘;
    在所述通孔(116)处或远离电极一端形成相互间绝缘的多个导电触点(115),多个所述导电触点(115)分别电连接多个所述导线;
    对多个所述导线的表面进行绝缘处理;
    在所述反应酶上覆盖扩散限制膜(121)。
  14. 一种如权利要求12所述的植入式生物传感器(10)的制备方法,包括:
    准备一条形绝缘基板(100),在所述绝缘基板(100)一端开设贯穿两侧的通孔(116);
    在所述绝缘基板(100)长度方向上设置彼此绝缘的多个导线,多个所述导线任意一端或远离所述通孔(116)的一端被设置为工作电极和参比电极(113);
    在所述工作电极上设置反应酶;
    设置一对电极(114),所述对电极(114)与所述多个导线中的一导线电连接,所述对电极(114)与所述工作电极及所述参比电极(113)均绝缘;
    在所述通孔(116)处或远离电极一端形成相互间绝缘的多个导电触点(115),多个所述导电触点(115)分别电连接多个所述导线;
    对多个所述导线的表面进行绝缘处理;
    在所述反应酶上覆盖扩散限制膜(121)。
PCT/CN2023/116505 2022-09-05 2023-09-01 植入式生物传感器及其制备方法 WO2024051595A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211078366.1A CN115474929A (zh) 2022-09-05 2022-09-05 植入式生物传感器及制备方法
CN202211078366.1 2022-09-05

Publications (1)

Publication Number Publication Date
WO2024051595A1 true WO2024051595A1 (zh) 2024-03-14

Family

ID=84423943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116505 WO2024051595A1 (zh) 2022-09-05 2023-09-01 植入式生物传感器及其制备方法

Country Status (2)

Country Link
CN (1) CN115474929A (zh)
WO (1) WO2024051595A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115474929A (zh) * 2022-09-05 2022-12-16 苏州百孝医疗科技有限公司 植入式生物传感器及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0127958A2 (en) * 1983-05-05 1984-12-12 MediSense, Inc. Sensor electrode systems
US20030146110A1 (en) * 2002-02-01 2003-08-07 Karinka Shirdhara Alva Electrochemical biosensor strip for analysis of liquid samples
JP2003302370A (ja) * 2002-04-05 2003-10-24 Toyobo Co Ltd バイオセンサ
CN1563969A (zh) * 2004-03-22 2005-01-12 南开大学 生物传感器用的生物酶电极及其制备方法
CN108303454A (zh) * 2018-02-23 2018-07-20 南京鱼跃软件技术有限公司 一种尿酸电化学传感器
CN114767105A (zh) * 2022-06-22 2022-07-22 苏州百孝医疗科技有限公司 植入式电化学生物传感器、测试方法及植入式医疗器械
CN115474929A (zh) * 2022-09-05 2022-12-16 苏州百孝医疗科技有限公司 植入式生物传感器及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0127958A2 (en) * 1983-05-05 1984-12-12 MediSense, Inc. Sensor electrode systems
US20030146110A1 (en) * 2002-02-01 2003-08-07 Karinka Shirdhara Alva Electrochemical biosensor strip for analysis of liquid samples
JP2003302370A (ja) * 2002-04-05 2003-10-24 Toyobo Co Ltd バイオセンサ
CN1563969A (zh) * 2004-03-22 2005-01-12 南开大学 生物传感器用的生物酶电极及其制备方法
CN108303454A (zh) * 2018-02-23 2018-07-20 南京鱼跃软件技术有限公司 一种尿酸电化学传感器
CN114767105A (zh) * 2022-06-22 2022-07-22 苏州百孝医疗科技有限公司 植入式电化学生物传感器、测试方法及植入式医疗器械
CN115474929A (zh) * 2022-09-05 2022-12-16 苏州百孝医疗科技有限公司 植入式生物传感器及制备方法

Also Published As

Publication number Publication date
CN115474929A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
Nemiwal et al. Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules
Heller Amperometric biosensors
Palmisano et al. A disposable, reagentless, third-generation glucose biosensor based on overoxidized poly (pyrrole)/tetrathiafulvalene− tetracyanoquinodimethane composite
Jia et al. Elimination of electrochemical interferences in glucose biosensors
Heller Electron-conducting redox hydrogels: design, characteristics and synthesis
Lin et al. One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor
Luo et al. Application of nanoparticles in electrochemical sensors and biosensors
Dzyadevych et al. Amperometric enzyme biosensors: Past, present and future
Ayenimo et al. Amperometric detection of glucose in fruit juices with polypyrrole-based biosensor with an integrated permselective layer for exclusion of interferences
Wisitsoraat et al. Graphene–PEDOT: PSS on screen printed carbon electrode for enzymatic biosensing
CN104280431B (zh) 用于生物传感器的试剂组合物及包含所述试剂组合物的生物传感器
Chen et al. A novel nonenzymatic electrochemical glucose sensor modified with Ni/Al layered double hydroxide
JP2000510230A (ja) 大豆ペルオキシダーゼ電気化学センサ
Fava et al. New disposable electrochemical paper‐based microfluidic device with multiplexed electrodes for biomarkers determination in urine sample
WO2024051595A1 (zh) 植入式生物传感器及其制备方法
Akyilmaz et al. Voltammetric determination of epinephrine by White rot fungi (Phanerochaete chrysosporium ME446) cells based microbial biosensor
Nasri et al. A glucose biosensor based on direct electron transfer of glucose oxidase immobilized onto glassy carbon electrode modified with nitrophenyl diazonium salt
CN109613078A (zh) 抗干扰电化学检测传感器及其制作方法
CN105866205A (zh) 基于金纳米粒子-巯基化石墨烯修饰电极的电化学dna生物传感器的构建及应用
Escalona-Villalpando et al. A self-powered glucose biosensor device based on microfluidics using human blood
Liu et al. Enzyme biosensors for point-of-care testing
Shen et al. Amperometric glucose biosensor based on AuPd modified reduced graphene oxide/polyimide film with glucose oxidase
Fei et al. Glucose nanosensors based on redox polymer/glucose oxidase modified carbon fiber nanoelectrodes
CN102759552A (zh) 分析装置
Promsuwan et al. Novel biosensor platform for glucose monitoring via smartphone based on battery-less NFC potentiostat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862289

Country of ref document: EP

Kind code of ref document: A1