WO2024051477A1 - 一种电池 - Google Patents

一种电池 Download PDF

Info

Publication number
WO2024051477A1
WO2024051477A1 PCT/CN2023/113819 CN2023113819W WO2024051477A1 WO 2024051477 A1 WO2024051477 A1 WO 2024051477A1 CN 2023113819 W CN2023113819 W CN 2023113819W WO 2024051477 A1 WO2024051477 A1 WO 2024051477A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat
negative electrode
positive electrode
separator
along
Prior art date
Application number
PCT/CN2023/113819
Other languages
English (en)
French (fr)
Inventor
王丰
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2024051477A1 publication Critical patent/WO2024051477A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery between the wound type and the laminated type.
  • the structure of lithium batteries is mainly wound, including positive electrode sheets, negative electrode sheets and separators located between the positive electrode sheets and negative electrode sheets.
  • the existing wound lithium batteries are produced and formed by the winding method, that is, the positive electrode sheet, the negative electrode sheet and the separator between the positive electrode sheet and the negative electrode sheet are wound in the same direction.
  • This method has high production efficiency, but there are The disadvantage is that there is an R angle along the width edge of the cell winding direction, which will cause a loss of energy density, thereby causing a loss of battery capacity under the same X, Y, and Z dimensions.
  • Embodiments of the present application provide a battery that is formed by a method between winding and lamination, thereby reducing production costs while increasing the energy density of the battery.
  • a battery including: a first structure and a second structure; wherein the first structure includes a plurality of flat portions and a plurality of bent portions, and the plurality of flat portions are stacked along a first direction. , each bending part extends along the first direction, two adjacent flat parts are connected by one bending part, and the two adjacent bending parts are located on opposite sides of the flat part along the second direction; the second structure includes A plurality of flat parts, the plurality of flat parts of the second structure are stacked along the first direction; along the first direction, the flat parts of the second structure are located between the flat parts of the first structure.
  • the first structure includes a connected flat part and a bent part.
  • the first structure is a complete structure, that is, the first structure is an uncut structure, which reduces production costs;
  • the second structure includes A plurality of flat portions, the second structure having a plurality of flat portions is a cut structure; since the plurality of flat portions of the second structure are stacked along the first direction, the first structure is rolled (for example, in a zigzag-like manner) Winding) can form a flat part and a bent part. Due to the partially stacked and partially rolled structure, the R angle between the flat part and the bent part of the first structure is smaller, so the R angle of the battery is also smaller.
  • the reduction of the R angle of the battery increases the energy density of the battery; at the same time, multiple cut second structures are stacked along the first direction, which can improve the production efficiency of the battery.
  • the battery structure of the present application reduces the cutting stations of the first structure, thereby achieving the purpose of reducing costs.
  • the flat part and the bent part of the above-mentioned first structure can be vertical or nearly vertical, for example, the flat part and the bent part are arranged at 90°; they can also float within a certain range of 90°, for example, the included angle is 88°, 89°, 89.5°, 90.1°, 90.5°, 91°, 92°, etc.; this application does not make any adjustments to the flat and bent parts of the first structure. Strict restrictions. It should be noted that there may be a certain arc angle (arc transition) between the flat part and the bent part of the first structure.
  • the flat part of the first structure is the positive electrode flat part
  • the bent part of the first structure is the positive electrode bent part
  • the plurality of flat parts of the second structure include the negative electrode flat part and the separator.
  • Flat part; the flat part of the positive electrode and the flat part of the negative electrode are separated by a flat part of the separator.
  • the first structure is the positive electrode sheet
  • the second structure includes the negative electrode sheet and the separator.
  • the positive electrode sheet is a complete structure
  • the negative electrode sheet and separator are not complete structures, but structures after being cut.
  • Multiple separators and multiple negative electrode sheets are stacked along the first direction, which can improve the production efficiency of the battery. At the same time, it is also beneficial to reduce the R angle of the battery after the positive electrode sheet is wound.
  • two diaphragm flat parts and one negative electrode flat part are provided between two adjacent positive electrode flat parts, and between one positive electrode flat part and one negative electrode flat part, There is a flat part of the diaphragm between them.
  • each negative electrode flat portion is spaced apart from the corresponding positive electrode bent portion. This arrangement prevents the negative electrode piece and the positive electrode piece from coming into contact and causing a short circuit.
  • each negative electrode flat portion is shorter than the length of each separator flat portion. This arrangement prevents the negative electrode piece and the positive electrode piece from coming into contact and causing a short circuit.
  • the flat part of the first structure includes a positive electrode flat part and a separator flat part
  • the bent part of the first structure includes a positive electrode bent part and a separator bent part
  • the positive electrode flat part and the positive electrode The bending parts are connected, and the flat part of the separator is connected to the bending part of the separator; along the first direction, each positive electrode flat part is located between two adjacent flat parts of the separator; along the second direction, each positive electrode bending part is located at the opposite Between two adjacent separator bent portions; the flat portion of the second structure is the negative electrode flat portion; a positive electrode flat portion and a negative electrode flat portion are separated by a separator flat portion.
  • the first structure includes a positive electrode sheet and a separator, and there are two separators; the second structure is a negative electrode sheet.
  • the positive electrode sheet and separator are complete structures, and the negative electrode sheet is not a complete structure, but a cut structure.
  • Multiple negative electrode sheets are stacked along the first direction, which can improve the production efficiency of the battery and is also beneficial to After the positive electrode sheet is rolled, the R angle of the battery is smaller.
  • the positive electrode sheet and separator are not cut, which can reduce the production cost of the battery.
  • each negative electrode flat portion is located between two adjacent separator flat portions.
  • each negative electrode flat portion is spaced apart from the corresponding separator bending portion. This arrangement prevents the negative electrode piece and the positive electrode piece from coming into contact and causing a short circuit.
  • each negative electrode flat portion is shorter than the length of the corresponding separator flat portion. This arrangement prevents the negative electrode piece and the positive electrode piece from coming into contact and causing a short circuit.
  • the flat part of the first structure is the negative electrode flat part
  • the bent part of the first structure is the negative electrode bent part
  • the plurality of flat parts of the second structure include the positive electrode flat part and the separator.
  • Flat part; the flat part of the negative electrode and the flat part of the positive electrode are separated by a flat part of the separator.
  • the first structure is a negative electrode sheet
  • the second structure includes a positive electrode sheet and a separator.
  • the negative electrode sheet is a complete structure
  • the positive electrode sheet and separator are not complete structures, but structures after being cut.
  • Multiple separators and multiple positive electrode sheets are stacked along the first direction, which can improve the production efficiency of the battery. At the same time, it is also beneficial to reduce the R angle of the battery after the negative electrode sheet is wound.
  • two diaphragm flat parts and a positive electrode flat part are provided between two adjacent negative electrode flat parts, and between a negative electrode flat part and a positive electrode flat part,
  • the room has a The flat part of the diaphragm.
  • each positive electrode flat portion is spaced apart from the corresponding negative electrode bent portion. This arrangement prevents the negative electrode piece and the positive electrode piece from coming into contact and causing a short circuit.
  • each positive electrode flat portion is shorter than the length of each separator flat portion. This arrangement prevents the negative electrode piece and the positive electrode piece from coming into contact and causing a short circuit.
  • the flat part of the first structure includes a negative electrode flat part and a separator flat part
  • the bent part of the first structure includes a negative electrode bent part and a separator bent part
  • the negative electrode flat part and the negative electrode The bending parts are connected, and the flat part of the separator is connected to the bending part of the separator; along the first direction, each negative electrode flat part is located between two adjacent flat parts of the separator; along the second direction, each negative electrode bending part is located at the opposite Between two adjacent bent parts of the separator; the flat part of the second structure is the positive flat part; a negative flat part and a positive flat part are separated by a flat part of the separator.
  • the first structure includes a negative electrode sheet and a separator, and there are two separators; the second structure is a positive electrode sheet.
  • the negative electrode sheet and separator are complete structures, and the positive electrode sheet is not a complete structure, but a cut structure.
  • Multiple positive electrode sheets are stacked along the first direction, which can improve the production efficiency of the battery and is also beneficial to After the negative electrode sheet is rolled, the R angle of the battery is smaller.
  • the negative electrode sheet and separator are not cut, which can reduce the production cost of the battery.
  • each positive electrode flat portion is located between two adjacent separator flat portions.
  • each positive electrode flat portion is spaced apart from the corresponding separator bending portion. This arrangement prevents the negative electrode piece and the positive electrode piece from coming into contact and causing a short circuit.
  • each positive electrode flat portion is shorter than the length of the corresponding separator flat portion. This arrangement prevents the negative electrode piece and the positive electrode piece from coming into contact and causing a short circuit.
  • the first direction and the second direction are perpendicular to each other. That is, the flat part and the bent part of the first structure are connected vertically, and the R angle between the flat part and the bent part is small, so the R angle of the battery is also small. The reduction of the R angle of the battery improves the performance of the battery. Energy Density.
  • the first structure includes a first tab; the second structure includes a plurality of second tabs, and along the third direction, one first tab and a plurality of second tabs are located on opposite sides of the battery in the third direction, and a plurality of second tabs are located on the same side of the battery in the third direction and are connected in series. Since the first structure includes one first tab, the number of tabs used can be reduced, and the use of multiple tabs can reduce the space occupied in the lateral direction (for example, the third direction) of the battery, resulting in a waste of lateral space of the battery. , to avoid the loss of battery energy density to a certain extent.
  • the first direction, the second direction and the third direction are perpendicular to each other.
  • Figure 1 shows a schematic structural diagram of a lithium battery according to some embodiments of the present application
  • Figure 2 shows a schematic diagram 2 of the structure of a lithium battery according to some embodiments of the present application
  • Figure 3a shows a schematic structural diagram 3 of a lithium battery according to some embodiments of the present application.
  • Figure 3b shows a cross-sectional view along the A-A direction in Figure 3a according to some embodiments of the present application
  • Figure 4 shows a schematic structural diagram 4 of a lithium battery according to some embodiments of the present application.
  • Figure 5 shows a schematic structural diagram of a lithium battery according to some embodiments of the present application.
  • Figure 6 shows a schematic structural diagram of a lithium battery according to some embodiments of the present application.
  • Embodiments of the present application provide a battery, which is formed by a production method between the winding type and the lamination type, thereby reducing the production cost and improving the energy density of the battery.
  • the battery in the embodiment of the present application uses a lithium battery as an example, but the structure and formation method of the lithium battery of the present application can also be applied to other types of batteries, such as storage batteries, solar cells and other battery types.
  • Figure 1 shows a schematic structural diagram of a lithium battery 1 in a possible implementation.
  • the production method of the lithium battery 1 is a winding type.
  • the lithium battery 1 includes a positive electrode sheet 10 , a negative electrode sheet 11 and a separator 12 located between the positive electrode sheet 10 and the negative electrode sheet 11 . That is, the positive electrode sheet 10 and the negative electrode sheet 11 of the lithium battery 1 are separated by the separator 12 .
  • the positive electrode piece 10 is the electrode piece after passing through the slitting machine. It is a complete electrode piece without cutting.
  • the positive electrode piece 10 is in the shape of a belt as a whole.
  • the negative electrode piece 11 is the electrode piece after passing through the slitting machine. It is a complete electrode piece without cutting.
  • the negative electrode piece 11 is in the shape of a belt as a whole.
  • the diaphragm 12 is a diaphragm after passing through the slitting machine. It is a complete diaphragm without cutting.
  • the diaphragm 12 is in the shape of a belt as a whole.
  • the positive electrode sheet 10 - separator 12 - negative electrode sheet 11 - separator 12 are stacked together along the thickness direction of the lithium battery (shown in the Z direction in Figure 1), and then wound in the same direction (A in Figure 1 direction indicates the winding direction), during the winding process, the positive electrode sheet 10, the negative electrode sheet 11 and the separator 12 will be wound simultaneously, forming a roughly racetrack-shaped battery structure.
  • the positive electrode sheet 10 since the positive electrode sheet 10, the negative electrode sheet 11 and the separator 12 are all rolled up simultaneously, curved portions are formed on both sides of the length direction (shown in the X direction in Figure 1) of the rolled lithium battery 1. 13(R corner). This results in no positive electrode piece 10 or negative electrode piece 11 at the four corners of the battery (A1, A2, A3, A4), which results in loss of energy density and waste of space, resulting in loss of battery capacity.
  • the embodiment of the present application provides another lithium battery 1 formed by lamination. That is, the production method of the lithium battery 1 is a lamination type.
  • FIG. 2 shows a schematic structural diagram of a lithium battery 2 formed by lamination.
  • FIG. 2 shows a cross-sectional view similar to the A-A direction shown in FIG. 1 .
  • the lithium battery 2 has a laminated structure.
  • the lithium battery 2 includes a plurality of positive electrode sheets 21 , a plurality of negative electrode sheets 22 and a plurality of separators 23 located between the positive electrode sheets 21 and the negative electrode sheets 22 .
  • the positive electrode sheet 21 and the negative electrode sheet 22 of the lithium battery 2 are separated by a separator 23 .
  • a plurality of positive electrode sheets 21 constitute a positive electrode sheet unit
  • a plurality of negative electrode sheets 22 constitute a negative electrode sheet unit
  • a plurality of separators 23 constitute a separator unit.
  • Each positive electrode piece 21 is a pole piece cut by a die-cutting machine, that is, a complete positive electrode piece is cut according to a required pattern to form multiple positive electrode pieces 21 . That is, after passing through a slitting machine, a complete positive electrode sheet is formed, and the complete positive electrode sheet is cut into a plurality of positive electrode sheets 21 by a die-cutting machine.
  • the negative electrode sheet 22 is the electrode sheet cut by a die-cutting machine, that is, it is cut on a complete negative electrode sheet to form multiple negative electrode sheets 22 . That is, the complete negative electrode sheet is first formed through a slitting machine, and the complete negative electrode sheet is cut into multiple negative electrode sheets 22 by a die-cutting machine.
  • the diaphragm 23 is a diaphragm cut by a die-cutting machine, that is, a complete diaphragm is cut to form multiple diaphragms 23 . That is to say, the complete separator is formed after passing through the slitting machine first, and the complete separator is cut into multiple pieces by the die-cutting machine. Diaphragm 23.
  • the current collector is coated with the active material, it is rolled accordingly and cut according to the battery size. Then, according to the pattern of separator 23 - positive electrode sheet 21 - separator 23 - negative electrode sheet 22 - separator 23, the electrode sheets are stacked along the thickness direction (shown in the Z direction in Figure 2) to form a rectangular parallelepiped lithium battery 2 structure.
  • the manufacturing process of this laminated solution is complex and the cost is high, but the energy density of the lithium battery 2 produced is high.
  • each positive electrode piece 21 and each negative electrode piece 22 are electrode pieces formed after cutting, as shown in Figure 2, there is a There is a positive electrode tab 211, and a negative electrode tab 221 is provided on one side of the width direction of each negative electrode piece 22.
  • the positive electrode tab 211 and the negative electrode tab 221 protrude from the lithium battery 2 along the width direction, which results in the lithium battery 2 having the negative electrode tab 221 and the positive electrode tab 211 arranged along the width direction, and the lithium battery 2 will lose in this direction.
  • a certain size of space wastes a certain amount of energy density.
  • embodiments of the present application also provide a lithium battery formed by a production method between the winding type and the laminated type.
  • the following will exemplarily introduce that one or two structures of the positive electrode sheet, negative electrode sheet and separator of the lithium battery in this embodiment adopt a complete structure (for winding during the production process).
  • the positive electrode sheet, negative electrode sheet and separator of the lithium battery are One or both of the structures are cut (used for lamination in the production process).
  • the positive electrode sheet 31 of the lithium battery 3 adopts a complete structure
  • the negative electrode sheet 32 and separator 33 of the lithium battery 3 adopt a cut structure (refer to Figure 3a and Figure 3b)
  • the positive electrode sheet 31 and separator 33 of the lithium battery 3 adopt a complete structure
  • the negative electrode sheet 32 of the lithium battery 3 adopts a cut structure (refer to Figure 4)
  • the negative electrode sheet 32 of the lithium battery 3 A complete structure is adopted, and the positive electrode sheet 31 and separator 33 of lithium battery 3 adopt a cut structure (refer to Figure 5);
  • the negative electrode sheet 32 and separator 33 of lithium battery 3 adopt a complete structure, and lithium battery 3 adopts a complete structure.
  • the positive electrode sheet 31 adopts a cut structure (refer to Figure 6).
  • the lithium battery 3 in the embodiment of the present application includes: a strip-shaped positive electrode sheet 31, a plurality of sheet-shaped negative electrode sheets 32, and a plurality of sheet-shaped separators 33.
  • a strip-shaped positive electrode sheet 31 constitutes the positive electrode sheet unit of the lithium battery 3
  • a plurality of sheet-shaped negative electrode sheets 22 constitutes the negative electrode sheet unit of the lithium battery 3
  • a plurality of separators 33 constitutes the separator unit of the lithium battery 3 .
  • the positive electrode piece 31 is a complete structure, for example, the electrode piece after passing through a slitting machine.
  • the negative electrode piece 32 is a cut structure, such as an electrode piece cut by a die-cutting machine.
  • the diaphragm 33 is a cut structure, such as a diaphragm cut by a die-cutting machine.
  • the positive electrode sheet 31 in the lithium battery 3 includes a plurality of positive electrode flat portions 311 and a plurality of positive electrode bent portions 312.
  • the plurality of positive electrode flat portions 311 are stacked along the thickness direction (shown in the Z direction in Fig. 3a).
  • each positive electrode bent portion 312 extends along the thickness direction
  • two adjacent positive electrode flat portions 311 are connected by one positive electrode bent portion 312
  • the two adjacent positive electrode bent portions 312 extend along the length direction of the lithium battery 3 (Fig. (shown in the X direction in 3a) are located on opposite sides of the positive electrode flat portion 311.
  • the winding method of the complete positive electrode sheet 31 of the embodiment of the present application is similar to the zigzag winding method.
  • This application does not limit the number of the positive electrode flat part 311 and the positive electrode bent part 312 in the lithium battery 3, and it is related to the number of times the positive electrode sheet 31 is wound. As shown in FIG. 3 a , the positive electrode sheet 31 of the lithium battery 3 is wound to form three positive electrode flat parts 311 and two positive electrode bent parts 312 .
  • the lithium battery 3 Since in this application, the lithium battery 3 is formed in a partially stacked and partially wound manner, therefore, the lithium battery 3 The R angle formed around it is small. For example, the R angle formed between the positive electrode bent portion 312 and the positive electrode flat portion 311 formed after the positive electrode sheet 31 is wound is small, resulting in a small R angle of the lithium battery 3 as a whole. Thus, the energy density of the lithium battery 3 is increased and the capacity loss of the lithium battery 3 is reduced.
  • the above-mentioned positive electrode flat part 311 and positive electrode bent part 312 may be vertical or nearly vertical, for example, the positive electrode flat part 311 and the positive electrode bent part 312 may be arranged at 90°; they may also float within a certain range of 90°.
  • the included angle is 88°, 89°, 89.5°, 90.1°, 90.5°, 91°, 92°, etc.; this application does not impose strict restrictions on the positive electrode flat part 311 and the positive electrode bent part 312.
  • a plurality of negative electrode sheets 32 are stacked along the thickness direction, and a plurality of separators 33 are stacked along the thickness direction.
  • two separators 33 and one negative electrode sheet 32 are disposed between two adjacent positive electrode flat parts 311 of the positive electrode sheet 31, and one separator 33 is disposed between one positive electrode flat part 311 and one negative electrode sheet 32. That is, the positive electrode sheet 31 is rolled to form the positive electrode flat part 311 and the positive electrode bent part 312, wherein the plurality of positive electrode flat parts 311, the plurality of negative electrode sheets 32 and the plurality of separators 33 are stacked in the form of laminations along the thickness direction.
  • the lithium battery 3 is formed by stacking the positive electrode flat part 311 - the separator 33 - the negative electrode sheet 32 - the separator 33 - the positive electrode flat part 311. This stacking method reduces production costs and improves the production efficiency of lithium battery 3.
  • each negative electrode piece 32 is spaced apart from the corresponding positive electrode bending portion 312.
  • Figure 3a shows that there is an interval A between the negative electrode piece 32 and the positive electrode bending portion 312. This prevents the negative electrode sheet 32 from contacting the positive electrode bent portion 312 to cause a short circuit.
  • the length of each negative electrode piece 32 is shorter than the length of each separator 33 to prevent the negative electrode piece 32 from contacting the positive electrode bending portion 312 to cause a short circuit.
  • Figure 3b is a cross-sectional view along the A-A direction in Figure 3a.
  • a strip-shaped positive electrode piece 31 includes a positive electrode tab 313; and each of the plurality of sheet-shaped negative electrode pieces 32 includes a negative electrode tab 323.
  • the lithium battery 3 in the embodiment of the present application includes one positive electrode tab 313 and a plurality of negative electrode tabs 323.
  • the plurality of negative electrode tabs 323 are located on the same side in the width direction of the lithium battery 3 and are connected in series.
  • the positive electrode tab 313 is located on one side of the lithium battery 3 in the thickness direction and is provided on the positive electrode flat portion 311 .
  • the positive electrode tab 313 does not occupy space in the width direction of the lithium battery 3 .
  • using a complete structure of the positive electrode sheet can only provide one positive electrode tab, which can improve the processing efficiency; at the same time, it can reduce the number of positive electrode tabs used and reduce the cost of using multiple positive electrode tabs.
  • the ears occupy the space in the width direction of the battery, causing waste in the width direction of the battery, and avoid the loss of energy density of the lithium battery to a certain extent.
  • the positive electrode sheet 31 is a complete structure, and the positive electrode sheet 31 is rolled (for example, in a zigzag-like manner) to form the positive electrode flat part 311 and the positive electrode bent part 312.
  • the positive electrode flat part 311 and The reduction of the R angle between the positive electrode bends 312 increases the energy density; at the same time, the negative electrode sheet 32 and the separator 33 adopt a cut structure, which reduces the production cost; compared with the complete production of lithium batteries 3 using lamination methods, The number of cutting stations for the positive electrode sheet 31 is reduced, thereby achieving the purpose of reducing costs.
  • the lithium battery 3 in the embodiment of the present application includes: a strip-shaped positive electrode sheet 31 , a plurality of sheet-shaped negative electrode sheets 32 , and two strip-shaped separators 33 .
  • one strip-shaped positive electrode sheet 31 constitutes the positive electrode sheet unit of the lithium battery 3
  • a plurality of sheet-shaped negative electrode sheets 22 constitutes the negative electrode unit of the lithium battery 3
  • two strip-shaped separators 33 constitute the separator unit of the lithium battery 3.
  • the positive electrode sheet 31 also includes a plurality of flat parts and a plurality of bent parts after being wound.
  • the specific structural form is the same as the structure of the positive electrode sheet 31 in application scenario one. For details, please refer to the relevant description of application scenario one, here No longer.
  • each diaphragm 33 includes a plurality of diaphragm flat parts 331 and a plurality of diaphragm bent parts 332.
  • the plurality of diaphragm flat parts 331 of each diaphragm 33 are stacked along the thickness direction.
  • the diaphragm bending portion 332 extends along the thickness direction, and two adjacent diaphragm flat portions 331 of each diaphragm 33 are connected by one diaphragm bending portion 332 of the diaphragm 33.
  • the two adjacent diaphragm bending portions of each diaphragm 33 332 are located on opposite sides of the diaphragm flattened portion 331 of the diaphragm 33 along the length direction.
  • each diaphragm 33 of the complete structure of the embodiment of the present application is similar to the zigzag winding mode.
  • This application does not limit the number of separator flat portions 331 and separator bent portions 332 in the lithium battery 3, but is related to the number of times the separator 33 is wound.
  • the separator 33 of the lithium battery 3 is rolled to form three separator flat parts 331 and two separator bent parts 332 .
  • the positive electrode bent portion 312 and the positive electrode flat portion 311 formed after winding the positive electrode sheet 31 in the embodiment of the present application are perpendicular to each other, and the formed R angle is small.
  • the diaphragm bent portion 332 and the diaphragm flat portion 331 respectively formed after the two diaphragms 33 in the embodiment of the present application are rolled are perpendicular to each other, and the formed R angle is small.
  • the positive electrode sheet 31 is located between the two separators 33 .
  • the positive flat portion 311 of the positive electrode sheet 31 is parallel to the separator flat portions 331 of the two separators 33
  • the positive electrode bending portion 312 of the positive electrode sheet 31 is parallel to the separator bending portions 332 of the two separators 33 .
  • a plurality of negative electrode sheets 32 are stacked along the thickness direction, and each negative electrode sheet 32 is located between two adjacent separator flat parts 331 of the corresponding separator 33 .
  • one negative electrode sheet 32 of two adjacent negative electrode sheets 32 is located at the flat portions 331 of two adjacent separators 33 of one of the separators 33 (for example, the left separator 33 shown in FIG. 4 ).
  • the other negative electrode sheet 32 of the two adjacent negative electrode sheets 32 is located between the two adjacent separator flat parts 331 of another separator 33 (for example, the right separator 33 shown in FIG. 4 ).
  • the positive electrode sheet 31 is rolled to form the positive electrode flat part 311 and the positive electrode bent part 312, and the two separators 33 are rolled to form the separator flat part 331 and the separator bent part 332 respectively.
  • a plurality of positive electrode flat parts 311, a plurality of negative electrode sheets 32 and a plurality of diaphragm flat parts 331 are stacked in the form of laminations along the thickness direction, for example, in the following order: diaphragm flat part 331 - positive electrode flat part 311 - diaphragm flat part 331 -
  • the lithium battery 3 is formed by stacking the negative electrode sheet 32 - the separator flat part 331 - the positive electrode flat part 311. This stacking method reduces production costs and improves the production efficiency of lithium battery 3.
  • the above-mentioned diaphragm bending part 332 and diaphragm flat part 331 may be vertical or nearly vertical, for example, the diaphragm bending part 332 and the diaphragm flat part 331 may be arranged at 90°; they may also float within a certain range of 90°.
  • the included angle is 88°, 89°, 89.5°, 90.1°, 90.5°, 91°, 92°, etc.; this application does not impose strict restrictions on the diaphragm bending part 332 and the diaphragm flat part 331.
  • each negative electrode piece 32 is spaced apart from the separator bending portion 332 of the corresponding separator 33 (A in FIG. 4 indicates the spacing).
  • the length of each negative electrode piece 32 is shorter than the length of the separator flat portion 331 of the corresponding separator 33 .
  • a strip-shaped positive electrode sheet 31 includes one positive electrode tab 313; and a plurality of positive electrode tabs 313.
  • Each negative electrode piece 32 of the sheet-shaped negative electrode pieces 32 also includes a negative electrode tab 323 .
  • the positive electrode sheet 31 and the separator 33 are complete, and the positive electrode sheet 31 is rolled (for example, in a zigzag-like manner) to form the positive electrode flat part 311 and the positive electrode bent part 312.
  • the positive electrode flat part The R angle between 311 and the positive electrode bending part 312 is reduced; the separator 33 is rolled (for example, in a similar zigzag manner) to form a diaphragm flat part 331 and a diaphragm bending part 332.
  • the diaphragm flat part 331 and the diaphragm bending part are The reduction of the R angle between the folded portions 332 increases the energy density; at the same time, the negative electrode sheet 32 adopts a cut structure, which reduces the production cost; compared with the complete production of lithium batteries 3 using lamination methods, The number of cutting stations for the positive electrode sheet 31 and the separator 33 is reduced, thereby achieving the purpose of reducing costs.
  • application scenario three The difference between application scenario three and application scenario one is that the negative electrode sheet 32 of the lithium battery 3 adopts a complete structure, and the positive electrode sheet 31 and separator 33 of the lithium battery 3 adopt a cut structure.
  • the lithium battery 3 in the embodiment of the present application includes: a strip-shaped negative electrode sheet 32 , a plurality of sheet-shaped positive electrode sheets 31 and a plurality of sheet-shaped separators 33 .
  • a strip-shaped negative electrode sheet 32 constitutes the negative electrode sheet unit of the lithium battery 3
  • a plurality of sheet-shaped positive electrode sheets 31 constitutes the positive electrode sheet unit of the lithium battery 3
  • a plurality of sheet-shaped separators 33 constitute the lithium battery. 3 diaphragm units.
  • the negative electrode sheet 32 in the lithium battery 3 includes a plurality of negative electrode flat parts 321 and a plurality of negative electrode bent parts 322 .
  • the plurality of negative electrode flat parts 321 are stacked along the thickness direction (shown in the Z direction in FIG. 5 ).
  • each negative electrode bending part 322 extends along the thickness direction
  • two adjacent negative electrode flat parts 321 are connected by one negative electrode bending part 322
  • the two adjacent negative electrode bending parts 322 extend along the length direction of the lithium battery 3 (Fig. (shown in the X direction in 5) are located on opposite sides of the negative electrode flat portion 321.
  • the negative electrode sheet 32 of the complete structure of the embodiment of the present application is wound in a zigzag shape.
  • This application does not limit the number of negative electrode flat portions 321 and negative electrode bent portions 322 in the lithium battery 3, but is related to the number of times the negative electrode sheet 32 is wound. As shown in FIG. 5 , the negative electrode sheet 32 of the lithium battery 3 is wound to form three negative electrode flat parts 321 and two negative electrode bent parts 322 .
  • the thickness direction and the length direction of the above-mentioned lithium battery 3 are perpendicular. That is, the negative electrode bent portion 322 and the negative electrode flat portion 321 formed after winding the negative electrode sheet 32 in the embodiment of the present application are perpendicular to each other, and the formed R angle is small. Thus, the energy density of the lithium battery 3 is increased and the capacity loss of the lithium battery 3 is reduced.
  • a plurality of positive electrode sheets 31 are stacked in the thickness direction, and a plurality of separators 33 are stacked in the thickness direction.
  • two separators 33 and one positive electrode sheet 31 are disposed between two adjacent negative electrode flat portions 321 of the negative electrode sheet 32
  • one separator 33 is disposed between one negative electrode flat portion 321 and one positive electrode sheet 31 . That is, the negative electrode sheet 32 is rolled to form the negative electrode flat part 321 and the negative electrode bent part 322, wherein the plurality of negative electrode flat parts 321, the plurality of positive electrode sheets 31 and the plurality of separators 33 are stacked in the form of laminations along the thickness direction.
  • the lithium battery 3 is formed by stacking the negative electrode flat part 321 - the separator 33 - the positive electrode sheet 31 - the separator 33 - the negative electrode flat part 321. This stacking method reduces production costs and improves the production efficiency of lithium battery 3.
  • the above-mentioned negative electrode bent portion 322 and negative electrode flat portion 321 can be vertical or nearly vertical.
  • the negative electrode bent portion 322 and negative electrode flat portion 321 are arranged at 90°; they can also float within a certain range of 90°.
  • the included angle is 88°, 89°, 89.5°, 90.1°, 90.5°, 91°, 92°, etc.; this application does not place strict restrictions on the negative electrode bending part 322 and the negative electrode flat part 321.
  • the negative electrode bent portion 322 and the negative electrode flat There may be a certain arc angle (arc transition) between the portions 321 .
  • each positive electrode piece 31 is spaced apart from the corresponding negative electrode bending part 322 (A in FIG. 5 shows the spacing) to prevent the positive electrode piece 31 from contacting the negative electrode bending part 322 and causing a short circuit.
  • the length of each positive electrode piece 31 is shorter than the length of each separator 33 to prevent the positive electrode piece 31 from contacting the negative electrode bending portion 322 to cause a short circuit.
  • a strip-shaped negative electrode piece 32 includes a negative electrode tab; and each of the plurality of sheet-shaped positive electrode pieces 31 includes a positive electrode tab. That is, the lithium battery 3 in the embodiment of the present application includes one positive electrode tab 313 and a plurality of negative electrode tabs 323. For example, a plurality of positive electrode tabs are located on the same side in the width direction of the lithium battery 3 and are connected in series. The negative electrode tab is located on one side of the lithium battery 3 in the thickness direction and is provided at the negative electrode flat portion 321 . The negative electrode tab does not occupy space in the width direction of the lithium battery 3 . The arrangement of one negative electrode tab and multiple positive electrode tabs can be seen in Figure 3b.
  • using a complete structure of positive and negative electrode sheets can improve processing efficiency; at the same time, it can reduce the number of negative electrode tabs and reduce the width of the battery occupied by using multiple negative electrode tabs.
  • the space in the direction causes waste in the width direction of the battery, which avoids the loss of energy density of lithium batteries to a certain extent.
  • the negative electrode sheet 32 is complete, and the negative electrode sheet 32 is rolled (for example, in a zigzag-like manner) to form the negative electrode flat part 321 and the negative electrode bent part 322.
  • the negative electrode flat part 321 and the negative electrode The reduction of the R angle between the bent portions 322 increases the energy density; at the same time, the positive electrode sheet 31 and the separator 33 adopt a cut structure, which reduces the production cost; compared with the complete production of the lithium battery 3 using a lamination method, it reduces
  • the cutting station of the negative electrode sheet 32 can achieve the purpose of reducing costs.
  • application scenario four The difference between application scenario four and application scenario two is that the negative electrode sheet 32 and separator 33 of the lithium battery 3 adopt a complete structure, while the positive electrode sheet 31 of the lithium battery 3 adopts a cut structure.
  • the lithium battery 3 in the embodiment of the present application includes: a strip-shaped negative electrode sheet 32 , a plurality of sheet-shaped positive electrode sheets 31 , and two strip-shaped separators 33 .
  • a strip-shaped negative electrode sheet 32 constitutes the negative electrode sheet unit of the lithium battery 3
  • a plurality of sheet-shaped positive electrode sheets 31 constitutes the positive electrode sheet unit of the lithium battery 3
  • two strip-shaped separators 33 constitute the lithium battery. 3 diaphragm units.
  • the two diaphragms 33 also include a plurality of diaphragm flat parts 331 and a plurality of diaphragm bent parts 332 after being rolled.
  • the specific structural form is the same as the structure of the diaphragm 33 in application scenario two. For details, please refer to application scenario two. The relevant description will not be repeated here.
  • the negative electrode sheet 32 in the lithium battery 3 includes a plurality of negative electrode flat parts 321 and a plurality of negative electrode bent parts 322 .
  • the plurality of negative electrode flat parts 321 are stacked along the thickness direction (shown in the Z direction in FIG. 6 ).
  • each negative electrode bending part 322 extends along the thickness direction
  • two adjacent negative electrode flat parts 321 are connected by one negative electrode bending part 322
  • the two adjacent negative electrode bending parts 322 extend along the length direction of the lithium battery 3 (Fig. (shown in the X direction in 6) are located on opposite sides of the negative electrode flat portion 321.
  • the winding method of the complete negative electrode sheet 32 of the embodiment of the present application is similar to the zigzag winding method.
  • This application does not limit the number of negative electrode flat portions 321 and negative electrode bent portions 322 in the lithium battery 3, but is related to the number of times the negative electrode sheet 32 is wound. As shown in FIG. 6 , the negative electrode sheet 32 of the lithium battery 3 is wound to form three negative electrode flat parts 321 and two negative electrode bent parts 322 .
  • the thickness direction and the length direction of the above-mentioned lithium battery 3 are perpendicular. That is to say, the negative electrode sheet 32 of the embodiment of the present application The negative electrode bent portion 322 and the negative electrode flat portion 321 formed after winding are perpendicular to each other, and the formed R angle is small. At the same time, the diaphragm bent portion 332 and the diaphragm flat portion 331 respectively formed after the two diaphragms 33 in the embodiment of the present application are rolled are perpendicular to each other, and the formed R angle is small. Thus, the energy density of the lithium battery 3 is increased and the capacity loss of the lithium battery 3 is reduced.
  • the negative electrode sheet 32 is located between the two separators 33 .
  • the negative electrode flat part 321 of the negative electrode sheet 32 is parallel to the separator flat parts 331 of the two separators 33
  • the positive electrode bending part 312 of the negative electrode sheet 32 is parallel to the separator bending parts 332 of the two separators 33 .
  • each positive electrode sheet 31 is located between two adjacent separator flat parts 331 of the corresponding separator 33 .
  • one positive electrode piece 31 of two adjacent positive electrode pieces 31 is located at the flat portions 331 of two adjacent separators 331 of one of the separators 33 (for example, the left separator 33 shown in FIG. 6 ).
  • the other negative electrode sheet 32 of the two adjacent positive electrode sheets 31 is located between the two adjacent separator flat parts 331 of another separator 33 (for example, the right separator 33 shown in FIG. 6 ).
  • the negative electrode sheet 32 is rolled to form the negative electrode flat part 321 and the negative electrode bent part 322, and the two separators 33 are rolled to form the separator flat part 331 and the separator bent part 332 respectively.
  • a plurality of negative electrode flat parts 321, a plurality of positive electrode sheets 31 and a plurality of diaphragm flat parts 331 are stacked in the form of laminations along the thickness direction, for example, in the following order: diaphragm flat part 331 - negative electrode flat part 321 - diaphragm flat part 331 -
  • the lithium battery 3 is formed by stacking the positive electrode sheet 31 - the separator flat part 331 - the positive electrode flat part 311. This stacking method reduces production costs and improves the production efficiency of lithium battery 3.
  • the above-mentioned negative electrode bent portion 322 and negative electrode flat portion 321 can be vertical or nearly vertical.
  • the negative electrode bent portion 322 and negative electrode flat portion 321 are arranged at 90°; they can also float within a certain range of 90°.
  • the included angle is 88°, 89°, 89.5°, 90.1°, 90.5°, 91°, 92°, etc.; this application does not place strict restrictions on the negative electrode bending part 322 and the negative electrode flat part 321.
  • each positive electrode piece 31 is spaced apart from the separator bending portion 332 of the corresponding separator 33 (A in FIG. 6 indicates the spacing).
  • the length of each positive electrode piece 31 is shorter than the length of the separator flat portion 331 of the corresponding separator 33 .
  • the negative electrode sheet 32 and the separator 33 are complete, and the negative electrode sheet 32 is rolled (for example, in a zigzag-like manner) to form the negative electrode flat part 321 and the negative electrode bent part 322.
  • the negative electrode flat part The R angle between 321 and the negative electrode bent portion 322 is reduced; the separator 33 is rolled (for example, in a similar zigzag manner) to form a diaphragm flat portion 331 and a separator bent portion 332.
  • the diaphragm flat portion 331 and the separator bent portion are The reduction of the R angle between the folded parts 332 increases the energy density; at the same time, the positive electrode sheet 31 adopts a cut structure, which reduces the production cost; compared with the complete production of lithium battery 3 using lamination method, The number of cutting stations for the negative electrode sheet 32 and the separator 33 is reduced, thereby achieving the purpose of reducing costs.
  • a strip-shaped negative electrode piece 32 includes a negative electrode tab; and each of the plurality of sheet-shaped positive electrode pieces 31 includes a positive electrode tab.
  • embodiments of the present application also provide a method for manufacturing lithium battery 3 in application scenario one.
  • the manufacturing method includes:
  • a strip-shaped positive electrode sheet 31 is provided, and the positive electrode sheet 31 is wound to form the positive electrode sheet 31 shown in FIG. 3 Structure, for details, please refer to the relevant description in application scenario one above; for example, the positive electrode piece 31 is a complete structure, such as the electrode piece after passing through the slitting machine;
  • a plurality of sheet-shaped negative electrode sheets 32 are provided, and the plurality of negative electrode sheets 32 are stacked along the thickness direction; for example, each negative electrode sheet 32 is a cut structure, such as a pole piece cut by a die-cutting machine. ;
  • a plurality of sheet-shaped diaphragms 33 are provided, and the plurality of diaphragms 33 are stacked along the thickness direction; exemplarily, the diaphragms 33 are cut structures, such as diaphragms cut by a die-cutting machine;
  • two separators 33 and one negative electrode sheet 32 are disposed between two adjacent positive electrode flat parts 311 of the positive electrode sheet 31, and one separator 33 is disposed between one positive electrode flat part 311 and one negative electrode sheet 32.
  • the lithium battery 3 can reduce the cost and increase the energy density of the lithium battery 3 at the same time.
  • embodiments of the present application also provide a method for manufacturing lithium battery 3 in application scenario 2.
  • the manufacturing method includes:
  • a strip-shaped positive electrode piece 31 is provided.
  • the positive electrode piece 31 is a complete structure, such as the electrode piece after passing through a slitting machine;
  • the membranes 33 are complete structures, such as membranes after passing through a slitting machine;
  • the positive electrode sheet 31 is located between the two separators 33;
  • the two diaphragms 33 are rolled to form the structure of the diaphragm 33 shown in Figure 4.
  • the two diaphragms 33 and the space between the two diaphragms 33 can be
  • the positive electrode sheets 31 are wound simultaneously;
  • each negative electrode sheet 32 is located between two adjacent diaphragm flat parts 331 of the corresponding separator 33;
  • the lithium battery 3 can reduce the cost and increase the energy density of the lithium battery 3 at the same time.
  • embodiments of the present application also provide a method for manufacturing lithium battery 3 in application scenario three.
  • the manufacturing method includes:
  • a strip-shaped negative electrode sheet 32 is provided, and the negative electrode sheet 32 is wound to form the structure of the negative electrode sheet 32 shown in Figure 5.
  • the negative electrode sheet 32 is The complete structure, such as the pole piece after passing through the slitting machine;
  • a plurality of sheet-shaped positive electrode sheets 31 are provided, and the plurality of positive electrode sheets 31 are stacked along the thickness direction; for example, each positive electrode sheet 31 is a cut structure, such as a pole piece cut by a die-cutting machine. ;
  • a plurality of sheet-shaped diaphragms 33 are provided, and the plurality of diaphragms 33 are stacked along the thickness direction; for example, the diaphragms 33 are cut structures, such as diaphragms cut by a die-cutting machine.
  • two separators 33 and one positive electrode sheet 31 are disposed between two adjacent negative electrode flat portions 321 of the negative electrode sheet 32 , and one separator 33 is disposed between one negative electrode flat portion 321 and one positive electrode sheet 31 .
  • the lithium battery 3 can reduce the cost and increase the energy density of the lithium battery 3 at the same time.
  • embodiments of the present application also provide a manufacturing method for lithium battery 3 in application scenario four.
  • the manufacturing method includes:
  • a strip-shaped negative electrode piece 32 is provided.
  • the negative electrode piece 32 is a complete structure, such as a pole piece after passing through a slitting machine;
  • the membranes 33 are complete structures, such as membranes after passing through a slitting machine;
  • the negative electrode sheet 32 is located between the two separators 33;
  • the two diaphragms 33 are rolled to form the structure of the diaphragm 33 shown in Figure 6.
  • the two diaphragms 33 and the space between the two diaphragms 33 can be
  • the negative electrode sheet 32 is wound simultaneously;
  • a plurality of sheet-shaped positive electrode sheets 31 are provided, and the plurality of positive electrode sheets 31 are stacked along the thickness direction, and each positive electrode sheet 31 is located between two adjacent separator flat parts 331 of the corresponding separator 33 .
  • the lithium battery 3 can reduce the cost and increase the energy density of the lithium battery 3 at the same time.
  • the embodiments of the present application use a production method between the winding type and the laminated type to produce lithium batteries.
  • the R angle of the produced lithium batteries is reduced, which improves the energy density of the lithium batteries and also reduces the production cost. cost purposes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种能量密度得到提升的电池,所述电池包括第一结构和第二结构,第一结构包括多个扁平部和多个弯折部,多个扁平部沿第一方向层叠设置,每一个弯折部沿第一方向延伸,相邻的两个扁平部通过一个弯折部连接,相邻的两个弯折部沿第二方向位于扁平部的相反两侧;第二结构包括多个扁平部,第二结构的多个扁平部沿第一方向层叠设置;沿第一方向,第二结构的扁平部位于第一结构的扁平部之间。

Description

一种电池
本申请要求2022年09月08日提交中国专利局、申请号为202211098159.2、申请名称为“一种电池”的中国专利申请的优先权,上述申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,特别涉及一种介于卷绕式和叠片式之间的电池。
背景技术
目前锂电池的结构主要是卷绕式,包括正极片、负极片和位于正极片和负极片之间的隔膜。现有的卷绕式锂电池是通过卷绕方式生产成型,即将正极片、负极片和位于正极片和负极片之间的隔膜沿同一方向进行卷绕,此种方法生产效率高,但存在的缺点是在沿着电芯卷绕方向的宽度边缘存在R角,会损失能量密度,进而造成在相同X,Y、Z尺寸下,电池容量损失。
发明内容
本申请的实施例提供一种电池,通过介于卷绕与叠片之间的方式形成电池,在降低生产成本的同时,提升电池的能量密度。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请实施例提供一种电池,包括:第一结构和第二结构;其中,第一结构包括多个扁平部和多个弯折部,多个扁平部沿第一方向层叠设置,每一个弯折部沿第一方向延伸,相邻的两个扁平部通过一个弯折部连接,相邻的两个弯折部沿第二方向位于扁平部的相反两侧;第二结构包括多个扁平部,第二结构的多个扁平部沿第一方向层叠设置;沿第一方向,第二结构的扁平部位于第一结构的扁平部之间。
本申请实施例中,第一结构包括相连接的扁平部和弯折部,第一结构是完整的结构,也即第一结构是没有经过切割的结构,这降低了生产成本;第二结构包括多个扁平部,具有多个扁平部的第二结构是经切割的结构;由于第二结构的多个扁平部沿第一方向层叠设置,使得第一结构经卷绕(例如按照类似之字形方式卷绕)可以形成扁平部和弯折部,由于采用部分层叠和部分卷绕的结构,第一结构的扁平部和弯折部之间的R角较小,从而电池的R角也较小,电池的R角的减小提升了电池的能量密度;同时,多个经切割的第二结构沿第一方向层叠设置,可以提升电池的生产效率。相比于完全采用叠片方式生产锂电池,本申请的电池结构减少了第一结构的切割工位,从而达到降低成本的目的。
需要说明的是,上述的第一结构的扁平部和弯折部可以垂直或近似垂直,例如扁平部和弯折部呈90°设置;也可以是在90°一定范围内浮动,例如夹角是88°、89°89.5°、90.1°、90.5°、91°、92°等;本申请不对第一结构的扁平部和弯折部做 严格的限制。需要说明的是,第一结构的扁平部和弯折部之间可以具有一定的圆弧角(圆弧过渡)。
在上述第一方面的一种可能实现中,第一结构的扁平部是正极扁平部,第一结构的弯折部是正极弯折部;第二结构的多个扁平部包括负极扁平部和隔膜扁平部;正极扁平部和负极扁平部之间通过一个隔膜扁平部分隔。即,第一结构是正极片,第二结构包括负极片和隔膜。也就是说,正极片是完整的结构,负极片和隔膜不是完整的结构,而是经过切割后的结构,多个隔膜和多个负极片沿第一方向层叠设置,可以提升电池的生产效率,同时也有利于正极片经卷绕后,电池的R角较小。
在上述第一方面的一种可能实现中,沿第一方向,相邻的两个正极扁平部之间设有两个隔膜扁平部和一个负极扁平部,一个正极扁平部和一个负极扁平部之间设有一个隔膜扁平部。
在上述第一方面的一种可能实现中,沿第二方向,每一个负极扁平部与相应的正极弯折部间隔设置。这样设置,避免负极片和正极片相接触,而产生短路。
在上述第一方面的一种可能实现中,沿第二方向,每一个负极扁平部的长度短于每一个隔膜扁平部的长度。这样设置,避免负极片和正极片相接触,而产生短路。
在上述第一方面的一种可能实现中,第一结构的扁平部包括正极扁平部和隔膜扁平部,第一结构的弯折部包括正极弯折部和隔膜弯折部;正极扁平部与正极弯折部连接,隔膜扁平部与隔膜弯折部连接;沿第一方向,每一个正极扁平部位于相邻的两个隔膜扁平部之间;沿第二方向,每一个正极弯折部位于相邻的两个隔膜弯折部之间;第二结构的扁平部是负极扁平部;一个正极扁平部和一个负极扁平部之间通过一个隔膜扁平部分隔。
即,第一结构包括正极片和隔膜,隔膜具有两个;第二结构是负极片。也就是说,正极片和隔膜是完整的结构,负极片不是完整的结构,而是经过切割后的结构,多个负极片沿第一方向层叠设置,可以提升电池的生产效率,同时也有利于正极片经卷绕后,电池的R角较小。此外,正极片和隔膜没有经过切割,可以降低电池的生产成本。
在上述第一方面的一种可能实现中,每一个负极扁平部位于相邻的两个隔膜扁平部之间。
在上述第一方面的一种可能实现中,沿第二方向,每一个负极扁平部与相应的隔膜弯折部间隔设置。这样设置,避免负极片和正极片相接触,而产生短路。
在上述第一方面的一种可能实现中,沿第二方向,每一个负极扁平部长度短于相应的隔膜扁平部的长度。这样设置,避免负极片和正极片相接触,而产生短路。
在上述第一方面的一种可能实现中,第一结构的扁平部是负极扁平部,第一结构的弯折部是负极弯折部;第二结构的多个扁平部包括正极扁平部和隔膜扁平部;负极扁平部和正极扁平部之间通过一个隔膜扁平部分隔。即,第一结构是负极片,第二结构包括正极片和隔膜。也就是说,负极片是完整的结构,正极片和隔膜不是完整的结构,而是经过切割后的结构,多个隔膜和多个正极片沿第一方向层叠设置,可以提升电池的生产效率,同时也有利于负极片经卷绕后,电池的R角较小。
在上述第一方面的一种可能实现中,沿第一方向,相邻的两个负极扁平部之间设有两个隔膜扁平部和一个正极扁平部,一个负极扁平部和一个正极扁平部之间设有一 个隔膜扁平部。
在上述第一方面的一种可能实现中,沿第二方向,每一个正极扁平部与相应的负极弯折部间隔设置。这样设置,避免负极片和正极片相接触,而产生短路。
在上述第一方面的一种可能实现中,沿第二方向,每一个正极扁平部的长度短于每一个隔膜扁平部的长度。这样设置,避免负极片和正极片相接触,而产生短路。
在上述第一方面的一种可能实现中,第一结构的扁平部包括负极扁平部和隔膜扁平部,第一结构的弯折部包括负极弯折部和隔膜弯折部;负极扁平部与负极弯折部连接,隔膜扁平部与隔膜弯折部连接;沿第一方向,每一个负极扁平部位于相邻的两个隔膜扁平部之间;沿第二方向,每一个负极弯折部位于相邻的两个隔膜弯折部之间;第二结构的扁平部是正极扁平部;一个负极扁平部和一个正极扁平部之间通过一个隔膜扁平部分隔。
即,第一结构包括负极片和隔膜,隔膜具有两个;第二结构是正极片。也就是说,负极片和隔膜是完整的结构,正极片不是完整的结构,而是经过切割后的结构,多个正极片沿第一方向层叠设置,可以提升电池的生产效率,同时也有利于负极片经卷绕后,电池的R角较小。此外,负极片和隔膜没有经过切割,可以降低电池的生产成本。
在上述第一方面的一种可能实现中,每一个正极扁平部位于相邻的两个隔膜扁平部之间。
在上述第一方面的一种可能实现中,沿第二方向,每一个正极扁平部与相应的隔膜弯折部间隔设置。这样设置,避免负极片和正极片相接触,而产生短路。
在上述第一方面的一种可能实现中,沿第二方向,每一个正极扁平部长度短于相应的隔膜扁平部的长度。这样设置,避免负极片和正极片相接触,而产生短路。
在上述第一方面的一种可能实现中,第一方向、第二方向相互垂直。即,第一结构的扁平部和弯折部是垂直连接,扁平部和弯折部之间的R角较小,从而电池的R角也较小,电池的R角的减小提升了电池的能量密度。
在上述第一方面的一种可能实现中,第一结构包括一个第一极耳;第二结构包括多个第二极耳,沿第三方向,一个第一极耳和多个第二极耳位于电池的第三方向相反两侧,且多个第二极耳位于电池的第三方向的同一侧并串联。由于第一结构包括一个第一极耳,从而可以减少极耳的使用数量,减少因使用多个极耳而占用电池的侧向(例如第三方向)的空间,造成电池的侧向空间的浪费,在一定程度上避免电池的能量密度的损失。
在上述第一方面的一种可能实现中,第一方向、第二方向和第三方向相互垂直。
附图说明
图1根据本申请的一些实施例,示出了锂电池的结构示意图一;
图2根据本申请的一些实施例,示出了锂电池结构示意图二;
图3a根据本申请的一些实施例,示出了锂电池的结构示意图三;
图3b根据本申请的一些实施例,示出了图3a中A-A方向的剖视图;
图4根据本申请的一些实施例,示出了锂电池的结构示意图四;
图5根据本申请的一些实施例,示出了锂电池的结构示意图五;
图6根据本申请的一些实施例,示出了锂电池的结构示意图六。
具体实施方式
以下将参考附图详细说明本申请的具体实施方式。
本申请实施例提供了一种电池,通过介于卷绕式与叠片式之间的生产方式形成电池,在降低生产成本的同时,提升电池的能量密度。
本申请实施例的电池是以锂电池为示例说明的,但本申请的锂电池的结构和形成方法还可以适用于其它类型的电池,例如蓄电池、太阳能电池等电池类型。
图1示出了一种可能的实施方式中锂电池1的结构示意图一。该锂电池1的生产方式是卷绕式。
如图1所示,锂电池1包括正极片10、负极片11和位于正极片10和负极片11之间的隔膜12。即,锂电池1的正极片10和负极片11是通过隔膜12分隔开。其中,正极片10是经过分条机之后的极片,属于一个完整的没有切割的极片,正极片10整体呈带状。负极片11是经过分条机之后的极片,属于一个完整的没有切割的极片,负极片11整体呈带状。隔膜12是经过分条机之后的膜片,属于一个完整的没有切割的膜片,隔膜12整体呈带状。
示例性地,按照正极片10-隔膜12-负极片11-隔膜12沿锂电池的厚度方向(图1中Z方向所示)堆叠在一起,然后按同一个方向进行卷绕(图1中A方向示出卷绕方向),在卷绕过程中,正极片10、负极片11以及隔膜12都会同步被卷绕,形成了大致呈跑道状的电池结构。如图1所示,由于正极片10、负极片11以及隔膜12都会同步被卷绕,从而卷绕成型后的锂电池1长度方向(图1中X方向所示)的两侧形成了弯曲部13(R角)。这导致电池的四个角落处(A1、A2、A3、A4)没有正极片10或负极片11,会损失能量密度,并且空间也浪费,进而造成电池容量损失。
为此,本申请实施例提供了另外一种通过叠片方式形成的锂电池1。即,该锂电池1的生产方式为叠片式。
图2示出了采用叠片方式形成的锂电池2的结构示意图,图2示出的类似是图1所示的A-A方向的剖视图。
如图2所示,锂电池2为叠片结构,该锂电池2包括多个正极片21、多个负极片22和多个位于正极片21和负极片22之间的隔膜23。同样,锂电池2的正极片21和负极片22是通过隔膜23分隔开。示例性地,多个正极片21构成正极片单元,多个负极片22构成负极片单元,多个隔膜23构成隔膜单元。
其中,每个正极片21是经过模切机切割后的极片,即在一个完整的正极片上按照需要的样式进行切割,形成多个正极片21。也即,先经过分条机之后形成完整的正极片,完整的正极片通过模切机切割成多个正极片21。
负极片22是经过模切机切割后的极片,即在一个完整的负极片上进行切割,形成多个负极片22。也即,先经过分条机之后形成完整的负极片,完整的负极片通过模切机切割成多个负极片22。
隔膜23是经过模切机切割后的膜片,即在一个完整的隔膜上进行切割,形成多个隔膜23。也即,先经过分条机之后形成完整的隔膜,完整的隔膜通过模切机切割成多 个隔膜23。
示例性地,集流体在涂布上活性物质之后,进行相应的辊压,按照电池尺寸裁切。然后按照隔膜23-正极片21-隔膜23-负极片22-隔膜23的方式,沿厚度方向(图2中Z方向所示)将极片堆叠起来,形成一个长方体状的锂电池2结构。此种叠片式方案制作流程复杂,成本高,但是生产的锂电池2的能量密度高。
但同时,由于各个正极片21和各个负极片22是经过切割后形成的极片,如图2所示,每个正极片21的宽度方向(图2中Y方向所示)的一侧上设有正极极耳211,每个负极片22的宽度方向的一侧上设有负极极耳221。而正极极耳211和负极极耳221是沿宽度方向凸出锂电池2,这就导致锂电池2沿宽度方向布置有负极极耳221和正极极耳211,锂电池2在该方向上会损失一定的尺寸空间,浪费一定的能量密度。
为此,本申请实施例还提供了一种介于卷绕式与叠片式之间的生产方式形成的锂电池。下文会示例性介绍本实施例中锂电池的正极片、负极片和隔膜中的一个或两个结构采用完整结构(用于生产过程中的卷绕),锂电池的正极片、负极片和隔膜中的一个或两个结构采用切割后的结构(用于生产过程中的叠片)。
示例性地,在应用场景一中,锂电池3的正极片31采用完整结构,锂电池3的负极片32和隔膜33采用经切割后的结构(可参考图3a和图3b);在应用场景二中,锂电池3的正极片31和隔膜33采用完整结构,锂电池3的负极片32采用经切割后的结构(可参考图4);在应用场景三中,锂电池3的负极片32采用完整结构,锂电池3的正极片31和隔膜33采用经切割后的结构(可参考图5);在应用场景四中,锂电池3的负极片32和隔膜33采用完整结构,锂电池3的正极片31采用经切割后的结构(可参考图6)。
下面结合附图详细说明各应用场景的锂电池3结构和锂电池3的制造方法。
应用场景一:
参考图3a,本申请实施例的锂电池3包括:一个呈带状的正极片31、多个呈片状的负极片32和多个呈片状的隔膜33。示例性地,一个呈带状的正极片31构成锂电池3的正极片单元,多个呈片状的负极片22构成锂电池3的负极片单元,多个隔膜33构成锂电池3的隔膜单元。其中,正极片31是完整的结构,例如是经过分条机之后后的极片。负极片32是经切割后的结构,例如是经过模切机切割后的极片。隔膜33是经切割后的结构,例如是经过模切机切割后的膜片。
如图3a所示,锂电池3中的正极片31括多个正极扁平部311和多个正极弯折部312,多个正极扁平部311沿厚度方向(图3a中Z方向所示)层叠设置,每一个正极弯折部312沿厚度方向延伸,相邻的两个正极扁平部311通过一个正极弯折部312连接,相邻的两个正极弯折部312沿锂电池3的长度方向(图3a中X方向所示)位于正极扁平部311的相反两侧。相当于,本申请实施例的完整的结构的正极片31卷绕方式类似之字形的卷绕方式。
本申请对锂电池3中正极扁平部311和正极弯折部312的数量不做限制,与正极片31卷绕的次数有关系。图3a中示出,锂电池3的正极片31卷绕后形成了三个正极扁平部311以及两个正极弯折部312。
由于本申请中,锂电池3采用部分堆叠和部分卷绕的方式形成,因此,锂电池3 四周形成的R角小。例如,本申请实施例的正极片31经卷绕后形成的正极弯折部312和正极扁平部311之间形成的R角小,从而导致锂电池3整体的R角小。从而提升了锂电池3的能量密度,减小锂电池3的容量损失。
需要说明的是,上述的正极扁平部311和正极弯折部312可以垂直或近似垂直,例如正极扁平部311和正极弯折部312呈90°设置;也可以是在90°一定范围内浮动,例如夹角是88°、89°89.5°、90.1°、90.5°、91°、92°等;本申请不对正极扁平部311和正极弯折部312做严格的限制。需要说明的是,正极扁平部311和正极弯折部312之间可以具有一定的圆弧角(圆弧过渡)。
同时,多个负极片32沿厚度方向层叠设置,多个隔膜33沿厚度方向层叠设置。沿厚度方向,正极片31的相邻的两个正极扁平部311之间设有两个隔膜33和一个负极片32,一个正极扁平部311和一个负极片32之间设有一个隔膜33。也即,正极片31采用卷绕方式形成正极扁平部311和正极弯折部312,其中,多个正极扁平部311、多个负极片32以及多个隔膜33沿厚度方向采用叠片的形式堆叠起来,例如是按照正极扁平部311-隔膜33-负极片32-隔膜33-正极扁平部311的方式堆叠形成锂电池3。这种叠片方式降低了生产成本,提供了锂电池3的生产效率。
继续参考图3a,沿长度方向,每一个负极片32与相应的正极弯折部312间隔设置,图3a中示出负极片32与正极弯折部312之间存在间隔A。防止负极片32与正极弯折部312相接触造成短路。示例性地,沿长度方向,每一个负极片32的长度短于每一个隔膜33的长度,以防止负极片32与正极弯折部312相接触造成短路。
请参考图3a和图3b,图3b是图3a中A-A方向的剖视图。如图3a和图3b所示,一个呈带状的正极片31包括一个正极极耳313;而多个呈片状的负极片32中的每一个负极片32包括一个负极极耳323。即,本申请实施例的锂电池3包括一个正极极耳313和多个负极极耳323。示例性地,多个负极极耳323位于锂电池3的宽度方向的同一侧并串联。正极极耳313位于锂电池3的厚度方向的一侧,并设于正极扁平部311,正极极耳313并不占用锂电池3的宽度方向的空间。
相比于图2所示的锂电池的结构,使用完整结构的正极片,可以只设置一个正极极耳,可以提升加工效率;同时可以减少正极极耳的使用数量,减少因使用多个正极极耳而占用电池的宽度方向的空间,造成电池的宽度方向的浪费,在一定程度上避免锂电池的能量密度的损失。
综上,在应用场景一中,正极片31是完整的结构,正极片31经卷绕(例如按照类似之字形方式卷绕)形成正极扁平部311和正极弯折部312,正极扁平部311和正极弯折部312之间的R角的减小提升了能量密度;同时,负极片32和隔膜33采用经切割的结构,降低了生产成本;相比于完全采用叠片方式生产锂电池3,减少正极片31的切割工位,从而达到降低成本的目的。
应用场景二:
应用场景二与应用场景一的区别在于,锂电池3的正极片31和隔膜33采用完整结构,锂电池3的负极片32采用经切割后的结构。参考图4,本申请实施例的锂电池3包括:一个呈带状的正极片31、多个呈片状的负极片32、两个呈带状的隔膜33。示例性地,一个呈带状的正极片31构成锂电池3的正极片单元,多个呈片状的负极片 22构成锂电池3的负极片单元,两个呈带状的隔膜33构成锂电池3的隔膜单元。
其中,正极片31经卷绕后也是包括多个扁平部和多个弯折部,具体结构形式与应用场景一中的正极片31的结构相同,具体可以参见应用场景一的相关描述,在此不再赘述。
本申请实施例中,每一个隔膜33包括多个隔膜扁平部331和多个隔膜弯折部332,每一个隔膜33的多个隔膜扁平部331沿厚度方向层叠设置,每一个隔膜33的每一个隔膜弯折部332沿厚度方向延伸,每一个隔膜33的相邻的两个隔膜扁平部331通过隔膜33的一个隔膜弯折部332连接,每一个隔膜33的相邻的两个隔膜弯折部332沿长度方向位于隔膜33的隔膜扁平部331的相反两侧。相当于,本申请实施例的完整的结构的每一个隔膜33卷绕方式类似之字形的卷绕方式。本申请对锂电池3中隔膜扁平部331和隔膜弯折部332的数量不做限制,与隔膜33卷绕的次数有关系。图4中示出,锂电池3的隔膜33卷绕后形成了三个隔膜扁平部331以及两个隔膜弯折部332。
从而,本申请实施例的正极片31经卷绕后形成的正极弯折部312和正极扁平部311相互垂直,所形成的R角小。同时,本申请实施例的两个隔膜33经卷绕后分别形成的隔膜弯折部332和隔膜扁平部331相互垂直,所形成的R角小。从而提升了锂电池3的能量密度,减小锂电池3的容量损失。
其中,正极片31位于两个隔膜33之间。示例性地,正极片31的正极扁平部311平行于两个隔膜33的隔膜扁平部331,正极片31的正极弯折部312平行于两个隔膜33的隔膜弯折部332。
同时,多个负极片32沿厚度方向层叠设置,每一个负极片32位于相应的隔膜33的相邻的两个隔膜扁平部331之间。例如,图4中示出,相邻的两个负极片32中的一个负极片32位于其中一个隔膜33(例如图4所示的左侧的隔膜33)的相邻的两个隔膜扁平部331之间,相邻的两个负极片32中的另外一个负极片32位于另外一个隔膜33(例如图4所示的右侧的隔膜33)的相邻的两个隔膜扁平部331之间。
也即,正极片31采用卷绕方式形成正极扁平部311和正极弯折部312,两个隔膜33采用卷绕方式分别形成隔膜扁平部331和隔膜弯折部332。其中,多个正极扁平部311、多个负极片32以及多个隔膜扁平部331沿厚度方向采用叠片的形式堆叠起来,例如是按照隔膜扁平部331-正极扁平部311-隔膜扁平部331-负极片32-隔膜扁平部331-正极扁平部311的方式堆叠形成锂电池3。这种叠片方式降低了生产成本,提供了锂电池3的生产效率。
需要说明的是,上述的隔膜弯折部332和隔膜扁平部331可以垂直或近似垂直,例如隔膜弯折部332和隔膜扁平部331呈90°设置;也可以是在90°一定范围内浮动,例如夹角是88°、89°89.5°、90.1°、90.5°、91°、92°等;本申请不对隔膜弯折部332和隔膜扁平部331做严格的限制。需要说明的是,隔膜弯折部332和隔膜扁平部331之间可以具有一定的圆弧角(圆弧过渡)。
同样,本实施例中,沿长度方向,每一个负极片32与相应的隔膜33的隔膜弯折部332间隔设置(图4中A示出间隔)。示例性地,沿长度方向,每一个负极片32的长度短于相应的隔膜33的隔膜扁平部331的长度。
另外,本申请实施例中,一个呈带状的正极片31包括一个正极极耳313;而多个 呈片状的负极片32中的每一个负极片32也包括一个负极极耳323。具体设置形式可参见应用场景一中的相关描述,在此不再赘述。
综上,在应用场景二中,正极片31和隔膜33是完整的,正极片31经卷绕(例如按照类似之字形方式卷绕)形成正极扁平部311和正极弯折部312,正极扁平部311和正极弯折部312之间的R角减小;隔膜33片经卷绕(例如按照类似之字形方式卷绕)形成隔膜扁平部331和隔膜弯折部332,隔膜扁平部331和隔膜弯折部332之间的R角的减小,提升了能量密度提升了能量密度;同时,负极片32采用经切割的结构,降低了生产成本;相比于完全采用叠片方式生产锂电池3,减少正极片31和隔膜33的切割工位,从而达到降低成本的目的。
应用场景三:
应用场景三与应用场景一的区别在于,锂电池3的负极片32采用完整结构,锂电池3的正极片31和隔膜33采用经切割后的结构。
参考图5,本申请实施例的锂电池3包括:一个呈带状的负极片32、多个呈片状的正极片31和多个呈片状的隔膜33。示例性地,一个呈带状的负极片32构成锂电池3的负极片单元,多个呈片状的正极片31构成锂电池3的正极片单元,多个呈片状的隔膜33构成锂电池3的隔膜单元。
如图5所示,锂电池3中的负极片32括多个负极扁平部321和多个负极弯折部322,多个负极扁平部321沿厚度方向(图5中Z方向所示)层叠设置,每一个负极弯折部322沿厚度方向延伸,相邻的两个负极扁平部321通过一个负极弯折部322连接,相邻的两个负极弯折部322沿锂电池3的长度方向(图5中X方向所示)位于负极扁平部321的相反两侧。相当于,本申请实施例的完整的结构的负极片32卷绕方式是之字形。
本申请对锂电池3中负极扁平部321和负极弯折部322的数量不做限制,与负极片32卷绕的次数有关系。图5中示出,锂电池3的负极片32卷绕后形成了三个负极扁平部321以及两个负极弯折部322。
上述的锂电池3的厚度方向和长度方向垂直。也即,本申请实施例的负极片32经卷绕后形成的负极弯折部322和负极扁平部321相互垂直,所形成的R角小。从而提升了锂电池3的能量密度,减小锂电池3的容量损失。
同时,多个正极片31沿厚度方向层叠设置,多个隔膜33沿厚度方向层叠设置。沿厚度方向,负极片32的相邻的两个负极扁平部321之间设有两个隔膜33和一个正极片31,一个负极扁平部321和一个正极片31之间设有一个隔膜33。也即,负极片32采用卷绕方式形成负极扁平部321和负极弯折部322,其中,多个负极扁平部321、多个正极片31以及多个隔膜33沿厚度方向采用叠片的形式堆叠起来,例如是按照负极扁平部321-隔膜33-正极片31-隔膜33-负极扁平部321的方式堆叠形成锂电池3。这种叠片方式降低了生产成本,提供了锂电池3的生产效率。
需要说明的是,上述的负极弯折部322和负极扁平部321可以垂直或近似垂直,例如负极弯折部322和负极扁平部321呈90°设置;也可以是在90°一定范围内浮动,例如夹角是88°、89°89.5°、90.1°、90.5°、91°、92°等;本申请不对负极弯折部322和负极扁平部321做严格的限制。需要说明的是,负极弯折部322和负极扁平 部321之间可以具有一定的圆弧角(圆弧过渡)。
继续参考图5,沿长度方向,每一个正极片31与相应的负极弯折部322间隔设置(图5中A示出了间隔),防止正极片31与负极弯折部322相接触造成短路。示例性地,沿长度方向,每一个正极片31的长度短于每一个隔膜33的长度,以防止正极片31与负极弯折部322相接触造成短路。
另外,本申请实施例中,一个呈带状的负极片32包括一个负极极耳;而多个呈片状的正极片31中的每一个正极片31包括一个正极极耳。即,本申请实施例的锂电池3包括一个正极极耳313和多个负极极耳323。示例性地,多个正极极耳位于锂电池3的宽度方向的同一侧并串联。负极极耳位于锂电池3的厚度方向的一侧,并设于负极扁平部321,负极极耳并不占用锂电池3的宽度方向的空间。一个负极极耳和多个正极极耳的布置形式可参见图3b所示。
相比于图2所示的锂电池的结构,使用完整结构的正负极片,可以提升加工效率;同时可以减少负极极耳的使用数量,减少因使用多个负极极耳而占用电池的宽度方向的空间,造成电池的宽度方向的浪费,在一定程度上避免锂电池的能量密度的损失。综上,在应用场景三中,负极片32是完整的,负极片32经卷绕(例如按照类似之字形方式卷绕)形成负极扁平部321和负极弯折部322,负极扁平部321和负极弯折部322之间的R角的减小提升了能量密度;同时,正极片31和隔膜33采用经切割的结构,降低了生产成本;相比于完全采用叠片方式生产锂电池3,减少负极片32的切割工位,从而达到降低成本的目的。
应用场景四:
应用场景四与应用场景二的区别在于,锂电池3的负极片32和隔膜33采用完整结构,锂电池3的正极片31采用经切割后的结构。
参考图6,本申请实施例的锂电池3包括:一个呈带状的负极片32、多个呈片状的正极片31、两个呈带状的隔膜33。示例性地,一个呈带状的负极片32构成锂电池3的负极片单元,多个呈片状的正极片31构成锂电池3的正极片单元,两个呈带状的隔膜33构成锂电池3的隔膜单元。
其中,两个隔膜33经卷绕后也是分别包括多个隔膜扁平部331和多个隔膜弯折部332,具体结构形式与应用场景二中的隔膜33的结构相同,具体可以参见应用场景二的相关描述,在此不再赘述。
如图6所示,锂电池3中的负极片32括多个负极扁平部321和多个负极弯折部322,多个负极扁平部321沿厚度方向(图6中Z方向所示)层叠设置,每一个负极弯折部322沿厚度方向延伸,相邻的两个负极扁平部321通过一个负极弯折部322连接,相邻的两个负极弯折部322沿锂电池3的长度方向(图6中X方向所示)位于负极扁平部321的相反两侧。相当于,本申请实施例的完整的结构的负极片32卷绕方式类似之字形卷绕方式。
本申请对锂电池3中负极扁平部321和负极弯折部322的数量不做限制,与负极片32卷绕的次数有关系。图6中示出,锂电池3的负极片32卷绕后形成了三个负极扁平部321以及两个负极弯折部322。
上述的锂电池3的厚度方向和长度方向垂直。也即,本申请实施例的负极片32 经卷绕后形成的负极弯折部322和负极扁平部321相互垂直,所形成的R角小。同时,本申请实施例的两个隔膜33经卷绕后分别形成的隔膜弯折部332和隔膜扁平部331相互垂直,所形成的R角小。从而提升了锂电池3的能量密度,减小锂电池3的容量损失。
其中,负极片32位于两个隔膜33之间。示例性地,负极片32的负极扁平部321平行于两个隔膜33的隔膜扁平部331,负极片32的正极弯折部312平行于两个隔膜33的隔膜弯折部332。
同时,多个正极片31沿厚度方向层叠设置,每一个正极片31位于相应的隔膜33的相邻的两个隔膜扁平部331之间。例如,图6中示出,相邻的两个正极片31中的一个正极片31位于其中一个隔膜33(例如图6所示的左侧的隔膜33)的相邻的两个隔膜扁平部331之间,相邻的两个正极片31中的另外一个负极片32位于另外一个隔膜33(例如图6所示的右侧的隔膜33)的相邻的两个隔膜扁平部331之间。
也即,负极片32采用卷绕方式形成负极扁平部321和负极弯折部322,两个隔膜33采用卷绕方式分别形成隔膜扁平部331和隔膜弯折部332。其中,多个负极扁平部321、多个正极片31以及多个隔膜扁平部331沿厚度方向采用叠片的形式堆叠起来,例如是按照隔膜扁平部331-负极扁平部321-隔膜扁平部331-正极片31-隔膜扁平部331-正极扁平部311的方式堆叠形成锂电池3。这种叠片方式降低了生产成本,提供了锂电池3的生产效率。
需要说明的是,上述的负极弯折部322和负极扁平部321可以垂直或近似垂直,例如负极弯折部322和负极扁平部321呈90°设置;也可以是在90°一定范围内浮动,例如夹角是88°、89°89.5°、90.1°、90.5°、91°、92°等;本申请不对负极弯折部322和负极扁平部321做严格的限制。需要说明的是,负极弯折部322和负极扁平部321之间可以具有一定的圆弧角(圆弧过渡)。
同样,本实施例中,沿长度方向,每一个正极片31与相应的隔膜33的隔膜弯折部332间隔设置(图6中A示出间隔)。示例性地,沿长度方向,每一个正极片31的长度短于相应的隔膜33的隔膜扁平部331的长度。
综上,在应用场景四中,负极片32和隔膜33是完整的,负极片32经卷绕(例如按照类似之字形方式卷绕)形成负极扁平部321和负极弯折部322,负极扁平部321和负极弯折部322之间的R角减小;隔膜33片经卷绕(例如按照类似之字形方式卷绕)形成隔膜扁平部331和隔膜弯折部332,隔膜扁平部331和隔膜弯折部332之间的R角的减小,提升了能量密度提升了能量密度;同时,正极片31采用经切割的结构,降低了生产成本;相比于完全采用叠片方式生产锂电池3,减少负极片32和隔膜33的切割工位,从而达到降低成本的目的。
另外,本申请实施例中,一个呈带状的负极片32包括一个负极极耳;而多个呈片状的正极片31中的每一个正极片31包括一个正极极耳。具体设置形式可参见应用场景三中的相关描述,在此不再赘述。
在一些可能的实施方式中,本申请实施例还提供了一种应用场景一中的锂电池3的制造方法,制造方法包括:
提供一个呈带状的正极片31,将正极片31卷绕,以形成图3所示的正极片31的 结构,具体参见上文应用场景一中的相关描述;示例性地,正极片31是完整的结构,例如是经过分条机之后的极片;
提供多个呈片状的负极片32,将多个负极片32沿厚度方向层叠设置;示例性地,每个负极片32是经切割后的结构,例如是经过模切机切割后的极片;
提供多个呈片状的隔膜33,将多个隔膜33沿厚度方向层叠设置;示例性地,隔膜33是经切割后的结构,例如是经过模切机切割后的膜片;
沿厚度方向,正极片31的相邻的两个正极扁平部311之间设有两个隔膜33和一个负极片32,一个正极扁平部311和一个负极片32之间设有一个隔膜33。
通过采用介于卷绕式与叠片式之间的制造方法制造的锂电池3,在降低成本的同时,提升锂电池3的能量密度。
在一些可能的实施方式中,本申请实施例还提供了一种应用场景二中的锂电池3的制造方法,制造方法包括:
提供一个呈带状的正极片31,示例性地,正极片31是完整的结构,例如是经过分条机之后的极片;
提供两个呈带状的隔膜33,示例性地,隔膜33是完整的结构,例如是经过分条机之后的膜片;
正极片31位于两个隔膜33之间;
将正极片31卷绕,以形成图4所示的正极片31的结构,具体参见上文应用场景二中的相关描述;
将两个隔膜33卷绕,以形成图4所示的隔膜33的结构,具体参见上文应用场景二中的相关描述;示例性地,可以将两个隔膜33和两个隔膜33之间的正极片31同时卷绕;
提供多个呈片状的负极片32,将多个负极片32沿厚度方向层叠设置,每一个负极片32位于相应的隔膜33的相邻的两个隔膜扁平部331之间;
通过采用介于卷绕式与叠片式之间的制造方法制造的锂电池3,在降低成本的同时,提升锂电池3的能量密度。
在一些可能的实施方式中,本申请实施例还提供了一种应用场景三中锂电池3的制造方法,制造方法包括:
提供一个呈带状的负极片32,将负极片32卷绕,以形成图5所示的负极片32的结构,具体参见上文应用场景三中的相关描述;示例性地,负极片32是完整的结构,例如是经过分条机之后的极片;
提供多个呈片状的正极片31,将多个正极片31沿厚度方向层叠设置;示例性地,每个正极片31是经切割后的结构,例如是经过模切机切割后的极片;
提供多个呈片状的隔膜33,将多个隔膜33沿厚度方向层叠设置;示例性地,隔膜33是经切割后的结构,例如是经过模切机切割后的膜片。
沿厚度方向,负极片32的相邻的两个负极扁平部321之间设有两个隔膜33和一个正极片31,一个负极扁平部321和一个正极片31之间设有一个隔膜33。
通过采用介于卷绕式与叠片式之间的制造方法制造的锂电池3,在降低成本的同时,提升锂电池3的能量密度。
在一些可能的实施方式中,本申请实施例还提供了一种应用场景四中的锂电池3的制造方法,制造方法包括:
提供一个呈带状的负极片32,示例性地,负极片32是完整的结构,例如是经过分条机之后的极片;
提供两个呈带状的隔膜33,示例性地,隔膜33是完整的结构,例如是经过分条机之后的膜片;
负极片32位于两个隔膜33之间;
将负极片32卷绕,以形成图6所示的负极片32的结构,具体参见上文应用场景四中的相关描述;
将两个隔膜33卷绕,以形成图6所示的隔膜33的结构,具体参见上文应用场景四中的相关描述;示例性地,可以将两个隔膜33和两个隔膜33之间的负极片32同时卷绕;
提供多个呈片状的正极片31,将多个正极片31沿厚度方向层叠设置,每一个正极片31位于相应的隔膜33的相邻的两个隔膜扁平部331之间。
通过采用介于卷绕式与叠片式之间的制造方法制造的锂电池3,在降低成本的同时,提升锂电池3的能量密度。
综上,本申请实施例采用介于卷绕式与叠片式之间的生产方式生产锂电池,所生产的锂电池的R角减小,提升了锂电池的能量密度,同时还达到降低生产成本的目的。

Claims (20)

  1. 一种电池,其特征在于,包括:第一结构和第二结构;其中,
    所述第一结构包括多个扁平部和多个弯折部,所述多个扁平部沿第一方向层叠设置,每一个所述弯折部沿所述第一方向延伸,相邻的两个所述扁平部通过一个所述弯折部连接,相邻的两个所述弯折部沿第二方向位于所述扁平部的相反两侧;
    所述第二结构包括多个扁平部,所述第二结构的所述多个扁平部沿所述第一方向层叠设置;
    沿所述第一方向,所述第二结构的所述扁平部位于所述第一结构的所述扁平部之间。
  2. 如权利要求1所述的电池,其特征在于,所述第一结构的所述扁平部是正极扁平部,所述第一结构的所述弯折部是正极弯折部;所述第二结构的所述多个扁平部包括负极扁平部和隔膜扁平部;
    所述正极扁平部和所述负极扁平部之间通过一个所述隔膜扁平部分隔。
  3. 如权利要求2所述的电池,其特征在于,沿所述第一方向,相邻的两个所述正极扁平部之间设有两个所述隔膜扁平部和一个所述负极扁平部,一个所述正极扁平部和一个所述负极扁平部之间设有一个所述隔膜扁平部。
  4. 如权利要求3所述的电池,其特征在于,沿所述第二方向,每一个所述负极扁平部与相应的所述正极弯折部间隔设置。
  5. 如权利要求4所述的电池,其特征在于,沿所述第二方向,每一个所述负极扁平部的长度短于每一个所述隔膜扁平部的长度。
  6. 如权利要求1所述的电池,其特征在于,所述第一结构的所述扁平部包括正极扁平部和隔膜扁平部,所述第一结构的所述弯折部包括正极弯折部和隔膜弯折部;所述正极扁平部与所述正极弯折部连接,所述隔膜扁平部与所述隔膜弯折部连接;
    沿所述第一方向,每一个所述正极扁平部位于相邻的两个所述隔膜扁平部之间;
    沿所述第二方向,每一个所述正极弯折部位于相邻的两个所述隔膜弯折部之间;
    所述第二结构的所述扁平部是负极扁平部;
    一个所述正极扁平部和一个所述负极扁平部之间通过一个所述隔膜扁平部分隔。
  7. 如权利要求6所述的电池,其特征在于,每一个所述负极扁平部位于相邻的两个所述隔膜扁平部之间。
  8. 如权利要求7所述的电池,其特征在于,沿所述第二方向,每一个所述负极扁平部与相应的所述隔膜弯折部间隔设置。
  9. 如权利要求8所述的电池,其特征在于,沿所述第二方向,每一个所述负极扁平部长度短于相应的所述隔膜扁平部的长度。
  10. 如权利要求1所述的电池,其特征在于,所述第一结构的所述扁平部是负极扁平部,所述第一结构的所述弯折部是负极弯折部;所述第二结构的所述多个扁平部包括正极扁平部和隔膜扁平部;
    所述负极扁平部和所述正极扁平部之间通过一个所述隔膜扁平部分隔。
  11. 如权利要求10所述的电池,其特征在于,沿所述第一方向,相邻的两个所述负极扁平部之间设有两个所述隔膜扁平部和一个所述正极扁平部,一个所述负极扁平 部和一个所述正极扁平部之间设有一个所述隔膜扁平部。
  12. 如权利要求11所述的电池,其特征在于,沿所述第二方向,每一个所述正极扁平部与相应的所述负极弯折部间隔设置。
  13. 如权利要求12所述的电池,其特征在于,沿所述第二方向,每一个所述正极扁平部的长度短于每一个所述隔膜扁平部的长度。
  14. 如权利要求1所述的电池,其特征在于,所述第一结构的所述扁平部包括负极扁平部和隔膜扁平部,所述第一结构的所述弯折部包括负极弯折部和隔膜弯折部;所述负极扁平部与所述负极弯折部连接,所述隔膜扁平部与所述隔膜弯折部连接;
    沿所述第一方向,每一个所述负极扁平部位于相邻的两个所述隔膜扁平部之间;
    沿所述第二方向,每一个所述负极弯折部位于相邻的两个所述隔膜弯折部之间;
    所述第二结构的所述扁平部是正极扁平部;
    一个所述负极扁平部和一个所述正极扁平部之间通过一个所述隔膜扁平部分隔。
  15. 如权利要求14所述的电池,其特征在于,每一个所述正极扁平部位于相邻的两个所述隔膜扁平部之间。
  16. 如权利要求15所述的电池,其特征在于,沿所述第二方向,每一个所述正极扁平部与相应的所述隔膜弯折部间隔设置。
  17. 如权利要求16所述的电池,其特征在于,沿所述第二方向,每一个所述正极扁平部长度短于相应的所述隔膜扁平部的长度。
  18. 如权利要求1至17任一项所述的电池,其特征在于,所述第一方向、所述第二方向相互垂直。
  19. 如权利要求1至18任一项所述的电池,其特征在于,所述第一结构包括一个第一极耳;所述第二结构包括多个第二极耳,沿第三方向,一个第一极耳和多个所述第二极耳位于所述电池的第三方向相反两侧,且多个所述第二极耳位于所述电池的第三方向的同一侧并串联。
  20. 如权利要求19所述的电池,其特征在于,所述第一方向、所述第二方向和所述第三方向相互垂直。
PCT/CN2023/113819 2022-09-08 2023-08-18 一种电池 WO2024051477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211098159.2 2022-09-08
CN202211098159.2A CN117673429A (zh) 2022-09-08 2022-09-08 一种电池

Publications (1)

Publication Number Publication Date
WO2024051477A1 true WO2024051477A1 (zh) 2024-03-14

Family

ID=90065057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113819 WO2024051477A1 (zh) 2022-09-08 2023-08-18 一种电池

Country Status (2)

Country Link
CN (1) CN117673429A (zh)
WO (1) WO2024051477A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270242A (ja) * 2001-03-13 2002-09-20 Osaka Gas Co Ltd 非水系二次電池及びその製造方法
WO2013097510A1 (zh) * 2011-12-27 2013-07-04 华为技术有限公司 一种锂离子电池、锂离子电池芯及其制作方法
CN103346353A (zh) * 2013-06-24 2013-10-09 深圳市量能科技有限公司 一种电池电芯、其制造方法及其电池
CN104900905A (zh) * 2015-06-03 2015-09-09 深圳市迪凯特电池科技有限公司 一种叠片式锂离子电池及其生产工艺
CN111354981A (zh) * 2020-05-22 2020-06-30 北京小米移动软件有限公司 电芯结构、锂电池以及终端设备
CN112467230A (zh) * 2020-12-02 2021-03-09 珠海冠宇电池股份有限公司 电芯及锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270242A (ja) * 2001-03-13 2002-09-20 Osaka Gas Co Ltd 非水系二次電池及びその製造方法
WO2013097510A1 (zh) * 2011-12-27 2013-07-04 华为技术有限公司 一种锂离子电池、锂离子电池芯及其制作方法
CN103346353A (zh) * 2013-06-24 2013-10-09 深圳市量能科技有限公司 一种电池电芯、其制造方法及其电池
CN104900905A (zh) * 2015-06-03 2015-09-09 深圳市迪凯特电池科技有限公司 一种叠片式锂离子电池及其生产工艺
CN111354981A (zh) * 2020-05-22 2020-06-30 北京小米移动软件有限公司 电芯结构、锂电池以及终端设备
CN112467230A (zh) * 2020-12-02 2021-03-09 珠海冠宇电池股份有限公司 电芯及锂离子电池

Also Published As

Publication number Publication date
CN117673429A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2022242578A1 (zh) 极耳极片及卷绕电池
WO2020078081A1 (zh) 叠片电芯及其制作方法、锂电池
CN110783638B (zh) 一种卷绕堆叠式电芯及其制备方法
KR101291063B1 (ko) 2차 전지 내부 셀 스택 적층 장치 및 방법
JP2015528639A (ja) ノッチ部を含む電極シート
CN113571761A (zh) 一种夹叠式电极组件及其制作方法
WO2019107776A1 (ko) 전극 조립체 및 이를 포함하는 배터리
WO2024051477A1 (zh) 一种电池
WO2024022130A1 (zh) 卷芯、方形电池以及储能装置
CN113795939A (zh) 电极组件及电芯
KR20160079227A (ko) 비대칭의 라운드 모서리를 포함하는 전극 탭을 구비한 전극조립체
CN209119243U (zh) 一种叠片式卷绕锂离子电池结构
CN114122325A (zh) 一种分段式间隔涂布极片及裸电芯
CN112151747A (zh) 一种极片、电芯及其叠片方法、扣式电池
CN215732080U (zh) 一种夹叠式电芯以及电池
CN217788448U (zh) 一种分段式间隔涂布极片及裸电芯
CN220774673U (zh) 一种正负极片交错排布的叠片电芯及电池
CN217334189U (zh) 一种电池
CN218568937U (zh) 极片组合件及电芯
CN219759678U (zh) 一种电池单元及电池模组
CN217562605U (zh) 一种叠片复合带及电池卷芯
CN217361696U (zh) 一种极耳内置式卷芯
KR102159530B1 (ko) 고정 홀이 형성된 단위셀을 포함하고 있는 전극조립체 스택
CN218677250U (zh) 一种单元组合叠片式电池
CN112038707B (zh) 电芯及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862174

Country of ref document: EP

Kind code of ref document: A1