WO2024051415A1 - 频段资源的处理方法、通信方法、设备和存储介质 - Google Patents

频段资源的处理方法、通信方法、设备和存储介质 Download PDF

Info

Publication number
WO2024051415A1
WO2024051415A1 PCT/CN2023/111180 CN2023111180W WO2024051415A1 WO 2024051415 A1 WO2024051415 A1 WO 2024051415A1 CN 2023111180 W CN2023111180 W CN 2023111180W WO 2024051415 A1 WO2024051415 A1 WO 2024051415A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
frequency bands
frequency
accessed
terminal
Prior art date
Application number
PCT/CN2023/111180
Other languages
English (en)
French (fr)
Inventor
徐志兵
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024051415A1 publication Critical patent/WO2024051415A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • This application relates to the field of communication technology, and specifically relates to frequency band resource processing methods, communication methods, equipment and storage media.
  • network-side devices when network-side devices communicate with terminals, they usually use transmission resources with higher frequency bands to transmit communication data to improve data transmission efficiency.
  • Embodiments of the present application provide a method for processing frequency band resources.
  • the method includes: determining channel characteristic information, which is information representing the electrical characteristics of a communication channel connected to a terminal to be accessed; and closing multiple frequency bands to be allocated. Target frequency bands that do not meet the preset conditions.
  • the preset conditions are conditions determined based on channel characteristic information and the frequency band requirements of the terminal to be accessed.
  • Embodiments of the present application provide a communication method.
  • the method includes: closing a target frequency band that does not meet the preset conditions among multiple frequency bands to be allocated according to any one of the frequency band resource processing methods in the embodiments of the present application; and using the method that meets the preset conditions.
  • Conditional frequency band to send information includes: closing a target frequency band that does not meet the preset conditions among multiple frequency bands to be allocated according to any one of the frequency band resource processing methods in the embodiments of the present application.
  • An embodiment of the present application provides a frequency band resource processing device, which includes: at least one frequency band resource processing device; a frequency band resource processing device configured to execute any frequency band resource processing method in the embodiment of the present application.
  • Embodiments of the present application provide a readable storage medium that stores a computer program.
  • the computer program is executed by a processor, causing the processor to implement any of the frequency band resource processing methods in the embodiments of the present application.
  • Figure 1 shows a schematic flowchart of a method for processing frequency band resources provided by an embodiment of the present application.
  • Figure 2 shows a schematic flowchart of a method for closing a target frequency band provided by an embodiment of the present application.
  • Figure 3 shows a block diagram of a device for processing frequency band resources provided by an embodiment of the present application.
  • FIG. 4 shows a block diagram of a frequency band resource processing device provided by an embodiment of the present application.
  • Figure 5 shows a block diagram of a frequency band resource processing system provided by an embodiment of the present application.
  • Figure 6 shows a block diagram of a frequency band resource processing system provided by an embodiment of the present application.
  • Figure 7 shows a schematic flowchart of a method for processing frequency band resources provided by yet another embodiment of the present application.
  • FIG. 8 shows a schematic diagram of the relationship between the number of data carried and the frequency corresponding to different frequency bands to be allocated according to the embodiment of the present application.
  • Figure 9 shows a schematic diagram of the relationship between the number of data carried and the frequency corresponding to different frequency bands to be allocated after the first type of frequency band is closed according to the embodiment of the present application.
  • Figure 10 shows a schematic diagram of the relationship between the number of data carried and the frequency corresponding to different frequency bands to be allocated in the case of user speed limit provided by the embodiment of the present application.
  • Figure 11 is a schematic diagram illustrating the relationship between the number of data carried and the frequency corresponding to different frequency bands to be allocated when turning off frequency bands other than the second type frequency band among multiple frequency bands to be processed provided by the embodiment of the present application.
  • Figure 12 shows a schematic diagram of the relationship between the number of data carried and the frequency corresponding to multiple frequency bands to be used when the speed is not limited according to the embodiment of the present application.
  • Figure 13 shows a schematic flowchart of the communication method provided by the embodiment of the present application.
  • Figure 14 shows a block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 15 shows a structural diagram of an exemplary hardware architecture of a computing device capable of implementing the method and apparatus for processing frequency band resources according to embodiments of the present invention.
  • network-side equipment In the process of communicating with the terminal, network-side equipment usually uses transmission resources with higher frequency bands to transmit communication data to improve data transmission efficiency. However, compared with the low frequency bandwidth, the high frequency bandwidth attenuates very quickly. In actual use, the high frequency bandwidth attenuates very quickly. In the process, due to the channel attenuation of the communication channel itself, when high-frequency band bandwidth resources are used for data transmission on the communication channel, the communication signal attenuation will be more serious, and the communication data may even be unable to be carried. However, these high-frequency band resources cannot carry While communicating data, power is still being transmitted, causing energy loss in the device.
  • the network side device allocates a communication channel with high frequency band resources to the terminal, it will also cause equipment energy loss.
  • This application provides a frequency band resource processing method, communication method, equipment and storage medium to solve the above problems, reduce the waste of frequency band resources, and thereby save equipment energy consumption.
  • Figure 1 shows a schematic flowchart of a method for processing frequency band resources provided by an embodiment of the present application.
  • the frequency band resource processing method in the embodiment of the present application includes but is not limited to the following steps S110 to S120.
  • step S110 channel characteristic information is determined.
  • the channel characteristic information is information characterizing electrical characteristics of a communication channel connected to the terminal to be accessed.
  • the communication channel may be a channel in wired communication or a channel in wireless communication.
  • the above channel types are only examples, and can be specifically set according to actual needs. Other unexplained channel types are also within the protection scope of this application and will not be described again here.
  • step S120 target frequency bands that do not meet the preset conditions among the multiple frequency bands to be allocated are closed.
  • the preset condition is a condition determined based on channel characteristic information and frequency band requirements of the terminal to be accessed. Filter out the target frequency bands that do not meet the preset conditions and turn off these target frequency bands, which can reduce the waste of target frequency bands and reduce the transmission power and other energy consumed by the device on the target frequency band.
  • the electrical characteristic information of the communication channel connected to the terminal to be accessed can be clarified, so as to facilitate the matching of appropriate frequency band resources for the communication channel; close the incompatible frequency bands in multiple to-be-allocated frequency bands.
  • Target frequency band with preset conditions are conditions determined based on the channel characteristic information and the frequency band requirements of the terminal to be accessed. It can satisfy the channel characteristic information and the frequency band requirements of the terminal to be accessed while reducing the target frequency of the device.
  • the transmission power and other energy consumed on the frequency band is prioritized to use low-frequency band resources and minimize the use of high-frequency band resources, thereby saving equipment energy consumption.
  • electrical characteristics refer to electrical parameters that reflect the transmission quality of communication lines.
  • electrical parameters can be determined by the materials used in the circuit, structural form, design requirements, manufacturing process and construction technical specifications.
  • the DC characteristics include: at least one of wire DC resistance (or loop resistance) information, insulation resistance information, and cable insulation withstand voltage strength information.
  • AC electrical characteristics that is, electrical characteristics under AC conditions
  • AC characteristics include: working capacitance information of the loop, capacitive coupling information between loops, inherent attenuation information, phase shift information, characteristic impedance information, At least one of near-end crosstalk attenuation information, far-end crosstalk defense information, end impedance of the coaxial pair, and wave impedance non-uniformity.
  • the channel characteristic information includes attenuation information; closing the target frequency bands that do not meet the preset conditions among the multiple frequency bands to be allocated in step S120 can be implemented in the following manner.
  • FIG. 2 shows a schematic flowchart of a method for closing a target frequency band provided by an embodiment of the present application.
  • the method of turning off the target frequency band includes but is not limited to the following steps S121 to S123.
  • step S121 the first type of frequency bands that cannot carry communication data among the multiple frequency bands to be allocated are closed according to the attenuation information, and multiple frequency bands to be processed are obtained.
  • the attenuation information represents the attenuation degree of the communication signal when using the first type of frequency band for data transmission on the communication channel.
  • the energy consumed by the first type frequency band is reduced.
  • the multiple frequency bands to be processed can be utilized more rationally.
  • step S122 multiple frequency bands to be processed are screened to obtain a second type of frequency band that meets the frequency band requirements of the terminal to be accessed.
  • the frequency band requirements of the terminal to be accessed may include: at least one of the frequency band that the terminal to be accessed needs to use, the data transmission rate applied for by the terminal to be accessed, and the operating frequency band expected by the terminal to be accessed.
  • the frequency band resources corresponding to a certain (or multiple) frequency bands to be processed meet the frequency band requirements of the terminal to be accessed, it can be determined that the frequency band to be processed is The second type of frequency band.
  • step S123 frequency bands other than the second type of frequency bands among the plurality of frequency bands to be processed are closed.
  • the frequency band requirements of the terminals to be accessed can be met by using the second type of frequency band. Therefore, closing the frequency bands other than the second type of frequency band among the multiple to-be-processed frequency bands can reduce the energy consumed by other frequency bands. Improve the utilization efficiency of frequency band resources.
  • the attenuation information includes: a real-time attenuation value of a communication channel connected to the terminal to be accessed.
  • Closing the first type of frequency band that cannot carry communication data among the multiple frequency bands to be allocated based on the attenuation information in step S121 can be implemented in the following manner.
  • the communication channels corresponding to multiple frequency bands to be allocated are detected respectively, and multiple attenuation values to be confirmed are obtained.
  • the communication channel is the channel connected to the terminal to be accessed. ; Determine and close the first type of frequency band based on multiple attenuation values to be confirmed and real-time attenuation values.
  • the attenuation value to be confirmed corresponding to the first type of frequency band is greater than the real-time attenuation value.
  • the detection method of a single-ended line may be Single-Ended Line Testing (SELT); the detection method of a double-ended line may be Dual-Ended Loop Testing (DELT).
  • SELT Single-Ended Line Testing
  • DELT Dual-Ended Loop Testing
  • the attenuation value to be confirmed corresponding to each frequency band to be allocated can be quickly obtained, which facilitates the processing of different frequency bands to be allocated; further, the to-be-confirmed attenuation values corresponding to each frequency band to be allocated are The attenuation value is compared with the real-time attenuation value of the communication channel connected to the terminal to be accessed.
  • the first type of frequency band may include at least one frequency band to be allocated.
  • the actual line distance between the terminal to be accessed and the network-side device is 600 meters, and the user corresponding to the terminal to be accessed needs to activate a 50M bit per second (bps) service.
  • bps bit per second
  • the communication line uses frequencies of 17MHz (Hertz, Hz) and above.
  • No frequency band can carry communication data (that is, the first type of frequency band includes: frequency bands of 17MHz and above). Therefore, frequency bands with frequencies of 17MHz and above need to be turned off to save energy loss of the equipment.
  • the energy consumption corresponding to the first type of frequency band can be reduced and the energy utilization efficiency of the device can be improved.
  • closing the first type of frequency bands that cannot carry communication data among the multiple frequency bands to be allocated based on the attenuation information in step S121 can also be implemented in the following ways:
  • the communication channel connected to the terminal to be accessed and the multiple frequency bands to be allocated negotiate with the terminal to be accessed and establish communication links respectively, and obtain multiple communication links to be confirmed; based on the attenuation information, provide multiple communication links to the terminal to be accessed respectively. Confirm that the communication link sends communication data; when it is determined that the communication link to be confirmed cannot transmit communication data, determine that the frequency band to be allocated corresponding to the communication link to be confirmed is the first type of frequency band, and close the first type of frequency band.
  • a certain frequency band to be allocated is used on the communication channel connected to the terminal to be accessed, so that the network side device negotiates with the terminal to be accessed, and establishes a communication link with the terminal to be accessed, Obtain the communication link to be confirmed. If communication data cannot be transmitted to the terminal to be accessed through the communication link to be confirmed, it means that the frequency band to be allocated corresponding to the communication link to be confirmed is the first type frequency band, and the first type frequency band is closed. .
  • the network side device evaluates the communication channel connected to the terminal to be accessed and obtains that the theoretical transmission rate of the communication channel is 200Mbps; and the terminal to be accessed applies to activate a service with a data transmission rate of 50Mbps. Therefore, only The frequency band below 10MHz needs to be used to provide communication services for the terminal to be accessed, which can meet the usage requirements of the terminal to be accessed (that is, the data transmission rate is 50Mbps).
  • frequency bands above 10MHz can be automatically turned off (for example, the transmission power corresponding to frequency bands above 10MHz is turned off, etc.), thereby effectively saving frequency band resources and improving the utilization efficiency of frequency band resources while ensuring user experience.
  • screening multiple frequency bands to be processed in step S122 to obtain a second type of frequency band that meets the frequency band requirements of the terminal to be accessed includes: using a preset algorithm to process the multiple frequency bands to be processed, and obtaining The second type of frequency band.
  • the second type of frequency band is a frequency band that meets the frequency band requirements of the terminal to be accessed.
  • the preset algorithm includes multiple preset frequency band thresholds; using the preset algorithm to process multiple to-be-processed frequency bands to obtain the second type of frequency band can be implemented in the following ways:
  • multiple frequency bands to be processed are processed respectively to obtain the second type of frequency band.
  • the frequency band that is lower than the first preset frequency band threshold among the plurality of frequency bands to be processed is set as the first frequency band set. , and continue to use the preset algorithm and the second preset frequency band threshold to process multiple frequency bands in the first frequency band set.
  • the finally obtained second type of frequency band can meet the frequency band needs of the terminal to be accessed, improve the user experience of the terminal, and effectively save frequency band resources. .
  • the frequencies corresponding to the first group of frequency bands are higher than the frequencies corresponding to the second group of frequency bands.
  • the frequency bands in different groups are judged in turn until the minimum frequency band that can meet the frequency band requirements of the terminal to be accessed is obtained, and this frequency band is used as the second type of frequency band for use by the terminal to be accessed. Reduce the waste of frequency band resources and improve the utilization efficiency of frequency band resources.
  • multiple frequency bands to be processed are divided into groups based on a binary algorithm, and after obtaining the first group of frequency bands and the second group of frequency bands, it also includes: determining that the second group of frequency bands does not meet the frequency band requirements of the terminal to be accessed.
  • the multiple to-be-processed frequency bands in the first group of frequency bands are continued to be divided into groups according to the dichotomy algorithm to obtain the first subset of frequency bands and the second subset of frequency bands.
  • the corresponding frequencies of the first subset of frequency bands are higher than those of the second subset.
  • the second group of frequency bands does not meet the frequency band requirements of the terminal to be accessed, it is necessary to To set a part of the multiple pending frequency bands in the first set of frequency bands (for example, multiple pending frequency bands in the second subset of frequency bands) to an available state, thereby continuing to process multiple frequency bands in the second subset of frequency bands.
  • the frequency band to be processed and multiple frequency bands to be processed in the second group of frequency bands are processed so that the multiple frequency bands can meet the frequency band requirements of the terminal to be accessed, and the frequency band that meets the frequency band requirements of the terminal to be accessed is set as the second category frequency band to improve user experience.
  • the channel characteristic information includes: crosstalk information from other communication channels on the communication channel connected to the terminal to be accessed.
  • step S120 Before performing step S120 to close the target frequency band that does not meet the preset conditions among the multiple frequency bands to be allocated, it also includes: determining the frequency band margin according to the crosstalk information; determining the frequency band margin according to the frequency band margin and the frequency band requirements of the terminal to be accessed. Access the required frequency band of the terminal.
  • the crosstalk information may include: interference information from the surrounding environment to the communication channel connected to the terminal to be accessed, and/or interference information from other channels to the communication channel.
  • a certain frequency band margin can be determined so that the frequency band margin is used to offset the degree of attenuation of the communication signal caused by the crosstalk information. Then, the frequency band margin and the frequency band demand of the terminal to be accessed are combined to obtain the frequency band required by the terminal to be accessed, so that the required frequency band can be used to determine the frequency band resources that the terminal to be accessed needs to use, and improve the user experience.
  • the method before determining the channel characteristic information in step S110, the method further includes: dividing the preset frequency band based on the preset number of division segments to obtain multiple frequency bands to be allocated.
  • the larger the preset number of divided segments the higher the accuracy of the frequency band to be allocated.
  • the preset number of divided segments can be 10, 12, 15 and other numerical values to facilitate reasonable allocation of the preset frequency bands.
  • step S120 after closing the target frequency band that does not meet the preset conditions among the multiple frequency bands to be allocated in step S120, it also includes: using the frequency bands other than the target frequency band among the multiple frequency bands to be allocated as the frequency bands to be used. ; Use the frequency band to be used in the communication channel connected to the terminal to be accessed to obtain the channel to be used.
  • the channel to be used is used to transmit communication data with the terminal to be accessed.
  • the frequency band to be used when used as the frequency band used in the communication channel, it can effectively reduce the waste of frequency band resources caused by the opening of the target frequency band, as well as the waste of transmission power corresponding to the target frequency band, and effectively reduce the equipment cost.
  • Energy consumption enables the device to make reasonable use of its own energy, obtain the channel to be used by using the frequency band to be used in the communication channel connected to the terminal to be accessed, and use the channel to be used to transmit the communication with the terminal to be accessed.
  • communication data between devices so that the terminal to be accessed can obtain the communication services provided by the current device, thereby improving the user experience of the terminal and reducing the waste of frequency band resources.
  • using the frequency band to be used in the communication channel connected to the terminal to be accessed, and obtaining the channel to be used includes: obtaining the communication port number of the communication channel connected to the terminal to be accessed; based on the communication port number and the frequency band to be used to generate the channel to be used.
  • the communication port number can be used to characterize the communication channel connected to the terminal to be accessed. Based on the configuration of the communication port number, the communication channel connected to the terminal to be accessed can be processed quickly and accurately. Furthermore, generating a channel to be used based on the communication port number and the frequency band to be used may be to apply the frequency band to be used to the communication channel corresponding to the communication port number, so that the channel to be used can transmit the communication between the current device and the terminal to be accessed. communication data between devices, speeding up the efficiency of configuring communication channels.
  • FIG 3 shows a block diagram of a device for processing frequency band resources provided by an embodiment of the present application.
  • the frequency band resource processing device 300 includes but is not limited to the following modules.
  • the determination module 301 is configured to determine channel characteristic information, which is information that characterizes the electrical characteristics of the communication channel connected to the terminal to be accessed.
  • the processing module 302 is configured to close target frequency bands that do not meet preset conditions among multiple frequency bands to be allocated.
  • the preset conditions are conditions determined based on channel characteristic information and frequency band requirements of terminals to be accessed.
  • frequency band resource processing device in this embodiment can implement any frequency band resource processing method in the embodiments of this application.
  • the frequency band resource processing device by determining the channel characteristic information through the determination module, the electrical characteristic information of the communication channel connected to the terminal to be accessed can be clarified, so as to facilitate matching of appropriate frequency band resources for the communication channel; use
  • the processing module closes the target frequency band that does not meet the preset conditions among the multiple frequency bands to be allocated.
  • the preset conditions are conditions determined based on the channel characteristic information and the frequency band requirements of the terminal to be accessed. It can satisfy the channel characteristic information and the frequency band to be accessed. In addition to the frequency band requirements of the terminal, it reduces the transmission power and other energy consumed by the equipment in the target frequency band, prioritizes the use of low-frequency band resources, and minimizes the use of high-frequency band resources, thereby saving equipment energy consumption.
  • FIG. 4 shows a block diagram of a frequency band resource processing device provided by an embodiment of the present application.
  • the frequency band resource processing device 400 includes: at least one frequency band resource processing device 401; the frequency band resource processing device 401 is configured to execute any frequency band resource processing method in the embodiment of the present application.
  • the frequency band resource processing device of the embodiment of the present application by determining the channel characteristic information through the frequency band resource processing device, the electrical characteristic information of the communication channel connected to the terminal to be accessed can be clarified, so as to facilitate matching of the appropriate frequency band for the communication channel.
  • resources close the target frequency band that does not meet the preset conditions among the multiple frequency bands to be allocated.
  • the preset conditions are conditions determined based on the channel characteristic information and the frequency band requirements of the terminal to be accessed. It can satisfy the channel characteristic information and the frequency band to be accessed. In addition to the frequency band requirements of the terminal, it reduces the energy consumed by the device in the target frequency band such as transmit power, gives priority to low-frequency band resources, minimizes the use of high-frequency band resources, and saves equipment energy consumption.
  • FIG. 5 shows a block diagram of a frequency band resource processing system provided by an embodiment of the present application.
  • the processing system for this frequency band resource includes but is not limited to the following equipment:
  • Frequency band resource processing device 510 and multiple terminals to be accessed (such as the first terminal to be accessed 521, the second terminal to be accessed 522, ..., the nth terminal to be accessed 52n, etc., n represents the terminal to be accessed (n is an integer greater than or equal to 1), the frequency band resource processing device 510 is respectively connected to multiple terminals to be accessed;
  • the frequency band resource processing device 510 is configured to execute any of the frequency band resource processing methods in the embodiments of this application.
  • the terminal to be accessed (such as the first terminal to be accessed 521, etc.) is configured to send an access request to the frequency band resource processing device 510, so that the frequency band resource processing device 510 closes multiple frequency bands to be allocated that do not meet the predetermined requirements.
  • the preset conditions are conditions determined based on channel characteristic information and frequency band requirements of the terminal to be accessed, and the channel to be used is used to transmit communication data between the processing device 510 of frequency band resources and the terminal to be accessed.
  • the access request sent by the terminal to be accessed is obtained through the processing device of the frequency band resource to clarify the usage requirements of the terminal to be accessed, so that the processing device of the frequency band resource determines the channel characteristic information and can clarify the information related to the terminal to be accessed.
  • Information about the electrical characteristics of the communication channel to which the terminal is connected facilitates matching of appropriate frequency band resources for the communication channel; closing target frequency bands that do not meet the preset conditions among multiple frequency bands to be allocated, and the preset conditions are based on the channel characteristic information and
  • the conditions for determining the frequency band requirements of the terminal to be accessed can meet the channel characteristics information and the frequency band requirements of the terminal to be accessed, while reducing the energy consumed by the device in the target frequency band such as transmit power, giving priority to low-frequency band resources, and minimizing high-frequency transmission. Use frequency band resources to save equipment energy consumption.
  • the processing device of the frequency band resource obtains the channel to be used by using the frequency band to be used in the communication channel connected to the terminal to be accessed, so that the channel to be used can transmit communication between the processing device of the frequency band resource and the terminal to be accessed. data to improve data transmission efficiency.
  • FIG. 6 shows a block diagram of a frequency band resource processing system provided by yet another embodiment of the present application.
  • the processing system for this frequency band resource includes but is not limited to the following equipment:
  • the network management system server 610 includes: a parameter evaluation module 611 and an access parameter control module 612; the integrated access system server 620 includes: a parameter collection module 621, a parameter application module 622, and a configuration parameter storage module 623.
  • the network management system server 610 can connect and communicate with the integrated access system server 620 through direct connection or through forwarding through the Internet.
  • the parameter evaluation module 611 is configured to evaluate the port information collected by the parameter collection module 621 in the integrated access system server 620.
  • the access parameter control module 612 is configured to control each module in the integrated access system server 620 and related access parameters.
  • the network management system server 610 can automatically Control and process each module in the integrated access system server 620. For example, when the first terminal to be accessed 631 needs to access the network, the network management system server 610 can configure the network management system server 610 based on the input system-level parameter n, the port number to be opened, and the bandwidth information applied for by the terminal to be opened. The frequency band resources owned by the network management system server 610 are automatically allocated so that the first terminal to be accessed 631 can obtain frequency band resources that match its frequency band requirements. At the same time, it can also ensure that the frequency band resources of the network management system server 610 are not wasted to reduce the risk of Server energy consumption.
  • FIG. 7 shows a schematic flowchart of a method for processing frequency band resources provided by yet another embodiment of the present application.
  • the line is measured through the second-generation Very-high-bit-rate Digital Subscriber loop (VDSL) central office equipment.
  • VDSL Very-high-bit-rate Digital Subscriber loop
  • the frequency band requirements of the terminal to be accessed such as the actual frequency that needs to be opened) Use rate, etc.
  • channel characteristic information such as measuring the channel to obtain information on the electrical characteristics of the communication channel connected to the terminal to be accessed, etc.
  • which frequency bands to be allocated can be closed, and then modify the port configuration template, Automatically turn off the first type of frequency band, as well as the frequency bands in multiple pending frequency bands except the second type frequency band, thereby saving the energy consumption of the device.
  • the frequency band resource processing method includes but is not limited to the following steps S701 to S708.
  • step S701 the network management system server 610 divides the preset frequency band based on the preset number of division segments to obtain multiple frequency bands to be allocated.
  • the frequency bands used in the second generation VDSL are divided into n small segments in sequence.
  • n the higher the accuracy of frequency band control. For example, you can set n equal to 10.
  • step S702 the parameter collection module 621 collects the line parameters corresponding to the port to be opened, and sends the collected line parameters to the parameter evaluation module 611, so that the parameter evaluation module 611 measures the line characteristics corresponding to the port to be opened, and obtains the channel Characteristic information.
  • the channel characteristic information can characterize the electrical characteristics of the communication channel connected between the integrated access system server 620 and the terminal to be accessed. For example, information that can characterize point characteristics of a physical channel (such as a communication path in wired communication) or a logical channel (such as a communication path in wireless communication, etc.), such as attenuation information, crosstalk information from other channels to the communication channel wait.
  • a physical channel such as a communication path in wired communication
  • a logical channel such as a communication path in wireless communication, etc.
  • FIG. 8 shows a schematic diagram of the relationship between the number of data carried and the frequency corresponding to different frequency bands to be allocated according to the embodiment of the present application.
  • the frequency bands to be allocated at different frequencies carry different amounts of data.
  • Band 1 to be allocated carries the largest amount of data, followed by frequency band 2 to be allocated, followed by: frequency band 3 to be allocated, frequency band to be allocated 4,..., frequency band 8 to be allocated; while frequency band 9 and frequency band 10 to be allocated do not carry data volume.
  • step S703 the parameter evaluation module 611 determines whether there is a first type of frequency band among the multiple frequency bands to be allocated that cannot carry communication data according to the channel characteristic information.
  • the channel characteristic information includes attenuation information, and based on the attenuation information, it is determined whether there is a first type of frequency band among the multiple frequency bands to be allocated that cannot carry communication data.
  • the communication channels corresponding to multiple frequency bands to be allocated are detected respectively, and multiple attenuation values to be confirmed are obtained.
  • the communication channels are corresponding to the terminals to be accessed. Connected channel; determine the first type of frequency band based on multiple attenuation values to be confirmed and real-time attenuation values.
  • the attenuation value to be confirmed corresponding to the first type of frequency band is greater than the real-time attenuation value.
  • the terminal to be accessed and multiple frequency bands to be allocated negotiate and establish communication links with the terminal to be accessed respectively, and obtain multiple communication links to be confirmed; based on the attenuation information, respectively Multiple communication links to be confirmed send communication data; when it is determined that the communication link to be confirmed cannot transmit communication data, it is determined that the frequency band to be allocated corresponding to the communication link to be confirmed is the first type of frequency band.
  • step S704 is executed; otherwise, step S705 is executed.
  • step S704 the access parameter control module 612 turns off the first type of frequency band.
  • the first type of frequency band can be turned off by modifying the port configuration template.
  • Figure 9 shows a schematic diagram of the relationship between the number of data carried and the frequency corresponding to different frequency bands to be allocated after the first type of frequency band is closed according to the embodiment of the present application.
  • the first type of frequency band includes: the frequency band to be allocated 9 and the frequency band to be allocated 10 that cannot carry the amount of data. Therefore, the frequency band to be allocated 9 and the frequency band to be allocated 10 are closed to reduce the frequency of the frequency band to be allocated 9 and 10. The wasted transmit power on frequency band 10 to be allocated.
  • step S705 the parameter evaluation module 611 filters multiple frequency bands to be processed according to the obtained frequency band requirements of the terminal to be accessed, and obtains the second type of frequency band.
  • the second type of frequency band is used to characterize a frequency band that can meet the frequency band requirements of the terminal to be accessed.
  • the second type of frequency band can be obtained from multiple frequency bands to be processed (for example, to be processed Band 1 to Band 5 to be processed). That is, only using the frequency band to be processed 1 to the frequency band to be processed 5 can meet the frequency band requirements of the terminal to be accessed.
  • the number of required low-frequency sub-bands is evaluated based on the data transmission rate applied for by the terminal to be accessed. For example, if the data transmission rate applied for by the access terminal is 50Mbps, based on the actual channel characteristic information, it can be estimated that only 5 sub-bands are actually needed to meet the data transmission rate requested by the user (i.e. 50Mbps).
  • Figure 10 shows a schematic diagram of the relationship between the number of data carried and the frequency corresponding to different frequency bands to be allocated in the case of user speed limit provided by the embodiment of the present application.
  • to-be-processed frequency band 1 to to-be-processed frequency band 6 can all meet the user's data carrying capacity under speed limit, while frequency band 7 and frequency band 8 cannot meet the user's full data carrying capacity under speed limit.
  • step S706 the parameter evaluation module 611 determines whether there is a data, but excess frequency band resources beyond meeting the frequency band requirements of the terminal to be accessed.
  • step S707 is executed; otherwise, step S708 is executed.
  • step S707 the access parameter control module 612 closes frequency bands other than the second type of frequency bands among the multiple frequency bands to be allocated.
  • the unallocated frequency band 6, the unallocated frequency band 7, and the unallocated frequency band 8 that can carry data but do not need to carry data at all can be closed by modifying the port configuration template.
  • FIG. 11 shows a schematic diagram of the relationship between the number of data carried and the frequency corresponding to different frequency bands to be allocated when frequency bands other than the second type frequency band among multiple frequency bands to be processed are closed according to the embodiment of the present application.
  • the second type of frequency band for example, the frequency band to be processed 1 to the frequency band to be processed 5
  • the frequency band to be processed 6 to the frequency band to be processed 8 are closed to reduce the number of frequency bands. It reduces the waste of resources and reduces the power consumption of the device.
  • the data volume carried by the to-be-processed frequency band 6 to the to-be-processed frequency band 8 can be transferred and averaged to the to-be-processed frequency band 1 to the to-be-processed frequency band 5, and the to-be-processed frequency band 6 to the to-be-processed frequency band can be closed.
  • Figure 12 shows a schematic diagram of the relationship between the number of data carried and the frequency corresponding to multiple frequency bands to be used when the speed is not limited according to the embodiment of the present application.
  • Figure 12 by transferring and averaging the amount of data carried by the frequency band 6 to the frequency band 8 to be processed to the frequency band 1 to the frequency band 5 to be processed, and closing the frequency band 6 to the frequency band 8 to be processed, it can Prioritize the use of low-frequency band resources to be allocated, and reduce the waste of high-frequency band resources to be allocated, minimizing the use of high-frequency band resources, reducing equipment energy consumption, thereby saving equipment energy consumption.
  • the frequency band margin for example, 20% of the frequency band required by the user, etc.
  • multiple frequency bands to be processed are divided into groups based on a bisection algorithm to obtain a first group of frequency bands and a second group of frequency bands.
  • the frequencies corresponding to the first group of frequency bands are higher than the frequencies corresponding to the second group of frequency bands;
  • the first group of frequency bands is set to an unavailable state, and a binary algorithm is used to continue processing the second group of frequency bands until the second type of frequency band is obtained.
  • the plurality of frequency bands to be processed in the first group of frequency bands are continued to be divided into groups according to the binary algorithm to obtain the first subset of frequency bands and the second subset.
  • frequency band the frequencies corresponding to the first subset of frequency bands are all higher than the Frequencies corresponding to the two subset frequency bands; set multiple to-be-processed frequency bands in the second subset of frequency bands as available; continue to process multiple to-be-processed frequency bands in the second subset of frequency bands and the second group of frequency bands according to the bisection algorithm Multiple to-be-processed frequency bands are processed until the second type of frequency band is obtained.
  • frequency band 1 to frequency band 8 For example, as shown in Figure 8, among the 8 frequency bands to be allocated (for example, frequency band 1 to frequency band 8) that can carry data, first close the frequency band 5 to the frequency band 8 to be allocated, and evaluate the frequency band 1 to be allocated. Whether the frequency band 4 to be allocated can meet the data transmission rate required by users (that is, whether the data transmission rate can reach 60Mbps);
  • the frequency band to be allocated 1 to the frequency band to be allocated 4 can meet 60Mbps, continue to use the binary algorithm to group the frequency band 1 to the frequency band to be allocated 4 to obtain the first subset of frequency bands (for example, the frequency band to be allocated 3 and the frequency band to be allocated 4) and the second subset of frequency bands (for example, frequency band 1 and frequency band 2 to be allocated); and close frequency band 3 and frequency band 4 to be allocated, and then evaluate whether frequency band 1 and frequency band 2 to be allocated can meet 60Mbps.
  • the first subset of frequency bands for example, the frequency band to be allocated 3 and the frequency band to be allocated
  • the second subset of frequency bands for example, frequency band 1 and frequency band 2 to be allocated
  • frequency band 1 to frequency band 4 to be allocated do not meet 60Mbps, you need to open frequency band 5 and frequency band 6 to be allocated, and conduct an overall assessment of frequency band 1 to frequency band 6 to determine whether the frequency band 1 to be allocated is to be allocated. Whether the allocated frequency band 6 meets 60Mbps.
  • step S708 the parameter application module 622 uses the second type of frequency band as the frequency band to be used; uses the frequency band to be used in the communication channel connected to the terminal to be accessed, obtains the channel to be used, and sets the configuration corresponding to the frequency band to be used.
  • the information is stored in the configuration parameter storage module 623.
  • the channel to be used is used to transmit communication data with the terminal to be accessed.
  • the energy consumption of the device can be reduced simply and quickly, rather than based on the user's needs.
  • the actual traffic adjusts the transmit power corresponding to different frequency bands to be allocated in real time, which improves the adjustment efficiency and improves the energy consumption efficiency of the equipment.
  • the operation is simple and can effectively improve frequency band resources. utilization efficiency.
  • FIG 13 shows a schematic flowchart of the communication method provided by the embodiment of the present application. As shown in Figure 13, the communication method is applied to communication devices, such as network side equipment, etc. The method includes but is not limited to the following steps S1301 to S1302.
  • step S1301 according to any of the frequency band resource processing methods in the embodiments of the present application, target frequency bands that do not meet the preset conditions among the multiple frequency bands to be allocated are closed.
  • the preset condition is a condition determined based on channel characteristic information and frequency band requirements of the terminal to be accessed.
  • the channel characteristic information is information that characterizes the electrical characteristics of the communication channel connected to the terminal to be accessed.
  • step S1302 information is sent using the frequency band that meets the preset conditions.
  • the frequency band that meets the preset conditions can meet the frequency band requirements of the terminal to be accessed and meet the requirements of the channel characteristic information. For example, a channel based on a certain communication channel Characteristic information, applying the frequency band that meets the preset conditions to the communication channel can enable the terminal to be accessed to obtain the communication services provided by the current communication device, improve the user experience of the terminal, and reduce the waste of frequency band resources.
  • Figure 14 shows a block diagram of a communication device provided by an embodiment of the present application. As shown in Figure 14, the communication device 1400 includes but is not limited to the following modules.
  • the closing module 1401 is configured to close the target frequency bands that do not meet the preset conditions among the multiple frequency bands to be allocated according to any one of the frequency band resource processing methods in the embodiments of the present application.
  • the sending module 1402 is configured to send information using a frequency band that meets preset conditions.
  • FIG. 15 shows a structural diagram of an exemplary hardware architecture of a computing device capable of implementing the method and apparatus for processing frequency band resources according to embodiments of the present invention.
  • computing device 1500 includes an input device 1501 , an input interface 1502 , a central processing unit 1503 , a memory 1504 , an output interface 1505 , and an output device 1506 .
  • the input interface 1502, the central processing unit 1503, the memory 1504, and the output interface 1505 are connected to each other through a bus 1507, and the input device 1501 and the output device 1506 are connected to the bus 1507 through the input interface 1502 and the output interface 1505 respectively, and then Connect with other components of computing device 1500.
  • the input device 1501 receives input information from the outside and transmits the input information to the central processor 1503 through the input interface 1502; the central processor 1503 processes the input information based on computer-executable instructions stored in the memory 1504 to generate output. information, store the output information temporarily or permanently in the memory 1504, and then transmit the output information to the output device 1506 through the output interface 1505; the output device 1506 outputs the output information external to the computing device 1500 for use by the user.
  • the computing device shown in FIG. 15 may be implemented as an electronic device, and the electronic device may include: a memory configured to store a program; a processor configured to run the program stored in the memory to Execute the frequency band resource processing method described in the above embodiment.
  • the computing device shown in Figure 15 may be implemented as a frequency band resource processing system, and the system may include: a memory configured to store a program; a processor configured to run the program stored in the memory , to perform the frequency band resource processing method described in the above embodiment.
  • Embodiments of the present application may be implemented by a processor executing computer program instructions, such as in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or source code written in any combination of one or more programming languages or target code.
  • ISA instruction set architecture
  • Any block diagram of a logic flow in the figures of this application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital versatile disc DVD or CD), etc.
  • Computer-readable media may include non-transitory storage media.
  • the processor may be of any type appropriate to the local technology environment, such as, but not limited to, general purpose computers, special purpose computers, microprocessors, digital signal processors (DSP), application specific integrated circuits (ASIC), programmable logic devices (FGPA), and Processor based on multi-core processor architecture.
  • DSP digital signal processors
  • ASIC application specific integrated circuits
  • FGPA programmable logic devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种频段资源的处理方法、通信方法、设备和存储介质,涉及通信技术领域。该方法包括:确定信道特性信息,信道特性信息为表征与待接入终端相连接的通信信道的电特性的信息;以及关闭多个待分配频段中不符合预设条件的目标频段,预设条件是基于信道特性信息和待接入终端的频段需求确定的条件。

Description

频段资源的处理方法、通信方法、设备和存储介质
相关申请的交叉引用
本申请要求于2022年9月6日提交的中国专利申请NO.202211083493.0的优先权,该中国专利申请的内容通过引用的方式整体合并于此。
技术领域
本申请涉及通信技术领域,具体涉及频段资源的处理方法、通信方法、设备和存储介质。
背景技术
目前,网络侧设备在与终端进行通信的过程中,通常会采用具有较高频段的传输资源来传输通信数据,以提高数据的传输效率。
但是,由于某些通信信道本身存在衰减,易使该通信信道在使用高频段带宽承载通信数据时,产生严重的信号衰减,降低了通信效率,也浪费了通信资源;并且,当终端仅需要较少的频段资源就可满足其数据传输需求,且,网络侧设备为该终端分配了具有高频段资源的通信信道时,也会造成设备能量的损耗。
发明内容
本申请实施例提供一种频段资源的处理方法,方法包括:确定信道特性信息,信道特性信息为表征与待接入终端相连接的通信信道的电特性的信息;以及关闭多个待分配频段中不符合预设条件的目标频段,预设条件是基于信道特性信息和待接入终端的频段需求确定的条件。
本申请实施例提供一种通信方法,方法包括:根据本申请实施例中的任意一种频段资源的处理方法,关闭多个待分配频段中不符合预设条件的目标频段;以及利用符合预设条件的频段发送信息。
本申请实施例提供一种频段资源的处理设备,其包括:至少一个频段资源的处理装置;频段资源的处理装置,被配置为执行本申请实施例中的任意一种频段资源的处理方法。
本申请实施例提供了一种可读存储介质,该可读存储介质存储有计算机程序,计算机程序被处理器执行,使得处理器实现本申请实施例中的任意一种频段资源的处理方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图 说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1示出本申请一实施例提供的频段资源的处理方法的流程示意图。
图2示出本申请实施例提供的关闭目标频段的方法的流程示意图。
图3示出本申请实施例提供的频段资源的处理装置的组成方框图。
图4示出本申请实施例提供的频段资源的处理设备的组成方框图。
图5示出本申请实施例提供的频段资源的处理系统的组成方框图。
图6示出本申请一实施例提供的频段资源的处理系统的组成方框图。
图7示出本申请又一实施例提供的频段资源的处理方法的流程示意图。
图8示出本申请实施例提供的不同的待分配频段对应的承载数据数量与频率之间的关系示意图。
图9示出本申请实施例提供的关闭第一类频段后、不同的待分配频段对应的承载数据数量与频率之间的关系示意图。
图10示出本申请实施例提供的在用户限速的情况下的不同的待分配频段对应的承载数据数量与频率之间的关系示意图。
图11示出本申请实施例提供的关闭多个待处理频段中除第二类频段之外的频段时的不同的待分配频段对应的承载数据数量与频率之间的关系示意图。
图12示出本申请实施例在不限速的情况下,多个待使用频段对应的承载数据数量与频率之间的关系示意图。
图13示出本申请实施例提供的通信方法的流程示意图。
图14示出本申请实施例提供的通信装置的组成方框图。
图15示出能够实现根据本发明实施例的频段资源的处理方法和装置的计算设备的示例性硬件架构的结构图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
网络侧设备在与终端进行通信的过程中,通常会采用具有较高频段的传输资源来传输通信数据,以提高数据的传输效率。但是,高频率带宽和低频率带宽相比,高频率带宽衰减速度很快,在实际使用 的过程中,由于通信信道本身存在信道衰减,会导致在该通信信道上使用高频段带宽资源进行数据传输时,通信信号衰减会更加严重,甚至无法承载通信数据,但这些高频段资源在无法承载通信数据的同时,仍然还在发射功率,造成设备能量的损耗。
并且,当终端仅需要较少的频段资源就可满足其数据传输需求,且,网络侧设备为该终端分配了具有高频段资源的通信信道时,也会造成设备能量的损耗。
本申请提供一种频段资源的处理方法、通信方法、设备和存储介质,以便于解决上述问题,减少频段资源的浪费,从而节省设备能耗。
图1示出本申请一实施例提供的频段资源的处理方法的流程示意图。如图1所示,本申请实施例中的频段资源的处理方法包括但不限于以下步骤S110至S120。
在步骤S110中,确定信道特性信息。
在一些实施例中,信道特性信息为表征与待接入终端相连接的通信信道的电特性的信息。例如,通信信道可以为有线通信中的信道,也可以是无线通信中的信道。以上对于信道的类型仅是举例说明,可以根据实际需要进行具体设定,其他未说明的信道的类型也在本申请的保护范围之内,在此不再赘述。
在步骤S120中,关闭多个待分配频段中不符合预设条件的目标频段。
在一些实施例中,预设条件是基于信道特性信息和待接入终端的频段需求确定的条件。将不符合预设条件的目标频段筛选出来,并关闭这些目标频段,能够减少目标频段被浪费,同时减少设备在目标频段上消耗的发射功率等能源。
在本实施例中,通过确定信道特性信息,能够明确与待接入终端相连接的通信信道的电特性的信息,便于为该通信信道匹配合适的频段资源;关闭多个待分配频段中不符合预设条件的目标频段,所述预设条件是基于信道特性信息和待接入终端的频段需求确定的条件,能够在满足信道特性信息和待接入终端的频段需求的同时,减少设备在目标频段上消耗的发射功率等能源,优先使用低频段资源,尽量减少高频段资源的使用,从而节省设备能耗。
需要说明的是,在有线通信中,电特性是指反映通信线路传输质量的电气参数。例如,电气参数可以由线路所用材料、结构形式、设计要求、制造工艺和施工技术规范决定。
例如,直流电特性(即,直流状态下的基本特性)包括:导线直流电阻(或环路电阻)信息、绝缘电阻信息和电缆绝缘耐压强度信息中的至少一种。
又例如,交流电特性(即,交流状态下的电特性),以保证通信线路传输质量的主要特性。交流电特性包括:回路的工作电容信息、回路间的电容耦合信息、固有衰减信息、相移信息、特性阻抗信息、 近端串音衰减信息、远端串音防卫度信息、同轴对的端阻抗和波阻抗不均匀性中的至少一种。
在一些具体实现中,信道特性信息包括衰减信息;步骤S120中的关闭多个待分配频段中不符合预设条件的目标频段,可以采用如下方式实现。
例如,图2示出本申请实施例提供的关闭目标频段的方法的流程示意图。如图2所示,关闭目标频段的方法包括但不限于以下步骤S121至S123。
在步骤S121中,依据衰减信息关闭多个待分配频段中无法承载通信数据的第一类频段,获得多个待处理频段。
在一些实施例中,衰减信息表示在通信信道上使用第一类频段进行数据传输时,通信信号的衰减程度。通过将因衰减较大而导致无法承载通信数据的第一类频段筛选出来,并关闭第一类频段,以减少第一类频段所消耗的能量。从而使获得的多个待处理频段能够被更合理的利用。
在步骤S122中,对多个待处理频段进行筛选,获得满足待接入终端的频段需求的第二类频段。
在一些实施例中,待接入终端的频段需求可以包括:待接入终端需要使用的频段、待接入终端申请的数据传输速率和待接入终端期望的工作频段中的至少一种。
通过上述不同维度的频段需求,对多个待处理频段进行筛选,当某个(或多个)待处理频段对应的频段资源满足该待接入终端的频段需求时,能够确定该待处理频段为第二类频段。
在步骤S123中,关闭多个待处理频段中除第二类频段之外的频段。
需要说明的是,通过使用第二类频段就可以满足待接入终端的频段需求,因此,关闭多个待处理频段中除第二类频段之外的频段,能够减低其他频段所消耗的能源,提升频段资源的利用效率。
在一些具体实现中,衰减信息包括:连接待接入终端的通信信道的实时衰减值。
步骤S121中的依据衰减信息关闭多个待分配频段中无法承载通信数据的第一类频段,可以采用如下方式实现。
基于单端线路的检测方式或双端线路的检测方式,分别对多个待分配频段对应的通信信道进行检测,获得多个待确认衰减值,该通信信道为与待接入终端相连接的信道;依据多个待确认衰减值和实时衰减值,确定并关闭所述第一类频段。
在一些实施例中,第一类频段对应的待确认衰减值大于实时衰减值。
例如,单端线路的检测方式可以为单端线路检测(Single-Ended Line Testing,SELT);双端线路的检测方式可以为双端线路测试(Dual-Ended Loop Testing,DELT)。通过上述不同的检测方式, 分别对多个待分配频段对应的通信信道进行检测,能够快速获得各个待分配频段对应的待确认衰减值,便于对不同的待分配频段进行处理;进一步地,将各个待分配频段对应的待确认衰减值分别与连接待接入终端的通信信道的实时衰减值进行比较,在确定某个待确认衰减值大于实时衰减值的情况下,可确定该待确认衰减值对应的待分配频段为第一类频段,该第一类频段中可以包括至少一个待分配频段。
又例如,待接入终端与网络侧设备之间的实际线路距离为600米,该待接入终端对应的用户需要开通50M比特每秒(bit per second,bps)的业务。通过网络侧设备使用SELT方式或DELT方式对该距离为600米的通信线路进行评估,可确定该通信线路由于存在线路衰减,在该通信线路中使用频率为17M赫兹(Hertz,Hz)及以上的频段都无法承载通信数据(即,第一类频段包括:频率为17MHz及以上的频段),因此,需要将频率为17MHz及以上的频段进行关闭,以节省设备的能量损耗。
通过关闭第一类频段,能够减少第一类频段对应的能量消耗,提升设备的能源利用效率。
在一些具体实现中,步骤S121中的依据衰减信息关闭多个待分配频段中无法承载通信数据的第一类频段,还可以采用如下方式实现:
依据与待接入终端相连接的通信信道和多个待分配频段,分别与待接入终端进行协商并建立通信链路,获得多个待确认通信链路;基于衰减信息,分别向多个待确认通信链路发送通信数据;在确定待确认通信链路无法传输通信数据的情况下,确定待确认通信链路对应的待分配频段为第一类频段,并关闭第一类频段。
在一些实施例中,在与待接入终端相连接的通信信道上使用某个待分配频段,使网络侧设备与该待接入终端进行协商,并与该待接入终端建立通信链路,获得待确认通信链路,若通过该待确认通信链路无法向待接入终端传输通信数据,则表征该待确认通信链路对应的待分配频段为第一类频段,并关闭第一类频段。
例如,网络侧设备通过对与待接入终端相连接的通信信道进行评估,获得该通信信道的理论传输速率为200Mbps;而该待接入终端申请开通数据传输速率为50Mbps的业务,因此,只需使用10MHz以下频段为该待接入终端提供通信服务,即可满足该待接入终端的使用需求(即,数据传输速率为50Mbps)。
在上述应用场景中,可自动关闭10MHz以上频段(如,关闭10MHz以上频段对应的发射功率等),从而在保证用户的使用体验的同时,有效节约频段资源,提升频段资源的利用效率。
在一些具体实现中,步骤S122中的对多个待处理频段进行筛选,获得满足待接入终端的频段需求的第二类频段,包括:采用预设算法对多个待处理频段进行处理,获得第二类频段。
在一些实施例中,第二类频段为满足待接入终端的频段需求的频段。
例如,预设算法包括多个预设频段阈值;采用预设算法对多个待处理频段进行处理,获得第二类频段,可采用如下方式实现:
基于多个预设频段阈值,分别对多个待处理频段进行处理,获得第二类频段。
例如,依据第一预设频段阈值,关闭多个待处理频段中高于第一预设频段阈值的频段,并对多个待处理频段中低于第一预设频段阈值的频段进行检测;在确定多个待处理频段中低于第一预设频段阈值的频段满足待接入终端的需求频段的情况下,设置多个待处理频段中低于第一预设频段阈值的频段为第一频段集合,并继续采用预设算法和第二预设频段阈值对第一频段集合中的多个频段进行处理。
在确定关闭第一频段集合中高于第二预设频段阈值的多个频段,且,第一频段集合中低于第二预设频段阈值的多个频段不满足待接入终端的频段需求的情况下,依据第一频段集合中低于第二预设频段阈值的频段数量,打开多个待处理频段中高于第一预设频段阈值的频段,获得第二频段集合;继续依据预设算法和第三预设频段阈值,对第二频段集合中的多个频段进行处理,直至获得的多个频段满足待接入终端的频段需求为止,获得第二类频段。
通过上述采用多个预设频段阈值,对多个待处理频段进行迭代处理,能够使最终获得的第二类频段可以满足待接入终端的频段需求,提升终端的使用体验,并有效节省频段资源。
在一些具体实现中,预设算法包括二分算法;采用预设算法对多个待处理频段进行处理,获得第二类频段,包括:基于二分算法对多个待处理频段进行分组划分,获得第一组频段和第二组频段;在确定第二组频段满足待接入终端的频段需求的情况下,将第一组频段设置为不可用状态,并采用二分算法继续对第二组频段进行处理,直至获得第二类频段。
在一些实施例中,第一组频段对应的频率均高于第二组频段对应的频率。
通过二分算法,依次对不同分组中的频段进行判断,直至获得最少的且能满足待接入终端的频段需求的频段,并将该频段作为第二类频段,以供待接入终端使用,能够减少频段资源的浪费,提升频段资源的利用效率。
在一些具体实现中,基于二分算法对多个待处理频段进行分组划分,获得第一组频段和第二组频段之后,还包括:在确定第二组频段不满足待接入终端的频段需求的情况下,依据二分算法对第一组频段中的多个待处理频段继续进行分组划分,获得第一子集频段和第二子集频段,第一子集频段对应的频率均高于第二子集频段对应的频率;将第二子集频段中的多个待处理频段设置为可用状态;依据二分算法,继续对第二子集频段中的多个待处理频段和第二组频段中的多个待处理频段进行处理,直至获得第二类频段。
在确定第二组频段不满足待接入终端的频段需求的情况下,需 要将第一组频段中的多个待处理频段中的一部分(如,第二子集频段中的多个待处理频段)频段设置为可用状态,从而继续对第二子集频段中的多个待处理频段和第二组频段中的多个待处理频段进行处理,以使多个频段能够满足待接入终端的频段需求,并将满足待接入终端的频段需求的频段设为第二类频段,提升用户的使用体验。
在一些具体实现中,信道特性信息,包括:与待接入终端相连接的通信信道受到其他通信信道的串扰信息。
在执行步骤S120中的关闭多个待分配频段中不符合预设条件的目标频段之前,还包括:依据串扰信息,确定频段余量;依据频段余量和待接入终端的频段需求,确定待接入终端的需求频段。
在一些实施例中,串扰信息可以包括:周围环境对与待接入终端相连接的通信信道的干扰信息,和/或,其他信道对该通信信道的干扰信息。
为了抵消串扰信息,可确定一定的频段余量,以使该频段余量用于抵消串扰信息所带来的通信信号的衰减程度。进而将频段余量和待接入终端的频段需求相结合,获得待接入终端的需求频段,以便使用该需求频段明确待接入终端需要使用的频段资源,提升用户的使用体验。
在一些具体实现中,在执行步骤S110中的确定信道特性信息之前,还包括:基于预设划分段数对预设频段进行划分,获得多个待分配频段。
在一些实施例中,预设划分段数越大,待分配频段的精度越高。例如,预设划分段数可以为10、12、15等数量值,以便于对预设频段进行合理分配。
需要说明的是,通过对预设频段进行划分,能够使获得的多个待分配频段以更小的精度来满足用户终端的使用需求,便于对频段资源的控制,降低频段资源的浪费。
在一些具体实现中,在执行步骤S120中的关闭多个待分配频段中不符合预设条件的目标频段之后,还包括:将多个待分配频段中除目标频段之外的频段作为待使用频段;在与待接入终端相连接的通信信道中使用待使用频段,获得待使用信道。
在一些实施例中,待使用信道用于传输与待接入终端之间的通信数据。
需要说明的是,当采用待使用频段作为通信信道中所使用的频段时,能够有效减少因目标频段的开通而产生的频段资源的浪费,以及目标频段对应的发射功率的浪费,有效减少设备的能量消耗,使设备能够将自己的能量进行合理使用,通过在与待接入终端相连接的通信信道中使用待使用频段,获得待使用信道,并使用该待使用信道传输与待接入终端之间的通信数据,以便待接入终端可以获得当前设备所提供的通信服务,提升终端的使用体验的同时,降低频段资源的浪费。
在一些具体实现中,在与待接入终端相连接的通信信道中使用待使用频段,获得待使用信道,包括:获取与待接入终端相连接的通信信道的通信端口号;基于通信端口号和待使用频段,生成待使用信道。
在一些实施例中,通信端口号可用于表征与待接入终端相连接的通信信道,基于对该通信端口号的配置,能够快速准确的对与待接入终端相连接的通信信道进行处理。并且,基于通信端口号和待使用频段,生成待使用信道,可以是将该待使用频段应用与该通信端口号对应的通信信道中,以使待使用信道可以传输当前设备与待接入终端之间的通信数据,加快对通信信道的配置效率。
图3示出本申请实施例提供的频段资源的处理装置的组成方框图。如图3所示,频段资源的处理装置300包括但不限于如下模块。
确定模块301,被配置为确定信道特性信息,信道特性信息为表征与待接入终端相连接的通信信道的电特性的信息。
处理模块302,被配置为关闭多个待分配频段中不符合预设条件的目标频段,预设条件是基于信道特性信息和待接入终端的频段需求确定的条件。
需要说明的是,本实施例中的频段资源的处理装置能够实现本申请实施例中任一种频段资源的处理方法。
根据本申请实施例的频段资源的处理装置,通过确定模块确定信道特性信息,能够明确与待接入终端相连接的通信信道的电特性的信息,便于为该通信信道匹配合适的频段资源;使用处理模块关闭多个待分配频段中不符合预设条件的目标频段,所述预设条件是基于信道特性信息和待接入终端的频段需求确定的条件,能够在满足信道特性信息和待接入终端的频段需求的同时,减少设备在目标频段上消耗的发射功率等能源,优先使用低频段资源,尽量减少高频段资源的使用,从而节省设备能耗。
图4示出本申请实施例提供的频段资源的处理设备的组成方框图。如图4所示,频段资源的处理设备400包括:至少一个频段资源的处理装置401;频段资源的处理装置401,被配置为执行本申请实施例中任一种频段资源的处理方法。
根据本申请实施例的频段资源的处理设备,通过频段资源的处理装置确定信道特性信息,能够明确与待接入终端相连接的通信信道的电特性的信息,便于为该通信信道匹配合适的频段资源;关闭多个待分配频段中不符合预设条件的目标频段,所述预设条件是基于信道特性信息和待接入终端的频段需求确定的条件,能够在满足信道特性信息和待接入终端的频段需求的同时,减少设备在目标频段上消耗的发射功率等能源,优先使用低频段资源,尽量减少高频段资源的使用,节省设备能耗。
图5示出本申请一实施例提供的频段资源的处理系统的组成方框图。如图5所示,该频段资源的处理系统包括但不限于如下设备:
频段资源的处理设备510和多个待接入终端(如,第一待接入终端521、第二待接入终端522、……、第n待接入终端52n等,n表示待接入终端的数量,n为大于或等于1的整数),频段资源的处理设备510分别与多个待接入终端通信连接;
频段资源的处理设备510,被配置为执行本申请实施例中任一种频段资源的处理方法。
待接入终端(如,第一待接入终端521等),被配置为向频段资源的处理设备510发送接入请求,以供频段资源的处理设备510关闭多个待分配频段中不符合预设条件的目标频段,并将多个待分配频段中除目标频段之外的频段作为待使用频段,并通过在与待接入终端相连接的通信信道中使用待使用频段,获得待使用信道;
在一些实施例中,预设条件是基于信道特性信息和待接入终端的频段需求确定的条件,待使用信道用于传输频段资源的处理设备510与待接入终端之间的通信数据。
在本实施例中,通过频段资源的处理设备获取待接入终端发送的接入请求,以明确待接入终端的使用需求,使频段资源的处理设备确定信道特性信息,能够明确与待接入终端相连接的通信信道的电特性的信息,便于为该通信信道匹配合适的频段资源;关闭多个待分配频段中不符合预设条件的目标频段,所述预设条件是基于信道特性信息和待接入终端的频段需求确定的条件,能够在满足信道特性信息和待接入终端的频段需求的同时,减少设备在目标频段上消耗的发射功率等能源,优先使用低频段资源,尽量减少高频段资源的使用,从而节省设备能耗。频段资源的处理设备通过在与待接入终端相连接的通信信道中使用待使用频段,获得待使用信道,以使该待使用信道可以传输频段资源的处理设备与待接入终端之间的通信数据,提升数据的传输效率。
图6示出本申请又一实施例提供的频段资源的处理系统的组成方框图。如图6所示,该频段资源的处理系统包括但不限于如下设备:
网络管理系统服务器610、综合接入系统服务器620、以及第一待接入终端631、第二待接入终端632、……、第n待接入终端613n。
在一些实施例中,网络管理系统服务器610包括:参数评估模块611和接入参数控制模块612;综合接入系统服务器620包括:参数采集模块621、参数应用模块622和配置参数存储模块623。
网络管理系统服务器610可以通过与综合接入系统服务器620进行直连,或通过互联网的转发,与综合接入系统服务器620进行连接通信。
参数评估模块611,配置为对综合接入系统服务器620中的参数采集模块621所采集到的端口信息进行评估。
接入参数控制模块612,配置为对综合接入系统服务器620中的各个模块以及相关接入参数进行控制。
需要说明的是,网络管理系统服务器610可通过自动化的方式, 对综合接入系统服务器620中的各个模块进行控制和处理。例如,在第一待接入终端631需要接入网络时,网络管理系统服务器610可基于输入的系统级参数n、待开通端口号和待开通终端所申请的带宽信息,对网络管理系统服务器610中所拥有的频段资源进行自动化的分配,以使第一待接入终端631可以获得与其频段需求相匹配的频段资源,同时,还能够保证网络管理系统服务器610的频段资源不被浪费,以降低服务器的能耗。
例如,图7示出本申请又一实施例提供的频段资源的处理方法的流程示意图。通过第二代的甚/超高速数字用户线路(Very-high-bit-rate Digital Subscriber loop,VDSL)的局端设备对线路进行测量,根据待接入终端的频段需求(如,需要开通的实际使用速率等)和信道特性信息(如,对信道进行测量,获得与待接入终端相连接的通信信道的电特性的信息等)来评估哪些待分配频段可以关闭,然后通过修改端口配置模板,自动关闭第一类频段,以及多个待处理频段中除第二类频段之外的频段,从而节省设备的能耗。
如图7所示,该频段资源的处理方法包括但不限于如下步骤S701至S708。
在步骤S701中,网络管理系统服务器610基于预设划分段数对预设频段进行划分,获得多个待分配频段。
在一些实施例中,预设划分段数越大,待分配频段的精度越高。
例如,将第二代VDSL中使用的频段(如,从低频到高频等多个频段),依次分割成n个小段。n值越大,则对频段控制的精度越高。例如,可设置n等于10。
在步骤S702中,参数采集模块621采集待开通端口对应的线路参数,并将采集到的线路参数发送给参数评估模块611,以使参数评估模块611对待开通端口对应的线路特性进行测量,获得信道特性信息。
该信道特性信息能够表征综合接入系统服务器620与待接入终端之间相连接的通信信道的电特性的信息。例如,可以表征物理信道(如,有线通信中的通信路径)或逻辑信道(如,无线通信中的通信路径等)的点特性的信息,如,衰减信息、其他信道对该通信信道的串扰信息等。
根据信道特性信息,可以确定不能承载数据的频段为待分配频段9和待分配频段10。例如,图8示出本申请实施例提供的不同的待分配频段对应的承载数据数量与频率之间的关系示意图。如图8所示,不同频率的待分配频段所承载的数据量不同,待分配频段1所承载的数据量最多,其次是待分配频段2,再其次分别是:待分配频段3、待分配频段4、……、待分配频段8;而待分配频段9和待分配频段10没有承载数据量。
在步骤S703中,参数评估模块611根据信道特性信息判断多个待分配频段中是否存在无法承载通信数据的第一类频段。
在一些实施例中,信道特性信息包括衰减信息,基于该衰减信息判断多个待分配频段中是否存在无法承载通信数据的第一类频段。
例如,基于单端线路的检测SELT方式或双端线路的检测DELT方式,分别对多个待分配频段对应的通信信道进行检测,获得多个待确认衰减值,通信信道为与待接入终端相连接的信道;依据多个待确认衰减值和实时衰减值,确定第一类频段。
在一些实施例中,第一类频段对应的待确认衰减值大于实时衰减值。
又例如,依据与待接入终端相连接的通信信道和多个待分配频段,分别与待接入终端进行协商并建立通信链路,获得多个待确认通信链路;基于衰减信息,分别向多个待确认通信链路发送通信数据;在确定待确认通信链路无法传输通信数据的情况下,确定待确认通信链路对应的待分配频段为第一类频段。
在确定存在第一类频段的情况下,执行步骤S704;否则,执行步骤S705。
在步骤S704中,接入参数控制模块612关闭第一类频段。
在一些具体实现中,可以通过修改端口配置模板,来关闭第一类频段。
图9示出本申请实施例提供的关闭第一类频段后、不同的待分配频段对应的承载数据数量与频率之间的关系示意图。如图9所示,第一类频段包括:无法承载数据量的待分配频段9和待分配频段10,因此,将待分配频段9和待分配频段10进行关闭,以减少在待分配频段9和待分配频段10上所浪费的发射功率。
在步骤S705中,参数评估模块611根据获取到的待接入终端的频段需求,对多个待处理频段进行筛选,获得第二类频段。
在一些实施例中,第二类频段用于表征能够满足待接入终端的频段需求的频段。
在一些具体实现中,在用户限速的情况下,如在各个待分配频段上都承载预设阈值的数据量,则可以从多个待处理频段中筛选获得第二类频段(如,待处理频段1至待处理频段5)。即仅使用待处理频段1至待处理频段5就可满足待接入终端的频段需求。
例如,根据待接入终端申请的数据传输速率,评估需要的低频子频段的数量。例如,待接入终端申请的数据传输速率为50Mbps,则根据实际的信道特性信息,可评估出实际只需要5个子频段就可以满足用户申请的数据传输速率(即50Mbps)的需求。
图10示出本申请实施例提供的在用户限速的情况下的不同的待分配频段对应的承载数据数量与频率之间的关系示意图。如图10所示,待处理频段1至待处理频段6都能满足用户在限速情况下的数据承载量,而频段7和频段8无法满足用户在限速情况下的满载数据的承载量。
在步骤S706中,参数评估模块611判断是否存在能够承载通信 数据、但在满足待接入终端的频段需求之外多余的频段资源。
在确定存在能够承载通信数据、但在满足待接入终端的频段需求之外多余的频段资源的情况下,执行步骤S707;否则,执行步骤S708。
在步骤S707中,接入参数控制模块612关闭多个待分配频段中除第二类频段之外的频段。
在一些具体实现中,可通过修改端口配置模板的方式关闭可以承载数据,但完全不需要承载数据的待分配频段6、待分配频段7和待分配频段8。
例如,图11示出本申请实施例提供的关闭多个待处理频段中除第二类频段之外的频段时的不同的待分配频段对应的承载数据数量与频率之间的关系示意图。如图11所示,将第二类频段(如,待处理频段1至待处理频段5)作为分配给待接入终端使用的频段,并关闭待处理频段6至待处理频段8,以减少频段资源的浪费,同时能够降低设备的功耗。
需要说明的是,因在用户限速的情况下,需要使用待处理频段1至待处理频段6,以及待处理频段7和待处理频段8的部分资源,才能满足用户的需求频段。而在用户不限速的情况下,可以将待处理频段6至待处理频段8所承载的数据量转移并平均到待处理频段1至待处理频段5上,并关闭待处理频段6至待处理频段8。
图12示出本申请实施例在不限速的情况下,多个待使用频段对应的承载数据数量与频率之间的关系示意图。如图12所示,通过将待处理频段6至待处理频段8所承载的数据量转移并平均到待处理频段1至待处理频段5上,并关闭待处理频段6至待处理频段8,能够优先使用低频的待分配频段资源,并减少对高频的待分配频段资源的浪费,尽量减少高频段资源的使用,降低设备的能耗,从而节省设备能耗。
在一些具体实现中,由于待接入终端(如,DSL用户)在实际使用时,会受到周围环境以及其他终端的串扰的影响,因此,在评估是否满足待接入终端的频段需求时,可依据与待接入终端相连接的通信信道受到其他通信信道的串扰信息,确定频段余量(如,用户需求频段的20%等),并基于该频段余量和待接入终端的频段需求(如,50Mbps)确定待接入终端的需求频段(如,50*(1+20%)=60Mbps)。
在一些可能的实现方式中,基于二分算法对多个待处理频段进行分组划分,获得第一组频段和第二组频段,第一组频段对应的频率均高于第二组频段对应的频率;在确定第二组频段满足待接入终端的频段需求的情况下,将第一组频段设置为不可用状态,并采用二分算法继续对第二组频段进行处理,直至获得第二类频段。
在确定第二组频段不满足待接入终端的频段需求的情况下,依据二分算法对第一组频段中的多个待处理频段继续进行分组划分,获得第一子集频段和第二子集频段,第一子集频段对应的频率均高于第 二子集频段对应的频率;将第二子集频段中的多个待处理频段设置为可用状态;依据二分算法,继续对第二子集频段中的多个待处理频段和第二组频段中的多个待处理频段进行处理,直至获得第二类频段。
例如,如图8所示,可以承载数据的8个待分配频段(如,待分配频段1至待分配频段8)中,先关闭待分配频段5至待分配频段8,并评估待分配频段1至待分配频段4是否可以满足用户需求的数据传输速率(即数据传输速率是否可以达到60Mbps);
如果待分配频段1至待分配频段4可以满足60Mbps,继续采用二分算法对待分配频段1至待分配频段4进行分组划分,获得第一子集频段(如,待分配频段3和待分配频段4)和第二子集频段(如,待分配频段1和待分配频段2);并关闭待分配频段3和待分配频段4,再评估待分配频段1和待分配频段2是否可以满足60Mbps。
如果待分配频段1至待分配频段4不满足60Mbps,则需要打开待分配频段5和待分配频段6,并对待分配频段1至待分配频段6进行总体的评估,以确定待分配频段1至待分配频段6是否满足60Mbps。
通过上述的迭代处理过程,直至获得可以满足60Mbps的最小频段数量为止。
在步骤S708中,参数应用模块622将第二类频段作为待使用频段;在与待接入终端相连接的通信信道中使用该待使用频段,获得待使用信道,并将待使用频段对应的配置信息保存在配置参数存储模块623中。
在一些实施例中,待使用信道用于传输与待接入终端之间的通信数据。
在本实施例中,通过关闭第一类频段,以及不需要使用的待分配频段(如,待分配频段6至待分配频段8),能够简单快速的减少设备的能耗,而非根据用户的实际流量实时调整不同待分配频段对应的发射功率,提升了调整效率,使设备的能耗的利用效率得以提高。并且,在使用预设划分段数对预设频段进行划分后,仅需对不同的待分配频段对应的端口进行配置即可,无需再对频段进行频繁的调整,操作简单,且能够有效提升频段资源的利用效率。
图13示出本申请实施例提供的通信方法的流程示意图。如图13所示,该通信方法应用于通信装置,如网络侧设备等,该方法包括但不限于如下步骤S1301至S1302。
在步骤S1301中,根据本申请实施例中的任意一种频段资源的处理方法,关闭多个待分配频段中不符合预设条件的目标频段。
在一些实施例中,预设条件是基于信道特性信息和待接入终端的频段需求确定的条件。信道特性信息为表征与待接入终端相连接的通信信道的电特性的信息。
在步骤S1302中,利用符合预设条件的频段发送信息。
在一些实施例中,符合预设条件的频段能够满足待接入终端的频段需求并符合信道特性信息的要求。如,基于某个通信信道的信道 特性信息,将符合预设条件的频段应用于该通信信道,能够使待接入终端可以获得当前的通信装置所提供的通信服务,提升终端的使用体验的同时,降低频段资源的浪费。
在本实施例中,通过将根据本申请实施例中的任意一种频段资源的处理方法,关闭多个待分配频段中不符合预设条件的目标频段,能够明确在满足信道特性信息和待接入终端的频段需求的同时,减少设备在目标频段上消耗的发射功率等能源,优先使用低频段资源,尽量减少高频段资源的使用,从而节省设备能耗;利用符合预设条件的频段发送信息,以使符合预设条件的频段能够满足待接入终端的频段需求,并基于该符合预设条件的频段发送信息,使待接入终端可以更快捷的获得信息,提升信息交互的效率。
图14示出本申请实施例提供的通信装置的组成方框图。如图14所示,该通信装置1400包括但不限于如下模块。
关闭模块1401,被配置为根据本申请实施例中的任意一种频段资源的处理方法关闭多个待分配频段中不符合预设条件的目标频段。
发送模块1402,被配置为利用符合预设条件的频段发送信息。
在本实施例中,通过关闭模块根据本申请实施例中的任意一种频段资源的处理方法关闭多个待分配频段中不符合预设条件的目标频段,能够明确在满足信道特性信息和待接入终端的频段需求的同时,减少设备在目标频段上消耗的发射功率等能源,优先使用低频段资源,尽量减少高频段资源的使用,从而节省设备能耗;使用发送模块利用符合预设条件的频段发送信息,以使符合预设条件的频段能够满足待接入终端的频段需求,并基于该符合预设条件的频段发送信息,使待接入终端可以更快捷的获得信息,提升信息交互的效率。
需要明确的是,本发明并不局限于上文实施例中所描述并在图中示出的特定配置和处理。为了描述的方便和简洁,这里省略了对已知方法的详细描述,并且上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图15示出能够实现根据本发明实施例的频段资源的处理方法和装置的计算设备的示例性硬件架构的结构图。
如图15所示,计算设备1500包括输入设备1501、输入接口1502、中央处理器1503、存储器1504、输出接口1505、以及输出设备1506。在一些实施例中,输入接口1502、中央处理器1503、存储器1504、以及输出接口1505通过总线1507相互连接,输入设备1501和输出设备1506分别通过输入接口1502和输出接口1505与总线1507连接,进而与计算设备1500的其他组件连接。
具体地,输入设备1501接收来自外部的输入信息,并通过输入接口1502将输入信息传送到中央处理器1503;中央处理器1503基于存储器1504中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器1504中,然后通过输出接口1505将输出信息传送到输出设备1506;输出设备 1506将输出信息输出到计算设备1500的外部供用户使用。
在一个实施例中,图15所示的计算设备可以被实现为一种电子设备,该电子设备可以包括:存储器,被配置为存储程序;处理器,被配置为运行存储器中存储的程序,以执行上述实施例描述的频段资源的处理方法。
在一个实施例中,图15所示的计算设备可以被实现为一种频段资源的处理系统,该系统可以包括:存储器,被配置为存储程序;处理器,被配置为运行存储器中存储的程序,以执行上述实施例描述的频段资源的处理方法。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、可编程逻辑器件(FGPA)以及基于多核处理器架构的处理器。
通过示范性和非限制性的示例,上文已提供了对本申请的示范实施例的详细描述。但结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,但不偏离本发明的范围。因此,本发明的恰当范围将根据权利要求确定。

Claims (14)

  1. 一种频段资源的处理方法,包括:
    确定信道特性信息,所述信道特性信息为表征与待接入终端相连接的通信信道的电特性的信息;以及
    关闭多个待分配频段中不符合预设条件的目标频段,所述预设条件是基于所述信道特性信息和所述待接入终端的频段需求确定的条件。
  2. 根据权利要求1所述的方法,其中,所述信道特性信息包括衰减信息;
    所述关闭多个待分配频段中不符合预设条件的目标频段,包括:
    依据所述衰减信息关闭多个所述待分配频段中无法承载通信数据的第一类频段,获得多个待处理频段;
    对多个所述待处理频段进行筛选,获得满足所述待接入终端的频段需求的第二类频段;以及
    关闭多个所述待处理频段中除所述第二类频段之外的频段。
  3. 根据权利要求2所述的方法,其中,所述衰减信息包括:连接所述待接入终端的通信信道的实时衰减值;
    所述依据所述衰减信息关闭多个所述待分配频段中无法承载通信数据的第一类频段,包括:
    基于单端线路的检测方式或双端线路的检测方式,分别对多个所述待分配频段对应的通信信道进行检测,获得多个待确认衰减值,所述通信信道为与所述待接入终端相连接的信道;以及
    依据多个所述待确认衰减值和所述实时衰减值,确定并关闭所述第一类频段,所述第一类频段对应的待确认衰减值大于所述实时衰减值。
  4. 根据权利要求2所述的方法,其中,所述依据所述衰减信息关闭多个所述待分配频段中无法承载通信数据的第一类频段,包括:
    依据与所述待接入终端相连接的通信信道和多个所述待分配频段,分别与所述待接入终端进行协商并建立通信链路,获得多个待确认通信链路;
    基于所述衰减信息,分别向多个所述待确认通信链路发送所述通信数据;以及
    确定所述待确认通信链路无法传输所述通信数据,则确定所述待确认通信链路对应的待分配频段为所述第一类频段,并关闭所述第一类频段。
  5. 根据权利要求2所述的方法,其中,所述对多个所述待处理频段进行筛选,获得满足所述待接入终端的频段需求的第二类频段,包括:
    采用预设算法对多个所述待处理频段进行处理,获得所述第二类频段,所述第二类频段为满足所述待接入终端的频段需求的频段。
  6. 根据权利要求5所述的方法,其中,所述预设算法包括二分算法;所述采用预设算法对多个所述待处理频段进行处理,获得所述第二类频段,包括:
    基于所述二分算法对多个所述待处理频段进行分组划分,获得第一组频段和第二组频段,所述第一组频段对应的频率均高于所述第二组频段对应的频率;以及
    确定所述第二组频段满足所述待接入终端的频段需求,则将所述第一组频段设置为不可用状态,并采用所述二分算法继续对所述第二组频段进行处理,直至获得所述第二类频段。
  7. 根据权利要求6所述的方法,其中,还包括:所述基于所述二分算法对多个所述待处理频段进行分组划分,获得第一组频段和第二组频段之后,
    确定所述第二组频段不满足所述待接入终端的频段需求,则依据所述二分算法对所述第一组频段中的多个待处理频段继续进行分组划分,获得第一子集频段和第二子集频段,所述第一子集频段对应的频率均高于所述第二子集频段对应的频率;
    将所述第二子集频段中的多个所述待处理频段设置为可用状态;以及
    依据所述二分算法,继续对所述第二子集频段中的多个待处理频段和所述第二组频段中的多个待处理频段进行处理,直至获得所述第二类频段。
  8. 根据权利要求1所述的方法,其中,所述信道特性信息,包括:与所述待接入终端相连接的通信信道受到其他通信信道的串扰信息;
    所述方法还包括:
    所述关闭多个待分配频段中不符合预设条件的目标频段之前,
    依据所述串扰信息,确定频段余量;以及
    依据所述频段余量和所述待接入终端的频段需求,确定所述待接入终端的需求频段。
  9. 根据权利要求1至8中任一项所述的方法,其中,还包括:所述确定信道特性信息之前,
    基于预设划分段数对预设频段进行划分,获得多个所述待分配 频段,其中,所述预设划分段数越大,所述待分配频段的精度越高。
  10. 根据权利要求1至8中任一项所述的方法,其中,还包括:所述关闭多个待分配频段中不符合预设条件的目标频段之后,
    将多个所述待分配频段中除所述目标频段之外的频段作为待使用频段;以及
    在所述与待接入终端相连接的通信信道中使用所述待使用频段,获得待使用信道,所述待使用信道用于传输与所述待接入终端之间的通信数据。
  11. 根据权利要求10所述的方法,其中,所述在所述与待接入终端相连接的通信信道中使用所述待使用频段,获得待使用信道,包括:
    获取与所述待接入终端相连接的通信信道的通信端口号;以及
    基于所述通信端口号和所述待使用频段,生成所述待使用信道。
  12. 一种通信方法,包括:
    根据权利要求1至11中任意一项所述的方法关闭多个待分配频段中不符合预设条件的目标频段;以及
    利用符合所述预设条件的频段发送信息。
  13. 一种频段资源的处理设备,包括:至少一个频段资源的处理装置;
    所述频段资源的处理装置,被配置为执行如权利要求1至11中任一种所述的频段资源的处理方法。
  14. 一种可读存储介质,所述可读存储介质存储有计算机程序,所述计算机程序被处理器执行,使得所述处理器实现如权利要求1至11中任一项所述的频段资源的处理方法。
PCT/CN2023/111180 2022-09-06 2023-08-04 频段资源的处理方法、通信方法、设备和存储介质 WO2024051415A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211083493.0A CN117715197A (zh) 2022-09-06 2022-09-06 频段资源的处理方法、通信方法、设备和存储介质
CN202211083493.0 2022-09-06

Publications (1)

Publication Number Publication Date
WO2024051415A1 true WO2024051415A1 (zh) 2024-03-14

Family

ID=90155766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111180 WO2024051415A1 (zh) 2022-09-06 2023-08-04 频段资源的处理方法、通信方法、设备和存储介质

Country Status (2)

Country Link
CN (1) CN117715197A (zh)
WO (1) WO2024051415A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1866939A (zh) * 2005-09-30 2006-11-22 华为技术有限公司 降低vdsl高频串扰的方法及装置
KR20160001414A (ko) * 2014-06-27 2016-01-06 에스케이텔레콤 주식회사 듀얼밴드 ap에서의 전력 관리 방법
CN105532045A (zh) * 2013-09-20 2016-04-27 索尼公司 通信控制装置和通信控制方法
CN107690177A (zh) * 2016-08-05 2018-02-13 华为技术有限公司 一种接入点节能的方法及接入点
CN112804011A (zh) * 2020-12-31 2021-05-14 中国人民解放军32039部队 通信卫星干扰抑制方法、装置和电子设备
CN113938990A (zh) * 2020-06-29 2022-01-14 华为技术有限公司 一种设备管理方法及通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1866939A (zh) * 2005-09-30 2006-11-22 华为技术有限公司 降低vdsl高频串扰的方法及装置
CN105532045A (zh) * 2013-09-20 2016-04-27 索尼公司 通信控制装置和通信控制方法
KR20160001414A (ko) * 2014-06-27 2016-01-06 에스케이텔레콤 주식회사 듀얼밴드 ap에서의 전력 관리 방법
CN107690177A (zh) * 2016-08-05 2018-02-13 华为技术有限公司 一种接入点节能的方法及接入点
CN113938990A (zh) * 2020-06-29 2022-01-14 华为技术有限公司 一种设备管理方法及通信装置
CN112804011A (zh) * 2020-12-31 2021-05-14 中国人民解放军32039部队 通信卫星干扰抑制方法、装置和电子设备

Also Published As

Publication number Publication date
CN117715197A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
JP6416167B2 (ja) パワーオーバイーサネット方法及びデバイス
WO2019218916A1 (zh) 一种服务质量控制的方法、设备及计算机存储介质
US8205102B2 (en) Intelligent power management of an intermediate network device switching circuitry and PoE delivery
KR102424658B1 (ko) 디폴트 서비스 품질(QoS) 제어 방법 및 장치
WO2018188477A1 (zh) 数据传输方法及装置、电力线通信网络、电力系统
US20170026190A1 (en) Point-to-point and point-to-multipoint communications
CN112291079B (zh) 一种网络业务配置方法及网络管理设备
EP3082285B1 (en) Ethernet data rate selection based on cable parameters
WO2021212906A1 (zh) 网络端口分配方法、装置、电子设备和计算机可用介质
US10735048B1 (en) Network switch apparatus and methods for global alien crosstalk characterization, diagnostics and network optimization
CN108633088A (zh) 资源调度的方法和装置
CN107395521B (zh) 一种基于物联网的大数据信息处理方法及系统
CN108600974A (zh) 一种信令指示方法、装置及存储介质
CN106954225A (zh) 无线漫游的方法、装置及无线设备
EP3171653A1 (en) Optimization of connection time among clients connected to an access point
US20220311711A1 (en) Congestion control based on network telemetry
CN105991294A (zh) PoE功率补偿的方法和供电设备
WO2017202315A1 (zh) 一种电源适配器的控制方法及控制装置
WO2024027495A1 (zh) 信息确定方法及装置、存储介质及电子装置
CN109275157A (zh) 一种基站的nprace的配置参数优化方法和装置
WO2024051415A1 (zh) 频段资源的处理方法、通信方法、设备和存储介质
TW201220761A (en) A method, a system, a device, a first server, a second server, a third server a computer program and a computer program product for operating a communications network
WO2016037510A1 (zh) 一种电力线通信频谱碎片整理方法和装置
EP4038837B1 (en) Quality of experience measurements for control of wi-fi networks
WO2021254180A1 (zh) 信道分配方法及装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862113

Country of ref document: EP

Kind code of ref document: A1