WO2024051219A1 - 电机三相电流的不平衡补偿方法、装置及电子设备 - Google Patents

电机三相电流的不平衡补偿方法、装置及电子设备 Download PDF

Info

Publication number
WO2024051219A1
WO2024051219A1 PCT/CN2023/097182 CN2023097182W WO2024051219A1 WO 2024051219 A1 WO2024051219 A1 WO 2024051219A1 CN 2023097182 W CN2023097182 W CN 2023097182W WO 2024051219 A1 WO2024051219 A1 WO 2024051219A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase current
current
phase
motor
compensation
Prior art date
Application number
PCT/CN2023/097182
Other languages
English (en)
French (fr)
Inventor
赵娜飞
张�浩
许心一
罗建武
赵海睿
Original Assignee
东风汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东风汽车集团股份有限公司 filed Critical 东风汽车集团股份有限公司
Publication of WO2024051219A1 publication Critical patent/WO2024051219A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Definitions

  • the present disclosure relates to three-phase current technology, and in particular, to a method, device and electronic equipment for unbalance compensation of three-phase current of a motor.
  • the unbalanced three-phase current of the motor means that there is a DC component in the phase voltage, which causes a large difference in the amplitude of the three-phase current or a DC component. This causes DC magnetic flux to appear in the magnetic field of the silicon steel sheet. This causes increased motor losses, long-term use, magnetic distortion of the permanent magnets, reduced efficiency, and aggravated vibration, EMC and other problems.
  • the generated motor system is generally measured offline, the unbalance, etc. are saved to the memory, and the corresponding unbalance is compensated based on the stored information during the operation of the motor.
  • This method cannot achieve dynamic compensation, and the compensation may fail after the motor system ages. It also requires additional storage devices, which increases production costs. Each system also needs to be tested, and the offline process is complicated.
  • Embodiments of the present disclosure provide a method, device, electronic equipment, and computer-readable storage medium for unbalance compensation of three-phase current of a motor, which can realize unbalance compensation without adding additional devices.
  • Embodiments of the present disclosure provide a method for unbalance compensation of three-phase current of a motor, including:
  • the three-phase current is compensated.
  • the calculation of the target peak current corresponding to the three-phase current of the motor includes:
  • the target peak current corresponding to the three-phase current of the motor is calculated in real time.
  • determining the compensation voltage based on the three-phase current imbalance includes:
  • the three-phase current imbalance is used as the input of the bias magnetic compensation proportional integral PI loop to perform PI calculation to obtain the compensation voltage.
  • compensating the three-phase current based on the compensation voltage includes:
  • the method further includes:
  • the two-phase voltage is used to control the motor.
  • An embodiment of the present disclosure provides an unbalance compensation device for three-phase current of a motor, which includes:
  • a calculation module configured to calculate the target peak current corresponding to the three-phase current of the motor in real time
  • a sampling module configured to perform peak sampling on the three-phase current to obtain the corresponding actual peak current
  • a first determination module configured to determine the three-phase current imbalance based on the target peak current and the actual peak current
  • a second determination module configured to determine the compensation voltage based on the three-phase current imbalance
  • a compensation module configured to compensate the three-phase current based on the compensation voltage.
  • An embodiment of the present disclosure provides an electronic device, including:
  • memory configured to store executable instructions
  • the processor is configured to implement the unbalance compensation method for the three-phase current of the motor provided by the embodiment of the present disclosure when executing the executable instructions stored in the memory.
  • Embodiments of the present disclosure provide a computer-readable storage medium that stores executable instructions configured to cause the processor to implement the unbalance compensation method for three-phase current of a motor provided by embodiments of the present disclosure.
  • the embodiment of the present disclosure calculates the target peak current corresponding to the three-phase current in real time online; performs peak sampling on the three-phase current to obtain the corresponding actual peak current; and determines the three-phase current based on the target peak current and the actual peak current.
  • the current imbalance amount based on the three-phase current imbalance amount, the compensation voltage is determined; based on the compensation voltage, the three-phase current is compensated, and the imbalance compensation can be achieved without adding additional devices.
  • Figure 1 is an optional structural schematic diagram of an electronic device 100 provided by an embodiment of the present disclosure
  • Figure 2 is an optional flow diagram of the unbalance compensation method for the three-phase current of the motor provided by the embodiment of the present disclosure
  • FIG. 3 is an optional detailed flowchart of step 201 provided by the embodiment of the present disclosure.
  • Figure 4 is an optional flow diagram of the steps after step 205 provided by an embodiment of the present disclosure.
  • FIG. 5 is an optional flow chart of the unbalance compensation method for the three-phase current of the motor provided by the embodiment of the present disclosure.
  • first ⁇ second ⁇ third are only used to distinguish similar objects and do not represent a specific ordering of objects. It is understandable that "first ⁇ second ⁇ third" Where permitted, the specific order or sequence may be interchanged so that the disclosed embodiments described herein can be practiced in other sequences than illustrated or described herein.
  • Embodiments of the present disclosure provide a method, device, electronic device, and computer-readable storage medium for unbalance compensation of three-phase current of a motor, which can realize unbalance compensation without adding additional devices.
  • Figure 1 is an optional structural schematic diagram of an electronic device 100 provided by an embodiment of the present disclosure.
  • the electronic device 100 shown in Figure 1 includes: at least one processor 101 and a memory 102.
  • the various components in electronic device 100 are coupled together by bus system 103 .
  • the bus system 103 is used to implement connection communication between these components.
  • the bus system 104 also includes a power bus, a control bus and a status signal bus.
  • various buses are labeled as bus system 103 in FIG. 1 .
  • the processor 101 may be an integrated circuit chip with signal processing capabilities, such as a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware Components, etc., wherein the general processor can be a microprocessor or any conventional processor, etc.
  • DSP Digital Signal Processor
  • Memory 102 may be removable, non-removable, or a combination thereof.
  • Exemplary hardware devices include solid state memory, hard disk drives, optical disk drives, etc.
  • Memory 102 optionally includes one or more storage devices physically located remotely from processor 101 .
  • Memory 102 includes volatile memory or non-volatile memory, and may include both volatile and non-volatile memory.
  • Non-volatile memory can be read-only memory (ROM, Read Only Memory), and volatile memory can be random access memory (RAM, Random Access Memory).
  • RAM Random Access Memory
  • the memory 102 described in embodiments of the present disclosure is intended to include any suitable type of memory.
  • the memory 102 can store data to support various operations. Examples of these data include programs, modules and data structures or a subset or superset thereof.
  • the operating system 1021 is stored in the memory 102 And the unbalance compensation device 1022 for the three-phase current of the motor; specifically,
  • the operating system 1021 includes system programs used to process various basic system services and perform hardware-related tasks, such as the framework layer, core library layer, driver layer, etc., which are used to implement various basic services and process hardware-based tasks;
  • the unbalance compensation device for the three-phase current of the motor can be implemented in a software manner.
  • Figure 1 shows the unbalance compensation device 1022 for the three-phase current of the motor stored in the memory 102.
  • It can be software in the form of programs and plug-ins, including the following software modules: calculation module 10221, sampling module 10222, first determination module 10223, second determination module 10224 and compensation module 10225. These modules are logical, so according to the implementation The functions can be combined or further divided into any combination. The functions of each module are explained below.
  • the unbalance compensation device for the three-phase current of the motor provided by the embodiment of the present disclosure can be implemented in hardware.
  • the unbalance compensation device of the three-phase current of the motor provided by the embodiment of the present disclosure is
  • the unbalance compensation device may be a processor in the form of a hardware decoding processor, which is programmed to execute the unbalance compensation method for the three-phase current of the motor provided by the embodiment of the present disclosure.
  • the processor in the form of a hardware decoding processor may be Using one or more application specific integrated circuits (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), complex programmable logic device (CPLD, Complex Programmable Logic Device), field programmable gate Array (FPGA, Field-Programmable Gate Array) or other electronic components.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • PLD programmable logic device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • FIG. 2 is an optional flow diagram of an unbalance compensation method for three-phase current of a motor provided by an embodiment of the present disclosure, which will be described in conjunction with the steps shown in FIG. 2 .
  • Step 201 Calculate the target peak current corresponding to the three-phase current of the motor in real time
  • Step 202 Perform peak sampling on the three-phase current to obtain the corresponding actual peak current
  • Step 203 Determine the three-phase current imbalance based on the target peak current and the actual peak current
  • Step 204 Determine the compensation voltage based on the three-phase current imbalance
  • Step 205 Compensate the three-phase current based on the compensation voltage.
  • the electronic device calculates the target peak current corresponding to the three-phase current of the motor online in real time.
  • Step 201 can be implemented in the following manner:
  • Step 301 perform dq coordinate conversion on the three-phase current of the motor to obtain the target dq two-phase current
  • Step 302 obtain the relationship between the target peak current and the dq two-phase current
  • Step 303 Calculate the target peak current corresponding to the three-phase current of the motor in real time based on the relationship between the target dq two-phase current, the target peak current and the dq two-phase current.
  • the electronic device converts the three-phase current of the motor into the dq coordinate axis to obtain the target dq two-phase current under the dq coordinate axis. Then, the electronic device obtains the relationship between the target peak current and the dq two-phase current.
  • the relationship between the target peak current and the dq two-phase current is shown in formula (1):
  • id is the d-phase current in the dq two-phase current
  • iq is the q-phase current in the dq two-phase current
  • K is the coordinate conversion coefficient
  • I refmax is the target peak current
  • the electronic device calculates the target peak current corresponding to the three-phase current of the motor in real time.
  • I max is the actual peak current.
  • the electronic device determines the compensation voltage based on the three-phase current imbalance.
  • step 204 can be implemented in the following manner: using the three-phase current imbalance as an input of a bias magnetic compensation proportional integral PI loop to perform PI calculation to obtain the compensation voltage.
  • the electronic device uses the three-phase current imbalance as the input of the bias compensation PI loop to perform PI calculation and obtain the bias compensation voltage value.
  • the U phase bias compensation voltage value output by the PI ring is ⁇ u out1 .
  • ⁇ i U , ⁇ i V , and ⁇ i W are quantities that can reflect the three-phase bias state.
  • the bias compensation voltage value is limited. The specific limiting value can be set according to the actual situation.
  • step 205 can be implemented in the following manner: when the three-phase voltage of the motor current closed loop is output, voltage compensation is performed based on the compensation voltage to obtain the compensated three-phase voltage, and the three-phase current is compensated. compensate.
  • the compensation voltage value is compensated during the motor closed-loop control process. Specifically, when the three-phase voltage of the motor current closed loop is output, after compensating the ⁇ u out1 , ⁇ u out2 , and ⁇ u out3 calculated above, the compensated three-phase voltages u U , u V , and u W are obtained.
  • Figure 4 is an optional flow diagram of steps after step 205 provided by an embodiment of the present disclosure. After step 205, you can also perform:
  • Step 401 convert the compensated three-phase voltage into a two-phase voltage
  • Step 402 Use the two-phase voltage to control the motor.
  • the electronic device converts the compensated three-phase voltage into two-phase voltage and controls the motor.
  • x ⁇ t
  • A is the voltage amplitude
  • the embodiment of the present disclosure calculates the target peak current corresponding to the three-phase current in real time online; performs peak sampling on the three-phase current to obtain the corresponding actual peak current; and determines based on the target peak current and the actual peak current.
  • the three-phase current imbalance amount based on the three-phase current imbalance amount, determine the compensation voltage; based on the compensation voltage, the three-phase current is compensated, and the imbalance compensation can be achieved without adding additional devices.
  • Figure 5 is an optional flow diagram of an unbalance compensation method for three-phase current of a motor provided by an embodiment of the present disclosure, including:
  • Step 1 Calculate the maximum unbalanced current difference, which is the magnetic bias characteristic:
  • K is the coordinate conversion coefficient
  • I max is the actual three-phase current peak value
  • I refmax is the target three-phase current peak value corresponding to the target current.
  • Step 2 Calculate the three-phase voltage compensation value:
  • the bias compensation PI loop uses the maximum unbalanced current difference, that is, the bias characteristic quantity, as the input of the bias compensation PI loop to perform PI calculation to obtain the bias compensation voltage value.
  • the U phase bias compensation voltage value output by the PI ring is ⁇ u out1 .
  • ⁇ i U , ⁇ i V , ⁇ i W are the quantities that can reflect the three-phase bias state.
  • the bias compensation voltage value is limited. The specific limiting value can be set according to the actual situation.
  • Step 3 During the motor closed-loop control process, compensate the above bias compensation voltage value:
  • x ⁇ t; A is the voltage amplitude.
  • the embodiment of the present disclosure uses the maximum unbalanced current difference to characterize the bias magnetic characteristic quantity.
  • the single-phase compensation voltage is calculated using the PI control method of magnetic bias characteristics. Use the equal proportion method to calculate the compensation voltage of other phases. After correcting the three-phase voltage of the current closed-loop output by the three-phase voltage bias compensation amount, the motor control output is performed. It can dynamically compensate the three-phase current imbalance of the motor without adding hardware circuits, improve the service life of the electric drive system, improve the efficiency of the motor, and reduce EMC, NVH and other problems of the electric drive system.
  • the software modules in the current unbalance compensation method device 1055 may include:
  • the calculation module 10551 is configured to calculate the target peak current corresponding to the three-phase current of the motor in real time;
  • the sampling module 10552 is configured to perform peak sampling on the three-phase current to obtain the corresponding actual peak current
  • the first determination module 10553 is configured to determine the three-phase current imbalance based on the target peak current and the actual peak current;
  • the second determination module 10554 is configured to determine the compensation voltage based on the three-phase current imbalance
  • the compensation module 10555 is configured to compensate the three-phase current based on the compensation voltage.
  • the calculation module 10551 is also configured to perform dq coordinate conversion on the three-phase current of the motor to obtain the target dq two-phase current; and obtain the relationship between the target peak current and the dq two-phase current. Relationship; based on the relationship between the target dq two-phase current, the target peak current and the dq two-phase current, calculate the target peak current corresponding to the three-phase current of the motor in real time.
  • the second determination module 10554 is further configured to use the three-phase current imbalance as an input of the bias magnetic compensation proportional integral PI loop to perform PI calculation to obtain the compensation voltage.
  • the compensation module 10555 is also configured to perform voltage compensation based on the compensation voltage when the three-phase voltage of the motor current closed loop is output, and obtain the compensated three-phase voltage to realize the compensation of the three-phase current. .
  • the device further includes: a control module configured to convert the compensated three-phase voltage into a two-phase voltage; and use the two-phase voltage to control the motor.
  • Embodiments of the present disclosure provide a computer program product or computer program, which includes computer instructions stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device performs the method described above in the embodiments of the present disclosure.
  • Embodiments of the present disclosure provide a computer-readable storage medium storing executable instructions.
  • the executable instructions are stored therein. When the executable instructions are executed by a processor, they will cause the processor to execute the method provided by the embodiments of the present disclosure.
  • the computer-readable storage medium may be a memory such as FRAM, ROM, PROM, EPROM, EEPROM, flash memory, magnetic surface memory, optical disk, or CD-ROM; it may also include one or any combination of the above memories.
  • Various equipment may be a memory such as FRAM, ROM, PROM, EPROM, EEPROM, flash memory, magnetic surface memory, optical disk, or CD-ROM; it may also include one or any combination of the above memories.
  • Various equipment may be a memory such as FRAM, ROM, PROM, EPROM, EEPROM, flash memory, magnetic surface memory, optical disk, or CD-ROM; it may also include one or any combination of the above memories.
  • executable instructions may take the form of a program, software, software module, script, or code, written in any form of programming language, including compiled or interpreted languages, or declarative or procedural languages, and their May be deployed in any form, including deployed as a stand-alone program or deployed as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • executable instructions may, but do not necessarily correspond to, files in a file system and may be stored as part of a file holding other programs or data, for example, in a hypertext markup language.
  • HTML HyperTextMarkupLanguage
  • executable instructions may, but do not necessarily correspond to, files in a file system and may be stored as part of a file holding other programs or data, for example, in a hypertext markup language. (HTML, HyperTextMarkupLanguage) in one or more scripts in a document, stored in a single file dedicated to the program in question, or, stored in multiple collaborative files (e.g., storing one or more modules, subroutines, or code part of the file).
  • HTML HyperTextMarkupLanguage
  • executable instructions may be deployed to execute on one computing device, or on multiple computing devices located at one location, or alternatively, on multiple computing devices distributed across multiple locations and interconnected by a communications network execute on.
  • imbalance compensation can be achieved without adding additional components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本公开提供了一种电机三相电流的不平衡补偿方法、装置、电子设备及计算机可读存储介质;方法包括:实时计算电机的三相电流对应的目标峰值电流;对所述三相电流进行峰值采样,得到相应的实际峰值电流;基于所述目标峰值电流和所述实际峰值电流,确定三相电流不平衡量;基于所述三相电流不平衡量,确定补偿电压;基于所述补偿电压,对所述三相电流进行补偿。通过本公开,能够在不增加额外器件的条件下实现三相电流不平衡的实时补偿。

Description

电机三相电流的不平衡补偿方法、装置及电子设备
相关公开的交叉引用
本公开基于公开号为202211086016.X、公开日为2022年09月06日的中国专利公开提出,并要求该中国专利公开的优先权,该中国专利公开的全部内容在此以引入方式并入本公开。
技术领域
本公开涉及三相电流技术,尤其涉及一种电机三相电流的不平衡补偿方法、装置及电子设备。
背景技术
电机三相电流不平衡是指相电压出现直流分量,使得三相电流幅值差异较大或出现直流分量。导致硅钢片磁场出现直流磁通。使得电机损耗增加,长时间使用,永磁体磁性扭曲,效率降低,震动,EMC等问题加剧。
相关技术中,一般是通过对生成电机系统进行下线测量,将不平衡度等保存至存储器,在电机运行过程中对对应的不平衡度进行根据已存储信息进行补偿。这种方式不能实现动态补偿,后期电机系统老化之后补偿可能会失效,且需要增加存储器件,带来生产成本增加,还需要对每台系统进行测试,下线流程复杂。
发明内容
本公开实施例提供一种电机三相电流的不平衡补偿方法、装置、电子设备及计算机可读存储介质,能够在不增加额外器件的条件下实现不平衡补偿。
本公开实施例的技术方案是这样实现的:
本公开实施例提供一种电机三相电流的不平衡补偿方法,包括:
实时计算电机的三相电流对应的目标峰值电流;
对所述三相电流进行峰值采样,得到相应的实际峰值电流;
基于所述目标峰值电流和所述实际峰值电流,确定三相电流不平衡量;
基于所述三相电流不平衡量,确定补偿电压;
基于所述补偿电压,对所述三相电流进行补偿。
在本公开的一种可选实施例中,所述所述计算电机的三相电流对应的目标峰值电流,包括:
将所述电机的三相电流进行dq坐标转换,得到目标dq两相电流;
获得目标峰值电流与dq两相电流之间的关系;
基于所述目标dq两相电流、所述目标峰值电流与dq两相电流之间的关系,实时计算电机的三相电流对应的目标峰值电流。
在本公开的一种可选实施例中,所述基于所述三相电流不平衡量,确定补偿电压,包括:
将所述三相电流不平衡量作为偏磁补偿比例积分PI环的输入进行PI计算,得到补偿电压。
在本公开的一种可选实施例中,所述基于所述补偿电压,对所述三相电流进行补偿,包括:
在电机电流闭环的三相电压输出时,基于所述补偿电压进行电压补偿,得到补偿后的三相电压,实现对所述三相电流的补偿。
在本公开的一种可选实施例中,所述方法还包括:
将补偿后的三相电压转换为两相电压;
利用所述两相电压对所述电机进行控制。
本公开实施例提供一种电机三相电流的不平衡补偿装置,包括:
计算模块,配置为实时计算电机的三相电流对应的目标峰值电流;
采样模块,配置为对所述三相电流进行峰值采样,得到相应的实际峰值电流;
第一确定模块,配置为基于所述目标峰值电流和所述实际峰值电流,确定三相电流不平衡量;
第二确定模块,配置为基于所述三相电流不平衡量,确定补偿电压;
补偿模块,配置为基于所述补偿电压,对所述三相电流进行补偿。
本公开实施例提供一种电子设备,包括:
存储器,配置为存储可执行指令;
处理器,配置为执行所述存储器中存储的可执行指令时,实现本公开实施例提供的电机三相电流的不平衡补偿方法。
本公开实施例提供一种计算机可读存储介质,存储有可执行指令,配置为引起处理器执行时,实现本公开实施例提供的电机三相电流的不平衡补偿方法。
本公开实施例通过在线实时计算三相电流对应的目标峰值电流;对所述三相电流进行峰值采样,得到相应的实际峰值电流;基于所述目标峰值电流和所述实际峰值电流,确定三相电流不平衡量;基于所述三相电流不平衡量,确定补偿电压;基于所述补偿电压,对所述三相电流进行补偿,能够在不增加额外器件的条件下实现不平衡补偿。
附图说明
图1是本公开实施例提供的电子设备100的一个可选的结构示意图;
图2是本公开实施例提供的电机三相电流的不平衡补偿方法的一个可选的流程示意图;
图3是本公开实施例提供的步骤201的一个可选的细化流程示意图;
图4是本公开实施例提供的步骤205之后的步骤的一个可选的流程示意图;
图5是本公开实施例提供的电机三相电流的不平衡补偿方法的一个可选的流程示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,所描述的实施例不应视为对本公开的限制,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本 公开保护的范围。
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
在以下的描述中,所涉及的术语“第一\第二\第三”仅仅是是区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本公开实施例能够以除了在这里图示或描述的以外的顺序实施。
除非另有定义,本文所使用的所有的技术和科学术语与属于本公开的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本公开实施例的目的,不是旨在限制本公开。
本公开实施例提供一种电机三相电流的不平衡补偿方法、装置、电子设备和计算机可读存储介质,能够在不增加额外器件的条件下实现不平衡补偿。
首先对本公开实施例提供的用于实施上述电机三相电流的不平衡补偿方法的电子设备进行说明。参见图1,图1是本公开实施例提供的电子设备100的一个可选的结构示意图,图1所示的电子设备100包括:至少一个处理器101、存储器102。电子设备100中的各个组件通过总线系统103耦合在一起。可理解,总线系统103用于实现这些组件之间的连接通信。总线系统104除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图1中将各种总线都标为总线系统103。
处理器101可以是一种集成电路芯片,具有信号的处理能力,例如通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,其中,通用处理器可以是微处理器或者任何常规的处理器等。
存储器102可以是可移除的,不可移除的或其组合。示例性的硬件设备包括固态存储器,硬盘驱动器,光盘驱动器等。存储器102可选地包括在物理位置上远离处理器101的一个或多个存储设备。
存储器102包括易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。非易失性存储器可以是只读存储器(ROM,Read Only Memory),易失性存储器可以是随机存取存储器(RAM,Random Access Memory)。本公开实施例描述的存储器102旨在包括任意适合类型的存储器。
在一些实施例中,存储器102能够存储数据以支持各种操作,这些数据的示例包括程序、模块和数据结构或者其子集或超集,本公开实施例中,存储器102中存储有操作系统1021及电机三相电流的不平衡补偿装置1022;具体地,
操作系统1021,包括用于处理各种基本系统服务和执行硬件相关任务的系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务;
在一些实施例中,本公开实施例提供的电机三相电流的不平衡补偿装置可以采用软件方式实现,图1示出了存储在存储器102中的电机三相电流的不平衡补偿装置1022,其可以是程序和插件等形式的软件,包括以下软件模块:计算模块10221、采样模块10222、第一确定模块10223、第二确定模块10224及补偿模块10225,这些模块是逻辑上的,因此根据所实现的功能可以进行任意的组合或进一步拆分。将在下文中说明各个模块的功能。
在另一些实施例中,本公开实施例提供的电机三相电流的不平衡补偿电机三相电流的不平衡补偿装置可以采用硬件方式实现,作为示例,本公开实施例提供的电机三相电流的不平衡补偿装置可以是采用硬件译码处理器形式的处理器,其被编程以执行本公开实施例提供的电机三相电流的不平衡补偿方法,例如,硬件译码处理器形式的处理器可以采用一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)或其他电子元件。
下面将结合本公开实施例提供的电子设备的示例性应用和实施,说明本公开实施例提供的电机三相电流的不平衡补偿方法。
参见图2,图2是本公开实施例提供的电机三相电流的不平衡补偿方法的一个可选的流程示意图,将结合图2示出的步骤进行说明。
步骤201,实时计算电机的三相电流对应的目标峰值电流;
步骤202,对所述三相电流进行峰值采样,得到相应的实际峰值电流;
步骤203,基于所述目标峰值电流和所述实际峰值电流,确定三相电流不平衡量;
步骤204,基于所述三相电流不平衡量,确定补偿电压;
步骤205,基于所述补偿电压,对所述三相电流进行补偿。
在实际实施时,电子设备在线实时计算电机的三相电流对应的目标峰值电流。在一些实施例中,参见图3,图3是本公开实施例提供的步骤201的一个可选的细化流程示意图,步骤201可以通过如下方式实现:
步骤301,将所述电机的三相电流进行dq坐标转换,得到目标dq两相电流;
步骤302,获得目标峰值电流与dq两相电流之间的关系;
步骤303,基于所述目标dq两相电流、所述目标峰值电流与dq两相电流之间的关系,实时计算电机的三相电流对应的目标峰值电流。
在实际实施时,电子设备将电机的三相电流进行dq坐标轴的转换,得到dq坐标轴下的目标dq两相电流。接着,电子设备获得目标峰值电流与dq两相电流之间的关系。这里,目标峰值电流与dq两相电流之间的关系参见公式(1):
其中,id为dq两相电流中的d相电流,iq为dq两相电流中的q相电流,K为坐标转换系数,Irefmax为目标峰值电流。
接着,电子设备基于目标dq两相电流、目标峰值电流与dq两相电流之间的关系,实时计算电机的三相电流对应的目标峰值电流。
在实际实施时,电子设备在得到目标峰值电流后,对三相电流进行峰值采样,得到采样的实际峰值电流。然后通过公式(2)计算目标峰值电流与实际峰值电流之差,得到三相电流不平衡量ΔI(即偏磁特征量):
ΔI=Irefmax-Imax           (2)
其中,Imax为实际峰值电流。
在实际实施时,电子设备基于三相电流不平衡量,确定补偿电压。具体地,在一些实施例中,步骤204可以通过如下方式实现:将所述三相电流不平衡量作为偏磁补偿比例积分PI环的输入进行PI计算,得到补偿电压。
在实际实施时,电子设备将三相电流不平衡量作为偏磁补偿PI环的输入进行PI计算,得到偏磁补偿电压值。以U相为例,PI环输出的U相偏磁补偿电压值为Δuout1,此时其余两相补偿电压值为:
Δuout2=-Δuout1*ΔiV/ΔiU
Δuout3=-Δuout1*Δiw/ΔiU
其中,ΔiU,ΔiV,ΔiW是可以反映三相偏磁状态的量,在补偿电压输出时,对偏磁补偿电压值进行限幅,具体限幅值可根据实际情况设置。
在一些实施例中,步骤205可以通过如下方式实现:在电机电流闭环的三相电压输出时,基于所述补偿电压进行电压补偿,得到补偿后的三相电压,实现对所述三相电流的补偿。
在实际实施时,在电机闭环控制过程中,将补偿电压值进行补偿。具体地,在电机电流闭环的三相电压输出时,将以上计算的Δuout1、Δuout2、Δuout3进行补偿后,得到补偿后的三相电压uU,uV,uW
在一些实施例中,参见图4,图4是本公开实施例提供的步骤205之后的步骤的一个可选的流程示意图,在步骤205之后,还可以执行:
步骤401,将补偿后的三相电压转换为两相电压;
步骤402,利用所述两相电压对所述电机进行控制。
在实际实施时,电子设备将补偿后的三相电压转换为两相电压,对电机进行控制,此时三相电压uU,uV,uW分别为:
uU=A[sin(x)]+Δuout1

其中,x=ωt,A为电压幅值。
本公开实施例通过在线实时计算所述三相电流对应的目标峰值电流;对所述三相电流进行峰值采样,得到相应的实际峰值电流;基于所述目标峰值电流和所述实际峰值电流,确定三相电流不平衡量;基于所述三相电流不平衡量,确定补偿电压;基于所述补偿电压,对所述三相电流进行补偿,能够在不增加额外器件的条件下实现不平衡补偿。
下面,将说明本公开实施例在一个实际的应用场景中的示例性应用。
参见图5,图5是本公开实施例提供的电机三相电流的不平衡补偿方法的一个可选的流程示意图,包括:
第一步:计算最大不平衡电流差,即为偏磁特征量:
1)电流一相出现明显直流分量,通过目标峰值电流与目标电流之间的关系,可计算得到目标电流对应的目标三相电流峰值,关系如下:
2)对峰值电流进行采样,通过目标峰值电流与实际峰值电流之差计算出最大不平衡电流差,即为偏磁特征量:
ΔI=Irefmax-Imax
其中,K为坐标转换系数,Imax为实际三相电流峰值,Irefmax为目标电流对应的目标三相电流峰值。
第二步:计算三相电压补偿值:
1)将最大不平衡电流差即偏磁特征量作为偏磁补偿PI环的输入进行PI计算,得到偏磁补偿电压值。以U相为例,PI环输出的U相偏磁补偿电压值为Δuout1,此时其余两项补偿值应为:
Δuout2=-Δuout1*ΔiV/ΔiU
Δuout3=-Δuout1*Δiw/ΔiU
ΔiU,ΔiV,ΔiW就是可以反映三相偏磁状态的量,在补偿电压输出时,对偏磁补偿电压值进行限幅,具体限幅值可根据实际情况设置。
第三步:在电机闭环控制过程中,将以上偏磁补偿电压值进行补偿:
在电机电流闭环的三相电压输出时,将以上计算的Δuout1、Δuout2、Δuout3进行补偿后,得到三相电压uU,uV,uW,再进行三相到两相坐标系的转换,对电机进行控制,此时三相电压输出uU,uV,uW应该为:
uU=A[sin(x)]+Δuout1

其中,x=ωt;A为电压幅值。
本公开实施例利用最大不平衡电流差,来表征偏磁特征量。使用偏磁特征量进行PI控制的方法计算单相补偿电压。利用等比例的方法计算其他相补偿电压的方法。将三相电压偏磁补偿量对电流闭环输出的三相电压修正后,再进行电机控制输出。可以在无硬件电路增加的条件下,实现对电机的三相电流不平衡进行动态补偿,提高电驱动系统使用寿命,提高电机效率,降低电驱动系统EMC,NVH等问题。
下面继续说明本公开实施例提供的电机三相电流的不平衡补偿方法装置1055的实施为软件模块的示例性结构,在一些实施例中,如图1所示,存储在存储器105的电机三相电流的不平衡补偿方法装置1055中的软件模块可以包括:
计算模块10551,配置为实时计算电机的三相电流对应的目标峰值电流;
采样模块10552,配置为对所述三相电流进行峰值采样,得到相应的实际峰值电流;
第一确定模块10553,配置为基于所述目标峰值电流和所述实际峰值电流,确定三相电流不平衡量;
第二确定模块10554,配置为基于所述三相电流不平衡量,确定补偿电压;
补偿模块10555,配置为基于所述补偿电压,对所述三相电流进行补偿。
在一些实施例中,计算模块10551,还配置为将所述电机的三相电流进行dq坐标转换,得到目标dq两相电流;获得目标峰值电流与dq两相电流之间的 关系;基于所述目标dq两相电流、所述目标峰值电流与dq两相电流之间的关系,实时计算电机的三相电流对应的目标峰值电流。
在一些实施例中,第二确定模块10554,还配置为将所述三相电流不平衡量作为偏磁补偿比例积分PI环的输入进行PI计算,得到补偿电压。
在一些实施例中,补偿模块10555,还配置为在电机电流闭环的三相电压输出时,基于所述补偿电压进行电压补偿,得到补偿后的三相电压,实现对所述三相电流的补偿。
在一些实施例中,所述装置还包括:控制模块,配置为将补偿后的三相电压转换为两相电压;利用所述两相电压对所述电机进行控制。
需要说明的是,本公开实施例装置的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果,因此不做赘述。
本公开实施例提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行本公开实施例上述的方法。
本公开实施例提供一种存储有可执行指令的计算机可读存储介质,其中存储有可执行指令,当可执行指令被处理器执行时,将引起处理器执行本公开实施例提供的方法。
在一些实施例中,计算机可读存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、闪存、磁表面存储器、光盘、或CD-ROM等存储器;也可以是包括上述存储器之一或任意组合的各种设备。
在一些实施例中,可执行指令可以采用程序、软件、软件模块、脚本或代码的形式,按任意形式的编程语言(包括编译或解释语言,或者声明性或过程性语言)来编写,并且其可按任意形式部署,包括被部署为独立的程序或者被部署为模块、组件、子例程或者适合在计算环境中使用的其它单元。
作为示例,可执行指令可以但不一定对应于文件系统中的文件,可以可被存储在保存其它程序或数据的文件的一部分,例如,存储在超文本标记语言 (HTML,HyperTextMarkupLanguage)文档中的一个或多个脚本中,存储在专用于所讨论的程序的单个文件中,或者,存储在多个协同文件(例如,存储一个或多个模块、子程序或代码部分的文件)中。
作为示例,可执行指令可被部署为在一个计算设备上执行,或者在位于一个地点的多个计算设备上执行,又或者,在分布在多个地点且通过通信网络互连的多个计算设备上执行。
综上所述,通过本公开实施例能够在不增加额外器件的条件下实现不平衡补偿。
以上所述,仅为本公开的实施例而已,并非用于限定本公开的保护范围。凡在本公开的精神和范围之内所作的任何修改、等同替换和改进等,均包含在本公开的保护范围之内。

Claims (10)

  1. 一种电机三相电流的不平衡补偿方法,包括:
    实时计算电机的三相电流对应的目标峰值电流;
    对所述三相电流进行峰值采样,得到相应的实际峰值电流;
    基于所述目标峰值电流和所述实际峰值电流,确定三相电流不平衡量;
    基于所述三相电流不平衡量,确定补偿电压;
    基于所述补偿电压,对所述三相电流进行补偿。
  2. 根据权利要求1所述的方法,其中,所述实时计算电机的三相电流对应的目标峰值电流,包括:
    将所述电机的三相电流进行dq坐标转换,得到目标dq两相电流;
    获得目标峰值电流与dq两相电流之间的关系;
    基于所述目标dq两相电流、所述目标峰值电流与dq两相电流之间的关系,实时计算电机的三相电流对应的目标峰值电流。
  3. 根据权利要求1所述的方法,其中,所述基于所述三相电流不平衡量,确定补偿电压,包括:
    将所述三相电流不平衡量作为偏磁补偿比例积分PI环的输入进行PI计算,得到补偿电压。
  4. 根据权利要求1所述的方法,其中,所述基于所述补偿电压,对所述三相电流进行补偿,包括:
    在电机电流闭环的三相电压输出时,基于所述补偿电压进行电压补偿,得到补偿后的三相电压,实现对所述三相电流的补偿。
  5. 根据权利要求1所述的方法,其中,所述方法还包括:
    将补偿后的三相电压转换为两相电压;
    利用所述两相电压对所述电机进行控制。
  6. 一种电机三相电流的不平衡补偿装置,其中,包括:
    计算模块,配置为实时计算电机的三相电流对应的目标峰值电流;
    采样模块,配置为对所述三相电流进行峰值采样,得到相应的实际峰值电流;
    第一确定模块,配置为基于所述目标峰值电流和所述实际峰值电流,确定三相电流不平衡量;
    第二确定模块,配置为基于所述三相电流不平衡量,确定补偿电压;
    补偿模块,配置为基于所述补偿电压,对所述三相电流进行补偿。
  7. 根据权利要求6所述的装置,其中,所述计算模块,还配置为将所述电机的三相电流进行dq坐标转换,得到目标dq两相电流;
    获得目标峰值电流与dq两相电流之间的关系;
    基于所述目标dq两相电流、所述目标峰值电流与dq两相电流之间的关系,实时计算电机的三相电流对应的目标峰值电流。
  8. 根据权利要求6所述的装置,其中,所述第二确定模块,还配置为将所述三相电流不平衡量作为偏磁补偿比例积分PI环的输入进行PI计算,得到补偿电压。
  9. 一种电子设备,其中,包括:
    存储器,配置为存储可执行指令;
    处理器,配置为执行所述存储器中存储的可执行指令时,实现权利要求1至5任一项所述的方法。
  10. 一种计算机可读存储介质,其中,存储有可执行指令,配置为被处理器执行时,实现权利要求1至5任一项所述的方法。
PCT/CN2023/097182 2022-09-06 2023-05-30 电机三相电流的不平衡补偿方法、装置及电子设备 WO2024051219A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211086016.X 2022-09-06
CN202211086016.XA CN115498939A (zh) 2022-09-06 2022-09-06 电机三相电流的不平衡补偿方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2024051219A1 true WO2024051219A1 (zh) 2024-03-14

Family

ID=84468098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097182 WO2024051219A1 (zh) 2022-09-06 2023-05-30 电机三相电流的不平衡补偿方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN115498939A (zh)
WO (1) WO2024051219A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115498939A (zh) * 2022-09-06 2022-12-20 东风汽车集团股份有限公司 电机三相电流的不平衡补偿方法、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296055A (ja) * 2005-04-08 2006-10-26 Mitsubishi Electric Corp 電力変換器の制御装置
US20100054004A1 (en) * 2008-08-26 2010-03-04 Rockwell Automation Technologies, Inc. Method and apparatus for phase current balance in active converter with unbalanced ac line voltage source
CN111769775A (zh) * 2020-01-20 2020-10-13 合肥巨一动力系统有限公司 电机三相电流不平衡的谐波电流控制方法及系统
CN112688339A (zh) * 2020-12-17 2021-04-20 合肥工业大学 一种三相不平衡调节器的补偿电流限幅方法及装置
CN115498939A (zh) * 2022-09-06 2022-12-20 东风汽车集团股份有限公司 电机三相电流的不平衡补偿方法、装置及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296055A (ja) * 2005-04-08 2006-10-26 Mitsubishi Electric Corp 電力変換器の制御装置
US20100054004A1 (en) * 2008-08-26 2010-03-04 Rockwell Automation Technologies, Inc. Method and apparatus for phase current balance in active converter with unbalanced ac line voltage source
CN111769775A (zh) * 2020-01-20 2020-10-13 合肥巨一动力系统有限公司 电机三相电流不平衡的谐波电流控制方法及系统
CN112688339A (zh) * 2020-12-17 2021-04-20 合肥工业大学 一种三相不平衡调节器的补偿电流限幅方法及装置
CN115498939A (zh) * 2022-09-06 2022-12-20 东风汽车集团股份有限公司 电机三相电流的不平衡补偿方法、装置及电子设备

Also Published As

Publication number Publication date
CN115498939A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2024051219A1 (zh) 电机三相电流的不平衡补偿方法、装置及电子设备
US7243006B2 (en) Predictive control system and method
CN110995076A (zh) 一种永磁同步电机模型预测电流控制方法
US6037742A (en) Method for the field-oriented control of an induction motor
Sun et al. An online global fault-tolerant control strategy for symmetrical multiphase machines with minimum losses in full torque production range
US20180234043A1 (en) Alternator with harmonic compensation
CN110868111B (zh) 基于离散空间矢量调制的永磁同步电机模型预测控制方法
US7813904B2 (en) Method, apparatus, and computer readable medium based program for simulating an alternate current electric motor using a motor model
WO2023226238A1 (zh) 一种电机基于解耦的矢量控制方法、系统及相关组件
CN112600405B (zh) 单向pfc电路的控制方法、装置及终端设备
CN117691905A (zh) 电机控制中谐波抑制方法、谐波抑制装置、车辆及介质
CN110752603A (zh) 一种串联逆变器的复合控制方法、存储介质及设备
CN108776254B (zh) 幅值检测方法、电机驱动设备、存储介质及装置
WO2023238386A1 (ja) 電力変換装置、および制御装置
CN108155837B (zh) 永磁电机控制系统延时获取方法及装置
Brandstetter et al. Application of BEMF-MRAS with Kalman filter in sensorless control of induction motor drive
Latrech et al. FPGA implementation of a robust DTC-SVM based Sliding Mode Flux Observer for a double star induction motor: Hardware in the loop validation
CN114665776A (zh) 一种闭环步进电机动态解耦的控制方法、系统及存储介质
US20230231466A1 (en) Cascaded power electronic transformer and control method therefor
CN114844422A (zh) 一种电机输出转矩的控制方法、装置及电子设备
JP2019058038A (ja) 電力変換装置および電力変換システム
CN113258837A (zh) 一种永磁同步电机的鲁棒模型预测电流控制方法及装置
CN114900085B (zh) 一种机器人关节伺服电机模型预测参数优化方法及装置
CN115133832B (zh) 一种表贴式永磁同步电机的参数实时修正方法
CN114785227A (zh) 一种多相永磁电机开路故障转矩脉动抑制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861923

Country of ref document: EP

Kind code of ref document: A1