WO2024051102A1 - 一种富集锂的方法 - Google Patents

一种富集锂的方法 Download PDF

Info

Publication number
WO2024051102A1
WO2024051102A1 PCT/CN2023/077684 CN2023077684W WO2024051102A1 WO 2024051102 A1 WO2024051102 A1 WO 2024051102A1 CN 2023077684 W CN2023077684 W CN 2023077684W WO 2024051102 A1 WO2024051102 A1 WO 2024051102A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
particle size
flotation
concentrate
screening
Prior art date
Application number
PCT/CN2023/077684
Other languages
English (en)
French (fr)
Inventor
郭萧轲
唐时健
刘云涛
张鹏
阮丁山
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024051102A1 publication Critical patent/WO2024051102A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of lithium clay minerals, and specifically relates to a method of enriching lithium.
  • the lithium content in this lithium ore is low, with a Li 2 O content of about 0.30%, and contains fine quartz veins, which is consistent with The embedded form of other gangue minerals is complex, so it is difficult to dissociate the target mineral monomer.
  • the embedded particle size is extremely fine, and the monomer dissociation is basically achieved only when the degree of dissociation is below 20 ⁇ m.
  • the conventional single flotation process is used for selection. In particular, there are problems such as serious mud formation, poor sorting performance, and large consumption of chemicals.
  • lithium enrichment method suitable for lithium clay mineral beneficiation, which can enrich lithium in lithium-containing minerals and effectively remove impurity minerals.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention proposes a method for enriching lithium, which can achieve enrichment of lithium-containing minerals and effective removal of impurity minerals, provide higher quality raw materials for downstream sections, reduce energy consumption, and save production costs.
  • a method for enriching lithium including the following steps:
  • step S2 the particle size of the scrubbed concentrate obtained by the classification is not greater than 0.15mm;
  • the lithium ore includes clay-type lithium ore.
  • Clay-type lithium ore has a certain degree of cohesiveness and is easy to agglomerate and adhere to other gangue minerals.
  • the present invention adopts dry grinding, which can weaken the influence of material adhesion, achieve crushing of clay minerals, and enrich impurity minerals with higher hardness in coarser particle sizes to facilitate subsequent removal in impurity removal screening.
  • dry grinding can also better achieve the dissociation of clay-type lithium ore monomers, which can ensure that more lithium-containing minerals enter the subsequent scrubbing section, and at the same time achieve the purpose of effective pre-tailing.
  • Scrubbing has a certain grinding ability, which can ensure the dissociation of lithium-containing clay mineral monomers while enriching impurity minerals in coarser particles to achieve classification.
  • the choice of scrubbing is based on the grade and recovery rate of the lithium concentrate products produced by scrubbing. Scrubbing can achieve better results.
  • step S1 includes the following steps:
  • step S1b After the second stage dry grinding of the oversize material obtained in step S1a, use a sieve with a hole diameter of 20mm to conduct the second and third screenings in sequence to obtain the undersize material;
  • the fine powder is obtained by combining the sieve residue obtained in step S1a and step S1b.
  • the two stages Dry grinding enables better dissociation of lithium clay ore monomers, effectively dissociates useful minerals and gangue minerals, and reduces the loss of lithium-containing minerals in coarse-grained tailings.
  • the dry grinding equipment includes a dry autogenous grinder.
  • the first period of dry grinding time is 10-15 minutes.
  • the second period of dry grinding time is 5-8 minutes.
  • the first screening includes dry screening using a cylindrical screen.
  • the first stage of dry grinding After the first stage of dry grinding, it is screened by a cylindrical screen, and the qualified particles directly enter the scrubbing section. This can prevent the target minerals from being over-ground and at the same time save energy consumption in the second stage of dry grinding.
  • the second sieving includes using a cylindrical sieve wet sieve.
  • the third screening includes using a linear vibrating screen wet screen.
  • dry screening means that raw ore is directly screened without adding additional water; wet screening means that additional water needs to be added as backwash water to allow as much material no larger than 20mm to enter under the screen as possible.
  • Cylindrical dry screening is performed after the first stage of dry grinding because the material on the screen needs to enter the second stage of dry grinding, so water cannot be used for the first stage of screening.
  • the cylindrical wet screen was used for the second screening and the linear vibrating wet screen was used for the third screening. This is because the minerals themselves have a certain amount of moisture and may adhere to coarse-grained materials. Therefore, by adding water, the thickness should be no larger than 20mm. As much of the adherent material as possible goes under the screen to reduce the loss of lithium-containing minerals.
  • the lithium ore after dry grinding in the second stage is wet screened through two stages of cylindrical screen and linear vibrating screen, so that more fine-grained clay minerals adhering to the coarse-grained surface can enter the next stage, reducing the loss of lithium clay minerals. drain.
  • a third sieve oversize is obtained.
  • it also includes performing a first tail-throwing of the third oversize material.
  • the scrubbing intensity is 800r/min-1300r/min.
  • the lithium chlorite in the lithium clay mineral can be better separated from the carbonate impurity gangue, and other minerals such as quartz and calcite with higher hardness can maintain a larger particle size.
  • step S2 includes the following steps:
  • step S2b Classify the product obtained in step S2a for the first time to obtain the first-graded fine-grained lithium concentrate, the first-graded medium-sized lithium ore and the first-graded coarse-grained lithium ore;
  • step S2d Classify the product obtained in step S2c for the second time to obtain the second-classified fine-grained lithium concentrate and the second-classified coarse-grained lithium ore;
  • the first-classified fine-particle size lithium concentrate and the second-classified fine-particle size lithium concentrate are combined to obtain the scrubbing concentrate.
  • step S2 also includes slurrying the product obtained in step S2a between step S2a and step S2b.
  • the first scrubbing time is 10-15 minutes.
  • the second scrubbing time is 15-20 minutes.
  • slurry is obtained after the slurry adjustment, and the mass concentration of the slurry is 55%-65%.
  • Slurry within the above mass concentration range can meet subsequent classification requirements.
  • the feeding concentration requirements of the three-product cyclone can be met.
  • the coarser grade in the middle can reach 70%-80% of the slurry concentration required for secondary scrubbing.
  • the first classification equipment includes a two-stage three-product cyclone.
  • the two-stage three-product cyclone is a piece of equipment that achieves classification to produce products of three sizes. After scrubbing, the two-stage three-product cyclone is used for effective classification, which can remove calcium gangue minerals and enrich content. lithium minerals, and intermediate fractions can be processed separately. It can not only provide suitable feed materials for the subsequent flotation steps, but also provide raw materials for the subsequent secondary scrubbing, so as to further achieve the purpose of recovering lithium and reduce the loss rate. At the same time, it can effectively remove coarse-grained impurities. Ordinary spinners can The flow converter requires two sections in series, which makes on-site operation and control difficult and cannot achieve continuous and stable production.
  • the particle size of the primary classified fine-particle size lithium concentrate is no greater than 0.15 mm.
  • the particle size of the primary classified medium-sized lithium ore is 0.15-1.7 mm.
  • the particle size of the primary classified coarse-grained lithium ore is 1.7-20 mm.
  • Scrubbing the primary classified medium particle size lithium ore for a second time can effectively improve the recovery rate of lithium element.
  • the equipment for the second classification includes a two-product cyclone.
  • Two scrubbings can achieve the purpose of enriching the target minerals.
  • the choice of two scrubbings is based on the grade and recovery rate of the lithium concentrate products produced by scrubbing.
  • Two scrubbings can achieve better results; one scrubbing of lithium concentrates The recovery rate of mineral products is not enough; three scrubbings will result in lower grade lithium concentrate products, higher calcium impurities, and require more energy consumption, resulting in waste.
  • the particle size of the secondary classified fine-particle size lithium concentrate is not greater than 0.15 mm.
  • it also includes combining the primary-graded coarse-grained lithium ore and the second-graded coarse-grained coarse-grained lithium ore to obtain a second tailing material.
  • it also includes tailing materials for a second time.
  • the method of enriching lithium further includes removing impurities from the scrub concentrate.
  • the impurity removal method includes at least one of flotation and magnetic separation.
  • the flotation includes at least one of reverse flotation and positive flotation.
  • the reverse flotation includes a first reverse flotation and a second reverse flotation.
  • the flotation reagents include at least one of a pH adjuster, an inhibitor, a collector, and a frother.
  • the pH adjuster includes sodium carbonate.
  • the collector includes at least one of an anion collector and a cation collector.
  • the first reverse flotation step includes slurrying the scrubbed concentrate and then adding a reverse flotation reagent.
  • the equipment for the first reverse flotation includes a flotation machine.
  • the reagents for the first reverse flotation include a collector and a frothing agent.
  • the collector in the first reverse flotation, includes amyl xanthate.
  • the frother in the first reverse flotation, includes pine alcohol oil.
  • desulfurization tailings are obtained after the first reverse flotation.
  • it also includes performing a second reverse flotation on the desulfurization tailings.
  • flotation foam and decalcified tailings are obtained after the second reverse flotation.
  • the flotation froth obtained after the second reverse flotation includes calcium-containing impurities.
  • the second reverse flotation step includes adding a reverse flotation reagent to the desulfurization tailings.
  • the equipment for the second reverse flotation includes a flotation machine.
  • the reagents for the second reverse flotation include at least one of a pH adjuster, an inhibitor, and a collector.
  • the pH adjuster in the second reverse flotation, includes sodium carbonate.
  • the inhibitor in the second reverse flotation, includes water glass.
  • the collector in the second reverse flotation, includes an anionic collector.
  • it also includes performing positive flotation on the decalcified tailings.
  • positive flotation foam and flotation tailings are obtained after the positive flotation.
  • the step of positive flotation includes adding a positive flotation reagent to the decalcified tailings.
  • the reagent for positive flotation includes at least one of a pH adjuster, an inhibitor, and a collector.
  • the pH adjuster in the positive flotation, includes sodium carbonate.
  • the inhibitor in the positive flotation, includes water glass.
  • the collector in the positive flotation, includes an etheramine cationic collector.
  • the impurity removal further includes magnetic separation of the lithium-rich concentrate to obtain magnetically separated concentrate and non-magnetic impurities.
  • Magnetic separation of flotation lithium-rich concentrates can obtain higher quality lithium products.
  • the magnetic separation equipment includes a high gradient vertical ring magnetic separator.
  • the process flow of the invention is flexible, efficient and highly adaptable.
  • This mineral processing process can be divided into three forms: pre-tailing + scrubbing, pre-tailing + scrubbing + flotation, pre-tailing + scrubbing + flotation + magnetic separation. Different ones can be selected according to actual production needs and changes in ore properties. Process combination form.
  • Figure 1 is a process flow chart of a method for enriching lithium in Embodiment 3 of the present invention.
  • This embodiment discloses a method for enriching lithium. The specific steps are:
  • the mined lithium clay ore is crushed by the jaw crusher into materials with a particle size of no more than 175mm, and is sent to the first-stage dry autogenous grinding machine for grinding through a belt conveyor.
  • the first-stage dry grinding time is 10 minutes.
  • the grinding products are dry screened through the cylindrical screen at the discharge end. Materials with a particle size not larger than 20mm enter the scrubbing section. Materials with a particle size larger than 20mm are sent to the second stage dry autogenous grinding machine by a belt conveyor for processing. , the second dry grinding time is 5 minutes;
  • the ground products pass through the discharge end cylindrical screen for wet screening.
  • Materials with a particle size greater than 20mm on the cylindrical screen enter the linear vibrating screen for secondary wet screening. Materials with a particle size greater than 20mm on the vibrating screen are directly discarded, and materials with a particle size not greater than 20mm under the linear vibrating screen and materials with a particle size not greater than 20mm under the cylindrical screen are merged into the scrubbing section as products;
  • steps A1 and A2 enter the first-stage scrubbing machine.
  • the scrubbing time is 10 minutes.
  • the slurry is mixed with water until the mass concentration of the slurry is 65% and the scrubbing intensity is 1300r/min;
  • the slurry is sent to the two-stage three-product cyclone for classification. Materials with a particle size of 1.7mm-20mm are thrown out, and materials with a particle size of 0.15mm-1.7mm enter the second stage of scrubbing. Materials with a diameter not larger than 0.15mm are scrub concentrates;
  • the material with a particle size of 0.15mm-1.7mm enters the second-stage scrubbing machine.
  • the scrubbing time is 20min
  • the slurry concentration is 75%
  • the scrubbing intensity is 1300r/min;
  • the slurry after scrubbing in the second stage is sent to the two-product cyclone for classification. Materials with a particle size greater than 0.15mm are discarded, and materials with a particle size not greater than 0.15mm are scrubbed concentrates.
  • the Li 2 O content in the raw lithium clay ore before lithium enrichment is 0.30%, and the Ca content is 12.36%;
  • scrub concentrate After enriching lithium, scrub concentrate can be obtained, in which the Li 2 O content is 0.58%, the Li 2 O recovery rate is 92%, and the Ca content is 4.52%.
  • the Li 2 O content in scrub tailings is 0.05%, and the calculation process is as follows:
  • This embodiment discloses a method for enriching lithium. The specific steps are:
  • the mined lithium clay ore is crushed by the jaw crusher into materials with a particle size of no more than 175mm and transported by belts.
  • the machine is sent to the first stage dry autogenous grinding machine for grinding treatment.
  • the first stage dry grinding time is 10 minutes.
  • the grinding products are dry screened through the cylindrical screen at the discharge end. Materials with a particle size greater than 20mm are conveyed by the belt.
  • the conveyor is sent to the second stage dry self-grinding machine for processing.
  • the dry grinding time of the second stage is 5 minutes, and materials with a particle size of no more than 20mm enter the scrubbing section;
  • the ground products pass through the discharge end cylindrical screen for wet screening.
  • Materials with a particle size greater than 20mm on the cylindrical screen enter the linear vibrating screen for secondary wet screening. Materials with a particle size greater than 20mm on the vibrating screen are directly discarded, and materials with a particle size not greater than 20mm under the linear vibrating screen and materials with a particle size not greater than 20mm under the cylindrical screen are merged into the scrubbing section as products;
  • Materials with a particle size of no more than 20mm enter the first stage scrubbing machine.
  • the scrubbing time is 10 minutes.
  • the slurry is mixed with water until the mass concentration of the slurry is 65% and the scrubbing intensity is 1300r/min;
  • the slurry is sent to the two-stage three-product cyclone for classification. Materials with a particle size of 1.7mm-20mm are thrown out, and materials with a particle size of 0.15mm-1.7mm enter the second stage of scrubbing. Materials with a diameter not larger than 0.15mm are scrub concentrates;
  • the material with a particle size of 0.15mm-1.7mm enters the second-stage scrubbing machine.
  • the scrubbing time is 20min
  • the slurry concentration is 75%
  • the scrubbing intensity is 1300r/min;
  • the slurry after scrubbing in the second stage is sent to the two-product cyclone for classification, and materials with a particle size greater than 0.15mm are discarded, and materials with a particle size not greater than 0.15mm are scrubbed concentrates;
  • the scrubbed concentrate first enters the flotation mixing barrel for slurry mixing.
  • the concentration of the slurry after mixing is 30%. It enters the flotation machine, and the collector amyl xanthate 200g/t and the foaming agent pine alcohol oil 100g/t are added in sequence. t, perform reverse flotation desulfurization, and the flotation foam contains Fe impurities;
  • the desulfurization tailings enter the flotation and decalcification stage, and the pH regulator sodium carbonate 2000g/t, the inhibitor water glass 2000g/t, and the collector anion collector 800g/t are added in sequence to perform reverse flotation to remove calcite.
  • the decalcified tailings enter the stage of positive flotation enrichment and lithium extraction. 1000g/t of pH regulator sodium carbonate, 1000g/t of inhibitor water glass, and 500g/t of collector ether amine cationic collector are added in sequence. The foam is converted into lithium-rich concentrate, and the flotation tailings are concentrated and dehydrated before being discharged to the tailings reservoir.
  • the Li 2 O content in the raw lithium clay ore before lithium enrichment is 0.25%, and the Ca content is 12.87%;
  • lithium concentrate can be obtained, in which the Li 2 O content is 0.92%, the Li 2 O recovery rate is 82.5%, and the Ca content is 3.26%.
  • the Li 2 O content in the flotation tailings is 0.06%.
  • This embodiment discloses a method for enriching lithium. The specific steps are:
  • the mined lithium clay ore is crushed by the jaw crusher into materials with a particle size of no more than 175mm, and is sent to the first-stage dry autogenous grinding machine for grinding through a belt conveyor.
  • the first-stage dry grinding time is 10 minutes.
  • the grinding products are dry screened through the cylindrical screen at the discharge end, and materials with a particle size greater than 20mm are sent to the second stage dry autogenous grinding machine by a belt conveyor for processing.
  • the dry grinding time of the second stage is 5 minutes, and materials with a particle size of no more than 20mm enter the scrubbing section;
  • the ground products pass through the discharge end cylindrical screen for wet screening.
  • Materials with a particle size greater than 20mm on the cylindrical screen enter the linear vibrating screen for secondary wet screening. Materials with a particle size greater than 20mm on the vibrating screen are directly discarded, and materials with a particle size not greater than 20mm under the linear vibrating screen and materials with a particle size not greater than 20mm under the cylindrical screen are merged into the scrubbing section as products;
  • Materials with a particle size of no more than 20mm enter the first stage scrubbing machine.
  • the scrubbing time is 10 minutes.
  • the slurry is mixed with water until the mass concentration of the slurry is 65% and the scrubbing intensity is 1300r/min;
  • the slurry is sent to the two-stage three-product cyclone for classification. Materials with a particle size of 1.7mm-20mm are thrown out, and materials with a particle size of 0.15mm-1.7mm enter the second stage of scrubbing. Materials with a diameter not larger than 0.15mm are scrub concentrates;
  • the material with a particle size of 0.15mm-1.7mm enters the second-stage scrubbing machine.
  • the scrubbing time is 20min
  • the slurry concentration is 75%
  • the scrubbing intensity is 1300r/min;
  • the slurry after scrubbing in the second stage is sent to the two-product cyclone for classification, and materials with a particle size greater than 0.15mm are discarded, and materials with a particle size not greater than 0.15mm are scrubbed concentrates;
  • the scrubbed concentrate first enters the flotation mixing barrel for slurry mixing.
  • the concentration of the slurry after mixing is 30%. It enters the flotation machine, and the collector amyl xanthate 200g/t and the foaming agent pine alcohol oil 100g/t are added in sequence. t, perform reverse flotation desulfurization, and the flotation foam contains Fe impurities;
  • the desulfurization tailings enter the flotation and decalcification stage, and the pH regulator sodium carbonate 2000g/t, the inhibitor water glass 2000g/t, and the collector anion collector 800g/t are added in sequence to perform reverse flotation to remove calcite.
  • the decalcified tailings enter the stage of positive flotation enrichment and lithium extraction. 1000g/t of pH regulator sodium carbonate, 1000g/t of inhibitor water glass, and 500g/t of collector etheramine cationic collector are added in sequence. Float The foam is converted into lithium-rich concentrate, and the flotation tailings are concentrated and dehydrated before being discharged to the tailings reservoir.
  • the Li 2 O content in the raw lithium clay ore before lithium enrichment is 0.22%, and the Ca content is 13.26%;
  • magnetically separated lithium concentrate can be obtained, in which the Li 2 O content is 1.53%, the Li 2 O recovery rate is 77.02%, and the Ca content is 2.69%.
  • the Li 2 O content in the magnetic separation tailings is 0.06%.
  • This embodiment discloses a method for enriching lithium.
  • the difference between this embodiment and Example 2 is that it does not include the flotation, other conditions are the same.
  • the mined lithium clay ore is crushed by the jaw crusher into materials with a particle size of no more than 175mm, and is sent to the first-stage dry autogenous grinding machine for grinding through a belt conveyor.
  • the first-stage dry grinding time is 10 minutes.
  • the grinding products are dry screened through the cylindrical screen at the discharge end.
  • Materials with a particle size greater than 20mm are sent to the second stage dry self-grinding machine for processing by a belt conveyor.
  • the dry grinding time in the second stage is 5 minutes. Materials with a particle size not larger than 20mm enter the scrubbing section;
  • the ground products pass through the discharge end cylindrical screen for wet screening.
  • Materials with a particle size greater than 20mm on the cylindrical screen enter the linear vibrating screen for secondary wet screening. Materials with a particle size greater than 20mm on the vibrating screen are directly discarded, and materials with a particle size not greater than 20mm under the linear vibrating screen and materials with a particle size not greater than 20mm under the cylindrical screen are merged into the scrubbing section as products;
  • the slurry is sent to the two-stage three-product cyclone for classification. Materials with a particle size of 1.7mm-20mm are thrown out, and materials with a particle size of 0.15mm-1.7mm enter the second stage of scrubbing. Materials with a diameter not larger than 0.15mm are scrub concentrates;
  • the material with a particle size of 0.15mm-1.7mm enters the second-stage scrubbing machine.
  • the scrubbing time is 20min
  • the slurry concentration is 75%
  • the scrubbing intensity is 1300r/min;
  • the slurry after scrubbing in the second stage is sent to the two-product cyclone for classification. Materials with a particle size greater than 0.15mm are discarded, and materials with a particle size not greater than 0.15mm are scrubbed concentrates.
  • the Li 2 O content in the raw lithium clay ore before lithium enrichment is 0.25%, and the Ca content is 12.87%;
  • scrubbed lithium concentrate can be obtained, in which the Li 2 O content is 0.47%, the Li 2 O recovery rate is 86.2%, and the Ca content is 6.77%.
  • the Li 2 O content in scrub tailings is 0.06%.
  • the function of mineral processing is to enrich the target minerals, improve the grade of the target minerals, and recover as much as possible, that is, to ensure the yield while improving the grade.
  • grade and recovery rate There is a negative correlation between grade and recovery rate, that is, while improving the grade, it will inevitably cause a decrease in the recovery rate.
  • the recovery rate of Example 4 is slightly higher than that of Example 2, but the grade difference is large, which shows that the advantage of flotation is to greatly improve the quality of lithium.
  • This embodiment discloses a method for enriching lithium.
  • the difference between this embodiment and Example 3 is that the magnetic separation in Example 3 is not included, and the other conditions are the same.
  • the mined lithium clay ore is crushed by the jaw crusher into materials with a particle size of no more than 175mm, and is sent to the first-stage dry autogenous grinding machine for grinding through a belt conveyor.
  • the first-stage dry grinding time is 10 minutes.
  • the grinding products are dry screened through the cylindrical screen at the discharge end, and materials with a particle size greater than 20mm are sent to the second stage dry autogenous grinding machine by a belt conveyor for processing.
  • the dry grinding time of the second stage is 5 minutes, and materials with a particle size of no more than 20mm enter the scrubbing section;
  • the ground products pass through the discharge end cylindrical screen for wet screening.
  • Materials with a particle size greater than 20mm on the cylindrical screen enter the linear vibrating screen for secondary wet screening. Materials with a particle size greater than 20mm on the vibrating screen are directly discarded, and materials with a particle size not greater than 20mm under the linear vibrating screen and materials with a particle size not greater than 20mm under the cylindrical screen are merged into the scrubbing section as products;
  • the slurry is sent to the two-stage three-product cyclone for classification. Materials with a particle size of 1.7mm-20mm are thrown out, and materials with a particle size of 0.15mm-1.7mm enter the second stage of scrubbing. Materials with a diameter not larger than 0.15mm are scrub concentrates;
  • the material with a particle size of 0.15mm-1.7mm enters the second-stage scrubbing machine.
  • the scrubbing time is 20min
  • the slurry concentration is 75%
  • the scrubbing intensity is 1300r/min;
  • the slurry after scrubbing in the second stage is sent to the two-product cyclone for classification, and materials with a particle size greater than 0.15mm are discarded, and materials with a particle size not greater than 0.15mm are scrubbed concentrates;
  • the scrubbed concentrate first enters the flotation mixing barrel for slurry mixing.
  • the concentration of the slurry after mixing is 30%. It enters the flotation machine, and the collector amyl xanthate 200g/t and the foaming agent pine alcohol oil 100g/t are added in sequence. t, perform reverse flotation desulfurization, and the flotation foam contains Fe impurities;
  • the desulfurization tailings enter the flotation and decalcification stage, and the pH regulator sodium carbonate 2000g/t, the inhibitor water glass 2000g/t, and the collector anion collector 800g/t are added in sequence to perform reverse flotation to remove calcite.
  • the decalcified tailings enter the stage of positive flotation enrichment and lithium extraction. 1000g/t of pH regulator sodium carbonate, 1000g/t of inhibitor water glass, and 500g/t of collector ether amine cationic collector are added in sequence. The foam is converted into lithium-rich concentrate, and the flotation tailings are concentrated and dehydrated before being discharged to the tailings reservoir.
  • the Li 2 O content in the raw lithium clay ore before lithium enrichment is 0.22%, and the Ca content is 13.26%;
  • lithium concentrate can be obtained, in which the Li 2 O content is 0.81%, the Li 2 O recovery rate is 80.58%, and the Ca content is 5.14%.
  • the Li 2 O content in the flotation tailings is 0.05%.
  • This comparative example discloses a method for enriching lithium.
  • the mined lithium clay ore is crushed by the jaw crusher into materials with a particle size of no more than 2mm, and then sent to the wet ball mill for grinding for 5 minutes.
  • the grinding product accounts for 86% of the size of no more than 0.074mm;
  • the grinding product first enters the flotation mixing barrel for slurry mixing.
  • concentration of the slurry after mixing is 30%. It enters the flotation machine, and the collector amyl xanthate 200g/t and the foaming agent pine alcohol oil 100g/t are added in sequence. t, perform reverse flotation desulfurization, and the flotation foam contains Fe impurities;
  • the desulfurization tailings enter the flotation and decalcification stage, and the pH regulator sodium carbonate 2000g/t and the inhibitor water glass are added in sequence. 2000g/t, collector anionic collector 800g/t, perform reverse flotation to remove calcite, and the flotation foam contains calcium impurities;
  • the decalcified tailings enter the positive flotation enrichment, lithium extraction and roughing stage, and add 1000g/t of pH regulator sodium carbonate, 1000g/t of inhibitor water glass, and 500g/t of collector ether amine cation collector.
  • the flotation foam is lithium coarse concentrate, and the flotation tailings are concentrated and dehydrated before being discharged to the tailings reservoir;
  • the lithium crude concentrate product is sent to the flotation machine for the selection stage, and the pH regulator sodium carbonate 500g/t, the inhibitor water glass 500g/t, and the collector etheramine cationic collector 150g/t are added in sequence.
  • the selected tailings are returned to flotation enrichment and lithium roughing as medium ore, and the flotation foam is the selected lithium concentrate product.
  • the Li 2 O content in the raw lithium clay ore before lithium enrichment is 0.30%, and the Ca content is 12.36%;
  • flotation concentrate After enriching lithium, flotation concentrate can be obtained, in which the Li 2 O content is 0.44%, the Li 2 O recovery rate is 63.72%, the Ca content is 7.53%, and the Li 2 O content in the flotation tailings is 0.19%.
  • This comparative example is a conventional full-process flotation method for treating clay-type lithium ore, which does not include the dry grinding and scrubbing tailing steps in this application. Clay-type lithium ore will become slimy during separation under single flotation process conditions. The phenomenon is serious and the sorting property is poor. Therefore, the grade and recovery rate of the selected lithium concentrate product are lower than those in the embodiment.
  • This comparative example discloses a method for enriching lithium.
  • the difference between this comparative example and Example 1 is that the dry grinding process in step A1 is replaced by a wet ball milling process.
  • the remaining steps are the same as in Example 1.
  • the Li 2 O content in the raw lithium clay ore before lithium enrichment is 0.30%, and the Ca content is 12.36%;
  • scrub concentrate After enriching lithium, scrub concentrate can be obtained, in which the Li 2 O content is 0.44%, the Li 2 O recovery rate is 91.17%, the Ca content is 8.87%, and the Li 2 O content in the scrub tailings is 0.07%.
  • This comparative example discloses a method for enriching lithium.
  • the difference between this comparative example and Example 1 is that it does not include the scrubbing in steps A3-A5, and the remaining steps are the same as those in Example 1.
  • the Li 2 O content in the raw lithium clay ore before lithium enrichment is 0.30%, and the Ca content is 12.36%;
  • a concentrate can be obtained, in which the Li 2 O content is 0.36%, the Li 2 O recovery rate is 96.47%, the Ca content is 10.06%, and the Li 2 O content in the tailings is 0.05%.
  • the main function of the dry grinding process is to grind the materials. Screening and tailing have a certain enrichment effect, but the enrichment effect is poor. Therefore, compared with Example 1, the Li 2 O content in the concentrate is only 0.36%.

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Cosmetics (AREA)

Abstract

一种富集锂的方法,包括以下步骤:S1.将锂矿进行干磨后,获取粒径不大于20mm的细粉;S2.将细粉擦洗后分级,得到擦洗精矿;步骤S2中,分级所得擦洗精矿的粒径不大于0.15mm;锂矿包括锂黏土矿。该富集锂的方法能够实现含锂矿物的富集及杂质矿物的有效抛除,为下游工段提供优质的原料,减少能耗,节约生产成本。

Description

一种富集锂的方法 技术领域
本发明属于锂黏土矿物的技术领域,具体涉及一种富集锂的方法。
背景技术
近年来随着锂产业的高速发展,尤其是锂在新能源汽车动力电池的广泛应用,通过富集含锂矿石来获取高品质锂产品的方法是研究的重要方向。目前矿石提锂工业化的原料主要是锂辉石、锂云母等,随着这类矿物性质较好的锂矿资源不断被开采消耗,寻求从低品位沉积型锂中获取锂产品的方法,成为了矿石提锂的新挑战。低品位沉积型锂矿以黏土矿物为主,锂元素主要赋存于锂绿泥石中,该锂矿中的锂含量低,Li2O含量为0.30%左右,且含有微细的石英脉,与其他脉石矿物的嵌布形式复杂,因此目标矿物单体解离难度高,嵌布粒度极细,在解离度20μm以下时才基本达到单体解离,使用常规的单一浮选工艺进行选别存在泥化现象严重,分选性较差,药剂消耗量大等问题。
现有对于锂黏土矿物富集含锂矿石的研究主要采用湿法或火法-湿法相结合工艺,但锂黏土矿物中的Li元素含量极低,碳酸盐类脉石矿物含量较高,直接采用冶炼方法进行提锂,处理量大、能耗高、浸渣的堆存及处理难度都较高。
因此提出一种适用于锂黏土矿物选矿的富集锂的方法,能够实现对含锂矿物中锂的富集和对杂质矿物的有效抛除是当务之急。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种富集锂的方法,能够实现含锂矿物的富集及杂质矿物的有效抛除,为下游工段提供更为优质的原料,减少能耗,节约生产成本。
根据本发明第一方面的实施例,提供了一种富集锂的方法,包括以下步骤:
S1.将锂矿进行干磨后,获取粒径不大于20mm的细粉;
S2.将所述细粉擦洗后分级,得到擦洗精矿;
步骤S2中,所述分级所得擦洗精矿的粒径不大于0.15mm;
所述锂矿包括黏土型锂矿。
根据本发明实施例的一种富集锂的方法,至少具有以下有益效果:
1.黏土型锂矿具有一定的粘结性,易与其他脉石矿物团聚、黏附在一起。本发明采用干磨,可以减弱物料黏附的影响,实现粉碎黏土类矿物,使硬度较大的杂质矿物富集于较粗的粒级中,便于后续在除杂筛分中去除。其次,干磨还可以较好地实现黏土型锂矿单体的解离,可以保证含锂矿物更多地进入后续擦洗工段,同时达到有效预先抛尾的目的。
2.擦洗具有一定的磨矿能力,可以保证含锂黏土矿物单体解离的同时使杂质矿物富集于较粗的粒级,实现分级。擦洗的选择是基于对擦洗所产生的锂精矿产品的品位及回收率而言,擦洗可以获得较好的效果。
根据本发明的一些实施例,步骤S1包括以下步骤:
S1a.将所述锂矿进行第一段干磨后,以孔径为20mm的筛网进行第一次筛分,获取筛下物和筛上物;
S1b.将步骤S1a所得筛上物进行第二段干磨后,以孔径为20mm的筛网依次进行第二次筛分和第三次筛分,获取筛下物;
合并步骤S1a和步骤S1b所得筛下物,即为所述细粉。
本发明中经过两段干磨,可以较好地粉碎黏土类矿物,使硬度较大的杂质矿物更多地富集于较粗的粒级,后续除杂筛分效果更好;同时,两段干磨使锂黏土矿单体的解离更好,有效解离有用矿物和脉石矿物,减少含锂矿物损失在粗粒径的尾矿中。
根据本发明的一些实施例,所述干磨的设备包括干式自磨机。
根据本发明的一些实施例,所述第一段干磨时间为10-15min。
根据本发明的一些实施例,所述第二段干磨时间为5-8min。
根据本发明的一些实施例,步骤S1a中,所述第一次筛分包括使用圆筒筛干筛。
第一段干磨后,经过圆筒筛筛分,合格粒级直接进入擦洗工段,如此可以防止目标矿物过磨,同时可节约第二段干磨的能耗。
根据本发明的一些实施例,步骤S1b中,所述第二次筛分包括使用圆筒筛湿筛。
根据本发明的一些实施例,步骤S1b中,所述第三次筛分包括使用直线振动筛湿筛。
上述干筛是指不额外补加水,以原矿直接进行筛分;湿筛是指需要额外补加水,作为反冲水,使不大于20mm的物料尽量多地进入筛下。
第一段干磨后进行圆筒干筛是因为筛上物需要进入到第二段干磨机内,所以第一段筛分不能用水。第二次筛分选用圆筒湿筛和第三次筛分选用直线振动湿筛,是因为矿物自身具有一定的水分,存在黏附于粗粒级物料的情况,因此通过补加水,使不大于20mm的黏附物料尽量多地进入筛下,减少含锂矿物的损失,同时由于第二筛下物和第三筛下物需要进入擦洗作业,而擦洗需要一定的矿浆浓度,因此在第二次筛分、第三次筛分的湿筛过程中加入反冲 水,可以保证锂的回收率,也能起到一定的调浆作用。
第二段干磨后的锂矿经过圆筒筛和直线振动筛两级湿式筛分,使黏附于粗粒级表面的细粒级黏土矿物更多地进入下一工段,减少了锂黏土矿物的流失。
根据本发明的一些实施例,所述第三次筛分后,得到第三筛上物。
根据本发明的一些实施例,还包括对所述第三筛上物进行第一次抛尾。
根据本发明的一些实施例,所述擦洗的强度为800r/min-1300r/min。
上述擦洗强度下,可以使得锂黏土矿物中的锂绿泥石较好地和碳酸盐类杂质脉石分离,且使硬度较大的石英、方解石等其他矿物保持较大的粒径。
根据本发明的一些实施例,步骤S2包括以下步骤:
S2a.将所述细粉进行第一次擦洗;
S2b.将步骤S2a所得产物进行第一次分级,获取一次分级的细粒径锂精矿,一次分级的中粒径锂矿和一次分级的粗粒径锂矿;
S2c.将所述一次分级的中粒径锂矿进行第二次擦洗;
S2d.将步骤S2c所得产物进行第二次分级,获取二次分级的细粒径锂精矿和二次分级的粗粒径锂矿;
合并所述一次分级的细粒径锂精矿和二次分级的细粒径锂精矿,得到所述擦洗精矿。
根据本发明的一些实施例,步骤S2中,还包括在步骤S2a和步骤S2b之间进行的对步骤S2a所得产物进行调浆。
根据本发明的一些实施例,所述第一次擦洗的时间为10-15min。
根据本发明的一些实施例,所述第二次擦洗的时间为15-20min。
根据本发明的一些实施例,所述调浆后得到矿浆,所述矿浆的质量浓度为55%-65%。
在上述质量浓度范围内的矿浆,能够满足后续的分级要求。在该浓度范围内,可以满足三产品旋流器的给料浓度要求,经过旋流器分级后,中间的较粗粒级可以达到二次擦洗所需的矿浆浓度的70%-80%。
根据本发明的一些实施例,所述第一次分级的设备包括两段三产品旋流器。
两段三产品旋流器是通过一种设备达到分级产生三种粒级的产品,经过擦洗后利用两段三产品旋流器进行有效分级,可以达到抛除钙质脉石矿物,富集含锂矿物的目的,且中间粒级可单独处理。既可以为后续的浮选步骤提供合适的给料,也可以为后续的二次擦洗提供原料,以便进一步达到回收锂的目的,减少损失率,同时可以有效抛除粗粒级杂质,普通的旋流器需要两段串联,现场操作控制较难,无法实现连续稳定的生产。
根据本发明的一些实施例,所述一次分级的细粒径锂精矿的粒径不大于0.15mm。
根据本发明的一些实施例,所述一次分级的中粒径锂矿的粒径为0.15-1.7mm。
根据本发明的一些实施例,所述一次分级的粗粒径锂矿的粒径为1.7-20mm。
对所述一次分级的中粒径锂矿进行第二次擦洗,可以有效提高锂元素的回收率。
根据本发明的一些实施例,所述第二次分级的设备包括两产品旋流器。
两次擦洗能够实现富集目标矿物的目的,两次擦洗的选择是基于对擦洗所产生的锂精矿产品的品位及回收率而言,两次擦洗可以获得较好的效果;一次擦洗锂精矿产品的回收率不够;三次擦洗会造成锂精矿产品中品位较低,含钙杂质较高,且需要更多的能耗,造成浪费。
根据本发明的一些实施例,所述二次分级的细粒径锂精矿的粒径不大于0.15mm。
根据本发明的一些实施例,还包括合并一次分级的粗粒径锂矿和粗粒径二次分级的粗粒径锂矿,得到第二次抛尾物料。
根据本发明的一些实施例,还包括抛尾第二次抛尾物料。
根据本发明的一些实施例,所述富集锂的方法还包括对所述擦洗精矿进行除杂。
根据本发明的一些实施例,所述除杂的方法包括浮选和磁选中的至少一种。
根据本发明的一些实施例,所述浮选包括反浮选和正浮选中的至少一种。
根据本发明的一些实施例,所述反浮选包括第一次反浮选和第二次反浮选。
根据本发明的一些实施例,所述浮选的试剂包括pH调节剂、抑制剂、捕收剂和起泡剂中的至少一种。
根据本发明的一些实施例,所述pH调节剂包括碳酸钠。
根据本发明的一些实施例,所述捕收剂包括阴离子捕收剂和阳离子捕收剂中的至少一种。
根据本发明的一些实施例,所述第一次反浮选的步骤包括将所述擦洗精矿调浆后加入反浮选的试剂。
根据本发明的一些实施例,所述第一次反浮选的设备包括浮选机。
根据本发明的一些实施例,所述第一次反浮选的试剂包括捕收剂、起泡剂。
根据本发明的一些实施例,所述第一次反浮选中,所述捕收剂包括戊基黄药。
根据本发明的一些实施例,所述第一次反浮选中,所述起泡剂包括松醇油。
根据本发明的一些实施例,所述第一次反浮选后得到脱硫尾矿。
根据本发明的一些实施例,还包括对所述脱硫尾矿进行第二次反浮选。
根据本发明的一些实施例,所述第二次反浮选后得到浮选泡沫和脱钙尾矿。
根据本发明的一些实施例,所述第二次反浮选后得到的浮选泡沫包括含钙杂质。
根据本发明的一些实施例,所述第二次反浮选的步骤包括向所述脱硫尾矿中加入反浮选的试剂。
根据本发明的一些实施例,所述第二次反浮选的设备包括浮选机。
根据本发明的一些实施例,所述第二次反浮选的试剂包括pH调节剂、抑制剂、捕收剂中的至少一种。
根据本发明的一些实施例,所述第二次反浮选中,所述pH调节剂包括碳酸钠。
根据本发明的一些实施例,所述第二次反浮选中,所述抑制剂包括水玻璃。
根据本发明的一些实施例,所述第二次反浮选中,所述捕收剂包括阴离子捕收剂。
根据本发明的一些实施例,还包括对所述脱钙尾矿进行正浮选。
根据本发明的一些实施例,所述正浮选后得到正浮选泡沫和浮选尾矿。
根据本发明的一些实施例,所述正浮选的步骤包括向所述脱钙尾矿中加入正浮选的试剂。
根据本发明的一些实施例,所述正浮选的试剂包括pH调节剂、抑制剂、捕收剂中的至少一种。
根据本发明的一些实施例,所述正浮选中,所述pH调节剂包括碳酸钠。
根据本发明的一些实施例,所述正浮选中,所述抑制剂包括水玻璃。
根据本发明的一些实施例,所述正浮选中,所述捕收剂包括醚胺类阳离子捕收剂。
根据本发明的一些实施例,所述除杂还包括对所述富锂精矿进行磁选得到磁选精矿和非磁性杂质。
对浮选富锂精矿进行磁选,可以获得更优质的锂产品。
根据本发明的一些实施例,所述磁选的设备包括高梯度立环磁选机。
本发明的工艺流程灵活高效、适应性强。本选矿工艺可分为预先抛尾+擦洗、预先抛尾+擦洗+浮选、预先抛尾+擦洗+浮选+磁选等三种形式,可根据生产实际需要和矿石性质变化,选择不同的工艺组合形式。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明实施例3中富集锂的方法的工艺流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
实施例1
本实施例公开了一种富集锂的方法,具体步骤为:
A1.开采出的锂黏土矿经过颚式破碎机破碎为粒径不大于175mm的物料,通过皮带运输机送入第一段干式自磨机进行磨矿处理,第一段干磨的时间为10min,磨矿产品通过出料端圆筒筛进行干式筛分,粒径不大于20mm的物料进入擦洗工段,粒径大于20mm的物料由皮带运输机送入第二段干式自磨机内进行处理,第二段干磨的时间为5min;
A2.第二段干式自磨后,磨矿产品通过出料端圆筒筛进行湿式筛分,圆筒筛筛上的粒径大于20mm的物料进入直线振动筛进行二次湿式筛分,直线振动筛筛上的粒径大于20mm的物料直接抛尾,直线振动筛筛下的粒径不大于20mm的物料和圆筒筛筛下的粒径不大于20mm的物料合并作为产品进入擦洗工段;
A3.步骤A1和步骤A2所得粒径不大于20mm的物料进入第一段擦洗机,擦洗时间为10min,用水调浆至矿浆的质量浓度为65%,擦洗强度1300r/min;
A4.第一段擦洗后矿浆送入两段三产品旋流器进行分级,粒径在1.7mm-20mm的物料进行抛尾,粒径在0.15mm-1.7mm的物料进入第二段擦洗,粒径不大于0.15mm的物料为擦洗精矿;
A5.经两段三产品旋流器处理后的粒径0.15mm-1.7mm的物料进入第二段擦洗机,擦洗时间为20min,矿浆浓度为75%,擦洗强度1300r/min;
A6.第二段擦洗后的矿浆送入两产品旋流器进行分级,对粒径大于0.15mm的物料进行抛尾,粒径不大于0.15mm的物料为擦洗精矿。
通过icp元素测试,富集锂前的锂黏土矿原矿中Li2O含量为0.30%,Ca含量为12.36%;
富集锂后可获得擦洗精矿,其中Li2O含量为0.58%,Li2O回收率为92%,Ca含量为4.52%。擦洗尾矿中Li2O含量为0.05%,计算过程如下:
其中:
e:精矿回收率;
a:原矿含量;
b:精矿含量;
c:尾矿含量。
实施例2
本实施例公开了一种富集锂的方法,具体步骤为:
A1.开采出的锂黏土矿经过颚式破碎机破碎为粒径不大于175mm的物料,通过皮带运输 机送入第一段干式自磨机进行磨矿处理,第一段干磨的时间为10min,磨矿产品通过出料端圆筒筛进行干式筛分,粒径大于20mm的物料由皮带运输机送入第二段干式自磨机内进行处理,第二段干磨的时间为5min,粒径不大于20mm的物料进入擦洗工段;
A2.第二段干式自磨后,磨矿产品通过出料端圆筒筛进行湿式筛分,圆筒筛筛上的粒径大于20mm的物料进入直线振动筛进行二次湿式筛分,直线振动筛筛上的粒径大于20mm的物料直接抛尾,直线振动筛筛下的粒径不大于20mm的物料和圆筒筛筛下的粒径不大于20mm的物料合并作为产品进入擦洗工段;
A3.粒径不大于20mm的物料进入第一段擦洗机,擦洗时间为10min,用水调浆至矿浆的质量浓度为65%,擦洗强度1300r/min;
A4.第一段擦洗后矿浆送入两段三产品旋流器进行分级,粒径在1.7mm-20mm的物料进行抛尾,粒径在0.15mm-1.7mm的物料进入第二段擦洗,粒径不大于0.15mm的物料为擦洗精矿;
A5.经两段三产品旋流器处理后的粒径0.15mm-1.7mm的物料进入第二段擦洗机,擦洗时间为20min,矿浆浓度为75%,擦洗强度1300r/min;
A6.第二段擦洗后的矿浆送入两产品旋流器进行分级,对粒径大于0.15mm的物料进行抛尾,粒径不大于0.15mm的物料为擦洗精矿;
A7.擦洗精矿首先进入浮选搅拌桶调浆,调浆后的矿浆浓度为30%,进入浮选机,依次加入捕收剂戊基黄药200g/t、起泡剂松醇油100g/t,进行反浮选脱硫,浮选泡沫为含Fe杂质;
A8.脱硫尾矿进入浮选脱钙阶段,依次加入pH调节剂碳酸钠2000g/t、抑制剂水玻璃2000g/t、捕收剂阴离子捕收剂800g/t,进行反浮选脱方解石,浮选泡沫为含钙杂质;
A9.脱钙尾矿进入正浮选富集提锂阶段,依次加入pH调节剂碳酸钠1000g/t、抑制剂水玻璃1000g/t、捕收剂醚胺类阳离子捕收剂500g/t,浮选泡沫为富锂精矿,浮选尾矿经浓缩脱水后排至尾矿库。
通过icp元素测试,富集锂前的锂黏土矿原矿中Li2O含量为0.25%,Ca含量为12.87%;
富集锂后可获得锂精矿,其中Li2O含量为0.92%,Li2O回收率为82.5%,Ca含量为3.26%。浮选尾矿中Li2O含量为0.06%。
实施例3
本实施例公开了一种富集锂的方法,具体步骤为:
A1.开采出的锂黏土矿经过颚式破碎机破碎为粒径不大于175mm的物料,通过皮带运输机送入第一段干式自磨机进行磨矿处理,第一段干磨的时间为10min,磨矿产品通过出料端圆筒筛进行干式筛分,粒径大于20mm的物料由皮带运输机送入第二段干式自磨机内进行处 理,第二段干磨的时间为5min,粒径不大于20mm的物料进入擦洗工段;
A2.第二段干式自磨后,磨矿产品通过出料端圆筒筛进行湿式筛分,圆筒筛筛上的粒径大于20mm的物料进入直线振动筛进行二次湿式筛分,直线振动筛筛上的粒径大于20mm的物料直接抛尾,直线振动筛筛下的粒径不大于20mm的物料和圆筒筛筛下的粒径不大于20mm的物料合并作为产品进入擦洗工段;
A3.粒径不大于20mm的物料进入第一段擦洗机,擦洗时间为10min,用水调浆至矿浆的质量浓度为65%,擦洗强度1300r/min;
A4.第一段擦洗后矿浆送入两段三产品旋流器进行分级,粒径在1.7mm-20mm的物料进行抛尾,粒径在0.15mm-1.7mm的物料进入第二段擦洗,粒径不大于0.15mm的物料为擦洗精矿;
A5.经两段三产品旋流器处理后的粒径0.15mm-1.7mm的物料进入第二段擦洗机,擦洗时间为20min,矿浆浓度为75%,擦洗强度1300r/min;
A6.第二段擦洗后的矿浆送入两产品旋流器进行分级,对粒径大于0.15mm的物料进行抛尾,粒径不大于0.15mm的物料为擦洗精矿;
A7.擦洗精矿首先进入浮选搅拌桶调浆,调浆后的矿浆浓度为30%,进入浮选机,依次加入捕收剂戊基黄药200g/t、起泡剂松醇油100g/t,进行反浮选脱硫,浮选泡沫为含Fe杂质;
A8.脱硫尾矿进入浮选脱钙阶段,依次加入pH调节剂碳酸钠2000g/t、抑制剂水玻璃2000g/t、捕收剂阴离子捕收剂800g/t,进行反浮选脱方解石,浮选泡沫为含钙杂质;
A9.脱钙尾矿进入正浮选富集提锂阶段,依次加入pH调节剂碳酸钠1000g/t、抑制剂水玻璃1000g/t、捕收剂醚胺类阳离子捕收剂500g/t,浮选泡沫为富锂精矿,浮选尾矿经浓缩脱水后排至尾矿库。
A10.将富锂精矿泵送至十分器,由十分器缩分后送入高梯度立环磁选机,磁场强度为1.3T,经过强磁分选后,磁选精矿由立环转运至顶部,被卸矿水冲至精矿槽内,进而浓缩脱水作为磁选锂精矿,磁选尾矿与浮选尾矿合并处理。
通过icp元素测试,富集锂前的锂黏土矿原矿中Li2O含量为0.22%,Ca含量为13.26%;
富集锂后可获得磁选锂精矿,其中Li2O含量为1.53%,Li2O回收率为77.02%,Ca含量为2.69%。磁选尾矿中Li2O含量为0.06%。
实施例3中的富集锂的方法的工艺流程图如图1所示。对于筛分设备来讲,“+”代表筛上,“-”代表筛下。
实施例4
本实施例公开了一种富集锂的方法,本实施例和实施例2的区别在于不包括实施例2中 的浮选,其余条件相同。
A1.开采出的锂黏土矿经过颚式破碎机破碎为粒径不大于175mm的物料,通过皮带运输机送入第一段干式自磨机进行磨矿处理,第一段干磨的时间为10min,磨矿产品通过出料端圆筒筛进行干式筛分,粒径大于20mm的物料由皮带运输机送入第二段干式自磨机内进行处理,第二段干磨的时间为5min,粒径不大于20mm的物料进入擦洗工段;
A2.第二段干式自磨后,磨矿产品通过出料端圆筒筛进行湿式筛分,圆筒筛筛上的粒径大于20mm的物料进入直线振动筛进行二次湿式筛分,直线振动筛筛上的粒径大于20mm的物料直接抛尾,直线振动筛筛下的粒径不大于20mm的物料和圆筒筛筛下的粒径不大于20mm的物料合并作为产品进入擦洗工段;
A3.粒径不大于20mm的物料进入第一段擦洗机,擦洗时间为10min,矿浆浓度为65%,擦洗强度1300r/min;
A4.第一段擦洗后矿浆送入两段三产品旋流器进行分级,粒径在1.7mm-20mm的物料进行抛尾,粒径在0.15mm-1.7mm的物料进入第二段擦洗,粒径不大于0.15mm的物料为擦洗精矿;
A5.经两段三产品旋流器处理后的粒径0.15mm-1.7mm的物料进入第二段擦洗机,擦洗时间为20min,矿浆浓度为75%,擦洗强度1300r/min;
A6.第二段擦洗后的矿浆送入两产品旋流器进行分级,对粒径大于0.15mm的物料进行抛尾,粒径不大于0.15mm的物料为擦洗精矿。
通过icp元素测试,富集锂前的锂黏土矿原矿中Li2O含量为0.25%,Ca含量为12.87%;
富集锂后可获得擦洗锂精矿,其中Li2O含量为0.47%,Li2O回收率为86.2%,Ca含量为6.77%。擦洗尾矿中Li2O含量为0.06%。
选矿的作用在于富集目标矿物,提高目标矿物的品位,并尽量多地回收,即在提高品位的同时保证收率,品位与回收率存在负相关性,即提高品位的同时势必造成回收率的损失,实施例4的回收率略高于实施例2,但品位相差较大,因此可说明浮选的优势在于大幅提高锂品质。
实施例5
本实施例公开了一种富集锂的方法,本实施例和实施例3的区别在于不包括实施例3中的磁选,其余条件相同。
A1.开采出的锂黏土矿经过颚式破碎机破碎为粒径不大于175mm的物料,通过皮带运输机送入第一段干式自磨机进行磨矿处理,第一段干磨的时间为10min,磨矿产品通过出料端圆筒筛进行干式筛分,粒径大于20mm的物料由皮带运输机送入第二段干式自磨机内进行处 理,第二段干磨的时间为5min,粒径不大于20mm的物料进入擦洗工段;
A2.第二段干式自磨后,磨矿产品通过出料端圆筒筛进行湿式筛分,圆筒筛筛上的粒径大于20mm的物料进入直线振动筛进行二次湿式筛分,直线振动筛筛上的粒径大于20mm的物料直接抛尾,直线振动筛筛下的粒径不大于20mm的物料和圆筒筛筛下的粒径不大于20mm的物料合并作为产品进入擦洗工段;
A3.粒径不大于20mm的物料进入第一段擦洗机,擦洗时间为10min,矿浆浓度为65%,擦洗强度1300r/min;
A4.第一段擦洗后矿浆送入两段三产品旋流器进行分级,粒径在1.7mm-20mm的物料进行抛尾,粒径在0.15mm-1.7mm的物料进入第二段擦洗,粒径不大于0.15mm的物料为擦洗精矿;
A5.经两段三产品旋流器处理后的粒径0.15mm-1.7mm的物料进入第二段擦洗机,擦洗时间为20min,矿浆浓度为75%,擦洗强度1300r/min;
A6.第二段擦洗后的矿浆送入两产品旋流器进行分级,对粒径大于0.15mm的物料进行抛尾,粒径不大于0.15mm的物料为擦洗精矿;
A7.擦洗精矿首先进入浮选搅拌桶调浆,调浆后的矿浆浓度为30%,进入浮选机,依次加入捕收剂戊基黄药200g/t、起泡剂松醇油100g/t,进行反浮选脱硫,浮选泡沫为含Fe杂质;
A8.脱硫尾矿进入浮选脱钙阶段,依次加入pH调节剂碳酸钠2000g/t、抑制剂水玻璃2000g/t、捕收剂阴离子捕收剂800g/t,进行反浮选脱方解石,浮选泡沫为含钙杂质;
A9.脱钙尾矿进入正浮选富集提锂阶段,依次加入pH调节剂碳酸钠1000g/t、抑制剂水玻璃1000g/t、捕收剂醚胺类阳离子捕收剂500g/t,浮选泡沫为富锂精矿,浮选尾矿经浓缩脱水后排至尾矿库。
通过icp元素测试,富集锂前的锂黏土矿原矿中Li2O含量为0.22%,Ca含量为13.26%;
富集锂后可获得锂精矿,其中Li2O含量为0.81%,Li2O回收率为80.58%,Ca含量为5.14%。浮选尾矿中Li2O含量为0.05%。
对比例1
本对比例公开了一种富集锂的方法,
A1.开采出的锂黏土矿经过颚式破碎机破碎为粒径不大于2mm的物料,送入湿式球磨机内,磨矿5min,磨矿产品为不大于0.074mm占比86%;
A2.磨矿产品首先进入浮选搅拌桶调浆,调浆后的矿浆浓度为30%,进入浮选机,依次加入捕收剂戊基黄药200g/t、起泡剂松醇油100g/t,进行反浮选脱硫,浮选泡沫为含Fe杂质;
A3.脱硫尾矿进入浮选脱钙阶段,依次加入pH调节剂碳酸钠2000g/t、抑制剂水玻璃 2000g/t、捕收剂阴离子捕收剂800g/t,进行反浮选脱方解石,浮选泡沫为含钙杂质;
A4.脱钙尾矿进入正浮选富集提锂粗选阶段,依次加入pH调节剂碳酸钠1000g/t、抑制剂水玻璃1000g/t、捕收剂醚胺类阳离子捕收剂500g/t,浮选泡沫为锂粗精矿,浮选尾矿经浓缩脱水后排至尾矿库;
A5.锂粗精矿产品送入浮选机进行精选阶段,依次加入pH调节剂碳酸钠500g/t、抑制剂水玻璃500g/t、捕收剂醚胺类阳离子捕收剂150g/t,精选尾矿作为中矿返回至正浮选富集提锂粗选,浮选泡沫为精选锂精矿产品。
通过icp元素测试,富集锂前的锂黏土矿原矿中Li2O含量为0.30%,Ca含量为12.36%;
富集锂后可获得浮选精矿,其中Li2O含量为0.44%,Li2O回收率为63.72%,Ca含量为7.53%,浮选尾矿中Li2O含量为0.19%。本对比例为常规全流程浮选处理黏土型锂矿的方法,其中不包括本申请中的干磨抛尾和擦洗抛尾步骤,单一浮选工艺条件下选别时存在黏土型锂矿泥化现象严重、分选性较差的问题,因此精选锂精矿产品的品位和回收率均低于实施例。
对比例2
本对比例公开了一种富集锂的方法,本对比例和实施例1的区别在于将步骤A1中的干磨处理替换为湿式球磨处理,其余步骤和实施例1相同。通过icp元素测试,富集锂前的锂黏土矿原矿中Li2O含量为0.30%,Ca含量为12.36%;
富集锂后可获得擦洗精矿,其中Li2O含量为0.44%,Li2O回收率为91.17%,Ca含量为8.87%,擦洗尾矿中Li2O含量为0.07%。
湿式球磨会造成“过磨”现象,使得在粗粒级富集的含钙类脉石矿物磨细从而进入至擦洗精矿内,造成精矿产品的锂品位下降。
对比例3
本对比例公开了一种富集锂的方法,本对比例和实施例1的区别在于不包括步骤A3-A5段中的擦洗,其余步骤和实施例1相同。
通过icp元素测试,富集锂前的锂黏土矿原矿中Li2O含量为0.30%,Ca含量为12.36%;
富集锂后可获得精矿,其中Li2O含量为0.36%,Li2O回收率为96.47%,Ca含量为10.06%,尾矿中Li2O含量为0.05%。
本对比例中,干磨工艺主要作用在于磨碎物料,通过筛分抛尾具有一定的富集作用,但富集效果较差,因此和实施例1相比精矿中Li2O含量仅为0.36%。
上面结合附图对本发明实施例作了详细说明,但本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (10)

  1. 一种富集锂的方法,其特征在于,包括以下步骤:
    S1.将锂矿进行干磨后,获取粒径不大于20mm的细粉;
    S2.将所述细粉擦洗后分级,得到擦洗精矿;
    步骤S2中,所述分级所得擦洗精矿的粒径不大于0.15mm;
    所述锂矿包括锂黏土矿。
  2. 根据权利要求1所述的方法,其特征在于,步骤S1包括以下步骤:
    S1a.将所述锂矿进行第一段干磨后,以孔径为20mm的筛网进行第一次筛分,获取筛下物和筛上物;
    S1b.将步骤S1a所得筛上物进行第二段干磨后,以孔径为20mm的筛网依次进行第二次筛分和第三次筛分,获取筛下物;
    合并步骤S1a和步骤S1b所得筛下物,即为所述细粉。
  3. 根据权利要求2所述的方法,其特征在于,步骤S1a中,所述第一次筛分采用的仪器包括圆筒筛;
    优选地,步骤S1a中,所述第一次筛分的方法为圆筒干筛;
    优选地,步骤S1b中,所述第二次筛分采用的仪器包括圆筒筛;
    优选地,步骤S1b中,所述第二次筛分的方法为圆筒湿筛。
  4. 根据权利要求2所述的方法,其特征在于,步骤S1b中,所述第三次筛分采用的仪器包括直线振动筛;
    优选地,步骤S1b中,所述第三次筛分的方法包括直线振动湿筛。
  5. 根据权利要求1所述的方法,其特征在于,步骤S2包括以下步骤:
    S2a.将所述细粉进行第一次擦洗;
    S2b.将步骤S2a所得产物进行第一次分级,获取细粒径一次分级擦洗锂精矿,中粒径一次分级锂矿和粗粒径一次分级锂矿;
    S2c.将所述中粒径一次分级锂矿进行第二次擦洗;
    S2d.将步骤S2c所得产物进行第二次分级,获取细粒径二次分级擦洗锂精矿和粗粒径二次分级锂矿;
    合并所述细粒径一次分级擦洗锂精矿和细粒径二次分级擦洗锂精矿得所述擦洗精矿。
  6. 根据权利要求1所述的方法,其特征在于,所述富集锂的方法还包括除杂所述擦洗精矿;优选地,所述除杂的方法包括浮选和磁选中的至少一种。
  7. 根据权利要求6所述的方法,其特征在于,所述浮选包括反浮选和正浮选中的至少一 种。
  8. 根据权利要求6所述的方法,其特征在于,所述浮选的试剂包括pH调节剂、抑制剂、捕收剂和起泡剂中的至少一种。
  9. 根据权利要求8所述的方法,其特征在于,所述pH调节剂包括碳酸钠。
  10. 根据权利要求8所述的方法,其特征在于,所述捕收剂包括阴离子捕收剂和阳离子捕收剂中的至少一种。
PCT/CN2023/077684 2022-09-08 2023-02-22 一种富集锂的方法 WO2024051102A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211096489.8A CN116237154A (zh) 2022-09-08 2022-09-08 一种富集锂的方法
CN202211096489.8 2022-09-08

Publications (1)

Publication Number Publication Date
WO2024051102A1 true WO2024051102A1 (zh) 2024-03-14

Family

ID=86635395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077684 WO2024051102A1 (zh) 2022-09-08 2023-02-22 一种富集锂的方法

Country Status (4)

Country Link
CN (1) CN116237154A (zh)
CL (1) CL2023001687A1 (zh)
FR (1) FR3139581A1 (zh)
WO (1) WO2024051102A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109759223A (zh) * 2019-01-02 2019-05-17 浙江天磨矿业科技有限公司 一种提高锂云母回收率的磨矿方法
CN110575904A (zh) * 2019-09-23 2019-12-17 昆明理工大学 一种锂辉石分粒级双重介-浮选选矿方法
CN110694788A (zh) * 2019-10-30 2020-01-17 中蓝长化工程科技有限公司 一种高钙镁型低品位锂辉石矿的选矿方法
US20200353477A1 (en) * 2017-11-07 2020-11-12 Amg Mineração S.A. Ore-dressing process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200353477A1 (en) * 2017-11-07 2020-11-12 Amg Mineração S.A. Ore-dressing process
CN109759223A (zh) * 2019-01-02 2019-05-17 浙江天磨矿业科技有限公司 一种提高锂云母回收率的磨矿方法
CN110575904A (zh) * 2019-09-23 2019-12-17 昆明理工大学 一种锂辉石分粒级双重介-浮选选矿方法
CN110694788A (zh) * 2019-10-30 2020-01-17 中蓝长化工程科技有限公司 一种高钙镁型低品位锂辉石矿的选矿方法

Also Published As

Publication number Publication date
FR3139581A1 (fr) 2024-03-15
CL2023001687A1 (es) 2024-04-12
CN116237154A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
CN104023851B (zh) 矿石加工
CN108212507B (zh) 一种从尾矿中回收细粒和微细粒锡石的选矿工艺
CN109604048B (zh) 分步回收铜转炉渣中金属铜、硫化铜和铁矿物的方法
CN110575904A (zh) 一种锂辉石分粒级双重介-浮选选矿方法
CN111715399B (zh) 一种高钙高镁细粒嵌布白钨矿的预处理方法
CN105944825B (zh) 一种细粒赤铁矿的选矿脱硅富集方法
CN107096638A (zh) 一种铁矿石混合矿分磨、分选,磁‑重选矿工艺
CN113333155B (zh) 一种从稀土矿中回收铀的选矿方法
CN113769883B (zh) 锂辉石选矿工艺
CN111167596A (zh) 一种氟碳铈矿处理过程中综合回收稀土矿物和萤石的方法
CN108212504A (zh) 一种预选-焙烧-磁浮工艺回收磁选尾矿的方法
CN110038718B (zh) 一种应用离心机和浮选高效分选微细粒钨矿的工艺
CN111330751B (zh) 一种从多金属尾矿中回收锑、铅、金的组合工艺
WO2024051102A1 (zh) 一种富集锂的方法
CN113333180B (zh) 一种含金蚀变岩型矿石的浮选方法
CN113304875B (zh) 一种白云石-重晶石型铅锌矿全资源化利用方法
CN112718231B (zh) 富镁矿物的辉钼矿的选矿方法
CN112844818B (zh) 一种铜锌硫化矿选矿分离的方法
CN113713964A (zh) 一种从钛磁铁矿回收流程中的次铁矿中回收钛精矿的方法
RU2354457C1 (ru) Способ обогащения калийсодержащих руд
CN219850097U (zh) 一种锂辉石矿重介质分选与浮选联合分选系统
CN114178045B (zh) 含辉铜矿粗粒嵌布型硫化铜矿简易选矿方法
CN114918038B (zh) 高炉布袋除尘灰无废处理方法
WO2024045687A2 (zh) 一种金矿预选抛废和减少过磨的方法
CN117563759B (zh) 一种银铜锡多金属矿的收锡方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861810

Country of ref document: EP

Kind code of ref document: A1