WO2024051086A9 - 一种电力接收装置、电力发送装置及电力传输方法 - Google Patents

一种电力接收装置、电力发送装置及电力传输方法 Download PDF

Info

Publication number
WO2024051086A9
WO2024051086A9 PCT/CN2023/075940 CN2023075940W WO2024051086A9 WO 2024051086 A9 WO2024051086 A9 WO 2024051086A9 CN 2023075940 W CN2023075940 W CN 2023075940W WO 2024051086 A9 WO2024051086 A9 WO 2024051086A9
Authority
WO
WIPO (PCT)
Prior art keywords
battery
impedance
voltage
power
module
Prior art date
Application number
PCT/CN2023/075940
Other languages
English (en)
French (fr)
Other versions
WO2024051086A1 (zh
Inventor
刘东平
江成
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP23833561.6A priority Critical patent/EP4358363A1/en
Priority to CN202311781906.7A priority patent/CN117977834A/zh
Priority to CN202380008230.XA priority patent/CN116391310B/zh
Publication of WO2024051086A1 publication Critical patent/WO2024051086A1/zh
Publication of WO2024051086A9 publication Critical patent/WO2024051086A9/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the embodiments of the present application relate to the field of wireless power transmission technology, and in particular, to a power receiving device, a power transmitting device, and a power transmission method.
  • a wireless power transmission device usually includes a power transmitting device and a power receiving device.
  • the wireless power transmission process is achieved through electromagnetic field coupling between the transmitting antenna of the power transmitting device and the receiving antenna in the power receiving device.
  • the working bandwidth of some frequency bands is relatively narrow, and it is not possible to adjust the frequency band to match the load impedance to the optimal impedance, thereby failing to achieve the optimal efficiency of the power transmission device in the entire transmission state.
  • the embodiments of the present application provide a power receiving device, a power transmitting device and a power transmission method, which can solve the problem that when the operating bandwidth of some frequency bands is narrow, the load impedance of the power receiving device has a large variation range and the optimal value of the load impedance cannot be reached through frequency modulation, resulting in the power transmission device being unable to achieve the optimal efficiency in the entire transmission state.
  • the load impedance of the power receiving device can be controlled at an optimal value in real time to achieve the optimal efficiency of the power transmission device in the entire transmission state.
  • an embodiment of the present application shows an electric power receiving device, comprising: a battery and a protection circuit module, a first microcontroller module, and an impedance conversion module; the battery and the protection circuit module is used to obtain the battery impedance; the first microcontroller module sends a driving signal to the impedance conversion module according to the preset optimal value of the input impedance of the impedance conversion module and the battery impedance, so as to adjust the duty cycle of the driving signal in the impedance conversion module so that the impedance conversion module outputs a target voltage, wherein the duty cycle is the ratio of the time that the driving signal is at a high level in one cycle to one cycle, and when the impedance conversion module outputs the target voltage, the input impedance is at the optimal value of the input impedance.
  • the power receiving device can control the load impedance of the power receiving device at an optimal value in real time through the impedance conversion module, so that the power transmission device has the best efficiency in the entire transmission state.
  • the impedance conversion module is a DC impedance converter, which includes at least one of a single-ended primary inductive converter, a DC buck-boost converter, and a DC boost-buck converter.
  • the power receiving device can select a suitable type of DC impedance converter to adjust the load impedance.
  • the battery and protection circuit module is further used to receive the target voltage output by the impedance conversion module, and if the target voltage is greater than the rated voltage of the battery, at least one protection circuit is turned on, and the at least one protection circuit includes at least one transient voltage diode. In this embodiment, when the target voltage is greater than the maximum voltage of the battery, the battery and protection circuit module protects the battery through the protection circuit to prevent the battery from being overcharged and damaged.
  • the first microcontroller module is further used to detect the charging status of the battery and the protection circuit module to determine whether the battery and the protection circuit module have completed charging; the first microcontroller module is further used to perform a voltage detection on the battery and the protection circuit module every delay threshold if the battery and the protection circuit module have not completed charging to obtain the battery voltage after detection; the battery and the protection circuit module is further used to stop receiving the target voltage output by the impedance conversion module if the battery and the protection circuit module have completed charging.
  • the first microcontroller module can detect the charging status of the battery and the protection circuit module in real time to determine whether charging is completed.
  • it also includes: a first communication module; a first microcontroller module, which is also used to determine whether the detected battery voltage is equal to the maximum voltage of the battery; the first microcontroller module is also used to determine the detected battery impedance according to the detected battery voltage if the detected battery voltage is equal to the maximum voltage of the battery; and to perform the next detection of whether the battery and the protection circuit module are fully charged; the first communication module is used to send the detected battery voltage and the detected battery impedance to the power transmission device.
  • the first communication module can send the detected battery voltage and the detected battery impedance to the power transmission device in real time, so that the power transmission device adjusts the target power output by the power transmission device according to the sent value.
  • the first microcontroller module is also used to determine whether the detected battery voltage is within a receiving threshold range if the detected battery voltage is less than the maximum voltage of the battery; the receiving threshold is used to characterize the degree of deviation of the target voltage; the first microcontroller module is also used to detect the charging state of the battery and the protection circuit module next time if the detected battery voltage is within the receiving threshold range to determine whether the battery and the protection circuit module have completed charging; the first microcontroller module is also used to determine the detected battery impedance according to the detected battery voltage if the detected battery voltage is not within the receiving threshold range, and detect the charging state of the battery and the protection circuit module next time. With this embodiment, the first microcontroller module can determine whether the battery voltage is within a reasonable deviation range by determining whether the detected battery voltage is within the receiving threshold.
  • the present application also shows a power transmission device, including: a second communication module, a second micro-control module, and a power amplifier module; the second communication module is used to receive the battery voltage and battery impedance sent by the power receiving device; the second micro-control module is used to send a control signal to the power amplifier module through the battery voltage and battery impedance, so as to control the power amplifier module to output a target power through the control signal, and the target power is used to make the input impedance of the DC impedance converter in the power receiving device at the optimal value of the input impedance.
  • the power transmission device can send a control signal to the power amplifier module according to the received battery voltage and battery impedance to adjust the target power output by the power amplifier module, thereby ensuring that the power transmission device has the best efficiency in the entire transmission state.
  • an embodiment of the present application shows a power transmission device, which includes a power receiving device as described in the first aspect and its various embodiments, and a power transmitting device as described in the second aspect and its various embodiments, and the working frequency bands of the power receiving device and the power transmitting device for transmitting radio frequency energy include 6.78 MHz and/or 13.56 MHz.
  • the power transmission device can ensure the optimal efficiency of the transmission state when the working frequency band is 6.78 MHz and/or 13.56 MHz.
  • the present application also shows a power transmission method, which is applied to a power receiving device, and the method includes: obtaining battery impedance; sending a driving signal to the DC impedance converter according to the preset optimal value of the input impedance of the DC impedance converter and the battery impedance to adjust the duty cycle of the driving signal in the DC impedance converter so that the DC impedance converter outputs a target voltage, wherein the duty cycle is the ratio of the duration of the high level of the driving signal in one cycle to one cycle; when the DC impedance converter outputs the target voltage, the input impedance is at the optimal value of the input impedance.
  • the power receiving device can control the load impedance of the power receiving device at the optimal value in real time through the DC impedance converter, so that the power transmission device has the best efficiency in the entire transmission state.
  • the method further includes: receiving a target voltage output by a DC impedance converter, and if the target voltage is greater than the rated voltage of the battery, turning on at least one protection circuit, wherein the at least one protection circuit includes at least one transient voltage diode.
  • the power receiving device can protect the battery through the protection circuit when the target voltage is greater than the rated voltage of the battery, thereby preventing the battery from being overcharged and damaged.
  • the method further includes: detecting the charging state of the power receiving device; to determine whether the power receiving device has completed charging; if the power receiving device has not completed charging; performing a voltage detection on the power receiving device once every delay threshold to obtain the battery voltage after detection; if the power receiving device has completed charging, stopping receiving the target voltage output by the DC impedance converter.
  • the power receiving device can detect the charging state of the power receiving device in real time to determine whether charging is completed.
  • the method further includes: determining whether the detected battery voltage is equal to the maximum voltage of the battery; if the detected battery voltage is equal to the maximum voltage of the battery, determining the detected battery impedance according to the detected battery voltage; and performing the next detection of whether the power receiving device has completed charging; and sending the detected battery voltage and the detected battery impedance to the power transmitting device.
  • the power receiving device can send the detected battery voltage and the detected battery impedance to the power transmitting device in real time, so that the power transmitting device adjusts the target power output by the power transmitting device according to the sent values.
  • the method further includes: if the battery voltage after detection is less than the maximum voltage of the battery, determining whether the battery voltage after detection is within a receiving threshold range; the receiving threshold is used to characterize the degree of deviation of the target voltage; if the battery voltage after detection is within the receiving threshold range, performing the next detection of the charging state of the power receiving device to determine whether the power receiving device has completed charging; if the battery voltage after detection is not within the receiving threshold range, determining the battery impedance after detection according to the battery voltage after detection, and performing the next detection of the charging state of the power receiving device.
  • the power receiving device can determine whether the battery voltage is within a reasonable deviation range by determining whether the battery voltage after detection is within the receiving threshold.
  • the present application also shows a power transmission method, which is applied to a power transmitting device, and the method includes: receiving a battery voltage and a battery impedance sent by a power receiving device; sending a control signal through the battery voltage and the battery impedance to control the power transmitting device to output a target power through the control signal, and the target power is used to make the input impedance of the DC impedance converter in the power receiving device at the optimal value of the input impedance.
  • the power transmitting device can send a control signal according to the received battery voltage and battery impedance to adjust the target power output by the power transmitting device, thereby ensuring that the load impedance of the power receiving device is controlled at the optimal value in real time.
  • FIG1 is a simplified schematic diagram of a power transmission device provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a wireless power transmission process provided by an embodiment of the present application.
  • FIG3 is a schematic diagram of an improved structure of a receiving-end impedance conversion module provided in an embodiment of the present application
  • FIG4 is a schematic structural diagram of a power transmission device 100 provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a single-ended primary inductor converter circuit provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a DC buck-boost converter circuit provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a DC step-up and step-down converter circuit provided in an embodiment of the present application.
  • FIG8 is a partial simplified circuit diagram of a power transmission device 100 provided in an embodiment of the present application.
  • FIG. 9 is a flow chart of a power transmission method provided in an embodiment of the present application.
  • A/B can mean A or B.
  • the "and/or” in this article is merely a description of the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone.
  • at least one means one or more
  • plural means two or more. The words “first”, “second”, etc. do not limit the quantity and order of execution, and the words “first”, “second”, etc. do not limit them to be different.
  • Wireless power transfer refers to the near-field power transmission technology from power source to load using mechanisms such as magnetic induction, magnetic resonance and capacitive coupling. It can realize wireless power transmission between power source and load, and thus wirelessly charge electronic devices.
  • the types of electronic devices include, but are not limited to, mobile phones, tablet computers, laptop computers, large-screen devices (e.g., smart TVs, smart screens), personal computers (PCs), handheld computers, netbooks, personal digital assistants (PDAs), wearable electronic devices, vehicle-mounted devices, virtual reality devices, and other electronic devices.
  • Electronic devices may also be wireless charging electric vehicles, wireless charging household appliances, drones, and other electronic products.
  • FIG1 is a simplified schematic diagram of a power transmission device.
  • the power transmission device 100 includes a power transmission device (PTU) 101 and a power receiving device (PRU) 102, wherein the power transmission device 101 receives input power 103 to generate a radiation field 104 for providing energy transfer through the input power 103.
  • the power receiving device 102 is coupled to the radiation field 104 to generate output power 105 for the power receiving device 102 to store or consume.
  • the power transmitting device 101 may include a power supply module 1011, a transmitting end microcontroller unit (MCU) 1012, a power amplifier module 1013, and a transmitting end antenna 1014.
  • MCU transmitting end microcontroller unit
  • the power module 1011 may be used to receive input power 103 and input the input power 103 to the power amplification module 1013 .
  • the power amplification module 1013 may be used to convert the DC energy of the input power 103 into RF energy.
  • the transmitting end microcontroller module 1012 can be used to adjust the operating frequency of the radio frequency energy converted by the power amplifier module 1013, so that the power amplifier module 1013 generates an operating frequency of the required frequency band.
  • the power amplifier module 1013 can also be used to convert DC energy into radio frequency energy and send the radio frequency energy to the transmitting end antenna 1014.
  • the transmitting antenna 1014 may be used to transmit radio frequency energy to the power receiving device 102 .
  • the power receiving device 102 includes a receiving-end antenna 1021 , a receiving-end rectifying module 1022 , a receiving-end impedance conversion module 1023 , a receiving-end micro-control module 1024 , and a battery module 1025 .
  • the transmitting antenna 1014 sends radio frequency energy to the power receiving device 102 , most of the energy in the near field of the transmitting antenna 1014 can be coupled to the receiving antenna 1021 , so that the transmitting antenna 1015 and the receiving antenna 1021 form a near-field coupling mode.
  • the receiving end antenna 1021 can be used to send the received RF energy to the receiving end rectifier module 1022 after receiving the RF energy.
  • the receiving-end rectifier module 1022 may be configured to convert radio frequency energy into direct current energy, and send the direct current energy to the receiving-end impedance conversion module 1023 .
  • the receiving end impedance conversion module 1023 can be used to receive the control signal sent by the receiving end micro control module 1024, adjust the impedance corresponding to the DC energy according to the control signal, and generate output power 105 for storage or consumption by the battery module 1025.
  • the structure of the power transmission device 100 shown in FIG. 1 is only for exemplary description. In actual applications, the power transmission device 100 can increase or decrease modules on this basis to achieve the required functions.
  • each circuit in the power transmission device 100 is usually designed separately and then combined together, and each circuit is designed to work at the highest efficiency.
  • each circuit is designed to work at the highest efficiency.
  • FIG2 is a schematic diagram of a wireless power transmission process.
  • the conventional wireless power transmission process is divided into a pre-charge period, a constant current period, and a constant voltage period; in the pre-charge period, the current intensity is maintained at C/10; at this time, the voltage in the battery module 1025 gradually increases to 2.5V; in the constant current period, the current intensity is maintained at 1C, at this time, the voltage in the battery module 1025 gradually increases from 2.5V to 4.2V; in the constant voltage period, the voltage intensity is maintained at 4.2V, at this time, the current intensity gradually decreases from 1C to C/10 and then remains stable.
  • the battery module 1025 cannot maintain a constant current intensity when the received output voltage is a constant voltage, and the battery impedance will change with the change of the charging state, resulting in a change in the load impedance of the power receiving device 102.
  • the inherent resistance of the lithium battery is composed of the resistance of the electrode material, electrolyte, diaphragm and other internal resistances of the material part.
  • the loss of its internal electrolyte and the reduction in the activity of various chemical substances will gradually increase the battery impedance.
  • its battery impedance is related to changes in temperature and changes in polarization internal resistance.
  • the battery characteristics described in this application refer to the characteristics of the battery impedance changing with the change in the charging state during a single charge and discharge process.
  • the power transmission device 101 and the power receiving device 102 introduce additional power loss, but also the overall efficiency may change due to the fact that the battery impedance changes with the charging state when the battery module 1025 receives the output power 105.
  • the power transmission device 101 and the power receiving device 102 may not work at the designed performance in actual operation. Therefore, when designing the circuit, it is necessary to consider the design method that maximizes the transmission efficiency of the power transmission device 100 in different usage scenarios.
  • the efficiency ⁇ 1022 of the receiving end rectifier module 1022 and the efficiency ⁇ 1023 of the receiving end impedance conversion module 1023 are both inherent efficiencies, which will not change with the change of the load impedance of the power receiving device 102. Only the efficiency ⁇ 1013 of the power amplifier module 1013, the efficiency ⁇ 1014 of the transmitting end antenna 1014, and the efficiency ⁇ 1021 of the receiving end antenna 1021 will change with the change of the load impedance. Therefore, in the improvement of the traditional solution, the module that can change the efficiency is usually improved.
  • the power transmission device 100 can set the circuit in the entire device based on the principle of optimal output power efficiency of the power transmission device.
  • the source impedance at one end of the power transmission device 101 is kept at a fixed value, and the frequency is adjusted through the power amplification module 1013 to match the load impedance of the power receiving device 102 to the optimal impedance.
  • the current working frequency bands of wireless charging can only be used in the three frequency bands of 100-148.5KHz, 6765-6795KHz, and 13553-13567KHz. Due to frequency band restrictions, it is not possible to match the load impedance of the power receiving device 102 to the optimal impedance through frequency modulation in some frequency bands. Taking the working frequency bands of 6.78MHz and 13.56MHz as examples, these frequency bands have narrow bandwidths.
  • FIG3 is a schematic diagram of an improved structure of a receiving end impedance conversion module.
  • the receiving end impedance conversion module 1023 includes an RF-DC converter and a DC-DC converter, wherein the RF-DC converter uses at least one of a switchable fixed capacitor, a switchable fixed inductor, and a voltage variable capacitor to adjust the impedance transformation caused by the device tolerance; the DC-DC converter uses at least one of a buck converter or a boost converter to adjust the DC impedance.
  • the RF-DC converter uses a switchable fixed capacitor or a switchable fixed inductor, it may have too much ohmic loss, so the practicality is poor.
  • the voltage variable capacitor currently uses ferroelectric devices, micro-electromechanical systems and varactor diodes, so the scalability is poor, and the RF energy transmitted based on adjusting the device tolerance cannot achieve the expected transmission efficiency.
  • the DC-DC converter uses a buck converter or a boost converter, the impedance transformation range is limited, and the load impedance in the power receiving device 102 cannot be matched to the optimal impedance in real time, and thus the transmission efficiency in the entire power transmission device 100 cannot be maximized.
  • the power transmission device 100 in some frequency bands cannot control the load impedance of the power receiving device 102 to the optimal value in real time, and thus cannot achieve the optimal efficiency of the power transmission device 100 in the entire transmission state.
  • an embodiment of the present application provides a power transmission device 100.
  • FIG4 provides a schematic structural diagram of a power transmission device 100 according to an embodiment of the present application.
  • the power transmission device 100 in the present application includes: a power transmitting device 101 and a power receiving device 102 .
  • FIG. 4 is only for exemplary description, and in actual use, various parts of the illustrated structure may be replaced or added or reduced to achieve specific functions.
  • the power receiving device 102 includes: a receiving antenna 11 , a first matched filter module 12 , a rectifier module 13 , an impedance conversion module 14 , a first micro-control module 15 , a battery and protection circuit module 16 and a first communication module 17 .
  • the power transmission device 101 includes: a power management module 21 , a power amplifier module 22 , a second matched filter module 23 , a transmitting antenna 24 , a second micro control module 25 and a second communication module 26 .
  • control logic of the first microcontroller module 15 and the second microcontroller module 25 shown in the embodiment of the present application are set based on the principle of optimal transmission efficiency of the receiving antenna 11 and the transmitting antenna 24, and the impedance conversion module 14 performs its function based on the principle of optimal transmission efficiency of the receiving antenna 11 and the transmitting antenna 24.
  • the efficiency of the first matched filter module 12, the efficiency of the rectifier module 13, the efficiency of the impedance conversion module 14, the efficiency of the first micro-control module 15, the efficiency of the battery and protection circuit module 16, the efficiency of the first communication module 17, the efficiency of the power management module 21, the efficiency of the second matched filter module 23, the efficiency of the second micro-control module 25, and the efficiency of the second communication module 26 in the embodiment of the present application are fixed during the actual operation of the power transmission device 100, only the efficiency of the power amplifier module 22, the efficiency of the transmitting antenna 24, and the efficiency of the receiving antenna 11 will change with the change of the load impedance during the actual operation of the power transmission device 100.
  • the total antenna efficiency i.e., the product of the efficiency of the transmitting antenna 24 and the efficiency of the receiving antenna 11
  • the power amplifier module 22 is designed to match the load impedance, so that the power amplifier module 22 can adjust the output target power to achieve the optimal source impedance, thereby making the power transmission device 100 have the best efficiency in the entire transmission state.
  • the power management module 21 can be used to receive the input power 103 and modulate the input power 103 to send the modulated input power 103 to the power amplifier module 22.
  • the input power 103 can be AC mains or DC power.
  • the power management module 21 can be used to modulate the input power 103 into DC energy through a full-bridge rectifier circuit to input the modulated DC energy into the power amplifier module 22.
  • the power amplifier module 22 can be used to convert the DC energy into RF energy after receiving the DC energy sent by the power management module 21.
  • the power amplifier module 22 includes but is not limited to a class E amplifier, a class D amplifier, a differential class E amplifier, and a differential class D amplifier.
  • the power amplifier module 22 can also be used to send the RF energy to the second matched filter module 23.
  • the second matching filter module 23 includes an electromagnetic compatibility filter (EMC Filter) and an impedance matching network.
  • EMC Filter electromagnetic compatibility filter
  • the electromagnetic compatibility filter can filter out the noise and high-frequency harmonics generated by the switching power supply.
  • the second matching filter module 23 can be used to receive the radio frequency energy sent by the power amplifier module 22, filter out the unnecessary working frequency in the radio frequency energy through the electromagnetic compatibility filter, and match the radio frequency energy with the transmitting antenna 24 through the impedance matching network.
  • the transmitting antenna 24 can be used to send the RF energy to the receiving antenna 11.
  • the transmitting antenna 24 includes but is not limited to at least one of a flexible printed circuit (FPC) antenna and a winding coil.
  • FPC flexible printed circuit
  • the transmitting antenna 24 when the transmitting antenna 24 is a winding coil, the transmitting antenna 24 may include at least one winding coil, and the embodiment of the present application does not limit the specific number of winding coils.
  • the transmitting antenna 24 may include three winding coils, four winding coils, or a greater number of winding coils.
  • one of the winding coils with the highest efficiency among the multiple winding coils may be selected to transmit RF energy, and the other winding coils do not work. Since the multiple winding coils can shield the interference signal in the power transmission device 101, the winding coil used to transmit RF energy can improve the anti-interference performance and transmit RF energy at the required operating frequency.
  • the second micro-control module 25 can control the transmission process of the power transmission device 101.
  • the second micro-control module 25 can be used to control the power management module 21 so that the power management module 21 modulates the input power 103 into DC energy, and can also control the operating frequency of the radio frequency energy converted by the power amplifier module 22 so that the power amplifier module 22 generates an operating frequency in a required frequency band.
  • the second communication module 26 can be used to receive information sent by the first communication module 17 to realize communication between the power transmitting device 101 and the power receiving device 102.
  • the second communication module 26 can realize wireless connection with the first communication module 17 through out-of-band communication methods such as Bluetooth, Wireless-Fidelity (WiFi), Zigbee, Radio Frequency Identification (RFID), Long range (Lora) wireless technology or Near Field Communication (NFC).
  • the receiving antenna 11 when the receiving antenna 11 receives the radio frequency energy sent by the transmitting antenna 24, it can be used to send the received radio frequency energy to the first matched filter module 12.
  • the receiving antenna 11 includes but is not limited to at least one of a flexible printed circuit board antenna and a winding coil.
  • the first matched filter module 12 includes an electromagnetic compatibility filter and an impedance matching network.
  • the first matched filter module 12 can be used to filter out unnecessary operating frequencies in the radio frequency energy through the electromagnetic compatibility filter after receiving the radio frequency energy, and adjust the operating frequency of the radio frequency energy through the impedance matching network and send the radio frequency energy to the rectifier module 13.
  • the rectifier module 13 includes but is not limited to at least one of a diode rectifier bridge or a metal-oxide-semiconductor field effect transistor (MOS) rectifier bridge.
  • the rectifier module 13 can be used to convert radio frequency energy into direct current energy and send the direct current energy to the impedance conversion module 14.
  • the impedance conversion module 14 can be used to receive the driving signal sent by the first micro-control module 15 to adjust the duty cycle of the driving signal of the impedance conversion module 14 and output the target voltage for storage or consumption by the battery and the protection circuit module 16.
  • the impedance conversion module 14 can be a DC impedance converter
  • the DC impedance converter includes at least one of a single-ended primary inductor converter (Single Ended Primary Inductor Converter, SEPIC), a DC buck-boost (Care Unite Skin, CUK) converter, and a DC boost-buck (Boost-Buck) converter.
  • Fig. 5 is a schematic diagram of a single-ended primary inductor converter circuit provided by an embodiment of the present application. As shown in Fig. 5, the single-ended primary inductor converter uses two inductors instead of a transformer, so magnetic components can be used in the circuit where it is located, saving the cost of using a dedicated transformer.
  • Fig. 6 is a schematic diagram of a DC buck-boost converter circuit provided by an embodiment of the present application.
  • the control is simple, the duty cycle can be greater than 0.5, and energy is transmitted between the input and output by a capacitor, which is conducive to reducing the volume and improving the power density.
  • both the input and output ends have inductors, which effectively reduce the pulses of the input and output currents, making the input and output currents continuous, and the switch current is limited inside the converter, so that the output ripple and electromagnetic interference generated are relatively small.
  • Figure 7 is a schematic diagram of a DC boost-buck converter provided by an embodiment of the present application. As shown in Figure 7, in the DC boost-buck converter, the input and output currents are continuous, the output voltage has a large adjustable range, and the output voltage can be greater than or less than the output voltage, which has good practicality.
  • the power receiving device 102 may be provided with different types of DC impedance converters to adjust the target voltage.
  • the first micro-control module 15 can be used to adjust the duty cycle of the driving signal of the impedance conversion module 14; and detect the changes in the battery voltage and battery impedance of the battery and protection circuit module 16.
  • the battery and protection circuit module 16 can be used to receive the target voltage output by the impedance conversion module 14 to store or consume the DC energy corresponding to the target voltage.
  • the first communication module 17 can be used to receive the battery voltage and battery impedance detected by the first micro-control module 15, and transmit the battery voltage and battery impedance to the second communication module 26, so that the power receiving device 102 outputs the target power according to the received battery voltage and battery impedance.
  • the first communication module 17 can achieve wireless connection with the second communication module 26 through out-of-band communication methods such as Bluetooth, Wireless-Fidelity (WiFi), Zigbee, Radio Frequency Identification (RFID), Long range (Lora) wireless technology or Near Field Communication (NFC).
  • the specific method for the first micro-control module 15 to adjust the duty cycle of the driving signal of the impedance conversion module 14 is as follows:
  • the first micro-control module 15 is preset with the optimal value of the input impedance of the impedance conversion module.
  • the optimal value of the input impedance can be obtained according to the following method:
  • the total antenna efficiency is obtained according to the product of the efficiency of the receiving antenna 11 and the efficiency of the transmitting antenna 24.
  • the antenna efficiency refers to the ratio of the power radiated by the antenna to the active power input to the antenna.
  • FIG. 8 provides a partial simplified circuit diagram of the power transmission device 100 according to an embodiment of the present application.
  • the efficiency of the receiving antenna 11 is:
  • equivalent impedance is a concept in transmission line theory. In the process of designing power transmission devices, it is necessary to specifically understand the impedance at a specified position on the transmission line, that is, the ratio of voltage to current at that position.
  • Equivalent impedance refers to the ratio of the incident wave and the reflected wave after superposition, which exists in the form of a position function, and the equivalent impedance changes with the change of position. Equivalent impedance involves the problem of the direction of looking in the past. For example, the impedance looking at the load is the equivalent load impedance, and the impedance looking at the source is the equivalent source impedance. In the embodiment of the present application, RL is the load impedance looking in the past.
  • the efficiency of the transmitting antenna 24 is:
  • Q t is the quality factor of the transmitting antenna 24;
  • Q r is the quality factor of the receiving antenna 11;
  • is the angular frequency,
  • L t is the inductance of the transmitting antenna 24;
  • L r is the inductance of the receiving antenna 11;
  • k is the coupling coefficient between coils
  • the corresponding impedance transformation rule is:
  • Z L is the load impedance viewed from the rectifier module, and is equal to the input impedance of the impedance conversion module 14 .
  • R is the battery impedance
  • D is the duty cycle of the driving signal in the impedance conversion module 14 .
  • the optimal value of the input impedance of the impedance conversion module 14 can be obtained.
  • the first micro-control module 15 presets an optimal value of the input impedance of the impedance conversion module 14 .
  • the first microcontroller module 15 can also be used to send a driving signal to the impedance conversion module 14 according to the preset optimal value of the input impedance and the battery impedance to adjust the duty cycle of the driving signal in the impedance conversion module 14.
  • the value of the duty cycle is calculated according to the following formula (13).
  • the duty cycle is the ratio of the duration of the high level of the driving signal in one cycle to the duration of one cycle. For example, if one driving cycle of the driving signal is 2 microseconds, and the duration of the high level is 1 microsecond, the duty cycle is 50%.
  • the first microcontroller module 15 controls the voltage average value of the voltage signal by adjusting the duty cycle of the driving signal in the impedance conversion module 14, so that the impedance conversion module 14 outputs the target voltage.
  • the input impedance of the impedance conversion module 14 is at the optimal value of the input impedance.
  • the duty cycle is determined based on the optimal value of the input impedance and the battery impedance. Since the optimal value of the input impedance is a preset value and the battery impedance is a variable obtained in real time, the duty cycle changes with the change of the battery impedance, and the target voltage output by the impedance conversion module 14 changes with the change of the duty cycle. At this time, the load impedance seen from the rectifier module 13 is fixed at the optimal value, and the impedance conversion module 14 fixes the input impedance at the optimal value, so that the load impedance of the power receiving device 102 is fixed at the optimal value.
  • the RF energy received by the power receiving device 102 should be a fixed value. According to the law of conservation of energy, the working power of the battery and the protection circuit module 16 remains unchanged, that is:
  • P electric is the working power of the battery and the protection circuit module 16
  • V out is the battery voltage
  • R is the battery impedance
  • P electric is a fixed value.
  • the battery voltage increases; when the battery impedance decreases, the battery voltage decreases. Since the operating voltage range of the battery is limited, when the battery voltage increases, the battery voltage may exceed the maximum voltage.
  • the power transmission device 101 needs to adjust the target power output by the transmitting antenna 24 in real time according to the battery voltage and battery impedance, so that the load impedance seen from the rectifier module 13 is at the optimal value.
  • the first micro-control module 15 is also used to detect the battery and the protection circuit module 16 to prevent the battery and the protection circuit module 16 from being overcharged, and transmit the battery impedance and the battery voltage to the power transmission device 101 in real time, specifically in the following manner:
  • the first micro control module 15 is further used to detect the charging status of the battery and the protection circuit module 16 to determine whether the battery and the protection circuit module 16 have completed charging.
  • the voltage is charged at a constant voltage and the current is charged in a trickle form until the current is less than a certain set value, and it is considered that the battery and the protection circuit module 16 are fully charged.
  • the first microcontroller module 15 can also be used to perform a voltage test on the battery and the protection circuit every delay threshold if the battery and the protection circuit module 16 have not completed charging, so as to obtain the battery voltage after the test.
  • the delay threshold can be set to 3 microseconds.
  • the delay threshold in the embodiment of the present application is only used for exemplary explanation and can be set according to actual conditions.
  • the delay threshold is actually the communication duration between the first communication module 17 and the second communication module 26.
  • the setting of the delay threshold can ensure the communication frequency of the first communication module 17 and the second communication module 26, so that the transmitting antenna 24 can adjust the output target power in real time.
  • the battery and protection circuit module 16 can also be used to stop receiving the target voltage output by the impedance conversion module 14 if the battery and protection circuit module 16 completes charging.
  • the maximum voltage of the battery of the battery and protection circuit module 16 is 5V.
  • the target voltage received by the battery and protection circuit module 16 is 5V and the current is less than C/10, the target voltage output by the impedance conversion module 14 is stopped.
  • the battery and protection circuit module 16 can also be used to receive the target voltage output by the impedance conversion module 14. If the target voltage is greater than the maximum voltage of the battery, at least one protection circuit is turned on, and at least one protection circuit includes at least one transient voltage suppressor (TVS). In this way, when the battery impedance increases, the equivalent load impedance of the power receiving device increases, and the target voltage output by the impedance conversion module 14 increases. Taking the maximum voltage as 5V as an example, when the target voltage is 5.5V, which is greater than 5V, at least one protection circuit is immediately turned on to avoid overcharging and damage to the battery.
  • TVS transient voltage suppressor
  • the first microcontroller module 15 can also be used to determine whether the battery voltage after detection is equal to the maximum voltage of the battery; if the battery voltage after detection is equal to the maximum voltage of the battery, determine the battery impedance after detection based on the battery voltage after detection; and perform the next detection to determine whether the battery and the protection circuit module have completed charging.
  • the maximum voltage of the battery and the protection circuit module 16 is set to 5V, and the delay threshold is set to 3 microseconds.
  • the first microcontroller module 15 detects that the battery voltage value is 4.8V, it can detect the battery voltage again after 3 microseconds, and the voltage value after detection is 5V. Therefore, after the battery voltage after detection is equal to the maximum voltage of the battery, it is still necessary to detect the charging status of the battery and the protection circuit module 16 to determine whether the charging is completed to avoid overcharging.
  • the first microcontroller module 15 can also be used to determine whether the detected battery voltage is within a receiving threshold range if the detected battery voltage is less than the maximum voltage of the battery; the receiving threshold is used to characterize the degree of deviation of the target voltage; if the detected battery voltage is within the receiving threshold range, the charging status of the battery and the protection circuit module is detected next time to determine whether the battery and the protection circuit module are fully charged; if the detected battery voltage is not within the receiving threshold range, the detected battery impedance is determined according to the detected battery voltage, and the charging status of the battery and the protection circuit module is detected next time.
  • the target voltage fluctuates during the actual output process, which will cause a voltage offset when the battery voltage receives the target voltage. Based on this, the first micro-control module 15 sets a receiving threshold to determine whether the battery voltage is within a reasonable offset range.
  • the receiving threshold can be set to [0.95 ⁇ V nominal , 1.05 ⁇ V nominal ], where V nominal is the target voltage.
  • V nominal is the target voltage.
  • the target voltage is 4.2V
  • the battery voltage is 4.1V
  • the receiving threshold is [0.95 ⁇ 4.2V, 1.05 ⁇ 4.2V].
  • the battery voltage is within the receiving threshold range, indicating that the battery voltage is within a reasonable deviation range.
  • the battery impedance corresponding to the current battery voltage needs to be recalculated based on the current battery voltage so that the power transmitting device 101 outputs the target power based on the current battery voltage and the battery impedance corresponding to the current battery voltage.
  • the first communication module 17 can also be used to send the detected battery voltage and the detected battery impedance to the power transmission device 101, so that the power transmission device 101 adjusts the output target power.
  • the power transmission device 101 adjusts the output target power according to the received battery voltage and battery impedance to lower the target voltage. It should be noted here that the power transmission device 101 may not be able to immediately reduce the target voltage to the desired range based on the battery voltage and battery impedance sent only once, but needs to make multiple adjustments based on the battery voltage and battery impedance sent multiple times to reduce the target voltage to the desired range.
  • the first communication module 17 can be used to send the battery voltage and battery impedance to the second communication module 26 so that the power amplifier module 22 outputs the target power according to the battery voltage and battery impedance.
  • the second communication module 26 is used to receive the battery voltage and battery impedance sent by the first communication module 17 .
  • the second microcontroller module 25 can be used to send a control signal to the power amplifier module 22 according to the battery voltage and the battery impedance after the second communication module 26 receives the battery voltage and the battery impedance, so as to adjust the operating frequency of the power amplifier module 22 so that the power amplifier module 22 transmits the target power when the source impedance is at the optimal value.
  • the target power can be obtained as follows:
  • Pinput is the target power
  • V nominal is the target voltage
  • R is the battery impedance
  • ⁇ total is the total antenna efficiency
  • the target power is usually adjusted according to the expected voltage but not according to the target voltage.
  • the operating frequency band of the power transmission device includes 6.78 MHz and/or 13.56 MHz.
  • the embodiment of the present application can also be applied to other operating frequency bands.
  • the technical solution shown in the embodiment of the present application can cover more frequency bands to achieve the optimal efficiency of the power transmission device 100 in the entire transmission state.
  • a power transmission device shown in an embodiment of the present application can solve the problem that when the working bandwidth of some frequency bands is narrow, the load impedance of the power receiving device has a large variation range and the optimal value of the load impedance cannot be reached through frequency modulation, resulting in the power transmission device being unable to achieve the optimal efficiency in the entire transmission state.
  • the load impedance of the power receiving device can be controlled in real time at the optimal value, so that the power transmission device has the best efficiency in the entire transmission state.
  • the embodiment of the present application also provides a power transmission method.
  • FIG9 is a schematic diagram of a power transmission method according to an embodiment of the present application. As shown in FIG9 , the power transmission method according to an embodiment of the present application is applied to a power receiving device, and the method includes:
  • S2 Sending a driving signal to the DC impedance converter according to the preset optimal value of the input impedance of the DC impedance converter and the battery impedance to adjust the duty cycle of the driving signal in the DC impedance converter so that the DC impedance converter outputs a target voltage, wherein the duty cycle is the ratio of the duration of the high level of the driving signal in one cycle to one cycle.
  • the input impedance is at the optimal value of the input impedance.
  • S3 Send the battery voltage and battery impedance to the power transmission device.
  • the method further includes: receiving a target voltage output by the DC impedance converter, and if the target voltage is greater than the rated voltage of the battery, turning on at least one protection circuit, wherein the at least one protection circuit includes at least one transient voltage diode.
  • the method also includes: detecting the charging status of the power receiving device; to determine whether the power receiving device has completed charging; if the power receiving device has not completed charging; performing a voltage detection on the power receiving device every delay threshold to obtain the battery voltage after detection; if the power receiving device has completed charging, stop receiving the target voltage output by the DC impedance converter.
  • the method also includes: determining whether the battery voltage after detection is equal to the maximum voltage of the battery; if the battery voltage after detection is equal to the maximum voltage of the battery, determining the battery impedance after detection based on the battery voltage after detection; and performing the next detection to determine whether the battery and the protection circuit module are fully charged; and, sending the battery voltage after detection and the battery impedance after detection to the power sending device.
  • the method also includes: if the battery voltage after detection is less than the maximum voltage of the battery, determining whether the battery voltage after detection is within a receiving threshold range; the receiving threshold is used to characterize the degree of deviation of the target voltage; if the battery voltage after detection is within the receiving threshold range, performing the next detection of the charging state of the power receiving device to determine whether the power receiving device has completed charging; if the battery voltage after detection is not within the receiving threshold range, determining the battery impedance after detection based on the battery voltage after detection, and performing the next detection of the charging state of the power receiving device.
  • the power transmission method provided in the embodiment of the present application is also applied to a power transmitting device, and the method includes:
  • S4 Receive the battery voltage and battery impedance sent by the power receiving device.
  • S5 Sending a control signal through the battery voltage and the battery impedance to control the power transmitting device to output a target power through the control signal, wherein the target power is used to make the input impedance of the DC impedance converter in the power receiving device at an optimal value of the input impedance.
  • the power transmission method provided in the embodiment of the present application uses a working frequency band including 6.78 MHz and/or 13.56 MHz for transmitting radio frequency energy.
  • a power transmission method shown in an embodiment of the present application can solve the problem that when the working bandwidth of some frequency bands is narrow, the load impedance of the power receiving device has a large variation range and the optimal value of the load impedance cannot be reached through frequency modulation, resulting in the power transmission device being unable to achieve the optimal efficiency in the entire transmission state.
  • the load impedance of the power receiving device can be controlled in real time at the optimal value, so that the power transmission device has the best efficiency in the entire transmission state.
  • An embodiment of the present application also provides a wireless charger, including a power transmitting device provided by the embodiment of the present application and any implementation thereof.
  • the embodiment of the present application also provides an electronic device, including the power receiving device provided by the embodiment of the present application and any implementation thereof, and/or the power transmitting device provided by the embodiment of the present application and any implementation thereof (for realizing the wireless reverse charging function).
  • the types of electronic devices include but are not limited to mobile phones, tablet computers, laptop computers, large-screen devices (for example: smart TVs, smart screens), personal computers (persona1computer, PC), handheld computers, netbooks, personal digital assistants (personal digital assistant, PDA), wearable electronic devices, vehicle-mounted devices, virtual reality devices and other electronic devices.
  • the electronic device can also be a wireless charging electric car, Wireless charging for home appliances, wireless charging for headphones, drones and other electronic products.
  • the size of the serial number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供了一种电力接收装置、电力发送装置及电力传输方法,其中,电池及保护电路模块,用于获取电池阻抗;第一微控制模块,用于根据预设的阻抗转换模块的输入阻抗的最优值以及电池阻抗向阻抗转换模块发送驱动信号,以调节阻抗转换模块中驱动信号的占空比,使阻抗转换模块输出目标电压,占空比为驱动信号在一个周期内高电平持续时间占一个周期的比值,当阻抗转换模块输出目标电压时,输入阻抗处于输入阻抗的最优值。本申请能够将电力接收装置的负载阻抗实时控制在最优值,以使电力传输装置在整个传输状态中效率最优。

Description

一种电力接收装置、电力发送装置及电力传输方法
本申请要求在2022年9月6日提交中国专利局、申请号为202211081847.8、发明名称为“一种电力接收装置、电力发送装置及电力传输方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线电力传输技术领域,尤其涉及一种电力接收装置、电力发送装置及电力传输方法。
背景技术
随着无线电力传输技术的发展,越来越多的电子设备采用无线电力传输装置进行无线充电,例如,电子设备可以为手机、可穿戴设备、触控笔等。无线电力传输装置中通常包括电力发送装置以及电力接收装置,无线电力传输过程是通过电力发送装置的发射天线和电力接收装置中的接收天线之间的电磁场耦合来实现的。
由于电池在充电过程中电池阻抗会发生变化,导致电力接收装置的负载阻抗发生变化,整个电力传输装置并不能以最优的传输效率进行传输。在传统的方案中,通常通过定频调压或者定压调频来应对电力接收装置的负载阻抗的变化,但是这种方法牺牲了部分充电效率。
然而,由于无线电力传输工作频段的限制,部分频段工作带宽较窄,不能实现通过调节频段以使负载阻抗匹配至最优阻抗,进而无法实现电力传输装置在整个传输状态中效率最优。
发明内容
本申请实施例提供了一种电力接收装置、电力发送装置及电力传输方法,能够解决部分频段工作带宽较窄时,由于电力接收装置的负载阻抗变化范围较大,无法通过调频达到负载阻抗的最优值,导致电力传输装置在整个传输状态中无法达到效率最优的问题,能够将电力接收装置的负载阻抗实时控制在最优值,以使电力传输装置在整个传输状态中效率最优。
第一方面,本申请实施例示出一种电力接收装置,包括:电池及保护电路模块、第一微控制模块、阻抗转换模块;电池及保护电路模块,用于获取电池阻抗;第一微控制模块,根据预设的阻抗转换模块的输入阻抗的最优值以及电池阻抗向阻抗转换模块发送驱动信号,以调节阻抗转换模块中驱动信号的占空比,使阻抗转换模块输出目标电压,其中,占空比为驱动信号在一个周期内高电平持续的时间占一个周期的比值,当阻抗转换模块输出目标电压时,输入阻抗处于输入阻抗的最优值。
本申请实施例示出的技术方案,电力接收装置能够通过阻抗转换模块将电力接收装置的负载阻抗实时控制在最优值,以使电力传输装置在整个传输状态中效率最优。
在一些实施例中,阻抗转换模块为直流阻抗转换器,直流阻抗转换器包括单端初级电感式转换器、直流降压升压变换器、直流升压降压变换器的至少一种。采用本实施方式,电力接收装置可以选取合适种类的直流阻抗转换器以调节负载阻抗。
在一些实施例中,电池及保护电路模块,还用于接收阻抗转换模块输出的目标电压,如果目标电压大于电池的额定电压,导通至少一个保护电路,至少一个保护电路包括至少一个瞬变电压二级管。采用本实施方式,目标电压大于电池的最大电压时,电池及保护电路模块通过保护电路保护电池,避免电池过充损坏。
在一些实施例中,第一微控制模块,还用于检测电池及保护电路模块的充电状态;以判断电池及保护电路模块是否完成充电;第一微控制模块,还用于如果电池及保护电路模块未完成充电,每隔延时阈值对电池及保护电路模块进行一次电压检测,以得到检测后的电池电压;电池及保护电路模块,还用于如果电池及保护电路模块完成充电,停止接收阻抗转换模块输出的目标电压。采用本实施方式,第一微控制模块可以实时检测电池及保护电路模块的充电状态以判断是否完成充电。
在一些实施例中,还包括:第一通信模块;第一微控制模块,还用于判断检测后的电池电压是否等于电池的最大电压;第一微控制模块,还用于如果检测后的电池电压等于电池的最大电压,根据检测后的电池电压确定检测后的电池阻抗;并进行下一次检测电池及保护电路模块是否完成充电;第一通信模块,用于将检测后电池电压以及检测后的电池阻抗发送至电力发送装置。采用本实施方式,第一通信模块可以实时向电力发送装置发送检测后电池电压以及检测后的电池阻抗,以使电力发送装置根据发送的数值调节电力发送装置输出的目标功率。
在一些实施例中,第一微控制模块,还用于如果检测后的电池电压小于电池的最大电压,判断检测后的电池电压是否在接收阈值范围内;接收阈值用于表征目标电压的偏移程度;第一微控制模块,还用于如果检测后的电池电压在接收阈值范围内,进行下一次检测电池及保护电路模块的充电状态,以判断电池及保护电路模块是否完成充电;第一微控制模块,还用于如果检测后的电池电压不在接收阈值范围内,根据检测后的电池电压确定检测后的电池阻抗,并进行下一次检测电池及保护电路模块的充电状态。采用本实施方式,第一微控制模块可以通过判断检测后的电池电压是否在接收阈值内,以判断电池电压是否在合理的偏差范围内。
第二方面,本申请还示出一种电力发送装置,包括:第二通信模块、第二微控制模块、功放模块;第二通信模块,用于接收电力接收装置发送的电池电压以及电池阻抗;第二微控制模块,用于通过电池电压以及电池阻抗向功放模块发送控制信号,以通过控制信号控制功放模块输出目标功率,目标功率用于使电力接收装置中直流阻抗转换器的输入阻抗处于输入阻抗的最优值。采用本实施方式,电力发送装置能够根据接收到的电池电压以及电池阻抗向功放模块发送控制信号,以调节功放模块输出的目标功率,进而保证电力传输装置在整个传输状态中效率最优。
第三方面,本申请实施例示出一种电力传输装置,电力传输装置包括如上述第一方面及其各种实施方式中的电力接收装置、以及第二方面及其各种实施方式中的电力发送装置,电力接收装置和电力发送装置用于传输射频能量的工作频段包括6.78MHz和/或13.56MHz。采用本实施方式,电力传输装置能够在工作频段为6.78MHz和/或13.56MHz时保证传输状态的效率最优。
第四方面,本申请还示出一种电力传输方法,应用于电力接收装置,方法包括:获取电池阻抗;根据预设的直流阻抗转换器的输入阻抗的最优值以及电池阻抗向直流阻抗转换器发送驱动信号,以调节直流阻抗转换器中驱动信号的占空比,使直流阻抗转换器输出目标电压,其中,占空比为驱动信号在一个周期内高电平持续的时间占一个周期的比值;当直流阻抗转换器输出目标电压时,输入阻抗处于输入阻抗的最优值。采用本实施方式,电力接收装置能够通过直流阻抗转换器将电力接收装置的负载阻抗实时控制在最优值,以使电力传输装置在整个传输状态中效率最优。
在一些实施例中,方法还包括:接收直流阻抗转换器输出的目标电压,如果目标电压大于电池的额定电压,导通至少一个保护电路,至少一个保护电路包括至少一个瞬变电压二级管。采用本实施方式,电力接收装置可以在目标电压大于电池的额定电压时,通过保护电路保护电池,避免电池过充损坏。
在一些实施例中,方法还包括:检测电力接收装置的充电状态;以判断电力接收装置是否完成充电;如果电力接收装置未完成充电;每隔延时阈值对电力接收装置进行一次电压检测,以得到检测后的电池电压;如果电力接收装置完成充电,停止接收直流阻抗转换器输出的目标电压。采用本实施方式,电力接收装置可以实时检测电力接收装置的充电状态以判断是否完成充电。
在一些实施例中,方法还包括:判断检测后的电池电压是否等于电池的最大电压;如果检测后的电池电压等于电池的最大电压,根据检测后的电池电压确定检测后的电池阻抗;并进行下一次检测电力接收装置是否完成充电;以及,将检测后电池电压以及检测后的电池阻抗发送至电力发送装置。采用本实施方式,电力接收装置可以实时向电力发送装置发送检测后的电池电压以及检测后的电池阻抗,以使电力发送装置根据发送的数值调节电力发送装置输出的目标功率。
在一些实施例中,方法还包括:如果检测后的电池电压小于电池的最大电压,判断检测后的电池电压是否在接收阈值范围内;接收阈值用于表征目标电压的偏移程度;如果检测后的电池电压在接收阈值范围内,进行下一次检测电力接收装置的充电状态,以判断电力接收装置是否完成充电;如果检测后的电池电压不在接收阈值范围内,根据检测后的电池电压确定检测后的电池阻抗,并进行下一次检测电力接收装置的充电状态。采用本实施方式,电力接收装置可以通过判断检测后的电池电压是否在接收阈值内,以判断电池电压是否在合理的偏差范围内。
第五方面,本申请还示出一种电力传输方法,应用于电力发送装置,方法包括:接收电力接收装置发送的电池电压以及电池阻抗;通过电池电压以及电池阻抗发送控制信号,以通过控制信号控制电力发送装置输出目标功率,目标功率用于使电力接收装置中直流阻抗转换器的输入阻抗处于输入阻抗的最优值。采用本实施方式,电力发送装置能够根据接收到的电池电压以及电池阻抗发送控制信号,以调节电力发送装置输出的目标功率,进而保证电力接收装置的负载阻抗实时控制在最优值。
附图说明
图1是本申请实施例提供的一种电力传输装置简化结构示意图;
图2是本申请实施例提供的一种无线电力传输过程示意图;
图3是本申请实施例提供的一种接收端阻抗转换模块的改进结构示意图;
图4是本申请实施例提供的电力传输装置100结构示意图;
图5是本申请实施例提供的一种单端初级电感式转换器电路示意图;
图6是本申请实施例提供的一种直流降压升压变换器电路示意图;
图7是本申请实施例提供的一种直流升压降压变换器电路示意图;
图8是本申请实施例提供的电力传输装置100的局部简化电路示意图;
图9是本申请实施例提供的电力传输方法流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例的技术方案进行清楚地描述。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个是指一个或多个,“多个是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
无线电力传输(Wireless power transfer,WPT)是指利用磁感应、磁共振以及电容耦合等机理实现电源到负载的近场电力传输技术,可以实现电源与负载之间的无线电力传输,进而为电子设备进行无线充电。
其中,电子设备的类型包括但不限于手机、平板电脑、笔记本电脑、大屏设备(例如:智能电视、智慧屏)、个人计算机(persona1computer,PC)、手持计算机、上网本、个人数字助理(personal digital assistant,PDA)、可穿戴电子设备、车载设备、虚拟现实设备等电子设备。电子设备还可以是无线充电电动汽车、无线充电家用电器、无人机等电子产品。
图1为一种电力传输装置简化结构示意图。如图1所示,电力传输装置100包括电力发送装置(PTU)101以及电力接收装置(PRU)102,其中,电力发送装置101接收输入电力103,以通过输入电力103产生用于提供能量传递的辐射场104。电力接收装置102耦合到辐射场104以产生输出电力105使电力接收装置102存储或消耗。
进一步如图1所示,电力发送装置101可以包括电源模块1011、发射端微控制模块(Microcontroller Unit,MCU)1012、功率放大模块1013、发射端天线1014。
其中,电源模块1011可以用于接收输入电力103,并将输入电力103输入至功率放大模块1013。
功率放大模块1013可以用于将输入电力103的直流能量转化为射频能量。
在此过程中,发射端微控制模块1012可以用于调整功率放大模块1013所转化的射频能量的工作频率,以使功率放大模块1013产生所需频段的工作频率。功率放大模块1013还可以用于将直流能量转化为射频能量后,将射频能量发送至发射端天线1014。
发射端天线1014可以用于向电力接收装置102发射射频能量。
相应的,电力接收装置102包括接收端天线1021、接收端整流模块1022、接收端阻抗转换模块1023、接收端微控制模块1024、以及电池模块1025。
当发射端天线1014向电力接收装置102发送射频能量时,发射端天线1014近场中的大部分能量能够耦合到接收端天线1021中,以使发射端天线1015与接收端天线1021形成近场耦合模式。
接收端天线1021可以用于接收到射频能量后,将接收到的射频能量发送至接收端整流模块1022。
接收端整流模块1022可以用于将射频能量转化为直流能量,并将直流能量发送至接收端阻抗转换模块1023。
接收端阻抗转换模块1023可以用于接收接收端微控制模块1024发送的控制信号,根据控制信号调节直流能量对应的阻抗,产生输出电力105,以供电池模块1025存储或消耗。
这里需要说明的是,如图1所示的电力传输装置100的结构仅用于进行示例性说明,在实际应用中,电力传输装置100可以在此基础上增加或减少模块以实现所需功能。
为了保证电力发送装置101与电力接收装置102之间发射的射频能量的损耗最小,通常需要调节电力发送装置101的源阻抗和/或调节电力接收装置102的负载阻抗,以将源阻抗和负载阻抗均匹配至最优阻抗,使电力传输装置100在整个传输状态中的传输效率最大化。
在电力发送装置101与电力接收装置102进行无线电力传输的过程中,电力传输装置100的总效率可以定义为电力发送装置101以及电力接收装置102中每个模块的效率的乘积,具体可以为以下公式(1):
η电力传输总效率=η1013×η1014×η1021×η1022×η1023×η1025;    (1)
其中,η1013为功率放大模块1013的效率;η1014为发射端天线1014的效率;η1021为接收端天线1021的效率;η1022为接收端整流模块1022的效率;η1023为接收端阻抗转换模块1023的效率;η1025为电池模块1025的效率。
为了提高电力传输装置100在整个传输状态中的总效率,通常单独设计电力传输装置100中的每个电路,然后将其组合在一起,每个电路均被设计为在最高效率下进行工作。但是不可避免的,电路中非理想电容器以及非理想电感器的存在,电力发送装置101以及电力接收装置102均可能引入额外的功率损耗。
图2为一种无线电力传输过程示意图。如图2所示,传统无线电力传输过程中,分为预充时段、恒流时段、以及恒压时段;预充时段中,电流强度保持在C/10;此时电池模块1025中的电压逐渐升高至2.5V;恒流时段中,电流强度保持在1C,此时电池模块1025中的电压从2.5V逐渐升高至4.2V;恒压时段中,电压强度保持在4.2V,此时电流强度由1C逐渐降至C/10后保持平稳。也就是说,由于电池模块1025中的电池特性,电池模块1025在接收到的输出电压为恒压时,不能维持在恒定的电流强度,电池阻抗会随充电状态的变化而变化,导致电力接收装置102的负载阻抗发生变化。
这里需要说明的是,以电池模块1025为锂电池为例,锂电池的固有电阻由电极材料、电解质、隔膜的电阻以及材料部分的其他内阻组成。锂电池长期充放电的过程中,其内部电解质的损耗以及各种化学物质活性的降低,会使电池阻抗逐渐新增。锂电池单次充放电过程中,其电池阻抗与温度的变化以及极化内阻的变化有关,本申请中所述的电池特性是指单次充放电过程中,电池阻抗随充电状态的变化而变化的特性。
不仅电力发送装置101以及电力接收装置102可能引入额外的功率损耗,由于电池模块1025在接收输出电力105时,电池阻抗随着充电状态的变化而变化的特性也会引起整体效率的改变,电力发送装置101以及电力接收装置102在实际工作中可能并不以设计的性能工作。那么在进行电路设计时,需要考虑不同使用场景下,将电力传输装置100的传输效率最大化的设计方式。
在确定了某一场景下电路的设计方式后,电力传输装置100的部分模块的保持固有效率。在上述公式(1)中,接收端整流模块1022的效率η1022、接收端阻抗转换模块1023的效率η1023均为固有效率,不会随着电力接收装置102的负载阻抗的变化而变化,仅有功率放大模块1013的效率η1013、发射端天线1014的效率η1014、接收端天线1021的效率η1021会随着负载阻抗的变化而变化。因此,在传统方案的改进方案中,通常对可改变效率的模块进行改进。
为了使电力传输装置100以最大功率传输,电力传输装置100可以基于电力发送装置的输出功率效率最优的原则对整个装置中的电路进行设置。将电力发送装置101一端的源阻抗保持在固定值,通过功率放大模块1013进行调频,以使电力接收装置102的负载阻抗匹配至最优阻抗。
这里需要说明的是,根据《无线充电(电力传输)设备无线电管理暂行规定》,目前无线充电的工作频段仅可以在100-148.5KHz、6765-6795KHz、13553-13567KHz三个频段使用。由于频段限制,部分频段中不能实现通过调频将电力接收装置102的负载阻抗匹配至最优阻抗。以6.78MHz以及13.56MHz的工作频段为例,这些频段带宽较窄,在电力接收装置102的负载阻抗变化范围较大时,即使调节至该频段的最大带宽,也无法通过调频在这些频段将电力接收装置102的负载阻抗匹配至最优阻抗,进而无法实现整个电力传输装置100中的传输效率最大化。
图3为一种接收端阻抗转换模块的改进结构示意图。如图3所示,接收端阻抗转换模块1023包括射频-直流转换器以及直流-直流转换器,其中,射频-直流转换器采用可切换固定电容器、可切换固定电感器、电压可变电容器的至少一种,以用于调节器件容差带来的阻抗变换;直流-直流转换器采用降压式转换器或者升压式转换器的至少一种,以用于调节直流阻抗。在如图3所示的接收端阻抗转换模块1023中,当射频-直流转换器采用可切换固定电容器或者可切换固定电感器时,可能具有过多的欧姆损耗,因此实用性较差。而电压可变电容器目前多采用铁电装置、微机电系统和变容二极管,因此可推广性较差,这种基于调节器件容差传输的射频能量不能达到预期的传输效率。当直流-直流转换器采用降压式转换器或者升压式转换器时,阻抗变换范围有限,无法使电力接收装置102中的负载阻抗实时匹配至最优阻抗,进而无法实现整个电力传输装置100中的传输效率最大化。
因此,传统方案中,部分频段中电力传输装置100存在无法实时将电力接收装置102的负载阻抗控制在最优值的问题,进而无法实现电力传输装置100在整个传输状态中效率最优。
为了解决上述技术问题,本申请实施例提供了一种电力传输装置100。
下面对本申请实施例提供的电力传输装置100的各结构进行具体说明。
图4提供了本申请实施例示出的电力传输装置100结构示意图。
如图4所示,本申请中的电力传输装置100包括:电力发送装置101以及电力接收装置102。
需要说明的是,如图4所示的结构示意图仅用于示例性说明,实际使用过程中还可以对图示结构的各个部分进行替换或增减,以实现具体功能。
其中,电力接收装置102包括:接收天线11、第一匹配滤波模块12、整流模块13、阻抗转换模块14、第一微控制模块15、电池及保护电路模块16以及第一通信模块17。
电力发送装置101包括:电源管理模块21、功放模块22、第二匹配滤波模块23、发射天线24、第二微控制模块25以及第二通信模块26。
这里需要说明的是,本申请实施例中示出的第一微控制模块15、第二微控制模块25的控制逻辑均是基于接收天线11以及发射天线24传输效率最优的原则进行设置的,阻抗转换模块14是基于接收天线11以及发射天线24传输效率最优的原则行使其功能的。
本申请实施例中,电力传输装置100的总效率为电力发送装置101以及电力接收装置102中每个模块的效率的乘积,具体可以为以下公式(2):
η电力传输总效率=η11×η12×η13×η14×η15×η16×η17×η21×η22×η23×η24×η25×η26;    (2)
其中,η11为接收天线11的效率;η12为第一匹配滤波模块12的效率;η13为整流模块13的效率;η14为阻抗转换模块14效率;η15为第一微控制模块15的效率;η16为电池及保护电路模块16的效率;η17为第一通信模块17的效率;η21为电源管理模块21的效率;η22为功放模块22的效率;η23为第二匹配滤波模块23的效率;η24为发射天线24的效率;η25为第二微控制模块25的效率;η26为第二通信模块26的效率。
由于本申请实施例中第一匹配滤波模块12的效率、整流模块13的效率、阻抗转换模块14效率、第一微控制模块15的效率、电池及保护电路模块16的效率、第一通信模块17的效率、电源管理模块21的效率、第二匹配滤波模块23的效率、第二微控制模块25的效率、第二通信模块26的效率在电力传输装置100实际工作过程中是固定的,因此,仅功放模块22的效率、发射天线24的效率以及接收天线11的效率在电力传输装置100实际工作中会随着负载阻抗的变化而变化。
这里需要说明的是,总天线效率(即发射天线24的效率和接收天线11的效率的乘积)在确定了电路的设计方式后就不会发生更改,但是负载阻抗发生变化会导致总天线效率发生变化,因此,总天线效率达到最优值时且负载阻抗达到最优值时,将功放模块22通过设计以匹配负载阻抗,可以使功放模块22调节输出的目标功率,以达到源阻抗处于最优值,进而使电力传输装置100在整个传输状态中效率最优。
本申请实施例中,电源管理模块21可以用于接收输入电力103并将输入电力103进行调制,以将调制后的输入电力103发送至功放模块22中。其中,输入电力103可以为交流市电也可以为直流电,当输入电力103为交流市电时,电源管理模块21 可以用于通过全桥整流电路调制输入电力103为直流能量,以将调制后的直流能量输入至功放模块22中。
本申请实施例中,功放模块22可以用于接收到电源管理模块21发送的直流能量后,将直流能量转化为射频能量。其中,功放模块22包括但不限于为E类放大器、D类放大器、差分E类放大器以及差分D类放大器。功放模块22还可以用于将射频能量发送至第二匹配滤波模块23。
本申请实施例中,第二匹配滤波模块23包括电磁兼容性滤波器(EMC Filter)以及阻抗匹配网络。其中,电磁兼容性滤波器能够滤除开关电源产生的噪声和高频谐波。第二匹配滤波模块23可以用于接收到功放模块22发送的射频能量后,通过电磁兼容性滤波器将射频能量中的非必要工作频率滤除,并通过阻抗匹配网使射频能量与发射天线24匹配。
本申请实施例中,发射天线24接收到经阻抗匹配网络匹配后的射频能量后,可以用于将射频能量向接收天线11发送。其中,发射天线24包括但不限于为柔性印刷电路板(Flexible Printed Circuit,FPC)天线、绕制线圈的至少一种。
这里需要说明的是,当发射天线24为绕制线圈时,发射天线24可以包括至少一个绕制线圈,本申请实施例不限制绕制线圈的具体数量,例如发射天线24可以包括三个绕制线圈、四个绕制线圈或者更多数量的绕制线圈,在发射天线24实际工作过程中,可以选择多个绕制线圈中其中一个效率最高的绕制线圈发送射频能量,其他绕制线圈不工作。由于多个绕制线圈可以屏蔽电力发送装置101中的干扰信号,那么用于发送射频能量的绕制线圈能够提高抗干扰性,以所需工作频率发送射频能量。
本申请实施例中,第二微控制模块25可以对电力发送装置101的传输过程进行控制。第二微控制模块25可以用于控制电源管理模块21,以使电源管理模块21调制输入电力103为直流能量,还可以用控制功放模块22转化的射频能量的工作频率,以使功放模块22产生所需频段的工作频率。
本申请实施例中,第二通信模块26可以用于接收第一通信模块17发送的信息,以实现电力发送装置101以及电力接收装置102之间的通信。其中,第二通信模块26可以通过蓝牙(Bluetooth)、无线宽带(Wireless-Fidelity,WiFi)、紫蜂协议(Zigbee)、射频识别技术(Radio Frequency Identification,RFID)、远程(Long range,Lora)无线技术或近距离无线通信技术(Near Field Communication,NFC)等带外通讯方式实现与第一通信模块17的无线连接。
本申请实施例中,接收天线11接收到发射天线24发送射频能量时,可以用于将接收到的射频能量发送至第一匹配滤波模块12中。其中,接收天线11包括但不限于为柔性印刷电路板天线、绕制线圈的至少一种。
本申请实施例中,第一匹配滤波模块12包括电磁兼容性滤波器以及阻抗匹配网络,第一匹配滤波模块12可以用于接收到射频能量后,通过电磁兼容性滤波器将射频能量中的非必要工作频率滤除,并通过阻抗匹配网络调节射频能量的工作频率并将射频能量发送至整流模块13中。
本申请实施例中,整流模块13包括但不限于为二极管整流桥或者金属-氧化物-半导体场效应晶体管(Metal-Oxide-Semiconductor,MOS)整流桥的至少一种。整流模块13可以用于将射频能量转化为直流能量,并将直流能量发送至阻抗转换模块14。
本申请实施例中,阻抗转换模块14可以用于接收第一微控制模块15发送的驱动信号,以调节阻抗转换模块14的驱动信号的占空比,输出目标电压,以供电池及保护电路模块16存储或消耗。其中,阻抗转换模块14可以为直流阻抗转换器,直流阻抗转换器包括单端初级电感式转换器(Single Ended Primary Inductor Converter,SEPIC)、直流降压升压(Care Unite Skin,CUK)变换器、直流升压降压(Boost-Buck)变换器的至少一种。
图5是本申请实施例提供的一种单端初级电感式转换器电路示意图。如图5所示,单端初级电感式转换器采用两个电感代替变压器,因此,其所在的电路中可以使用磁性元件,节省了使用专用变压器的成本。
图6是本申请实施例提供的一种直流降压升压变换器电路示意图。如图6所示,直流降压升压变换器中,仅有一个开关,控制简单,占空比可以大于0.5,在输入和输出之间由一个电容传输能量,有利于减小体积,提高功率密度,且其输入端以及输出端均有电感,有效的减少了输入端和输出端电流的脉冲,使输入输出电流均连续,开关电流被限制在变换器内部,产生的输出纹波和电磁干扰都比较小。
图7是本申请实施例提供的一种直流升压降压变换器示意图。如图7所示,直流升压降压变换器中,输入输出电流连续,输出电压可调范围大,输出电压可以大于或者小于输出电压,具有较好的实用性。
因此,针对不同场景,电力接收装置102可以设置不同种类的直流阻抗转换器来调节目标电压。
本申请实施例中,第一微控制模块15可以用于调节阻抗转换模块14的驱动信号的占空比;以及检测电池及保护电路模块16的电池电压以及电池阻抗的变化。
本申请实施例中,电池及保护电路模块16可以用于接收阻抗转换模块14输出的目标电压,以将目标电压对应的直流能量进行存储或消耗。
本申请实施例中,第一通信模块17可以用于接收第一微控制模块15检测到的电池电压以及电池阻抗,并将电池电压以及电池阻抗传输到第二通信模块26,以使电力接收装置102根据接收到的电池电压以及电池阻抗输出目标功率。其中,第一通信模块17可以通过蓝牙(Bluetooth)、无线宽带(Wireless-Fidelity,WiFi)、紫蜂协议(Zigbee)、射频识别技术(Radio Frequency Identification,RFID)、远程(Long range,Lora)无线技术或近距离无线通信技术(Near Field Communication,NFC)等带外通讯方式实现与第二通信模块26的无线连接。
基于上述电力传输装置的设置方式,第一微控制模块15用于调节阻抗转换模块14的驱动信号的占空比的具体方式如下:
本申请实施例中,第一微控制模块15预设有阻抗转换模块的输入阻抗的最优值。输入阻抗的最优值可以根据如下方式获取:
首先,根据接收天线11的效率以及发射天线24的效率的乘积获取总天线效率。其中,天线效率是指天线辐射出去的功率和输入到天线的有功功率之比。
图8提供了本申请实施例示出的电力传输装置100的局部简化电路示意图。
如图8所示的电路中,接收天线11的效率为:
其中,η11为接收天线11的效率;Rr为接收天线11的内阻,RL为电力接收装置中的等效负载阻抗。
这里需要说明的是,等效阻抗是传输线理论中的概念,在设计电力传输装置的过程中,需要具体了解传输线上指定位置的阻抗,即该位置处电压和电流的比值。等效阻抗是指入射波和反射波叠加后的比值,以位置函数的形式存在,等效阻抗随位置的变化而变化。等效阻抗涉及到看过去的方向的问题,例如向负载看去的阻抗,即为等效负载阻抗,向源看去的阻抗,即为等效源阻抗。本申请实施例中,RL为看过去的负载阻抗。
发射天线24的效率为:
其中,η24为发射天线24的效率;Req为电力接收装置在电力发送装置中的等效负载阻抗,Rt为发射天线24的内阻。
则总天线效率η为:
以及
其中,Qt为发射天线24的品质因子;Qr为接收天线11的品质因子;ω为角频率,Lt为发射天线24的电感;Lr为接收天线11的电感;
则:
其中,k为线圈之间的耦合系数;
对公式(8)求导,可得极值。
令η’=0;可以得出总天线效率的极大值为:
此时,应使:
其次,以整流模块13为二极管整流桥为例,其对应的阻抗变换规则为:
其中,ZL为从整流模块看过去的负载阻抗,同时等于阻抗转换模块14的输入阻抗。
为了保证阻抗转换模块14的输入阻抗ZL固定在最优值,即:
其中,R为电池阻抗,D为阻抗转换模块14中驱动信号的占空比。
根据公式(12)的计算方法可以得到阻抗转换模块14的输入阻抗的最优值。
第一微控制模块15将阻抗转换模块14的输入阻抗的最优值进行预设。
第一微控制模块15还可以用于根据预设的输入阻抗的最优值以及电池阻抗向阻抗转换模块14发送驱动信号,以调节阻抗转换模块14中驱动信号的占空比,占空比的值根据下述公式(13)计算。
这里需要说明的是,占空比为驱动信号在一个周期内高电平持续的时间占一个周期的比值。示例的,驱动信号的一个驱动周期为2微秒,其中高电平持续时间为1微秒,则占空比为50%。
具体实现中,第一微控制模块15通过调节阻抗转换模块14中驱动信号的占空比,实现对电压信号的电压平均值的控制,以使阻抗转换模块14输出目标电压。当阻抗转换模块14输出目标电压时,阻抗转换模块14的输入阻抗处于输入阻抗的最优值。这里需要说明的是,占空比是根据输入阻抗的最优值以及电池阻抗确定的,由于输入阻抗的最优值为预设值,电池阻抗为实时获取的变量,因此占空比随电池阻抗的变化而变化,阻抗转换模块14输出的目标电压随占空比的变化而变化。此时,从整流模块13看过去的负载阻抗固定在最优值,阻抗转换模块14将输入阻抗固定在最优值,以使电力接收装置102的负载阻抗固定在最优值。
为了保证电力接收装置的负载阻抗处于最优值,电力接收装置102接收到的射频能量应该为固定值,根据能量守恒定律,电池与保护电路模块16的工作功率保持不变,即:
其中,P为电池及保护电路模块16的工作功率,Vout为电池电压;R为电池阻抗。
P为固定值,电池阻抗增加时,电池电压增加;电池阻抗减小时,电池电压减小。由于电池的工作电压范围有限,当电池电压增加时,电池电压可能存在超过最大电压的情况。同时,电力发送装置101需要根据电池电压以及电池阻抗实时调整发射天线24输出的目标功率,以使从整流模块13看过去的负载阻抗处于最优值。
基于此,第一微控制模块15还用于检测电池及保护电路模块16,以避免电池及保护电路模块16过充,并将电池阻抗以及电池电压实时传输给电力发送装置101,具体方式如下:
第一微控制模块15还用于检测电池及保护电路模块16的充电状态,以判断电池及保护电路模块16是否完成充电。
具体实现中,电压以恒定电压进行充电且电流以涓流形式进行充电,直至电流小于某个设定值时即认为电池及保护电路模块16完成充电。
本申请实施例中,第一微控制模块15还可以用于如果电池及保护电路模块16未完成充电,每隔延时阈值对电池及保护电路进行一次电压检测,以得到检测后的电池电压。示例的,延时阈值可以设置为3微秒,本申请实施例中的延时阈值仅用于示例性说明,具体可以根据实际情况进行设置。延时阈值实际为第一通信模块17以及第二通信模块26之间的通信时长,延时阈值的设置可以保证第一通信模块17以及第二通信模块26的通信频率,以使发射天线24实时调整输出的目标功率。
本申请实施例中,电池及保护电路模块16还可以用于如果电池及保护电路模块16完成充电,停止接收阻抗转换模块14输出的目标电压。示例的,电池及保护电路模块16的电池的最大电压为5V,当电池及保护电路模块16接收到的目标电压为5V时,且电流小于C/10时,停止接收阻抗转换模块14输出的目标电压。
本申请实施例中,电池及保护电路模块16还可以用于接收阻抗转换模块14输出的目标电压,如果目标电压大于电池的最大电压,导通至少一个保护电路,至少一个保护电路包括至少一个瞬变电压二级管(Transient Voltage Suppressor,TVS)。这样,当电池阻抗增加时,电力接收装置的等效负载阻抗增加,阻抗转换模块14输出的目标电压增加,以最大电压为5V为例,当目标电压为5.5V,大于5V时,立即导通至少一个保护电路,以避免电池过充损坏。
本申请实施例中,第一微控制模块15还可以用于判断检测后的电池电压是否等于电池的最大电压;如果检测后的电池电压等于电池的最大电压,根据检测后的电池电压确定检测后的电池阻抗;并进行下一次检测电池及保护电路模块是否完成充电。
示例的,电池及保护电路模块16的最大电压设置为5V,延时阈值设置为3微秒,第一微控制模块15可以在检测到电池的电压值为4.8V时,3微秒后再次检测电池电压,得到检测后的电压值为5V,因此,检测后的电池电压等于电池的最大电压后,还需要检测电池及保护电路模块16的充电状态以判断是否完成充电,避免过充。
本申请实施例中,第一微控制模块15还可以用于如果检测后的电池电压小于电池的最大电压,判断检测后的电池电压是否在接收阈值范围内;接收阈值用于表征目标电压的偏移程度;如果检测后的电池电压在接收阈值范围内,进行下一次检测电池及保护电路模块的充电状态,以判断电池及保护电路模块是否完成充电;如果检测后的电池电压不在接收阈值范围内,根据检测后的电池电压确定检测后的电池阻抗,并进行下一次检测电池及保护电路模块的充电状态。
这里需要说明的是,目标电压在实际输出过程中是有波动的,因此会导致电池电压接收到目标电压时出现电压偏移,基于此,第一微控制模块15设置了接收阈值,以判断电池电压是否在合理的偏移程度内。
示例的,接收阈值可以设置为[0.95×Vnominal,1.05×Vnominal],其中,Vnominal为目标电压。示例的,目标电压为4.2V,电池电压为4.1V,接收阈值为[0.95×4.2V,1.05×4.2V],此时电池电压在接收阈值范围内,表明电池电压在合理的偏差范围内。
如果电池电压不在接收阈值内,则需要根据当前电池电压重新计算当前电池电压对应的电池阻抗,以使电力发送装置101根据当前电池电压以及当前电池电压对应的电池阻抗输出目标功率。
本申请实施例中,第一通信模块17还可以用于将检测后电池电压以及检测后的电池阻抗发送至电力发送装置101,以使电力发送装置101调节输出的目标功率。
由于第一通信模块17实时向第二通信模块26发送检测后的电池电压以及检测后的电池阻抗,当阻抗转换模块14输出的目标电压数值过高时,电力发送装置101根据接收到的电池电压以及电池阻抗调节输出的目标功率,以降低目标电压,这里需要注意的是,电力发送装置101可能无法仅根据一次发送的电池电压以及电池阻抗立即将目标电压降到期望范围,而是需要根据多次发送的电池电压以及电池阻抗进行多次调整,以使目标电压降至期望范围。
为了使电力接收装置102在传输状态中效率最优,在负载阻抗为最优值时需要保证源阻抗也处于最优值,第一通信模块17可以用于向第二通信模块26发送电池电压以及电池阻抗,以使功放模块22根据电池电压以及电池阻抗输出目标功率。
本申请实施例中,第二通信模块26用于接收第一通信模块17发送的电池电压以及电池阻抗。
第二微控制模块25可以用于在第二通信模块26接收到电池电压以及电池阻抗后,根据电池电压以及电池阻抗向功放模块22发送控制信号,以调节功放模块22的工作频率,使功放模块22在源阻抗处于最优值下发射目标功率。
目标功率可以根据下述方式得到:
其中,P为目标功率,Vnominal为目标电压,R为电池阻抗,η为总天线效率。
这里需要说明的是,由于第一通信模块17以及第二通信模块26之间存在通信时长的延迟,目标功率通常根据期望电压而不能根据目标电压进行调节。
本申请实施例中,电力传输装置的工作频段包括6.78MHz和/或13.56MHz。本申请实施例也可以应用于其他工作频段,本申请实施例示出的技术方案能够覆盖更多的频段以实现电力传输装置100在整个传输状态中效率最优。
由以上技术方案可知,本申请实施例示出的一种电力传输装置,能够解决部分频段工作带宽较窄时,由于电力接收装置的负载阻抗变化范围较大,无法通过调频达到负载阻抗的最优值,导致电力传输装置在整个传输状态中无法达到效率最优的问题,能够将电力接收装置的负载阻抗实时控制在最优值,以使电力传输装置在整个传输状态中效率最优。
本申请实施例还提供一种电力传输方法。
图9是本申请实施例提供的电力传输方法流程示意图。如图9所示,本申请实施例提供的电力传输方法,应用于电力接收装置,方法包括:
S1:获取电池阻抗。
S2:根据预设的直流阻抗转换器的输入阻抗的最优值以及电池阻抗向直流阻抗转换器发送驱动信号,以调节直流阻抗转换器中驱动信号的占空比,使直流阻抗转换器输出目标电压,其中,占空比为驱动信号在一个周期内高电平持续的时间占一个周期的比值,当直流阻抗转换器输出目标电压时,输入阻抗处于输入阻抗的最优值。
S3:向电力发送装置发送电池电压以及电池阻抗。
在一些实施例中,方法还包括:接收直流阻抗转换器输出的目标电压,如果目标电压大于电池的额定电压,导通至少一个保护电路,至少一个保护电路包括至少一个瞬变电压二级管。
在一些实施例中,方法还包括:检测电力接收装置的充电状态;以判断电力接收装置是否完成充电;如果电力接收装置未完成充电;每隔延时阈值对电力接收装置进行一次电压检测,以得到检测后的电池电压;如果电力接收装置完成充电,停止接收直流阻抗转换器输出的目标电压。
在一些实施例中,方法还包括:判断检测后的电池电压是否等于电池的最大电压;如果检测后的电池电压等于电池的最大电压,根据检测后的电池电压确定检测后的电池阻抗;并进行下一次检测电池及保护电路模块是否完成充电;以及,将检测后电池电压以及检测后的电池阻抗发送至电力发送装置。
在一些实施例中,方法还包括:如果检测后的电池电压小于电池的最大电压,判断检测后的电池电压是否在接收阈值范围内;接收阈值用于表征目标电压的偏移程度;如果检测后的电池电压在接收阈值范围内,进行下一次检测电力接收装置的充电状态,以判断电力接收装置是否完成充电;如果检测后的电池电压不在接收阈值范围内,根据检测后的电池电压确定检测后的电池阻抗,并进行下一次检测电力接收装置的充电状态。
本申请实施例提供的电力传输方法,还应用于电力发送装置,方法包括:
S4:接收电力接收装置发送的电池电压以及电池阻抗。
S5:通过电池电压以及电池阻抗发送控制信号,以通过控制信号控制电力发送装置输出目标功率,目标功率用于使电力接收装置中直流阻抗转换器的输入阻抗处于输入阻抗的最优值。
本申请实施例提供的电力传输方法,用于传输射频能量的工作频段包括6.78MHz和/或13.56MHz。
由以上技术方案可知,本申请实施例示出的一种电力传输方法,能够解决部分频段工作带宽较窄时,由于电力接收装置的负载阻抗变化范围较大,无法通过调频达到负载阻抗的最优值,导致电力传输装置在整个传输状态中无法达到效率最优的问题,能够将电力接收装置的负载阻抗实时控制在最优值,以使电力传输装置在整个传输状态中效率最优。
本申请实施例还提供一种无线充电器,包括本申请实施例及其任意实现方式提供的电力发送装置。
本申请实施例还提供一种电子设备,包括本申请实施例及其任意实现方式提供的电力接收装置,和/或,本申请实施例及其任意实现方式提供的电力发送装置(用于实现无线反充功能)。其中,电子设备的类型包括但不限于手机、平板电脑、笔记本电脑、大屏设备(例如:智能电视、智慧屏)、个人计算机(persona1computer,PC)、手持计算机、上网本、个人数字助理(personal digital assistant,PDA)、可穿戴电子设备、车载设备、虚拟现实设备等电子设备。电子设备还可以是无线充电电动汽车、 无线充电家用电器、无线充电耳机、无人机等电子产品。
应理解,在本申请实施例的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对实施例的实施过程构成任何限定。
本说明书的各个部分均采用递进的方式进行描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点介绍的都是与其他实施例不同之处。尤其,对于装置和系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (35)

  1. 一种电力接收装置,其特征在于,包括:电池及保护电路模块、第一微控制模块、阻抗转换模块;
    所述电池及保护电路模块,用于获取电池阻抗;
    所述第一微控制模块,用于根据预设的所述阻抗转换模块的输入阻抗的最优值以及所述电池阻抗向所述阻抗转换模块发送驱动信号,以调节所述阻抗转换模块中所述驱动信号的占空比,使所述阻抗转换模块输出目标电压,其中,所述占空比为所述驱动信号在一个周期内高电平持续的时间占一个周期的比值,当所述阻抗转换模块输出目标电压时,所述输入阻抗处于所述输入阻抗的最优值。
  2. 根据权利要求1所述的电力接收装置,其特征在于,所述阻抗转换模块为直流阻抗转换器,所述直流阻抗转换器包括单端初级电感式转换器、直流降压升压变换器、直流升压降压变换器的至少一种。
  3. 根据权利要求1所述的电力接收装置,其特征在于,
    所述电池及保护电路模块,还用于接收所述阻抗转换模块输出的所述目标电压,如果所述目标电压大于电池的最大电压,导通至少一个保护电路,所述至少一个保护电路包括至少一个瞬变电压二级管。
  4. 根据权利要求1所述的电力接收装置,其特征在于,
    所述第一微控制模块,还用于检测所述电池及保护电路模块的充电状态;以判断所述电池及保护电路模块是否完成充电;
    所述第一微控制模块,还用于如果所述电池及保护电路模块未完成充电,每隔延时阈值对所述电池及保护电路模块进行一次电压检测,以得到检测后的电池电压;
    所述电池及保护电路模块,还用于如果所述电池及保护电路模块完成充电,停止接收所述阻抗转换模块输出的所述目标电压。
  5. 根据权利要求4所述的电力接收装置,其特征在于,还包括:第一通信模块;
    所述第一微控制模块,还用于判断所述检测后的电池电压是否等于电池的最大电压;
    所述第一微控制模块,还用于如果所述检测后的电池电压等于所述电池的最大电压,根据所述检测后的电池电压确定检测后的电池阻抗;并进行下一次检测所述电池及保护电路模块是否完成充电;
    所述第一通信模块,用于将所述检测后电池电压以及所述检测后的电池阻抗发送至电力发送装置。
  6. 根据权利要求5所述的电力接收装置,其特征在于,
    所述第一微控制模块,还用于如果所述检测后的电池电压小于所述电池的最大电压,判断所述检测后的电池电压是否在接收阈值范围内;所述接收阈值用于表征所述目标电压的偏移程度;
    所述第一微控制模块,还用于如果检测后的电池电压在接收阈值范围内,进行下一次检测所述电池及保护电路模块的充电状态,以判断所述电池及保护电路模块是否完成充电;
    所述第一微控制模块,还用于如果所述检测后的电池电压不在所述接收阈值范围内,根据检测后的电池电压确定检测后的电池阻抗,并进行下一次检测所述电池及保护电路模块的充电状态。
  7. 一种电力发送装置,其特征在于,包括:第二通信模块、第二微控制模块、功放模块;
    所述第二通信模块,用于接收电力接收装置发送的电池电压以及电池阻抗;
    所述第二微控制模块,用于通过所述电池电压以及所述电池阻抗向所述功放模块发送控制信号,以通过所述控制信号控制所述功放模块输出目标功率,所述目标功率用于使所述电力接收装置中阻抗转换模块的输入阻抗处于所述输入阻抗的最优值。
  8. 一种电力传输装置,其特征在于,所述电力传输装置包括如权利要求1~6任一项所述的电力接收装置,以及,如权利要求7所述的电力发送装置,所述电力接收装置和所述电力发送装置用于传输射频能量的工作频段包括6.78MHz和/或13.56MHz。
  9. 一种电力传输方法,应用于电力接收装置,其特征在于,所述方法包括:
    获取电池阻抗;
    根据预设的直流阻抗转换器的输入阻抗的最优值以及所述电池阻抗向所述直流阻抗转换器发送驱动信号,以调节所述直流阻抗转换器中所述驱动信号的占空比,使所述直流阻抗转换器输出目标电压,其中,所述占空比为所述驱动信号在一个周期内高电平持续的时间占一个周期的比值;当所述直流阻抗转换器输出所述目标电压时,所述输入阻抗处于所述输入阻抗的最优值。
  10. 根据权利要求9所述的电力传输方法,其特征在于,所述方法还包括:
    接收所述直流阻抗转换器输出的所述目标电压,如果所述目标电压大于电池的额定电压,导通至少一个保护电路,所述至少一个保护电路包括至少一个瞬变电压二级管。
  11. 根据权利要求9所述的电力传输方法,其特征在于,所述方法还包括:
    检测所述电力接收装置的充电状态;以判断所述电力接收装置是否完成充电;
    如果所述电力接收装置未完成充电;每隔延时阈值对所述电力接收装置进行一次电压检测,以得到检测后的电池电压;
    如果所述电力接收装置完成充电,停止接收所述直流阻抗转换器输出的目标电压。
  12. 根据权利要求11所述的电力传输方法,其特征在于,所述方法还包括:
    判断所述检测后的电池电压是否等于电池的最大电压;
    如果所述检测后的电池电压等于所述电池的最大电压,根据所述检测后的电池电压确定检测后的电池阻抗;并进行下一次检测所述电力接收装置是否完成充电;以及,将所述检测后电池电压以及所述检测后的电池阻抗发送至电力发送装置。
  13. 根据权利要求11所述的电力传输方法,其特征在于,所述方法还包括:
    如果所述检测后的电池电压小于所述电池的最大电压,判断所述检测后的电池电压是否在接收阈值范围内;所述接收阈值用于表征所述目标电压的偏移程度;
    如果检测后的电池电压在接收阈值范围内,进行下一次检测所述电力接收装置的充电状态,以判断所述电力接收装置是否完成充电;
    如果所述检测后的电池电压不在所述接收阈值范围内,根据检测后的电池电压确定检测后的电池阻抗,并进行下一次检测所述电力接收装置的充电状态。
  14. 一种电力传输方法,应用于电力发送装置,其特征在于,所述方法包括:
    接收电力接收装置发送的电池电压以及电池阻抗;
    通过所述电池电压以及所述电池阻抗发送控制信号,以通过所述控制信号控制所述电力发送装置输出目标功率,所述目标功率用于使所述电力接收装置中直流阻抗转换器的输入阻抗处于所述输入阻抗的最优值。
  15. 一种电力接收装置,其特征在于,包括:电池及保护电路模块、第一微控制模块、阻抗转换模块、第一通信模块;
    所述第一微控制模块,用于对所述电池及保护电路模块进行电压检测,以得到检测后的电池电压,根据所述检测后的电池电压确定检测后的电池阻抗,以及,根据预设的固定值和所述检测后的电池阻抗向所述阻抗转换模块发送驱动信号;其中,所述固定值用于表征所述阻抗转换模块的输入阻抗的值;
    所述阻抗转换模块,用于根据所述驱动信号向所述电池及保护电路模块输出目标电压;所述目标电压是所述阻抗转换模块的输入电压根据所述驱动信号的调节得到的所述阻抗转换模块的输出电压;
    所述电池及保护电路模块,还用于接收所述阻抗转换模块输出的所述目标电压;
    所述第一通信模块,用于将所述目标电压以及所述检测后的电池阻抗发送至电力发送装置,以使所述电力发送装置根据所述目标电压和所述检测后的电池阻抗计算目标功率,并通过所述目标功率调节所述目标电压。
  16. 根据权利要求15所述的电力接收装置,其特征在于,
    所述阻抗转换模块,具体用于根据所述驱动信号调节所述阻抗转换模块的占空比,以根据所述占空比向所述电池及保护电路模块输出所述目标电压;所述占空比为所述驱动信号在一个周期内高电平持续的时间占一个周期的比值,当所述阻抗转换模块输出所述目标电压时,所述输入阻抗处于所述输入阻抗的固定值。
  17. 根据权利要求15所述的电力接收装置,其特征在于,所述目标功率为所述目标电压的平方与所述检测后的电池阻抗和总天线效率的乘积的比值。
  18. 根据权利要求17所述的电力接收装置,其特征在于,
    所述第一通信模块,具体用于将所述目标电压以及所述检测后的电池阻抗发送至电力发送装置,以使所述电力发送装置根据所述目标电压、所述检测后的电池阻抗以及所述总天线效率计算目标功率,并通过所述目标功率调节所述目标电压。
  19. 根据权利要求15所述的电力接收装置,其特征在于,所述阻抗转换模块为直流阻抗转换器,所述直流阻抗转换器包括单端初级电感式转换器、直流降压升压变换器、直流升压降压变换器的至少一种。
  20. 根据权利要求15所述的电力接收装置,其特征在于,
    所述电池及保护电路模块,还用于接收所述阻抗转换模块输出的所述目标电压,如果所述目标电压大于电池的最大电压,导通至少一个保护电路,所述至少一个保护电路包括至少一个瞬变电压二级管。
  21. 根据权利要求15所述的电力接收装置,其特征在于,
    所述第一微控制模块,具体用于检测所述电池及保护电路模块的充电状态,以判断所述电池及保护电路模块是否完成充电,如果所述电池及保护电路模块未完成充电,每隔延时阈值对所述电池及保护电路模块进行一次电压检测,以得到所述检测后的电池电压;
    所述电池及保护电路模块,还用于如果所述电池及保护电路模块完成充电,停止接收所述阻抗转换模块输出的所述目标电压。
  22. 根据权利要求21所述的电力接收装置,其特征在于,
    所述第一微控制模块,还用于判断所述检测后的电池电压是否等于电池的最大电压;
    所述第一微控制模块,还用于如果所述检测后的电池电压等于所述电池的最大电压,根据所述检测后的电池电压确定所述检测后的电池阻抗,并再次检测所述电池及保护电路模块的充电状态。
  23. 根据权利要求22所述的电力接收装置,其特征在于,
    所述第一微控制模块,还用于如果所述检测后的电池电压小于所述电池的最大电压,判断所述检测后的电池电压是否在接收阈值范围内;所述接收阈值用于表征所述目标电压的偏移程度;
    所述第一微控制模块,还用于如果检测后的电池电压在接收阈值范围内,再次检测所述电池及保护电路模块的充电状态,以判断所述电池及保护电路模块是否完成充电;
    所述第一微控制模块,还用于如果所述检测后的电池电压不在所述接收阈值范围内,根据检测后的电池电压确定所述检测后的电池阻抗,并再次检测所述电池及保护电路模块的充电状态。
  24. 一种电力发送装置,其特征在于,包括:第二通信模块、第二微控制模块、功放模块;
    所述第二通信模块,用于接收如权利要求15~23任一项所述的电力接收装置发送的目标电压以及检测后的电池阻抗;
    所述第二微控制模块,用于通过所述目标电压以及所述检测后的电池阻抗向所述功放模块发送控制信号,以通过所述控制信号控制所述功放模块输出目标功率,所述目标功率用于调节所述目标电压,所述目标电压为所述电力接收装置中直流阻抗转换器的输出电压;其中,所述直流阻抗转换器的输入阻抗为预设的固定值。
  25. 根据权利要求24所述的电力发送装置,其特征在于,所述目标功率为所述目标电压的平方与所述检测后的电池阻抗和总天线效率的乘积的比值。
  26. 一种电力传输装置,其特征在于,所述电力传输装置包括如权利要求15~23任一项所述的电力接收装置,以及,如权利要求24~25任一项所述的电力发送装置,所述电力接收装置和所述电力发送装置用于传输射频能量的工作频段包括6.78MHz和/或13.56MHz。
  27. 一种电力传输方法,应用于电力接收装置,其特征在于,所述方法包括:
    对电池及保护电路模块进行电压检测,以得到检测后的电池电压,以及,根据所述检测后的电池电压确定检测后的电池阻抗,根据预设的固定值和所述检测后的电池阻抗向直流阻抗转换器发送驱动信号;其中,所述固定值用于表征所述直流阻抗转换器的输入阻抗的值;
    根据所述驱动信号向所述电池及保护电路模块输出目标电压,所述目标电压是所述直流阻抗转换器的输入电压根据所述驱动信号的调节得到的所述直流阻抗转换器的输出电压;
    接收所述直流阻抗转换器输出的所述目标电压;
    将所述目标电压以及所述检测后的电池阻抗发送至电力发送装置,以使所述电力发送装置根据所述目标电压和所述检测后的电池阻抗计算目标功率,并通过所述目标功率调节所述目标电压。
  28. 根据权利要求27所述的电力传输方法,其特征在于,根据所述驱动信号向所述电池及保护电路模块输出目标电压,包括:
    根据所述驱动信号调节所述直流阻抗转换器的占空比,以根据所述占空比向所述电池及保护电路模块输出所述目标电压;所述占空比为所述驱动信号在一个周期内高电平持续的时间占一个周期的比值,当所述直流阻抗转换器输出所述目标电压时,所述输入阻抗处于所述输入阻抗的固定值。
  29. 根据权利要求27所述的电力传输方法,其特征在于,所述目标功率为所述目标电压的平方与所述检测后的电池阻抗和总天线效率的乘积的比值。
  30. 根据权利要求29所述的电力传输方法,其特征在于,所述将所述目标电压以及所述检测后的电池阻抗发送至电力发送装置,以使所述电力发送装置根据所述目标电压和所述检测后的电池阻抗计算所述目标功率,并通过所述目标功率调节所述目标电压,包括:
    将所述目标电压以及所述检测后的电池阻抗发送至电力发送装置,以使所述电力发送装置根据所述目标电压、所述检测后的电池阻抗以及所述总天线效率计算目标功率,并通过所述目标功率调节所述目标电压。
  31. 根据权利要求27所述的电力传输方法,其特征在于,所述方法还包括:
    接收所述直流阻抗转换器输出的所述目标电压,如果所述目标电压大于电池的额定电压,导通至少一个保护电路,所述至少一个保护电路包括至少一个瞬变电压二级管。
  32. 根据权利要求31所述的电力传输方法,其特征在于,所述对电池及保护电路模块进行电压检测,以得到检测后的电池电压,包括:
    检测所述电力接收装置的充电状态,以判断所述电力接收装置是否完成充电;
    如果所述电力接收装置未完成充电;每隔延时阈值对所述电力接收装置进行一次电压检测,以得到所述检测后的电池电压;
    如果所述电力接收装置完成充电,停止接收所述直流阻抗转换器输出的目标电压。
  33. 根据权利要求32所述的电力传输方法,其特征在于,所述方法还包括:
    判断所述检测后的电池电压是否等于电池的最大电压;
    如果所述检测后的电池电压等于所述电池的最大电压,根据所述检测后的电池电压确定所述检测后的电池阻抗,并再次检测所述电力接收装置是否完成充电。
  34. 根据权利要求32所述的电力传输方法,其特征在于,所述方法还包括:
    如果所述检测后的电池电压小于所述电池的最大电压,判断所述检测后的电池电压是否在接收阈值范围内;所述接收阈值用于表征所述目标电压的偏移程度;
    如果检测后的电池电压在接收阈值范围内,再次检测所述电力接收装置的充电状态,以判断所述电力接收装置是否完成充电;
    如果所述检测后的电池电压不在所述接收阈值范围内,根据检测后的电池电压确定检测后的电池阻抗,并再次检测所述电力接收装置的充电状态。
  35. 一种电力传输方法,应用于电力发送装置,其特征在于,所述方法包括:
    接收如权利要求15~23任一项所述的电力接收装置发送的目标电压以及检测后的电池阻抗;
    通过所述目标电压以及所述电池阻抗发送控制信号,以通过所述控制信号控制所述电力发送装置输出目标功率,所述目标功率用于调节所述目标电压,所述目标电压为所述电力接收装置中直流阻抗转换器输出的电压;其中,所述直流阻抗转换器的输入阻抗为预设的固定值。
PCT/CN2023/075940 2022-09-06 2023-02-14 一种电力接收装置、电力发送装置及电力传输方法 WO2024051086A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP23833561.6A EP4358363A1 (en) 2022-09-06 2023-02-14 Electric power receiving device, electric power sending device, and electric power transmission method
CN202311781906.7A CN117977834A (zh) 2022-09-06 2023-02-14 一种电力接收装置、电力发送装置及电力传输方法
CN202380008230.XA CN116391310B (zh) 2022-09-06 2023-02-14 一种电力接收装置、电力发送装置及电力传输方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211081847.8 2022-09-06
CN202211081847.8A CN115173584B (zh) 2022-09-06 2022-09-06 一种电力接收装置、电力发送装置及电力传输方法

Publications (2)

Publication Number Publication Date
WO2024051086A1 WO2024051086A1 (zh) 2024-03-14
WO2024051086A9 true WO2024051086A9 (zh) 2024-05-16

Family

ID=83481338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075940 WO2024051086A1 (zh) 2022-09-06 2023-02-14 一种电力接收装置、电力发送装置及电力传输方法

Country Status (3)

Country Link
EP (1) EP4358363A1 (zh)
CN (4) CN116231884B (zh)
WO (1) WO2024051086A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116231884B (zh) * 2022-09-06 2023-10-20 荣耀终端有限公司 一种电力接收装置、电力发送装置及电力传输方法
CN116961005B (zh) * 2023-07-27 2024-04-30 中国铁塔股份有限公司 一种基站引电端调压方法、装置及设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455174B2 (ja) * 2007-08-02 2014-03-26 鹿島建設株式会社 無線電力受電アダプタ
US8338991B2 (en) * 2009-03-20 2012-12-25 Qualcomm Incorporated Adaptive impedance tuning in wireless power transmission
KR101184503B1 (ko) * 2010-08-13 2012-09-20 삼성전기주식회사 무선 전력 전송 장치 및 그 전송 방법
US9166562B2 (en) * 2013-02-25 2015-10-20 Qualcomm Incorporated Impedance transformation network for improved driver circuit performance
US11621583B2 (en) * 2012-05-21 2023-04-04 University Of Washington Distributed control adaptive wireless power transfer system
US8827889B2 (en) * 2012-05-21 2014-09-09 University Of Washington Through Its Center For Commercialization Method and system for powering implantable devices
KR102122514B1 (ko) * 2013-07-22 2020-06-12 삼성전자주식회사 무선 전력 전송 시스템에서 전력 전송 유닛 및 전력 수신 유닛과 그 통신 방법
CN104682576B (zh) * 2015-03-01 2017-08-29 华南理工大学 添加自适应双端阻抗变换网络的谐振式无线电能传输系统
US20180219418A1 (en) * 2017-02-02 2018-08-02 Qualcomm Incorporated Methods and apparatus for efficient wireless power transfer
CN109462339A (zh) * 2018-10-16 2019-03-12 台州宏远电力设计院有限公司 基于电路占空比的阻抗匹配方法
CN109995150A (zh) * 2019-03-19 2019-07-09 华中科技大学 一种中距离无线输电系统及其高频电源
KR102659090B1 (ko) * 2019-03-29 2024-04-23 삼성전자주식회사 적응형 임피던스 매칭을 수행하기 위한 방법, 전자 장치 및 저장 매체
CN110350674B (zh) * 2019-08-01 2020-10-02 无锡职业技术学院 基于动态耦合系数识别的wpt系统的最大效率跟踪方法
KR20210099488A (ko) * 2020-02-04 2021-08-12 삼성전자주식회사 무선 전력 수신 장치 및 무선 전력 수신 방법
CN112886816A (zh) * 2021-01-11 2021-06-01 西交利物浦大学 用于无线电能传输系统阻抗匹配的降压转换器及其控制方法
CN114069884A (zh) * 2021-10-12 2022-02-18 荣耀终端有限公司 阻抗检测装置及其控制方法、无线充电装置及电子设备
CN113824193B (zh) * 2021-10-27 2023-05-23 四川大学 阻抗匹配方法、装置、强化学习控制器和计算机可读存储介质
CN116231884B (zh) * 2022-09-06 2023-10-20 荣耀终端有限公司 一种电力接收装置、电力发送装置及电力传输方法

Also Published As

Publication number Publication date
CN115173584A (zh) 2022-10-11
CN116231884B (zh) 2023-10-20
CN116231884A (zh) 2023-06-06
CN116391310B (zh) 2023-10-27
WO2024051086A1 (zh) 2024-03-14
EP4358363A1 (en) 2024-04-24
CN117977834A (zh) 2024-05-03
CN115173584B (zh) 2023-03-10
CN116391310A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
US9954581B2 (en) Apparatuses and related methods for communication with a wireless power receiver
TWI657644B (zh) 待充電裝置和充電方法
WO2024051086A9 (zh) 一种电力接收装置、电力发送装置及电力传输方法
US9825485B2 (en) Wireless power transmitter and wireless power receiver
US9461481B2 (en) Systems and methods for controlling output power of a wireless power transmitter
WO2018152786A1 (zh) 均衡电路、待充电设备和充电控制方法
US10141769B2 (en) Wireless power transfer system
WO2017133379A1 (zh) 适配器和充电控制方法
US9401622B2 (en) Systems and methods for extending the power capability of a wireless charger
JP2016537951A (ja) 無線電力送受信方法及び装置
WO2021093704A1 (zh) 待充电设备、系统以及无线充电方法、存储介质
JP2015012761A (ja) 受電装置及び非接触給電システム
US11469618B2 (en) Multilevel switched-capacitor AC-DC rectifier for wireless charging with power regulation
WO2018068460A1 (zh) 待充电设备和充电方法
WO2014100192A2 (en) Gate drive circuit for synchronous rectification
WO2021227652A1 (zh) 无线充电设备和待充电设备
CN113054854A (zh) 一种电源转换电路和适配器
WO2022166420A1 (zh) 一种充电控制方法、电子设备、无线充电系统
WO2022099080A1 (en) Free-boost class-e amplifier
US20170244254A1 (en) Devices, systems, and methods for adjusting output power using synchronous rectifier control
KR102079152B1 (ko) 스위치를 이용하여 무선 전력을 조정하는 무선 전력 수신기
KR102084427B1 (ko) 스위치를 이용하여 무선 전력을 조정하는 무선 전력 수신기
Mao Design and Analysis of Near-field Wireless Power Transfer Circuits and Systems
Huang et al. Analysis and implementation of wireless power transfer system with phase and supply modulation control
CN112655132A (zh) 一种充电电路及无线充电控制方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023833561

Country of ref document: EP

Effective date: 20240111

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23833561

Country of ref document: EP

Kind code of ref document: A1