WO2024051076A1 - 陶瓷连接装置 - Google Patents

陶瓷连接装置 Download PDF

Info

Publication number
WO2024051076A1
WO2024051076A1 PCT/CN2023/074131 CN2023074131W WO2024051076A1 WO 2024051076 A1 WO2024051076 A1 WO 2024051076A1 CN 2023074131 W CN2023074131 W CN 2023074131W WO 2024051076 A1 WO2024051076 A1 WO 2024051076A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
clamping part
sample
furnace cavity
ceramic
Prior art date
Application number
PCT/CN2023/074131
Other languages
English (en)
French (fr)
Inventor
吴利翔
刘洋
薛佳祥
翟剑晗
廖业宏
任啟森
张显生
Original Assignee
岭东核电有限公司
中广核研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岭东核电有限公司, 中广核研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 岭东核电有限公司
Publication of WO2024051076A1 publication Critical patent/WO2024051076A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work

Definitions

  • the present application relates to the technical field of ceramic welding, and in particular to a ceramic connecting device.
  • Silicon carbide (SiC) ceramic has a high melting point, excellent mechanical, thermal and corrosion resistance properties, making it widely used in vehicles, marine engineering, nuclear energy, aerospace and other fields, especially in nuclear cladding. Advantage.
  • a ceramic connection device is provided.
  • this application provides a ceramic connection device, which includes a working furnace, a clamping mechanism, a vacuum interface and a heater; a furnace cavity is constructed inside the working furnace, and the furnace cavity is used to accommodate target materials; the clamping mechanism is located at The furnace cavity is used to fix the sample to be connected; the vacuum interface is connected to the furnace cavity and is used to connect a vacuum generator; the heater is connected to the working furnace and is used to heat the target material in the furnace cavity to the preset temperature; wherein, when the vacuum degree in the furnace cavity is lower than the saturated vapor pressure of the target material, the target material at the preset temperature converges toward the sample to be connected in the form of vapor, so as to A gaseous permeation reaction occurs in the gap between the samples to be connected and a connecting layer is formed.
  • the clamping mechanism is used to fix the sample to be connected.
  • the vacuum interface is used to connect to the vacuum generator so that the furnace cavity is in a vacuum environment.
  • the heater is used to heat the target material in the furnace cavity.
  • the target material at the preset temperature can converge to the sample to be connected in the form of vapor, so that a gaseous penetration reaction occurs in the gap between the ceramics to form a connecting layer.
  • the connection between two samples to be connected is realized without filling the connection position with connecting material in advance, thus simplifying the processing steps of welding the samples to be connected, such as silicon carbide ceramics, and reducing the difficulty of processing.
  • the formed connection layer can facilitate the connection between the core silicon carbide cladding and the end plug, eliminating the need for precision machining of the cladding and end plug, thereby improving assembly efficiency.
  • the clamping mechanism includes a fixed clamping portion and a movable clamping portion spaced apart along the first direction, and the movable clamping portion is configured to operably move relative to the fixed clamping portion. Move linearly so that the fixed clamping part and the movable clamping part respectively resist the opposite ends of the sample to be connected.
  • the size of the clamping space formed between the two is changed to adapt to samples to be connected of different sizes.
  • the movable clamping part and the fixed clamping part cooperate with each other to resist and fix the opposite ends of the sample to be connected, reducing the possibility of the sample to be connected shaking or moving during the reaction, thereby ensuring that the target material can accurately gather in the form of vapor.
  • a gaseous permeation reaction occurs at the gap to form a connecting layer, thereby realizing the connection between the samples to be connected.
  • the ceramic connection device further includes an operating part and an elastic member, the elastic member is connected between the operating part and the movable clamping part; at least part of the operating part is located on the Outside the furnace cavity; by pressing the operating part, the movable clamping part is driven close to the sample to be connected, and the movable clamping part is elastically abutted against the sample to be connected.
  • the movable clamping part By pressing the operating part, the movable clamping part is driven close to the sample to be connected, thereby adjusting the gap between the movable clamping part and the sample to be connected, thereby adjusting the pressing force of the movable clamping part on the sample to be connected.
  • both the fixed clamping part and the movable clamping part include a push rod and an abutment block, the push rod extends along the first direction, and the abutment block extends along a direction relative to the push rod. Extend in the second direction; the push rod is used to support the sample to be connected, and the abutting block is used to abut the sample to be connected.
  • the push rod is set to support the sample to be connected.
  • the sample to be connected on the push rod is abutted and limited to ensure the fixing effect of the movable clamping part and the fixed clamping part on the sample to be connected.
  • the abutment block is configured with a limited groove toward one end of the sample to be connected, and the The connection sample can abut against the groove wall of the limiting groove.
  • the sample located on the push rod is further contacted and limited to ensure its fixation effect and reduce the position deviation of the sample to be connected during the reaction process, thereby allowing the target material to better penetrate into the sample to be connected. within the gap between connecting samples.
  • a support body is provided in the furnace cavity, and the support body is used to install target materials; the clamping mechanism is connected to the support body.
  • the target material is fixed by providing a support body so that the target material can be aligned with the gap of the sample to be connected, thereby facilitating the target material to better converge at the gap of the sample to be connected.
  • the working furnace includes a furnace body and a furnace cover detachably connected to the furnace body, which cooperate to form the furnace cavity; the support body is detachably connected to the furnace body.
  • the furnace cover can be easily opened using a detachable connection method. When components inside the furnace cavity fail, the internal components can be easily taken out by opening the furnace cover for subsequent disassembly, maintenance and replacement.
  • a sealing member is connected between the furnace body and the furnace cover.
  • the heater includes a heating coil, and the heating coil is arranged around the target material.
  • the heating effect of the target material is relatively uniform, which facilitates uniform heating and rapid temperature rise of the target material.
  • a temperature detector is also provided in the furnace cavity; and/or a vacuum gauge is also provided in the furnace cavity.
  • the temperature and vacuum degree in the furnace cavity can be easily monitored.
  • Figure 1 is a schematic structural diagram of a ceramic connecting device provided by an embodiment of the present application.
  • FIG. 2 is a partial enlarged view of position A in the ceramic connecting device shown in FIG. 1 .
  • 10-ceramic connecting device 100-working furnace; 110-furnace body; 111-furnace cavity; 120-furnace cover; 130-clamping mechanism; 131-fixed clamping part; 132-movable clamping part; 1321-push rod ; 1322-contact block; 140-vacuum interface; 150-heater; 151-heating coil; 160-elastic member; 170-operating part; 180-support body; 181-base; 182-connection seat; 190-temperature detection Instrument; 210-vacuum gauge; 220-fasteners; 300-target material; 400-sample to be connected; 410-gap; 500-connection layer.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • FIG. 1 is a schematic structural diagram of a ceramic connecting device 10 provided by an embodiment of the present application
  • FIG. 2 is a partial enlarged view of position A in the ceramic connecting device 10 shown in FIG. 1
  • a ceramic connection device 10 provided by an embodiment of the present application includes a working furnace 100 , a clamping mechanism 130 , a vacuum interface 140 and a heater 150 .
  • the working furnace 100 has a furnace cavity 111 inside, which is used to accommodate the target 300; a clamping mechanism 130 is located in the furnace cavity 111, and the clamping mechanism 130 is used to fix the sample 400 to be connected.
  • the vacuum interface 140 is connected to the furnace cavity 111 and is used to connect a vacuum generator so that the furnace cavity 111 is in a vacuum environment.
  • the heater 150 is connected to the working furnace 100, and the heater 150 is used to heat the target 300 in the furnace cavity 111 to a preset temperature.
  • connection layer 500 is reacted and formed, thereby realizing connection between the samples 400 to be connected.
  • the connection layer 500 formed at the gap 410 can realize the connection between the silicon carbide cladding for the core and the end plug, which eliminates the need for precision machining of the cladding and the end plug, thereby improving assembly efficiency.
  • the sample to be connected fixed by the clamping mechanism is two samples that need to be connected together, which can be a connection between dissimilar materials or a connection between same materials.
  • the sample 400 to be connected may specifically be at least one of silicon carbide ceramics, zirconium carbide ceramics, silicon nitride ceramics, alumina ceramics and zirconium oxide ceramics.
  • the shape of the sample to be connected can be plate, cylindrical or hollow structure.
  • the target 300 may be at least one material selected from iron, cobalt, nickel, chromium, manganese, tungsten, titanium, zirconium, hafnium, vanadium, tantalum, molybdenum, niobium and yttrium.
  • the shape of the target 300 may be circular, square, hexagonal, etc.
  • the vacuum generator can be a vacuum pump.
  • the vacuum interface 140 and the vacuum pump are connected through a connecting pipe such as a bellows.
  • the furnace cavity 111 is evacuated or filled with nitrogen, so that the furnace cavity 111 is in a vacuum state.
  • the vacuum degree of 111 is 10 -1 Pa-10 -6 Pa.
  • the vacuum interface 140 is equipped with an angle valve, and when closing the angle valve in a vacuum state, a certain degree of vacuum can also be maintained.
  • the arrangement orientation of the ceramic connecting device 10 is as shown in FIG. 1 , where the first direction is the X direction in the illustration, and the second direction is the Y direction in the illustration.
  • the first direction is the horizontal direction parallel to the horizontal plane
  • the second direction is the gravity direction perpendicular to the horizontal plane.
  • the arrangement orientations of the first direction and the second direction may be interchanged, that is, the first direction is the direction of gravity perpendicular to the horizontal plane, and the second direction is the horizontal direction parallel to the horizontal plane.
  • the X direction refers to the first direction
  • the Y direction refers to the second direction.
  • the clamping mechanism 130 includes a fixed clamping part 131 and a movable clamping part 132 spaced apart along the X direction, and the movable clamping part 132 is configured to be operable. Make a linear movement relative to the fixed clamping part 131, so that the fixed clamping part 131 and the movable clamping part 132 respectively resist the opposite ends of the sample 400 to be connected.
  • the movable clamping part 132 acts on the movable clamping part 132, causing the movable clamping part 132 to move relative to the fixed clamping part 131, thereby changing the size of the clamping space formed between the two to adapt to different sizes of samples 400 to be connected.
  • the movable clamping part 132 and the fixed clamping part 131 cooperate with each other to resist and fix the opposite ends of the sample 400 to be connected, thereby reducing the possibility of the sample 400 to be connected shaking or moving during the reaction, thereby ensuring that the target 300 can react with steam.
  • the shapes accurately converge to the gap 410 of the samples 400 to be connected, and a gaseous permeation reaction occurs at the gap 410 to form the connecting layer 500, thereby realizing the connection between the samples 400 to be connected.
  • the ceramic connection device 10 further includes an operating part 170 and an elastic member 160.
  • the elastic member 160 is connected between the operating part 170 and the movable clamping part 132; the operating part 170 At least part of is located outside the furnace cavity 111.
  • the movable clamping part 132 is driven close to the sample 400 to be connected, and the movable clamping part 132 is elastically contacted with the sample 400 to be connected.
  • the operating part 170 is specifically a pressure regulator.
  • the pressure regulator is equipped with a digital display screen. By pressing the pressure regulator, the applied pressure can be displayed in real time, making the force application operation more convenient.
  • one end of the movable clamping part 132 and the operating part 170 facing the elastic member 160 is provided with a slot for the elastic member 160 to extend into, thereby improving the connection effect between the elastic member 160 and the movable clamping part 132 or the operating part 170 .
  • the fixed clamping part 131 and the movable clamping part 132 each include a push rod 1321 and an abutment block 1322.
  • the push rod 1321 extends along the X direction, and the abutment block 1322
  • the relative push rod 1321 extends in the Y direction.
  • the push rod 1321 is used to support the sample 400 to be connected, and the abutting block 1322 is used to abut the sample 400 to be connected.
  • the push rod 1321 is provided to support the sample 400 to be connected.
  • the sample 400 to be connected on the push rod 1321 is abutted and limited to ensure the fixing effect of the movable clamping part 132 and the fixed clamping part 131 on the sample 400 to be connected.
  • the contact block 1322 is provided with a limiting groove toward one end of the sample 400 to be connected, and the sample 400 to be connected can abut against the wall of the limiting groove.
  • the limit groove By setting the limit groove, the sample located on the push rod 1321 is further contacted and limited to ensure its fixation effect and reduce the position deviation of the sample 400 to be connected during the reaction process, thereby allowing the target 300 to better Penetrate into the gap 410 of the sample 400 to be connected.
  • a support body 180 is provided in the furnace cavity 111 , and the support body 180 is used to install the target 300 ; the clamping mechanism 130 is connected to the support body 180 .
  • the target 300 is fixed by providing the support body 180 so that the target 300 can be aligned with the gap 410 of the sample 400 to be connected, thereby facilitating the target 300 to better converge at the gap 410 of the sample 400 to be connected.
  • the fixed clamping part 131 includes a base 181 and a connecting base 182.
  • the base 181 is connected to the inner wall of the furnace body 110.
  • the connecting base 182 extends along the X direction relative to the base 181.
  • the target 300 is disposed on the outer wall of the supporting body 180, such as a target
  • the material 300 is cylindrical and has a hollow interior, so that it can be sleeved on the connecting seat 182 , and the fixed clamping part 131 is connected to the support body 180 .
  • the connecting seat 182 is provided with a slot for the push rod 1321 of the fixed clamping part 131 to extend.
  • the working furnace 100 includes a furnace body 110 and a furnace cover 120 that is detachably connected to the furnace body 110 . The two cooperate to form a furnace cavity 111 .
  • the furnace cover 120 can be opened conveniently by adopting a detachable connection method. When components inside the furnace cavity 111 fail, the internal components can be easily taken out by opening the furnace cover 120 to facilitate subsequent disassembly, maintenance and replacement. More specifically, the furnace body 110 and the furnace cover 120 are fastened and sealed by fasteners 220 such as bolts. The furnace body 110 and the furnace cover 120 can be made of stainless steel and have good high temperature resistance. Further, the support body 180 and the furnace body 110 are detachably connected, for example, the two are connected by bolts or buckles.
  • a sealing member is connected between the furnace body 110 and the furnace cover 120 .
  • the seal may specifically be a copper gasket.
  • the furnace body 110 is provided with a furnace door.
  • the sample 400 to be connected can be placed on the clamping mechanism 130 inside the furnace cavity 111 by opening the furnace door. After putting it in, just close the oven door.
  • a sealing member is provided between the furnace door and the cavity wall of the furnace cavity 111 to ensure the sealing effect in the furnace cavity 111 .
  • the furnace door (not shown in the figure) can be designed on the top, bottom or side of the furnace body 110 .
  • the target 300 has a hollow structure, so that the sample 400 to be connected can be placed into the cavity inside the target 300, which facilitates better diffusion of the target 300 to the sample 400 to be connected.
  • the formation effect of the connection layer 500 is improved.
  • the heater 150 includes a heating coil 151 , and the heating coil 151 is arranged around the target 300 .
  • the heating coil 151 is placed inside the furnace cavity 111. Since the heating coil 151 exchanges heat with the target 300, the heating effect of the target 300 is relatively uniform, which facilitates uniform heating and rapid temperature rise of the target 300.
  • the heating coil 151 is specifically an induction heating coil 151 .
  • the heating temperature of the heating coil 151 is 1000°C-2000°C.
  • the ceramic connecting device 10 also includes an external power supply, and the heater 150 is powered by the power supply to heat the target 300 in the furnace cavity 111 .
  • a temperature detector 190 is also provided in the furnace cavity 111 .
  • the temperature detector 190 is specifically a thermometer, and more specifically, the thermometer is an infrared thermometer.
  • a vacuum gauge 210 is also provided in the furnace cavity 111 .
  • the vacuum gauge 210 can be a resistance silicon tube vacuum gauge 210 or an ionization silicon tube vacuum gauge 210. Both the resistance silicon tube vacuum gauge 210 and the ionization silicon tube vacuum gauge 210 are electronic vacuum composite gauges, equipped with a digital display screen and capable of real-time display. The vacuum measurement results in the furnace cavity 111 make the monitoring operation more convenient.
  • the ceramic connecting device 10 further includes a cooling system connected to the working furnace 100.
  • the cooling system can cool the outer wall of the working furnace 100 to prevent damage to the wires outside the working furnace 100 when the temperature of the working furnace 100 is too high. If the cable is damaged or a worker is accidentally scalded, the service life of the cable can be extended and the safety factor of the worker can be improved.
  • the cooling system is a plurality of cooling flow channels, and the plurality of cooling flow channels are arranged at intervals on the outer wall of the working furnace 100.
  • the cooling channel is used to allow lower-temperature refrigerant to pass through, thereby cooling the outer wall of the working furnace 100 .
  • the plurality of cooling channels are in a serpentine shape as a whole.
  • the target material is a mixture of iron, cobalt and nickel.
  • the ceramic connecting device 10 Before using the ceramic connecting device 10, first put the silicon carbide ceramics through the furnace door between the fixed clamping part 131 and the movable clamping part 132 inside the work furnace 100, and adjust the position of the movable clamping part 132 so that it is fixed. The clamping part 131 and the movable clamping part 132 elastically contact the opposite ends of the silicon carbide ceramic to fix the silicon carbide ceramic.
  • the silicon carbide ceramic is loaded through a pressure regulator to control the pressure of the movable clamping part 132 acting on the silicon carbide ceramic.
  • the heater 150 When the power is turned on, the heater 150 is started to heat the target 300 to 1500°C, and the temperature of the target 300 is monitored through a thermometer.
  • the target 300 When the temperature of the target 300 rises to 1500°C and the vacuum inside the furnace cavity 111 is lower than the saturated vapor pressure of the target 300, the target 300 converges in the form of vapor to the gap 410 of the silicon carbide ceramic, so that at the gap 410 An intermediate connection layer 500 is formed to realize the connection of silicon carbide ceramics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Products (AREA)
  • Furnace Details (AREA)

Abstract

一种陶瓷连接装置,包括工作炉(100)、夹持机构(130)、真空接口(140)和加热器(150)。工作炉(100)的内部构造有炉腔(111),用于容置靶材(300);夹持机构(130)位于炉腔(111)内,用于固定待连接样品(400)。真空接口(140)与炉腔(111)连通,用于连接真空发生器,使得炉腔(111)处于真空环境。加热器(150)连接于工作炉(100),用于将炉腔(111)内的靶材(300)加热至预设温度。当炉腔内的真空度低于靶材的饱和蒸气压时,使得处于预设温度的靶材能够以蒸汽形态向待连接样品汇聚,从而在陶瓷的间隙发生气态渗透反应,以形成连接层,实现两个待连接样品之间的连接,无需预先在连接位置处填充连接材料,因此简化了待连接样品焊接的加工步骤,降低了加工难度。

Description

陶瓷连接装置
交叉引用
本申请引用于2022年9月8日递交的名称为“陶瓷连接装置”的第2022110993848号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及陶瓷焊接技术领域,特别是涉及一种陶瓷连接装置。
背景技术
碳化硅(SiC)陶瓷具有高熔点、优异的力学、热学和抗腐蚀性能,使其在车辆、海洋工程、核能、航空航天等领域具有非常广泛的应用,尤其在核用包壳具有非常独特的优势。
然而,因为碳化硅的高熔点以及低扩散系数等性能,金属的熔焊技术无法直接应用于碳化硅的焊接,对于碳化硅焊接,通常需要在碳化硅之间引入中间连接材料。由于碳化硅的高硬和易脆特性,连接材料填充工艺给碳化硅焊接带来了极大困难,从而存在加工不便的问题。
发明内容
根据本申请的各种实施例,提供一种陶瓷连接装置。
第一方面,本申请提供一种陶瓷连接装置,包括工作炉、夹持机构、真空接口和加热器;工作炉内部构造有炉腔,所述炉腔用于容置靶材;夹持机构位于所述炉腔内,用于固定待连接样品;真空接口与所述炉腔连通,用于连接真空发生器;加热器连接于所述工作炉,用于将所述炉腔内的靶材加热至预设温度;其中,所述炉腔内的真空度低于所述靶材的饱和蒸气压时,处于所述预设温度的所述靶材以蒸汽形态向所述待连接样品汇聚,以在所述待连接样品的间隙发生气态渗透反应并形成连接层。
本申请实施例的技术方案中,夹持机构用于固定待连接样品。真空接口用于与真空发生器连接,使得炉腔内处于真空环境。加热器用于对炉腔内的靶材加热。当炉腔内的真空度低于靶材的饱和蒸气压时,使得处于预设温度的靶材能够以蒸汽形态向待连接样品汇聚,从而在陶瓷的间隙发生气态渗透反应,以形成连接层,从而实现两个待连接样品之间的连接,无需预先在连接位置处填充连接材料,因此简化了待连接样品例如碳化硅陶瓷焊接的加工步骤,降低了加工难度。形成的连接层能够便于核用碳化硅包壳和端塞的连接,也就无需对包壳和端塞进行精密加工,从而提高了装配效率。
在其中一个实施例中,所述夹持机构包括沿第一方向间隔设置的固定夹持部和活动夹持部,所述活动夹持部被配置为可操作地相对所述固定夹持部做直线运动,以使所述固定夹持部和所述活动夹持部分别抵持于所述待连接样品的相对的两端。
通过活动夹持部相对固定夹持部移动,从而改变二者之间形成的夹持空间的大小,适应不同尺寸的待连接样品。使得活动夹持部和固定夹持部配合对待连接样品的相对两端进行抵持固定,降低待连接样品在反应过程中产生晃动或移动的可能,进而保证靶材能够以蒸汽形态准确的汇聚至待连接样品的间隙处,并在间隙处发生气态渗透反应以形成连接层,从而实现待连接样品之间的连接。
在其中一个实施例中,所述陶瓷连接装置还包括操作部以及弹性件,所述弹性件连接于所述操作部和所述活动夹持部之间;所述操作部的至少部分位于所述炉腔外;通过按压所述操作部,带动所述活动夹持部相对所述待连接样品靠近,并使所述活动夹持部弹性抵接于所述待连接样品。
通过按压操作部,带动活动夹持部相对待连接样品靠近,从而调节活动夹持部和待连接样品之间的间隙,进而调节活动夹持部作用于待连接样品的压紧力。
在其中一个实施例中,所述固定夹持部和所述活动夹持部均包括推杆和抵接块,所述推杆沿第一方向延伸,所述抵接块相对所述推杆沿第二方向伸出;所述推杆用于支撑所述待连接样品,所述抵接块用于抵接所述待连接样品。
通过设置推杆,从而对待连接样品起到支撑作用。通过设置抵接块,从而对位于推杆上的待连接样品进行抵接限位,保证活动夹持部和固定夹持部对待连接样品的固定效果。
在其中一个实施例中,所述抵接块朝向所述待连接样品的一端构造有限位槽,所述待 连接样品能够抵接于所述限位槽的槽壁。通过设置限位槽,进一步对位于推杆上的样品进行抵接限位,保证其固定效果,降低待连接样品在反应过程中出现位置的偏移,进而使得靶材能够更好的渗透进待连接样品的间隙内。
在其中一个实施例中,所述炉腔内设置有支撑体,所述支撑体用于安装靶材;所述夹持机构连接于所述支撑体。
通过设置支撑体对靶材进行固定,使得靶材能够与待连接样品的间隙对准,从而便于靶材更好的汇聚于待连接样品的间隙处。
在其中一个实施例中,所述工作炉包括炉体和可拆卸连接于所述炉体的炉盖,二者配合形成所述炉腔;所述支撑体可拆卸连接于所述炉体。
采用可拆卸连接的方式,能够方便的打开炉盖。当炉腔内部的部件故障时,通过打开炉盖,便于将内部的部件取出,便于后续的拆卸维护和更换。
在其中一个实施例中,所述炉体和炉盖之间连接有密封件。
通过设置密封件,以保证炉腔内的密封效果,进而保证炉腔内部的真空度。
在其中一个实施例中,所述加热器包括加热线圈,所述加热线圈环绕所述靶材设置。
由于加热线圈换热靶材设置,使得靶材的加热效果较为均匀,便于靶材的均匀受热和快速升温。
在其中一个实施例中,所述炉腔内还设置有温度检测仪;和/或所述炉腔内还设置有真空计。
通过设置温度检测仪和真空计,方便地监控炉腔内的温度和真空度。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请一实施例提供的陶瓷连接装置的结构示意图;
图2为图1所示的陶瓷连接装置中的A处的局部放大图。
附图标记说明:
10-陶瓷连接装置;100-工作炉;110-炉体;111-炉腔;120-炉盖;130-夹持机构;131-固定夹持部;132-活动夹持部;1321-推杆;1322-抵接块;140-真空接口;150-加热器;151-加热线圈;160-弹性件;170-操作部;180-支撑体;181-底座;182-连接座;190-温度检测仪;210-真空计;220-紧固件;300-靶材;400-待连接样品;410-间隙;500-连接层。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。
图1为本申请一实施例提供的陶瓷连接装置10的结构示意图;图2为图1所示的陶瓷连接装置10中的A处的局部放大图。如图1和图2所示,本申请一实施例提供的一种陶瓷连接装置10,包括工作炉100、夹持机构130、真空接口140和加热器150。工作炉100的内部构造有炉腔111,炉腔111用于容置靶材300;夹持机构130位于炉腔111内,夹持机构130用于固定待连接样品400。真空接口140与炉腔111连通,真空接口140用于连接真空发生器,使得炉腔111处于真空环境。加热器150连接于工作炉100,加热器150用于将炉腔111内的靶材300加热至预设温度。
其中,炉腔111内的真空度低于靶材300的饱和蒸气压时,处于预设温度的靶材300以蒸汽形态向待连接样品400汇聚,以在待连接样品400的间隙410发生气态渗透反应并形成连接层500,从而实现待连接样品400之间的连接。无需预先在待连接样品400的连接位置处填充连接材料,因此简化了待连接样品400例如碳化硅陶瓷焊接的加工步骤,降低了加工难度。间隙410处形成的连接层500能够实现核用碳化硅包壳和端塞的连接,也就无需对包壳和端塞进行精密加工,从而提高了装配效率。
可以理解地,夹持机构固定的待连接样品为两份需连接在一起的样品,可以是异种材料之间的连接,也可以是同种材料之间的连接。其中,待连接样品400具体可以为碳化硅陶瓷、碳化锆陶瓷、氮化硅陶瓷、氧化铝陶瓷和氧化锆陶瓷中的至少一种。待连接样品的形状可以为板状、圆柱状或空心结构。靶材300可以为铁、钴、镍、铬、锰、钨、钛、锆、铪、钒、钽、钼、铌和钇中的至少一种材料。靶材300的形状可以为圆形、正方形或六边形等。
真空发生器可以为真空泵,真空接口140和真空泵之间通过连接管例如波纹管等连接,通过对炉腔111内抽真空,或者是充入氮气等,使得炉腔111内处于真空状态,炉腔 111的真空度为10-1Pa-10-6Pa。真空接口140处配置有角阀,在真空状态下关闭角阀时同样可以维持一定的真空度。
在一实际的应用场景中,该陶瓷连接装置10的布置方位如图1所示,其中,第一方向为图示中的X方向,第二方向为图示中的Y方向。在图1的视图中,第一方向为平行于水平面的水平方向,第二方向为垂直于水平面的重力方向。在其他实施方式中,第一方向和第二方向的布置方位可以互换,即第一方向为垂直于水平面的重力方向,第二方向为平行于水平面的水平方向。为便于图文对照和描述的统一,下文均以X方向指代第一方向,以Y方向指代第二方向。
如图1和图2所示,在其中一个实施例中,夹持机构130包括沿X方向间隔设置的固定夹持部131和活动夹持部132,活动夹持部132被配置为可操作地相对固定夹持部131做直线运动,以使固定夹持部131和活动夹持部132分别抵持于待连接样品400的相对的两端。
具体地,通过外力作用于活动夹持部132,使得活动夹持部132相对固定夹持部131移动,从而改变二者之间形成的夹持空间的大小,适应不同尺寸的待连接样品400。使得活动夹持部132和固定夹持部131配合对待连接样品400的相对两端进行抵持固定,降低待连接样品400在反应过程中产生晃动或移动的可能,进而保证靶材300能够以蒸汽形态准确的汇聚至待连接样品400的间隙410处,并在间隙410处发生气态渗透反应以形成连接层500,从而实现待连接样品400之间的连接。
如图1和图2所示,在其中一个实施例中,陶瓷连接装置10还包括操作部170以及弹性件160,弹性件160连接于操作部170和活动夹持部132之间;操作部170的至少部分位于炉腔111外。通过按压操作部170,带动活动夹持部132相对待连接样品400靠近,并使活动夹持部132弹性抵接于待连接样品400。
当弹性件160的压缩量到达一定程度后,继续按压操作部170,可带动活动夹持部132相对待连接样品400靠近,从而调节活动夹持部132和待连接样品400之间的间隙410,进而调节活动夹持部132作用于待连接样品400的压紧力。操作部170具体为压力调节器,压力调节器配备有数显屏,通过按压压力调节器,能够实时显示施加的压力大小,施力操作更为便捷。
进一步地,活动夹持部132和操作部170朝向弹性件160的一端均设置有卡槽,用于供弹性件160伸入,提高弹性件160和活动夹持部132或操作部170的连接效果。
请继续参阅图1和图2,在其中一个实施例中,固定夹持部131和活动夹持部132均包括推杆1321和抵接块1322,推杆1321沿X方向延伸,抵接块1322相对推杆1321沿Y方向伸出。推杆1321用于支撑待连接样品400,抵接块1322用于抵接待连接样品400。
通过设置推杆1321,从而对待连接样品400起到支撑作用。通过设置抵接块1322,从而对位于推杆1321上的待连接样品400进行抵接限位,保证活动夹持部132和固定夹持部131对待连接样品400的固定效果。
在又一实施例中,抵接块1322朝向待连接样品400的一端设置有限位槽,待连接样品400能够抵接于限位槽的槽壁。通过设置限位槽,进一步对位于推杆1321上的样品进行抵接限位,保证其固定效果,降低待连接样品400在反应过程中出现位置的偏移,进而使得靶材300能够更好的渗透进待连接样品400的间隙410内。
如图1所示,在其中一个实施例中,炉腔111内设置有支撑体180,支撑体180用于安装靶材300;夹持机构130连接于支撑体180。通过设置支撑体180对靶材300进行固定,使得靶材300能够与待连接样品400的间隙410对准,从而便于靶材300更好的汇聚于待连接样品400的间隙410处。
其中,固定夹持部131包括底座181和连接座182,底座181连接于炉体110的内壁,连接座182相对底座181沿X方向伸出,靶材300设置于支撑体180的外壁,例如靶材300为圆柱形,其内部中空,从而能够套接于连接座182上,固定夹持部131连接于支撑体180上。进一步地,连接座182设置有卡槽,用于供固定夹持部131的推杆1321伸入。
请继续参阅图1,在其中一个实施例中,工作炉100包括炉体110和可拆卸连接于炉体110的炉盖120,二者配合形成炉腔111。
采用可拆卸连接的方式,能够方便的打开炉盖120。当炉腔111内部的部件故障时,通过打开炉盖120,便于将内部的部件取出,便于后续的拆卸维护和更换。更为具体地,炉体110和炉盖120通过紧固件220例如螺栓紧固密封。炉体110和炉盖120可以由不锈钢制成,具有良好的耐高温性能。进一步地,支撑体180与炉体110可拆卸连接,例如二者为螺栓连接或者是卡扣连接。
在其中一个实施例中,炉体110和炉盖120之间连接有密封件。通过设置密封件,以保证炉腔111内的密封效果,进而保证炉腔111内部的真空度。密封件具体可以为铜垫圈。
在一实施例中,炉体110上设置有炉门。打开炉门即可将待连接样品400放入炉腔111内部的夹持机构130上。放入完毕后,关闭炉门即可。进一步地,炉门和炉腔111的腔壁之间设置有密封件,保证炉腔111内的密封效果。炉门(图中未示出)可设计在炉体110的上部、底部或侧部等。
如图1所示,在一实施例中,靶材300为中空结构,从而能够将待连接样品400放入靶材300内部的腔体,便于靶材300向待连接样品400更好的扩散,提高连接层500的形成效果。
如图1所示,在其中一个实施例中,加热器150包括加热线圈151,加热线圈151环绕靶材300设置。具体地,加热线圈151置于炉腔111内部,由于加热线圈151换热靶材300设置,使得靶材300的加热效果较为均匀,便于靶材300的均匀受热和快速升温。加热线圈151具体为感应加热线圈151。加热线圈151的加热温度为1000℃-2000℃。
可以理解地,陶瓷连接装置10还包括外接电源,通过电源对加热器150供电,从而对炉腔111内的靶材300加热。
如图1所示,在其中一个实施例中,炉腔111内还设置有温度检测仪190。通过设置温度检测仪190,方便监控炉腔111内的温度。温度检测仪190具体为测温计,更为具体地,测温计为红外测温计。
如图1所示,在其中一个实施例中,炉腔111内还设置有真空计210。通过设置真空计210,能够监测炉腔111内部的真空度。其中,真空计210可以为电阻硅管真空计210或电离硅管真空计210,电阻硅管真空计210和电离硅管真空计210均为电子真空复合计,配备有数显屏,能够实时显示炉腔111内的真空测量结果,监控操作更为便捷。
在又一实施例中,陶瓷连接装置10还包括连接于工作炉100的冷却系统,通过冷却系统可以对工作炉100的外壁进行降温,防止工作炉100温度过高时对工作炉100外部的线缆造成损坏,或者是意外烫伤工作人员等,提升线缆的使用寿命,并提升工作人员的安全系数。
具体地,冷却系统为多个冷却流道,多个冷却流道间隔设置于工作炉100的外壁,冷 却流道用于供温度较低的冷媒通过,从而对工作炉100的外壁进行降温。进一步地,多个冷却流道整体为蛇形形状。
以连接样品为碳化硅陶瓷为例进行说明,靶材为铁、钴和镍混合而成。在使用该陶瓷连接装置10之前,先将碳化硅陶瓷通过炉门放入工作炉100内部的固定夹持部131和活动夹持部132之间,并调节活动夹持部132的位置,使得固定夹持部131和活动夹持部132弹性抵接于碳化硅陶瓷的相对两端,从而对碳化硅陶瓷进行固定。
关上炉门后启动真空发生器,通过真空接口140对工作炉100进行抽真空操作,使得工作炉100内的真空度到达10-1Pa。并通过真空计210监测炉腔111内的真空度。
通过压力调节器对碳化硅陶瓷进行加载,从而控制活动夹持部132作用于碳化硅陶瓷上的压力。
电源通电,启动加热器150对靶材300进行加热,使其加热至1500℃,并通过测温计监测靶材300的温度。
靶材300的温度上升到1500℃,且炉腔111内部的真空度低于靶材300的饱和蒸汽压时,靶材300以蒸汽形态向碳化硅陶瓷的间隙410处汇聚,从而在间隙410处形成中间连接层500,实现碳化硅陶瓷的连接。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种陶瓷连接装置,其特征在于,包括:
    工作炉(100),内部构造有炉腔(111),所述炉腔(111)用于容置靶材(300);
    夹持机构(130),位于所述炉腔(111)内,用于固定待连接样品(400);
    真空接口(140),与所述炉腔(111)连通,用于连接真空发生器;
    加热器(150),连接于所述工作炉(100),用于将所述炉腔(111)内的靶材(300)加热至预设温度;
    其中,所述炉腔(111)内的真空度低于所述靶材(300)的饱和蒸气压时,处于所述预设温度的所述靶材(300)以蒸汽形态向所述待连接样品(400)汇聚,以在所述待连接样品(400)的间隙(410)发生气态渗透反应并形成连接层(500)。
  2. 根据权利要求1所述的陶瓷连接装置,其特征在于,所述夹持机构(130)包括沿第一方向间隔设置的固定夹持部(131)和活动夹持部(132),所述活动夹持部(132)被配置为可操作地相对所述固定夹持部(131)做直线运动,以使所述固定夹持部(131)和所述活动夹持部(132)分别抵持于所述待连接样品(400)的相对的两端。
  3. 根据权利要求2所述的陶瓷连接装置,其特征在于,所述陶瓷连接装置还包括操作部(170)以及弹性件(160),所述弹性件(160)连接于所述操作部(170)和所述活动夹持部(132)之间;所述操作部(170)的至少部分位于所述炉腔(111)外;
    通过按压所述操作部(170),带动所述活动夹持部(132)相对所述待连接样品(400)靠近,并使所述活动夹持部(132)弹性抵接于所述待连接样品(400)。
  4. 根据权利要求3所述的陶瓷连接装置,其特征在于,所述固定夹持部(131)和所述活动夹持部(132)均包括推杆(1321)和抵接块(1322),所述推杆(1321)沿第一方向延伸,所述抵接块(1322)相对所述推杆(1321)沿第二方向伸出;
    所述推杆(1321)用于支撑所述待连接样品(400),所述抵接块(1322)用于抵接所述待连接样品(400)。
  5. 根据权利要求4所述的陶瓷连接装置,其特征在于,所述抵接块(1322)朝向所述待连接样品(400)的一端构造有限位槽,所述待连接样品(400)能够抵接于所述限位槽的槽壁。
  6. 根据权利要求1所述的陶瓷连接装置,其特征在于,所述炉腔(111)内设置有支撑体(180),所述支撑体(180)用于安装靶材(300);所述夹持机构(130)连接于所 述支撑体(180)。
  7. 根据权利要求6所述的陶瓷连接装置,其特征在于,所述工作炉(100)包括炉体(110)和可拆卸连接于所述炉体(110)的炉盖(120),二者配合形成所述炉腔(111);
    所述支撑体(180)可拆卸连接于所述炉体(110)。
  8. 根据权利要求7所述的陶瓷连接装置,其特征在于,所述炉体(110)和炉盖(120)之间连接有密封件。
  9. 根据权利要求1所述的陶瓷连接装置,其特征在于,所述加热器(150)包括加热线圈(151),所述加热线圈(151)环绕所述靶材(300)设置。
  10. 根据权利要求1所述的陶瓷连接装置,其特征在于,所述炉腔(111)内还设置有温度检测仪(190);和/或
    所述炉腔(111)内还设置有真空计(210)。
PCT/CN2023/074131 2022-09-08 2023-02-01 陶瓷连接装置 WO2024051076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211099384.8 2022-09-08
CN202211099384.8A CN115635216A (zh) 2022-09-08 2022-09-08 陶瓷连接装置

Publications (1)

Publication Number Publication Date
WO2024051076A1 true WO2024051076A1 (zh) 2024-03-14

Family

ID=84941012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074131 WO2024051076A1 (zh) 2022-09-08 2023-02-01 陶瓷连接装置

Country Status (2)

Country Link
CN (1) CN115635216A (zh)
WO (1) WO2024051076A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115635216A (zh) * 2022-09-08 2023-01-24 岭东核电有限公司 陶瓷连接装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130608A (en) * 1975-04-25 1976-11-13 Asea Ab Long cylindrical heating furnace for treatment of materials at high temperatures in highhpressure gaseous atmosphere
US20110114626A1 (en) * 2009-11-18 2011-05-19 Serrago Daniel F Vacuum Oven
CN102260802A (zh) * 2011-07-20 2011-11-30 佛山市钜仕泰粉末冶金有限公司 一种靶材制备装置及其靶材加工方法
CN106735670A (zh) * 2017-01-04 2017-05-31 青岛蓝光晶科新材料有限公司 一种改进型靶材炉设备及靶材邦定方法
CN209246652U (zh) * 2018-09-19 2019-08-13 福建省创飞新材料科技有限公司 一种陶瓷靶材加工用烧结装置
CN110986586A (zh) * 2019-12-19 2020-04-10 上海大学 一种烧结装置及一种氧化物陶瓷靶材的制备方法
CN113714583A (zh) * 2021-08-16 2021-11-30 江苏新智达新能源设备有限公司 一种真空焊接炉
CN115635216A (zh) * 2022-09-08 2023-01-24 岭东核电有限公司 陶瓷连接装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130608A (en) * 1975-04-25 1976-11-13 Asea Ab Long cylindrical heating furnace for treatment of materials at high temperatures in highhpressure gaseous atmosphere
GB1537563A (en) * 1975-04-25 1978-12-29 Asea Ab High pressure electrical resistance heated furnace
US20110114626A1 (en) * 2009-11-18 2011-05-19 Serrago Daniel F Vacuum Oven
CN102260802A (zh) * 2011-07-20 2011-11-30 佛山市钜仕泰粉末冶金有限公司 一种靶材制备装置及其靶材加工方法
CN106735670A (zh) * 2017-01-04 2017-05-31 青岛蓝光晶科新材料有限公司 一种改进型靶材炉设备及靶材邦定方法
CN209246652U (zh) * 2018-09-19 2019-08-13 福建省创飞新材料科技有限公司 一种陶瓷靶材加工用烧结装置
CN110986586A (zh) * 2019-12-19 2020-04-10 上海大学 一种烧结装置及一种氧化物陶瓷靶材的制备方法
CN113714583A (zh) * 2021-08-16 2021-11-30 江苏新智达新能源设备有限公司 一种真空焊接炉
CN115635216A (zh) * 2022-09-08 2023-01-24 岭东核电有限公司 陶瓷连接装置

Also Published As

Publication number Publication date
CN115635216A (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2024051076A1 (zh) 陶瓷连接装置
TW468014B (en) Compliant high temperature seals for dissimilar materials
US8360139B2 (en) Ceramics heat exchanger
JP3796498B2 (ja) スターリングエンジン
JP5139330B2 (ja) ガス入口通路へガスを送るためのガス入口装置及びガス供給方法
WO1999060294A1 (fr) Soupape a pression tres negative
CN110018061B (zh) 一种配置隔热气冷夹具的超高温长时力学性测试系统
US20080314320A1 (en) Chamber Mount for High Temperature Application of AIN Heaters
US5224857A (en) Radiant tube arrangement for high temperature, industrial heat treat furnace
US5163416A (en) Radiant tube arrangement for high temperature, industrial heat treat furnace
JPH11211642A (ja) 高温高圧雰囲気試験装置
CN113380672A (zh) 半导体热处理设备
WO2024060527A1 (zh) 碳化硅复合材料连接装置
JP5916580B2 (ja) 吸着特性測定装置
JP7313169B2 (ja) 真空ベローズホットバルブ
CN110864547A (zh) 一种改进的中频感应加热炉
CN207702126U (zh) 一种专用于压力容器的双通道真空测量装置
JPH10311877A (ja) エネルギー分散型半導体x線検出器
CN208991957U (zh) 用于扩散连接钢铝双金属复合材料的真空热挤压炉
CN114088540A (zh) 一种反应堆包壳爆破实验系统及实验方法
CN207814597U (zh) 一种专用于压力容器的双通真空阀门结构
US20210343454A1 (en) Feedthrough assemblies, induction furnaces including such feedthrough assemblies, and related methods
EP4012305B1 (en) Cabling subsystem, cryostat, and method for assembling a cabling subsystem to a cryostat
CN210242926U (zh) 一种隔冷隔热的磁致伸缩液位计
WO2007017798A2 (en) A device for the construction of heat exchanger elements provided with protection materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861788

Country of ref document: EP

Kind code of ref document: A1