WO2024049018A1 - 디바이스의 위치에서 가장 근접한 기준국을 자동 선정하여 보정정보 수신 방법 - Google Patents

디바이스의 위치에서 가장 근접한 기준국을 자동 선정하여 보정정보 수신 방법 Download PDF

Info

Publication number
WO2024049018A1
WO2024049018A1 PCT/KR2023/010933 KR2023010933W WO2024049018A1 WO 2024049018 A1 WO2024049018 A1 WO 2024049018A1 KR 2023010933 W KR2023010933 W KR 2023010933W WO 2024049018 A1 WO2024049018 A1 WO 2024049018A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference station
correction information
station
base station
closest
Prior art date
Application number
PCT/KR2023/010933
Other languages
English (en)
French (fr)
Inventor
박승권
박철순
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2024049018A1 publication Critical patent/WO2024049018A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0045Transmission from base station to mobile station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves

Definitions

  • the explanation below relates to location determination technology.
  • NTRIP is a service that transmits correction information generated by a reference station to a mobile station in real time through the Internet network.
  • correction information can be transmitted through medium waves and DMB broadcasting, but since there may be areas where transmission is not possible, the NTRIP service, which transmits correction information through the Internet network, was developed.
  • Figure 1 is a diagram for explaining the operation of transmitting correction information through the NTRIP service.
  • seven organizations Kerrea Astronomical Research Institute, National Oceanographic Positioning Information Institute, Space Radio Center, National Meteorological Satellite Center, Korea Institute of Geoscience and Mineral Resources, Seoul Metropolitan Government, and Korea Institute of Geospatial Information
  • the National Geographic Information Institute operates a number of reference stations.
  • the National Geographic Information Institute is operating 63 reference stations.
  • GNSS data integration center Users using mobile stations receive correction information from the reference station through the GNSS data integration center in order to perform precise positioning. For this, you must know the NTRIP Caster Host, Port, Mountpoint (name of the reference station, format for receiving correction information), latitude/longitude/altitude of the reference station, User-ID, Password, etc. When receiving correction information through the GNSS Data Integration Center, you must enter the following information.
  • RTCM32 the name of the reference song and correction information format closest to the mobile station location
  • User ID/Password User ID/gnss
  • the terminal performing location determination must select the reference station closest to its location and receive correction information.
  • the location changes frequently, so there is the inconvenience of having to select the nearest reference station every time the location changes.
  • the user dynamically selects the closest reference station and receives correction information without having to manually set and select reference station information on the device (positioning terminal using RTK), and performs precise positioning in real time regardless of regional changes. I would like to suggest a method for performing this.
  • a method of receiving correction information performed by a device includes selecting a reference station closest to the device based on a base station-reference station mapping table generated by the device; And it may include receiving correction information generated from the selected closest reference station.
  • the selecting step may include automatically selecting the closest reference station using the unique number (Cell-ID) of the mobile communication base station to which the device is connected.
  • Cell-ID unique number
  • the step of receiving the correction information may include receiving correction information generated from the selected closest reference station through the NTRIP service using a mobile communication module.
  • Receiving the correction information may include performing precise positioning using a satellite signal received from a GNSS satellite and the received correction information.
  • the base station-reference station mapping table may be created as one group by grouping one reference station and a plurality of mobile communication base stations installed within a certain range from the one reference station based on the location information where the reference station is installed. .
  • the device includes a reference station selection unit that selects a reference station closest to the device based on a base station-reference station mapping table generated in the device; And it may include a correction information receiver that receives correction information generated from the selected closest reference station.
  • a method of transmitting correction information performed by a reference station includes generating correction information as the reference station closest to the device is selected based on a base station-reference station mapping table generated by the device; And it may include transmitting the generated correction information to the device.
  • the user When using a device (positioning terminal using RTK), the user dynamically selects the closest reference station and receives correction information without the need to manually set and select reference station information, enabling precise positioning in real time regardless of regional changes. can be performed. Through this, users can receive correction information dynamically without unnecessary processes such as finding the closest reference station and entering related information during precise positioning.
  • users can perform precise positioning by automatically selecting a nearby reference station on their own.
  • Figure 1 is a diagram for explaining the operation of transmitting correction information through the NTRIP service.
  • Figure 2 is a diagram for explaining the internal structure of a device, according to one embodiment.
  • Figure 3 is a diagram for explaining a base station-reference station mapping table, according to one embodiment.
  • Figure 4 is a diagram for explaining an operation of receiving correction information generated from a nearby reference station through a base station, according to one embodiment.
  • Figure 5 is a diagram for explaining an operation of performing precise positioning, according to one embodiment.
  • FIG. 6 is a diagram for explaining an operation of receiving correction information according to the location of a device, according to an embodiment.
  • Figure 7 is a flowchart illustrating a method of receiving correction information of a device, according to one embodiment.
  • Figure 8 is a flowchart for explaining a method of transmitting correction information of a reference station, according to an embodiment.
  • the embodiment relates to automatic selection and reception of correction information necessary for relative positioning using a satellite navigation system, and automatically selects the closest reference station using the unique number (Cell-ID) of the mobile communication base station to receive correction information. Let's explain the operation. Through this, it is possible to search for the closest reference station from a device (e.g., a positioning terminal using RTK) and receive correction information generated from the reference station dynamically without unnecessary processes such as entering related information.
  • a device e.g., a positioning terminal using RTK
  • Figure 2 is a diagram for explaining the internal structure of a device, according to one embodiment.
  • the device 200 is used to receive correction information by automatically selecting a reference station located at the closest distance using a base station, for example, a smart phone, mobile phone, navigation, computer, laptop, or digital broadcasting device. It may include terminals, PDAs (Personal Digital Assistants), PMPs (Portable Multimedia Players), tablet PCs, wearable devices, etc.
  • a base station for example, a smart phone, mobile phone, navigation, computer, laptop, or digital broadcasting device. It may include terminals, PDAs (Personal Digital Assistants), PMPs (Portable Multimedia Players), tablet PCs, wearable devices, etc.
  • This device 200 is a positioning terminal/device that uses RTK.
  • RTK technology can be used in various forms in various fields such as smartphones, GPS equipment inside cars, GPS equipment inside drones, and golf GPS equipment.
  • the device 200 may refer to one of various physical computer devices that can communicate with other electronic devices and/or servers through a network using wireless or wired communication.
  • the device 200 may be composed of a GNSS signal receiver 210, a mobile communication unit 220, a base station-reference station mapping table 230, a precise position calculation unit 240, and a control unit 250.
  • the GNSS signal receiver 210 may receive satellite signals from GNSS satellites.
  • the mobile communication unit 220 can receive correction information through the NTRIP service.
  • the mobile communication communication unit 220 may receive correction information from the nearest reference station through a mobile communication module (eg, 6G, 5G, LTE, LTE-M, etc.).
  • a mobile communication module eg, 6G, 5G, LTE, LTE-M, etc.
  • the base station-reference station mapping table 230 may be provided to select the location of the reference station closest to the current location of the device.
  • the base station-reference station mapping table 230 may be created as one group by grouping a reference station and a plurality of mobile communication base stations installed within a certain range from the reference station based on location information where the reference station is installed.
  • This base station-reference station mapping table 230 can be updated in connection with an external server such as the National Geographic Information Institute.
  • the base station-reference station mapping table 230 can be updated using an OTA method, Bluetooth/NFC method, etc.
  • the precise position calculation unit 240 can calculate a precise position using raw data and correction information from GNSS satellites.
  • the control unit 250 can perform control and management of each internal configuration.
  • Figure 3 is a diagram for explaining a base station-reference station mapping table, according to one embodiment.
  • the device can automatically select the closest reference station using the unique information (Cell-ID) of the connected base station.
  • Figure 3 shows the process of grouping base stations close to one reference station.
  • one reference station in the device and base stations installed within a certain range (for example, within about 10 to 15 km) from the location where the one reference station is installed may be grouped into a mapping table.
  • the base station-reference station mapping table may be created in advance by the terminal manufacturer when manufacturing the terminal. At this time, the size of the mapping table using the base station and the reference station may be changed depending on the number of reference stations, the number of base stations adjacent to the reference station, etc.
  • Each device stores information of the base station-reference station mapping table shown in FIG. 3. Each device can use the information in the stored base station-reference station mapping table to connect to the base station and at the same time know the nearest reference station information and automatically connect to the NTRIP server and caster.
  • Figure 4 is a diagram for explaining an operation of receiving correction information generated from a nearby reference station through a base station, according to one embodiment.
  • the device 200 can use a base station to automatically select a nearby base station and receive correction information when determining a precise location in a specific cell.
  • the device 200 automatically selects the reference station closest to the connected base station using a base station-reference station mapping table, and receives correction information generated from the selected reference station through the NTRIP server and the NTRIP service of the caster 403. You can.
  • the device 200 can perform precise positioning using correction information received more quickly.
  • the device 200 may perform precise positioning by receiving all of the plurality of correction information.
  • Figure 5 is a diagram for explaining an operation of performing precise positioning, according to one embodiment.
  • Figure 5 illustrates the operation of performing precise positioning through data transmission and reception between the GNSS satellite 501, device 200, mobile communication base station 502, NTRIP server and caster 403, and reference station 404. Do this.
  • the device 200 As the device 200 is connected to the mobile communication base station 502 through a base station connection, it can receive the base station's unique number (Cell-ID) from the mobile communication base station 502.
  • Cell-ID base station's unique number
  • the device 200 can select the reference station closest to the device 200 through the base station-reference station mapping table. For example, based on the location data of the device 200, the reference station closest to the device 200 can be selected through a base station-reference station mapping table.
  • the reference station 404 shown in FIG. 5 refers to the closest reference station.
  • Device 200 can connect to the NTRIP server and caster 403.
  • the device 200 may input information on the closest base station selected through the base station-reference station mapping table.
  • the NTRIP server and caster 403 may request the reference station 404 to generate correction information using the base station information received from the device 200.
  • the reference station 404 may transmit the generated correction information to the NTRIP server and caster 403. In other words, the NTRIP server and caster 403 can receive correction information generated from the reference station 404.
  • the NTRIP server and caster 403 may transmit correction information generated from the reference station 404 to the device 200.
  • the device 200 can receive correction information generated from the reference station 404 through the NTRIP server and the NTRIP service of the caster 403.
  • Device 200 may receive satellite signals from GNSS satellite 501.
  • the device 200 can perform precise positioning using satellite signals received from the GNSS satellite 501 and correction information received from the reference station 404.
  • FIG. 6 is a diagram for explaining an operation of receiving correction information according to the location of a device, according to an embodiment.
  • the device 200 can receive correction information generated from a new base station existing in another location.
  • the device 200 may receive correction information generated from a reference station present at the changed location. At this time, whether the location data of the device 200 changes can be determined through connection to the base station or the NTRIP server and caster 403.
  • the device 200 may be moved from cell 1 to cell 2.
  • the device 200 receives correction information from reference station A, but as it moves to cell 2, it can receive correction information from reference station B.
  • the NTRIP server and caster 403 have received the correction information generated from reference station A, they do not transmit the correction information from reference station A to the device 200, but receive the correction information generated from reference station B.
  • Correction information of reference station B can be transmitted to the device 200.
  • Figure 7 is a flowchart illustrating a method of receiving correction information of a device, according to one embodiment.
  • the device may select the reference station closest to the device based on the base station-reference station mapping table generated by the device.
  • the device can use the base station-reference station mapping table to check the location of the nearest reference station and select the closest reference station.
  • the base station-reference station mapping table can be created by grouping a number of mobile communication base stations installed within a certain range (within about 10 to 15 km) from the location where the reference station is previously installed into one group. Accordingly, the device has a built-in base station-reference station mapping table. The device receives a unique number from the base station through connection to the base station, and can automatically select the closest reference station through the base station-reference station mapping table.
  • the device may receive correction information generated from the selected closest reference station.
  • the device can receive correction information generated from the nearest reference station through a mobile communication module.
  • the device can perform precise positioning using raw data from GNSS satellites and correction information received from the closest reference station.
  • Figure 8 is a flowchart for explaining a method of transmitting correction information of a reference station, according to one embodiment.
  • the reference station may generate correction information by being selected as the reference station closest to the device based on the base station-reference station mapping table generated in the device. For example, a reference station may be selected from one or multiple devices. The reference station can generate correction information for one or multiple devices.
  • the reference station may transmit the generated correction information to the device.
  • the reference station can transmit correction information generated by the NTRIP server and caster.
  • Devices used in the future precision location service field are composed of components such as GNSS antennas, GNSS reception modules, communication modules (6G, 5G, LTE, LTE-M, NB-IoT, etc.), and MCU. It will be. In the future, devices will be able to receive correction information directly or transmit location information to the outside by being equipped with various communication modules. Accordingly, the device can perform precise positioning by selecting a nearby reference station using the base station of the mounted communication module.
  • the number of LTE base stations installed by the three telecommunication companies in Korea is approximately 1 million, and the number of 5G base stations is approximately 200,000. Since the three telecommunications companies plan to continuously install base stations, the number of base stations will increase further than the current number. And currently, the number of reference stations operated by the National Geographic Information Institute is about 87, which is a relatively small number compared to mobile communication base stations.
  • the device uses the Cell-ID (unique number assigned to each base station) of the mobile communication base station to determine the location of the nearest reference station and receive correction information.
  • Devices are grouped in advance with multiple base stations installed in close proximity to one reference station and created into a mapping table based on this. Through tabulation, a base station-reference station mapping table can be constructed in which multiple base stations are mapped to one reference station.
  • a base station-reference station mapping table can be constructed in which multiple base stations are mapped to one reference station.
  • the user when determining a precise location using a device, the user can automatically find the closest reference station to the current location and receive correction information without having to manually find nearby reference stations or input information, so the user can receive correction information without unnecessary This process can be omitted and has the effect of minimizing the movements required for precise positioning.
  • devices and components described in embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable gate array (FPGA), etc. , may be implemented using one or more general-purpose or special-purpose computers, such as a programmable logic unit (PLU), a microprocessor, or any other device capable of executing and responding to instructions.
  • a processing device may execute an operating system (OS) and one or more software applications that run on the operating system. Additionally, a processing device may access, store, manipulate, process, and generate data in response to the execution of software.
  • OS operating system
  • a processing device may access, store, manipulate, process, and generate data in response to the execution of software.
  • a single processing device may be described as being used; however, those skilled in the art will understand that a processing device includes multiple processing elements and/or multiple types of processing elements. It can be seen that it may include.
  • a processing device may include a plurality of processors or one processor and one controller. Additionally, other processing configurations, such as parallel processors, are possible.
  • Software may include a computer program, code, instructions, or a combination of one or more of these, which may configure a processing unit to operate as desired, or may be processed independently or collectively. You can command the device.
  • Software and/or data may be used on any type of machine, component, physical device, virtual equipment, computer storage medium or device to be interpreted by or to provide instructions or data to a processing device. It can be embodied in .
  • Software may be distributed over networked computer systems and stored or executed in a distributed manner.
  • Software and data may be stored on one or more computer-readable recording media.
  • the method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded on a computer-readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, etc., singly or in combination.
  • Program instructions recorded on the medium may be specially designed and configured for the embodiment or may be known and available to those skilled in the art of computer software.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floptical disks.
  • Examples of program instructions include machine language code, such as that produced by a compiler, as well as high-level language code that can be executed by a computer using an interpreter, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

디바이스의 위치에서 가장 근접한 기준국을 자동 선정하여 보정정보 수신 방법이 개시된다. 일 실시예에 따른 디바이스에 의해 수행되는 보정정보 수신 방법은, 디바이스에서 생성된 기지국-기준국 맵핑 테이블에 기초하여 상기 디바이스와 가장 근접한 기준국을 선택하는 단계; 및 상기 선택된 가장 근접한 기준국으로부터 생성된 보정정보를 수신하는 단계를 포함할 수 있다.

Description

디바이스의 위치에서 가장 근접한 기준국을 자동 선정하여 보정정보 수신 방법
아래의 설명은 위치 측위 기술에 관한 것이다.
NTRIP는 기준국에서 생성한 보정정보를 인터넷 망을 통해 실시간으로 이동국에게 전송하는 서비스이다. 인터넷 망 외에도 중파, DMB 방송 등을 통해 보정정보를 전송할 수 있지만, 전송이 불가능한 지역이 있을 수 있으므로 인터넷 망을 통해 보정정보를 전송하는 NTRIP 서비스가 개발되었다.
도 1은 NTRIP 서비스를 통한 보정정보 전송 동작을 설명하기 위한 도면이다. 현재 국내에서는 국토지리정보원 외 7개 기관(한국천문연구원, 국립해양측위정보원, 우주전파센터, 국가기상위성센터, 한국지질자원연구원, 서울특별시, 공간정보연구원)에서 다수의 기준국을 운용하고 있으며, 그 중에서 국토지리정보원에서는 63개의 기준국을 운용 중에 있다.
이동국 사용 유저(User)는 정밀 위치 측위를 하기 위해서 GNSS 데이터 통합센터를 통해 기준국의 보정정보를 수신한다. 이를 위해서 NTRIP Caster Host, Port, Mountpoint(기준국명, 보정정보 수신 포맷), 기준국의 위도/경도/고도, User-ID, Password 등을 알고 있어야 한다. GNSS 데이터 통합센터를 통해 보정정보를 받을 시 다음과 같은 정보를 입력해야 한다. 예를 들면, 서울 기준국으로부터 1)NTRIP Caster Host: gnssdata.or.kr, 2)Port: 2101, 3)Mountpoint: SOUL-RTCM32(이동국 위치에서 가장 근접한 기준곡명과 보정정보 포맷), 4)User ID/Password: 사용자ID/gnss, 5)기준국 위도/경도/고도와 같이 RTCM 버전 3.2 포맷의 보정정보를 받을 수 있다.
이와 같이, RTK 서비스를 이용하기 위해서는 위치 측위를 수행하는 단말기가 본인 위치에서 가장 가까운 기준국을 선택하여 보정정보를 수신받아야 한다. RTK를 이용한 이동형 서비스에서는 위치가 수시로 바뀌기 때문에 위치가 변경될 때마다 가장 가까운 기준국을 선택해야 한다는 번거로움이 존재한다.
이동국 사용 유저가 RTK 기술을 이용하여 cm급의 측위 정확도 성능을 갖기 위해서는 가장 근접한(약 10~15km 이내) 기준국으로부터 보정정보를 수신 받아야 한다. 측위 시, 이동국 사용 유저가 특정 지역 혹은 고정형으로 사용될 경우에는 기준국을 고정으로 선택하여 보정정보를 수신 받으면 되었다. 그러나, 향후 위치 기반 서비스에서는 고정형 이동국 사용 유저보다는 이동형 이동국 사용 유저가 보다 많이 사용될 것이다. 현재 RTK 시스템으로는 이동형 이동국 사용 유저가 지역이 변할 때마다 가장 근접한 기준국을 선택해야하는 불편함이 지속적으로 생긴다.
실시예에서는 유저가 디바이스(RTK를 사용하는 측위 단말기)에서 수동으로 기준국 정보를 설정 및 선택할 필요 없이 동적으로 가장 근접한 기준국을 선택하여 보정정보를 수신하여 지역 변화와 상관없이 실시간으로 정밀 위치 측위를 수행할 수 있는 방법을 제안하고자 한다.
또한, 이동통신 기지국의 고유번호(Cell-ID)를 이용하여 가장 근접한 기준국을 자동으로 선택하여 보정정보를 수신하는 방법을 제공할 수 있다.
디바이스에 의해 수행되는 보정정보 수신 방법은, 디바이스에서 생성된 기지국-기준국 맵핑 테이블에 기초하여 상기 디바이스와 가장 근접한 기준국을 선택하는 단계; 및 상기 선택된 가장 근접한 기준국으로부터 생성된 보정정보를 수신하는 단계를 포함할 수 있다.
상기 선택하는 단계는, 상기 디바이스가 연결된 이동통신 기지국의 고유번호(Cell-ID)를 이용하여 가장 근접한 기준국을 자동으로 선정하는 단계를 포함할 수 있다.
상기 보정정보를 수신하는 단계는, 이동통신 모듈을 이용하여 NTRIP 서비스를 통해 상기 선택된 가장 근접한 기준국으로부터 생성된 보정정보를 수신하는 단계를 포함할 수 있다.
상기 보정정보를 수신하는 단계는, GNSS위성으로부터 수신된 위성 신호와 상기 수신된 보정정보를 이용하여 정밀 위치 측위를 수행하는 단계를 포함할 수 있다.
상기 기지국-기준국 맵핑 테이블은, 기준국이 설치된 위치 정보에 기초하여 하나의 기준국과 하나의 기준국으로부터 일정 범위 내에 설치된 다수의 이동통신 기지국들의 그룹화를 통해 하나의 그룹으로 생성된 것일 수 있다.
디바이스는, 디바이스에서 생성된 기지국-기준국 맵핑 테이블에 기초하여 상기 디바이스와 가장 근접한 기준국을 선택하는 기준국 선택부; 및 상기 선택된 가장 근접한 기준국으로부터 생성된 보정정보를 수신하는 보정정보 수신부를 포함할 수 있다.
기준국에 의해 수행되는 보정정보 송신 방법은, 디바이스에서 생성된 기지국-기준국 맵핑 테이블에 기초하여 상기 디바이스와 가장 근접한 기준국으로 선택받음에 따라 보정정보를 생성하는 단계; 및 상기 생성된 보정정보를 상기 디바이스로 전송하는 단계를 포함할 수 있다.
유저가 디바이스(RTK를 사용하는 측위 단말기)를 사용 시에 수동으로 기준국 정보를 설정 및 선택할 필요없이 동적으로 가장 근접한 기준국을 선택하여 보정정보를 수신하여 지역 변화와 상관없이 실시간으로 정밀 위치 측위를 수행할 수 있다. 이를 통해 유저는 정밀 측위 시 가장 근접한 기준국을 찾고 관련 정보를 입력 등과 같은 불필요한 과정없이 동적으로 보정정보를 수신할 수 있다.
유저는 수동으로 근접한 기준국을 찾고 정보를 입력할 필요없이, 디바이스 스스로 자동으로 근접한 기준국을 선정해 정밀 위치 측위를 수행할 수 있다.
도 1은 NTRIP 서비스를 통한 보정정보 전송 동작을 설명하기 위한 도면이다.
도 2는 일 실시예에 있어서, 디바이스의 내부 구조도를 설명하기 위한 도면이다.
도 3은 일 실시예에 있어서, 기지국-기준국 맵핑 테이블을 설명하기 위한 도면이다.
도 4는 일 실시예에 있어서, 기지국을 통해 근접한 기준국으로부터 생성된 보정정보를 수신하는 동작을 설명하기 위한 도면이다.
도 5는 일 실시예에 있어서, 정밀 위치 측위 수행 동작을 설명하기 위한 도면이다.
도 6은 일 실시예에 있어서, 디바이스의 위치에 따라 보정정보를 수신하는 동작을 설명하기 위한 도면이다.
도 7은 일 실시예에 있어서, 디바이스의 보정정보 수신 방법을 설명하기 위한 흐름도이다.
도 8은 일 실시예에 있어서, 기준국의 보정정보 전송 방법을 설명하기 위한 흐름도이다.
이하, 실시예를 첨부한 도면을 참조하여 상세히 설명한다.
실시예에서는 위성항법시스템을 이용한 상대 측위에 필요한 보정정보 자동 선택과 수신에 관한 것으로, 이동통신 기지국의 고유번호(Cell-ID)를 이용하여 가장 근접한 기준국을 자동으로 선택하여 보정정보를 수신하는 동작에 대하여 설명하기로 한다. 이를 통해 디바이스(예를 들면, RTK를 사용하는 측위 단말기)로부터 가장 근접한 기준국을 탐색하고 관련 정보를 입력 등과 같은 불필요한 과정없이 동적으로 기준국으로부터 생성된 보정정보를 수신할 수 있다.
도 2는 일 실시예에 있어서, 디바이스의 내부 구조도를 설명하기 위한 도면이다.
디바이스(200)는 기지국을 이용하여 가장 근접한 거리에 위치한 기준국을 자동으로 선정하여 보정정보를 수신하기 위한 것으로, 예를 들면, 스마트폰(smart phone), 휴대폰, 내비게이션, 컴퓨터, 노트북, 디지털방송용 단말, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 태블릿 PC, 웨어러블 디바이스 등을 포함할 수 있다.
이러한 디바이스(200)는 RTK을 사용하는 측위 단말기/장치로서, 예를 들면, RTK 기술은 스마트폰, 자동차 내부 GPS 장비, 드론 내부 GPS 장비, 골프 GPS 장비 등 다양한 분야에서 다양한 형태로 사용될 수 있다.
디바이스(200)는 무선 통신 또는 유선 통신 방식을 이용하여 네트워크를 통해 다른 전자 기기들 및/또는 서버와 통신할 수 있는 다양한 물리적인 컴퓨터 장치들 중 하나를 의미할 수 있다.
디바이스(200)는 GNSS 신호 수신부(210), 이동통신 통신부(220), 기지국-기준국 맵핑 테이블(230), 정밀 위치 계산부(240), 제어부(250)로 구성될 수 있다.
GNSS 신호 수신부(210)는 GNSS 위성으로부터 위성 신호를 수신할 수 있다.
이동통신 통신부(220)는 NTRIP 서비스를 통해 보정정보를 수신할 수 있다. 이동통신 통신부(220)는 이동통신 모듈(예를 들면, 6G, 5G, LTE, LTE-M 등)을 통해 가장 근접한 기준국으로부터 보정정보를 수신할 수 있다.
기지국-기준국 맵핑 테이블(230)은 디바이스의 현재 위치에서 가장 근접한 기준국 위치를 선택하도록 제공되는 것일 수 있다. 기지국-기준국 맵핑 테이블(230)은 기준국이 설치된 위치 정보에 기초하여 기준국과 기준국으로부터 일정 범위 내에 설치된 다수의 이동통신 기지국들의 그룹화를 통해 하나의 그룹으로 생성된 것일 수 있다. 이러한 기지국-기준국 맵핑 테이블(230)는 국토지리정보원 등의 외부 서버와 연계하여 업데이트될 수 있다. 예를 들면, 기지국-기준국 맵핑 테이블(230)은 OTA 방식 또는, 블루투스/NFC 방식 등을 이용하여 업데이트될 수 있다.
정밀 위치 계산부(240)는 GNSS 위성의 원시 데이터와 보정정보를 이용하여 정밀한 위치를 계산할 수 있다.
제어부(250)는 각 내부 구성에 대한 제어, 관리 등을 수행할 수 있다.
도 3은 일 실시예에 있어서, 기지국-기준국 맵핑 테이블을 설명하기 위한 도면이다.
디바이스는 연결된 기지국의 고유정보(Cell-ID)를 이용하여 가장 근접한 기준국을 자동으로 선정할 수 있다. 도 3에서는 하나의 기준국에 근접한 기지국을 그룹화하는 과정을 나타낸 것이다. 사전에, 디바이스에 하나의 기준국과, 하나의 기준국이 설치된 위치에서 일정 범위 내(예를 들면, 약 10~15km 이내)에 설치된 기지국이 그룹화되어 맵핑 테이블화될 수 있다. 기지국-기준국 맵핑 테이블은, 단말기 제조사에 의해 단말기 제조 시 사전에 생성되는 것일 수 있다. 이때, 기준국의 개수, 기준국 근처에 근접한 기지국의 개수 등에 따라 기지국과 기준국을 이용한 맵핑 테이블의 크기가 변경될 수 있다.
각각의 디바이스는 도 3에 명시된 기지국-기준국 맵핑 테이블의 정보를 저장하고 있다. 각각의 디바이스는 저장된 기지국-기준국 맵핑 테이블의 정보를 이용하여 기지국과 연결됨과 동시에 가장 근접한 기준국 정보를 알 수 있고, 자동으로 NTRIP 서버 및 캐스터에 연결할 수 있다.
도 4는 일 실시예에 있어서, 기지국을 통해 근접한 기준국으로부터 생성된 보정정보를 수신하는 동작을 설명하기 위한 도면이다.
디바이스(200)는 특정 셀(cell)에서 정밀 위치 측위 시에 기지국을 이용하여 근접한 기지국을 자동 선정하여 보정정보를 수신할 수 있다. 디바이스(200)는 기지국-기준국 맵핑 테이블을 이용하여 연결된 기지국과 가장 근접한 기준국을 자동 선정하고, 선정된 기준국에서 생성된 보정정보를 NTRIP 서버 및 캐스터(403)의 NTRIP 서비스를 통해 수신할 수 있다.
일례로, 디바이스(200)는 가장 근접한 기준국이 복수 개일 경우, 보다 빠르게 수신되는 보정정보를 이용하여 정밀 위치 측위를 수행할 수 있다. 또는, 디바이스(200)는 가장 근접한 기준국이 복수 개일 경우, 복수 개의 보정정보를 모두 수신하여 정밀 위치 측위를 수행할 수도 있다.
도 5는 일 실시예에 있어서, 정밀 위치 측위 수행 동작을 설명하기 위한 도면이다.
도 5에서는 GNSS 위성(501), 디바이스(200), 이동통신 기지국(502), NTRIP 서버 및 캐스터(403) 및 기준국(404) 사이의 데이터 송수신을 통해 정밀 위치 측위를 수행하는 동작을 설명하기로 한다.
디바이스(200)는 기지국 연결을 통해 이동통신 기지국(502)과 연결됨에 따라 이동통신 기지국(502)으로부터 기지국의 고유번호(Cell-ID)를 수신할 수 있다.
디바이스(200)는 기지국-기준국 맵핑 테이블을 통해 디바이스(200)와 가장 근접한 기준국을 선택할 수 있다. 예를 들면, 디바이스(200)의 위치 데이터에 기초하여 기지국-기준국 맵핑 테이블을 통해 디바이스(200)와 가장 근접한 기준국을 선택할 수 있다. 여기서, 도 5에 도시된 기준국(404)은 가장 근접한 기준국을 의미한다.
디바이스(200)는 NTRIP 서버 및 캐스터(403)에 접속할 수 있다. 디바이스(200)는 기지국-기준국 맵핑 테이블을 통해 선택된 가장 근접한 기지국 정보를 입력할 수 있다. NTRIP 서버 및 캐스터(403)는 디바이스(200)로부터 입력받은 기지국 정보를 이용하여 기준국(404)에게 보정정보 생성을 요청할 수 있다. 기준국(404)은 생성된 보정정보를 NTRIP 서버 및 캐스터(403)에 전달할 수 있다. 다시 말해서, NTRIP 서버 및 캐스터(403)는 기준국(404)으로부터 생성된 보정정보를 수신할 수 있다.
NTRIP 서버 및 캐스터(403)는 디바이스(200)에게 기준국(404)으로부터 생성된 보정정보를 전달할 수 있다. 디바이스(200)는 NTRIP 서버 및 캐스터(403)의 NTRIP 서비스를 통해 기준국(404)으로부터 생성된 보정정보를 수신할 수 있다.
디바이스(200)는 GNSS 위성(501)으로부터 위성 신호를 수신할 수 있다. 디바이스(200)는 GNSS 위성(501)으로부터 수신된 위성 신호와 기준국(404)으로부터 수신된 보정정보를 이용하여 정밀 위치 측위를 수행할 수 있다.
도 6은 일 실시예에 있어서, 디바이스의 위치에 따라 보정정보를 수신하는 동작을 설명하기 위한 도면이다.
디바이스(200)가 고정형이 아닌 이동형으로 이용될 경우, 디바이스(200)는 타 위치에 존재하는 새로운 기지국으로부터 생성된 보정정보를 수신할 수 있다. 이동형 기반의 디바이스(200)의 위치 데이터가 변경될 때, 디바이스(200)는 변환 위치에 존재하는 기준국으로부터 생성된 보정정보를 수신할 수 있다. 이때, 디바이스(200)의 위치 데이터가 변경되는 지 여부는 기지국과의 연결 또는 NTRIP 서버 및 캐스터(403)를 통해 판단될 수 있다.
예를 들면, 디바이스(200)가 셀 1에서 셀 2로 이동될 수 있다. 디바이스(200)가 셀 1에 존재할 경우, 기준국 A의 보정정보를 수신하였지만, 셀 2로 이동됨에 따라 기준국 B의 보정정보를 수신할 수 있다. 이때, NTRIP 서버 및 캐스터(403)는 기준국 A로부터 생성된 보정정보를 수신하였다고 할지라도 기준국 A의 보정정보를 디바이스(200)에게 전달하지 않고, 기준국 B로부터 생성된 보정정보를 수신하여 디바이스(200)에게 기준국 B의 보정정보를 전달할 수 있다.
도 7은 일 실시예에 있어서, 디바이스의 보정정보 수신 방법을 설명하기 위한 흐름도이다.
단계(710)에서 디바이스는 디바이스에서 생성된 기지국-기준국 맵핑 테이블에 기초하여 디바이스와 가장 근접한 기준국을 선택할 수 있다. 디바이스는 기지국-기준국 맵핑 테이블을 이용하여 가장 근접한 기준국 위치를 확인하고, 확인된 가장 근접한 기준국을 선정할 수 있다. 이때, 기지국-기준국 맵핑 테이블은 사전에 기준국이 설치된 위치에서 일정 범위 내(약 10~15km 이내) 설치된 다수의 이동통신 기지국들을 하나의 그룹으로 그룹화됨에 따라 생성될 수 있다. 이에, 디바이스는 기지국-기준국 매핑 테이블을 내장하게 된다. 디바이스는 기지국과의 연결을 통해 기지국으로부터 고유번호를 수신하고, 기지국-기준국 맵핑 테이블을 통해 가장 근접한 기준국을 자동으로 선정할 수 있다.
단계(720)에서 디바이스는 선택된 가장 근접한 기준국으로부터 생성된 보정정보를 수신할 수 있다. 디바이스는 이동통신 모듈을 통해 가장 근접한 기준국으로부터 생성된 보정정보를 수신할 수 있다. 디바이스는 GNSS 위성의 원시 데이터와 가장 근접한 기준국으로부터 수신된 보정정보를 이용하여 정밀한 위치 측위를 수행할 수 있다.
도 8은 일 실시예에 있어서, 기준국의 보정정보 전송 방법을 설명하기 위한 흐름도이다.
단계(810)에서 기준국은 디바이스에서 생성된 기지국-기준국 맵핑 테이블에 기초하여 디바이스와 가장 근접한 기준국으로 선택받음에 따라 보정정보를 생성할 수 있다. 예를 들면, 기준국은 하나의 또는 복수의 디바이스로부터 선택받을 수 있다. 기준국은 하나의 또는 복수의 디바이스에 대한 보정정보를 생성할 수 있다.
단계(820)에서 기준국은 생성된 보정정보를 디바이스로 전송할 수 있다. 기준국은 NTRIP 서버 및 캐스터에서 생성된 보정정보를 전달할 수 있다.
이하에서는, 실시예에서 제안된 보정정보 수신 방법의 기술적 효과에 대하여 설명하기로 한다.
향후 정밀 위치 서비스 분야에서 사용되는 디바이스(RTK를 사용하는 측위 단말기)는 GNSS 안테나, GNSS 수신 모듈, 통신모듈(6G, 5G, LTE, LTE-M, NB-IoT 등), MCU 등의 부품으로 구성될 것이다. 향후 디바이스는 다양한 통신 모듈을 탑재함으로써 직접 보정정보를 수신하거나 위치 정보를 외부로 전달할 수 있다. 이에, 디바이스는 탑재된 통신 모듈의 기지국을 이용해 근접한 기준국을 선정해 정밀 위치 측위를 수행할 수 있다.
2022년 기준으로 대한민국에 설치된 통신 3사의 LTE 기지국 수는 약 100만개이고, 5G 기지국 수는 약 20만개이다. 통신 3사는 기지국 수를 지속적으로 설치 예정이기 때문에 기지국 수는 현재 보다 더 많이 증가될 것이다. 그리고 현재 국토지리정보원에서 운용하는 기준국 수는 약 87개이며, 이동통신 기지국에 비해 상대적으로 적은 숫자이다.
실시예에 따르면, 디바이스가 이동통신 기지국의 Cell-ID(각 기지국 별로 부여받은 고유번호)를 이용하여 가장 근접한 기준국 위치를 파악하여 보정정보를 수신받을 수 있도록 한다. 디바이스는 사전에 하나의 기준국으로부터 근접한 위치에 설치된 다수의 기지국과 그룹화하고 이를 기반으로 맵핑 테이블화 시킨다. 테이블화를 통해 하나의 기준국에 다수의 기지국과 맵핑된 기지국-기준국 맵핑 테이블이 구성될 수 있다. 디바이스가 동작 시에 통신을 위해 근처에 기지국과 연결되게 되면, 기지국의 Cell-ID를 파악하고, '기지국-기준국 맵핑 테이블'을 이용해 근접한 기준국 위치를 파악 가능하다. 이를 통해 디바이스의 유저는 수동으로 근접한 기준국을 찾고 정보를 입력할 필요없이, 디바이스 스스로 자동으로 근접한 기준국을 선정해 정밀 위치 측위를 수행할 수 있다.
실시예에 따르면 유저는 디바이스를 이용하여 정밀 위치 측위 시, 일일이 근접한 기준국을 찾거나 정보를 입력할 필요없이 자동으로 현재 위치에서 가장 근접한 기준국을 찾아 보정정보를 수신할 수 있으므로, 유저는 불필요한 과정을 생략할 수 있으며, 정밀한 위치 측위에 필요한 동작을 최소화할 수 있는 효과가 있다.
이상에서 설명된 장치는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치에 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (7)

  1. 디바이스에 의해 수행되는 보정정보 수신 방법에 있어서,
    디바이스에서 생성된 기지국-기준국 맵핑 테이블에 기초하여 상기 디바이스와 가장 근접한 기준국을 선택하는 단계; 및
    상기 선택된 가장 근접한 기준국으로부터 생성된 보정정보를 수신하는 단계
    를 포함하는 보정정보 수신 방법.
  2. 제1항에 있어서,
    상기 선택하는 단계는,
    상기 디바이스가 연결된 이동통신 기지국의 고유번호(Cell-ID)를 이용하여 가장 근접한 기준국을 자동으로 선정하는 단계
    를 포함하는 보정정보 수신 방법.
  3. 제1항에 있어서,
    상기 보정정보를 수신하는 단계는,
    이동통신 모듈을 이용하여 NTRIP 서비스를 통해 상기 선택된 가장 근접한 기준국으로부터 생성된 보정정보를 수신하는 단계
    를 포함하는 보정정보 수신 방법.
  4. 제3항에 있어서,
    상기 보정정보를 수신하는 단계는,
    GNSS 위성으로부터 수신된 위성 신호와 상기 수신된 보정정보를 이용하여 정밀 위치 측위를 수행하는 단계
    를 포함하는 보정정보 수신 방법.
  5. 제1항에 있어서,
    상기 기지국-기준국 맵핑 테이블은,
    기준국이 설치된 위치 정보에 기초하여 하나의 기준국과 하나의 기준국으로부터 일정 범위 내에 설치된 다수의 이동통신 기지국들의 그룹화를 통해 하나의 그룹으로 생성된 것을 특징으로 하는 보정정보 수신 방법.
  6. 디바이스에 있어서,
    디바이스에서 생성된 기지국-기준국 맵핑 테이블에 기초하여 상기 디바이스와 가장 근접한 기준국을 선택하는 기준국 선택부; 및
    상기 선택된 가장 근접한 기준국으로부터 생성된 보정정보를 수신하는 보정정보 수신부
    를 포함하는 디바이스.
  7. 기준국에 의해 수행되는 보정정보 송신 방법에 있어서,
    디바이스에서 생성된 기지국-기준국 맵핑 테이블에 기초하여 상기 디바이스와 가장 근접한 기준국으로 선택받음에 따라 보정정보를 생성하는 단계; 및
    상기 생성된 보정정보를 상기 디바이스로 전송하는 단계
    를 포함하는 보정정보 송신 방법.
PCT/KR2023/010933 2022-08-31 2023-07-27 디바이스의 위치에서 가장 근접한 기준국을 자동 선정하여 보정정보 수신 방법 WO2024049018A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0109716 2022-08-31
KR1020220109716A KR20240030538A (ko) 2022-08-31 2022-08-31 디바이스의 위치에서 가장 근접한 기준국을 자동 선정하여 보정정보 수신 방법

Publications (1)

Publication Number Publication Date
WO2024049018A1 true WO2024049018A1 (ko) 2024-03-07

Family

ID=90098164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010933 WO2024049018A1 (ko) 2022-08-31 2023-07-27 디바이스의 위치에서 가장 근접한 기준국을 자동 선정하여 보정정보 수신 방법

Country Status (2)

Country Link
KR (1) KR20240030538A (ko)
WO (1) WO2024049018A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503195B1 (ko) * 2005-04-01 2005-07-21 (주)이노지오 디지피에스 및 아이오시 통신 기반으로 실시간 좌표 보정을위한 보정 데이터를 제공하는 지리 정보 시스템
KR20130089362A (ko) * 2012-02-02 2013-08-12 아바드(주) 디지피에스를 기반으로 한 해양정보제공 어플리케이션 단말기.
KR20190098245A (ko) * 2016-12-31 2019-08-21 후아웨이 테크놀러지 컴퍼니 리미티드 실시간 키네마틱 포지셔닝 시스템의 가상 기준국의 스위칭 방법 및 장치
WO2020105689A1 (ja) * 2018-11-22 2020-05-28 日本電気株式会社 位置補正情報配信システムと方法と基地局並びにプログラム
JP2021060259A (ja) * 2019-10-07 2021-04-15 ソフトバンク株式会社 測位システム、サーバ、情報配信方法及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503195B1 (ko) * 2005-04-01 2005-07-21 (주)이노지오 디지피에스 및 아이오시 통신 기반으로 실시간 좌표 보정을위한 보정 데이터를 제공하는 지리 정보 시스템
KR20130089362A (ko) * 2012-02-02 2013-08-12 아바드(주) 디지피에스를 기반으로 한 해양정보제공 어플리케이션 단말기.
KR20190098245A (ko) * 2016-12-31 2019-08-21 후아웨이 테크놀러지 컴퍼니 리미티드 실시간 키네마틱 포지셔닝 시스템의 가상 기준국의 스위칭 방법 및 장치
WO2020105689A1 (ja) * 2018-11-22 2020-05-28 日本電気株式会社 位置補正情報配信システムと方法と基地局並びにプログラム
JP2021060259A (ja) * 2019-10-07 2021-04-15 ソフトバンク株式会社 測位システム、サーバ、情報配信方法及びプログラム

Also Published As

Publication number Publication date
KR20240030538A (ko) 2024-03-07

Similar Documents

Publication Publication Date Title
WO2016208838A1 (ko) 실내 측위 서비스 제공 방법 및 시스템
WO2012053790A2 (ko) 주변 무선랜 신호를 관리하는 방법과 그를 위한 장치, ap, 측위 서버 및 단말기
WO2011162583A2 (ko) 인빌딩 전파 환경 맵 생성 방법과 그를 위한 장치
US10171942B2 (en) Methods, apparatuses, systems, and computer readable media for changing settings of mobile terminals using cell identification information
WO2017003094A1 (ko) 위치 기반 서비스 제공 방법 및 시스템
EP2462700A2 (en) Portable terminal providing environment adapted to present situation and method for operating the same
CN103064980A (zh) 基于移动终端及gps查询景点信息的方法和系统
EP2499846A2 (en) Method and apparatus for switching modes
WO2013091145A1 (en) Mechanism for employing and facilitating proximity and context-based deduction of global positioning of computing devices
EP2753949A1 (en) Method for measuring position of user terminal
US20070142063A1 (en) Positioning method and system
KR20150099236A (ko) 위치 기반의 푸시 서비스를 제공하기 위한 장치 및 방법
US10082559B1 (en) PCI cell restriction and coarse geometry
WO2024049018A1 (ko) 디바이스의 위치에서 가장 근접한 기준국을 자동 선정하여 보정정보 수신 방법
CN111641924B (zh) 位置数据生成方法、装置和电子设备
WO2014204266A1 (ko) 무선 통신 시스템에서 안테나 제어 방법 및 장치
US20150103738A1 (en) Selecting an access point for determining position of a device based on traffic load information
CN111565357A (zh) 定位方法和终端
EP2984860B1 (en) Radio white space database discovery
WO2021261904A1 (en) Method and system for eas lifecycle management with edge data network selection
WO2019074280A1 (ko) 가속도 센서를 이용한 측위 주기 조절
WO2015041508A1 (ko) 위치를 표시하는 모바일 디바이스 및 방법, 그리고 음파를 발생하는 음파 발생 장치
CN110896561B (zh) 定位方法、设备、系统和计算机可读存储介质
Cui et al. KNN search-based trajectory cloaking against the Cell-ID tracking in cellular network
WO2019142957A1 (ko) 결제내역 정보를 이용하여 로컬 데이터를 검색하는 방법과 시스템 및 비-일시적인 컴퓨터 판독 가능한 기록 매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860699

Country of ref document: EP

Kind code of ref document: A1