WO2024048739A1 - Driving assistance device - Google Patents

Driving assistance device Download PDF

Info

Publication number
WO2024048739A1
WO2024048739A1 PCT/JP2023/031866 JP2023031866W WO2024048739A1 WO 2024048739 A1 WO2024048739 A1 WO 2024048739A1 JP 2023031866 W JP2023031866 W JP 2023031866W WO 2024048739 A1 WO2024048739 A1 WO 2024048739A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
driving force
control
execution device
speed
Prior art date
Application number
PCT/JP2023/031866
Other languages
French (fr)
Japanese (ja)
Inventor
真由 山本
真子 野口
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2024048739A1 publication Critical patent/WO2024048739A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power

Definitions

  • the present invention relates to a driving support device that supports vehicle operation by a vehicle driver.
  • Patent Document 1 discloses a parking support device that supports parking of a vehicle.
  • the device includes a storage unit that stores the driving force of the vehicle at a predetermined position on the travel route of the vehicle to the target parking position when the vehicle is parked at the target parking position by the driver's driving operation.
  • the device automatically parks the vehicle at the target parking position with the driving force stored in the storage unit, the device controls the vehicle using the driving force stored in the storage unit.
  • the vehicle When the vehicle is driven by an assistance function that automatically adjusts the vehicle body speed, if the target value of the vehicle body speed is low, the driving force of the vehicle is not very large. Therefore, if the wheels come into contact with a step or if the slope of the road surface on which the vehicle is running becomes steep, the vehicle may come to a halt.
  • a driving support device for solving the above problem is a device that adjusts the vehicle speed of a vehicle based on a target vehicle speed.
  • This driving support device uses a reference driving force, which is a driving force of a magnitude necessary to make the vehicle speed equal to or higher than the target vehicle speed, based on either the gradient of the road surface on which the vehicle is located or the weight of the vehicle.
  • a reference driving force derivation unit that derives the reference driving force based on both, and holding control that maintains the driving force of the vehicle at the reference driving force, may be started from when the vehicle is stopped, and the holding control is performed.
  • a driving force command unit that terminates the holding control and increases the driving force of the vehicle to be greater than the reference driving force when the vehicle does not start; and a driving force command unit that increases the vehicle body speed when the vehicle is running.
  • a braking force command unit that adjusts the braking force of the vehicle through feedback control based on the deviation from the target vehicle speed.
  • the driving support device derives the reference driving force based on either or both of the slope of the road surface and the weight of the vehicle.
  • the driving support device maintains the driving force of the vehicle at the reference driving force by performing holding control from when the vehicle is stopped. Thereby, the driving force of the vehicle when the vehicle is stopped can be increased compared to the case where the driving force is set without considering the slope of the road surface and the weight of the vehicle. As a result, the vehicle can be started early in a travel section where the above-mentioned disturbance exists.
  • the driving support device increases the driving force of the vehicle to be larger than the reference driving force when the vehicle does not start even if the holding control is performed. Therefore, the vehicle can be started. Then, when the vehicle starts by adjusting the driving force as described above, the driving support device adjusts the braking force of the vehicle by feedback control based on the deviation. Thereby, even if the driving force of the vehicle is relatively large, the vehicle speed can be adjusted based on the target vehicle speed.
  • FIG. 1 is a configuration diagram schematically showing a vehicle equipped with a driving support device according to an embodiment.
  • FIG. 2 is a schematic diagram showing how the vehicle travels at low speed toward a parking position.
  • FIG. 3 is a flowchart showing a processing routine executed by the driving support device.
  • FIG. 4 is a timing chart showing changes in various parameters when the vehicle automatically travels at low speed toward the parking position.
  • FIG. 5 is a timing chart for explaining a modification example.
  • FIG. 1 illustrates a portion of a vehicle 10 including a driving assistance device 60.
  • the vehicle 10 includes front wheels 11 and rear wheels 12 as wheels.
  • the vehicle 10 includes the same number of friction brakes 20 as wheels, a braking device 30, and a drive device 40.
  • One friction brake 20 is provided for one wheel.
  • the plurality of friction brakes 20 each include a rotating body 21, a friction part 22, and a wheel cylinder 23. Since the rotating body 21 rotates together with the wheel, the friction brake 20 can apply braking force to the wheel by pressing the friction portion 22 against the rotating body 21. The higher the hydraulic pressure within the wheel cylinder 23, the greater the force that presses the friction portion 22 against the rotating body 21. That is, the higher the hydraulic pressure within the wheel cylinder 23, the greater the braking force applied to the wheel.
  • the brake device 30 includes a brake actuator 31 and a brake control section 32 that controls the brake actuator 31.
  • the brake actuator 31 is configured to be able to individually adjust the hydraulic pressure within the plurality of wheel cylinders 23.
  • the brake control unit 32 controls the braking force of the vehicle 10 by operating the brake actuator 31.
  • the brake control unit 32 can communicate with the driving support device 60 via the in-vehicle network. For example, when the brake control unit 32 receives a braking force command value FbR, which is a command value of the braking force of the vehicle 10, from the driving support device 60, the brake control unit 32 operates the brake actuator 31 based on the braking force command value FbR.
  • the drive device 40 includes a power unit 41 and a drive control section 42 that controls the power unit 41.
  • Power unit 41 has at least one of an engine and an electric motor as a power source for vehicle 10. In vehicle 10 , output torque of power unit 41 is transmitted to front wheels 11 . Note that the output torque of the power unit 41 may be transmitted to at least one of the front wheels 11 and the rear wheels 12.
  • the drive control unit 42 controls the driving force of the vehicle 10 by operating the power unit 41.
  • the drive control unit 42 can communicate with the driving support device 60 via the in-vehicle network. For example, when the drive control unit 42 receives the driving force instruction value FdR, which is the instruction value of the driving force of the vehicle 10, from the driving support device 60, the drive control unit 42 operates the power unit 41 based on the driving force instruction value FdR.
  • FdR the driving force instruction value
  • the detection system of the vehicle 10 includes a plurality of sensors.
  • the plurality of sensors include the same number of wheel speed sensors 51 as wheels, longitudinal acceleration sensors 52, and brake switches 53.
  • the plurality of wheel speed sensors 51 each detect the rotational speed of the corresponding wheel.
  • the longitudinal acceleration sensor 52 detects the longitudinal acceleration of the vehicle 10.
  • the brake switch 53 outputs a signal indicating whether or not the driver is operating the brake operating member 15.
  • the brake operation member 15 is, for example, a brake pedal.
  • the rotational speed of the wheel based on the detected value of the wheel speed sensor 51 is referred to as "wheel speed VW.”
  • the longitudinal acceleration based on the detected value of the longitudinal acceleration sensor 52 is referred to as “longitudinal acceleration GX.”
  • the driver's operation of the brake operation member 15 is also referred to as a "brake operation.”
  • the driving support device 60 has a function of supporting the driver's vehicle operation.
  • Vehicle operation here includes accelerator operation, braking operation, and steering operation.
  • the driving support device 60 has a support function that allows the vehicle 10 to automatically travel at low speed. Such support functions are used when parking the vehicle 10 at a parking position.
  • the "low-speed running of the vehicle 10” herein refers to running the vehicle 10 at a speed of less than 10 km/h, for example.
  • automated driving refers to traveling of the vehicle 10 in a state where the vehicle speed of the vehicle 10 is adjusted on the vehicle 10 side.
  • the driving support device 60 includes a processing circuit 61.
  • the processing circuit 61 includes an execution device 62 and a storage device 63.
  • execution device 62 is a CPU.
  • the storage device 63 stores various control programs executed by the execution device 62.
  • the execution device 62 transmits the driving force instruction value FdR to the drive control section 42 and the braking force instruction value FbR to the braking control section 32 when realizing the above support function.
  • the execution device 62 functions as a reference driving force deriving unit M11, a driving force commanding unit M12, and a braking force commanding unit M13 by executing the control program.
  • the reference driving force deriving unit M11, the driving force commanding unit M12, and the braking force commanding unit M13 are functional units for causing the vehicle 10 to travel at a low speed by the above-mentioned support function.
  • the reference driving force deriving unit M11 calculates a reference driving force FdB, which is a driving force of a magnitude necessary to make the vehicle speed VS equal to or higher than the target vehicle speed VSTr, based on the gradient of the road surface on which the vehicle 10 is located and the weight of the vehicle 10. Derived based on.
  • the vehicle speed VS is derived based on at least one of the wheel speeds VW of the plurality of wheels.
  • the target vehicle speed VSTr is set to the above-mentioned speed of less than 10 km/h.
  • the driving force of the vehicle 10 is torque generated by the power unit 41.
  • the reference driving force deriving unit M11 derives a driving force that increases as the weight of the vehicle 10 increases as the standard driving force FdB.
  • the reference driving force deriving unit M11 derives a larger driving force as the reference driving force FdB when the road surface is an uphill road than when the road surface is not an uphill road. Further, when the road surface is an uphill road, the reference driving force deriving unit M11 preferably derives a driving force that is larger as the slope of the road surface becomes steeper as the reference driving force FdB.
  • the reference driving force derivation unit M11 can derive the gradient ⁇ of the road surface based on the longitudinal acceleration GX and the time-differentiated value of the vehicle body speed VS. Further, for example, the reference driving force derivation unit M11 can derive the weight WG of the vehicle 10 based on the vehicle weight of the vehicle 10 and the number of passengers on board the vehicle 10.
  • the vehicle weight is the weight of the vehicle 10 itself.
  • the weight WG of the vehicle 10 referred to here is a weight that also takes into account the weight of the occupant.
  • the reference driving force deriving unit M11 can derive the reference driving force FdB by using the following relational expression (A1).
  • FdB FdA+FdX( ⁇ )+FdY(WG)...(A1)
  • FdA increases the vehicle speed VS from 0 (zero) to the target vehicle speed VSTr when the road surface is level and the number of passengers in the vehicle 10 is one.
  • the specified driving force is the driving force that can be used.
  • the specified driving force FdA can be set based on the specifications of the vehicle 10.
  • FdX( ⁇ ) is the amount of correction of the driving force according to the slope ⁇ of the road surface.
  • the correction amount FdX( ⁇ ) when the slope ⁇ is a value indicating an uphill road is larger than when the slope ⁇ is a value indicating a horizontal road or when the slope ⁇ is a value indicating a downhill road.
  • the correction amount FdX( ⁇ ) can be expressed as “Sin( ⁇ ) ⁇ KA1”. In this case, "KA1" is a predetermined coefficient.
  • FdY(WG) is the amount of correction of the driving force according to the weight WG of the vehicle 10.
  • the correction amount FdY(WG) increases as the weight WG increases.
  • the correction amount FdY(WG) can be expressed as "WG ⁇ KB1".
  • "KB1" is a predetermined coefficient.
  • the driving force command unit M12 starts holding control for holding the driving force command value FdR at the reference driving force FdB from when the vehicle 10 is stopped.
  • a step 101 may exist on the travel route 100 of the vehicle 10.
  • the leading wheel will not be able to get over the step 101.
  • the vehicle 10 may not be able to start, or the vehicle 10 that was traveling at low speed may stop.
  • the rear of the vehicle 10 is the traveling direction of the vehicle 10, so the rear wheels 12 correspond to the leading wheels and the front wheels 11 correspond to the trailing wheels.
  • the forward direction of the vehicle 10 is the traveling direction of the vehicle 10, so the front wheels 11 correspond to the leading wheels and the rear wheels 12 correspond to the trailing wheels.
  • the driving force command unit M12 ends the holding control and makes the driving force command value FdR larger than the reference driving force FdB.
  • the driving force command unit M12 sets the driving force command value FdR based on feedback control using the deviation between the vehicle speed VS and the target vehicle speed VSTr as input.
  • the driving force command unit M12 may derive the amount of increase in the driving force through the feedback control described above, and set the sum of the reference driving force FdB and the amount of increase as the driving force command value FdR.
  • the driving force command unit M12 can increase the driving force command value FdR from the reference driving force FdB by deriving the driving force command value FdR based on such feedback control.
  • the driving force command unit M12 maintains the driving force command value FdR at the reference driving force FdB by continuing to perform the holding control.
  • the braking force command unit M13 adjusts the braking force command value FbR by feedback control based on the deviation between the vehicle body speed VS and the target vehicle body speed VSTr when the vehicle 10 is running while the holding control is being performed. That is, when the vehicle 10 is running, the braking force command unit M13 adjusts the braking force instruction value FbR, thereby maintaining the vehicle body speed VS at the target vehicle body speed VSTr.
  • the braking force command unit M13 adjusts the braking force command value FbR as follows. That is, when the braking force command unit M13 determines that the driver has the intention to start the vehicle 10 while performing the holding control, the braking force reduction control gradually decreases the braking force command value FbR.
  • the braking force command unit M13 determines that the driver has the intention to start the vehicle 10 when the braking operation is released. It is best to determine that there is. Whether or not the braking operation has been released can be determined based on the output signal of the brake switch 53.
  • the braking force command unit M13 sets the braking force upon release FbL, which is the braking force applied to the vehicle 10 at the time the braking operation was released, as the braking force instruction value FbR. Then, the braking force command unit M13 gradually decreases the braking force command value FbR toward 0 (zero).
  • the braking force command unit M13 starts the braking force reduction control when the driver requests that the vehicle 10 start.
  • the execution device 62 determines that the execution conditions for the support function described above are satisfied, it repeatedly executes this processing routine every predetermined control cycle. For example, the execution device 62 detects when the driver performs an operation to turn on the above-mentioned support function, and when the driver starts operating the vehicle in order to park the vehicle 10 at a predetermined parking position. In some cases, it is determined that the execution condition is met.
  • step S11 the execution device 62 derives the reference driving force FdB by functioning as the reference driving force deriving unit M11.
  • the processing executed by the execution device 62 to derive the reference driving force FdB in this manner is also referred to as "reference driving force derivation processing.”
  • the execution device 62 moves the process to step S13.
  • step S13 the execution device 62 determines whether the vehicle 10 is stopped due to the influence of a disturbance. Specifically, the execution device 62 determines whether the vehicle 10 is stopped based on the vehicle speed VS. When determining that the vehicle 10 is stopped, the execution device 62 determines whether the driver has the intention to start the vehicle 10. For example, if the execution device 62 determines that the driver is not performing a braking operation, it determines that the driver has the intention to start the vehicle 10. On the other hand, if the execution device 62 determines that the driver is performing a braking operation, it determines that the driver does not have the intention to start the vehicle 10.
  • step S17 If it is determined that the vehicle 10 is stopped and it is determined that the driver has the intention to start the vehicle 10, it is assumed that the vehicle 10 is stopped due to the influence of the disturbance. On the other hand, if it is determined that the vehicle 10 is stopped and it is determined that the driver does not have the intention to start the vehicle 10, the vehicle 10 is stopped due to the driver's intention. Therefore, it is assumed that the vehicle 10 has not stopped due to the influence of the disturbance. Then, when the execution device 62 determines that the vehicle 10 is stopped due to the influence of the disturbance (S13: YES), the execution device 62 shifts the process to step S17.
  • step S15 when the execution device 62 determines that the vehicle 10 is not stopped due to the influence of the disturbance (S13: NO), the execution device 62 shifts the process to step S15. On the other hand, even when the execution device 62 determines that the vehicle 10 is not stopped, it can be determined that the vehicle 10 is not stopped due to the influence of the disturbance (S13: NO), so the process proceeds to step S15. .
  • step S15 the execution device 62 performs holding control by functioning as the driving force command unit M12. Specifically, the execution device 62 sets the reference driving force FdB derived in step S11 as the driving force instruction value FdR. However, when switching the control from driving force increase control to holding control, the driving force instruction value FdR is larger than the reference driving force FdB. Therefore, immediately after switching the control from driving force increase control to holding control, the execution device 62 gradually decreases the driving force instruction value FdR from the value at the end of the driving force increase control toward the reference driving force FdB. . After deriving the driving force instruction value FdR, the execution device 62 transmits the driving force instruction value FdR to the drive control unit 42 . The process executed by the execution device 62 in step S15 is also referred to as "driving force retention process.” After transmitting the driving force instruction value FdR, the execution device 62 moves the process to step S19.
  • step S17 the execution device 62 performs driving force increase control by functioning as the driving force command unit M12. Specifically, the execution device 62 sets a driving force larger than the reference driving force FdB as the driving force instruction value FdR.
  • the execution device 62 derives the control amount through feedback control using the deviation between the vehicle speed VS and the target vehicle speed VSTr as input. Feedback control is, for example, PID control or PI control.
  • the control amount derived by feedback control is also referred to as FB control amount.
  • the execution device 62 derives a larger value as the amount of increase in the driving force as the FB control amount increases.
  • the execution device 62 sets the sum of the increase amount and the reference driving force FdB as the driving force instruction value FdR.
  • step S17 The process executed by the execution device 62 in step S17 is also referred to as “driving force increase process.” After transmitting the driving force instruction value FdR, the execution device 62 moves the process to step S19.
  • step S19 the execution device 62 determines whether the vehicle 10 is traveling. Specifically, when the vehicle speed VS is greater than 0 (zero), it is assumed that the vehicle 10 is running. On the other hand, if the vehicle speed VS is equal to 0 (zero), it is assumed that the vehicle 10 is not running.
  • the execution device 62 determines that the vehicle 10 is traveling (S19: YES)
  • the execution device 62 moves the process to step S27.
  • the execution device 62 determines that the vehicle 10 is not running (S19: NO)
  • the execution device 62 moves the process to step S21.
  • step S21 the execution device 62 determines whether the driver has the intention to start the vehicle 10.
  • a method for determining whether or not the driver has the intention to start the vehicle 10 is, for example, the same as the method described in step S13 above.
  • the execution device 62 moves the process to step S23.
  • the execution device 62 determines that the driver does not have the intention to start the vehicle 10 (S21: NO)
  • it temporarily ends this processing routine if the execution device 62 determines that the driver does not have the intention to start the vehicle 10 (S21: NO), it temporarily ends this processing routine.
  • step S23 the execution device 62 derives the provisional braking force value FbR1 by functioning as the braking force command unit M13. For example, although it was determined that the driver did not have the intention to start the vehicle 10 when this process routine was executed last time, it was determined that the driver did not have the intention to start the vehicle 10 when this process routine was executed this time. If it is determined that this is the case, the execution device 62 sets the above-mentioned brake force upon release FbL as the temporary brake force value FbR1. On the other hand, if it is determined that the driver has the intention to start the vehicle 10 even during the previous execution of this processing routine, the execution device 62 uses the braking force instruction derived during the previous execution of this processing routine. A value obtained by subtracting a predetermined reduced braking force dFb from the value FbR is derived as a tentative braking force value FbR1.
  • step S25 the execution device 62 selects the larger of the temporary braking force value FbR1 and 0 (zero) as the braking force command value FbR by functioning as the braking force command unit M13. Then, the execution device 62 transmits the braking force instruction value FbR to the braking control unit 32.
  • step S23 and step S25 correspond to "braking force reduction control”. Furthermore, the series of processes executed by the execution device 62 in steps S23 and S25 is also referred to as a "braking force reduction process.” After transmitting the braking force instruction value FbR to the braking control unit 32, the execution device 62 temporarily ends this processing routine.
  • step S27 the execution device 62 derives the braking force command value FbR by functioning as the braking force command unit M13. Specifically, the execution device 62 derives the FB control amount through feedback control using the deviation between the vehicle speed VS and the target vehicle speed VSTr as input. Feedback control is, for example, PID control or PI control. The execution device 62 sets the braking force according to the FB control amount as the braking force instruction value FbR. Then, the execution device 62 transmits the braking force instruction value FbR to the braking control unit 32.
  • the process executed by the execution device 62 in step S27 is also referred to as "braking force adjustment process.” After transmitting the braking force instruction value FbR, the execution device 62 temporarily ends this processing routine.
  • the vehicle 10 is stopped because the driver is performing a braking operation. In this case, it can be determined that the vehicle 10 is not stopped due to a disturbance such as the step 101, so the holding control is performed. Therefore, the reference driving force FdB is set as the driving force instruction value FdR. That is, the driving force instruction value FdR is larger than the driving force at idle. For example, if the vehicle 10 is a conventional vehicle that includes only an engine as a power source, the driving force corresponding to the torque of the engine during idling corresponds to the driving force during idling.
  • the driver's braking operation is released at timing t11.
  • the vehicle 10 since the rear wheels 12 are in contact with the step 101, the vehicle 10 remains stopped.
  • the control is switched from holding control to driving force increase control.
  • the driving force instruction value FdR is increased from the reference driving force FdB.
  • the rear wheels 12 overcome the step 101 at timing t14. That is, the vehicle 10 starts.
  • the control switches from driving force increase control to holding control. Then, the driving force instruction value FdR is decreased from timing t14 to become the reference driving force FdB.
  • the vehicle speed VS increases. Then, the vehicle speed VS exceeds the target vehicle speed VSTr. Therefore, the braking force command value FbR is derived to suppress the vehicle speed VS from exceeding the target vehicle speed VSTr. As a result, while the holding control is being performed, the vehicle speed VS can be maintained at the target vehicle speed VSTr.
  • the "conventional constant speed control” here refers to control in which the driving force during idling is set as the driving force instruction value FdR when the vehicle 10 is stopped.
  • the two-dot chain line in (A) of FIG. 4 shows the transition of the vehicle body speed VS0 in the case of the comparative example.
  • the chain double-dashed line in FIG. 4(D) shows the transition of the driving force Fd0 of the vehicle 10 in the case of the comparative example. Since the target vehicle speed VSTr is set to a relatively low vehicle speed, a relatively small value is set as the feedback control gain.
  • the driving force instruction value FdR is slowly increased from the driving force at the time of idling.
  • the driving force Fd0 of the vehicle 10 reaches a driving force that allows the rear wheels 12 to overcome the step 101, so the vehicle 10 starts moving.
  • the reference driving force FdB which is larger than the driving force at idle, is applied to the drive from before the timing t11 when it is determined that the driver has the intention to start the vehicle 10.
  • This is set as the force instruction value FdR.
  • This reference driving force FdB is a driving force derived based on the slope ⁇ of the road surface and the weight WG of the vehicle 10. Therefore, after timing t11, the driving force Fd of the vehicle 10 can be quickly increased to the driving force that allows the rear wheels 12 to overcome the step 101. Thereby, even if the vehicle 10 is stopped due to the influence of the step 101, which is an example of a disturbance, the vehicle 10 can be started quickly.
  • the front wheel 11 which is the trailing wheel, contacts the step 101. Then, since the vehicle speed VS decreases, the braking force instruction value FbR is decreased by feedback control. As a result, the braking force Fb of the vehicle 10 is reduced while the driving force command value FdR is maintained at the reference driving force FdB, so that the front wheels 11 complete climbing over the step 101. Since the vehicle 10 reaches the target parking position at subsequent timing t17, the driver starts a braking operation. Then, the braking force FbS resulting from the braking operation is applied to the vehicle 10, so the vehicle 10 stops.
  • the driving support device 60 can further provide the following effects.
  • the driving force Fd of the vehicle 10 is made larger than the driving force during idling before the vehicle 10 starts. Therefore, when the driver's braking operation is released, the vehicle 10 can be started quickly. However, since the driving force Fd of the vehicle 10 is large, if the leading wheels of the vehicle 10 are not in contact with the step 101, there is a risk that the vehicle 10 will suddenly start.
  • the braking force Fb is applied to the vehicle 10. Then, the braking force Fb is gradually reduced. Thereby, it is possible to suppress the acceleration of the vehicle 10 from becoming too large when the vehicle 10 starts.
  • the vehicle 10 may start while the braking force instruction value FbR is being reduced by implementing the braking force reduction control.
  • the driving support device 60 ends the braking force reduction control and starts deriving the braking force instruction value FbR by the feedback control. Thereby, after the vehicle 10 starts, it is possible to suppress the vehicle body speed VS from deviating from the target vehicle body speed VSTr.
  • the driver can quickly start the vehicle 10 without operating the accelerator when making the wheels go over the step 101. Therefore, stress caused to the driver due to waiting for the vehicle 10 to start can be suppressed. Additionally, the driver's unnecessary accelerator and braking operations can be suppressed.
  • ⁇ It is not essential to implement braking force reduction control.
  • the execution device 62 does not need to perform the braking force reduction control when determining that the driver has the intention to start the vehicle 10.
  • the execution device 62 may perform the braking force reduction control when determining that the driver has the intention to start the vehicle 10.
  • the execution device 62 decreases the driving force command value FdR from the reference driving force FdB. You may also perform a reduction process upon release. For example, in the release reduction process, the execution device 62 reduces the driving force instruction value FdR from the reference driving force FdB when the driver's braking operation is released. In particular, when the brake is suddenly released such that the rate of decrease in the braking force FbS exceeds a predetermined rate of decrease, it is preferable to decrease the driving force command value FdR by performing a reduction process upon release.
  • the driving force instruction value FdR is set within a predetermined range below the reference driving force FdB and above a predetermined lower limit value FdL that is larger than the driving force during idling.
  • the driving force Fd reduced by executing the release reduction process is higher than the driving force at idle, so while the holding control continues to have the effect of suppressing the start delay due to steps, etc., the driving force Fd is By decreasing the predetermined amount, it is possible to suppress sudden start of the vehicle 10 when the brake is suddenly released on a level road, a downhill road, or the like.
  • the cancellation-time reduction process will be explained with reference to FIG. 5.
  • the driving force command value FdR starts to decrease by executing the release decreasing process.
  • the driving force instruction value FdR reaches the lower limit value FdL at timing t21
  • the driving force instruction value FdR is maintained at the lower limit value FdL during the period from timing t21 to timing t22.
  • the braking force reduction control may not be performed.
  • the speed at which the braking force is reduced in the braking force reduction control may be made smaller than usual.
  • the driving force increase control increases the driving force command value FdR to the reference driving force FdB at a return increasing speed that is higher than the normal increasing speed when increasing the driving force Fd.
  • the execution device 62 may execute the release-time return processing to increase the number. In this case, after the driving force instruction value FdR is increased to the reference driving force FdB by the release return process, the execution device 62 increases the driving force at the normal increasing speed by executing the driving force increase control.
  • the cancellation-time reduction process will be explained with reference to FIG. 5.
  • the driving force instruction value FdR is set to the reference value by the cancellation return process.
  • the driving force is increased at an increasing speed for return up to FdB.
  • the reference driving force FdB is increased at the normal increasing speed from timing t23 onwards.
  • the execution device 62 can increase the driving force instruction value FdR in the driving force increase control, it is not necessary to derive the driving force instruction value FdR based on the feedback control. For example, in the driving force increase control, the execution device 62 may increase the driving force instruction value FdR at a predetermined increasing speed.
  • the execution device 62 sets the driving force instruction value FdR to the driving force instruction value FdR at the time when the vehicle 10 starts. It may also be retained.
  • the holding control is ended and the driving force increasing control is started even if the braking force reduction control is being executed.
  • the holding control may continue to be carried out during a period in which the braking force instruction value FbR is being reduced by the braking force reduction control.
  • the execution device 62 ends the holding control and starts the driving force increase control. You can also do this.
  • the execution device 62 may derive the reference driving force FdB by also considering information other than the road surface slope ⁇ and the weight WG of the vehicle 10. For example, the execution device 62 may derive the reference driving force FdB based on the amount of steering operation, or may derive the reference driving force FdB based on the outside temperature. The execution device 62 may also derive the reference driving force FdB based on information from the navigation device, or may derive the reference driving force FdB based on the analysis result of an image captured by an imaging device such as a camera. You may.
  • the execution device 62 may derive the reference driving force FdB based on either the road surface gradient ⁇ or the weight WG of the vehicle 10. For example, the execution device 62 may derive the reference driving force FdB without using the driving force correction amount FdX( ⁇ ) according to the gradient ⁇ . For example, the execution device 62 may derive the reference driving force FdB without using the driving force correction amount FdX(WG) according to the weight WG.
  • the execution device 62 may derive the driving force correction amount FdX( ⁇ ) according to the road surface slope ⁇ from both the slope ⁇ and the weight WG of the vehicle 10.
  • the correction amount FdX( ⁇ ) may be expressed as “Sin( ⁇ ) ⁇ WG ⁇ KA2”.
  • "KA2" is a predetermined coefficient.
  • the target vehicle speed VSTr may be changed when holding control is being performed. For example, when it is determined that the trailing wheels of the vehicle 10 have climbed over the step 101, the target vehicle speed VSTr may be set to a higher vehicle speed than before it was determined that the trailing wheels have climbed over the step 101.
  • the support function for automatically driving the vehicle 10 at a low speed described above may be realized even when the vehicle 10 is not parked.
  • the execution device 62 performs the driving force increase control at all times when the vehicle stops, the energy efficiency of the vehicle 10 may deteriorate due to the increase in the driving force Fd. Therefore, in a state in which predetermined driving support control is implemented or permitted to be implemented or in a state in which a predetermined driving condition is satisfied, a support function for automatically driving the vehicle at a low speed may be implemented.
  • the driving support device 60 analyzes the image captured by the imaging device to create a bump 101 on the traveling route of the vehicle 10. It is possible to determine whether or not there is a disturbance such as The disturbance may be a depression in the running road surface or a portion where the road surface gradient changes suddenly.
  • the execution device 62 of the driving support device 60 may operate the above-mentioned support function upon detecting the presence of a disturbance by analyzing an image.
  • the processing circuit 61 of the driving support device 60 is not limited to one that includes a CPU and a ROM and executes software processing. That is, the processing circuit 61 may have any of the following configurations (a) to (c).
  • the processing circuit 61 includes one or more processors that execute various processes according to computer programs.
  • the processor includes a CPU and memory such as RAM and ROM.
  • the memory stores program codes or instructions configured to cause the CPU to perform processes.
  • Memory, or computer-readable media includes any available media that can be accessed by a general purpose or special purpose computer.
  • the processing circuit 61 includes one or more dedicated hardware circuits that execute various processes.
  • Dedicated hardware circuits may include, for example, application specific integrated circuits, ie ASICs or FPGAs. Note that ASIC is an abbreviation for "Application Specific Integrated Circuit,” and FPGA is an abbreviation for "Field Programmable Gate Array.”
  • the processing circuit 61 includes a processor that executes some of the various processes according to a computer program, and a dedicated hardware circuit that executes the remaining processes of the various processes.
  • the expression “at least one” used in this specification means “one or more” of the desired options.
  • the expression “at least one” as used herein means “only one option” or “both of the two options” if the number of options is two.
  • the expression “at least one” as used herein means “only one option” or “any combination of two or more options” if there are three or more options. means.

Abstract

An execution device 62 of a driving assistance device 60 derives a reference drive force, which is a drive force required to increase the vehicle speed of a vehicle 10 to at least a target vehicle speed, on the basis of the gradient of a road surface on which the vehicle 10 is positioned and/or the weight of the vehicle 10. From the time at which the vehicle 10 is stopped, the execution device 62 starts a holding control by which a drive force instruction value is held at the reference drive force, and when the vehicle 10 does not start by executing the holding control, the execution device ends the holding control and increases the drive force instruction value beyond the reference drive force. When the vehicle 10 is traveling, the execution device 62 adjusts a braking force instruction value by a feedback control which is based on the deviation between the vehicle speed and the target vehicle speed.

Description

運転支援装置Driving support device
 本発明は、車両の運転者の車両操作を支援する運転支援装置に関する。 The present invention relates to a driving support device that supports vehicle operation by a vehicle driver.
 特許文献1は、車両の駐車を支援する駐車支援装置を開示している。当該装置は、運転者の運転操作によって車両を目標駐車位置に駐車させる場合に、当該目標駐車位置までの車両の移動経路上の所定位置における車両の駆動力を記憶する記憶部を備えている。そして、当該装置は、記憶部が駆動力を記憶している状態で車両を目標駐車位置に自動で駐車させる場合、記憶部に記憶された駆動力を利用して車両を制御する。 Patent Document 1 discloses a parking support device that supports parking of a vehicle. The device includes a storage unit that stores the driving force of the vehicle at a predetermined position on the travel route of the vehicle to the target parking position when the vehicle is parked at the target parking position by the driver's driving operation. When the device automatically parks the vehicle at the target parking position with the driving force stored in the storage unit, the device controls the vehicle using the driving force stored in the storage unit.
特開2015-77862号公報Japanese Patent Application Publication No. 2015-77862
 車両の車体速度を自動で調整する支援機能によって車両を走行させる場合、車体速度の目標値が低いと、車両の駆動力はあまり大きくない。そのため、車輪が段差に接触したり、車両の走行する路面の勾配が急勾配になったりすると、車両が停止してしまうことがある。 When the vehicle is driven by an assistance function that automatically adjusts the vehicle body speed, if the target value of the vehicle body speed is low, the driving force of the vehicle is not very large. Therefore, if the wheels come into contact with a step or if the slope of the road surface on which the vehicle is running becomes steep, the vehicle may come to a halt.
 上記課題を解決するための運転支援装置は、車両の車体速度を目標車体速度に基づいて調整する装置である。この運転支援装置は、前記車体速度を前記目標車体速度以上にするために必要な大きさの駆動力である基準駆動力を、当該車両の位置する路面の勾配及び当該車両の重量の何れか一方又は両方に基づいて導出する基準駆動力導出部と、前記車両の駆動力を前記基準駆動力で保持する保持制御を前記車両が停止しているときから開始し、前記保持制御を実施しても前記車両が発進しない場合には、前記保持制御を終了して前記車両の駆動力を前記基準駆動力よりも大きくする駆動力指令部と、前記車両が走行している場合に、前記車体速度と前記目標車体速度との偏差に基づいたフィードバック制御によって前記車両の制動力を調整する制動力指令部と、を備える。 A driving support device for solving the above problem is a device that adjusts the vehicle speed of a vehicle based on a target vehicle speed. This driving support device uses a reference driving force, which is a driving force of a magnitude necessary to make the vehicle speed equal to or higher than the target vehicle speed, based on either the gradient of the road surface on which the vehicle is located or the weight of the vehicle. Alternatively, a reference driving force derivation unit that derives the reference driving force based on both, and holding control that maintains the driving force of the vehicle at the reference driving force, may be started from when the vehicle is stopped, and the holding control is performed. a driving force command unit that terminates the holding control and increases the driving force of the vehicle to be greater than the reference driving force when the vehicle does not start; and a driving force command unit that increases the vehicle body speed when the vehicle is running. A braking force command unit that adjusts the braking force of the vehicle through feedback control based on the deviation from the target vehicle speed.
 上記運転支援装置は、基準駆動力を、路面の勾配及び車両の重量の何れか一方又は両方に基づいて導出する。そして、上記運転支援装置は、車両が停止しているときから保持制御を実施することによって、車両の駆動力を基準駆動力で保持する。これにより、車両の停止時における当該車両の駆動力を、路面の勾配及び車両の重量を考慮しないで駆動力を設定する場合と比較して大きくできる。その結果、上記のような外乱の存在する走行区間において車両を早期に発進させることができる。 The driving support device derives the reference driving force based on either or both of the slope of the road surface and the weight of the vehicle. The driving support device maintains the driving force of the vehicle at the reference driving force by performing holding control from when the vehicle is stopped. Thereby, the driving force of the vehicle when the vehicle is stopped can be increased compared to the case where the driving force is set without considering the slope of the road surface and the weight of the vehicle. As a result, the vehicle can be started early in a travel section where the above-mentioned disturbance exists.
 また、上記運転支援装置は、保持制御を実施しても車両が発進しない場合には、車両の駆動力を基準駆動力よりも大きくする。そのため、車両を発進させることができる。
 そして、上記運転支援装置は、上記のような駆動力の調整によって車両が発進すると、上記偏差に基づいたフィードバック制御によって車両の制動力を調整する。これにより、車両の駆動力が比較的大きくても、車体速度を目標車体速度に基づいて調整できる。
Further, the driving support device increases the driving force of the vehicle to be larger than the reference driving force when the vehicle does not start even if the holding control is performed. Therefore, the vehicle can be started.
Then, when the vehicle starts by adjusting the driving force as described above, the driving support device adjusts the braking force of the vehicle by feedback control based on the deviation. Thereby, even if the driving force of the vehicle is relatively large, the vehicle speed can be adjusted based on the target vehicle speed.
図1は、実施形態の運転支援装置を備える車両の概略を示す構成図である。FIG. 1 is a configuration diagram schematically showing a vehicle equipped with a driving support device according to an embodiment. 図2は、駐車位置に向けて車両が低速で走行する様子を示す模式図である。FIG. 2 is a schematic diagram showing how the vehicle travels at low speed toward a parking position. 図3は、同運転支援装置で実行される処理ルーチンを示すフローチャートである。FIG. 3 is a flowchart showing a processing routine executed by the driving support device. 図4は、駐車位置に向けて車両が低速で自動走行する際における各種のパラメータの推移を示すタイミングチャートである。FIG. 4 is a timing chart showing changes in various parameters when the vehicle automatically travels at low speed toward the parking position. 図5は、変更例を説明するためのタイミングチャートである。FIG. 5 is a timing chart for explaining a modification example.
 以下、運転支援装置の一実施形態を図1~図4に従って説明する。
 図1は、運転支援装置60を備える車両10の一部を図示している。
 <車両の構成>
 車両10は、車輪として前輪11及び後輪12を備えている。車両10は、車輪と同数の摩擦ブレーキ20と、制動装置30と、駆動装置40とを備えている。1つの車輪に対して1つの摩擦ブレーキ20が設けられている。
An embodiment of the driving support device will be described below with reference to FIGS. 1 to 4.
FIG. 1 illustrates a portion of a vehicle 10 including a driving assistance device 60. As shown in FIG.
<Vehicle configuration>
The vehicle 10 includes front wheels 11 and rear wheels 12 as wheels. The vehicle 10 includes the same number of friction brakes 20 as wheels, a braking device 30, and a drive device 40. One friction brake 20 is provided for one wheel.
 複数の摩擦ブレーキ20は、回転体21と摩擦部22とホイールシリンダ23とをそれぞれ有している。回転体21は車輪と一体に回転するため、摩擦ブレーキ20は、摩擦部22を回転体21に押し付けることによって車輪に制動力を付与できる。ホイールシリンダ23内の液圧が高いほど、摩擦部22を回転体21に押し付ける力が大きくなる。すなわち、ホイールシリンダ23内の液圧が高いほど、車輪に付与される制動力が大きくなる。 The plurality of friction brakes 20 each include a rotating body 21, a friction part 22, and a wheel cylinder 23. Since the rotating body 21 rotates together with the wheel, the friction brake 20 can apply braking force to the wheel by pressing the friction portion 22 against the rotating body 21. The higher the hydraulic pressure within the wheel cylinder 23, the greater the force that presses the friction portion 22 against the rotating body 21. That is, the higher the hydraulic pressure within the wheel cylinder 23, the greater the braking force applied to the wheel.
 制動装置30は、制動アクチュエータ31と、制動アクチュエータ31を制御する制動制御部32とを有している。制動アクチュエータ31は、複数のホイールシリンダ23内の液圧を個別に調整できるように構成されている。 The brake device 30 includes a brake actuator 31 and a brake control section 32 that controls the brake actuator 31. The brake actuator 31 is configured to be able to individually adjust the hydraulic pressure within the plurality of wheel cylinders 23.
 制動制御部32は、制動アクチュエータ31を作動させることによって車両10の制動力を制御する。制動制御部32は、車内ネットワークを介して運転支援装置60と通信できる。例えば、制動制御部32は、車両10の制動力の指示値である制動力指示値FbRを運転支援装置60から受信した場合、制動力指示値FbRに基づいて制動アクチュエータ31を作動させる。 The brake control unit 32 controls the braking force of the vehicle 10 by operating the brake actuator 31. The brake control unit 32 can communicate with the driving support device 60 via the in-vehicle network. For example, when the brake control unit 32 receives a braking force command value FbR, which is a command value of the braking force of the vehicle 10, from the driving support device 60, the brake control unit 32 operates the brake actuator 31 based on the braking force command value FbR.
 駆動装置40は、パワーユニット41と、パワーユニット41を制御する駆動制御部42とを有している。パワーユニット41は、エンジン及び電気モータのうちの少なくとも一方を車両10の動力源として有している。車両10では、パワーユニット41の出力トルクが前輪11に伝達される。なお、パワーユニット41の出力トルクは、前輪11及び後輪12のうちの少なくとも一方に伝達されればよい。 The drive device 40 includes a power unit 41 and a drive control section 42 that controls the power unit 41. Power unit 41 has at least one of an engine and an electric motor as a power source for vehicle 10. In vehicle 10 , output torque of power unit 41 is transmitted to front wheels 11 . Note that the output torque of the power unit 41 may be transmitted to at least one of the front wheels 11 and the rear wheels 12.
 駆動制御部42は、パワーユニット41を作動させることによって車両10の駆動力を制御する。駆動制御部42は、車内ネットワークを介して運転支援装置60と通信できる。例えば、駆動制御部42は、車両10の駆動力の指示値である駆動力指示値FdRを運転支援装置60から受信した場合、駆動力指示値FdRに基づいてパワーユニット41を作動させる。 The drive control unit 42 controls the driving force of the vehicle 10 by operating the power unit 41. The drive control unit 42 can communicate with the driving support device 60 via the in-vehicle network. For example, when the drive control unit 42 receives the driving force instruction value FdR, which is the instruction value of the driving force of the vehicle 10, from the driving support device 60, the drive control unit 42 operates the power unit 41 based on the driving force instruction value FdR.
 <車両の検出系>
 車両10の検出系は、複数のセンサを備えている。複数のセンサは、車輪と同数の車輪速度センサ51と、前後加速度センサ52と、ブレーキスイッチ53とを含んでいる。複数の車輪速度センサ51は、対応する車輪の回転速度をそれぞれ検出する。前後加速度センサ52は、車両10の前後加速度を検出する。ブレーキスイッチ53は、運転者が制動操作部材15を操作しているか否かを示す信号を出力する。制動操作部材15は、例えば、ブレーキペダルである。車輪速度センサ51の検出値に基づいた車輪の回転速度を「車輪速度VW」という。前後加速度センサ52の検出値に基づいた前後加速度を「前後加速度GX」という。運転者の制動操作部材15の操作を「制動操作」ともいう。
<Vehicle detection system>
The detection system of the vehicle 10 includes a plurality of sensors. The plurality of sensors include the same number of wheel speed sensors 51 as wheels, longitudinal acceleration sensors 52, and brake switches 53. The plurality of wheel speed sensors 51 each detect the rotational speed of the corresponding wheel. The longitudinal acceleration sensor 52 detects the longitudinal acceleration of the vehicle 10. The brake switch 53 outputs a signal indicating whether or not the driver is operating the brake operating member 15. The brake operation member 15 is, for example, a brake pedal. The rotational speed of the wheel based on the detected value of the wheel speed sensor 51 is referred to as "wheel speed VW." The longitudinal acceleration based on the detected value of the longitudinal acceleration sensor 52 is referred to as "longitudinal acceleration GX." The driver's operation of the brake operation member 15 is also referred to as a "brake operation."
 <運転支援装置>
 運転支援装置60は、運転者の車両操作を支援する機能を有している。ここでいう「車両操作」は、アクセル操作、制動操作及びステアリング操作を含んでいる。例えば、運転支援装置60は、車両10の低速での自動走行を行わせる支援機能を有している。こうした支援機能は、車両10を駐車位置に駐車させる際などに用いられる。ここでいう「車両10の低速走行」とは、例えば10km/h未満での車両10の走行である。また、「自動走行」とは、車両10の車体速度を車両10側で調整する状態での車両10の走行である。
<Driving support device>
The driving support device 60 has a function of supporting the driver's vehicle operation. "Vehicle operation" here includes accelerator operation, braking operation, and steering operation. For example, the driving support device 60 has a support function that allows the vehicle 10 to automatically travel at low speed. Such support functions are used when parking the vehicle 10 at a parking position. The "low-speed running of the vehicle 10" herein refers to running the vehicle 10 at a speed of less than 10 km/h, for example. Furthermore, "automatic driving" refers to traveling of the vehicle 10 in a state where the vehicle speed of the vehicle 10 is adjusted on the vehicle 10 side.
 運転支援装置60は処理回路61を備えている。処理回路61は、実行装置62と記憶装置63とを有している。例えば、実行装置62はCPUである。記憶装置63は、実行装置62によって実行される各種の制御プログラムを記憶している。実行装置62は、上記の支援機能を実現する際に、駆動力指示値FdRを駆動制御部42に送信したり、制動力指示値FbRを制動制御部32に送信したりする。 The driving support device 60 includes a processing circuit 61. The processing circuit 61 includes an execution device 62 and a storage device 63. For example, execution device 62 is a CPU. The storage device 63 stores various control programs executed by the execution device 62. The execution device 62 transmits the driving force instruction value FdR to the drive control section 42 and the braking force instruction value FbR to the braking control section 32 when realizing the above support function.
 実行装置62は、制御プログラムを実行することにより、基準駆動力導出部M11、駆動力指令部M12及び制動力指令部M13として機能する。基準駆動力導出部M11、駆動力指令部M12及び制動力指令部M13は、上記の支援機能によって車両10を低速で走行させるための機能部である。 The execution device 62 functions as a reference driving force deriving unit M11, a driving force commanding unit M12, and a braking force commanding unit M13 by executing the control program. The reference driving force deriving unit M11, the driving force commanding unit M12, and the braking force commanding unit M13 are functional units for causing the vehicle 10 to travel at a low speed by the above-mentioned support function.
 <基準駆動力導出部>
 基準駆動力導出部M11は、車体速度VSを目標車体速度VSTr以上にするために必要な大きさの駆動力である基準駆動力FdBを、車両10が位置する路面の勾配及び車両10の重量に基づいて導出する。車体速度VSは、複数の車輪の車輪速度VWのうちの少なくとも1つに基づいて導出される。目標車体速度VSTrとして、上記した10km/h未満の速度が設定されている。例えば、車両10の駆動力は、パワーユニット41の発生するトルクである。
<Reference driving force derivation section>
The reference driving force deriving unit M11 calculates a reference driving force FdB, which is a driving force of a magnitude necessary to make the vehicle speed VS equal to or higher than the target vehicle speed VSTr, based on the gradient of the road surface on which the vehicle 10 is located and the weight of the vehicle 10. Derived based on. The vehicle speed VS is derived based on at least one of the wheel speeds VW of the plurality of wheels. The target vehicle speed VSTr is set to the above-mentioned speed of less than 10 km/h. For example, the driving force of the vehicle 10 is torque generated by the power unit 41.
 基準駆動力導出部M11は、車両10の重量が大きいほど大きい駆動力を基準駆動力FdBとして導出する。基準駆動力導出部M11は、路面が登坂路である場合には、路面が登坂路ではない場合よりも大きい駆動力を基準駆動力FdBとして導出する。さらに、基準駆動力導出部M11は、路面が登坂路である場合、路面の勾配が急勾配であるほど大きい駆動力を基準駆動力FdBとして導出するとよい。 The reference driving force deriving unit M11 derives a driving force that increases as the weight of the vehicle 10 increases as the standard driving force FdB. The reference driving force deriving unit M11 derives a larger driving force as the reference driving force FdB when the road surface is an uphill road than when the road surface is not an uphill road. Further, when the road surface is an uphill road, the reference driving force deriving unit M11 preferably derives a driving force that is larger as the slope of the road surface becomes steeper as the reference driving force FdB.
 なお、基準駆動力導出部M11は、前後加速度GXと、車体速度VSを時間微分した値とを基に、路面の勾配θを導出できる。また例えば、基準駆動力導出部M11は、車両10の車体重量と、車両10に搭乗している乗員の人数とを基に、車両10の重量WGを導出できる。車体重量とは、車両10そのものの重量である。ここでいう車両10の重量WGは、乗員の体重なども加味した重量である。 Note that the reference driving force derivation unit M11 can derive the gradient θ of the road surface based on the longitudinal acceleration GX and the time-differentiated value of the vehicle body speed VS. Further, for example, the reference driving force derivation unit M11 can derive the weight WG of the vehicle 10 based on the vehicle weight of the vehicle 10 and the number of passengers on board the vehicle 10. The vehicle weight is the weight of the vehicle 10 itself. The weight WG of the vehicle 10 referred to here is a weight that also takes into account the weight of the occupant.
 例えば、基準駆動力導出部M11は、以下の関係式(A1)を用いることによって基準駆動力FdBを導出できる。
 FdB=FdA+FdX(θ)+FdY(WG)   ・・・(A1)
 関係式(A1)において、「FdA」は、路面が水平路であり、且つ車両10の搭乗者数が1名である場合において、車体速度VSを0(零)から目標車体速度VSTrまで増大させることのできる駆動力である規定駆動力である。規定駆動力FdAは、車両10の諸元に基づいて設定できる。
For example, the reference driving force deriving unit M11 can derive the reference driving force FdB by using the following relational expression (A1).
FdB=FdA+FdX(θ)+FdY(WG)...(A1)
In relational expression (A1), "FdA" increases the vehicle speed VS from 0 (zero) to the target vehicle speed VSTr when the road surface is level and the number of passengers in the vehicle 10 is one. The specified driving force is the driving force that can be used. The specified driving force FdA can be set based on the specifications of the vehicle 10.
 関係式(A1)において、「FdX(θ)」は、路面の勾配θに応じた駆動力の補正量である。勾配θが登坂路を示す値である場合の補正量FdX(θ)は、勾配θが水平路を示す値であったり、勾配θが降坂路を示す値であったりする場合よりも大きい。勾配θが登坂路を示す値である場合であっても、勾配θが示す登坂路の傾斜度合いが大きいほど、補正量FdX(θ)は大きくなる。例えば、補正量FdX(θ)は、「Sin(θ)×KA1」として表すことができる。この場合、「KA1」は所定の係数である。 In relational expression (A1), "FdX(θ)" is the amount of correction of the driving force according to the slope θ of the road surface. The correction amount FdX(θ) when the slope θ is a value indicating an uphill road is larger than when the slope θ is a value indicating a horizontal road or when the slope θ is a value indicating a downhill road. Even when the gradient θ is a value indicating an uphill road, the larger the degree of inclination of the uphill road indicated by the gradient θ, the larger the correction amount FdX(θ) becomes. For example, the correction amount FdX(θ) can be expressed as “Sin(θ)×KA1”. In this case, "KA1" is a predetermined coefficient.
 関係式(式1)において、「FdY(WG)」は、車両10の重量WGに応じた駆動力の補正量である。補正量FdY(WG)は、重量WGが大きいほど大きくなる。例えば、補正量FdY(WG)は、「WG×KB1」として表すことができる。この場合、「KB1」は所定の係数である。 In the relational expression (Formula 1), “FdY(WG)” is the amount of correction of the driving force according to the weight WG of the vehicle 10. The correction amount FdY(WG) increases as the weight WG increases. For example, the correction amount FdY(WG) can be expressed as "WG×KB1". In this case, "KB1" is a predetermined coefficient.
 <駆動力指令部>
 駆動力指令部M12は、駆動力指示値FdRを基準駆動力FdBで保持する保持制御を車両10が停止しているときから開始する。
<Driving force command section>
The driving force command unit M12 starts holding control for holding the driving force command value FdR at the reference driving force FdB from when the vehicle 10 is stopped.
 ここで、図2に示すように車両10の走行経路100に段差101が存在することがある。上記保持制御が実施されている場合に、前輪11及び後輪12のうち、車両10の進行方向に位置する車輪である先行輪が段差101に接触すると、先行輪が段差101を乗り越えられず、車両10が発進できなかったり、低速で走行していた車両10が停止したりすることがある。図2に示す例のように車両10が後退している場合、車両10の後方が車両10の進行方向となるため、後輪12が先行輪に対応し、前輪11が後続輪に対応する。一方、車両10が前進している場合、車両10の前方が車両10の進行方向となるため、前輪11が先行輪に対応し、後輪12が後続輪に対応する。 Here, as shown in FIG. 2, a step 101 may exist on the travel route 100 of the vehicle 10. When the above-mentioned holding control is being carried out, if one of the front wheels 11 and rear wheels 12, which is a wheel located in the traveling direction of the vehicle 10, comes into contact with the step 101, the leading wheel will not be able to get over the step 101. The vehicle 10 may not be able to start, or the vehicle 10 that was traveling at low speed may stop. When the vehicle 10 is moving backward as in the example shown in FIG. 2, the rear of the vehicle 10 is the traveling direction of the vehicle 10, so the rear wheels 12 correspond to the leading wheels and the front wheels 11 correspond to the trailing wheels. On the other hand, when the vehicle 10 is moving forward, the forward direction of the vehicle 10 is the traveling direction of the vehicle 10, so the front wheels 11 correspond to the leading wheels and the rear wheels 12 correspond to the trailing wheels.
 そこで、駆動力指令部M12は、保持制御を実施しても車両10が発進しないと判定した場合には、保持制御を終了して駆動力指示値FdRを基準駆動力FdBよりも大きくする。例えば、駆動力指令部M12は、車体速度VSと目標車体速度VSTrとの偏差を入力とするフィードバック制御に基づいて駆動力指示値FdRを設定する。この場合、駆動力指令部M12は、上記フィードバック制御によって駆動力の増大量を導出し、基準駆動力FdBと当該増大量との和を駆動力指示値FdRとして設定するとよい。車両10が停止している場合、車体速度VSは目標車体速度VSTrよりも低い。そのため、駆動力指令部M12は、こうしたフィードバック制御に基づいて駆動力指示値FdRを導出することにより、駆動力指示値FdRを基準駆動力FdBから増大させることができる。 Therefore, if it is determined that the vehicle 10 will not start even if the holding control is performed, the driving force command unit M12 ends the holding control and makes the driving force command value FdR larger than the reference driving force FdB. For example, the driving force command unit M12 sets the driving force command value FdR based on feedback control using the deviation between the vehicle speed VS and the target vehicle speed VSTr as input. In this case, the driving force command unit M12 may derive the amount of increase in the driving force through the feedback control described above, and set the sum of the reference driving force FdB and the amount of increase as the driving force command value FdR. When the vehicle 10 is stopped, the vehicle speed VS is lower than the target vehicle speed VSTr. Therefore, the driving force command unit M12 can increase the driving force command value FdR from the reference driving force FdB by deriving the driving force command value FdR based on such feedback control.
 一方、駆動力指令部M12は、車両10が発進した場合、すなわち車両10が走行している場合、保持制御の実施を継続することによって駆動力指示値FdRを基準駆動力FdBで保持する。 On the other hand, when the vehicle 10 starts, that is, when the vehicle 10 is running, the driving force command unit M12 maintains the driving force command value FdR at the reference driving force FdB by continuing to perform the holding control.
 <制動力指令部>
 制動力指令部M13は、保持制御の実施中において車両10が走行している場合に、車体速度VSと目標車体速度VSTrとの偏差に基づいたフィードバック制御によって制動力指示値FbRを調整する。すなわち、車両10が走行している場合は、制動力指令部M13が制動力指示値FbRを調整することによって、車体速度VSを目標車体速度VSTrで保持できる。
<Braking force command section>
The braking force command unit M13 adjusts the braking force command value FbR by feedback control based on the deviation between the vehicle body speed VS and the target vehicle body speed VSTr when the vehicle 10 is running while the holding control is being performed. That is, when the vehicle 10 is running, the braking force command unit M13 adjusts the braking force instruction value FbR, thereby maintaining the vehicle body speed VS at the target vehicle body speed VSTr.
 一方、制動力指令部M13は、保持制御が実施されている最中であっても車両10が停止している場合、次のように制動力指示値FbRを調整する。すなわち、制動力指令部M13は、保持制御の実施中に、車両10を発進させる意志を運転者が有していると判定した場合に、制動力指示値FbRを徐々に減少させる制動力減少制御を実施する。例えば運転者の制動操作に起因する制動力によって車両10が停止していた場合、制動操作が解除されたときに、制動力指令部M13は、車両10を発進させる意志を運転者が有していると判定するとよい。制動操作が解除されたか否かについては、ブレーキスイッチ53の出力信号を基に判断できる。この場合、制動力減少制御において、制動力指令部M13は、制動操作が解除された時点で車両10に付与されていた制動力である解除時制動力FbLを制動力指示値FbRとして設定する。そして、制動力指令部M13は、制動力指示値FbRを0(零)に向けて徐々に減少させる。 On the other hand, if the vehicle 10 is stopped even while the holding control is being performed, the braking force command unit M13 adjusts the braking force command value FbR as follows. That is, when the braking force command unit M13 determines that the driver has the intention to start the vehicle 10 while performing the holding control, the braking force reduction control gradually decreases the braking force command value FbR. Implement. For example, if the vehicle 10 is stopped due to the braking force caused by the driver's braking operation, the braking force command unit M13 determines that the driver has the intention to start the vehicle 10 when the braking operation is released. It is best to determine that there is. Whether or not the braking operation has been released can be determined based on the output signal of the brake switch 53. In this case, in the braking force reduction control, the braking force command unit M13 sets the braking force upon release FbL, which is the braking force applied to the vehicle 10 at the time the braking operation was released, as the braking force instruction value FbR. Then, the braking force command unit M13 gradually decreases the braking force command value FbR toward 0 (zero).
 なお、上記のように制動操作が解除された場合、運転者が車両10の発進を要求したとも云える。したがって、制動力指令部M13は、運転者が車両10の発進を要求した場合に制動力減少制御を開始するとも云える。 Note that when the braking operation is released as described above, it can also be said that the driver has requested that the vehicle 10 start. Therefore, it can be said that the braking force command unit M13 starts the braking force reduction control when the driver requests that the vehicle 10 start.
 <走行支援処理>
 図3を参照し、上記支援機能によって車両10を低速で自動走行させる際に実行装置62が実行する走行支援処理を示す処理ルーチンについて説明する。
<Driving support processing>
With reference to FIG. 3, a processing routine showing a driving support process executed by the execution device 62 when the vehicle 10 is caused to automatically travel at a low speed by the above-mentioned support function will be described.
 実行装置62は、上記の支援機能の実行条件が成立していると判定している場合、所定の制御サイクル毎に本処理ルーチンを繰り返し実行する。例えば、実行装置62は、上記の支援機能をオンとする操作を運転者が行った場合、及び、所定の駐車位置に車両10を駐車させようと運転者が車両操作を開始したことを検知した場合などに、実行条件が成立していると判定する。 If the execution device 62 determines that the execution conditions for the support function described above are satisfied, it repeatedly executes this processing routine every predetermined control cycle. For example, the execution device 62 detects when the driver performs an operation to turn on the above-mentioned support function, and when the driver starts operating the vehicle in order to park the vehicle 10 at a predetermined parking position. In some cases, it is determined that the execution condition is met.
 ステップS11において、実行装置62は、基準駆動力導出部M11として機能することにより、基準駆動力FdBを導出する。このように基準駆動力FdBを導出するために実行装置62が実行する処理を「基準駆動力導出処理」ともいう。実行装置62は、基準駆動力FdBを導出すると、実行装置62は、処理をステップS13に移行する。 In step S11, the execution device 62 derives the reference driving force FdB by functioning as the reference driving force deriving unit M11. The processing executed by the execution device 62 to derive the reference driving force FdB in this manner is also referred to as "reference driving force derivation processing." After the execution device 62 derives the reference driving force FdB, the execution device 62 moves the process to step S13.
 ステップS13において、実行装置62は、外乱の影響によって車両10が停止しているか否かを判定する。具体的には、実行装置62は、車体速度VSを基に、車両10が停止しているか否かを判定する。実行装置62は、車両10が停止していると判定した場合、車両10を発進させる意志を運転者が有しているか否かを判定する。例えば、実行装置62は、運転者が制動操作を行っていないと判定した場合、車両10を発進させる意志を運転者が有していると判定する。一方、実行装置62は、運転者が制動操作を行っていると判定した場合、車両10を発進させる意志を運転者が有していないと判定する。車両10が停止していると判定しており、且つ車両10を発進させる意志を運転者が有していると判定した場合は、外乱の影響によって車両10が停止していると見なす。一方、車両10が停止していると判定しており、且つ車両10を発進させる意志を運転者が有していないと判定した場合は、運転者の意思によって車両10が停止している状態であって、外乱の影響によって車両10が停止していないと見なす。そして、実行装置62は、外乱の影響によって車両10が停止していると判定した場合(S13:YES)、処理をステップS17に移行する。一方、実行装置62は、外乱の影響によって車両10が停止していないと判定した場合(S13:NO)、処理をステップS15に移行する。その一方で、実行装置62は、車両10が停止していないと判定した場合も、外乱の影響によって車両10が停止していないと判定できるため(S13:NO)、処理をステップS15に移行する。 In step S13, the execution device 62 determines whether the vehicle 10 is stopped due to the influence of a disturbance. Specifically, the execution device 62 determines whether the vehicle 10 is stopped based on the vehicle speed VS. When determining that the vehicle 10 is stopped, the execution device 62 determines whether the driver has the intention to start the vehicle 10. For example, if the execution device 62 determines that the driver is not performing a braking operation, it determines that the driver has the intention to start the vehicle 10. On the other hand, if the execution device 62 determines that the driver is performing a braking operation, it determines that the driver does not have the intention to start the vehicle 10. If it is determined that the vehicle 10 is stopped and it is determined that the driver has the intention to start the vehicle 10, it is assumed that the vehicle 10 is stopped due to the influence of the disturbance. On the other hand, if it is determined that the vehicle 10 is stopped and it is determined that the driver does not have the intention to start the vehicle 10, the vehicle 10 is stopped due to the driver's intention. Therefore, it is assumed that the vehicle 10 has not stopped due to the influence of the disturbance. Then, when the execution device 62 determines that the vehicle 10 is stopped due to the influence of the disturbance (S13: YES), the execution device 62 shifts the process to step S17. On the other hand, when the execution device 62 determines that the vehicle 10 is not stopped due to the influence of the disturbance (S13: NO), the execution device 62 shifts the process to step S15. On the other hand, even when the execution device 62 determines that the vehicle 10 is not stopped, it can be determined that the vehicle 10 is not stopped due to the influence of the disturbance (S13: NO), so the process proceeds to step S15. .
 ステップS15において、実行装置62は、駆動力指令部M12として機能することにより、保持制御を実施する。具体的には、実行装置62は、ステップS11で導出した基準駆動力FdBを駆動力指示値FdRとして設定する。ただし、制御を駆動力増大制御から保持制御に切り替える場合、駆動力指示値FdRは基準駆動力FdBよりも大きい。そのため、実行装置62は、制御を駆動力増大制御から保持制御に切り替えた直後では、駆動力指示値FdRを、駆動力増大制御の終了時の値から基準駆動力FdBに向けて徐々に減少させる。実行装置62は、駆動力指示値FdRを導出すると、当該駆動力指示値FdRを駆動制御部42に送信する。ステップS15で実行装置62が実行する処理を、「駆動力保持処理」ともいう。実行装置62は、駆動力指示値FdRを送信すると、処理をステップS19に移行する。 In step S15, the execution device 62 performs holding control by functioning as the driving force command unit M12. Specifically, the execution device 62 sets the reference driving force FdB derived in step S11 as the driving force instruction value FdR. However, when switching the control from driving force increase control to holding control, the driving force instruction value FdR is larger than the reference driving force FdB. Therefore, immediately after switching the control from driving force increase control to holding control, the execution device 62 gradually decreases the driving force instruction value FdR from the value at the end of the driving force increase control toward the reference driving force FdB. . After deriving the driving force instruction value FdR, the execution device 62 transmits the driving force instruction value FdR to the drive control unit 42 . The process executed by the execution device 62 in step S15 is also referred to as "driving force retention process." After transmitting the driving force instruction value FdR, the execution device 62 moves the process to step S19.
 ステップS17において、実行装置62は、駆動力指令部M12として機能することにより、駆動力増大制御を実施する。具体的には、実行装置62は、基準駆動力FdBよりも大きい駆動力を駆動力指示値FdRとして設定する。例えば、実行装置62は、車体速度VSと目標車体速度VSTrとの偏差を入力とするフィードバック制御によって制御量を導出する。フィードバック制御は、例えば、PID制御又はPI制御である。フィードバック制御によって導出される制御量をFB制御量ともいう。実行装置62は、FB制御量が大きいほど大きい値を駆動力の増大量として導出する。実行装置62は、当該増大量と基準駆動力FdBとの和を駆動力指示値FdRとして設定する。そして、実行装置62は、駆動力指示値FdRを駆動制御部42に送信する。ステップS17で実行装置62が実行する処理を、「駆動力増大処理」ともいう。実行装置62は、駆動力指示値FdRを送信すると、処理をステップS19に移行する。 In step S17, the execution device 62 performs driving force increase control by functioning as the driving force command unit M12. Specifically, the execution device 62 sets a driving force larger than the reference driving force FdB as the driving force instruction value FdR. For example, the execution device 62 derives the control amount through feedback control using the deviation between the vehicle speed VS and the target vehicle speed VSTr as input. Feedback control is, for example, PID control or PI control. The control amount derived by feedback control is also referred to as FB control amount. The execution device 62 derives a larger value as the amount of increase in the driving force as the FB control amount increases. The execution device 62 sets the sum of the increase amount and the reference driving force FdB as the driving force instruction value FdR. Then, the execution device 62 transmits the driving force instruction value FdR to the drive control unit 42. The process executed by the execution device 62 in step S17 is also referred to as "driving force increase process." After transmitting the driving force instruction value FdR, the execution device 62 moves the process to step S19.
 ステップS19において、実行装置62は、車両10が走行しているか否かを判定する。具体的には、車体速度VSが0(零)よりも大きい場合は、車両10が走行していると見なす。一方、車体速度VSが0(零)と等しい場合は、車両10が走行していないと見なす。実行装置62は、車両10が走行していると判定した場合(S19:YES)、処理をステップS27に移行する。一方、実行装置62は、車両10が走行していないと判定した場合(S19:NO)、処理をステップS21に移行する。 In step S19, the execution device 62 determines whether the vehicle 10 is traveling. Specifically, when the vehicle speed VS is greater than 0 (zero), it is assumed that the vehicle 10 is running. On the other hand, if the vehicle speed VS is equal to 0 (zero), it is assumed that the vehicle 10 is not running. When the execution device 62 determines that the vehicle 10 is traveling (S19: YES), the execution device 62 moves the process to step S27. On the other hand, when the execution device 62 determines that the vehicle 10 is not running (S19: NO), the execution device 62 moves the process to step S21.
 ステップS21において、実行装置62は、車両10を発進させる意志を運転者が有しているか否かを判定する。車両10を発進させる意志を運転者が有しているか否かを判定する手法は、例えば、上記ステップS13で説明した手法と同様である。実行装置62は、車両10を発進させる意志を運転者が有していると判定した場合(S21:YES)、処理をステップS23に移行する。一方、実行装置62は、車両10を発進させる意志を運転者が有していないと判定した場合(S21:NO)、本処理ルーチンを一旦終了する。 In step S21, the execution device 62 determines whether the driver has the intention to start the vehicle 10. A method for determining whether or not the driver has the intention to start the vehicle 10 is, for example, the same as the method described in step S13 above. When the execution device 62 determines that the driver has the intention to start the vehicle 10 (S21: YES), the execution device 62 moves the process to step S23. On the other hand, if the execution device 62 determines that the driver does not have the intention to start the vehicle 10 (S21: NO), it temporarily ends this processing routine.
 ステップS23において、実行装置62は、制動力指令部M13として機能することにより、制動力仮値FbR1を導出する。例えば本処理ルーチンの前回の実行時には車両10を発進させる意志を運転者が有していないと判定したものの、本処理ルーチンの今回の実行時には車両10を発進させる意志を運転者が有していると判定した場合、実行装置62は、上記の解除時制動力FbLを制動力仮値FbR1として設定する。一方、本処理ルーチンの前回の実行時でも車両10を発進させる意志を運転者が有していると判定していた場合、実行装置62は、本処理ルーチンの前回の実行時に導出した制動力指示値FbRから所定の減少制動力dFbを引いた値を、制動力仮値FbR1として導出する。 In step S23, the execution device 62 derives the provisional braking force value FbR1 by functioning as the braking force command unit M13. For example, although it was determined that the driver did not have the intention to start the vehicle 10 when this process routine was executed last time, it was determined that the driver did not have the intention to start the vehicle 10 when this process routine was executed this time. If it is determined that this is the case, the execution device 62 sets the above-mentioned brake force upon release FbL as the temporary brake force value FbR1. On the other hand, if it is determined that the driver has the intention to start the vehicle 10 even during the previous execution of this processing routine, the execution device 62 uses the braking force instruction derived during the previous execution of this processing routine. A value obtained by subtracting a predetermined reduced braking force dFb from the value FbR is derived as a tentative braking force value FbR1.
 ステップS25において、実行装置62は、制動力指令部M13として機能することにより、制動力仮値FbR1と0(零)とのうち大きい方を制動力指示値FbRとして選択する。そして、実行装置62は、制動力指示値FbRを制動制御部32に送信する。本実施形態では、ステップS23及びステップS25により、「制動力減少制御」に対応する。また、ステップS23及びステップS25で実行装置62が実行する一連の処理を「制動力減少処理」ともいう。実行装置62は、制動力指示値FbRを制動制御部32に送信すると、本処理ルーチンを一旦終了する。 In step S25, the execution device 62 selects the larger of the temporary braking force value FbR1 and 0 (zero) as the braking force command value FbR by functioning as the braking force command unit M13. Then, the execution device 62 transmits the braking force instruction value FbR to the braking control unit 32. In this embodiment, step S23 and step S25 correspond to "braking force reduction control". Furthermore, the series of processes executed by the execution device 62 in steps S23 and S25 is also referred to as a "braking force reduction process." After transmitting the braking force instruction value FbR to the braking control unit 32, the execution device 62 temporarily ends this processing routine.
 ステップS27において、実行装置62は、制動力指令部M13として機能することにより、制動力指示値FbRを導出する。具体的には、実行装置62は、車体速度VSと目標車体速度VSTrとの偏差を入力とするフィードバック制御によってFB制御量を導出する。フィードバック制御は、例えば、PID制御又はPI制御である。実行装置62は、FB制御量に応じた制動力を制動力指示値FbRとして設定する。そして、実行装置62は、制動力指示値FbRを制動制御部32に送信する。ステップS27で実行装置62が実行する処理を、「制動力調整処理」ともいう。実行装置62は、制動力指示値FbRを送信すると、本処理ルーチンを一旦終了する。 In step S27, the execution device 62 derives the braking force command value FbR by functioning as the braking force command unit M13. Specifically, the execution device 62 derives the FB control amount through feedback control using the deviation between the vehicle speed VS and the target vehicle speed VSTr as input. Feedback control is, for example, PID control or PI control. The execution device 62 sets the braking force according to the FB control amount as the braking force instruction value FbR. Then, the execution device 62 transmits the braking force instruction value FbR to the braking control unit 32. The process executed by the execution device 62 in step S27 is also referred to as "braking force adjustment process." After transmitting the braking force instruction value FbR, the execution device 62 temporarily ends this processing routine.
 <作用及び効果>
 図2及び図4を参照し、運転支援装置60の作用及び効果について説明する。
 本例では、車両10が後退している状況下で後輪12(先行輪)が段差101に接触した際に運転者が制動操作を行ったため、車両10に制動力が付与される。これにより、後輪12が段差101に接触した状態で車両10が停止する。なお、図4の(C)において、実線は、運転者の制動操作によって車両10に付与される制動力FbSの推移を示す一方、破線は、制動力指示値FbRの推移、若しくは制動力指示値FbRに応じて制御される車両10の制動力Fbの推移を示している。
<Action and effect>
The operation and effects of the driving support device 60 will be explained with reference to FIGS. 2 and 4.
In this example, the driver performs a braking operation when the rear wheels 12 (leading wheels) contact the step 101 while the vehicle 10 is moving backward, so a braking force is applied to the vehicle 10. As a result, the vehicle 10 stops with the rear wheels 12 in contact with the step 101. In addition, in (C) of FIG. 4, the solid line shows the transition of the braking force FbS applied to the vehicle 10 by the driver's braking operation, while the broken line shows the transition of the braking force instruction value FbR or the braking force instruction value. It shows the transition of the braking force Fb of the vehicle 10 that is controlled according to FbR.
 図4に示すように、タイミングt11以前では、運転者が制動操作を行っているため、車両10が停止している。この場合では、段差101などの外乱によって車両10が停止しているわけではないと判断できるため、保持制御が実施されている。そのため、駆動力指示値FdRとして基準駆動力FdBが設定されている。すなわち、駆動力指示値FdRは、アイドル時の駆動力よりも大きい。例えば車両10が、動力源としてエンジンのみを備えるコンベンショナルな車両である場合、エンジンのアイドル運転時のトルクに応じた駆動力が、アイドル時の駆動力に対応する。 As shown in FIG. 4, before timing t11, the vehicle 10 is stopped because the driver is performing a braking operation. In this case, it can be determined that the vehicle 10 is not stopped due to a disturbance such as the step 101, so the holding control is performed. Therefore, the reference driving force FdB is set as the driving force instruction value FdR. That is, the driving force instruction value FdR is larger than the driving force at idle. For example, if the vehicle 10 is a conventional vehicle that includes only an engine as a power source, the driving force corresponding to the torque of the engine during idling corresponds to the driving force during idling.
 本例では、タイミングt11で運転者の制動操作が解除される。しかし、後輪12が段差101に接触しているため、車両10の停止が維持される。すると、タイミングt12で、段差101などの外乱によって車両10が停止していると判定されると、制御が保持制御から駆動力増大制御に切り替わる。その結果、図4の(D)に破線で示すように、タイミングt12からは、駆動力指示値FdRが、基準駆動力FdBから増大される。 In this example, the driver's braking operation is released at timing t11. However, since the rear wheels 12 are in contact with the step 101, the vehicle 10 remains stopped. Then, at timing t12, when it is determined that the vehicle 10 is stopped due to a disturbance such as the step 101, the control is switched from holding control to driving force increase control. As a result, as shown by the broken line in FIG. 4(D), from timing t12, the driving force instruction value FdR is increased from the reference driving force FdB.
 駆動力指示値FdRの増大に従って車両10の駆動力Fdが増大されていると、タイミングt14で後輪12が段差101を乗り越える。すなわち、車両10が発進する。車両10が発進すると、制御が駆動力増大制御から保持制御に切り替わる。すると、駆動力指示値FdRは、タイミングt14から減少されて基準駆動力FdBとなる。 When the driving force Fd of the vehicle 10 is increased in accordance with the increase in the driving force instruction value FdR, the rear wheels 12 overcome the step 101 at timing t14. That is, the vehicle 10 starts. When the vehicle 10 starts, the control switches from driving force increase control to holding control. Then, the driving force instruction value FdR is decreased from timing t14 to become the reference driving force FdB.
 後輪12が段差101を乗り越えると、車体速度VSが上昇する。そして、車体速度VSが目標車体速度VSTrを越えるようになる。そのため、車体速度VSが目標車体速度VSTrを越えることを抑制するべく制動力指示値FbRが導出される。その結果、保持制御の実施中では、車体速度VSを目標車体速度VSTrで保持できる。 When the rear wheels 12 get over the step 101, the vehicle speed VS increases. Then, the vehicle speed VS exceeds the target vehicle speed VSTr. Therefore, the braking force command value FbR is derived to suppress the vehicle speed VS from exceeding the target vehicle speed VSTr. As a result, while the holding control is being performed, the vehicle speed VS can be maintained at the target vehicle speed VSTr.
 ここで、タイミングt11から従来の定速制御を実施する比較例について説明する。ここでいう「従来の定速制御」とは、車両10の停車時における駆動力指示値FdRとして、上記アイドル時の駆動力が設定される制御である。図4の(A)の二点鎖線は、比較例の場合の車体速度VS0の推移を示している。また、図4の(D)の二点鎖線は、比較例の場合の車両10の駆動力Fd0の推移を示している。目標車体速度VSTrが比較的低い車体速度に設定されているため、フィードバック制御のゲインとして比較的小さい値が設定される。そのため、タイミングt11から駆動力指示値FdRが、上記アイドル時の駆動力からゆっくりと増大される。その結果、タイミングt13よりも後のタイミングt15で、後輪12に段差101を乗り越えさせることのできる駆動力に、車両10の駆動力Fd0が達するため、車両10が発進する。 Here, a comparative example in which conventional constant speed control is performed from timing t11 will be described. The "conventional constant speed control" here refers to control in which the driving force during idling is set as the driving force instruction value FdR when the vehicle 10 is stopped. The two-dot chain line in (A) of FIG. 4 shows the transition of the vehicle body speed VS0 in the case of the comparative example. Moreover, the chain double-dashed line in FIG. 4(D) shows the transition of the driving force Fd0 of the vehicle 10 in the case of the comparative example. Since the target vehicle speed VSTr is set to a relatively low vehicle speed, a relatively small value is set as the feedback control gain. Therefore, from timing t11, the driving force instruction value FdR is slowly increased from the driving force at the time of idling. As a result, at timing t15, which is later than timing t13, the driving force Fd0 of the vehicle 10 reaches a driving force that allows the rear wheels 12 to overcome the step 101, so the vehicle 10 starts moving.
 これに対し、運転支援装置60では、車両10を発進させる意志を運転者が有していると判定されるようになるタイミングt11以前から、アイドル時の駆動力よりも大きい基準駆動力FdBが駆動力指示値FdRとして設定されている。この基準駆動力FdBは、路面の勾配θ及び車両10の重量WGに基づいて導出された駆動力である。そのため、タイミングt11以降において、後輪12に段差101を乗り越えさせることのできる駆動力まで車両10の駆動力Fdを早期に増大させることができる。これにより、外乱の一例である段差101の影響によって車両10が停止していた場合であっても車両10を早期に発進させることができる。 On the other hand, in the driving support device 60, the reference driving force FdB, which is larger than the driving force at idle, is applied to the drive from before the timing t11 when it is determined that the driver has the intention to start the vehicle 10. This is set as the force instruction value FdR. This reference driving force FdB is a driving force derived based on the slope θ of the road surface and the weight WG of the vehicle 10. Therefore, after timing t11, the driving force Fd of the vehicle 10 can be quickly increased to the driving force that allows the rear wheels 12 to overcome the step 101. Thereby, even if the vehicle 10 is stopped due to the influence of the step 101, which is an example of a disturbance, the vehicle 10 can be started quickly.
 その後のタイミングt16で後続輪である前輪11が段差101に接触する。すると、車体速度VSが低下するため、フィードバック制御によって制動力指示値FbRが減少される。その結果、駆動力指示値FdRが基準駆動力FdBで保持されている状態で車両10の制動力Fbが減少されるため、前輪11の段差101の乗り越えが完了する。その後のタイミングt17で目標の駐車位置に車両10が到達するため、運転者が制動操作を開始する。すると、制動操作に起因する制動力FbSが車両10に付与されるため、車両10が停止する。 At subsequent timing t16, the front wheel 11, which is the trailing wheel, contacts the step 101. Then, since the vehicle speed VS decreases, the braking force instruction value FbR is decreased by feedback control. As a result, the braking force Fb of the vehicle 10 is reduced while the driving force command value FdR is maintained at the reference driving force FdB, so that the front wheels 11 complete climbing over the step 101. Since the vehicle 10 reaches the target parking position at subsequent timing t17, the driver starts a braking operation. Then, the braking force FbS resulting from the braking operation is applied to the vehicle 10, so the vehicle 10 stops.
 なお、基準駆動力FdBの導出は、所定の制御サイクル毎に行われる。そのため、車両10の走行中に路面の勾配θが変わると、基準駆動力FdBも変わりうる。
 運転支援装置60では、以下の効果をさらに得ることができる。
Note that the reference driving force FdB is derived every predetermined control cycle. Therefore, if the gradient θ of the road surface changes while the vehicle 10 is running, the reference driving force FdB may also change.
The driving support device 60 can further provide the following effects.
 (1)駆動力増大制御の実施に起因して車両10の駆動力Fdを増大させることにより、車両10が発進すると、駆動力増大制御が終了されて保持制御が開始される。これにより、車両10の発進後でも駆動力増大制御が継続される場合と比較し、車体速度VSを目標車体速度VSTrで保持するために車両10に付与する制動力Fbが大きくなることを抑制できる。したがって、車両10のエネルギーの利用効率を向上できる。 (1) When the vehicle 10 starts moving by increasing the driving force Fd of the vehicle 10 due to the execution of the driving force increasing control, the driving force increasing control is ended and the holding control is started. Thereby, compared to the case where the driving force increase control is continued even after the vehicle 10 starts, it is possible to suppress the braking force Fb applied to the vehicle 10 from increasing in order to maintain the vehicle body speed VS at the target vehicle body speed VSTr. . Therefore, the energy utilization efficiency of the vehicle 10 can be improved.
 (2)運転支援装置60では、車両10の発進前から、車両10の駆動力Fdを、アイドル時の駆動力よりも大きくしている。そのため、運転者の制動操作が解除された際には車両10を早期に発進させることができる。しかし、車両10の駆動力Fdが大きい分、車両10の先行輪が段差101に接触していない場合、車両10が急発進するおそれがある。 (2) In the driving support device 60, the driving force Fd of the vehicle 10 is made larger than the driving force during idling before the vehicle 10 starts. Therefore, when the driver's braking operation is released, the vehicle 10 can be started quickly. However, since the driving force Fd of the vehicle 10 is large, if the leading wheels of the vehicle 10 are not in contact with the step 101, there is a risk that the vehicle 10 will suddenly start.
 この点、運転支援装置60では、車両10を発進させる意志を運転者が有していると判定されると、すなわち運転者が車両10の発進を要求していると判定できると、制動力減少制御が実施される。これにより、車両10を発進させる意志を運転者が有していると判定された時点では、車両10に制動力Fbが付与されていることになる。そして、制動力Fbが徐々に減少される。これにより、車両10の発進時に車両10の加速度が大きくなりすぎることを抑制できる。 In this regard, in the driving support device 60, when it is determined that the driver has the intention to start the vehicle 10, that is, when it is determined that the driver requests the start of the vehicle 10, the braking force is reduced. Controls are in place. Accordingly, at the time it is determined that the driver has the intention to start the vehicle 10, the braking force Fb is applied to the vehicle 10. Then, the braking force Fb is gradually reduced. Thereby, it is possible to suppress the acceleration of the vehicle 10 from becoming too large when the vehicle 10 starts.
 ただし、制動力減少制御の実施によって制動力指示値FbRが減少している最中に、車両10が発進することがある。この場合、運転支援装置60では、制動力減少制御が終了され、上記フィードバック制御による制動力指示値FbRの導出が開始される。これにより、車両10の発進後においては車体速度VSが目標車体速度VSTrから乖離することを抑制できる。 However, the vehicle 10 may start while the braking force instruction value FbR is being reduced by implementing the braking force reduction control. In this case, the driving support device 60 ends the braking force reduction control and starts deriving the braking force instruction value FbR by the feedback control. Thereby, after the vehicle 10 starts, it is possible to suppress the vehicle body speed VS from deviating from the target vehicle body speed VSTr.
 (3)車輪に段差101を乗り越えさせる際に運転者がアクセル操作を行わなくても、運転者は車両10を速やかに発進させることができる。そのため、車両10の発進待ちによるストレスを運転者に与えることを抑制できる。また、運転者の余分なアクセル操作や制動操作を抑制できる。 (3) The driver can quickly start the vehicle 10 without operating the accelerator when making the wheels go over the step 101. Therefore, stress caused to the driver due to waiting for the vehicle 10 to start can be suppressed. Additionally, the driver's unnecessary accelerator and braking operations can be suppressed.
 <変更例>
 上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
<Example of change>
The above embodiment can be modified and implemented as follows. The above embodiment and the following modification examples can be implemented in combination with each other within a technically consistent range.
 ・制動力減少制御を実施することは必須ではない。例えば、実行装置62は、基準駆動力FdBが比較的小さい場合には、車両10を発進させる意志を運転者が有していると判定した際に制動力減少制御を実施しなくてもよい。この場合、実行装置62は、基準駆動力FdBが比較的大きい場合には、車両10を発進させる意志を運転者が有していると判定した際に制動力減少制御を実施するとよい。 ・It is not essential to implement braking force reduction control. For example, when the reference driving force FdB is relatively small, the execution device 62 does not need to perform the braking force reduction control when determining that the driver has the intention to start the vehicle 10. In this case, if the reference driving force FdB is relatively large, the execution device 62 may perform the braking force reduction control when determining that the driver has the intention to start the vehicle 10.
 ・実行装置62は、運転者の制動操作によって車両10が停止している状態で、保持制御を実行中に制動力FbSが低下した場合には、駆動力指示値FdRを基準駆動力FdBから減少させる解除時低下処理を実行してもよい。例えば、実行装置62は、解除時低下処理において、運転者の制動操作が解除される際に駆動力指示値FdRを基準駆動力FdBから低下させる。特に制動力FbSの減少速度が所定の減少速度以上となるような急激に制動が解除された場合に、解除時低下処理によって駆動力指示値FdRを低下させるとよい。解除時低下処理の実行中では、駆動力指示値FdRは、基準駆動力FdB以下の所定の範囲であって、アイドル時の駆動力よりも大きい所定の下限値FdL以上に設定される。この場合、解除時低下処理の実行に伴って低下された駆動力Fdはアイドル時の駆動力より高いため、保持制御による段差などでの発進遅れを抑制できる効果を引き続き有する一方、駆動力Fdを所定量低下させることによって、水平路や降坂路などにおいて、制動が急に解除された際の車両10の急発進を抑制できる。 - If the braking force FbS decreases while executing the holding control while the vehicle 10 is stopped due to the driver's braking operation, the execution device 62 decreases the driving force command value FdR from the reference driving force FdB. You may also perform a reduction process upon release. For example, in the release reduction process, the execution device 62 reduces the driving force instruction value FdR from the reference driving force FdB when the driver's braking operation is released. In particular, when the brake is suddenly released such that the rate of decrease in the braking force FbS exceeds a predetermined rate of decrease, it is preferable to decrease the driving force command value FdR by performing a reduction process upon release. While the release reduction process is being executed, the driving force instruction value FdR is set within a predetermined range below the reference driving force FdB and above a predetermined lower limit value FdL that is larger than the driving force during idling. In this case, the driving force Fd reduced by executing the release reduction process is higher than the driving force at idle, so while the holding control continues to have the effect of suppressing the start delay due to steps, etc., the driving force Fd is By decreasing the predetermined amount, it is possible to suppress sudden start of the vehicle 10 when the brake is suddenly released on a level road, a downhill road, or the like.
 ここで、図5を参照して解除時低下処理を説明する。タイミングt20から制動力FbSが急激に低下し始めると、解除時低下処理の実行によって駆動力指示値FdRの減少が開始される。すると、タイミングt21で駆動力指示値FdRが下限値FdLに到達するため、タイミングt21からタイミングt22までの期間では駆動力指示値FdRが下限値FdLに維持される。なお、解除時低下処理が実行された場合、図5に示すように、制動力減少制御を実施しなくてもよい。あるいは、解除時低下処理を行う場合、制動力減少制御の制動力の減少速度を通常より小さくしてもよい。 Here, the cancellation-time reduction process will be explained with reference to FIG. 5. When the braking force FbS starts to decrease rapidly from timing t20, the driving force command value FdR starts to decrease by executing the release decreasing process. Then, since the driving force instruction value FdR reaches the lower limit value FdL at timing t21, the driving force instruction value FdR is maintained at the lower limit value FdL during the period from timing t21 to timing t22. Note that when the release reduction process is executed, as shown in FIG. 5, the braking force reduction control may not be performed. Alternatively, when performing the cancellation-time reduction process, the speed at which the braking force is reduced in the braking force reduction control may be made smaller than usual.
 さらに、解除時低下制御を実行することによって駆動力指示値FdRを基準駆動力FdBよりも小さくした状態で、車両10を発進させる意志を運転者が有していると判定されたにも拘わらず段差などによって車両10が発進しない場合には、駆動力増大制御において、駆動力Fdを増大させる際の通常の増大速度よりも高い復帰用増大速度で、駆動力指示値FdRを基準駆動力FdBまで増大させる解除時復帰処理を実行装置62が実行するようにしてもよい。この場合、解除時復帰処理によって駆動力指示値FdRを基準駆動力FdBまで増大させた以降では、実行装置62は、駆動力増大制御を実行することによって通常の増大速度で駆動力を増大させる。 Furthermore, even though it is determined that the driver has the intention to start the vehicle 10 with the driving force instruction value FdR made smaller than the reference driving force FdB by executing the release reduction control. If the vehicle 10 does not start due to a step or the like, the driving force increase control increases the driving force command value FdR to the reference driving force FdB at a return increasing speed that is higher than the normal increasing speed when increasing the driving force Fd. The execution device 62 may execute the release-time return processing to increase the number. In this case, after the driving force instruction value FdR is increased to the reference driving force FdB by the release return process, the execution device 62 increases the driving force at the normal increasing speed by executing the driving force increase control.
 ここで、図5を参照して解除時低下処理を説明する。タイミングt22で、車両10を発進させる意志を運転者が有していると判定されているにも拘わらず車両10が発進しないと判断されると、解除時復帰処理により駆動力指示値FdRは基準駆動力FdBまで復帰用増加速度で増大される。そして、タイミングt23で駆動力指示値FdRが基準駆動力FdBに達すると、タイミングt23以降では、基準駆動力FdBが通常の増大速度で増大される。 Here, the cancellation-time reduction process will be explained with reference to FIG. 5. At timing t22, if it is determined that the vehicle 10 does not start even though it is determined that the driver has the intention to start the vehicle 10, the driving force instruction value FdR is set to the reference value by the cancellation return process. The driving force is increased at an increasing speed for return up to FdB. Then, when the driving force instruction value FdR reaches the reference driving force FdB at timing t23, the reference driving force FdB is increased at the normal increasing speed from timing t23 onwards.
 ・実行装置62は、駆動力増大制御において駆動力指示値FdRを増大させることができるのであれば、フィードバック制御に基づいて駆動力指示値FdRを導出しなくてもよい。例えば、実行装置62は、駆動力増大制御において、所定の増大速度で駆動力指示値FdRを増大させてもよい。 - If the execution device 62 can increase the driving force instruction value FdR in the driving force increase control, it is not necessary to derive the driving force instruction value FdR based on the feedback control. For example, in the driving force increase control, the execution device 62 may increase the driving force instruction value FdR at a predetermined increasing speed.
 ・実行装置62は、駆動力増大制御の実施に伴って駆動力Fdを増大させることによって車両10が発進した場合、車両10が発進した時点の駆動力指示値FdRで、駆動力指示値FdRを保持するようにしてもよい。 - When the vehicle 10 starts by increasing the driving force Fd with the implementation of the driving force increase control, the execution device 62 sets the driving force instruction value FdR to the driving force instruction value FdR at the time when the vehicle 10 starts. It may also be retained.
 ・上記実施形態では、保持制御を実施しても車両10を発進させることができない場合、制動力減少制御の実施中であっても、保持制御を終了して駆動力増大制御を開始するようにしているが、これに限らない。例えば、保持制御が実施中であっても、制動力減少制御によって制動力指示値FbRを減少させている期間では、保持制御の実施を継続してもよい。この場合、制動力減少制御による制動力指示値FbRの減少が終了しても車両10が未だ停止している場合に、実行装置62は、保持制御を終了して駆動力増大制御を開始するようにしてもよい。 - In the embodiment described above, if the vehicle 10 cannot be started even if the holding control is executed, the holding control is ended and the driving force increasing control is started even if the braking force reduction control is being executed. However, it is not limited to this. For example, even if the holding control is in progress, the holding control may continue to be carried out during a period in which the braking force instruction value FbR is being reduced by the braking force reduction control. In this case, if the vehicle 10 is still stopped even after the reduction of the braking force command value FbR by the braking force reduction control is finished, the execution device 62 ends the holding control and starts the driving force increase control. You can also do this.
 ・実行装置62は、路面の勾配θ及び車両10の重量WG以外の情報も考慮して基準駆動力FdBを導出してもよい。例えば、実行装置62は、ステアリング操作量にも基づいて基準駆動力FdBを導出してもよいし、外気温にも基づいて基準駆動力FdBを導出してもよい。また、実行装置62は、ナビゲーション装置からの情報にも基づいて基準駆動力FdBを導出してもよいし、カメラなどの撮像装置が撮像した画像の解析結果にも基づいて基準駆動力FdBを導出してもよい。 - The execution device 62 may derive the reference driving force FdB by also considering information other than the road surface slope θ and the weight WG of the vehicle 10. For example, the execution device 62 may derive the reference driving force FdB based on the amount of steering operation, or may derive the reference driving force FdB based on the outside temperature. The execution device 62 may also derive the reference driving force FdB based on information from the navigation device, or may derive the reference driving force FdB based on the analysis result of an image captured by an imaging device such as a camera. You may.
 ・実行装置62は、路面の勾配θ及び車両10の重量WGの何れか一方に基づいて基準駆動力FdBを導出してもよい。例えば、実行装置62は、勾配θに応じた駆動力の補正量FdX(θ)を用いずに基準駆動力FdBを導出してもよい。また例えば、実行装置62は、重量WGに応じた駆動力の補正量FdX(WG)を用いずに基準駆動力FdBを導出してもよい。 - The execution device 62 may derive the reference driving force FdB based on either the road surface gradient θ or the weight WG of the vehicle 10. For example, the execution device 62 may derive the reference driving force FdB without using the driving force correction amount FdX(θ) according to the gradient θ. For example, the execution device 62 may derive the reference driving force FdB without using the driving force correction amount FdX(WG) according to the weight WG.
 ・実行装置62は、路面の勾配θに応じた駆動力の補正量FdX(θ)を、勾配θ及び車両10の重量WGの両方から導出してもよい。例えば、補正量FdX(θ)を、「Sin(θ)×WG×KA2」で表してもよい。この場合、「KA2」は所定の係数である。 - The execution device 62 may derive the driving force correction amount FdX(θ) according to the road surface slope θ from both the slope θ and the weight WG of the vehicle 10. For example, the correction amount FdX(θ) may be expressed as “Sin(θ)×WG×KA2”. In this case, "KA2" is a predetermined coefficient.
 ・保持制御を実施している場合に目標車体速度VSTrを変更してもよい。例えば、車両10の後続輪が段差101を乗り越えたと判定できた場合には、後続輪が段差101を乗り越えたと判定できる以前よりも高い車体速度を目標車体速度VSTrとして設定するようにしてもよい。 ・The target vehicle speed VSTr may be changed when holding control is being performed. For example, when it is determined that the trailing wheels of the vehicle 10 have climbed over the step 101, the target vehicle speed VSTr may be set to a higher vehicle speed than before it was determined that the trailing wheels have climbed over the step 101.
 ・上述した車両10を低速で自動走行させる支援機能を、車両10に駐車させる場合以外でも実現できるようにしてもよい。この場合、すべての停車時に駆動力増大制御を実行装置62が実施すると、駆動力Fdの増大によって車両10のエネルギー効率が悪化するおそれがある。そのため、所定の運転支援制御が実施・又は実施が許可された状態や所定の運転条件が成立した状態において、低速で自動走行させる支援機能を実現するようにしてもよい。 - The support function for automatically driving the vehicle 10 at a low speed described above may be realized even when the vehicle 10 is not parked. In this case, if the execution device 62 performs the driving force increase control at all times when the vehicle stops, the energy efficiency of the vehicle 10 may deteriorate due to the increase in the driving force Fd. Therefore, in a state in which predetermined driving support control is implemented or permitted to be implemented or in a state in which a predetermined driving condition is satisfied, a support function for automatically driving the vehicle at a low speed may be implemented.
 ・車両10の走行する路面を撮像できる撮像装置を車両10が搭載している場合、運転支援装置60は、撮像装置によって撮像された画像を解析することにより、車両10の走行経路に、段差101などの外乱が存在するか否かを把握できる。外乱は、走行路面の窪みであってもよいし、路面勾配が急変している部分であってもよい。運転支援装置60の実行装置62は、画像を解析することによって外乱の存在を検知できたことを契機に上記の支援機能を作動させるようにしてもよい。 - When the vehicle 10 is equipped with an imaging device capable of capturing an image of the road surface on which the vehicle 10 is traveling, the driving support device 60 analyzes the image captured by the imaging device to create a bump 101 on the traveling route of the vehicle 10. It is possible to determine whether or not there is a disturbance such as The disturbance may be a depression in the running road surface or a portion where the road surface gradient changes suddenly. The execution device 62 of the driving support device 60 may operate the above-mentioned support function upon detecting the presence of a disturbance by analyzing an image.
 ・運転支援装置60の処理回路61は、CPUとROMとを備えて、ソフトウェア処理を実行するものに限らない。すなわち、処理回路61は、以下(a)~(c)の何れかの構成であればよい。 - The processing circuit 61 of the driving support device 60 is not limited to one that includes a CPU and a ROM and executes software processing. That is, the processing circuit 61 may have any of the following configurations (a) to (c).
 (a)処理回路61は、コンピュータプログラムに従って各種処理を実行する一つ以上のプロセッサを備えている。プロセッサは、CPU並びに、RAM及びROMなどのメモリを含んでいる。メモリは、処理をCPUに実行させるように構成されたプログラムコード又は指令を格納している。メモリ、すなわちコンピュータ可読媒体は、汎用又は専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含んでいる。 (a) The processing circuit 61 includes one or more processors that execute various processes according to computer programs. The processor includes a CPU and memory such as RAM and ROM. The memory stores program codes or instructions configured to cause the CPU to perform processes. Memory, or computer-readable media, includes any available media that can be accessed by a general purpose or special purpose computer.
 (b)処理回路61は、各種処理を実行する一つ以上の専用のハードウェア回路を備えている。専用のハードウェア回路としては、例えば、特定用途向け集積回路、すなわちASIC又はFPGAを挙げることができる。なお、ASICは、「Application Specific Integrated Circuit」の略記であり、FPGAは、「Field Programmable Gate Array」の略記である。 (b) The processing circuit 61 includes one or more dedicated hardware circuits that execute various processes. Dedicated hardware circuits may include, for example, application specific integrated circuits, ie ASICs or FPGAs. Note that ASIC is an abbreviation for "Application Specific Integrated Circuit," and FPGA is an abbreviation for "Field Programmable Gate Array."
 (c)処理回路61は、各種処理の一部をコンピュータプログラムに従って実行するプロセッサと、各種処理のうちの残りの処理を実行する専用のハードウェア回路とを備えている。 (c) The processing circuit 61 includes a processor that executes some of the various processes according to a computer program, and a dedicated hardware circuit that executes the remaining processes of the various processes.
 なお、本明細書において使用される「少なくとも1つ」という表現は、所望の選択肢の「1つ以上」を意味する。一例として、本明細書において使用される「少なくとも1つ」という表現は、選択肢の数が2つであれば「1つの選択肢のみ」又は「2つの選択肢の双方」を意味する。他の例として、本明細書において使用される「少なくとも1つ」という表現は、選択肢の数が3つ以上であれば「1つの選択肢のみ」又は「2つ以上の任意の選択肢の組み合わせ」を意味する。
 
Note that the expression "at least one" used in this specification means "one or more" of the desired options. As an example, the expression "at least one" as used herein means "only one option" or "both of the two options" if the number of options is two. As another example, the expression "at least one" as used herein means "only one option" or "any combination of two or more options" if there are three or more options. means.

Claims (4)

  1.  車両の車体速度を目標車体速度に基づいて調整する運転支援装置であって、
     前記車体速度を前記目標車体速度以上にするために必要な大きさの駆動力である基準駆動力を、当該車両の位置する路面の勾配及び当該車両の重量の何れか一方又は両方に基づいて導出する基準駆動力導出部と、
     前記車両の駆動力を前記基準駆動力で保持する保持制御を前記車両が停止しているときから開始し、前記保持制御を実施しても前記車両が発進しない場合には、前記保持制御を終了して前記車両の駆動力を前記基準駆動力よりも大きくする駆動力指令部と、
     前記車両が走行している場合に、前記車体速度と前記目標車体速度との偏差に基づいたフィードバック制御によって前記車両の制動力を調整する制動力指令部と、を備える
     運転支援装置。
    A driving support device that adjusts the vehicle speed of a vehicle based on a target vehicle speed,
    Deriving a reference driving force, which is a driving force of a magnitude necessary to make the vehicle speed equal to or higher than the target vehicle speed, based on either or both of the gradient of the road surface on which the vehicle is located and the weight of the vehicle. a reference driving force deriving unit,
    A holding control that maintains the driving force of the vehicle at the reference driving force is started when the vehicle is stopped, and if the vehicle does not start even after carrying out the holding control, the holding control is terminated. a driving force command unit that makes the driving force of the vehicle larger than the reference driving force;
    A driving support device, comprising: a braking force command unit that adjusts the braking force of the vehicle by feedback control based on a deviation between the vehicle body speed and the target vehicle body speed when the vehicle is running.
  2.  前記駆動力指令部は、前記車両が発進した場合には前記保持制御を実施することによって前記車両の駆動力を前記基準駆動力で保持する
     請求項1に記載の運転支援装置。
    The driving support device according to claim 1, wherein the driving force command section maintains the driving force of the vehicle at the reference driving force by performing the holding control when the vehicle starts moving.
  3.  前記駆動力指令部は、前記保持制御を終了して前記車両の駆動力を前記基準駆動力よりも大きくする場合、前記車両の車体速度と前記目標車体速度との偏差に基づいたフィードバック制御によって前記車両の駆動力を増大させる
     請求項1に記載の運転支援装置。
    When the driving force command unit ends the holding control and makes the driving force of the vehicle larger than the reference driving force, the driving force command unit controls the driving force by feedback control based on the deviation between the vehicle body speed of the vehicle and the target vehicle body speed. The driving support device according to claim 1, which increases the driving force of the vehicle.
  4.  前記制動力指令部は、前記保持制御の実施中に前記車両を発進させる要求があった場合に、当該車両の制動力を徐々に減少させる制動力減少制御を実施する
     請求項1~請求項3のうち何れか一項に記載の運転支援装置。
    The braking force command unit performs braking force reduction control to gradually reduce the braking force of the vehicle when there is a request to start the vehicle while the holding control is being performed. The driving support device according to any one of the above.
PCT/JP2023/031866 2022-08-31 2023-08-31 Driving assistance device WO2024048739A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022137763A JP2024033873A (en) 2022-08-31 2022-08-31 Driving support device
JP2022-137763 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048739A1 true WO2024048739A1 (en) 2024-03-07

Family

ID=90097993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031866 WO2024048739A1 (en) 2022-08-31 2023-08-31 Driving assistance device

Country Status (2)

Country Link
JP (1) JP2024033873A (en)
WO (1) WO2024048739A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315284A (en) * 2006-05-25 2007-12-06 Toyota Motor Corp Vehicle control device
JP2012210916A (en) * 2011-03-23 2012-11-01 Nissan Motor Co Ltd Device and method for controlling braking and driving force of vehicle
WO2014006993A1 (en) * 2012-07-03 2014-01-09 日立オートモティブシステムズ株式会社 Parking assistance device and parking assistance device control method
JP2014231789A (en) * 2013-05-29 2014-12-11 三菱自動車工業株式会社 Output control device for vehicle
WO2017169069A1 (en) * 2016-03-30 2017-10-05 日立オートモティブシステムズ株式会社 Vehicle control apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315284A (en) * 2006-05-25 2007-12-06 Toyota Motor Corp Vehicle control device
JP2012210916A (en) * 2011-03-23 2012-11-01 Nissan Motor Co Ltd Device and method for controlling braking and driving force of vehicle
WO2014006993A1 (en) * 2012-07-03 2014-01-09 日立オートモティブシステムズ株式会社 Parking assistance device and parking assistance device control method
JP2014231789A (en) * 2013-05-29 2014-12-11 三菱自動車工業株式会社 Output control device for vehicle
WO2017169069A1 (en) * 2016-03-30 2017-10-05 日立オートモティブシステムズ株式会社 Vehicle control apparatus

Also Published As

Publication number Publication date
JP2024033873A (en) 2024-03-13

Similar Documents

Publication Publication Date Title
JP3755464B2 (en) Parking assistance device
JP3881553B2 (en) Travel control device
CN100363213C (en) Vehicle braking force control
JP5999047B2 (en) Vehicle control device
US9393938B2 (en) Vehicular brake control apparatus
EP3789254A1 (en) Method, device and system for automatic braking of vehicle
JP6213020B2 (en) Vehicle control device
JP2011230551A (en) Vehicle start assist control system
JP6082906B2 (en) Vehicle driving support device
WO2024048739A1 (en) Driving assistance device
WO2024048738A1 (en) Driving assistance apparatus
CN110682908A (en) Vehicle control device
US20230150370A1 (en) Method for Operating a Brake System of a Vehicle
JP2015030314A (en) Vehicle control device
US11279330B2 (en) Braking force control apparatus for a vehicle
JP6135406B2 (en) Vehicle control device
WO2015152224A1 (en) Driving assistance device for vehicle
WO2024048737A1 (en) Driving assistance device
JP6225563B2 (en) Vehicle control device
JP6063222B2 (en) Vehicle travel control device
JP6582617B2 (en) Brake device for vehicle
JP7390220B2 (en) Driving force control device
JP7010042B2 (en) Braking force control device
JP5962176B2 (en) Vehicle driving support device
JP5685164B2 (en) Brake control device for vehicle