WO2024048737A1 - Driving assistance device - Google Patents

Driving assistance device Download PDF

Info

Publication number
WO2024048737A1
WO2024048737A1 PCT/JP2023/031864 JP2023031864W WO2024048737A1 WO 2024048737 A1 WO2024048737 A1 WO 2024048737A1 JP 2023031864 W JP2023031864 W JP 2023031864W WO 2024048737 A1 WO2024048737 A1 WO 2024048737A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
driving force
speed
execution device
control
Prior art date
Application number
PCT/JP2023/031864
Other languages
French (fr)
Japanese (ja)
Inventor
真由 山本
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2024048737A1 publication Critical patent/WO2024048737A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a driving support device that supports vehicle operation by a vehicle driver.
  • Patent Document 1 discloses a parking support device that supports parking of a vehicle.
  • the device includes a storage unit that stores the driving force of the vehicle at a predetermined position on the travel route of the vehicle to the target parking position when the vehicle is parked at the target parking position by the driver's driving operation.
  • the device automatically parks the vehicle at the target parking position with the driving force stored in the storage unit, the device controls the vehicle using the driving force stored in the storage unit.
  • the driving force of the vehicle is relatively small. Therefore, when a vehicle travels on a route that includes disturbances that increase running resistance when the wheels pass, such as bumps, sudden changes in road slope, or potholes, the wheels are prevented from passing through the disturbances. It may take some time.
  • a driving support device for solving the above problems includes a command unit that performs constant speed control that adjusts the driving force and braking force of the vehicle through feedback control based on the deviation between the vehicle body speed and the target vehicle body speed.
  • a leading wheel which is a wheel located in the traveling direction of the vehicle, among the front wheels and rear wheels of the vehicle, passes through a disturbance part that is present in the travel path of the vehicle.
  • a storage unit that stores an increase rate of the driving force of the vehicle at a time point.
  • the command unit performs driving force increase control to increase the driving force of the vehicle at the increased speed stored in the storage unit after the time when the leading wheel passes the disturbance portion.
  • the driving support device When the leading wheel passes the disturbance part by implementing constant speed control, the driving support device causes the storage unit to store the increasing speed of the driving force at the time the leading wheel passes the disturbance part. Then, the driving support device performs driving force increase control to increase the driving force of the vehicle at the increasing speed stored in the storage unit after the time when the leading wheel passes the disturbance portion.
  • driving force increase control Compared to the case where constant speed control continues even after the leading wheels pass the disturbance area, by implementing driving force increase control, the vehicle's driving force increases to the point where it can resist the running resistance increased by the disturbance area. can be increased early. Therefore, the following wheels can quickly pass through the disturbance area.
  • the driving support device can quickly complete the passage of the disturbance portion of the trailing wheels of the vehicle.
  • FIG. 1 is a configuration diagram schematically showing a vehicle equipped with a driving support device according to an embodiment.
  • FIG. 2 is a schematic diagram showing how the vehicle travels at low speed toward a parking position.
  • FIG. 3 is a flowchart showing a processing routine executed by the execution device of the driving support device.
  • FIG. 4 is a flowchart showing a processing routine executed by the execution device.
  • FIG. 5 is a timing chart showing changes in various parameters when the vehicle travels at low speed toward the parking position.
  • FIGS. 1 to 5 one embodiment of the driving support device will be described according to FIGS. 1 to 5.
  • a wheel passes over a step as an example in which the wheel passes through a disturbance portion that increases running resistance when the wheel passes.
  • FIG. 1 illustrates a portion of a vehicle 10 including a driving assistance device 60.
  • the vehicle 10 includes front wheels 11 and rear wheels 12 as wheels.
  • the vehicle 10 includes the same number of friction brakes 20 as wheels, a braking device 30, and a drive device 40.
  • One friction brake 20 is provided for one wheel.
  • the plurality of friction brakes 20 each include a rotating body 21, a friction part 22, and a wheel cylinder 23. Since the rotating body 21 rotates together with the wheel, the friction brake 20 can apply braking force to the wheel by pressing the friction portion 22 against the rotating body 21. The higher the hydraulic pressure within the wheel cylinder 23, the greater the force that presses the friction portion 22 against the rotating body 21. That is, the higher the hydraulic pressure within the wheel cylinder 23, the greater the braking force applied to the wheel.
  • the brake device 30 includes a brake actuator 31 and a brake control section 32 that controls the brake actuator 31.
  • the brake actuator 31 is configured to be able to adjust the hydraulic pressure within the plurality of wheel cylinders 23 individually.
  • the brake control unit 32 controls the braking force of the vehicle 10 by operating the brake actuator 31.
  • the brake control unit 32 can communicate with the driving support device 60 via the in-vehicle network. For example, when the brake control unit 32 receives a braking force command value FbR, which is a command value of the braking force of the vehicle 10, from the driving support device 60, the brake control unit 32 operates the brake actuator 31 based on the braking force command value FbR.
  • the drive device 40 includes a power unit 41 and a drive control section 42 that controls the power unit 41.
  • Power unit 41 has at least one of an engine and an electric motor as a power source for vehicle 10. In vehicle 10 , output torque of power unit 41 is transmitted to front wheels 11 . Note that the output torque of the power unit 41 may be transmitted to at least one of the front wheels 11 and the rear wheels 12.
  • the drive control unit 42 controls the driving force of the vehicle 10 by operating the power unit 41.
  • the drive control unit 42 can communicate with the driving support device 60 via the in-vehicle network. For example, when the drive control unit 42 receives the driving force instruction value FdR, which is the instruction value of the driving force of the vehicle 10, from the driving support device 60, the drive control unit 42 operates the power unit 41 based on the driving force instruction value FdR.
  • FdR the driving force instruction value
  • the detection system of the vehicle 10 includes a plurality of sensors.
  • the plurality of sensors include the same number of wheel speed sensors 51 as wheels, longitudinal acceleration sensors 52, and brake switches 53.
  • the plurality of wheel speed sensors 51 each detect the rotational speed of the corresponding wheel.
  • the longitudinal acceleration sensor 52 detects the longitudinal acceleration of the vehicle 10.
  • the brake switch 53 outputs a signal indicating whether or not the driver is operating the brake operating member 15.
  • the brake operation member 15 is, for example, a brake pedal.
  • the rotational speed of the wheel based on the detected value of the wheel speed sensor 51 is referred to as "wheel speed VW.”
  • the longitudinal acceleration based on the detected value of the longitudinal acceleration sensor 52 is referred to as “longitudinal acceleration GX.”
  • the driver's operation of the brake operation member 15 is also referred to as a "brake operation.”
  • the driving support device 60 has a function of supporting the driver's vehicle operation.
  • Vehicle operation here includes accelerator operation, braking operation, and steering operation.
  • the driving support device 60 has a support function that allows the vehicle 10 to automatically travel at low speed. Such a support function is used when parking the vehicle 10 at a parking position.
  • the "low-speed running of the vehicle 10” herein refers to running the vehicle 10 at a speed of less than 10 km/h, for example.
  • automated driving refers to traveling of the vehicle 10 in a state where the vehicle speed of the vehicle 10 is adjusted on the vehicle 10 side.
  • the driving support device 60 includes a processing circuit 61.
  • the processing circuit 61 includes an execution device 62 and a storage device 63.
  • execution device 62 is a CPU.
  • the storage device 63 stores various control programs executed by the execution device 62.
  • the execution device 62 transmits the driving force instruction value FdR to the drive control section 42 and the braking force instruction value FbR to the braking control section 32 when realizing the above support function.
  • the execution device 62 functions as a command section M11 and a target vehicle speed setting section M13 by executing the control program.
  • the command section M11 and the target vehicle speed setting section M13 are functional sections for realizing the above-mentioned support function.
  • the command unit M11 performs constant speed control to adjust the driving force and braking force of the vehicle 10 by feedback control based on the deviation between the vehicle body speed VS of the vehicle 10 and the target vehicle body speed VSTr.
  • Feedback control is, for example, PID control or PI control.
  • the vehicle speed VS is derived based on at least one of the wheel speeds VW of the plurality of wheels.
  • the target vehicle speed VSTr is set to the above-mentioned speed of less than 10 km/h.
  • a step 101 may exist on the travel route 100 of the vehicle 10.
  • the trailing wheel which is a wheel that is not the leading wheel, gets over the step 101.
  • the rear of the vehicle 10 is the traveling direction of the vehicle 10, so the rear wheels 12 correspond to the leading wheels and the front wheels 11 correspond to the trailing wheels.
  • the forward direction of the vehicle 10 is the direction of movement of the vehicle 10, so the front wheels 11 correspond to the leading wheels and the rear wheels 12 correspond to the trailing wheels.
  • the running resistance of the vehicle 10 will be higher than before the leading wheel contacts the step 101, so if the driving force Fd of the vehicle 10 is small, The leading wheels may not be able to get over the step 101, and the vehicle 10 may stop.
  • the driving force Fd of the vehicle 10 is also the torque generated by the power unit 41.
  • the command unit M11 increases the driving force command value FdR by feedback control using the deviation between the vehicle speed VS and the target vehicle speed VSTr as input.
  • the command unit M11 sets the driving force instruction value FdR at the time when the leading wheel gets over the step 101.
  • the increasing speed ⁇ FdR of is stored in the storage device 63. That is, the storage device 63 corresponds to a "storage section" that stores the increased speed ⁇ FdR at the time when the leading wheel passes the step 101, which is an example of a disturbance section.
  • the command unit M11 implements driving force increase control to increase the driving force instruction value FdR at the increasing speed ⁇ FdR stored in the storage device 63 after the leading wheel has climbed over the step 101. Specifically, the command unit M11 starts the driving force increase control before the trailing wheel contacts the step 101.
  • the command unit M11 controls the increasing speed ⁇ FdR stored in the storage device 63 to Increase the driving force command value FdR at a high speed.
  • the command unit M11 suppresses the deviation of the vehicle speed VS from the target vehicle speed VSTr by adjusting the braking force command value FbR.
  • the target vehicle speed setting section M13 sets the target vehicle speed VSTr.
  • the target vehicle speed setting unit M13 sets the first vehicle speed VS1 as the target vehicle speed VSTr before the trailing wheels get over the step 101, that is, before the trailing wheels pass the step 101 (disturbance section).
  • the target vehicle speed setting unit M13 increases the target vehicle speed VSTr after the trailing wheels get over the step 101, that is, after the trailing wheels pass the step 101 (disturbance portion). Specifically, the target vehicle speed setting unit M13 gradually increases the target vehicle speed VSTr up to the second vehicle speed VS2.
  • a vehicle speed higher than the first vehicle speed VS1 is set as the second vehicle speed VS2. Furthermore, when the vehicle 10 is stopped due to the driver's braking operation or the like, the target vehicle speed setting unit M13 sets the first vehicle speed VS1 as the target vehicle speed VSTr.
  • the execution device 62 determines that the execution conditions for the support function described above are satisfied, it repeatedly executes this processing routine every predetermined control cycle. For example, the execution device 62 detects when the driver performs an operation to turn on the above-mentioned support function, and when the driver starts operating the vehicle in order to park the vehicle 10 at a predetermined parking position. In some cases, it is determined that the execution condition is met.
  • step S11 the execution device 62 determines whether the leading wheels of the vehicle 10 have climbed over the step 101.
  • the vehicle 10 stops. That is, as shown in FIG. 5A, the vehicle speed VS becomes 0 (zero).
  • the execution device 62 increases the driving force instruction value FdR by feedback control as shown in FIG. 5(D).
  • the driving force Fd of the vehicle 10 exceeds the driving force required to make the leading wheels get over the step 101, the leading wheels get over the step 101. That is, the leading wheels begin to rotate. As a result, the vehicle 10 starts moving, so the vehicle body speed VS suddenly increases as shown in FIG. 5(A).
  • the execution device 62 determines that the leading wheel has climbed over the step 101 when the following condition (A1) is satisfied during the implementation of the constant speed control. That is, the execution device 62 determines that the leading wheel has passed the step 101, which is an example of a disturbance section.
  • the determination increase speed is set to a value that allows it to be determined whether or not the vehicle body speed VS has suddenly increased. (A1) When the vehicle body speed VS becomes greater than 0 (zero) from a state where the vehicle body speed VS is 0 (zero), the increasing rate of the vehicle body speed VS is equal to or higher than the determined increasing rate.
  • step S11 if the execution device 62 determines that the leading wheel has climbed over the step 101 (YES), the execution device 62 moves the process to step S15. On the other hand, when the execution device 62 determines that the leading wheel has not climbed over the step 101 (S11: NO), the execution device 62 shifts the process to step S13.
  • the execution device 62 determines that the leading wheel has climbed over the step 101 by executing the above-described determination process, the execution device 62 determines that the leading wheel has climbed over the step 101 until the step section determination flag FLG, which will be described later, is switched from on to off. Continue to judge that 101 has been overcome.
  • the execution device 62 implements constant speed control. Specifically, the execution device 62 derives the control amount through feedback control using the deviation between the vehicle speed VS and the target vehicle speed VSTr as input. This control amount is called "FB control amount.”
  • the execution device 62 derives a driving force instruction value FdR and a braking force instruction value FbR based on the FB control amount. For example, if the leading wheels cannot overcome the bump 101 and the vehicle speed VS is significantly lower than the target vehicle speed VSTr, the execution device 62 sets the braking force instruction value FbR to 0 (zero) by implementing feedback control. After holding the driving force command value FdR, the driving force command value FdR is increased.
  • the execution device 62 transmits the driving force command value FdR to the drive control section 42 and transmits the braking force command value FbR to the brake control section 32. After transmitting the instruction values FdR and FbR, the execution device 62 temporarily ends this processing routine.
  • step S15 the execution device 62 determines whether the step section determination flag FLG is set to OFF.
  • the step section determination flag FLG is a flag for determining whether the vehicle 10 is traveling in a section where the step 101 exists.
  • the step section determination flag FLG is set to ON.
  • the step section determination flag FLG is set to OFF (S15: YES)
  • the execution device 62 moves the process to step S17.
  • the step section determination flag FLG is set to ON (S15: NO)
  • the execution device 62 shifts the process to step S21.
  • step S17 the execution device 62 causes the storage device 63 to store the increase rate ⁇ FdR of the current driving force instruction value FdR. That is, the execution device 62 causes the storage device 63 to store the increased speed ⁇ FdR at the time when it is determined that the leading wheel has climbed over the step 101. For example, the execution device 62 stores a value obtained by differentiating the driving force instruction value FdR with respect to time in the storage device 63 as the increasing speed ⁇ FdR.
  • the increasing speed ⁇ FdR stored in the storage device 63 is "the increasing speed of the driving force of the vehicle 10 at the time when the leading wheel passes a disturbance portion existing on the traveling route of the vehicle 10."
  • the feedback control in this example is PI control or PID control. Therefore, the longer the vehicle 10 does not start, the faster the increasing speed ⁇ FdR of the driving force instruction value FdR becomes. Therefore, compared to the case where the time required for the leading wheel to get over the step 101 is short because the step 101 is small, when the time required for the leading wheel to get over the step 101 is long because the step 101 is large, the storage The value of the increasing speed ⁇ FdR stored in 63 becomes larger.
  • step S19 the execution device 62 sets the step section determination flag FLG to ON. After that, the execution device 62 moves the process to step S21.
  • step S21 the execution device 62 determines whether a predetermined first time lag TL1 has elapsed from the time when it is determined that the leading wheel has climbed over the step 101. The time when it is determined that the leading wheel has climbed over the step 101 can also be said to be the time when the leading wheel has passed through the disturbance area. If the constant speed control is continued even after the leading wheels get over the bump 101, the vehicle speed VS increases. Therefore, the driving force instruction value FdR is decreased by feedback control.
  • the driving force Fd of the vehicle 10 is also decreased.
  • the delay in response of the driving force Fd to the decrease in the driving force instruction value FdR can be grasped in advance from the specifications of the vehicle 10. Therefore, the length of time that takes such response delay into account is set as the first time lag TL1. If the first time lag TL1 has elapsed from the time when it is determined that the leading wheel has climbed over the step 101 (S21: YES), the execution device 62 shifts the process to step S23.
  • the execution device 62 moves the process to step S13 and performs constant speed control.
  • step S23 the execution device 62 determines whether the elapsed time TM from the reference time exceeds the specified time TMth.
  • the reference point in time is the point in time when the first time lag TL1 has elapsed from the point in time when it is determined that the leading wheel has gotten over the step 101.
  • the reference time can also be said to be the start time of driving force increase control, which will be described later.
  • the execution time of the driving force increase control is set as the specified time TMth.
  • the specified time TMth may be set based on the wheelbase length of the vehicle 10 and the target vehicle speed VSTr. If the elapsed time TM exceeds the specified time TMth (S23: YES), the execution device 62 moves the process to step S27. On the other hand, if the elapsed time TM is less than or equal to the specified time TMth (S23: NO), the execution device 62 shifts the process to step S25.
  • step S25 the execution device 62 increases the driving force instruction value FdR at the increasing speed ⁇ FdR stored in the storage device 63. That is, step S25 corresponds to "driving force increase control". For example, the execution device 62 derives the sum of the product of the increasing speed ⁇ FdR and the cycle time TMc and the previous value of the driving force instruction value FdR as the latest value of the driving force instruction value FdR.
  • the cycle time TMc is the length of the control cycle of this processing routine.
  • the previous value of the driving force instruction value FdR is the driving force instruction value FdR derived when this processing routine was executed last time.
  • the execution device 62 transmits the latest value of the derived driving force instruction value FdR to the drive control unit 42. Then, the execution device 62 moves the process to step S29.
  • step S27 the execution device 62 increases the driving force instruction value FdR at a higher speed than the increasing speed ⁇ FdR stored in the storage device 63.
  • the execution device 62 derives the sum of the product of the increasing speed ⁇ FdR and the cycle time TMc, the previous value of the driving force instruction value FdR, and the predetermined offset driving force ⁇ as the latest value of the driving force instruction value FdR. do.
  • a positive driving force is set as the offset driving force ⁇ .
  • the execution device 62 transmits the latest value of the derived driving force instruction value FdR to the drive control unit 42. Then, the execution device 62 moves the process to step S29.
  • step S29 the execution device 62 derives a braking force instruction value FbR to suppress deviation of the vehicle speed VS from the target vehicle speed VSTr.
  • the execution device 62 derives the braking force command value FbR based on feedback control using the deviation between the vehicle speed VS and the target vehicle speed VSTr as input.
  • the feedback control performed here is, for example, PID control or PI control.
  • the execution device 62 transmits the derived braking force instruction value FbR to the braking control unit 32. Thereby, the execution device 62 can suppress deviation of the vehicle body speed VS from the target vehicle body speed VSTr by adjusting the braking force instruction value FbR.
  • the execution device 62 moves the process to step S31.
  • step S31 the execution device 62 determines whether the trailing wheels of the vehicle 10 have climbed over the step 101.
  • the execution device 62 After starting the driving force increase control, the execution device 62 suppresses the vehicle speed VS from exceeding the target vehicle speed VSTr by adjusting the braking force Fb.
  • the bump 101 is an obstacle to increasing the vehicle speed VS, so when the trailing wheels get over the bump 101, the vehicle speed VS temporarily decreases and rises, as at around timing t14 in FIG. 5. do.
  • the execution device 62 determines that the trailing wheels have climbed over the step 101. For example, the execution device 62 determines that the trailing wheels have climbed over the step 101 when the rate of decrease in the vehicle body speed VS is equal to or higher than the determined rate of decrease.
  • the trailing wheels have climbed over the step 101 also includes “a state in which the trailing wheels are getting over the step 101 in a state where the trailing wheels are in contact with the step 101."
  • the execution device 62 determines that the trailing wheels have not climbed over the step 101 .
  • a decreasing speed at which it can be determined whether or not the vehicle body speed VS has started to decrease due to the following wheels overcoming the step 101 is set as the determined decreasing speed.
  • step S31 if the execution device 62 determines that the trailing wheel has climbed over the step 101 (YES), the process moves to step S33. On the other hand, if the execution device 62 determines that the following wheels have not climbed over the step 101 (S31: NO), it temporarily ends this processing routine.
  • step S33 the execution device 62 determines whether a predetermined second time lag TL2 has elapsed from the overcoming point, which is the point in time when the determination in step S31 is switched from NO to YES.
  • the overcoming point can also be said to be the time when it is determined that the following wheels have overcame the step 101.
  • the vehicle speed VS is temporarily reduced. In this case, if a braking force is applied to the vehicle 10 based on the braking force instruction value FbR, the braking force instruction value FbR is decreased due to a decrease in the vehicle body speed VS.
  • the length of time required for the vehicle speed VS to recover to a certain degree can be predicted to some extent from the specifications of the vehicle 10.
  • the second time lag TL2 is set to the length of time during which it can be determined whether the vehicle speed VS has recovered to some extent. If the second time lag TL2 has elapsed from the point of overcoming (S33: YES), the execution device 62 shifts the process to step S35. On the other hand, if the second time lag TL2 has not elapsed since the time of overcoming (S33: NO), the execution device 62 temporarily ends this processing routine.
  • step S35 the execution device 62 sets the step section determination flag FLG to OFF. Then, the execution device 62 moves the process to step S13 and implements constant speed control.
  • ⁇ Target vehicle speed setting process> Referring to FIG. 4, a processing routine showing the target vehicle speed setting process executed by the execution device 62 to set the target vehicle speed VSTr will be described. A plurality of steps S51 to S59 of this processing routine are each executed by the execution device 62 functioning as the target vehicle speed setting section M13. The execution device 62 repeatedly executes this processing routine every predetermined control cycle.
  • step S51 the execution device 62 determines whether the vehicle 10 is stopped. For example, the execution device 62 determines whether the vehicle 10 is stopped based on the vehicle speed VS. When the execution device 62 determines that the vehicle 10 is stopped (S51: YES), the execution device 62 moves the process to step S55. On the other hand, when the execution device 62 determines that the vehicle 10 is not stopped (S51: NO), the execution device 62 moves the process to step S53.
  • step S53 the execution device 62 determines whether the following wheels have climbed over the step 101, similarly to step S31 shown in FIG.
  • the execution device 62 determines that the following wheels have climbed over the step 101 (S53: YES)
  • the execution device 62 moves the process to step S57.
  • the execution device 62 determines that the trailing wheel has not climbed over the step 101 (S53: NO)
  • the execution device 62 moves the process to step S55.
  • step S55 the execution device 62 sets the first vehicle speed VS1 as the target vehicle speed VSTr. Thereafter, the execution device 62 temporarily ends this processing routine.
  • step S57 the execution device 62 derives the sum of the previous value of the target vehicle speed VSTr and the predetermined speed value dVS as the tentative target vehicle speed value VSTr1.
  • the previous value of the target vehicle speed VSTr is the target vehicle speed VSTr derived when this processing routine was executed last time.
  • step S59 the execution device 62 derives the smaller of the tentative target vehicle speed VSTr1 and the second vehicle speed VS2 as the target vehicle speed VSTr. Thereafter, the execution device 62 temporarily ends this processing routine.
  • the driving force Fd of the vehicle 10 exceeds the driving force required to make the rear wheels 12 get over the step 101, so the rear wheels 12 get over the step 101. Then, since the vehicle 10 starts moving, the vehicle body speed VS increases as shown in FIG. 5(A). Note that when it is determined that the rear wheel 12, which is the leading wheel, has climbed over the step 101, the step section determination flag FLG is set to ON, as shown in FIG. 5(E). Further, the increasing speed ⁇ FdR of the driving force instruction value FdR at timing t12 is stored in the storage device 63.
  • the driving force command value FdR is decreased and the braking force command value FbR is increased in order to prevent the vehicle speed VS from exceeding the target vehicle speed VSTr. Thereby, it is possible to suppress deviation of the vehicle body speed VS from the target vehicle body speed VSTr.
  • the driving force instruction value FdR gradually increases after a deviation between the vehicle body speed VS and the target vehicle body speed VSTr begins to occur. As a result, it takes time for the trailing wheels to get over the step 101 due to the increase in the driving force Fd. If it takes time for the trailing wheels to get over the step 101, there is a risk that the driver will try to move the vehicle 10 quickly, which may induce the driver to perform an accelerator operation or a subsequent braking operation.
  • the driving force Fd can be increased even before the trailing wheel contacts the step 101. Therefore, compared to the comparative example, the trailing wheels can quickly overcome the step 101. Therefore, when the vehicle 10 is automatically traveling at low speed, the trailing wheels can quickly complete overcoming the step 101. Therefore, the vehicle 10 can be started promptly before the driver operates the accelerator in order to start the stopped vehicle 10. That is, it is possible to suppress unnecessary accelerator operations and braking operations by the driver when making the wheels go over the step 101.
  • Constant speed control is restarted at timing t15. Then, the vehicle speed VS is controlled by adjusting the driving force Fd and the braking force Fb. In the example shown in FIG. 5, the braking force instruction value FbR is gradually reduced by switching to constant speed control. Further, as the braking force instruction value FbR decreases, the driving force instruction value FdR also decreases. When the driver starts a braking operation at timing t17 during the constant speed control, the braking force FbS is applied to the vehicle 10, so the vehicle 10 stops. That is, constant speed control is ended.
  • the driving support device 60 can further obtain the following effects. (1) Even if driving force increase control is started, the trailing wheels may have difficulty getting over the step 101. In this embodiment, if the trailing wheels have not climbed over the step 101 even at timing t16, which is a specified time TMth after timing t13, which is the start point of driving force increase control, the The driving force instruction value FdR is increased at a high speed. Thereby, the driving force Fd can be increased earlier than when the driving force increase control is continued. Therefore, it is possible to suppress the delay in the following wheels getting over the step 101.
  • the driving force instruction value FdR is increased regardless of whether the vehicle speed VS is less than the target vehicle speed VSTr, so the vehicle speed VS and the target vehicle speed There is a possibility that the deviation from VSTr will become large.
  • the deviation of the vehicle body speed VS from the target vehicle body speed VSTr is suppressed by adjusting the braking force instruction value FbR. Ru.
  • the driver does not need to operate the accelerator when making the wheels go over the step 101. Further, it is possible to suppress the driver from performing a braking operation to decelerate the vehicle 10 due to an excessive increase in the vehicle body speed VS due to the accelerator operation when the wheels go over a step.
  • the target vehicle speed VSTr gradually increases.
  • the target vehicle speed VSTr is increased toward the second vehicle speed VS2 from timing t14. Thereby, the vehicle 10 can be quickly moved to a predetermined parking position.
  • the first vehicle speed VS1 and the second vehicle speed VS2 may be changed by the driver's operation.
  • the braking force command value FbR is varied according to the deviation between the vehicle body speed VS and the target vehicle body speed VSTr, but the invention is not limited to this.
  • the execution device 62 may maintain the braking force command value FbR at a predetermined value during the period from starting the driving force increase control to restarting the constant speed control.
  • the execution device 62 may increase the driving force command value FdR at an increasing speed proportional to the increasing speed ⁇ FdR stored in the storage device 63. Furthermore, the execution device 62 may set an upper limit value on the rate of increase in the driving force command value FdR while the driving force increase control is being performed.
  • the execution device 62 is configured to determine that the trailing wheels have climbed over the step 101 when it is confirmed that the rate of decrease in the vehicle body speed VS becomes equal to or higher than the determined rate of decrease, and then it is confirmed that the vehicle body speed VS starts to increase. It's okay.
  • the fact that the vehicle speed VS has started to increase may be confirmed, for example, by detecting that a predetermined period of time has continued since the vehicle speed VS started to increase from a decreasing state.
  • the state in which the vehicle speed VS is decreasing is a state in which a load is applied to the vehicle 10 for the trailing wheels to overcome the bump 101, and the trailing wheels are located on the bump 101, and the trailing wheels are located on the bump 101. You may not have completely overcome it. Therefore, by checking the increase in the vehicle speed VS, it is possible to reliably detect the state in which the trailing wheels have climbed over the step 101.
  • the execution device 62 After starting the driving force increase control, the execution device 62 does not need to adjust the braking force instruction value FbR for suppressing the deviation of the vehicle body speed VS from the target vehicle body speed VSTr.
  • the execution device 62 may continue to implement the driving force increase control until it determines that the trailing wheels have climbed over the step 101. - When the leading wheels get over the step 101, the execution device 62 switches the control from constant speed control to driving force increase control after it becomes possible to determine that the vehicle speed VS is equal to the target vehicle speed VSTr by constant speed control. It's okay. That is, the execution device 62 may start the driving force increase control at an intermediate timing between timing t13 and timing t14 in the timing chart shown in FIG. 5, or at a timing near the intermediate timing.
  • the execution device 62 may switch the control from constant speed control to driving force increase control after the trailing wheels contact the step 101, that is, after the trailing wheels reach the disturbance area. Even in this case, the driving force Fd of the vehicle 10 reaches a level that allows the trailing wheels to overcome the bump 101, compared to the case where constant speed control is continued even if the trailing wheels come into contact with the bump 101. can be increased early.
  • the above-described support function for automatically driving the vehicle 10 at low speed may be realized even when the vehicle 10 is not parked.
  • the driving support device 60 analyzes the image captured by the imaging device to create a step 101 on the traveling route of the vehicle 10. It is possible to determine whether or not there are any disturbances such as The disturbance portion may be a depression in the running road surface or a portion where the road surface gradient changes suddenly.
  • the execution device 62 of the driving support device 60 may start the constant speed control described above upon detecting the presence of a disturbance by analyzing an image.
  • the processing circuit 61 of the driving support device 60 is not limited to one that includes a CPU and a ROM and executes software processing. That is, the processing circuit 61 may have any of the following configurations (a) to (c).
  • the processing circuit 61 includes one or more processors that execute various processes according to computer programs.
  • the processor includes a CPU and memory such as RAM and ROM.
  • the memory stores program codes or instructions configured to cause the CPU to perform processes.
  • Memory, or computer-readable media includes any available media that can be accessed by a general purpose or special purpose computer.
  • the processing circuit 61 includes one or more dedicated hardware circuits that execute various processes.
  • Dedicated hardware circuits may include, for example, application specific integrated circuits, ie ASICs or FPGAs. Note that ASIC is an abbreviation for "Application Specific Integrated Circuit,” and FPGA is an abbreviation for "Field Programmable Gate Array.”
  • the processing circuit 61 includes a processor that executes some of the various processes according to a computer program, and a dedicated hardware circuit that executes the remaining processes of the various processes.
  • the expression “at least one” used in this specification means “one or more” of the desired options.
  • the expression “at least one” as used herein means “only one option” or “both of the two options” if the number of options is two.
  • the expression “at least one” as used herein means “only one option” or “any combination of two or more options” if there are three or more options. means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Traffic Control Systems (AREA)

Abstract

An execution device 62 of a driving assistance device 60 executes constant speed control for adjusting a driving force indication value and a brake force indication value by means of feedback control based on a deviation between a vehicle body speed and a target vehicle body speed. When executing the constant speed control, the execution device 62 stores, in a storage device 63, an increased speed of the driving force indication value at a time point when leading wheels among front wheels 11 and rear wheels 12 of a vehicle 10 pass through a disturbance part. After the time point when the leading wheels have passed through the disturbance part, the execution device 62 executes driving force increasing control for increasing the driving force indication value at the increased speed stored in the storage device 63.

Description

運転支援装置Driving support device
 本発明は、車両の運転者の車両操作を支援する運転支援装置に関する。 The present invention relates to a driving support device that supports vehicle operation by a vehicle driver.
 特許文献1は、車両の駐車を支援する駐車支援装置を開示している。当該装置は、運転者の運転操作によって車両を目標駐車位置に駐車させる場合に、当該目標駐車位置までの車両の移動経路上の所定位置における車両の駆動力を記憶する記憶部を備えている。そして、当該装置は、記憶部が駆動力を記憶している状態で車両を目標駐車位置に自動で駐車させる場合、記憶部に記憶された駆動力を利用して車両を制御する。 Patent Document 1 discloses a parking support device that supports parking of a vehicle. The device includes a storage unit that stores the driving force of the vehicle at a predetermined position on the travel route of the vehicle to the target parking position when the vehicle is parked at the target parking position by the driver's driving operation. When the device automatically parks the vehicle at the target parking position with the driving force stored in the storage unit, the device controls the vehicle using the driving force stored in the storage unit.
特開2015-77862号公報Japanese Patent Application Publication No. 2015-77862
 車両を低速で走行させる場合、車両の駆動力が比較的小さい。そのため、段差や路面勾配の急変や路面の窪みなどのように車輪が通過する際に走行抵抗を増大させる外乱部が存在する走行経路を車両が走行する場合に、車輪が外乱部を通過するのに時間を要するおそれがある。 When the vehicle is driven at low speed, the driving force of the vehicle is relatively small. Therefore, when a vehicle travels on a route that includes disturbances that increase running resistance when the wheels pass, such as bumps, sudden changes in road slope, or potholes, the wheels are prevented from passing through the disturbances. It may take some time.
 上記課題を解決するための運転支援装置は、車両の車体速度と目標車体速度との偏差に基づいたフィードバック制御によって、当該車両の駆動力及び制動力を調整する定速制御を実施する指令部と、前記定速制御が実施されている場合に、前記車両の前輪及び後輪のうち、当該車両の進行方向に位置する車輪である先行輪が前記車両の走行経路に存在する外乱部を通過した時点における前記車両の駆動力の増大速度を記憶する記憶部と、を備えている。前記指令部は、前記先行輪が前記外乱部を通過した時点以降において、前記記憶部に記憶された前記増大速度で前記車両の駆動力を増大させる駆動力増大制御を実施する。 A driving support device for solving the above problems includes a command unit that performs constant speed control that adjusts the driving force and braking force of the vehicle through feedback control based on the deviation between the vehicle body speed and the target vehicle body speed. , when the constant speed control is being carried out, a leading wheel, which is a wheel located in the traveling direction of the vehicle, among the front wheels and rear wheels of the vehicle, passes through a disturbance part that is present in the travel path of the vehicle. and a storage unit that stores an increase rate of the driving force of the vehicle at a time point. The command unit performs driving force increase control to increase the driving force of the vehicle at the increased speed stored in the storage unit after the time when the leading wheel passes the disturbance portion.
 上記運転支援装置は、定速制御の実施によって先行輪が外乱部を通過する際に、先行輪が外乱部を通過した時点における駆動力の増大速度を記憶部に記憶させる。そして、運転支援装置は、先行輪が外乱部を通過した時点以降において、記憶部に記憶された増大速度で車両の駆動力を増大させる駆動力増大制御を実施する。先行輪が外乱部を通過した時点以降でも定速制御が実施され続ける場合と比較し、駆動力増大制御を実施することによって、外乱部によって増大した走行抵抗に抗する駆動力まで車両の駆動力を早期に増大させることができる。そのため、後続輪が外乱部を早期に通過することができる。 When the leading wheel passes the disturbance part by implementing constant speed control, the driving support device causes the storage unit to store the increasing speed of the driving force at the time the leading wheel passes the disturbance part. Then, the driving support device performs driving force increase control to increase the driving force of the vehicle at the increasing speed stored in the storage unit after the time when the leading wheel passes the disturbance portion. Compared to the case where constant speed control continues even after the leading wheels pass the disturbance area, by implementing driving force increase control, the vehicle's driving force increases to the point where it can resist the running resistance increased by the disturbance area. can be increased early. Therefore, the following wheels can quickly pass through the disturbance area.
 したがって、上記運転支援装置は、車両が低速で走行している場合に当該車両の後続輪の外乱部の通過を早期に完了させることができる。 Therefore, when the vehicle is traveling at low speed, the driving support device can quickly complete the passage of the disturbance portion of the trailing wheels of the vehicle.
図1は、実施形態の運転支援装置を備える車両の概略を示す構成図である。FIG. 1 is a configuration diagram schematically showing a vehicle equipped with a driving support device according to an embodiment. 図2は、駐車位置に向けて車両が低速で走行する様子を示す模式図である。FIG. 2 is a schematic diagram showing how the vehicle travels at low speed toward a parking position. 図3は、同運転支援装置の実行装置が実行する処理ルーチンを示すフローチャートである。FIG. 3 is a flowchart showing a processing routine executed by the execution device of the driving support device. 図4は、同実行装置が実行する処理ルーチンを示すフローチャートである。FIG. 4 is a flowchart showing a processing routine executed by the execution device. 図5は、駐車位置に向けて車両が低速で走行する際における各種のパラメータの推移を示すタイミングチャートである。FIG. 5 is a timing chart showing changes in various parameters when the vehicle travels at low speed toward the parking position.
 以下、運転支援装置の一実施形態を図1~図5に従って説明する。本実施形態では、車輪が通過する際に走行抵抗を増大させる外乱部を車輪が通過する例として、車輪が段差を乗り越える場合について説明する。 Hereinafter, one embodiment of the driving support device will be described according to FIGS. 1 to 5. In the present embodiment, a case will be described in which a wheel passes over a step as an example in which the wheel passes through a disturbance portion that increases running resistance when the wheel passes.
 図1は、運転支援装置60を備える車両10の一部を図示している。
 <車両の構成>
 車両10は、車輪として前輪11及び後輪12を備えている。車両10は、車輪と同数の摩擦ブレーキ20と、制動装置30と、駆動装置40とを備えている。1つの車輪に対して1つの摩擦ブレーキ20が設けられている。
FIG. 1 illustrates a portion of a vehicle 10 including a driving assistance device 60. As shown in FIG.
<Vehicle configuration>
The vehicle 10 includes front wheels 11 and rear wheels 12 as wheels. The vehicle 10 includes the same number of friction brakes 20 as wheels, a braking device 30, and a drive device 40. One friction brake 20 is provided for one wheel.
 複数の摩擦ブレーキ20は、回転体21と摩擦部22とホイールシリンダ23とをそれぞれ有している。回転体21は車輪と一体に回転するため、摩擦ブレーキ20は、摩擦部22を回転体21に押し付けることによって車輪に制動力を付与できる。ホイールシリンダ23内の液圧が高いほど、摩擦部22を回転体21に押し付ける力が大きくなる。すなわち、ホイールシリンダ23内の液圧が高いほど、車輪に付与される制動力が大きくなる。 The plurality of friction brakes 20 each include a rotating body 21, a friction part 22, and a wheel cylinder 23. Since the rotating body 21 rotates together with the wheel, the friction brake 20 can apply braking force to the wheel by pressing the friction portion 22 against the rotating body 21. The higher the hydraulic pressure within the wheel cylinder 23, the greater the force that presses the friction portion 22 against the rotating body 21. That is, the higher the hydraulic pressure within the wheel cylinder 23, the greater the braking force applied to the wheel.
 制動装置30は、制動アクチュエータ31と、制動アクチュエータ31を制御する制動制御部32とを有している。制動アクチュエータ31は、複数のホイールシリンダ23内の液圧を個別に調整できるように構成されている。 The brake device 30 includes a brake actuator 31 and a brake control section 32 that controls the brake actuator 31. The brake actuator 31 is configured to be able to adjust the hydraulic pressure within the plurality of wheel cylinders 23 individually.
 制動制御部32は、制動アクチュエータ31を作動させることによって車両10の制動力を制御する。制動制御部32は、車内ネットワークを介して運転支援装置60と通信できる。例えば、制動制御部32は、車両10の制動力の指示値である制動力指示値FbRを運転支援装置60から受信した場合、制動力指示値FbRに基づいて制動アクチュエータ31を作動させる。 The brake control unit 32 controls the braking force of the vehicle 10 by operating the brake actuator 31. The brake control unit 32 can communicate with the driving support device 60 via the in-vehicle network. For example, when the brake control unit 32 receives a braking force command value FbR, which is a command value of the braking force of the vehicle 10, from the driving support device 60, the brake control unit 32 operates the brake actuator 31 based on the braking force command value FbR.
 駆動装置40は、パワーユニット41と、パワーユニット41を制御する駆動制御部42とを有している。パワーユニット41は、エンジン及び電気モータのうちの少なくとも一方を車両10の動力源として有している。車両10では、パワーユニット41の出力トルクが前輪11に伝達される。なお、パワーユニット41の出力トルクは、前輪11及び後輪12のうちの少なくとも一方に伝達されればよい。 The drive device 40 includes a power unit 41 and a drive control section 42 that controls the power unit 41. Power unit 41 has at least one of an engine and an electric motor as a power source for vehicle 10. In vehicle 10 , output torque of power unit 41 is transmitted to front wheels 11 . Note that the output torque of the power unit 41 may be transmitted to at least one of the front wheels 11 and the rear wheels 12.
 駆動制御部42は、パワーユニット41を作動させることによって車両10の駆動力を制御する。駆動制御部42は、車内ネットワークを介して運転支援装置60と通信できる。例えば、駆動制御部42は、車両10の駆動力の指示値である駆動力指示値FdRを運転支援装置60から受信した場合、駆動力指示値FdRに基づいてパワーユニット41を作動させる。 The drive control unit 42 controls the driving force of the vehicle 10 by operating the power unit 41. The drive control unit 42 can communicate with the driving support device 60 via the in-vehicle network. For example, when the drive control unit 42 receives the driving force instruction value FdR, which is the instruction value of the driving force of the vehicle 10, from the driving support device 60, the drive control unit 42 operates the power unit 41 based on the driving force instruction value FdR.
 <車両の検出系>
 車両10の検出系は、複数のセンサを備えている。複数のセンサは、車輪と同数の車輪速度センサ51と、前後加速度センサ52と、ブレーキスイッチ53とを含んでいる。複数の車輪速度センサ51は、対応する車輪の回転速度をそれぞれ検出する。前後加速度センサ52は、車両10の前後加速度を検出する。ブレーキスイッチ53は、運転者が制動操作部材15を操作しているか否かを示す信号を出力する。制動操作部材15は、例えば、ブレーキペダルである。車輪速度センサ51の検出値に基づいた車輪の回転速度を「車輪速度VW」という。前後加速度センサ52の検出値に基づいた前後加速度を「前後加速度GX」という。運転者の制動操作部材15の操作を「制動操作」ともいう。
<Vehicle detection system>
The detection system of the vehicle 10 includes a plurality of sensors. The plurality of sensors include the same number of wheel speed sensors 51 as wheels, longitudinal acceleration sensors 52, and brake switches 53. The plurality of wheel speed sensors 51 each detect the rotational speed of the corresponding wheel. The longitudinal acceleration sensor 52 detects the longitudinal acceleration of the vehicle 10. The brake switch 53 outputs a signal indicating whether or not the driver is operating the brake operating member 15. The brake operation member 15 is, for example, a brake pedal. The rotational speed of the wheel based on the detected value of the wheel speed sensor 51 is referred to as "wheel speed VW." The longitudinal acceleration based on the detected value of the longitudinal acceleration sensor 52 is referred to as "longitudinal acceleration GX." The driver's operation of the brake operation member 15 is also referred to as a "brake operation."
 <運転支援装置>
 運転支援装置60は、運転者の車両操作を支援する機能を有している。ここでいう「車両操作」は、アクセル操作、制動操作及びステアリング操作を含んでいる。例えば、運転支援装置60は、車両10の低速での自動走行を行わせる支援機能を有している。こうした支援機能は、車両10を駐車位置に駐車させる際などに用いられる。ここでいう「車両10の低速走行」とは、例えば10km/h未満での車両10の走行である。また、「自動走行」とは、車両10の車体速度を車両10側で調整する状態での車両10の走行である。
<Driving support device>
The driving support device 60 has a function of supporting the driver's vehicle operation. "Vehicle operation" here includes accelerator operation, braking operation, and steering operation. For example, the driving support device 60 has a support function that allows the vehicle 10 to automatically travel at low speed. Such a support function is used when parking the vehicle 10 at a parking position. The "low-speed running of the vehicle 10" herein refers to running the vehicle 10 at a speed of less than 10 km/h, for example. Furthermore, "automatic driving" refers to traveling of the vehicle 10 in a state where the vehicle speed of the vehicle 10 is adjusted on the vehicle 10 side.
 運転支援装置60は処理回路61を備えている。処理回路61は、実行装置62と記憶装置63とを有している。例えば、実行装置62はCPUである。記憶装置63は、実行装置62によって実行される各種の制御プログラムを記憶している。実行装置62は、上記の支援機能を実現する際に、駆動力指示値FdRを駆動制御部42に送信したり、制動力指示値FbRを制動制御部32に送信したりする。 The driving support device 60 includes a processing circuit 61. The processing circuit 61 includes an execution device 62 and a storage device 63. For example, execution device 62 is a CPU. The storage device 63 stores various control programs executed by the execution device 62. The execution device 62 transmits the driving force instruction value FdR to the drive control section 42 and the braking force instruction value FbR to the braking control section 32 when realizing the above support function.
 実行装置62は、制御プログラムを実行することにより、指令部M11及び目標車体速度設定部M13として機能する。指令部M11及び目標車体速度設定部M13は、上記の支援機能を実現するための機能部である。 The execution device 62 functions as a command section M11 and a target vehicle speed setting section M13 by executing the control program. The command section M11 and the target vehicle speed setting section M13 are functional sections for realizing the above-mentioned support function.
 <指令部>
 指令部M11は、車両10の車体速度VSと目標車体速度VSTrとの偏差に基づいたフィードバック制御によって、車両10の駆動力及び制動力を調整する定速制御を実施する。フィードバック制御は、例えば、PID制御又はPI制御である。車体速度VSは、複数の車輪の車輪速度VWのうちの少なくとも1つに基づいて導出される。目標車体速度VSTrとして、上記した10km/h未満の速度が設定されている。
<Command Department>
The command unit M11 performs constant speed control to adjust the driving force and braking force of the vehicle 10 by feedback control based on the deviation between the vehicle body speed VS of the vehicle 10 and the target vehicle body speed VSTr. Feedback control is, for example, PID control or PI control. The vehicle speed VS is derived based on at least one of the wheel speeds VW of the plurality of wheels. The target vehicle speed VSTr is set to the above-mentioned speed of less than 10 km/h.
 図2に示すように車両10の走行経路100に段差101が存在することがある。この場合、前輪11及び後輪12のうち、車両10の進行方向に位置する車輪である先行輪が段差101を乗り越えた後に、先行輪ではない車輪である後続輪が段差101を乗り越えることになる。図2に示す例のように車両10が後退している場合、車両10の後方が車両10の進行方向となるため、後輪12が先行輪に対応し、前輪11が後続輪に対応する。一方、車両10が前進している場合、車両10の前方が車両10の進行方向となるため、前輪11が先行輪に対応し、後輪12が後続輪に対応する。 As shown in FIG. 2, a step 101 may exist on the travel route 100 of the vehicle 10. In this case, among the front wheels 11 and rear wheels 12, after the leading wheel, which is a wheel located in the traveling direction of the vehicle 10, gets over the step 101, the trailing wheel, which is a wheel that is not the leading wheel, gets over the step 101. . When the vehicle 10 is moving backward as in the example shown in FIG. 2, the rear of the vehicle 10 is the traveling direction of the vehicle 10, so the rear wheels 12 correspond to the leading wheels and the front wheels 11 correspond to the trailing wheels. On the other hand, when the vehicle 10 is moving forward, the forward direction of the vehicle 10 is the direction of movement of the vehicle 10, so the front wheels 11 correspond to the leading wheels and the rear wheels 12 correspond to the trailing wheels.
 定速制御の実施中に先行輪が段差101に接触した場合、先行輪が段差101に接触する前と比較して車両10の走行抵抗が高くなるため、車両10の駆動力Fdが小さいと、先行輪が段差101を乗り越えられず、車両10が停止することがある。例えば、車両10の駆動力Fdは、パワーユニット41の発生するトルクでもある。この場合、指令部M11は、車体速度VSと目標車体速度VSTrとの偏差を入力とするフィードバック制御によって駆動力指示値FdRを大きくする。駆動力指示値FdRの増大に伴って車両10の駆動力Fdが大きくなったために先行輪が段差101を乗り越えると、指令部M11は、先行輪が段差101を乗り越えた時点の駆動力指示値FdRの増大速度ΔFdRを記憶装置63に記憶させる。すなわち、記憶装置63が、外乱部の一例である段差101を先行輪が通過した時点の増大速度ΔFdRを記憶する「記憶部」に対応する。 If the leading wheel contacts the step 101 during constant speed control, the running resistance of the vehicle 10 will be higher than before the leading wheel contacts the step 101, so if the driving force Fd of the vehicle 10 is small, The leading wheels may not be able to get over the step 101, and the vehicle 10 may stop. For example, the driving force Fd of the vehicle 10 is also the torque generated by the power unit 41. In this case, the command unit M11 increases the driving force command value FdR by feedback control using the deviation between the vehicle speed VS and the target vehicle speed VSTr as input. When the driving force Fd of the vehicle 10 increases with an increase in the driving force instruction value FdR, and the leading wheel gets over the step 101, the command unit M11 sets the driving force instruction value FdR at the time when the leading wheel gets over the step 101. The increasing speed ΔFdR of is stored in the storage device 63. That is, the storage device 63 corresponds to a "storage section" that stores the increased speed ΔFdR at the time when the leading wheel passes the step 101, which is an example of a disturbance section.
 指令部M11は、先行輪が段差101を乗り越えた時点以降において、記憶装置63に記憶した増大速度ΔFdRで駆動力指示値FdRを増大させる駆動力増大制御を実施する。具体的には、指令部M11は、後続輪が段差101に接触する前から駆動力増大制御を開始する。 The command unit M11 implements driving force increase control to increase the driving force instruction value FdR at the increasing speed ΔFdR stored in the storage device 63 after the leading wheel has climbed over the step 101. Specifically, the command unit M11 starts the driving force increase control before the trailing wheel contacts the step 101.
 駆動力増大制御の実施によって駆動力指示値FdRを増大させても後続輪が段差101をなかなか乗り越えないことがある。そこで、指令部M11は、駆動力増大制御の開始時点からの経過時間TMが規定時間TMthを越えても後続輪が段差101を乗り越えていない場合に、記憶装置63に記憶した増大速度ΔFdRよりも高い速度で駆動力指示値FdRを増大させる。 Even if the driving force instruction value FdR is increased by implementing the driving force increase control, the trailing wheels may not easily get over the step 101. Therefore, when the trailing wheel has not gotten over the step 101 even though the elapsed time TM from the start of the driving force increase control exceeds the specified time TMth, the command unit M11 controls the increasing speed ΔFdR stored in the storage device 63 to Increase the driving force command value FdR at a high speed.
 なお、定速制御が中断されて駆動力増大制御が開始された以降では、駆動力指示値FdRが増大され続ける。そのため、車体速度VSが目標車体速度VSTrを上回ってしまうことがある。そこで、指令部M11は、駆動力増大制御を開始した以降において、制動力指示値FbRを調整することによって車体速度VSが目標車体速度VSTrから乖離することを抑制する。 Note that after the constant speed control is interrupted and the driving force increase control is started, the driving force instruction value FdR continues to be increased. Therefore, the vehicle speed VS may exceed the target vehicle speed VSTr. Therefore, after starting the driving force increase control, the command unit M11 suppresses the deviation of the vehicle speed VS from the target vehicle speed VSTr by adjusting the braking force command value FbR.
 そして、後続輪が段差101を乗り越えると、指令部M11は定速制御を再開する。
 <目標車体速度設定部>
 目標車体速度設定部M13は、上記の目標車体速度VSTrを設定する。目標車体速度設定部M13は、後続輪が段差101を乗り越える以前、すなわち後続輪が段差101(外乱部)を通過する以前では、第1車体速度VS1を目標車体速度VSTrとして設定する。目標車体速度設定部M13は、後続輪が段差101を乗り越えた後では、すなわち後続輪が段差101(外乱部)を通過した後では、目標車体速度VSTrを増大させる。具体的には、目標車体速度設定部M13は、第2車体速度VS2まで目標車体速度VSTrを徐々に増大させる。第2車体速度VS2として、第1車体速度VS1よりも高い車体速度が設定されている。また、目標車体速度設定部M13は、運転者の制動操作などによって車両10が停止した場合、第1車体速度VS1を目標車体速度VSTrとして設定する。
Then, when the trailing wheels get over the step 101, the command unit M11 resumes constant speed control.
<Target vehicle speed setting section>
The target vehicle speed setting section M13 sets the target vehicle speed VSTr. The target vehicle speed setting unit M13 sets the first vehicle speed VS1 as the target vehicle speed VSTr before the trailing wheels get over the step 101, that is, before the trailing wheels pass the step 101 (disturbance section). The target vehicle speed setting unit M13 increases the target vehicle speed VSTr after the trailing wheels get over the step 101, that is, after the trailing wheels pass the step 101 (disturbance portion). Specifically, the target vehicle speed setting unit M13 gradually increases the target vehicle speed VSTr up to the second vehicle speed VS2. A vehicle speed higher than the first vehicle speed VS1 is set as the second vehicle speed VS2. Furthermore, when the vehicle 10 is stopped due to the driver's braking operation or the like, the target vehicle speed setting unit M13 sets the first vehicle speed VS1 as the target vehicle speed VSTr.
 <駆動制動調整処理>
 図3を参照し、駆動力指示値FdR及び制動力指示値FbRを導出するために実行装置62が実行する駆動制動調整処理を示す処理ルーチンを説明する。本処理ルーチンの複数のステップS11~S35は、実行装置62が指令部M11として機能することによってそれぞれ実行される。
<Drive braking adjustment process>
With reference to FIG. 3, a processing routine showing the drive braking adjustment process executed by the execution device 62 to derive the driving force command value FdR and the braking force command value FbR will be described. A plurality of steps S11 to S35 of this processing routine are each executed by the execution device 62 functioning as the command unit M11.
 実行装置62は、上記の支援機能の実行条件が成立していると判定している場合、所定の制御サイクル毎に本処理ルーチンを繰り返し実行する。例えば、実行装置62は、上記の支援機能をオンとする操作を運転者が行った場合、及び、所定の駐車位置に車両10を駐車させようと運転者が車両操作を開始したことを検知した場合などに、実行条件が成立していると判定する。 If the execution device 62 determines that the execution conditions for the support function described above are satisfied, it repeatedly executes this processing routine every predetermined control cycle. For example, the execution device 62 detects when the driver performs an operation to turn on the above-mentioned support function, and when the driver starts operating the vehicle in order to park the vehicle 10 at a predetermined parking position. In some cases, it is determined that the execution condition is met.
 ステップS11において、実行装置62は、車両10の先行輪が段差101を乗り越えたか否かを判定する。
 図5を参照し、先行輪が段差101を乗り越えたか否かの判定処理の一例について説明する。実行装置62が定速制御を実施している状況下で先行輪が段差101に接触すると、車両10が停止する。すなわち、図5の(A)に示すように車体速度VSが0(零)になる。この場合、車体速度VSが目標車体速度VSTrを下回っている状態となるため、実行装置62は、図5の(D)に示すようにフィードバック制御によって駆動力指示値FdRを増大させる。先行輪に段差101を乗り越えさせるのに必要な駆動力を車両10の駆動力Fdが越えると、先行輪が段差101を乗り越える。すなわち、先行輪が回転し始める。その結果、車両10が発進するため、図5の(A)に示すように車体速度VSが急に大きくなる。
In step S11, the execution device 62 determines whether the leading wheels of the vehicle 10 have climbed over the step 101.
With reference to FIG. 5, an example of a process for determining whether the leading wheel has climbed over the step 101 will be described. When the leading wheel contacts the step 101 while the execution device 62 is performing constant speed control, the vehicle 10 stops. That is, as shown in FIG. 5A, the vehicle speed VS becomes 0 (zero). In this case, since the vehicle speed VS is lower than the target vehicle speed VSTr, the execution device 62 increases the driving force instruction value FdR by feedback control as shown in FIG. 5(D). When the driving force Fd of the vehicle 10 exceeds the driving force required to make the leading wheels get over the step 101, the leading wheels get over the step 101. That is, the leading wheels begin to rotate. As a result, the vehicle 10 starts moving, so the vehicle body speed VS suddenly increases as shown in FIG. 5(A).
 そこで、実行装置62は、定速制御の実施中において以下の条件(A1)が成立した場合に、先行輪が段差101を乗り越えたと判定する。すなわち、実行装置62は、外乱部の一例である段差101を先行輪が通過したと判定する。なお、判定増大速度として、車体速度VSが急激に大きくなったか否かを判断できる値が設定されている。(A1)車体速度VSが0(零)である状態から、車体速度VSが0(零)よりも大きくなった場合において、車体速度VSの増大速度が判定増大速度以上であること。 Therefore, the execution device 62 determines that the leading wheel has climbed over the step 101 when the following condition (A1) is satisfied during the implementation of the constant speed control. That is, the execution device 62 determines that the leading wheel has passed the step 101, which is an example of a disturbance section. Note that the determination increase speed is set to a value that allows it to be determined whether or not the vehicle body speed VS has suddenly increased. (A1) When the vehicle body speed VS becomes greater than 0 (zero) from a state where the vehicle body speed VS is 0 (zero), the increasing rate of the vehicle body speed VS is equal to or higher than the determined increasing rate.
 図3に戻り、ステップS11において、実行装置62は、先行輪が段差101を乗り越えたと判定した場合(YES)、処理をステップS15に移行する。一方、実行装置62は、先行輪が段差101を乗り越えていないと判定した場合(S11:NO)、処理をステップS13に移行する。 Returning to FIG. 3, in step S11, if the execution device 62 determines that the leading wheel has climbed over the step 101 (YES), the execution device 62 moves the process to step S15. On the other hand, when the execution device 62 determines that the leading wheel has not climbed over the step 101 (S11: NO), the execution device 62 shifts the process to step S13.
 なお、実行装置62は、上記の判定処理を実行することにより、先行輪が段差101を乗り越えたと判定した場合、後述する段差区間判定フラグFLGがオンからオフに切り替わるまでの間、先行輪が段差101を乗り越えたと判定し続ける。 Note that when the execution device 62 determines that the leading wheel has climbed over the step 101 by executing the above-described determination process, the execution device 62 determines that the leading wheel has climbed over the step 101 until the step section determination flag FLG, which will be described later, is switched from on to off. Continue to judge that 101 has been overcome.
 ステップS13において、実行装置62は定速制御を実施する。具体的には、実行装置62は、車体速度VSと目標車体速度VSTrとの偏差を入力とするフィードバック制御によって制御量を導出する。この制御量を「FB制御量」という。実行装置62は、FB制御量に基づいて駆動力指示値FdR及び制動力指示値FbRを導出する。例えば先行輪が段差101を乗り越えられず、車体速度VSが目標車体速度VSTrを大きく下回っている場合、実行装置62は、フィードバック制御を実施することにより、制動力指示値FbRを0(零)に保持した上で駆動力指示値FdRを増大させる。実行装置62は、駆動力指示値FdRを駆動制御部42に送信し、且つ制動力指示値FbRを制動制御部32に送信する。実行装置62は、指示値FdR,FbRを送信すると、本処理ルーチンを一旦終了する。 In step S13, the execution device 62 implements constant speed control. Specifically, the execution device 62 derives the control amount through feedback control using the deviation between the vehicle speed VS and the target vehicle speed VSTr as input. This control amount is called "FB control amount." The execution device 62 derives a driving force instruction value FdR and a braking force instruction value FbR based on the FB control amount. For example, if the leading wheels cannot overcome the bump 101 and the vehicle speed VS is significantly lower than the target vehicle speed VSTr, the execution device 62 sets the braking force instruction value FbR to 0 (zero) by implementing feedback control. After holding the driving force command value FdR, the driving force command value FdR is increased. The execution device 62 transmits the driving force command value FdR to the drive control section 42 and transmits the braking force command value FbR to the brake control section 32. After transmitting the instruction values FdR and FbR, the execution device 62 temporarily ends this processing routine.
 ステップS15において、実行装置62は、段差区間判定フラグFLGにオフがセットされているか否かを判定する。段差区間判定フラグFLGは、段差101が存在する区間を車両10が走行しているか否かを判断するためのフラグである。段差101が存在する区間を車両10が走行している場合、段差区間判定フラグFLGにオンがセットされる。段差101が存在しない区間を車両10が走行していたり、当該区間を車両10が通過したりした場合、段差区間判定フラグFLGにオフがセットされる。実行装置62は、段差区間判定フラグFLGにオフがセットされている場合(S15:YES)、処理をステップS17に移行する。一方、実行装置62は、段差区間判定フラグFLGにオンがセットされている場合(S15:NO)、処理をステップS21に移行する。 In step S15, the execution device 62 determines whether the step section determination flag FLG is set to OFF. The step section determination flag FLG is a flag for determining whether the vehicle 10 is traveling in a section where the step 101 exists. When the vehicle 10 is traveling in a section where a step 101 exists, the step section determination flag FLG is set to ON. When the vehicle 10 is traveling in a section where the step 101 does not exist or when the vehicle 10 passes through the section, the step section determination flag FLG is set to OFF. When the step section determination flag FLG is set to OFF (S15: YES), the execution device 62 moves the process to step S17. On the other hand, if the step section determination flag FLG is set to ON (S15: NO), the execution device 62 shifts the process to step S21.
 ステップS17において、実行装置62は、現在の駆動力指示値FdRの増大速度ΔFdRを記憶装置63に記憶させる。すなわち、実行装置62は、先行輪が段差101を乗り越えたと判定した時点の増大速度ΔFdRを記憶装置63に記憶させる。例えば、実行装置62は、駆動力指示値FdRを時間微分した値を増大速度ΔFdRとして記憶装置63に記憶させる。記憶装置63に記憶された増大速度ΔFdRは、「車両10の走行経路に存在する外乱部を先行輪が通過した時点における車両10の駆動力の増大速度」であると云える。また、本例のフィードバック制御はPI制御又はPID制御である。そのため、車両10が発進しない状態が長く続くほど、駆動力指示値FdRの増大速度ΔFdRは大きくなる。したがって、段差101が小さいために先行輪が段差101を乗り越えるのに要する時間が短い場合と比較し、段差101が大きいために先行輪が段差101を乗り越えるのに要する時間が長い場合では、記憶装置63に記憶される増大速度ΔFdRの値は大きくなる。 In step S17, the execution device 62 causes the storage device 63 to store the increase rate ΔFdR of the current driving force instruction value FdR. That is, the execution device 62 causes the storage device 63 to store the increased speed ΔFdR at the time when it is determined that the leading wheel has climbed over the step 101. For example, the execution device 62 stores a value obtained by differentiating the driving force instruction value FdR with respect to time in the storage device 63 as the increasing speed ΔFdR. It can be said that the increasing speed ΔFdR stored in the storage device 63 is "the increasing speed of the driving force of the vehicle 10 at the time when the leading wheel passes a disturbance portion existing on the traveling route of the vehicle 10." Further, the feedback control in this example is PI control or PID control. Therefore, the longer the vehicle 10 does not start, the faster the increasing speed ΔFdR of the driving force instruction value FdR becomes. Therefore, compared to the case where the time required for the leading wheel to get over the step 101 is short because the step 101 is small, when the time required for the leading wheel to get over the step 101 is long because the step 101 is large, the storage The value of the increasing speed ΔFdR stored in 63 becomes larger.
 続いてステップS19において、実行装置62は、段差区間判定フラグFLGにオンをセットする。その後、実行装置62は処理をステップS21に移行する。
 ステップS21において、実行装置62は、先行輪が段差101を乗り越えたと判定した時点から所定の第1タイムラグTL1が経過したか否かを判定する。先行輪が段差101を乗り越えたと判定した時点とは、先行輪が外乱部を通過した時点であるとも云える。先行輪が段差101を乗り越えても定速制御が継続されていると、車体速度VSが大きくなる。そのため、フィードバック制御によって駆動力指示値FdRが減少される。駆動力指示値FdRが減少されると、車両10の駆動力Fdも減少する。駆動力指示値FdRの減少に対する駆動力Fdの応答の遅れは、車両10の諸元から予め把握できる。そこで、こうした応答の遅れを加味した時間の長さが第1タイムラグTL1として設定されている。実行装置62は、先行輪が段差101を乗り越えたと判定した時点から第1タイムラグTL1が経過した場合(S21:YES)、処理をステップS23に移行する。一方、実行装置62は、先行輪が段差101を乗り越えたと判定した時点から第1タイムラグTL1が経過していない場合(S21:NO)、処理をステップS13に移行して定速制御を実施する。
Subsequently, in step S19, the execution device 62 sets the step section determination flag FLG to ON. After that, the execution device 62 moves the process to step S21.
In step S21, the execution device 62 determines whether a predetermined first time lag TL1 has elapsed from the time when it is determined that the leading wheel has climbed over the step 101. The time when it is determined that the leading wheel has climbed over the step 101 can also be said to be the time when the leading wheel has passed through the disturbance area. If the constant speed control is continued even after the leading wheels get over the bump 101, the vehicle speed VS increases. Therefore, the driving force instruction value FdR is decreased by feedback control. When the driving force instruction value FdR is decreased, the driving force Fd of the vehicle 10 is also decreased. The delay in response of the driving force Fd to the decrease in the driving force instruction value FdR can be grasped in advance from the specifications of the vehicle 10. Therefore, the length of time that takes such response delay into account is set as the first time lag TL1. If the first time lag TL1 has elapsed from the time when it is determined that the leading wheel has climbed over the step 101 (S21: YES), the execution device 62 shifts the process to step S23. On the other hand, if the first time lag TL1 has not elapsed since the time when it is determined that the leading wheel has climbed over the step 101 (S21: NO), the execution device 62 moves the process to step S13 and performs constant speed control.
 ステップS23において、実行装置62は、基準時点からの経過時間TMが規定時間TMthを越えたか否かを判定する。基準時点は、先行輪が段差101を乗り越えたと判定した時点から第1タイムラグTL1が経過した時点である。基準時点は、後述する駆動力増大制御の開始時点であるとも云える。当該駆動力増大制御の実施時間が規定時間TMthとして設定されている。規定時間TMthは、車両10のホイールベース長及び目標車体速度VSTrに基づいて設定するとよい。実行装置62は、経過時間TMが規定時間TMthを越えている場合(S23:YES)、処理をステップS27に移行する。一方、実行装置62は、経過時間TMが規定時間TMth以下である場合(S23:NO)、処理をステップS25に移行する。 In step S23, the execution device 62 determines whether the elapsed time TM from the reference time exceeds the specified time TMth. The reference point in time is the point in time when the first time lag TL1 has elapsed from the point in time when it is determined that the leading wheel has gotten over the step 101. The reference time can also be said to be the start time of driving force increase control, which will be described later. The execution time of the driving force increase control is set as the specified time TMth. The specified time TMth may be set based on the wheelbase length of the vehicle 10 and the target vehicle speed VSTr. If the elapsed time TM exceeds the specified time TMth (S23: YES), the execution device 62 moves the process to step S27. On the other hand, if the elapsed time TM is less than or equal to the specified time TMth (S23: NO), the execution device 62 shifts the process to step S25.
 ステップS25において、実行装置62は、記憶装置63に記憶した増大速度ΔFdRで駆動力指示値FdRを増大させる。すなわち、ステップS25が「駆動力増大制御」に対応する。例えば、実行装置62は、増大速度ΔFdRとサイクル時間TMcとの積と、駆動力指示値FdRの前回値との和を、駆動力指示値FdRの最新値として導出する。サイクル時間TMcとは、本処理ルーチンの制御サイクルの時間の長さである。駆動力指示値FdRの前回値は、本処理ルーチンを前回に実行した際に導出された駆動力指示値FdRである。実行装置62は、導出した駆動力指示値FdRの最新値を駆動制御部42に送信する。そして、実行装置62は処理をステップS29に移行する。 In step S25, the execution device 62 increases the driving force instruction value FdR at the increasing speed ΔFdR stored in the storage device 63. That is, step S25 corresponds to "driving force increase control". For example, the execution device 62 derives the sum of the product of the increasing speed ΔFdR and the cycle time TMc and the previous value of the driving force instruction value FdR as the latest value of the driving force instruction value FdR. The cycle time TMc is the length of the control cycle of this processing routine. The previous value of the driving force instruction value FdR is the driving force instruction value FdR derived when this processing routine was executed last time. The execution device 62 transmits the latest value of the derived driving force instruction value FdR to the drive control unit 42. Then, the execution device 62 moves the process to step S29.
 ステップS27において、実行装置62は、記憶装置63に記憶した増大速度ΔFdRよりも高い速度で駆動力指示値FdRを増大させる。例えば、実行装置62は、増大速度ΔFdRとサイクル時間TMcとの積と、駆動力指示値FdRの前回値と、所定のオフセット駆動力αとの和を、駆動力指示値FdRの最新値として導出する。正の駆動力がオフセット駆動力αとして設定されている。実行装置62は、導出した駆動力指示値FdRの最新値を駆動制御部42に送信する。そして、実行装置62は処理をステップS29に移行する。 In step S27, the execution device 62 increases the driving force instruction value FdR at a higher speed than the increasing speed ΔFdR stored in the storage device 63. For example, the execution device 62 derives the sum of the product of the increasing speed ΔFdR and the cycle time TMc, the previous value of the driving force instruction value FdR, and the predetermined offset driving force α as the latest value of the driving force instruction value FdR. do. A positive driving force is set as the offset driving force α. The execution device 62 transmits the latest value of the derived driving force instruction value FdR to the drive control unit 42. Then, the execution device 62 moves the process to step S29.
 ステップS29において、実行装置62は、車体速度VSが目標車体速度VSTrから乖離することを抑制するべく制動力指示値FbRを導出する。例えば、実行装置62は、車体速度VSと目標車体速度VSTrとの偏差を入力とするフィードバック制御に基づいて制動力指示値FbRを導出する。ここで実施されるフィードバック制御は、例えば、PID制御又はPI制御である。実行装置62は、導出した制動力指示値FbRを制動制御部32に送信する。これにより、実行装置62は、制動力指示値FbRを調整することによって車体速度VSが目標車体速度VSTrから乖離することを抑制できる。実行装置62は、制動力指示値FbRを送信すると、処理をステップS31に移行する。 In step S29, the execution device 62 derives a braking force instruction value FbR to suppress deviation of the vehicle speed VS from the target vehicle speed VSTr. For example, the execution device 62 derives the braking force command value FbR based on feedback control using the deviation between the vehicle speed VS and the target vehicle speed VSTr as input. The feedback control performed here is, for example, PID control or PI control. The execution device 62 transmits the derived braking force instruction value FbR to the braking control unit 32. Thereby, the execution device 62 can suppress deviation of the vehicle body speed VS from the target vehicle body speed VSTr by adjusting the braking force instruction value FbR. After transmitting the braking force instruction value FbR, the execution device 62 moves the process to step S31.
 ステップS31において、実行装置62は、車両10の後続輪が段差101を乗り越えたか否かを判定する。
 図5を参照し、後続輪が段差101を乗り越えたか否かの判定処理の一例について説明する。実行装置62は、駆動力増大制御を開始した以降では、制動力Fbを調整することによって車体速度VSが目標車体速度VSTrを上回ることを抑制している。段差101は、車体速度VSを上昇させるに際して障害となるものであるため、後続輪が段差101を乗り越える際には、図5におけるタイミングt14あたりのように車体速度VSが一時的に低下して上昇する。そこで、実行装置62は、上記のように制動力Fbを調整している状況下で車体速度VSの低下や上昇を検知した場合に後続輪が段差101を乗り越えたと判定する。例えば、実行装置62は、車体速度VSの低下速度が判定低下速度以上である場合、後続輪が段差101を乗り越えたと判定する。この場合、「後続輪が段差101を乗り越えた」は、「後続輪が段差101に接触した状態で段差101を後続輪が乗り越えつつある状態」も含んでいる。一方、実行装置62は、車体速度VSの低下速度が判定低下速度よりも小さい場合、後続輪が段差101を乗り越えていないと判定する。この場合、後続輪が段差101を乗り越えたことに起因して車体速度VSが低下し始めたか否かを判断できる低下速度が判定低下速度として設定される。
In step S31, the execution device 62 determines whether the trailing wheels of the vehicle 10 have climbed over the step 101.
With reference to FIG. 5, an example of a process for determining whether the following wheels have climbed over the step 101 will be described. After starting the driving force increase control, the execution device 62 suppresses the vehicle speed VS from exceeding the target vehicle speed VSTr by adjusting the braking force Fb. The bump 101 is an obstacle to increasing the vehicle speed VS, so when the trailing wheels get over the bump 101, the vehicle speed VS temporarily decreases and rises, as at around timing t14 in FIG. 5. do. Therefore, when the execution device 62 detects a decrease or increase in the vehicle speed VS while adjusting the braking force Fb as described above, the execution device 62 determines that the trailing wheels have climbed over the step 101. For example, the execution device 62 determines that the trailing wheels have climbed over the step 101 when the rate of decrease in the vehicle body speed VS is equal to or higher than the determined rate of decrease. In this case, "the trailing wheels have climbed over the step 101" also includes "a state in which the trailing wheels are getting over the step 101 in a state where the trailing wheels are in contact with the step 101." On the other hand, if the rate of decrease in the vehicle body speed VS is smaller than the determined rate of decrease, the execution device 62 determines that the trailing wheels have not climbed over the step 101 . In this case, a decreasing speed at which it can be determined whether or not the vehicle body speed VS has started to decrease due to the following wheels overcoming the step 101 is set as the determined decreasing speed.
 図3に戻り、ステップS31において、実行装置62は、後続輪が段差101を乗り越えたと判定した場合(YES)、処理をステップS33に移行する。一方、実行装置62は、後続輪が段差101を乗り越えていないと判定した場合(S31:NO)、本処理ルーチンを一旦終了する。 Returning to FIG. 3, in step S31, if the execution device 62 determines that the trailing wheel has climbed over the step 101 (YES), the process moves to step S33. On the other hand, if the execution device 62 determines that the following wheels have not climbed over the step 101 (S31: NO), it temporarily ends this processing routine.
 ステップS33において、実行装置62は、ステップS31の判定がNOからYESに切り替わった時点である乗り越え時点から所定の第2タイムラグTL2が経過したか否かを判定する。乗り越え時点は、後続輪が段差101を乗り越えたと判定された時点であるとも云える。後続輪が段差を乗り越えている場合には、車体速度VSが一時的に低下する。この場合、制動力指示値FbRに基づいて車両10に制動力が付与されている場合には、車体速度VSの低下に起因して制動力指示値FbRが低下される。車体速度VSがある程度回復するまでに要する時間の長さは、車両10の諸元からある程度予測できる。そのため、車体速度VSがある程度回復したか否かを判断できる時間の長さが第2タイムラグTL2として設定されている。実行装置62は、乗り越え時点から第2タイムラグTL2が経過した場合(S33:YES)、処理をステップS35に移行する。一方、実行装置62は、乗り越え時点から第2タイムラグTL2が経過していない場合(S33:NO)、本処理ルーチンを一旦終了する。 In step S33, the execution device 62 determines whether a predetermined second time lag TL2 has elapsed from the overcoming point, which is the point in time when the determination in step S31 is switched from NO to YES. The overcoming point can also be said to be the time when it is determined that the following wheels have overcame the step 101. When the trailing wheels are climbing over a step, the vehicle speed VS is temporarily reduced. In this case, if a braking force is applied to the vehicle 10 based on the braking force instruction value FbR, the braking force instruction value FbR is decreased due to a decrease in the vehicle body speed VS. The length of time required for the vehicle speed VS to recover to a certain degree can be predicted to some extent from the specifications of the vehicle 10. Therefore, the second time lag TL2 is set to the length of time during which it can be determined whether the vehicle speed VS has recovered to some extent. If the second time lag TL2 has elapsed from the point of overcoming (S33: YES), the execution device 62 shifts the process to step S35. On the other hand, if the second time lag TL2 has not elapsed since the time of overcoming (S33: NO), the execution device 62 temporarily ends this processing routine.
 ステップS35において、実行装置62は、段差区間判定フラグFLGにオフをセットする。そして、実行装置62は、処理をステップS13に移行して定速制御を実施する。
 <目標車体速度設定処理>
 図4を参照し、目標車体速度VSTrを設定するために実行装置62が実行する目標車体速度設定処理を示す処理ルーチンを説明する。本処理ルーチンの複数のステップS51~S59は、実行装置62が目標車体速度設定部M13として機能することによってそれぞれ実行される。実行装置62は、所定の制御サイクル毎に本処理ルーチンを繰り返し実行する。
In step S35, the execution device 62 sets the step section determination flag FLG to OFF. Then, the execution device 62 moves the process to step S13 and implements constant speed control.
<Target vehicle speed setting process>
Referring to FIG. 4, a processing routine showing the target vehicle speed setting process executed by the execution device 62 to set the target vehicle speed VSTr will be described. A plurality of steps S51 to S59 of this processing routine are each executed by the execution device 62 functioning as the target vehicle speed setting section M13. The execution device 62 repeatedly executes this processing routine every predetermined control cycle.
 ステップS51において、実行装置62は、車両10が停止しているか否かを判定する。例えば、実行装置62は、車体速度VSを基に車両10が停止しているか否かを判定する。実行装置62は、車両10が停止していると判定した場合(S51:YES)、処理をステップS55に移行する。一方、実行装置62は、車両10が停止していないと判定した場合(S51:NO)、処理をステップS53に移行する。 In step S51, the execution device 62 determines whether the vehicle 10 is stopped. For example, the execution device 62 determines whether the vehicle 10 is stopped based on the vehicle speed VS. When the execution device 62 determines that the vehicle 10 is stopped (S51: YES), the execution device 62 moves the process to step S55. On the other hand, when the execution device 62 determines that the vehicle 10 is not stopped (S51: NO), the execution device 62 moves the process to step S53.
 ステップS53において、実行装置62は、図3に示したステップS31と同様に、後続輪が段差101を乗り越えたか否かを判定する。実行装置62は、後続輪が段差101を乗り越えたと判定した場合(S53:YES)、処理をステップS57に移行する。一方、実行装置62は、後続輪が段差101を乗り越えていないと判定した場合(S53:NO)、処理をステップS55に移行する。 In step S53, the execution device 62 determines whether the following wheels have climbed over the step 101, similarly to step S31 shown in FIG. When the execution device 62 determines that the following wheels have climbed over the step 101 (S53: YES), the execution device 62 moves the process to step S57. On the other hand, when the execution device 62 determines that the trailing wheel has not climbed over the step 101 (S53: NO), the execution device 62 moves the process to step S55.
 ステップS55において、実行装置62は、第1車体速度VS1を目標車体速度VSTrとして設定する。その後、実行装置62は本処理ルーチンを一旦終了する。
 ステップS57において、実行装置62は、目標車体速度VSTrの前回値と所定の速度値dVSとの和を、目標車体速度仮値VSTr1として導出する。目標車体速度VSTrの前回値は、本処理ルーチンを前回に実行した際に導出した目標車体速度VSTrである。次のステップS59において、実行装置62は、目標車体速度仮値VSTr1と第2車体速度VS2とのうち小さい方を、目標車体速度VSTrとして導出する。その後、実行装置62は本処理ルーチンを一旦終了する。
In step S55, the execution device 62 sets the first vehicle speed VS1 as the target vehicle speed VSTr. Thereafter, the execution device 62 temporarily ends this processing routine.
In step S57, the execution device 62 derives the sum of the previous value of the target vehicle speed VSTr and the predetermined speed value dVS as the tentative target vehicle speed value VSTr1. The previous value of the target vehicle speed VSTr is the target vehicle speed VSTr derived when this processing routine was executed last time. In the next step S59, the execution device 62 derives the smaller of the tentative target vehicle speed VSTr1 and the second vehicle speed VS2 as the target vehicle speed VSTr. Thereafter, the execution device 62 temporarily ends this processing routine.
 <作用及び効果>
 図2及び図5を参照し、運転支援装置60の作用及び効果について説明する。
 本例では、車両10が後退している状況下で後輪12(先行輪)が段差101に接触した際に運転者が制動操作を行ったため、車両10に制動力が付与される。これにより、後輪12が段差101に接触した状態で車両10が停止する。なお、図5の(C)において、実線は、運転者の制動操作によって車両10に付与される制動力FbSの推移を示す一方、破線は、制動力指示値FbRの推移、若しくは制動力指示値FbRに応じて制御される車両10の制動力Fbの推移を示している。また、運転者が制動操作を行っている最中では駆動力指示値FdRは0(零)になるものの、駆動力Fdは所定の駆動力(>0(零))である。
<Action and effect>
The operation and effects of the driving support device 60 will be explained with reference to FIGS. 2 and 5.
In this example, the driver performs a braking operation when the rear wheels 12 (leading wheels) contact the step 101 while the vehicle 10 is moving backward, so a braking force is applied to the vehicle 10. As a result, the vehicle 10 stops with the rear wheels 12 in contact with the step 101. In addition, in (C) of FIG. 5, the solid line shows the transition of the braking force FbS applied to the vehicle 10 by the driver's braking operation, while the broken line shows the transition of the braking force instruction value FbR or the braking force instruction value. It shows the transition of the braking force Fb of the vehicle 10 that is controlled according to FbR. Further, while the driver is performing a braking operation, the driving force command value FdR becomes 0 (zero), but the driving force Fd is a predetermined driving force (>0 (zero)).
 図5に示すように、タイミングt11で運転者の制動操作が解除されると、定速制御が開始されることにより、駆動力指示値FdRが0(零)から増大される。しかし、先行輪である後輪12が段差101に接触しているため、走行抵抗が大きい。その結果、車両10が発進しない。すなわち、車体速度VSが目標車体速度VSTrを下回る状態が継続する。すると、図5の(D)に示すように、フィードバック制御によって駆動力指示値FdRが増大される。このように駆動力指示値FdRが増大するのに追随して車両10の駆動力Fdも大きくなる。 As shown in FIG. 5, when the driver's braking operation is released at timing t11, constant speed control is started and the driving force instruction value FdR is increased from 0 (zero). However, since the rear wheel 12, which is the leading wheel, is in contact with the step 101, running resistance is large. As a result, vehicle 10 does not start. That is, the state in which the vehicle body speed VS is lower than the target vehicle body speed VSTr continues. Then, as shown in FIG. 5D, the driving force command value FdR is increased by feedback control. As the driving force instruction value FdR increases in this way, the driving force Fd of the vehicle 10 also increases.
 タイミングt12で、後輪12に段差101を乗り越えさせるのに必要な駆動力を車両10の駆動力Fdが越えるため、後輪12が段差101を乗り越える。すると、車両10が発進するため、図5の(A)に示すように車体速度VSが大きくなる。なお、先行輪である後輪12が段差101を乗り越えたと判定されると、図5の(E)に示すように段差区間判定フラグFLGにオンがセットされる。また、タイミングt12における駆動力指示値FdRの増大速度ΔFdRが記憶装置63に記憶される。 At timing t12, the driving force Fd of the vehicle 10 exceeds the driving force required to make the rear wheels 12 get over the step 101, so the rear wheels 12 get over the step 101. Then, since the vehicle 10 starts moving, the vehicle body speed VS increases as shown in FIG. 5(A). Note that when it is determined that the rear wheel 12, which is the leading wheel, has climbed over the step 101, the step section determination flag FLG is set to ON, as shown in FIG. 5(E). Further, the increasing speed ΔFdR of the driving force instruction value FdR at timing t12 is stored in the storage device 63.
 後輪12が段差101を乗り越えると、車体速度VSが目標車体速度VSTrを越えることを抑制すべく、駆動力指示値FdRが減少されるとともに、制動力指示値FbRが増大される。これにより、車体速度VSが目標車体速度VSTrから乖離することを抑制できる。 When the rear wheels 12 pass over the step 101, the driving force command value FdR is decreased and the braking force command value FbR is increased in order to prevent the vehicle speed VS from exceeding the target vehicle speed VSTr. Thereby, it is possible to suppress deviation of the vehicle body speed VS from the target vehicle body speed VSTr.
 タイミングt12から第1タイムラグTL1が経過した時点であるタイミングt13で、定速制御が終了されて駆動力増大制御が開始される。すなわち、外乱部の一例である段差101に後続輪が到達する前から駆動力増大制御が開始される。すると、車体速度VSが目標車体速度VSTr未満ではなくても、記憶装置63に記憶された増大速度ΔFdRで駆動力指示値FdRが増大される。これにより、車両10の駆動力Fdを早期に大きくできる。また、段差101の大きさに応じた増大速度で駆動力Fdを増大できる。 At timing t13, when the first time lag TL1 has elapsed from timing t12, constant speed control is ended and driving force increase control is started. That is, the driving force increase control is started before the trailing wheels reach the step 101, which is an example of a disturbance portion. Then, even if the vehicle speed VS is not less than the target vehicle speed VSTr, the driving force instruction value FdR is increased by the increased speed ΔFdR stored in the storage device 63. Thereby, the driving force Fd of the vehicle 10 can be increased at an early stage. Further, the driving force Fd can be increased at an increasing speed depending on the size of the step 101.
 ここで、先行輪が段差101を乗り越えた後でも定速制御を実施し続ける比較例について説明する。この場合、先行輪が段差101を乗り越えた以降では車体速度VSが目標車体速度VSTrとほぼ等しいため、駆動力指示値FdR及び駆動力Fdが比較的小さい。このように駆動力Fdが比較的小さい状態で後続輪が段差101に接触することになる。そのため、後続輪が段差101を乗り越えられず、車両10が停止してしまうおそれがある。また、車両10は停止しないまでも、車体速度VSが0(零)近くまで低下してしまうおそれがある。定速制御を実施していると、車体速度VSと目標車体速度VSTrとの偏差が発生するようになってから駆動力指示値FdRが徐々に大きくなる。その結果、駆動力Fdの増大によって後続輪が段差101を乗り越えるまでに時間を要する。後続輪が段差101を乗り越えるのに時間を要すると、運転者が車両10を早く動かそうとして、運転者によるアクセル操作やその後の制動操作を誘引するおそれがある。 Here, a comparative example will be described in which constant speed control is continued even after the leading wheels get over the bump 101. In this case, since the vehicle speed VS is approximately equal to the target vehicle speed VSTr after the leading wheels have climbed over the step 101, the driving force instruction value FdR and the driving force Fd are relatively small. In this way, the trailing wheels come into contact with the step 101 while the driving force Fd is relatively small. Therefore, the following wheels may not be able to get over the step 101, and the vehicle 10 may come to a stop. Further, even if the vehicle 10 does not stop, there is a possibility that the vehicle body speed VS decreases to nearly 0 (zero). When constant speed control is being performed, the driving force instruction value FdR gradually increases after a deviation between the vehicle body speed VS and the target vehicle body speed VSTr begins to occur. As a result, it takes time for the trailing wheels to get over the step 101 due to the increase in the driving force Fd. If it takes time for the trailing wheels to get over the step 101, there is a risk that the driver will try to move the vehicle 10 quickly, which may induce the driver to perform an accelerator operation or a subsequent braking operation.
 この点、本実施形態では、後続輪が段差101に接触する前から駆動力Fdを増大できる。そのため、比較例と比較し、後続輪が段差101を早期に乗り越えることができる。したがって、車両10が低速で自動走行している場合に後続輪の段差101の乗り越えを早期に完了させることができる。よって、停止している車両10を発進させようとして運転者がアクセル操作を行う前に、速やかに車両10を発進させることができる。すなわち、車輪に段差101を乗り越えさせる際における運転者の余分なアクセル操作や制動操作を抑制できる。 In this regard, in this embodiment, the driving force Fd can be increased even before the trailing wheel contacts the step 101. Therefore, compared to the comparative example, the trailing wheels can quickly overcome the step 101. Therefore, when the vehicle 10 is automatically traveling at low speed, the trailing wheels can quickly complete overcoming the step 101. Therefore, the vehicle 10 can be started promptly before the driver operates the accelerator in order to start the stopped vehicle 10. That is, it is possible to suppress unnecessary accelerator operations and braking operations by the driver when making the wheels go over the step 101.
 なお、図5に示す例では、駆動力増大制御の実施中におけるタイミングt14で、前輪11が段差101を乗り越えたと判定される。車輪が段差101を乗り越える際に車体速度VSが低下した際には制動力指示値FbRが速やかに低下される。これにより、既に増大された駆動力Fdが、駆動輪の設置面において車輪が段差101を乗り越えるために速やかに発揮される。駆動力増大制御によって駆動力指示値FdRを増大させることは、タイミングt14から第2タイムラグTL2が経過した時点であるタイミングt15まで行われる。 In the example shown in FIG. 5, it is determined that the front wheels 11 have climbed over the step 101 at timing t14 while the driving force increase control is being performed. When the vehicle speed VS decreases when the wheels go over the step 101, the braking force command value FbR is immediately decreased. As a result, the already increased driving force Fd is quickly exerted in order for the wheels to overcome the step 101 on the installation surface of the driving wheels. Increasing the driving force instruction value FdR by the driving force increase control is performed from timing t14 to timing t15, which is the time when the second time lag TL2 has elapsed.
 タイミングt15で定速制御が再開される。すると、駆動力Fd及び制動力Fbの調整によって、車体速度VSが制御される。図5に示す例では、定速制御に切り替わったことで制動力指示値FbRが徐々に低下される。また、制動力指示値FbRの低下に伴って駆動力指示値FdRも低下される。定速制御の実施中におけるタイミングt17で運転者が制動操作を開始すると、車両10に制動力FbSが付与されるため、車両10が停止する。すなわち、定速制御が終了される。 Constant speed control is restarted at timing t15. Then, the vehicle speed VS is controlled by adjusting the driving force Fd and the braking force Fb. In the example shown in FIG. 5, the braking force instruction value FbR is gradually reduced by switching to constant speed control. Further, as the braking force instruction value FbR decreases, the driving force instruction value FdR also decreases. When the driver starts a braking operation at timing t17 during the constant speed control, the braking force FbS is applied to the vehicle 10, so the vehicle 10 stops. That is, constant speed control is ended.
 なお、運転支援装置60では、以下の効果をさらに得ることができる。
 (1)駆動力増大制御を開始しても、後続輪が段差101をなかなか乗り越えられないことがあり得る。本実施形態では、駆動力増大制御の開始時点であるタイミングt13から規定時間TMth後のタイミングt16になっても後続輪が段差101を乗り越えていない場合には、駆動力増大制御の実施時よりも大きな速度で駆動力指示値FdRが増大されるようになる。これにより、駆動力増大制御を継続する場合よりも駆動力Fdを早期により大きくできる。したがって、後続輪が段差101を乗り越えることが遅れることを抑制できる。
Note that the driving support device 60 can further obtain the following effects.
(1) Even if driving force increase control is started, the trailing wheels may have difficulty getting over the step 101. In this embodiment, if the trailing wheels have not climbed over the step 101 even at timing t16, which is a specified time TMth after timing t13, which is the start point of driving force increase control, the The driving force instruction value FdR is increased at a high speed. Thereby, the driving force Fd can be increased earlier than when the driving force increase control is continued. Therefore, it is possible to suppress the delay in the following wheels getting over the step 101.
 (2)駆動力増大制御が開始された以降では、車体速度VSが目標車体速度VSTr未満であるか否かに拘わらず、駆動力指示値FdRが増大されるため、車体速度VSと目標車体速度VSTrとの乖離が大きくなるおそれがある。本実施形態では、駆動力増大制御の開始時点から定速制御が再開されるまでの期間では、制動力指示値FbRを調整することによって車体速度VSが目標車体速度VSTrから乖離することが抑制される。これにより、段差101が存在する区間を車両10が自動走行している場合に、車体速度VSが目標車体速度VSTrを大幅に上回ることを抑制できる。これにより、車体速度VSが大幅に上昇したことに起因して後続輪が段差101に衝突した際の衝撃が大きくなることを抑制できる。 (2) After the driving force increase control is started, the driving force instruction value FdR is increased regardless of whether the vehicle speed VS is less than the target vehicle speed VSTr, so the vehicle speed VS and the target vehicle speed There is a possibility that the deviation from VSTr will become large. In the present embodiment, during the period from the start of the driving force increase control until the constant speed control is restarted, the deviation of the vehicle body speed VS from the target vehicle body speed VSTr is suppressed by adjusting the braking force instruction value FbR. Ru. Thereby, when the vehicle 10 is automatically traveling in a section where the step 101 exists, it is possible to suppress the vehicle body speed VS from significantly exceeding the target vehicle body speed VSTr. Thereby, it is possible to suppress an increase in impact when the trailing wheels collide with the step 101 due to a significant increase in the vehicle speed VS.
 (3)運転者は、車輪に段差101を乗り越えさせる際にアクセル操作を行わなくてもよい。また、車輪の段差の乗り越え時のアクセル操作で車体速度VSが過剰に大きくなったために車両10を減速させるべく運転者が制動操作を行うことを抑制できる。 (3) The driver does not need to operate the accelerator when making the wheels go over the step 101. Further, it is possible to suppress the driver from performing a braking operation to decelerate the vehicle 10 due to an excessive increase in the vehicle body speed VS due to the accelerator operation when the wheels go over a step.
 (4)なお、段差101が存在する区間を車両10が通り過ぎると、目標車体速度VSTrが徐々に大きくなる。図5に示す例では、タイミングt14から目標車体速度VSTrが第2車体速度VS2に向けて増大される。これにより、所定の駐車位置まで車両10を早期に移動させることができる。 (4) Note that when the vehicle 10 passes through a section where the step 101 exists, the target vehicle speed VSTr gradually increases. In the example shown in FIG. 5, the target vehicle speed VSTr is increased toward the second vehicle speed VS2 from timing t14. Thereby, the vehicle 10 can be quickly moved to a predetermined parking position.
 <変更例>
 上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
<Example of change>
The above embodiment can be modified and implemented as follows. The above embodiment and the following modification examples can be implemented in combination with each other within a technically consistent range.
 ・後続輪が段差101を乗り越えた以降で目標車体速度VSTrを増大させることは必須ではない。
 ・第1車体速度VS1及び第2車体速度VS2を、運転者の操作によって変更できるようにしてもよい。
- It is not essential to increase the target vehicle speed VSTr after the trailing wheels get over the bump 101.
- The first vehicle speed VS1 and the second vehicle speed VS2 may be changed by the driver's operation.
 ・駆動力増大制御を開始した以降では、車体速度VSと目標車体速度VSTrとの偏差に応じて制動力指示値FbRを可変させているが、これに限らない。例えば、実行装置62は、駆動力増大制御を開始してから定速制御を再開するまでの期間では制動力指示値FbRを所定の値で保持してもよい。 - After starting the driving force increase control, the braking force command value FbR is varied according to the deviation between the vehicle body speed VS and the target vehicle body speed VSTr, but the invention is not limited to this. For example, the execution device 62 may maintain the braking force command value FbR at a predetermined value during the period from starting the driving force increase control to restarting the constant speed control.
 ・実行装置62は、駆動力増大制御において、記憶装置63に記憶された増大速度ΔFdRに比例した増大速度で駆動力指示値FdRを増大させてもよい。また、実行装置62は、駆動力増大制御の実施中における駆動力指示値FdRの増大速度に上限値を設けてもよい。 - In the driving force increase control, the execution device 62 may increase the driving force command value FdR at an increasing speed proportional to the increasing speed ΔFdR stored in the storage device 63. Furthermore, the execution device 62 may set an upper limit value on the rate of increase in the driving force command value FdR while the driving force increase control is being performed.
 ・実行装置62は、車体速度VSの低下速度が判定低下速度以上になり、その後に車体速度VSが上昇に転じたことを確認できた場合に、後続輪が段差101を乗り越えたと判定するようにしてもよい。車体速度VSが上昇に転じたことは、例えば車体速度VSが低下する状態から上昇に転じた時点から所定時間が継続したことを検出することによって確認してもよい。車体速度VSが低下している状態は厳密には後続輪が段差101を乗り越えるための負荷が車両10に加わっている状態であり、後続輪が段差101上に位置していて後続輪が段差101を完全に乗り越えていない場合がある。そのため、車体速度VSの上昇を確認することにより、後続輪が段差101を乗り越えた状態を確実に検出できる。 - The execution device 62 is configured to determine that the trailing wheels have climbed over the step 101 when it is confirmed that the rate of decrease in the vehicle body speed VS becomes equal to or higher than the determined rate of decrease, and then it is confirmed that the vehicle body speed VS starts to increase. It's okay. The fact that the vehicle speed VS has started to increase may be confirmed, for example, by detecting that a predetermined period of time has continued since the vehicle speed VS started to increase from a decreasing state. Strictly speaking, the state in which the vehicle speed VS is decreasing is a state in which a load is applied to the vehicle 10 for the trailing wheels to overcome the bump 101, and the trailing wheels are located on the bump 101, and the trailing wheels are located on the bump 101. You may not have completely overcome it. Therefore, by checking the increase in the vehicle speed VS, it is possible to reliably detect the state in which the trailing wheels have climbed over the step 101.
 ・実行装置62は、駆動力増大制御を開始した以降において、車体速度VSが目標車体速度VSTrから乖離することを抑制するための制動力指示値FbRの調整を行わなくてもよい。 - After starting the driving force increase control, the execution device 62 does not need to adjust the braking force instruction value FbR for suppressing the deviation of the vehicle body speed VS from the target vehicle body speed VSTr.
 ・実行装置62は、後続輪が段差101を乗り越えたと判定するまで駆動力増大制御の実施を継続してもよい。
 ・実行装置62は、先行輪が段差101を乗り越えた場合、定速制御によって車体速度VSが目標車体速度VSTrと等しいと判定できるようになってから制御を定速制御から駆動力増大制御に切り替えてもよい。すなわち、実行装置62は、図5に示したタイミングチャートにおけるタイミングt13とタイミングt14との中間タイミング、又は当該中間タイミング近傍のタイミングから駆動力増大制御を開始してもよい。
- The execution device 62 may continue to implement the driving force increase control until it determines that the trailing wheels have climbed over the step 101.
- When the leading wheels get over the step 101, the execution device 62 switches the control from constant speed control to driving force increase control after it becomes possible to determine that the vehicle speed VS is equal to the target vehicle speed VSTr by constant speed control. It's okay. That is, the execution device 62 may start the driving force increase control at an intermediate timing between timing t13 and timing t14 in the timing chart shown in FIG. 5, or at a timing near the intermediate timing.
 ・実行装置62は、後続輪が段差101に接触してから、すなわち後続輪が外乱部に到達してから、制御を定速制御から駆動力増大制御に切り替えてもよい。この場合であっても、後続輪が段差101に接触しても定速制御の実施を継続する場合と比較し、後続輪に段差101を乗り越えさせることのできる駆動力まで車両10の駆動力Fdを早期に増大させることができる。 - The execution device 62 may switch the control from constant speed control to driving force increase control after the trailing wheels contact the step 101, that is, after the trailing wheels reach the disturbance area. Even in this case, the driving force Fd of the vehicle 10 reaches a level that allows the trailing wheels to overcome the bump 101, compared to the case where constant speed control is continued even if the trailing wheels come into contact with the bump 101. can be increased early.
 ・上述した車両10を低速で自動走行させる支援機能を、車両10に駐車させる場合以外でも実現できるようにしてもよい。
 ・車両10の走行する路面を撮像できる撮像装置を車両10が搭載している場合、運転支援装置60は、撮像装置によって撮像された画像を解析することにより、車両10の走行経路に、段差101などの外乱部が存在するか否かを把握できる。外乱部は、走行路面の窪みであってもよいし、路面勾配が急変している部分であってもよい。運転支援装置60の実行装置62は、画像を解析することによって外乱部の存在を検知できたことを契機に上記の定速制御を開始するようにしてもよい。
- The above-described support function for automatically driving the vehicle 10 at low speed may be realized even when the vehicle 10 is not parked.
- When the vehicle 10 is equipped with an imaging device capable of capturing an image of the road surface on which the vehicle 10 is traveling, the driving support device 60 analyzes the image captured by the imaging device to create a step 101 on the traveling route of the vehicle 10. It is possible to determine whether or not there are any disturbances such as The disturbance portion may be a depression in the running road surface or a portion where the road surface gradient changes suddenly. The execution device 62 of the driving support device 60 may start the constant speed control described above upon detecting the presence of a disturbance by analyzing an image.
 ・運転支援装置60の処理回路61は、CPUとROMとを備えて、ソフトウェア処理を実行するものに限らない。すなわち、処理回路61は、以下(a)~(c)の何れかの構成であればよい。 - The processing circuit 61 of the driving support device 60 is not limited to one that includes a CPU and a ROM and executes software processing. That is, the processing circuit 61 may have any of the following configurations (a) to (c).
 (a)処理回路61は、コンピュータプログラムに従って各種処理を実行する一つ以上のプロセッサを備えている。プロセッサは、CPU並びに、RAM及びROMなどのメモリを含んでいる。メモリは、処理をCPUに実行させるように構成されたプログラムコード又は指令を格納している。メモリ、すなわちコンピュータ可読媒体は、汎用又は専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含んでいる。 (a) The processing circuit 61 includes one or more processors that execute various processes according to computer programs. The processor includes a CPU and memory such as RAM and ROM. The memory stores program codes or instructions configured to cause the CPU to perform processes. Memory, or computer-readable media, includes any available media that can be accessed by a general purpose or special purpose computer.
 (b)処理回路61は、各種処理を実行する一つ以上の専用のハードウェア回路を備えている。専用のハードウェア回路としては、例えば、特定用途向け集積回路、すなわちASIC又はFPGAを挙げることができる。なお、ASICは、「Application Specific Integrated Circuit」の略記であり、FPGAは、「Field Programmable Gate Array」の略記である。 (b) The processing circuit 61 includes one or more dedicated hardware circuits that execute various processes. Dedicated hardware circuits may include, for example, application specific integrated circuits, ie ASICs or FPGAs. Note that ASIC is an abbreviation for "Application Specific Integrated Circuit," and FPGA is an abbreviation for "Field Programmable Gate Array."
 (c)処理回路61は、各種処理の一部をコンピュータプログラムに従って実行するプロセッサと、各種処理のうちの残りの処理を実行する専用のハードウェア回路とを備えている。 (c) The processing circuit 61 includes a processor that executes some of the various processes according to a computer program, and a dedicated hardware circuit that executes the remaining processes of the various processes.
 なお、本明細書において使用される「少なくとも1つ」という表現は、所望の選択肢の「1つ以上」を意味する。一例として、本明細書において使用される「少なくとも1つ」という表現は、選択肢の数が2つであれば「1つの選択肢のみ」又は「2つの選択肢の双方」を意味する。他の例として、本明細書において使用される「少なくとも1つ」という表現は、選択肢の数が3つ以上であれば「1つの選択肢のみ」又は「2つ以上の任意の選択肢の組み合わせ」を意味する。 Note that the expression "at least one" used in this specification means "one or more" of the desired options. As an example, the expression "at least one" as used herein means "only one option" or "both of the two options" if the number of options is two. As another example, the expression "at least one" as used herein means "only one option" or "any combination of two or more options" if there are three or more options. means.
 <他の技術的思想>
 上記実施形態及び変更例から把握できる技術的思想を付記として記載する。
 (付記1)前記後続輪が前記外乱部を通過した後で、前記目標車体速度を増大させる目標車体速度設定部を備えることが好ましい。
<Other technical ideas>
Technical ideas that can be understood from the above embodiments and modified examples will be described as additional notes.
(Additional Note 1) It is preferable to include a target vehicle speed setting unit that increases the target vehicle speed after the trailing wheel passes the disturbance portion.

Claims (4)

  1.  車両の車体速度と目標車体速度との偏差に基づいたフィードバック制御によって、当該車両の駆動力及び制動力を調整する定速制御を実施する指令部と、
     前記定速制御が実施されている場合に、前記車両の前輪及び後輪のうち、当該車両の進行方向に位置する車輪である先行輪が前記車両の走行経路に存在する外乱部を通過した時点における前記車両の駆動力の増大速度を記憶する記憶部と、を備え、
     前記指令部は、前記先行輪が前記外乱部を通過した時点以降において、前記記憶部に記憶された前記増大速度で前記車両の駆動力を増大させる駆動力増大制御を実施する
     運転支援装置。
    a command unit that performs constant speed control that adjusts the driving force and braking force of the vehicle through feedback control based on the deviation between the vehicle body speed and the target vehicle body speed;
    When the constant speed control is being implemented, a point in time when a leading wheel, which is a wheel located in the traveling direction of the vehicle, among the front wheels and rear wheels of the vehicle, passes through a disturbance area that is present in the travel path of the vehicle. a storage unit that stores the speed of increase in the driving force of the vehicle;
    The command unit performs driving force increase control to increase the driving force of the vehicle at the increased speed stored in the storage unit after the leading wheel passes the disturbance portion.
  2.  前記指令部は、前記前輪及び前記後輪のうち、前記先行輪ではない車輪である後続輪が前記外乱部に到達する前から前記駆動力増大制御を開始する
     請求項1に記載の運転支援装置。
    The driving support device according to claim 1, wherein the command unit starts the driving force increase control before a trailing wheel that is not the leading wheel among the front wheels and the rear wheel reaches the disturbance portion. .
  3.  前記指令部は、前記駆動力増大制御の開始時点からの経過時間が規定時間を越えても前記後続輪が前記外乱部を通過していない場合に、前記記憶部に記憶された前記増大速度よりも高い速度で前記車両の駆動力を増大させる
     請求項2に記載の運転支援装置。
    The command unit is configured to increase the increasing speed from the increasing speed stored in the storage unit when the trailing wheel has not passed the disturbance area even after a predetermined time has elapsed since the start of the driving force increase control. The driving support device according to claim 2, wherein the driving force of the vehicle is increased at a high speed.
  4.  前記指令部は、前記駆動力増大制御を開始した以降において、前記車両の制動力を調整することによって前記車体速度が前記目標車体速度から乖離することを抑制する
     請求項1~請求項3のうち何れか一項に記載の運転支援装置。
    The command unit suppresses deviation of the vehicle body speed from the target vehicle body speed by adjusting the braking force of the vehicle after starting the driving force increase control. The driving support device according to any one of the items.
PCT/JP2023/031864 2022-08-31 2023-08-31 Driving assistance device WO2024048737A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-137761 2022-08-31
JP2022137761A JP2024033871A (en) 2022-08-31 2022-08-31 Driving support device

Publications (1)

Publication Number Publication Date
WO2024048737A1 true WO2024048737A1 (en) 2024-03-07

Family

ID=90097987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031864 WO2024048737A1 (en) 2022-08-31 2023-08-31 Driving assistance device

Country Status (2)

Country Link
JP (1) JP2024033871A (en)
WO (1) WO2024048737A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315284A (en) * 2006-05-25 2007-12-06 Toyota Motor Corp Vehicle control device
JP2020015439A (en) * 2018-07-26 2020-01-30 トヨタ自動車株式会社 Vehicle travel support apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315284A (en) * 2006-05-25 2007-12-06 Toyota Motor Corp Vehicle control device
JP2020015439A (en) * 2018-07-26 2020-01-30 トヨタ自動車株式会社 Vehicle travel support apparatus

Also Published As

Publication number Publication date
JP2024033871A (en) 2024-03-13

Similar Documents

Publication Publication Date Title
JP3755464B2 (en) Parking assistance device
JP3573681B2 (en) Vehicle control system
JP5154379B2 (en) Vehicle braking control device
WO2013150600A1 (en) Collision avoidance assist apparatus
JP5108424B2 (en) Vehicle travel control device
JP2005239125A (en) Deceleration control device for vehicle
JP3861068B2 (en) Automatic parking equipment
CN113748057A (en) Method and device for automatic emergency stop
JP4039062B2 (en) Parking assistance device
JP5173330B2 (en) Vehicle travel control device
WO2024048737A1 (en) Driving assistance device
JP2015047980A (en) Brake control device
JP4696409B2 (en) Vehicle operation support device
WO2024048738A1 (en) Driving assistance apparatus
JP7306341B2 (en) Stop support device
JP2018192900A (en) Brake device for vehicle
JP2018177109A (en) Drive line departure inhibiting apparatus
WO2024048739A1 (en) Driving assistance device
JP6063222B2 (en) Vehicle travel control device
JP6582617B2 (en) Brake device for vehicle
JP6597703B2 (en) Lane departure control device
US20190381979A1 (en) Braking control device for vehicle
KR20150065030A (en) Control method of electronic parking brake
US20230103046A1 (en) Vehicle
JP2007023979A (en) Vehicle driving slip control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860499

Country of ref document: EP

Kind code of ref document: A1