WO2024048675A1 - 液体燃料製造システムおよび液体燃料の製造方法 - Google Patents
液体燃料製造システムおよび液体燃料の製造方法 Download PDFInfo
- Publication number
- WO2024048675A1 WO2024048675A1 PCT/JP2023/031603 JP2023031603W WO2024048675A1 WO 2024048675 A1 WO2024048675 A1 WO 2024048675A1 JP 2023031603 W JP2023031603 W JP 2023031603W WO 2024048675 A1 WO2024048675 A1 WO 2024048675A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid fuel
- gas
- raw material
- material gas
- water vapor
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 405
- 239000007788 liquid Substances 0.000 title claims abstract description 402
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 117
- 239000007789 gas Substances 0.000 claims abstract description 687
- 239000002994 raw material Substances 0.000 claims abstract description 265
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 197
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 178
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 151
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 151
- 239000006227 byproduct Substances 0.000 claims abstract description 122
- -1 amine compound Chemical class 0.000 claims abstract description 103
- 230000002378 acidificating effect Effects 0.000 claims abstract description 90
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 88
- 239000001257 hydrogen Substances 0.000 claims abstract description 88
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 75
- 229910002090 carbon oxide Inorganic materials 0.000 claims abstract description 64
- 238000002156 mixing Methods 0.000 claims abstract description 50
- 239000000047 product Substances 0.000 claims abstract description 48
- 238000006386 neutralization reaction Methods 0.000 claims abstract description 36
- 230000004087 circulation Effects 0.000 claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 claims abstract description 21
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 13
- 239000012528 membrane Substances 0.000 claims description 108
- 238000000926 separation method Methods 0.000 claims description 98
- 239000012466 permeate Substances 0.000 claims description 90
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 88
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 58
- 239000001569 carbon dioxide Substances 0.000 claims description 58
- 229910021529 ammonia Inorganic materials 0.000 claims description 44
- 238000011084 recovery Methods 0.000 claims description 37
- 239000003054 catalyst Substances 0.000 claims description 33
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 32
- 229910052757 nitrogen Inorganic materials 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 11
- 230000003472 neutralizing effect Effects 0.000 claims description 6
- 238000010408 sweeping Methods 0.000 claims description 3
- 230000006866 deterioration Effects 0.000 abstract description 5
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 239000003463 adsorbent Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 229910010293 ceramic material Inorganic materials 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical class [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- FKJVYOFPTRGCSP-UHFFFAOYSA-N 2-[3-aminopropyl(2-hydroxyethyl)amino]ethanol Chemical compound NCCCN(CCO)CCO FKJVYOFPTRGCSP-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 239000007848 Bronsted acid Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- WJBLNOPPDWQMCH-MBPVOVBZSA-N Nalmefene Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=C)O)CC1)O)CC1CC1 WJBLNOPPDWQMCH-MBPVOVBZSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- BKGYQVBQWFSPBL-UHFFFAOYSA-N [O-2].[Zn+2].[O-2].[Cr+3].[Cu+2] Chemical compound [O-2].[Zn+2].[O-2].[Cr+3].[Cu+2] BKGYQVBQWFSPBL-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- RYTYSMSQNNBZDP-UHFFFAOYSA-N cobalt copper Chemical compound [Co].[Cu] RYTYSMSQNNBZDP-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- VODBHXZOIQDDST-UHFFFAOYSA-N copper zinc oxygen(2-) Chemical compound [O--].[O--].[Cu++].[Zn++] VODBHXZOIQDDST-UHFFFAOYSA-N 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
- C07C29/152—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C31/00—Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
- C07C31/02—Monohydroxylic acyclic alcohols
- C07C31/04—Methanol
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
Definitions
- the present invention relates to a liquid fuel production system and a liquid fuel production method.
- Patent Document 1 discloses a liquid fuel production system that performs a conversion reaction of raw material gas containing hydrogen and carbon dioxide into methanol using a membrane reactor including a catalyst and a water vapor separation membrane.
- the reaction yield may deteriorate.
- raw material gas is recycled by recovering unreacted raw material gas from the liquid fuel production system and supplying it again to the liquid fuel production system as raw material gas.
- acidic by-products generated in the conversion reaction may accumulate as the number of cycles increases, leading to deterioration of the reaction yield.
- the main purpose of the present invention is to suppress the deterioration of the reaction yield in the conversion reaction from a raw material gas containing hydrogen and carbon oxide to a liquid fuel.
- a liquid fuel synthesis section that advances a conversion reaction from a source gas containing at least hydrogen and carbon oxide to liquid fuel; a raw material gas supply section for supplying; re-supplying the remaining raw material gas containing the unreacted hydrogen and the carbon oxide and the acidic byproduct of the conversion reaction from the liquid fuel synthesis section to the raw material gas supply section; a raw material gas circulation part; a mixing part in which the raw material gas supply part mixes the amine compound and the residual raw material gas in the presence of water vapor;
- a liquid fuel production system is provided, including a water removal section that removes a neutralized product together with condensed water of the water vapor.
- the neutralization raw material gas containing the amine compound and the residual raw material gas may be mixed in the mixing section.
- the raw material gas further contains nitrogen, and the amine compound is ammonia generated from the hydrogen and the nitrogen in the liquid fuel synthesis section. It's good.
- the liquid fuel production system according to [2] above further includes a gas recovery unit that recovers carbon dioxide from the atmosphere or biogas, and the gas containing carbon dioxide supplied from the gas recovery unit is It may be used as a component of the neutralization raw material gas.
- the liquid fuel synthesis section includes a water vapor separation membrane that transmits at least water vapor, and the water vapor separation membrane is arranged from a non-permeable side to a permeable side.
- the liquid fuel production system includes a gas that sweeps the permeate side gas, and a sweep gas containing an amine compound.
- the sweep gas may further contain carbon oxide and/or hydrogen.
- the concentration of the amine compound in the sweep gas may be 10 ppm or more.
- the liquid fuel synthesis section includes a water vapor separation membrane that allows at least water vapor and ammonia to pass therethrough, and the water vapor separation membrane is permeated from a non-permeation side to a permeation side.
- the carbon oxide and the non-permeate side gas containing the acidic by-products may be separated, and the liquid fuel production system may also separate a sweep gas that sweeps the permeate side gas into the liquid fuel synthesis section.
- the liquid fuel synthesis unit has a liquid fuel separation membrane that allows at least liquid fuel to pass therethrough, and the gas that has passed through the liquid fuel separation membrane from the non-permeation side to the permeation side, and the permeation side gas that contains the liquid fuel.
- the liquid fuel production system supplies a gas that sweeps the permeate side gas and contains an amine compound to the permeate side of the liquid fuel synthesis section.
- the fuel cell may further include a sweep gas supply section, and the sweep gas flowing out from the liquid fuel synthesis section may be supplied to the mixing section.
- the sweep gas may further contain carbon oxide and/or hydrogen.
- the concentration of the amine compound in the sweep gas may be 10 ppm or more.
- the liquid fuel synthesis section includes a liquid fuel separation membrane that allows at least liquid fuel and ammonia to pass therethrough, and the liquid fuel separation membrane passes through the liquid fuel separation membrane from the non-permeation side to the permeation side.
- the liquid fuel production system may separate a sweep gas that sweeps the permeate side gas from the liquid It may further include a sweep gas supply section that supplies the permeation side of the fuel synthesis section, and the permeation side gas and the sweep gas flowing out from the liquid fuel synthesis section may be supplied to the mixing section.
- the ammonia concentration in the mixed gas of the permeate side gas and the sweep gas may be 10 ppm or more.
- the liquid fuel synthesis section controls the temperature of the first gas flow path in which a catalyst for advancing the conversion reaction is disposed and the first gas flow path.
- the liquid fuel production system may include a second gas flow path through which a temperature control gas for regulating the temperature control gas flows, and the liquid fuel production system may include a second gas flow path through which a temperature control gas for adjusting the temperature control gas flows.
- the fuel cell may further include a temperature control gas supply section that supplies the temperature control gas to the gas flow path, and the temperature control gas flowing out from the liquid fuel synthesis section may be supplied to the mixing section.
- the temperature regulating gas may further contain carbon oxide and/or hydrogen.
- the concentration of the amine compound in the temperature regulating gas may be 10 ppm or more.
- a manufacturing method is provided. [19] In the method for producing a liquid fuel according to [18] above, removing the acidic by-product from the residual raw material gas is performed after being supplied to the liquid fuel synthesis section and flowing through the liquid fuel synthesis section.
- the neutralization raw material gas containing the amine compound may be mixed with the residual raw material gas.
- the raw material gas may further contain nitrogen, and the amine compound is generated from the hydrogen and the nitrogen in the liquid fuel synthesis section. It may be ammonia.
- the neutralization raw material gas may be prepared using a gas containing carbon dioxide recovered from the atmosphere or biogas.
- the liquid fuel synthesis section may have a water vapor separation membrane that transmits at least water vapor, and the liquid fuel is a byproduct of the conversion reaction.
- Water vapor may be permeated from the non-permeate side to the permeate side of the water vapor separation membrane, swept with the sweep gas containing the amine compound, and recovered as exhaust gas from the liquid fuel synthesis section, and the exhaust gas and the residual raw material gas may be combined. may be mixed to neutralize the acidic by-product in the residual raw material gas with the amine compound.
- the liquid fuel synthesis section may include a liquid fuel separation membrane that allows at least the liquid fuel to pass therethrough, and the liquid fuel is separated from the liquid fuel by the liquid fuel.
- the fuel is permeated from the non-permeate side to the permeate side of the fuel separation membrane, swept with a sweep gas containing the amine compound, and recovered as a product gas from the liquid fuel synthesis section, and water vapor, which is a byproduct of the conversion reaction, is and separating the product gas into the liquid fuel and the sweep gas, and mixing the sweep gas, the residual feed gas, and the water vapor to remove the acidic by-products in the residual feed gas.
- a temperature control gas containing the amine compound for adjusting the reaction temperature of the conversion reaction is passed through the liquid fuel synthesis section.
- the temperature control gas and the residual raw material gas after flowing through the liquid fuel synthesis section may be mixed, and the acidic by-products in the residual raw material gas may be neutralized with the amine compound.
- the liquid fuel synthesis section may have a water vapor separation membrane that transmits at least water vapor and ammonia, and the liquid fuel synthesis section may have a water vapor separation membrane that transmits at least water vapor and ammonia.
- the ammonia may be permeated from the non-permeate side to the permeate side of the water vapor separation membrane, swept with a sweep gas, and recovered as exhaust gas from the liquid fuel synthesis section, and the exhaust gas and the residual raw material gas may be mixed. , the acidic by-product in the residual raw material gas may be neutralized with the ammonia.
- the liquid fuel synthesis section may include a liquid fuel separation membrane that allows at least the liquid fuel and ammonia to pass therethrough, and the liquid fuel and the ammonia pass through the liquid fuel separation membrane.
- the liquid fuel is permeated from the non-permeate side to the permeate side of the membrane, swept with a sweep gas, and recovered as a product gas from the liquid fuel synthesis section, and water vapor, which is a byproduct of the conversion reaction, is removed from the residual raw material gas.
- the liquid fuel may be separated from the product gas and then mixed with the residual feed gas and the water vapor to neutralize the acidic by-products in the residual feed gas with the ammonia. good.
- the deterioration of the reaction yield can be suppressed by removing acidic byproducts generated in the conversion reaction by neutralization during the circulation process of the raw material gas. Further, although corrosion may occur in the liquid fuel production system due to acidic byproducts, such corrosion can be prevented according to the liquid fuel production method according to the embodiment of the present invention.
- FIG. 1 is a schematic configuration diagram of a liquid fuel production system according to one embodiment of the present invention.
- FIG. 2 is a schematic configuration diagram of a liquid fuel production system according to one embodiment of the present invention.
- FIG. 3 is a schematic configuration diagram of a liquid fuel production system according to one embodiment of the present invention.
- FIG. 4 is a schematic configuration diagram of a liquid fuel production system according to one embodiment of the present invention.
- a liquid fuel production system includes: a liquid fuel synthesis unit that advances a conversion reaction from a raw material gas containing at least hydrogen and carbon oxide to liquid fuel; a raw material gas supply unit that supplies the raw material gas to the liquid fuel synthesis unit; a raw material gas circulation unit that resupplies the remaining raw material gas containing the unreacted hydrogen, the carbon oxide, and the acidic byproduct of the conversion reaction from the liquid fuel synthesis unit to the raw material gas supply unit; Equipped with The raw material gas supply section is a mixing section that mixes the amine compound and the residual raw material gas in the presence of water vapor; a water removal section that removes a neutralized product of the amine compound and the acidic byproduct together with condensed water of the water vapor; has.
- the liquid fuel production system according to the embodiment of the present invention, acidic by-products contained in residual raw material gas are neutralized with an amine compound in the presence of water vapor, and the resulting neutralized product is converted into water vapor (neutralized product removal). It can be removed together with condensed water (also called water vapor).
- the liquid fuel synthesis section includes a separation membrane that separates the liquid fuel from water vapor that is a byproduct of the conversion reaction (also referred to as byproduct water vapor).
- FIG. 1 is a schematic configuration diagram of a liquid fuel production system according to one embodiment of the present invention.
- a liquid fuel production system 1A shown in FIG. 1 includes a liquid fuel synthesis section 10 that advances a conversion reaction from a source gas containing at least hydrogen and carbon oxide into liquid fuel; , a raw material gas supply section 20; a raw material gas circulation for resupplying the remaining raw material gas containing unreacted hydrogen and carbon oxide and acidic by-products of the conversion reaction from the liquid fuel synthesis section 10 to the raw material gas supply section 20; 30.
- the liquid fuel synthesis unit 10 has a water vapor separation membrane 14 that allows water vapor to pass therethrough, and the gas that has passed through the water vapor separation membrane 14 from the non-permeable side to the permeable side contains water vapor that is a byproduct of the conversion reaction.
- the permeate gas is separated from the non-permeate gas that has not passed through the water vapor separation membrane 14 and contains liquid fuel, unreacted hydrogen and carbon oxides, and acidic byproducts.
- the liquid fuel production system 1A further includes a sweep gas supply section 40 that supplies the liquid fuel synthesis section 10 with a gas that sweeps the permeate gas.
- the raw material gas supply section 20 includes a mixing section 24 that mixes the amine compound and the remaining raw material gas in the presence of water vapor, and a mixing section 24 that removes the neutralized product of the amine compound and the acidic by-product together with the condensed water of the water vapor. It has a moisture removal section 26.
- the sweep gas (neutralization raw material gas) flowing out from the liquid fuel synthesis section 10
- the water vapor contained in the permeate side gas and the residual raw material gas contained in the non-permeated side gas are mixed, thereby neutralizing the acidic by-products in the residual raw material gas with an amine compound in the presence of water vapor. be able to.
- liquid fuel is a fuel that is in a liquid state at room temperature and pressure, or a fuel that can be liquefied at room temperature and pressure.
- fuels in a liquid state at normal temperature and pressure include methanol, ethanol, liquid fuels represented by C n H 2 (m-2n) (m is an integer less than 90, n is an integer less than 30), and these. Mixtures may be mentioned.
- fuels that can be liquefied at room temperature and pressure include propane, butane, and mixtures thereof.
- reaction formula for the reaction that can occur when methanol is synthesized by catalytic hydrogenation of a raw material gas containing carbon monoxide, carbon dioxide, and hydrogen in the presence of a catalyst is as follows. .
- the above reaction is an equilibrium reaction, and in order to increase both the conversion rate and the reaction rate, it is preferable to carry out the reaction at high temperature and high pressure.
- the reaction temperature is, for example, 180°C or higher, preferably 200°C or higher and 350°C or lower, and more preferably 200°C or higher and 300°C or lower.
- the reaction pressure is, for example, 1 MPa (G) or more, preferably 2.0 MPa (G) or more and 6.0 MPa (G) or less, more preferably 2.5 MPa (G) or more and 4.0 MPa (G) or less. be.
- the liquid fuel is in a gaseous state when it is synthesized, and remains in the gaseous state at least until it flows out of the liquid fuel synthesis section.
- the liquid fuel synthesis section 10 is a so-called membrane reactor for converting raw material gas into liquid fuel.
- the shape of the liquid fuel synthesis section 10 is not particularly limited, but may be, for example, monolithic, flat, tubular, cylindrical, columnar, polygonal columnar, or the like.
- the monolith shape means a shape having a plurality of cells penetrating in the longitudinal direction, and is a concept that includes a honeycomb shape.
- the liquid fuel synthesis unit 10 includes a catalyst 12, a water vapor separation membrane 14, a non-permeation side space 10A, and a permeation side space 10B.
- the water vapor separation membrane 14 is supported by a porous support 16.
- the liquid fuel synthesis unit 10 includes a first supply port s1 and a first discharge port d1 that communicate with each other via the non-permeation side space 10A, and a second supply port s2 and a second discharge port that communicate with each other via the permeation side space 10B. d2 and are provided.
- the liquid fuel synthesis section 10 preferably has heat resistance and pressure resistance suitable for desired liquid fuel synthesis conditions.
- the catalyst 12 advances the conversion reaction from raw material gas to liquid fuel.
- the catalyst is arranged in the non-permeation side space 10A, which is the non-permeation side of the water vapor separation membrane 14.
- the catalyst is preferably filled in the non-permeation side space 10A, but may be arranged on the surface of the water vapor separation membrane 14 in the form of a layer or an island.
- the particle size (diameter) of the catalyst particles can be, for example, 0.5 mm or more and 10 mm or less.
- the catalyst particles may be composed of only the catalyst, or may have a structure in which the catalyst is supported on carrier particles.
- the carrier particles are preferably porous particles.
- any catalyst suitable for the conversion reaction to the desired liquid fuel can be used.
- metal catalysts copper, palladium, etc.
- oxide catalysts zinc oxide, zirconia, gallium oxide, etc.
- composite catalysts of these copper-zinc oxide, copper-zinc oxide-alumina, copper - zinc oxide - chromium oxide - alumina, copper - cobalt - titania, catalysts modified with palladium, etc.
- the water vapor separation membrane 14 allows water vapor, which is a byproduct of the conversion reaction from raw material gas to liquid fuel, to permeate therethrough. Thereby, the reaction equilibrium of the above formula (2) can be shifted to the product side using the equilibrium shift effect.
- the molecular diameter of water (0.26 nm) is close to the molecular diameter of hydrogen (0.296 nm). Therefore, not only water vapor, which is a byproduct of the conversion reaction, but also a portion of hydrogen contained in the raw material gas, etc. can permeate through the water vapor separation membrane 14.
- the water vapor separation membrane 14 has a water vapor permeability coefficient of 100 nmol/(s ⁇ Pa ⁇ m 2 ) or more.
- the water vapor permeability coefficient can be determined by a known method (see Ind. Eng. Chem. Res., 40, 163-175 (2001)).
- the water vapor separation membrane 14 has a separation coefficient of 100 or more.
- the larger the separation coefficient the easier it is for water vapor to permeate, and the more difficult it is for components other than water vapor (hydrogen, carbon oxide, oxygen, liquid fuel, etc.) to permeate.
- the separation coefficient can be determined by a known method (see Fig. 1 of "Separation and Purification Technology 239 (2020) 116533").
- An inorganic membrane can be used as the water vapor separation membrane 14.
- Inorganic membranes are preferable because they have heat resistance, pressure resistance, and water vapor resistance.
- Examples of the inorganic membrane include zeolite membranes, silica membranes, alumina membranes, and composite membranes thereof.
- zeolite membranes silica membranes, alumina membranes, and composite membranes thereof.
- an LTA type zeolite membrane in which the molar ratio of silicon element (Si) to aluminum element (Al) (Si/Al) is 1.0 or more and 3.0 or less is suitable because it has excellent water vapor permeability. be.
- the zeolite membrane used as the water vapor separation membrane 14 can be obtained, for example, by the manufacturing method described in JP-A-2004-66188. Further, the silica membrane used as the water vapor separation membrane 14 can be obtained, for example, by the manufacturing method described in International Publication No. 2008/050812 pamphlet.
- the porous support 16 is made of a porous material.
- ceramic materials ceramic materials, metal materials, resin materials, composite members thereof, etc. can be used, and ceramic materials are particularly suitable. Aggregates for ceramic materials include alumina (Al 2 O 3 ), titania (TiO 2 ), mullite (Al 2 O 3 .SiO 2 ), cervene, and cordierite (Mg 2 Al 4 Si 5 O 18 ), and A composite material containing two or more of these materials can be used, and alumina is preferable in consideration of availability, clay stability, and corrosion resistance.
- the inorganic binder of the ceramic material at least one of titania, mullite, easily sinterable alumina, silica, glass frit, clay mineral, and easily sintered cordierite can be used.
- the ceramic material may be free of inorganic binders.
- the average pore diameter of the porous support can be 5 ⁇ m or more and 25 ⁇ m or less.
- the average pore diameter of the porous support can be measured by mercury intrusion method.
- the porosity of the porous support can be 25% or more and 50% or less.
- the average particle diameter of the porous material constituting the porous support can be 1 ⁇ m or more and 100 ⁇ m or less.
- the average particle size is the arithmetic mean value of the maximum diameters of 30 measurement target particles (randomly selected) measured by cross-sectional microstructure observation using a scanning electron microscope (SEM).
- the non-permeable side space 10A is a space on the non-permeable side of the water vapor separation membrane 14.
- the raw material gas supplied from the raw material gas supply section 20 flows into the non-permeation side space 10A via the first supply port s1.
- Liquid fuel is synthesized from the raw material gas in the catalyst 12, and the generated liquid fuel is discharged from the non-permeated side space 10A through the first discharge port d1 as a non-permeated side gas together with unreacted raw material gas (residual raw material gas). It flows out to the raw material gas circulation section 30.
- the non-permeate side gas contains liquid fuel and residual raw material gas.
- the residual raw material gas further contains acidic by-products in addition to unreacted hydrogen and carbon oxide.
- the acidic by-product means a by-product of the above conversion reaction that acts as a so-called Br ⁇ nsted acid. Examples of acidic by-products include formic acid and methyl formate.
- the permeation side space 10B is a space on the permeation side of the water vapor separation membrane 14.
- the water vapor generated in the conversion reaction and hydrogen in the raw material gas pass through the water vapor separation membrane 14 and flow into the permeation side space 10B.
- the conversion reaction proceeds by supplying the raw material gas, and the gas that has permeated through the water vapor separation membrane from the non-permeation side space 10A to the permeation side space 10B is used for the conversion reaction. Separate the permeate gas, which contains water vapor as a by-product of the process, and the non-permeate gas, which contains liquid fuel, unreacted hydrogen and carbon oxides, and acidic by-products. be able to.
- a sweep gas is supplied to the permeation side space 10B from the sweep gas supply section 40 via the second supply port s2.
- the permeate side gas and the sweep gas flow out from the permeate side space 10B to the raw material gas supply section 20 via the second outlet d2 as exhaust gas.
- the sweep gas supply unit 40 is arranged on the upstream side of the permeation side space 10B.
- the sweep gas supply section 40 is interposed in the sweep gas storage section 42, a sweep gas supply pipe 44 that connects the sweep gas storage section 42 and the second inlet s2 of the liquid fuel synthesis section 10, and the sweep gas supply pipe 44. It has a heating section 46.
- the sweep gas storage section 42 stores sweep gas.
- the sweep gas is heated to a desired temperature (for example, 150° C. or higher and 350° C. or lower) in the heating unit 46 and then supplied to the liquid fuel synthesis unit 10 from the second inlet s2.
- the heating unit 46 is not particularly limited as long as it can heat the sweep gas.
- the sweep gas contains an amine compound, and preferably further contains one or both of hydrogen and carbon oxide.
- the raw material gas is prepared using a mixed gas of exhaust gas containing the sweep gas and residual raw material gas.
- the sweep gas contains the amine compound, the acidic by-products in the residual raw material gas can be neutralized and removed with the amine compound.
- any suitable amine compound can be used as long as the effects of the present invention can be obtained.
- the amino group possessed by the amine compound other than ammonia may be a primary amino group, a secondary amino group, a tertiary amino group, or a combination of two or more thereof.
- an amine compound having a boiling point of 100°C or more and 500°C or less, preferably 170°C or more and 350°C or less is used.
- Such amine compounds can maintain a good gaseous state in the sweep gas.
- amine compounds include ammonia, polyethyleneimine, monoethanolamine, diethanolamine, triethanolamine, tetraethyleneaminepentamine, methyldiethanolamine, dibutylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, hexaethylenediamine, benzylamine, N - Aminosilane coupling agents such as (3-aminopropyl)diethanolamine, aminopropyltrimethoxysilane, polyvinylamine, 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane, etc. can be mentioned. Amine compounds can be used alone or in combination.
- the concentration of the amine compound in the sweep gas is not limited as long as the effects of the present invention can be obtained.
- the concentration of the amine compound in the sweep gas is, for example, 10 ppm or more from the viewpoint of neutralizing acidic byproducts.
- the upper limit of the amine compound concentration is not particularly limited, but since some catalysts are inhibited by alkali, the concentration may be adjusted as appropriate to prevent deterioration of the catalytic action.
- the amine compound concentration in the sweep gas is the amine compound concentration in the sweep gas at the second supply port s2 of the liquid fuel synthesis section.
- the sweep gas contains hydrogen or carbon oxide as a main component, preferably contains hydrogen as a main component.
- containing hydrogen or carbon oxide as a main component means that the concentration of hydrogen or carbon oxide is the highest in the sweep gas.
- the hydrogen concentration in the sweep gas is, for example, about 50 volume % or more and 90 volume % or less, preferably 65 volume % or more and 80 volume % or less.
- the carbon oxide concentration is, for example, about 10 volume % or more and less than 50 volume %, preferably 20 volume % or more and 35 volume % or less.
- the raw gas circulation unit 30 includes a non-permeate side gas recovery pipe 31, a first condenser 32, a first drain trap 33, a liquid fuel recovery pipe 34, and a raw gas circulation pipe 35. .
- One end of the non-permeate side gas recovery pipe 31 is connected to the first outlet d1 of the liquid fuel synthesis section 10, and the other end is connected to the first condenser 32.
- One end of the raw material gas circulation pipe 35 is connected to the first drain trap 33, and the other end is connected to the raw material gas supply section 20 (more specifically, the mixing section 24).
- the non-permeate gas recovered from the liquid fuel synthesis section 10 via the non-permeate gas recovery pipe 31 is supplied to the first condenser 32, whereby the liquid fuel is condensed (liquefied).
- the liquefied liquid fuel is separated from the remaining raw material gas by the first drain trap 33 and recovered from the liquid fuel recovery pipe 34.
- the non-permeate side gas (in other words, the residual raw material gas) after the liquid fuel is separated contains unreacted hydrogen and carbon oxide as well as a trace amount of acidic byproducts.
- the remaining raw material gas is supplied to the raw material gas supply section 20 (more specifically, the mixing section 24) via the raw material gas circulation pipe 35.
- a purge valve 36 may be provided in the raw material gas circulation pipe 35 as shown in the illustrated example.
- the purge valve 36 is installed at one or more arbitrary positions on the raw material gas circulation pipe 35 and discharges a portion of the remaining raw material gas flowing through the raw material gas circulation pipe 35 to the outside.
- the raw material gas supply unit 20 includes a neutralization raw gas supply pipe 22 , a mixing unit 24 , a water removal unit 26 , and a pressure increase unit 28 .
- the moisture removal section 26 includes a second condenser 26a, a second drain trap 26b, and a moisture recovery pipe 26c.
- One end of the neutralization raw material gas supply pipe 22 is connected to the second outlet d2 of the liquid fuel synthesis section 10, and the other end is connected to the second condenser 26a of the water removal section 26.
- a raw material gas circulation pipe 35 is connected to the neutralization raw material gas supply pipe 22 so as to join upstream of the water removal part 26, and the connection point is the mixing part 24.
- the mixing section may have any configuration as long as it can mix the neutralization raw material gas and the remaining raw material gas.
- a tank (mixing section) is provided upstream of the water removal section 26, and the neutralization raw material gas supply piping 22 and the raw material gas circulation pipe 35 may be independently connected to the tank, and the neutralizing raw material gas and the remaining raw material gas may be mixed inside the tank.
- the exhaust gas (permeation side gas and sweep gas) recovered from the liquid fuel synthesis section 10 via the neutralization raw material gas supply pipe 22 is mixed with the remaining raw material gas upstream of the moisture removal section 26. Ru.
- the acidic by-products contained in the residual raw material gas are neutralized by the amine compounds contained in the exhaust gas (amine compounds derived from the sweep gas).
- the mixed gas of the exhaust gas and residual raw material gas is supplied to the second condenser 26a, the water vapor contained in the exhaust gas (water vapor derived from the permeation side gas) is condensed, and the water vapor generated by the neutralization is condensed. hydrate transfers (dissolves) into condensed water.
- the condensed water containing the neutralized product is separated from the remaining gas components by the second drain trap 26b and recovered (removed) from the moisture recovery pipe 26c.
- the amine compound concentration in the exhaust gas (the amine compound concentration at the second discharge port d2 of the liquid fuel synthesis section) is, for example, 10 ppm or more.
- the upper limit of the amine compound concentration in the exhaust gas is not particularly limited, but since some catalysts are inhibited by alkali, it can be adjusted as appropriate to a concentration that prevents a decrease in catalytic action.
- the gas component is pressurized and heated in the pressure increasing section 28, and then is supplied to the non-permeate side space 10A of the liquid fuel synthesis section 10 as a raw material gas.
- the raw material gas is a residual raw material gas that is recycled and used, and the accumulation of acidic by-products due to an increase in the number of circulations is suppressed.
- hydrogen and/or carbon oxide can be mixed with the gas components after separating the condensed water and the neutralized product to prepare the raw material gas to have a desired composition.
- the source gas contains at least hydrogen and carbon oxide.
- the carbon oxide concentration in the raw material gas is, for example, 10 volume % or more and 40 volume % or less, preferably 20 volume % or more and 30 volume % or less.
- the hydrogen concentration in the raw material gas is, for example, 60 volume % or more and 90 volume % or less, preferably 70 volume % or more and 80 volume % or less.
- FIG. 2 is a schematic configuration diagram of a liquid fuel production system according to another embodiment of the present invention.
- the liquid fuel production system 1B shown in FIG. 2 includes a liquid fuel synthesis section 10, a raw material gas supply section 20, a raw material gas circulation section 30, and a sweep gas supply section 40.
- the sweep gas supply section 40 includes a carbon dioxide recovery section 41, a carbon dioxide supply pipe 43, a hydrogen generation section 45, a hydrogen supply pipe 47, a sweep gas supply pipe 44, and a heating section 46. It differs from the liquid fuel production system 1A shown in FIG. 1 in that it has the following.
- the carbon dioxide recovery unit 41 includes a carbon dioxide adsorbent that adsorbs carbon dioxide by contact with a carbon dioxide-containing gas and desorbs carbon dioxide by heating, reducing pressure, etc., and using the carbon dioxide adsorbent, A gas containing carbon dioxide at a higher concentration than the carbon dioxide-containing gas (carbon dioxide-enriched gas) may be recovered. More specifically, the carbon dioxide recovery unit 41 brings a carbon dioxide-containing gas into contact with a carbon dioxide adsorbent to adsorb carbon dioxide, and then heats and/or reduces the pressure on the carbon dioxide adsorbent to remove carbon dioxide. Carbon dioxide enriched gas can be recovered by desorption and suctioning the desorbed carbon dioxide with a pump or the like.
- carbon dioxide capture unit 41 is a carbon dioxide capture facility that utilizes direct air capture (DAC) technology.
- An amine compound is typically used as the carbon dioxide adsorbent. Specific examples of the amine compound are as described above with respect to the sweep gas. Due to the incorporation of carbon dioxide adsorbent during recovery of the carbon dioxide enriched gas, the carbon dioxide enriched gas may contain trace amounts of carbon dioxide adsorbent, ie, amine compounds. The carbon dioxide enriched gas may also contain nitrogen from the atmosphere.
- the carbon dioxide recovery unit 41 may be a carbon dioxide recovery facility that recovers carbon dioxide from biogas using a separation membrane.
- Biogas is a gas generated by fermentation (methane fermentation) using biomass such as food waste, paper waste, and livestock manure as raw materials. The main components of biogas are methane and carbon dioxide, and may further contain trace amounts of nitrogen and the like.
- the hydrogen generation unit 45 is, for example, hydrogen production equipment using water electrolysis technology.
- the carbon dioxide supply pipe 43 connects the carbon dioxide recovery section 41 and the heating section 46, and the hydrogen supply pipe 47 connects the hydrogen generation section 45 and the carbon dioxide supply pipe 43.
- the carbon dioxide concentrated gas supplied from the carbon dioxide recovery section 41 and the hydrogen supplied from the hydrogen generation section 45 are mixed to generate a sweep gas.
- the sweep gas is heated in the heating section 46 and then supplied to the liquid fuel synthesis section 10 via the sweep gas supply piping 44 . That is, carbon dioxide enriched gas is supplied to the raw material gas supply section 10 as a component of the sweep gas (neutralization raw material gas).
- the entire amount of carbon dioxide contained in the sweep gas is derived from carbon dioxide-enriched gas (e.g., carbon dioxide-enriched gas recovered from the atmosphere by a DAC or carbon dioxide-enriched gas recovered from biogas by a separation membrane).
- carbon dioxide-enriched gas e.g., carbon dioxide-enriched gas recovered from the atmosphere by a DAC or carbon dioxide-enriched gas recovered from biogas by a separation membrane.
- carbon dioxide enriched gas can contain trace amounts of amine compounds
- a mixed gas of carbon dioxide enriched gas and hydrogen can be prepared without adding an amine compound separately or with the addition of a very small amount of an amine compound. It can be used as a sweep gas by simply
- the separation membrane that separates water vapor and liquid fuel is not limited to a water vapor separation membrane that allows water vapor to pass through, but a liquid fuel separation membrane that allows at least liquid fuel to pass through can be used.
- the separation membrane that separates water vapor and liquid fuel has a higher selective permeability for one than the other, and as long as the effects of the present invention can be obtained, it is possible to completely separate both water vapor and liquid fuel. It does not need to be separated.
- a liquid fuel separation membrane permeates liquid fuel with higher selectivity than water vapor, but does not completely separate the two.
- FIG. 3 is a schematic configuration diagram of a liquid fuel production system according to another embodiment of the present invention.
- the liquid fuel production system 1C shown in FIG. 3 includes a liquid fuel synthesis section 10 that advances a conversion reaction from a source gas containing at least hydrogen and carbon oxide to liquid fuel; , a raw material gas supply section 20; a raw material gas circulation for resupplying the remaining raw material gas containing unreacted hydrogen and carbon oxide and acidic by-products of the conversion reaction from the liquid fuel synthesis section 10 to the raw material gas supply section 20; 30.
- the liquid fuel synthesis unit 10 has a liquid fuel separation membrane 14a that allows liquid fuel to pass therethrough, and the gas that has passed through the liquid fuel separation membrane 14a from the non-permeation side to the permeation side, the permeation side gas containing at least liquid fuel.
- the liquid fuel separation membrane 14a is separated from the non-permeable side gas, which is a gas that has not passed through the liquid fuel separation membrane 14a and contains by-product water vapor, unreacted hydrogen and carbon oxide, and acidic by-products.
- the liquid fuel production system 1C further includes a sweep gas supply section 40 that supplies gas for sweeping the permeation side gas to the permeation side of the liquid fuel synthesis section 10.
- the raw material gas supply section 20 includes a mixing section 24 that mixes the amine compound and the remaining raw material gas in the presence of water vapor, and a mixing section 24 that removes the neutralized product of the amine compound and the acidic by-product together with the condensed water of the water vapor.
- the sweep gas flowing out from the liquid fuel synthesis section 10 (The acidic by-products in the residual raw material gas can be neutralized with the amine compound by mixing the neutralization raw material gas) with the non-permeate side gas containing by-product steam and residual raw material gas.
- the main points of Modified Example 2 will be explained below. The other details are as described for the liquid fuel production system 1A.
- the liquid fuel synthesis unit 10 includes a catalyst 12, a liquid fuel separation membrane 14a, a non-permeation side space 10A, and a permeation side space 10B.
- the liquid fuel separation membrane 14a may be supported by a porous support 16 as shown in the illustrated example.
- the liquid fuel synthesis unit 10 includes a first supply port s1 and a first discharge port d1 that communicate with each other via the non-permeation side space 10A, and a second supply port s2 and a second discharge port that communicate with each other via the permeation side space 10B. d2 and are provided.
- the separation membrane that selectively permeates liquid fuel for example, the one described in JP-A-2020-23488 can be used.
- the non-permeation side space 10A is a space on the non-permeation side of the liquid fuel separation membrane 14a
- the permeation side space 10B is a space on the permeation side of the liquid fuel separation membrane 14a.
- the raw material gas supplied from the raw material gas supply section 20 flows into the non-permeation side space 10A via the first supply port s1.
- Liquid fuel is synthesized from the raw material gas in the catalyst 12, and the liquid fuel passes through the liquid fuel separation membrane 14a and flows into the permeation side space 10B. Sweep gas is supplied to the permeation side space 10B from the sweep gas supply section 40 via the second supply port s2.
- the permeate side gas and the sweep gas flow out from the permeate side space 10B to the raw material gas supply section 20 via the second outlet d2 as a product gas.
- the residual raw material gas flows out from the non-permeated side space 10A to the raw material gas circulation section 30 through the first outlet d1 as a non-permeated side gas together with by-product water vapor.
- the raw material gas circulation section 30 has a non-permeate side gas recovery pipe 31.
- the non-permeate side gas recovery pipe 31 has one end connected to the first outlet d1 of the liquid fuel synthesis section 10 and the other end connected to the neutralization source gas supply pipe 22, and supplies the non-permeate side gas to the mixing section. 24 can be supplied.
- the source gas supply section 20 includes a neutralization source gas supply pipe 22, a mixing section 24, a moisture removal section 26, a pressure increase section 28, a third condenser 21, a third drain trap 23, It has a liquid fuel recovery pipe 25.
- the product gas recovered from the liquid fuel synthesis section 10 via the neutralization raw material gas supply pipe 22 is separated into liquid fuel and sweep gas by the third condenser 21 and the third drain trap 23. Then, the liquefied liquid fuel is recovered via the liquid fuel recovery pipe 25.
- the sweep gas is sent to the moisture removal section 26 and mixed with the non-permeate side gas (in other words, residual raw material gas and by-product steam) in the mixing section 24 upstream of the moisture removal section 26 .
- the acidic by-products contained in the residual raw material gas are neutralized by the amine compounds contained in the sweep gas.
- the mixed gas of the sweep gas and the non-permeate side gas is supplied to the second condenser 26a, the by-product water vapor derived from the non-permeate side gas is condensed, and the neutralized product generated by the above-mentioned neutralization is Transfers (dissolves) in condensed water.
- the condensed water containing the neutralized product is separated from the remaining gas components by the second drain trap 26b and recovered (removed) from the moisture recovery pipe 26c.
- the permeate gas may contain liquid fuel and by-product water vapor, so the product gas may contain an amine compound. It may contain a sweep gas, liquid fuel and water vapor. Therefore, even if the non-permeate side gas does not contain water vapor, or even if water vapor is separated from the non-permeate side gas, by mixing the product gas after separating the liquid fuel with the remaining raw material gas, water vapor can be removed. Mixing of the amine compound and the residual feedstock gas in the presence of can be performed.
- the water vapor present when the amine compound and the residual raw material gas are mixed is recovered together with the residual raw material gas, and the water vapor contained in the non-permeated side gas and/or Or it can be water vapor recovered as permeate gas and contained in the product gas.
- FIG. 4 is a schematic configuration diagram of a liquid fuel production system according to another embodiment of the present invention.
- the liquid fuel production system 1D shown in FIG. 4 includes a liquid fuel synthesis section 10a that progresses a conversion reaction from a source gas containing at least hydrogen and carbon oxide to liquid fuel; and a liquid fuel synthesis section 10a that supplies source gas to the liquid fuel synthesis section 10a.
- a gas circulation section 30 is provided.
- the liquid fuel production system 1D further includes a temperature control gas supply section 40a that supplies a temperature control gas for regulating the temperature of the first gas flow path 10A to the liquid fuel synthesis section 10a.
- the raw material gas supply section 20 includes a mixing section 24 that mixes the amine compound and the remaining raw material gas in the presence of water vapor, and a water removal section that removes the neutralized product of the amine compound and acidic by-product together with the condensed water of the water vapor. It has a section 26.
- the temperature control gas flowing out from the liquid fuel synthesis section 10a is converted into residual feedstock gas.
- the acidic by-products in the remaining raw material gas can be neutralized with the amine compound and removed together with the condensed water.
- the liquid fuel synthesis section 10a includes a first gas flow path 10A in which a catalyst 12 for advancing a conversion reaction is disposed, and a second gas flow path through which a temperature control gas that adjusts the temperature of the first gas flow path 10A flows. 10B.
- the first gas flow path 10A and the second gas flow path 10B are vertically divided by the partition wall 18, but the second gas flow path 10B is the first gas flow path 10A. It suffices if the arrangement is such that the temperature can be adjusted.
- the liquid fuel synthesis section can have a double pipe structure, with one of the inner pipe and the outer pipe serving as the first gas flow path and the other serving as the second gas flow path. Partition 18 is typically gas impermeable.
- the raw material gas supplied from the raw material gas supply section 20 flows into the first gas flow path 10A via the first supply port s1.
- Liquid fuel is synthesized from the raw material gas in the catalyst 12, and the generated liquid fuel, together with the remaining raw material gas, is sent as a product gas from the first gas flow path 10A to the raw material gas circulation section 30 via the first discharge port d1. leak.
- the product gas contains liquid fuel, water vapor which is a byproduct of the conversion reaction, and residual feed gas.
- the residual raw material gas further contains acidic by-products in addition to unreacted hydrogen and carbon oxide.
- the temperature control gas supplied from the temperature control gas supply section 40a flows into the second gas flow path 10B via the second supply port s2, and flows out to the raw material gas supply section 20 from the second discharge port d2.
- the temperature-controlled gas supply unit 40a includes a temperature-controlled gas storage unit 42 that stores temperature-controlled gas, and a temperature-controlled gas supply pipe 44 that connects the temperature-controlled gas storage unit 42 and the second inlet s2 of the liquid fuel synthesis unit 10a. and a heating section 46 interposed in the temperature control gas supply pipe 44.
- the temperature control gas is supplied to the liquid fuel synthesis unit 10a in a countercurrent flow to the raw material gas, but it may be supplied in a parallel flow.
- the temperature control gas After the temperature control gas is heated to a desired temperature (for example, 150° C. or higher and 350° C. or lower) in the heating unit 46, it is supplied to the liquid fuel synthesis unit 10a from the second inlet s2.
- the heating unit 46 is not particularly limited as long as it can heat the temperature control gas.
- the temperature control gas contains an amine compound and water vapor, and preferably further contains one or both of hydrogen and carbon oxide.
- the same explanation as for the above sweep gas can be applied to components other than water vapor in the temperature control gas.
- the water vapor dew point in the temperature control gas is, for example, 40°C or more and 150°C or less.
- the raw material gas circulation section 30 includes a product gas recovery pipe 31a, a first condenser 32, a first drain trap 33, a liquid fuel recovery pipe 34, and a raw material gas circulation pipe 35.
- the source gas supply section 20 includes a neutralization source gas supply pipe 22, a mixing section 24, a water removal section 26, and a pressure increase section 28.
- the product gas recovered via the product gas recovery pipe 31a contains liquid fuel, by-product steam, and residual raw material gas containing unreacted hydrogen, carbon oxide, and acidic by-products.
- the product gas is separated into gas and liquid by the first condenser 32 and the first drain trap 33, and the liquefied liquid fuel and water are recovered via the liquid fuel recovery pipe 34, and the remaining raw material gas is used as the raw material gas.
- the raw material gas supply unit 20 (more specifically, the mixing unit 24) is supplied via the circulation pipe 35.
- the liquid fuel and water recovered from the liquid fuel recovery pipe 34 are further separated and recovered as necessary.
- the temperature control gas containing the amine compound and water vapor recovered from the liquid fuel synthesis section 10a via the neutralization source gas supply pipe 22 remains upstream of the moisture removal section 26.
- the acidic by-products contained in the residual raw material gas are neutralized by the amine compounds contained in the temperature control gas, and the neutralized product produced by the neutralization is removed from the moisture removal section 26 together with the condensed water of steam.
- the entire amount of water vapor generated by the conversion reaction may not be recovered in the liquid fuel recovery pipe 34 due to the difference in boiling point from methanol, and a part of the by-product water vapor may be collected via the raw material gas circulation pipe 35. It can be supplied to the mixing section 24. Therefore, even if the temperature control gas does not contain water vapor, the amine compound and the acidic byproduct can be neutralized in the presence of the byproduct water vapor supplied via the raw gas circulation pipe 35.
- the gas component is pressurized and heated in the pressure increasing section 28, and then is supplied as a raw material gas to the first gas flow path 10A of the liquid fuel synthesis section 10a.
- the amine compound used to neutralize the acidic byproduct is ammonia that is generated from the hydrogen and nitrogen in the liquid fuel synthesis section when a raw material gas containing nitrogen in addition to hydrogen and carbon oxide is used. good.
- Ammonia has a small molecular diameter and can easily permeate separation membranes compared to other gases. Therefore, for example, when the liquid fuel synthesis section has a water vapor separation membrane, ammonia generated in the non-permeation side space of the liquid fuel synthesis section passes through the water vapor separation membrane as a permeation side gas together with water vapor, and is swept by the sweep gas. It can flow out from the liquid fuel synthesis section (more specifically, from the outlet d2 of the permeate side space) as exhaust gas.
- the exhaust gas (mixed gas of permeation side gas and sweep gas) contains water vapor and ammonia.
- acidic byproducts in the residual raw material gas can be neutralized using ammonia contained in the permeate gas in the presence of water vapor. can.
- the liquid fuel synthesis section has a liquid fuel separation membrane
- ammonia generated in the non-permeation side space of the liquid fuel synthesis section passes through the liquid fuel separation membrane as a permeation side gas together with the liquid fuel, and is swept by the sweep gas. and can flow out of the liquid fuel synthesis section (more specifically, from the outlet d2 of the permeate side space) as a product gas.
- the product gas (mixture of permeate gas and sweep gas) contains liquid fuel and ammonia.
- the non-permeate side gas flowing out from the discharge port d1 of the non-permeate side space of the liquid fuel synthesis section contains water vapor and residual raw material gas. Therefore, after separating the liquid fuel from the product gas, by supplying it to the mixing section and mixing it with the non-permeate side gas, in the presence of water vapor, the acidic by-products in the remaining raw material gas are converted into ammonia contained in the permeate side gas.
- ammonia generated in the non-permeation side space of the liquid fuel synthesis section permeates through the liquid fuel separation membrane as a permeation side gas along with liquid fuel and water vapor.
- it can be swept out with a sweep gas and exit the liquid fuel synthesis section as product gas. Therefore, even when the non-permeate side gas does not contain water vapor or when water vapor is separated from the non-permeate side gas, it is possible to supply the product gas after separating the liquid fuel and the residual raw material gas to the mixing section.
- the liquid fuel production system of Modification 4 includes a carbon dioxide recovery unit as described in Modification 1, and uses gas containing carbon dioxide recovered from the atmosphere or biogas by the carbon dioxide recovery unit. It may also be configured to prepare the raw material gas. Gas containing carbon dioxide recovered from the atmosphere or biogas can contain a small amount of nitrogen in addition to carbon dioxide, so it can be used as a raw material without adding nitrogen separately or with just a small amount of nitrogen. Gas can be prepared.
- a method for producing liquid fuel according to an embodiment of the present invention includes: Supplying the raw material gas to a liquid fuel synthesis section that includes a catalyst that advances the conversion reaction from the raw material gas containing at least hydrogen and carbon oxide to liquid fuel (Step I); While allowing the conversion reaction to proceed, recovering the remaining raw material gas containing the unreacted hydrogen, the carbon oxide, and the acidic by-products from the liquid fuel synthesis section (step II); Removing the acidic by-product from the residual raw material gas (Step III); and Re-supplying the residual raw material gas after removing the acidic by-product to the liquid fuel synthesis section as part of the raw material gas ( Step IV), including.
- removing acidic byproducts from residual raw material gas involves mixing an amine compound and residual raw material gas in the presence of water vapor to remove acidic byproducts in residual raw material gas from the above amine compound. This is done by neutralizing the The neutralized product produced by the neutralization is removed together with the water vapor condensate.
- the gas after removing condensed water and neutralized products from these mixed gases is supplied to the liquid fuel synthesis section as a component of the raw material gas.
- the concentration of acidic byproducts in the raw material gas gradually increases as the number of circulation increases, and the concentration of acidic byproducts in the raw material gas increases. This may result in reduced yield and corrosion of the liquid fuel production system.
- the liquid fuel manufacturing method according to the embodiment of the present invention by mixing the amine compound with the residual raw material gas, the acidic by-products can be neutralized and removed with the amine compound, and the mixed gas after removal is By using this as a component of the raw material gas, the problem of concentration of acidic by-products can be prevented.
- the liquid fuel manufacturing method according to the embodiment of the present invention can be suitably performed using the liquid fuel manufacturing system described in Section A.
- a liquid fuel production system 1A in which the liquid fuel synthesis section includes a water vapor separation membrane and uses a sweep gas containing an amine compound as a raw material gas for neutralization will be described.
- Liquid fuel production methods according to the configuration include a liquid fuel production system in which the liquid fuel synthesis section includes a liquid fuel separation membrane, a liquid fuel production system that includes a separation membrane and uses a raw material gas containing nitrogen in addition to carbon oxide and hydrogen, etc. It can also be carried out according to the description in Section A.
- the liquid fuel production system 1A when using the liquid fuel production system 1D to use the temperature control gas after flowing through the liquid fuel synthesis section in order to adjust the reaction temperature of the conversion reaction as the raw material gas for neutralization, the liquid fuel production system 1A can also be used.
- the liquid fuel manufacturing method according to the embodiment of the present invention can be carried out in the same way as when using the liquid fuel. For example, a temperature-controlled gas containing an amine compound and water vapor can be passed through the liquid fuel synthesis section, and the temperature-controlled gas after passing through the liquid fuel synthesis section can be used to neutralize and remove acidic byproducts. .
- a raw material gas is supplied to a liquid fuel synthesis section that includes a catalyst that promotes a conversion reaction from a raw material gas containing at least hydrogen and carbon oxide to liquid fuel, and a water vapor separation membrane that allows water vapor to pass therethrough.
- the liquid fuel synthesis unit 10 includes a catalyst 12, a water vapor separation membrane 14, a non-permeation side space 10A, and a permeation side space 10B.
- the raw material gas is supplied to the non-permeation side space 10A of the liquid fuel synthesis section 10 from the first inlet s1.
- the raw material gas contains at least hydrogen and carbon oxide.
- concentrations of hydrogen and carbon oxide in the raw material gas are as described above.
- concentration of acidic byproducts in the raw material gas is preferably as low as possible, for example, 30 ppm or less, preferably 20 ppm or less.
- step II while the conversion reaction is allowed to proceed, residual raw material gas containing unreacted hydrogen, carbon oxide, and acidic by-products is recovered from the liquid fuel synthesis section.
- the conversion reaction proceeds in catalyst 12, thereby producing liquid fuel and water vapor.
- methanol and water vapor are generated by catalytically hydrogenating a raw material gas containing CO 2 and hydrogen in the presence of a catalyst.
- a trace amount of acidic components are produced as byproducts other than water vapor.
- the reaction conditions are as described in Section A.
- the liquid fuel generated in the non-permeation side space 10A flows out to the non-permeation side gas recovery piping 31 through the first outlet d1 together with the residual raw material gas containing unreacted hydrogen, carbon oxide, and acidic by-products.
- the remaining raw material gas is separated into gas and liquid by the first condenser 32 and the first drain trap 33.
- the liquid fuel is recovered from the liquid fuel recovery pipe 34, and the remaining raw material gas is recovered from the raw material gas circulation pipe 35.
- step III acidic byproducts are removed from the residual raw material gas.
- the liquid fuel production system 1A is configured to prepare the raw material gas by mixing the sweep gas and residual raw material gas that are separately collected from the liquid fuel synthesis section 10, so that the sweep gas containing the amine compound can be mixed with the residual raw material gas.
- acidic by-products contained in the remaining raw material gas can be removed by neutralization with the amine compound. Specifically, it is as follows.
- the water vapor generated in the non-permeation side space 10A and a part of the hydrogen in the raw material gas permeate the water vapor separation membrane 14 and flow into the permeation side space 10B.
- a sweep gas containing an amine compound and optionally hydrogen and/or carbon oxide flows into the permeation side space 10B from the second inlet s2.
- the water vapor and hydrogen that have flowed into the permeation side space 10B are swept by the sweep gas and flow out as exhaust gas to the neutralization raw material gas supply pipe (exhaust gas recovery pipe) 22 via the second outlet d2.
- the raw material gas circulation pipe 35 joins the neutralizing raw material gas supply pipe 22 at the mixing section 24, so that the exhaust gas and the remaining raw material gas are mixed.
- the acidic by-products derived from the residual raw material gas are neutralized with the amine compounds derived from the sweep gas contained in the exhaust gas.
- the mixed gas of the exhaust gas and residual raw material gas passes through the second condenser 26a and the second drain trap 26b in this order, during which water vapor is condensed and separated into gas and liquid, and is recovered (removed) from the moisture recovery pipe 26c.
- Ru the neutralized product produced by the neutralization is dissolved in the condensed water and removed together with the condensed water from the moisture recovery pipe 26c.
- step IV the remaining raw material gas after removing the acidic by-products is re-supplied to the liquid fuel synthesis section as part of the raw material gas.
- the mixed gas from which moisture has been removed in step III is used as a raw material gas, and after being adjusted to a desired temperature and pressure in the pressure increasing section 28, it is supplied to the liquid fuel synthesis section 10.
- hydrogen and/or carbon oxide may be mixed into the mixed gas from which moisture has been removed in step III to prepare the raw material gas to a desired composition.
- the liquid fuel production system according to the embodiment of the present invention can be suitably used for producing liquid fuel such as methanol.
- Liquid fuel production system 10 Liquid fuel synthesis section 20 Raw material gas supply section 30 Raw material gas circulation section 40 Sweep gas supply section
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
本発明は水素および酸化炭素を含有する原料ガスから液体燃料への転化反応における反応収率の悪化を抑制することを主たる目的とする。本発明の実施形態による液体燃料製造システムは、少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる、液体燃料合成部と;前記液体燃料合成部に前記原料ガスを供給する、原料ガス供給部と;前記液体燃料合成部から未反応の前記水素および前記酸化炭素と前記転化反応の酸性副生物とを含有する残原料ガスを前記原料ガス供給部に再供給する、原料ガス循環部と;を備え、前記原料ガス供給部が、水蒸気の存在下で、アミン化合物と、前記残原料ガスと、を混合する、混合部と、前記アミン化合物と前記酸性副生物との中和物を前記水蒸気の凝縮水とともに除去する水分除去部と、を有する。
Description
本発明は、液体燃料製造システムおよび液体燃料の製造方法に関する。
近年、カーボンニュートラル社会の実現を目的として、酸化炭素を炭素資源として捉え、これを工業基礎原料として有用な液体燃料に転換することが提案されている。例えば、特許文献1には、触媒と水蒸気分離膜とを含むメンブレンリアクタを用いて、水素および二酸化炭素を含有する原料ガスのメタノールへの転化反応を行う液体燃料製造システムが開示されている。
上記のような水素および二酸化炭素を含有する原料ガスから液体燃料への転化反応においては、反応収率が悪化する場合がある。具体的には、上記転化反応においては、省エネルギーの観点から、未反応の原料ガスを液体燃料製造システムから回収し、原料ガスとして再度液体燃料製造システムに供給する、原料ガスの循環利用が行われているが、当該原料ガスの循環利用においては、転化反応で生じる酸性副生物が循環回数の増加に伴って蓄積され、反応収率の悪化を招く場合がある。
本発明は、水素および酸化炭素を含有する原料ガスから液体燃料への転化反応における反応収率の悪化を抑制することを主たる目的とする。
[1]本発明の1つの局面によれば、少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる、液体燃料合成部と;前記液体燃料合成部に前記原料ガスを供給する、原料ガス供給部と;前記液体燃料合成部から未反応の前記水素および前記酸化炭素と前記転化反応の酸性副生物とを含有する残原料ガスを前記原料ガス供給部に再供給する、原料ガス循環部と;を備え、前記原料ガス供給部が、水蒸気の存在下で、アミン化合物と、前記残原料ガスと、を混合する、混合部と、前記アミン化合物と前記酸性副生物との中和物を前記水蒸気の凝縮水とともに除去する水分除去部と、を有する、液体燃料製造システムが提供される。
[2]上記[1]に記載の液体燃料製造システムは、前記混合部において、前記アミン化合物を含有する中和用原料ガスと、前記残原料ガスと、を混合してもよい。
[3]上記[1]に記載の液体燃料製造システムにおいて、前記原料ガスが、窒素をさらに含有し、前記アミン化合物が、前記液体燃料合成部において前記水素と前記窒素とから生成されたアンモニアであってよい。
[4]上記[2]に記載の液体燃料製造システムは、大気またはバイオガスから二酸化炭素を回収する、ガス回収部をさらに備え、前記ガス回収部から供給される二酸化炭素を含有するガスが、前記中和用原料ガスの構成成分として用いられてよい。
[5]上記[2]または[4]に記載の液体燃料製造システムにおいて、前記液体燃料合成部が、少なくとも水蒸気を透過させる水蒸気分離膜を有し、非透過側から透過側に前記水蒸気分離膜を透過したガスであって、前記転化反応の副生物である水蒸気を含有する透過側ガスと、前記水蒸気分離膜を透過しなかったガスであって、前記液体燃料、未反応の前記水素および前記酸化炭素、ならびに前記酸性副生物を含有する非透過側ガスと、を分離してよく、また、上記液体燃料製造システムは、前記透過側ガスを掃引するガスであって、アミン化合物を含有する掃引ガスを、前記液体燃料合成部の前記透過側に供給する、掃引ガス供給部をさらに備えてよく、前記液体燃料合成部から流出した前記透過側ガスおよび前記掃引ガスが、前記混合部に供給されてよい。
[6]上記[5]に記載の液体燃料製造システムにおいて、前記掃引ガスが、酸化炭素および/または水素をさらに含有してよい。
[7]上記[5]または[6]に記載の液体燃料製造システムにおいて、前記掃引ガスにおける前記アミン化合物濃度が、10ppm以上であってよい。
[8]上記[3]に記載の液体燃料製造システムにおいて、前記液体燃料合成部が、少なくとも水蒸気およびアンモニアを透過させる水蒸気分離膜を有し、非透過側から透過側に前記水蒸気分離膜を透過したガスであって、前記転化反応の副生物である水蒸気および前記アンモニアを含有する透過側ガスと、前記水蒸気分離膜を透過しなかったガスであって、前記液体燃料、未反応の前記水素および前記酸化炭素、ならびに前記酸性副生物を含有する非透過側ガスと、を分離してよく、また、上記液体燃料製造システムは、前記透過側ガスを掃引する掃引ガスを、前記液体燃料合成部の前記透過側に供給する、掃引ガス供給部をさらに備えてよく、前記液体燃料合成部から流出した前記透過側ガスおよび前記掃引ガスが、前記混合部に供給されてよい。
[9]上記[8]に記載の液体燃料製造システムにおいて、前記透過側ガスおよび前記掃引ガスの混合ガスにおける前記アンモニア濃度が、10ppm以上であってよい。
[10]上記[2]または[4]に記載の液体燃料製造システムにおいて、
前記液体燃料合成部が、少なくとも液体燃料を透過させる液体燃料分離膜を有し、非透過側から透過側に前記液体燃料分離膜を透過したガスであって、前記液体燃料を含有する透過側ガスと、前記液体燃料分離膜を透過しなかったガスであって、前記転化反応の副生物である水蒸気、未反応の前記水素および前記酸化炭素、ならびに前記酸性副生物を含有する非透過側ガスと、を分離してよく、また、上記液体燃料製造システムは、前記透過側ガスを掃引するガスであって、アミン化合物を含有する掃引ガスを、前記液体燃料合成部の前記透過側に供給する、掃引ガス供給部をさらに備えてよく、前記液体燃料合成部から流出した前記掃引ガスが、前記混合部に供給されてよい。
[11]上記[10]に記載の液体燃料製造システムにおいて、前記掃引ガスが、酸化炭素および/または水素をさらに含有してよい。
[12]上記[10]または[11]に記載の液体燃料製造システムにおいて、前記掃引ガスにおける前記アミン化合物濃度が、10ppm以上であってよい。
[13]上記[3]に記載の液体燃料製造システムにおいて、前記液体燃料合成部が、少なくとも液体燃料およびアンモニアを透過させる液体燃料分離膜を有し、非透過側から透過側に前記液体燃料分離膜を透過したガスであって、前記液体燃料および前記アンモニアを含有する透過側ガスと、前記液体燃料分離膜を透過しなかったガスであって、前記転化反応の副生物である水蒸気、未反応の前記水素および前記酸化炭素、ならびに前記酸性副生物を含有する非透過側ガスと、を分離してよく、また、上記液体燃料製造システムは、前記透過側ガスを掃引する掃引ガスを、前記液体燃料合成部の前記透過側に供給する、掃引ガス供給部をさらに備えてよく、前記液体燃料合成部から流出した前記透過側ガスおよび前記掃引ガスが、前記混合部に供給されてよい。
[14]上記[13]に記載の液体燃料製造システムにおいて、前記透過側ガスおよび前記掃引ガスの混合ガスにおける前記アンモニア濃度が、10ppm以上であってよい。
[15]上記[2]に記載の液体燃料製造システムにおいて、前記液体燃料合成部が、前記転化反応を進行させる触媒が配置された第1のガス流路と前記第1のガス流路の温度を調節する温調ガスが流通する第2のガス流路とを有してよく、また、前記液体燃料製造システムは、アミン化合物を含有する温調ガスを、前記液体燃料合成部の前記第2のガス流路に供給する、温調ガス供給部をさらに備えてよく、前記液体燃料合成部から流出した前記温調ガスが、前記混合部に供給されてよい。
[16]上記[15]に記載の液体燃料製造システムにおいて、前記温調ガスが、酸化炭素および/または水素をさらに含有してよい。
[17]上記[15]に記載の液体燃料製造システムにおいて、前記温調ガスにおける前記アミン化合物濃度が、10ppm以上であってよい。
[18]本発明の別の局面によれば、少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる触媒を含む液体燃料合成部に、前記原料ガスを供給すること;前記転化反応を進行させるとともに、未反応の前記水素および前記酸化炭素ならびに酸性副生物を含有する残原料ガスを前記液体燃料合成部から回収すること;前記残原料ガスから前記酸性副生物を除去すること;および前記酸性副生物を除去後の前記残原料ガスを前記原料ガスの一部として前記液体燃料合成部に再供給すること;を含む、液体燃料の製造方法であって、前記残原料ガスから前記酸性副生物を除去することが、水蒸気の存在下で、アミン化合物と、前記残原料ガスと、を混合して前記酸性副生物を前記アミン化合物で中和すること、を含む、液体燃料の製造方法が提供される。
[19]上記[18]に記載の液体燃料の製造方法において、前記残原料ガスから前記酸性副生物を除去することが、前記液体燃料合成部に供給され、前記液体燃料合成部を流通した後の前記アミン化合物を含有する中和用原料ガスと、前記残原料ガスと、を混合することを含んでよい。
[20]上記[18]に記載の液体燃料の製造方法において、前記原料ガスが、窒素をさらに含有してよく、前記アミン化合物が、前記液体燃料合成部において前記水素と前記窒素とから生成されたアンモニアであってよい。
[21]上記[19]に記載の液体燃料の製造方法において、前記中和用原料ガスが、大気またはバイオガスから回収された二酸化炭素を含有するガスを用いて調製されてよい。
[22]上記[19]または[21]に記載の液体燃料の製造方法において、前記液体燃料合成部が、少なくとも水蒸気を透過させる水蒸気分離膜を有してよく、前記転化反応の副生物である水蒸気を前記水蒸気分離膜の非透過側から透過側に透過させ、前記アミン化合物を含有する掃引ガスで掃引し、前記液体燃料合成部から排ガスとして回収してよく、前記排ガスと前記残原料ガスとを混合して、前記残原料ガス中の前記酸性副生物を前記アミン化合物で中和してよい。
[23]上記[19]または[21]に記載の液体燃料の製造方法において、前記液体燃料合成部が、少なくとも液体燃料を透過させる液体燃料分離膜を有してよく、前記液体燃料を前記液体燃料分離膜の非透過側から透過側に透過させ、前記アミン化合物を含有する掃引ガスで掃引し、前記液体燃料合成部から生成物ガスとして回収するとともに、前記転化反応の副生物である水蒸気を回収し、前記生成物ガスを、前記液体燃料と前記掃引ガスとに分離してよく、前記掃引ガスと前記残原料ガスと前記水蒸気とを混合して、前記残原料ガス中の前記酸性副生物を前記アミン化合物で中和してよい。
[24]上記[19]または[21]に記載の液体燃料の製造方法において、前記転化反応の反応温度を調整するための前記アミン化合物を含有する温調ガスを前記液体燃料合成部に流通させ、前記液体燃料合成部を流通した後の前記温調ガスと前記残原料ガスとを混合して、前記残原料ガス中の前記酸性副生物を前記アミン化合物で中和してよい。
[25]上記[20]に記載の液体燃料の製造方法において、前記液体燃料合成部が、少なくとも水蒸気およびアンモニアを透過させる水蒸気分離膜を有してよく、前記転化反応の副生物である水蒸気および前記アンモニアを前記水蒸気分離膜の非透過側から透過側に透過させ、掃引ガスで掃引して、前記液体燃料合成部から排ガスとして回収してよく、前記排ガスと前記残原料ガスとを混合して、前記残原料ガス中の前記酸性副生物を前記アンモニアで中和してよい。
[26]上記[20]に記載の液体燃料の製造方法において、前記液体燃料合成部が、少なくとも液体燃料およびアンモニアを透過させる液体燃料分離膜を有してよく、前記液体燃料および前記アンモニアを前記液体燃料分離膜の非透過側から透過側に透過させ、掃引ガスで掃引して、前記液体燃料合成部から生成物ガスとして回収するとともに、前記転化反応の副生物である水蒸気を前記残原料ガスとともに回収してよく、前記生成物ガスから前記液体燃料を分離し、次いで、前記残原料ガスおよび前記水蒸気と混合して、前記残原料ガス中の前記酸性副生物を前記アンモニアで中和してよい。
[2]上記[1]に記載の液体燃料製造システムは、前記混合部において、前記アミン化合物を含有する中和用原料ガスと、前記残原料ガスと、を混合してもよい。
[3]上記[1]に記載の液体燃料製造システムにおいて、前記原料ガスが、窒素をさらに含有し、前記アミン化合物が、前記液体燃料合成部において前記水素と前記窒素とから生成されたアンモニアであってよい。
[4]上記[2]に記載の液体燃料製造システムは、大気またはバイオガスから二酸化炭素を回収する、ガス回収部をさらに備え、前記ガス回収部から供給される二酸化炭素を含有するガスが、前記中和用原料ガスの構成成分として用いられてよい。
[5]上記[2]または[4]に記載の液体燃料製造システムにおいて、前記液体燃料合成部が、少なくとも水蒸気を透過させる水蒸気分離膜を有し、非透過側から透過側に前記水蒸気分離膜を透過したガスであって、前記転化反応の副生物である水蒸気を含有する透過側ガスと、前記水蒸気分離膜を透過しなかったガスであって、前記液体燃料、未反応の前記水素および前記酸化炭素、ならびに前記酸性副生物を含有する非透過側ガスと、を分離してよく、また、上記液体燃料製造システムは、前記透過側ガスを掃引するガスであって、アミン化合物を含有する掃引ガスを、前記液体燃料合成部の前記透過側に供給する、掃引ガス供給部をさらに備えてよく、前記液体燃料合成部から流出した前記透過側ガスおよび前記掃引ガスが、前記混合部に供給されてよい。
[6]上記[5]に記載の液体燃料製造システムにおいて、前記掃引ガスが、酸化炭素および/または水素をさらに含有してよい。
[7]上記[5]または[6]に記載の液体燃料製造システムにおいて、前記掃引ガスにおける前記アミン化合物濃度が、10ppm以上であってよい。
[8]上記[3]に記載の液体燃料製造システムにおいて、前記液体燃料合成部が、少なくとも水蒸気およびアンモニアを透過させる水蒸気分離膜を有し、非透過側から透過側に前記水蒸気分離膜を透過したガスであって、前記転化反応の副生物である水蒸気および前記アンモニアを含有する透過側ガスと、前記水蒸気分離膜を透過しなかったガスであって、前記液体燃料、未反応の前記水素および前記酸化炭素、ならびに前記酸性副生物を含有する非透過側ガスと、を分離してよく、また、上記液体燃料製造システムは、前記透過側ガスを掃引する掃引ガスを、前記液体燃料合成部の前記透過側に供給する、掃引ガス供給部をさらに備えてよく、前記液体燃料合成部から流出した前記透過側ガスおよび前記掃引ガスが、前記混合部に供給されてよい。
[9]上記[8]に記載の液体燃料製造システムにおいて、前記透過側ガスおよび前記掃引ガスの混合ガスにおける前記アンモニア濃度が、10ppm以上であってよい。
[10]上記[2]または[4]に記載の液体燃料製造システムにおいて、
前記液体燃料合成部が、少なくとも液体燃料を透過させる液体燃料分離膜を有し、非透過側から透過側に前記液体燃料分離膜を透過したガスであって、前記液体燃料を含有する透過側ガスと、前記液体燃料分離膜を透過しなかったガスであって、前記転化反応の副生物である水蒸気、未反応の前記水素および前記酸化炭素、ならびに前記酸性副生物を含有する非透過側ガスと、を分離してよく、また、上記液体燃料製造システムは、前記透過側ガスを掃引するガスであって、アミン化合物を含有する掃引ガスを、前記液体燃料合成部の前記透過側に供給する、掃引ガス供給部をさらに備えてよく、前記液体燃料合成部から流出した前記掃引ガスが、前記混合部に供給されてよい。
[11]上記[10]に記載の液体燃料製造システムにおいて、前記掃引ガスが、酸化炭素および/または水素をさらに含有してよい。
[12]上記[10]または[11]に記載の液体燃料製造システムにおいて、前記掃引ガスにおける前記アミン化合物濃度が、10ppm以上であってよい。
[13]上記[3]に記載の液体燃料製造システムにおいて、前記液体燃料合成部が、少なくとも液体燃料およびアンモニアを透過させる液体燃料分離膜を有し、非透過側から透過側に前記液体燃料分離膜を透過したガスであって、前記液体燃料および前記アンモニアを含有する透過側ガスと、前記液体燃料分離膜を透過しなかったガスであって、前記転化反応の副生物である水蒸気、未反応の前記水素および前記酸化炭素、ならびに前記酸性副生物を含有する非透過側ガスと、を分離してよく、また、上記液体燃料製造システムは、前記透過側ガスを掃引する掃引ガスを、前記液体燃料合成部の前記透過側に供給する、掃引ガス供給部をさらに備えてよく、前記液体燃料合成部から流出した前記透過側ガスおよび前記掃引ガスが、前記混合部に供給されてよい。
[14]上記[13]に記載の液体燃料製造システムにおいて、前記透過側ガスおよび前記掃引ガスの混合ガスにおける前記アンモニア濃度が、10ppm以上であってよい。
[15]上記[2]に記載の液体燃料製造システムにおいて、前記液体燃料合成部が、前記転化反応を進行させる触媒が配置された第1のガス流路と前記第1のガス流路の温度を調節する温調ガスが流通する第2のガス流路とを有してよく、また、前記液体燃料製造システムは、アミン化合物を含有する温調ガスを、前記液体燃料合成部の前記第2のガス流路に供給する、温調ガス供給部をさらに備えてよく、前記液体燃料合成部から流出した前記温調ガスが、前記混合部に供給されてよい。
[16]上記[15]に記載の液体燃料製造システムにおいて、前記温調ガスが、酸化炭素および/または水素をさらに含有してよい。
[17]上記[15]に記載の液体燃料製造システムにおいて、前記温調ガスにおける前記アミン化合物濃度が、10ppm以上であってよい。
[18]本発明の別の局面によれば、少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる触媒を含む液体燃料合成部に、前記原料ガスを供給すること;前記転化反応を進行させるとともに、未反応の前記水素および前記酸化炭素ならびに酸性副生物を含有する残原料ガスを前記液体燃料合成部から回収すること;前記残原料ガスから前記酸性副生物を除去すること;および前記酸性副生物を除去後の前記残原料ガスを前記原料ガスの一部として前記液体燃料合成部に再供給すること;を含む、液体燃料の製造方法であって、前記残原料ガスから前記酸性副生物を除去することが、水蒸気の存在下で、アミン化合物と、前記残原料ガスと、を混合して前記酸性副生物を前記アミン化合物で中和すること、を含む、液体燃料の製造方法が提供される。
[19]上記[18]に記載の液体燃料の製造方法において、前記残原料ガスから前記酸性副生物を除去することが、前記液体燃料合成部に供給され、前記液体燃料合成部を流通した後の前記アミン化合物を含有する中和用原料ガスと、前記残原料ガスと、を混合することを含んでよい。
[20]上記[18]に記載の液体燃料の製造方法において、前記原料ガスが、窒素をさらに含有してよく、前記アミン化合物が、前記液体燃料合成部において前記水素と前記窒素とから生成されたアンモニアであってよい。
[21]上記[19]に記載の液体燃料の製造方法において、前記中和用原料ガスが、大気またはバイオガスから回収された二酸化炭素を含有するガスを用いて調製されてよい。
[22]上記[19]または[21]に記載の液体燃料の製造方法において、前記液体燃料合成部が、少なくとも水蒸気を透過させる水蒸気分離膜を有してよく、前記転化反応の副生物である水蒸気を前記水蒸気分離膜の非透過側から透過側に透過させ、前記アミン化合物を含有する掃引ガスで掃引し、前記液体燃料合成部から排ガスとして回収してよく、前記排ガスと前記残原料ガスとを混合して、前記残原料ガス中の前記酸性副生物を前記アミン化合物で中和してよい。
[23]上記[19]または[21]に記載の液体燃料の製造方法において、前記液体燃料合成部が、少なくとも液体燃料を透過させる液体燃料分離膜を有してよく、前記液体燃料を前記液体燃料分離膜の非透過側から透過側に透過させ、前記アミン化合物を含有する掃引ガスで掃引し、前記液体燃料合成部から生成物ガスとして回収するとともに、前記転化反応の副生物である水蒸気を回収し、前記生成物ガスを、前記液体燃料と前記掃引ガスとに分離してよく、前記掃引ガスと前記残原料ガスと前記水蒸気とを混合して、前記残原料ガス中の前記酸性副生物を前記アミン化合物で中和してよい。
[24]上記[19]または[21]に記載の液体燃料の製造方法において、前記転化反応の反応温度を調整するための前記アミン化合物を含有する温調ガスを前記液体燃料合成部に流通させ、前記液体燃料合成部を流通した後の前記温調ガスと前記残原料ガスとを混合して、前記残原料ガス中の前記酸性副生物を前記アミン化合物で中和してよい。
[25]上記[20]に記載の液体燃料の製造方法において、前記液体燃料合成部が、少なくとも水蒸気およびアンモニアを透過させる水蒸気分離膜を有してよく、前記転化反応の副生物である水蒸気および前記アンモニアを前記水蒸気分離膜の非透過側から透過側に透過させ、掃引ガスで掃引して、前記液体燃料合成部から排ガスとして回収してよく、前記排ガスと前記残原料ガスとを混合して、前記残原料ガス中の前記酸性副生物を前記アンモニアで中和してよい。
[26]上記[20]に記載の液体燃料の製造方法において、前記液体燃料合成部が、少なくとも液体燃料およびアンモニアを透過させる液体燃料分離膜を有してよく、前記液体燃料および前記アンモニアを前記液体燃料分離膜の非透過側から透過側に透過させ、掃引ガスで掃引して、前記液体燃料合成部から生成物ガスとして回収するとともに、前記転化反応の副生物である水蒸気を前記残原料ガスとともに回収してよく、前記生成物ガスから前記液体燃料を分離し、次いで、前記残原料ガスおよび前記水蒸気と混合して、前記残原料ガス中の前記酸性副生物を前記アンモニアで中和してよい。
本発明の実施形態による液体燃料製造システムによれば、転化反応で生じる酸性副生物を原料ガスの循環過程で中和により除去することで、上記反応収率の悪化を抑制することができる。また、酸性副生物に起因して液体燃料製造システムに腐食が生じ得るところ、本発明の実施形態による液体燃料の製造方法によれば、このような腐食を防止することができる。
以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。また、図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚み、形状などについて模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。
A.液体燃料製造システム
本発明の実施形態による液体燃料製造システムは、
少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる、液体燃料合成部と;
上記液体燃料合成部に上記原料ガスを供給する、原料ガス供給部と;
上記液体燃料合成部から未反応の上記水素および上記酸化炭素と上記転化反応の酸性副生物とを含有する残原料ガスを上記原料ガス供給部に再供給する、原料ガス循環部と;
を備え、
上記原料ガス供給部が、
水蒸気の存在下で、アミン化合物と、上記残原料ガスと、を混合する、混合部と、
上記アミン化合物と上記酸性副生物との中和物を上記水蒸気の凝縮水とともに除去する水分除去部と、
を有する。
本発明の実施形態による液体燃料製造システムによれば、水蒸気の存在下で、残原料ガスに含有される酸性副生物をアミン化合物で中和し、生じた中和物を水蒸気(中和物除去用水蒸気とも称する)の凝縮水とともに除去することができる。
1つの実施形態において、液体燃料合成部は、上記液体燃料と上記転化反応の副生物である水蒸気(副生水蒸気とも称する)とを分離する分離膜を有する。
本発明の実施形態による液体燃料製造システムは、
少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる、液体燃料合成部と;
上記液体燃料合成部に上記原料ガスを供給する、原料ガス供給部と;
上記液体燃料合成部から未反応の上記水素および上記酸化炭素と上記転化反応の酸性副生物とを含有する残原料ガスを上記原料ガス供給部に再供給する、原料ガス循環部と;
を備え、
上記原料ガス供給部が、
水蒸気の存在下で、アミン化合物と、上記残原料ガスと、を混合する、混合部と、
上記アミン化合物と上記酸性副生物との中和物を上記水蒸気の凝縮水とともに除去する水分除去部と、
を有する。
本発明の実施形態による液体燃料製造システムによれば、水蒸気の存在下で、残原料ガスに含有される酸性副生物をアミン化合物で中和し、生じた中和物を水蒸気(中和物除去用水蒸気とも称する)の凝縮水とともに除去することができる。
1つの実施形態において、液体燃料合成部は、上記液体燃料と上記転化反応の副生物である水蒸気(副生水蒸気とも称する)とを分離する分離膜を有する。
図1は本発明の1つの実施形態に係る液体燃料製造システムの概略構成図である。
図1に示す液体燃料製造システム1Aは、少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる、液体燃料合成部10と;液体燃料合成部10に原料ガスを供給する、原料ガス供給部20と;液体燃料合成部10から未反応の水素および酸化炭素と上記転化反応の酸性副生物とを含有する残原料ガスを原料ガス供給部20に再供給する、原料ガス循環部30と、を備える。
液体燃料合成部10は、水蒸気を透過させる水蒸気分離膜14を有し、非透過側から透過側に水蒸気分離膜14を透過したガスであって、上記転化反応の副生物である水蒸気を含有する透過側ガスと、水蒸気分離膜14を透過しなかったガスであって、液体燃料、未反応の水素および酸化炭素、ならびに酸性副生物を含有する非透過側ガスと、を分離する。
液体燃料製造システム1Aは、透過側ガスを掃引するガスを液体燃料合成部10に供給する、掃引ガス供給部40をさらに備える。
原料ガス供給部20は、水蒸気の存在下で、アミン化合物と、残原料ガスと、を混合する、混合部24と、アミン化合物と酸性副生物との中和物を水蒸気の凝縮水とともに除去する水分除去部26と、を有する。
液体燃料製造システム1Aによれば、掃引ガスとして、アミン化合物を含有するガス(中和用原料ガス)を用いることにより、液体燃料合成部10から流出する掃引ガス(中和用原料ガス)と、透過側ガスに含有される水蒸気と、非透過側ガスに含有される残原料ガスとを混合し、これにより、水蒸気の存在下で、残原料ガス中の酸性副生物をアミン化合物で中和することができる。
図1に示す液体燃料製造システム1Aは、少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる、液体燃料合成部10と;液体燃料合成部10に原料ガスを供給する、原料ガス供給部20と;液体燃料合成部10から未反応の水素および酸化炭素と上記転化反応の酸性副生物とを含有する残原料ガスを原料ガス供給部20に再供給する、原料ガス循環部30と、を備える。
液体燃料合成部10は、水蒸気を透過させる水蒸気分離膜14を有し、非透過側から透過側に水蒸気分離膜14を透過したガスであって、上記転化反応の副生物である水蒸気を含有する透過側ガスと、水蒸気分離膜14を透過しなかったガスであって、液体燃料、未反応の水素および酸化炭素、ならびに酸性副生物を含有する非透過側ガスと、を分離する。
液体燃料製造システム1Aは、透過側ガスを掃引するガスを液体燃料合成部10に供給する、掃引ガス供給部40をさらに備える。
原料ガス供給部20は、水蒸気の存在下で、アミン化合物と、残原料ガスと、を混合する、混合部24と、アミン化合物と酸性副生物との中和物を水蒸気の凝縮水とともに除去する水分除去部26と、を有する。
液体燃料製造システム1Aによれば、掃引ガスとして、アミン化合物を含有するガス(中和用原料ガス)を用いることにより、液体燃料合成部10から流出する掃引ガス(中和用原料ガス)と、透過側ガスに含有される水蒸気と、非透過側ガスに含有される残原料ガスとを混合し、これにより、水蒸気の存在下で、残原料ガス中の酸性副生物をアミン化合物で中和することができる。
本明細書中、液体燃料は、常温常圧で液体状態の燃料、または、常温加圧状態で液化可能な燃料である。常温常圧で液体状態の燃料としては、例えばメタノール、エタノール、CnH2(m-2n)(mは90未満の整数、nは30未満の整数)で表される液体燃料、およびこれらの混合物が挙げられる。常温加圧状態で液化可能な燃料としては、例えばプロパン、ブタン、およびこれらの混合物が挙げられる。
上記転化反応の一例として、一酸化炭素、二酸化炭素、および水素を含有する原料ガスを触媒存在下で接触水素化することでメタノールを合成する際に起こり得る反応の反応式は次の通りである。
CO+2H2 ⇔ CH3OH (1)
CO2+3H2 ⇔ CH3OH+H2O (2)
CO2+H2 ⇔ CO+H2O (3)
CO2+3H2 ⇔ CH3OH+H2O (2)
CO2+H2 ⇔ CO+H2O (3)
上記反応は平衡反応であり、転化率および反応速度の両方を高めるには高温高圧下で反応させることが好ましい。反応温度は、例えば180℃以上であり、好ましくは200℃以上350℃以下であり、より好ましくは200℃以上300℃以下である。反応圧力は、例えば1MPa(G)以上であり、好ましくは2.0MPa(G)以上6.0MPa(G)以下であり、より好ましくは2.5MPa(G)以上4.0MPa(G)以下である。液体燃料は、合成された時点では気体状態であり、少なくとも液体燃料合成部から流出するまでは気体状態のまま維持される。
A-1.液体燃料合成部
液体燃料合成部10は、原料ガスを液体燃料へ転化させるための所謂メンブレンリアクタである。液体燃料合成部10の形状は特に限られないが、例えばモノリス形状、平板状、管状、円筒状、円柱状、多角柱状などとすることができる。モノリス形状とは、長手方向に貫通した複数のセルを有する形状を意味し、ハニカム形状を含む概念である。
液体燃料合成部10は、原料ガスを液体燃料へ転化させるための所謂メンブレンリアクタである。液体燃料合成部10の形状は特に限られないが、例えばモノリス形状、平板状、管状、円筒状、円柱状、多角柱状などとすることができる。モノリス形状とは、長手方向に貫通した複数のセルを有する形状を意味し、ハニカム形状を含む概念である。
液体燃料合成部10は、触媒12と、水蒸気分離膜14と、非透過側空間10Aと、透過側空間10Bと、を有する。図示例において、水蒸気分離膜14は、多孔質支持体16によって支持されている。液体燃料合成部10には、非透過側空間10Aを介して連通する第1供給口s1および第1排出口d1と、透過側空間10Bを介して連通する第2供給口s2および第2排出口d2と、が設けられている。液体燃料合成部10は、所望の液体燃料の合成条件に適した耐熱性および耐圧性を有することが好ましい。
触媒12は、原料ガスから液体燃料への転化反応を進行させる。触媒は、水蒸気分離膜14の非透過側である非透過側空間10Aに配置される。触媒は、非透過側空間10Aに充填されていることが好ましいが、水蒸気分離膜14の表面に層状または島状に配置されていてもよい。図示例のように触媒が粒子形状である場合、触媒粒子の粒子径(直径)は、例えば0.5mm以上10mm以下とすることができる。触媒粒子は、触媒のみで構成されていてもよく、触媒が担体粒子に担持された構成であってもよい。担体粒子は、好ましくは多孔性粒子である。
触媒としては、所望の液体燃料への転化反応に適した触媒を任意に用いることができる。具体的には、金属触媒(銅、パラジウムなど)、酸化物触媒(酸化亜鉛、ジルコニア、酸化ガリウムなど)、および、これらを複合化した触媒(銅-酸化亜鉛、銅-酸化亜鉛-アルミナ、銅-酸化亜鉛-酸化クロム-アルミナ、銅-コバルト-チタニア、およびこれらにパラジウムを修飾した触媒など)を用いることができる。
水蒸気分離膜14は、原料ガスから液体燃料への転化反応の副生物である水蒸気を透過させる。これにより、平衡シフト効果を利用して上記式(2)の反応平衡を生成物側にシフトさせることができる。
水の分子径(0.26nm)は、水素の分子径(0.296nm)に近い。そのため、転化反応の副生物である水蒸気だけでなく、原料ガスに含まれる水素の一部等が水蒸気分離膜14を透過し得る。
水蒸気分離膜14は、100nmol/(s・Pa・m2)以上の水蒸気透過係数を有することが好ましい。水蒸気透過係数は、既知の方法(Ind.Eng.Chem.Res.,40,163-175(2001)参照)で求めることができる。
水蒸気分離膜14は、100以上の分離係数を有することが好ましい。分離係数が大きいほど、水蒸気を透過しやすく、かつ水蒸気以外の成分(水素、酸化炭素、酸素、および液体燃料など)を透過させにくい。分離係数は、既知の方法(「Separation and Purification Technology 239 (2020) 116533」のFig.1参照)で求めることができる。
水蒸気分離膜14としては、無機膜を用いることができる。無機膜は、耐熱性、耐圧性、耐水蒸気性を有するため好ましい。無機膜としては、ゼオライト膜、シリカ膜、アルミナ膜、これらの複合膜などが挙げられる。例えば、シリコン元素(Si)とアルミニウム元素(Al)とのモル比(Si/Al)が1.0以上3.0以下であるLTA型のゼオライト膜は、水蒸気透過性に優れているため好適である。
水蒸気分離膜14として用いられるゼオライト膜は、例えば、特開2004-66188号公報に記載の製造方法によって得ることができる。また、水蒸気分離膜14として用いられるシリカ膜は、例えば、国際公開第2008/050812号パンフレットに記載の製造方法によって得ることができる。
多孔質支持体16は、多孔質材料によって構成される。多孔質材料としては、セラミック材料、金属材料、樹脂材料、およびこれらの複合部材などを用いることができ、特にセラミック材料が好適である。セラミック材料の骨材としては、アルミナ(Al2O3)、チタニア(TiO2)、ムライト(Al2O3・SiO2)、セルベン、およびコージェライト(Mg2Al4Si5O18)、およびこれらのうち2以上を含む複合材などを用いることができ、入手容易性、坏土安定性、および耐食性を考慮するとアルミナが好適である。セラミック材料の無機結合材としては、チタニア、ムライト、易焼結性アルミナ、シリカ、ガラスフリット、粘土鉱物、易焼結性コージェライトのうち少なくとも一つを用いることができる。セラミック材料は、無機結合材を含んでいなくてもよい。
多孔質支持体の平均細孔径は、5μm以上25μm以下とすることができる。多孔質支持体の平均細孔径は、水銀圧入法によって測定することができる。多孔質支持体の気孔率は、25%以上50%以下とすることができる。多孔質支持体を構成する多孔質材料の平均粒径は、1μm以上100μm以下とすることができる。本実施形態において、平均粒径とは、SEM(Scanning Electron Microscope)を用いた断面微構造観察によって測定される30個の測定対象粒子(無作為選択)の最大直径の算術平均値である。
非透過側空間10Aは、水蒸気分離膜14の非透過側の空間である。非透過側空間10Aには、原料ガス供給部20から供給された原料ガスが第1供給口s1を介して流入する。触媒12において原料ガスから液体燃料が合成され、生成された液体燃料は、未反応の原料ガス(残原料ガス)とともに非透過側ガスとして、第1排出口d1を介して非透過側空間10Aから原料ガス循環部30に流出する。非透過側ガスは、液体燃料および残原料ガスを含有する。残原料ガスは、未反応の水素および酸化炭素に加えて酸性副生物をさらに含有する。酸性副生物は、上記転化反応の副生物中、いわゆるブレンステッド酸として作用するものを意味する。酸性副生物としては、ギ酸、ギ酸メチルなどが挙げられる。
透過側空間10Bは、水蒸気分離膜14の透過側の空間である。透過側空間10Bには、上記転化反応で生成した水蒸気および原料ガス中の水素等が水蒸気分離膜14を透過して流入する。
上記構成の液体燃料合成部10によれば、原料ガスの供給によって上記転化反応を進行させるとともに、非透過側空間10Aから透過側空間10Bに水蒸気分離膜を透過したガスであって、上記転化反応の副生物である水蒸気を含有する透過側ガスと、透過しなかったガスであって、液体燃料、未反応の水素および酸化炭素、ならびに酸性副生物を含有する非透過側ガスと、を分離することができる。
また、透過側空間10Bには、掃引ガス供給部40から第2供給口s2を介して掃引ガスが供給される。透過側ガスおよび掃引ガスは、排ガスとして、第2排出口d2を介して透過側空間10Bから原料ガス供給部20に流出する。
A-2.掃引ガス供給部
掃引ガス供給部40は、透過側空間10Bの上流側に配置される。掃引ガス供給部40は、掃引ガス貯留部42と、掃引ガス貯留部42と液体燃料合成部10の第2流入口s2とを接続する掃引ガス供給配管44と、掃引ガス供給配管44に介在する加熱部46と、を有する。
掃引ガス供給部40は、透過側空間10Bの上流側に配置される。掃引ガス供給部40は、掃引ガス貯留部42と、掃引ガス貯留部42と液体燃料合成部10の第2流入口s2とを接続する掃引ガス供給配管44と、掃引ガス供給配管44に介在する加熱部46と、を有する。
掃引ガス貯留部42は、掃引ガスを貯留する。掃引ガスは、加熱部46で所望の温度(例えば、150℃以上350℃以下)に加熱された後、第2流入口s2から液体燃料合成部10に供給される。加熱部46は、掃引ガスを加熱できるものであればよく特に制限されない。
掃引ガスは、アミン化合物を含有し、好ましくは水素および酸化炭素の一方または両方をさらに含有する。原料ガス供給部に関して後述するとおり、本実施形態において、原料ガスは、掃引ガスを含有する排ガスと残原料ガスとの混合ガスを用いて調製される。ここで、掃引ガスがアミン化合物を含有することにより、残原料ガス中の酸性副生物を当該アミン化合物で中和除去することができる。
アミン化合物としては、本発明の効果が得られる限りにおいて、任意の適切なアミン化合物を用いることができる。アンモニア以外のアミン化合物が有するアミノ基は、一級アミノ基、二級アミノ基、三級アミノ基、またはこれらの2種以上の組み合わせであってよい。
1つの実施形態において、沸点が100℃以上500℃以下、好ましくは170℃以上350℃以下であるアミン化合物が用いられる。このようなアミン化合物は、掃引ガス中で気体状態を良好に維持することができる。
アミン化合物の具体例としては、アンモニア、ポリエチレンイミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、テトラエチレンアミンペンタミン、メチルジエタノールアミン、ジブチルアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ヘキサエチレンジアミン、ベンジルアミン、N-(3-アミノプロピル)ジエタノールアミン、アミノプロピルトリメトキシシラン、ポリビニルアミン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピル-トリメトキシシランなどのアミノシランカップリング剤などが挙げられる。アミン化合物は、単独でまたは組み合わせて使用できる。
掃引ガスにおけるアミン化合物濃度は、本発明の効果が得られる限りにおいて制限されない。掃引ガスにおけるアミン化合物濃度は、酸性副生成物の中和の観点から、例えば10ppm以上である。また、アミン化合物濃度の上限は特に制限されないが、触媒によってはアルカリによる阻害を受けるため、触媒作用の低下が防止される濃度に適宜調整しても良い。上記掃引ガスにおけるアミン化合物濃度は、液体燃料合成部の第2供給口s2における掃引ガスのアミン化合物濃度である。
1つの実施形態において、掃引ガスは、水素または酸化炭素を主成分として含有し、好ましくは水素を主成分として含有する。なお、水素または酸化炭素を主成分として含有するとは、掃引ガスにおいて、水素または酸化炭素の濃度が最も高いことを意味する。掃引ガスにおける水素濃度は、例えば約50体積%以上90体積%以下、好ましくは65体積%以上80体積%以下である。酸化炭素濃度は、例えば約10体積%以上50体積%未満、好ましくは20体積%以上35体積%以下である。掃引ガスが実質的に水素と酸化炭素とアミン化合物とによって構成される場合、排ガスを原料ガス由来の水素と掃引ガスとに分離することなく、原料ガスの一部として好適に再利用することができる。
A-3.原料ガス循環部
原料ガス循環部30は、非透過側ガス回収配管31と、第1凝縮器32と、第1ドレントラップ33と、液体燃料回収配管34と、原料ガス循環配管35と、を有する。非透過側ガス回収配管31は、一端が液体燃料合成部10の第1流出口d1に接続され、他端が第1凝縮器32に接続されている。原料ガス循環配管35は、一端が第1ドレントラップ33に接続され、他端が原料ガス供給部20(より具体的には、混合部24)に接続されている。
原料ガス循環部30は、非透過側ガス回収配管31と、第1凝縮器32と、第1ドレントラップ33と、液体燃料回収配管34と、原料ガス循環配管35と、を有する。非透過側ガス回収配管31は、一端が液体燃料合成部10の第1流出口d1に接続され、他端が第1凝縮器32に接続されている。原料ガス循環配管35は、一端が第1ドレントラップ33に接続され、他端が原料ガス供給部20(より具体的には、混合部24)に接続されている。
非透過側ガス回収配管31を介して液体燃料合成部10から回収された非透過側ガスは、第1凝縮器32に供給され、これにより、液体燃料が凝縮(液化)される。液化した液体燃料は、第1ドレントラップ33によって残原料ガスから分離され、液体燃料回収配管34から回収される。
液体燃料が分離された後の非透過側ガス(換言すると、残原料ガス)は、未反応の水素および酸化炭素に加えて微量の酸性副生物を含有する。残原料ガスは、原料ガス循環配管35を介して原料ガス供給部20(より具体的には、混合部24)に供給される。
原料ガス循環配管35には、図示例のように、パージ弁36を設けてもよい。パージ弁36は、原料ガス循環配管35の任意の位置で1か所以上設置され、原料ガス循環配管35を流通する残原料ガスの一部を外部へと排出する。
A-4.原料ガス供給部
原料ガス供給部20は、中和用原料ガス供給配管22と、混合部24と、水分除去部26と、増圧部28と、を有する。水分除去部26は、第2凝縮器26aと、第2ドレントラップ26bと、水分回収配管26cとを有する。中和用原料ガス供給配管22は、一端が液体燃料合成部10の第2流出口d2に接続され、他端が水分除去部26の第2凝縮器26aに接続されている。また、中和用原料ガス供給配管22には、水分除去部26の上流で原料ガス循環配管35が合流するように接続しており、当該接続箇所が混合部24とされている。なお、混合部は中和用原料ガスと残原料ガスとを混合可能な構成であればよく、例えば、水分除去部26の上流にタンク(混合部)を設け、中和用原料ガス供給配管22と原料ガス循環配管35とを独立して当該タンクに接続し、タンク内部で中和用原料ガスと残原料ガスとを混合してもよい。
原料ガス供給部20は、中和用原料ガス供給配管22と、混合部24と、水分除去部26と、増圧部28と、を有する。水分除去部26は、第2凝縮器26aと、第2ドレントラップ26bと、水分回収配管26cとを有する。中和用原料ガス供給配管22は、一端が液体燃料合成部10の第2流出口d2に接続され、他端が水分除去部26の第2凝縮器26aに接続されている。また、中和用原料ガス供給配管22には、水分除去部26の上流で原料ガス循環配管35が合流するように接続しており、当該接続箇所が混合部24とされている。なお、混合部は中和用原料ガスと残原料ガスとを混合可能な構成であればよく、例えば、水分除去部26の上流にタンク(混合部)を設け、中和用原料ガス供給配管22と原料ガス循環配管35とを独立して当該タンクに接続し、タンク内部で中和用原料ガスと残原料ガスとを混合してもよい。
上記構成によれば、中和用原料ガス供給配管22を介して液体燃料合成部10から回収された排ガス(透過側ガスおよび掃引ガス)が、水分除去部26の上流で残原料ガスと混合される。これにより、残原料ガスに含有される酸性副生物が排ガスに含有されるアミン化合物(掃引ガス由来のアミン化合物)によって中和される。また、排ガスと残原料ガスとの混合ガスが第2凝縮器26aに供給されると、排ガスに含有される水蒸気(透過側ガス由来の水蒸気)が凝縮されるとともに、上記中和により生じた中和物が凝縮水に移行(溶解)する。中和とともに水が生成し、凝縮水の量が増加する結果として、中和物の溶解量が増大することから、中和物は効率的に凝縮水に移行することができる。中和物を含有する凝縮水は、第2ドレントラップ26bによって残りのガス成分から分離され、水分回収配管26cから回収(除去)される。排ガスにおけるアミン化合物濃度(液体燃料合成部の第2排出口d2におけるアミン化合物濃度)は、例えば10ppm以上である。なお、排ガスにおけるアミン化合物濃度の上限値は、特に制限されないが、触媒によってはアルカリによる阻害を受けるため、触媒作用の低下が防止される濃度に適宜調整することができる。
凝縮水および中和物を分離後のガス成分は、増圧部28において昇圧および昇温された後、原料ガスとして液体燃料合成部10の非透過側空間10Aに供給される。当該原料ガスは、残原料ガスを循環利用するものであるが、循環回数の増加に伴う酸性副生物の蓄積が抑制されている。また、図示しないが、必要に応じて、凝縮水および中和物を分離後のガス成分に、水素および/または酸化炭素を混合して原料ガスを所望の組成に調製することができる。
上述のとおり、原料ガスは、少なくとも水素および酸化炭素を含有する。原料ガスにおける酸化炭素濃度は、例えば10体積%以上40体積%以下、好ましくは20体積%以上30体積%以下である。原料ガスにおける水素濃度は、例えば60体積%以上90体積%以下、好ましくは70体積%以上80体積%以下である。
A-5.変形例1
図2は、本発明の別の実施形態に係る液体燃料製造システムの概略構成図である。
図2に示す液体燃料製造システム1Bは、液体燃料合成部10と、原料ガス供給部20と、原料ガス循環部30と、掃引ガス供給部40と、を備えている。液体燃料製造システム1Bは、掃引ガス供給部40が、二酸化炭素回収部41と、二酸化炭素供給配管43と、水素生成部45と、水素供給配管47と、掃引ガス供給配管44と、加熱部46と、を有する点において、図1に示す液体燃料製造システム1Aと異なっている。
図2は、本発明の別の実施形態に係る液体燃料製造システムの概略構成図である。
図2に示す液体燃料製造システム1Bは、液体燃料合成部10と、原料ガス供給部20と、原料ガス循環部30と、掃引ガス供給部40と、を備えている。液体燃料製造システム1Bは、掃引ガス供給部40が、二酸化炭素回収部41と、二酸化炭素供給配管43と、水素生成部45と、水素供給配管47と、掃引ガス供給配管44と、加熱部46と、を有する点において、図1に示す液体燃料製造システム1Aと異なっている。
例えば、二酸化炭素回収部41は、二酸化炭素含有ガスとの接触によって二酸化炭素を吸着し、加熱、減圧などによって二酸化炭素を脱離する二酸化炭素吸着材を含み、当該二酸化炭素吸着材を用いて、二酸化炭素含有ガスよりも高い濃度で二酸化炭素を含有するガス(二酸化炭素濃縮ガス)を回収し得る。より具体的には、二酸化炭素回収部41は、二酸化炭素吸着材に二酸化炭素含有ガスを接触させて二酸化炭素を吸着させ、次いで、二酸化炭素吸着材を加熱および/または減圧することにより二酸化炭素を脱離させ、脱離した二酸化炭素をポンプなどで吸引することにより、二酸化炭素濃縮ガスを回収し得る。1つの実施形態において、二酸化炭素回収部41は、直接空気回収(DAC)技術を利用した二酸化炭素回収設備である。二酸化炭素吸着材としては、代表的にはアミン化合物が用いられる。アミン化合物の具体例については、掃引ガスに関して上述したとおりである。二酸化炭素濃縮ガスの回収時における二酸化炭素吸着材の混入に起因して、二酸化炭素濃縮ガスは微量の二酸化炭素吸着材、すなわち、アミン化合物を含有し得る。また、二酸化炭素濃縮ガスは、大気由来の窒素を含有し得る。
また例えば、二酸化炭素回収部41は、分離膜を用いてバイオガスから二酸化炭素を回収する二酸化炭素回収設備であり得る。バイオガスは、生ごみ、紙ごみ、家畜ふん尿などのバイオマスを原料として、発酵(メタン発酵)により、発生するガスである。バイオガスの主成分は、メタンおよび二酸化炭素であり、微量の窒素等をさらに含有し得る。
また例えば、二酸化炭素回収部41は、分離膜を用いてバイオガスから二酸化炭素を回収する二酸化炭素回収設備であり得る。バイオガスは、生ごみ、紙ごみ、家畜ふん尿などのバイオマスを原料として、発酵(メタン発酵)により、発生するガスである。バイオガスの主成分は、メタンおよび二酸化炭素であり、微量の窒素等をさらに含有し得る。
水素生成部45は、例えば、水電解技術を利用した水素製造設備である。
二酸化炭素供給配管43は、二酸化炭素回収部41と加熱部46とを接続し、水素供給配管47は、水素生成部45と二酸化炭素供給配管43とを接続している。これにより、二酸化炭素回収部41から供給される二酸化炭素濃縮ガスと水素生成部45から供給される水素とが混合されて掃引ガスが生成される。掃引ガスは、加熱部46で加熱された後に、掃引ガス供給配管44を介して液体燃料合成部10に供給される。すなわち、二酸化炭素濃縮ガスが掃引ガス(中和用原料ガス)の構成成分として原料ガス供給部10に供給される。ただし、掃引ガスに含有される二酸化炭素は、全量が二酸化炭素濃縮ガス(例えば、DACにより大気から回収された二酸化炭素濃縮ガスまたは分離膜によりバイオガスから回収された二酸化炭素濃縮ガス)に由来してもよく、一部のみが当該二酸化炭素濃縮ガスに由来してもよい。上記のとおり、二酸化炭素濃縮ガスは微量のアミン化合物を含有し得ることから、二酸化炭素濃縮ガスと水素との混合ガスは、アミン化合物を別途添加することなく、あるいは、極少量のアミン化合物を添加するのみで、掃引ガスとして用いることができる。
A-6.変形例2
水蒸気と液体燃料とを分離する分離膜は、水蒸気を透過する水蒸気分離膜に限定されず、少なくとも液体燃料を透過する液体燃料分離膜を用いることができる。なお、本発明において、水蒸気と液体燃料とを分離する分離膜としては、一方に対して他方よりも高い選択透過性を有するものであり、本発明の効果が得られる限りにおいて、両者を完全に分離するものでなくてもよい。例えば、液体燃料分離膜は、液体燃料を水蒸気より高い選択性で透過するものであり、両者を完全に分離するものではない。
図3は、本発明の別の実施形態に係る液体燃料製造システムの概略構成図である。
図3に示す液体燃料製造システム1Cは、少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる、液体燃料合成部10と;液体燃料合成部10に原料ガスを供給する、原料ガス供給部20と;液体燃料合成部10から未反応の水素および酸化炭素と上記転化反応の酸性副生物とを含有する残原料ガスを原料ガス供給部20に再供給する、原料ガス循環部30と、を備える。
液体燃料合成部10は、液体燃料を透過させる液体燃料分離膜14aを有し、非透過側から透過側に液体燃料分離膜14aを透過したガスであって、少なくとも液体燃料を含有する透過側ガスと、液体燃料分離膜14aを透過しなかったガスであって、副生水蒸気、未反応の水素および酸化炭素、ならびに酸性副生物を含有する非透過側ガスと、を分離する。
液体燃料製造システム1Cは、透過側ガスを掃引するガスを液体燃料合成部10の透過側に供給する、掃引ガス供給部40をさらに備える。
原料ガス供給部20は、水蒸気の存在下で、アミン化合物と、残原料ガスと、を混合する、混合部24と、アミン化合物と酸性副生物との中和物を水蒸気の凝縮水とともに除去する水分除去部26と、を有する
液体燃料製造システム1Cによれば、掃引ガスとして、アミン化合物を含有するガス(中和用原料ガス)を用いることにより、液体燃料合成部10から流出する掃引ガス(中和用原料ガス)と副生水蒸気および残原料ガスを含有する非透過側ガスとを混合して、残原料ガス中の酸性副生物をアミン化合物で中和することができる。以下、変形例2の要点について説明する。その他に関しては、液体燃料製造システム1Aに関して説明したとおりである。
水蒸気と液体燃料とを分離する分離膜は、水蒸気を透過する水蒸気分離膜に限定されず、少なくとも液体燃料を透過する液体燃料分離膜を用いることができる。なお、本発明において、水蒸気と液体燃料とを分離する分離膜としては、一方に対して他方よりも高い選択透過性を有するものであり、本発明の効果が得られる限りにおいて、両者を完全に分離するものでなくてもよい。例えば、液体燃料分離膜は、液体燃料を水蒸気より高い選択性で透過するものであり、両者を完全に分離するものではない。
図3は、本発明の別の実施形態に係る液体燃料製造システムの概略構成図である。
図3に示す液体燃料製造システム1Cは、少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる、液体燃料合成部10と;液体燃料合成部10に原料ガスを供給する、原料ガス供給部20と;液体燃料合成部10から未反応の水素および酸化炭素と上記転化反応の酸性副生物とを含有する残原料ガスを原料ガス供給部20に再供給する、原料ガス循環部30と、を備える。
液体燃料合成部10は、液体燃料を透過させる液体燃料分離膜14aを有し、非透過側から透過側に液体燃料分離膜14aを透過したガスであって、少なくとも液体燃料を含有する透過側ガスと、液体燃料分離膜14aを透過しなかったガスであって、副生水蒸気、未反応の水素および酸化炭素、ならびに酸性副生物を含有する非透過側ガスと、を分離する。
液体燃料製造システム1Cは、透過側ガスを掃引するガスを液体燃料合成部10の透過側に供給する、掃引ガス供給部40をさらに備える。
原料ガス供給部20は、水蒸気の存在下で、アミン化合物と、残原料ガスと、を混合する、混合部24と、アミン化合物と酸性副生物との中和物を水蒸気の凝縮水とともに除去する水分除去部26と、を有する
液体燃料製造システム1Cによれば、掃引ガスとして、アミン化合物を含有するガス(中和用原料ガス)を用いることにより、液体燃料合成部10から流出する掃引ガス(中和用原料ガス)と副生水蒸気および残原料ガスを含有する非透過側ガスとを混合して、残原料ガス中の酸性副生物をアミン化合物で中和することができる。以下、変形例2の要点について説明する。その他に関しては、液体燃料製造システム1Aに関して説明したとおりである。
液体燃料合成部10は、触媒12と、液体燃料分離膜14aと、非透過側空間10Aと、透過側空間10Bと、を有する。液体燃料分離膜14aは、図示例のように多孔質支持体16によって支持されていてもよい。液体燃料合成部10には、非透過側空間10Aを介して連通する第1供給口s1および第1排出口d1と、透過側空間10Bを介して連通する第2供給口s2および第2排出口d2と、が設けられている。液体燃料を選択的に透過する分離膜としては、例えば、特開2020-23488号公報に記載のものを用いることができる。
非透過側空間10Aは、液体燃料分離膜14aの非透過側の空間であり、透過側空間10Bは、液体燃料分離膜14aの透過側の空間である。非透過側空間10Aには、原料ガス供給部20から供給された原料ガスが第1供給口s1を介して流入する。触媒12において原料ガスから液体燃料が合成され、液体燃料は、液体燃料分離膜14aを透過して透過側空間10Bに流入する。透過側空間10Bには、掃引ガス供給部40から第2供給口s2を介して掃引ガスが供給される。透過側ガスおよび掃引ガスは、生成物ガスとして、第2排出口d2を介して透過側空間10Bから原料ガス供給部20に流出する。一方、残原料ガスは副生水蒸気とともに非透過側ガスとして、第1排出口d1を介して非透過側空間10Aから原料ガス循環部30に流出する。
原料ガス循環部30は、非透過側ガス回収配管31を有する。非透過側ガス回収配管31は、一端が液体燃料合成部10の第1流出口d1に接続され、他端が中和用原料ガス供給配管22に接続されており、非透過側ガスを混合部24に供給することができる。
原料ガス供給部20は、中和用原料ガス供給配管22と、混合部24と、水分除去部26と、増圧部28と、第3の凝縮器21と、第3のドレントラップ23と、液体燃料回収配管25と、を有する。中和用原料ガス供給配管22を介して液体燃料合成部10から回収された生成物ガスが、第3の凝縮器21および第3のドレントラップ23によって液体燃料と掃引ガスとに気液分離されて、液化された液体燃料が液体燃料回収配管25を介して回収される。掃引ガスは、水分除去部26に送られ、水分除去部26上流の混合部24で非透過側ガス(換言すれば、残原料ガスおよび副生水蒸気)と混合される。これにより、残原料ガスに含有される酸性副生物が掃引ガスに含有されるアミン化合物によって中和される。また、掃引ガスと非透過側ガスとの混合ガスが第2凝縮器26aに供給されると、非透過側ガス由来の副生水蒸気が凝縮されるとともに、上記中和により生じた中和物が凝縮水に移行(溶解)する。中和物を含有する凝縮水は、第2ドレントラップ26bによって残りのガス成分から分離され、水分回収配管26cから回収(除去)される。
なお、液体燃料と水蒸気とを完全に分離するものではない液体燃料分離膜によれば、透過側ガスが、液体燃料および副生水蒸気を含有し得ることから、生成物ガスはアミン化合物を含有する掃引ガスと液体燃料および水蒸気とを含有し得る。よって、非透過側ガスが水蒸気を含まない場合や非透過側ガスから水蒸気が分離される場合であっても、液体燃料を分離後の生成物ガスと残原料ガスとを混合することで、水蒸気の存在下でのアミン化合物と残原料ガスとの混合が行われ得る。以上のとおり、上記液体燃料分離膜を用いた実施形態においては、アミン化合物と残原料ガスとの混合時に存在する水蒸気は、残原料ガスとともに回収され、非透過側ガスに含有される水蒸気および/または透過側ガスとして回収され、生成物ガスに含有される水蒸気であり得る。
A-7.変形例3
図4は、本発明の別の実施形態に係る液体燃料製造システムの概略構成図である。
図4に示す液体燃料製造システム1Dは、少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる、液体燃料合成部10aと;液体燃料合成部10aに原料ガスを供給する、原料ガス供給部20と;液体燃料合成部10aから未反応の水素および酸化炭素と上記転化反応の酸性副生物とを含有する残原料ガスを回収し、原料ガス供給部20に供給する、原料ガス循環部30と、を備える。
液体燃料製造システム1Dは、第1のガス流路10Aの温度を調節する温調ガスを液体燃料合成部10aに供給する、温調ガス供給部40aをさらに備える。
原料ガス供給部20は、水蒸気の存在下で、アミン化合物と残原料ガスとを混合する、混合部24と、アミン化合物と酸性副生物との中和物を水蒸気の凝縮水とともに除去する水分除去部26と、を有する。
液体燃料製造システム1Dによれば、温調ガスとして、水蒸気およびアミン化合物を含有するガス(中和用原料ガス)を用いることにより、液体燃料合成部10aから流出する温調ガスを残原料ガスとを混合して、残原料ガス中の酸性副生物をアミン化合物で中和し、凝縮水とともに除去することができる。
図4は、本発明の別の実施形態に係る液体燃料製造システムの概略構成図である。
図4に示す液体燃料製造システム1Dは、少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる、液体燃料合成部10aと;液体燃料合成部10aに原料ガスを供給する、原料ガス供給部20と;液体燃料合成部10aから未反応の水素および酸化炭素と上記転化反応の酸性副生物とを含有する残原料ガスを回収し、原料ガス供給部20に供給する、原料ガス循環部30と、を備える。
液体燃料製造システム1Dは、第1のガス流路10Aの温度を調節する温調ガスを液体燃料合成部10aに供給する、温調ガス供給部40aをさらに備える。
原料ガス供給部20は、水蒸気の存在下で、アミン化合物と残原料ガスとを混合する、混合部24と、アミン化合物と酸性副生物との中和物を水蒸気の凝縮水とともに除去する水分除去部26と、を有する。
液体燃料製造システム1Dによれば、温調ガスとして、水蒸気およびアミン化合物を含有するガス(中和用原料ガス)を用いることにより、液体燃料合成部10aから流出する温調ガスを残原料ガスとを混合して、残原料ガス中の酸性副生物をアミン化合物で中和し、凝縮水とともに除去することができる。
液体燃料合成部10aは、転化反応を進行させる触媒12が配置された第1のガス流路10Aと第1のガス流路10Aの温度を調節する温調ガスが流通する第2のガス流路10Bとを有する。図示例では、第1のガス流路10Aと第2のガス流路10Bとが、隔壁18を介して上下に区画されているが、第2のガス流路10Bは第1のガス流路10Aの温度を調節可能に配置されていればよい。例えば、液体燃料合成部は、二重管構造を有し、内管および外管の一方を第1のガス流路とし、他方を第2のガス流路とすることができる。隔壁18は、代表的には、ガス非透過性である。
第1のガス流路10Aには、原料ガス供給部20から供給された原料ガスが第1供給口s1を介して流入する。触媒12において原料ガスから液体燃料が合成され、生成された液体燃料は、残原料ガスとともに、第1排出口d1を介して生成物ガスとして第1のガス流路10Aから原料ガス循環部30に流出する。生成物ガスは、液体燃料、転化反応の副生物である水蒸気、および残原料ガスを含有する。残原料ガスは、未反応の水素および酸化炭素に加えて酸性副生物をさらに含有する。
第2のガス流路10Bには、温調ガス供給部40aから供給された温調ガスが第2供給口s2を介して流入し、第2排出口d2から原料ガス供給部20に流出する。
温調ガス供給部40aは、温調ガスを貯留する温調ガス貯留部42と、温調ガス貯留部42と液体燃料合成部10aの第2流入口s2とを接続する温調ガス供給配管44と、温調ガス供給配管44に介在する加熱部46と、を有する。なお、図示例では、温調ガスは、原料ガスと向流となるように液体燃料合成部10aに供給されているが、並流となるように供給されてもよい。
温調ガスは、加熱部46で所望の温度(例えば、150℃以上350℃以下)加熱された後、第2流入口s2から液体燃料合成部10aに供給される。加熱部46は、温調ガスを加熱できるものであればよく特に制限されない。
温調ガスは、アミン化合物および水蒸気を含有し、好ましくは水素および酸化炭素の一方または両方をさらに含有する。温調ガスの水蒸気以外の成分については、上記掃引ガスと同様の説明を適用することができる。温調ガス中の水蒸気露点は例えば、40℃以上150℃以下である。
原料ガス供給部20および原料ガス循環部30については、A-4項およびA-5項と同様の説明を適用することができる。具体的には、原料ガス循環部30は、生成物ガス回収配管31aと、第1凝縮器32と、第1ドレントラップ33と、液体燃料回収配管34と、原料ガス循環配管35と、を有する。原料ガス供給部20は、中和用原料ガス供給配管22と、混合部24と、水分除去部26と、増圧部28と、を有する。
生成物ガス回収配管31aを介して回収された生成物ガスは、液体燃料、副生水蒸気、および未反応の水素と酸化炭素と酸性副生物とを含有する残原料ガスを含有する。生成物ガスは、第1凝縮器32および第1ドレントラップ33によって気液分離され、液化された液体燃料および水が、液体燃料回収配管34を介して回収されるとともに、残原料ガスが原料ガス循環配管35を介して原料ガス供給部20(より具体的には、混合部24)に供給される。液体燃料回収配管34から回収された液体燃料および水は、必要に応じて、さらに分離回収される。
一方、原料ガス供給部20においては、中和用原料ガス供給配管22を介して液体燃料合成部10aから回収されたアミン化合物および水蒸気を含有する温調ガスが、水分除去部26の上流で残原料ガスと混合される。これにより、残原料ガスに含有される酸性副生物が温調ガスに含有されるアミン化合物によって中和され、中和により生じた中和物が水蒸気の凝縮水とともに水分除去部26から除去される。なお、転化反応により生成した水蒸気は、メタノールとの沸点の違いに起因してその全量が液体燃料回収配管34で回収されない場合があり、副生水蒸気の一部は原料ガス循環配管35を介して混合部24に供給され得る。よって、温調ガスが水蒸気を含まない場合であっても、原料ガス循環配管35を介して供給される副生水蒸気の存在下で、アミン化合物と酸性副生物との中和が行われ得る。
凝縮水および中和物を分離後のガス成分は、増圧部28において昇圧および昇温された後、原料ガスとして液体燃料合成部10aの第1のガス流路10Aに供給される。
A-8.変形例4
上記酸性副生物の中和に用いられるアミン化合物は、水素および酸化炭素に加えて窒素を含有する原料ガスを用いた際に、液体燃料合成部において上記水素と窒素とから生成するアンモニアであってよい。アンモニアは分子径が小さく、他のガスに比較して分離膜を透過しやすい。よって、例えば、液体燃料合成部が水蒸気分離膜を有する場合、液体燃料合成部の非透過側空間で生成したアンモニアは、水蒸気とともに透過側ガスとして水蒸気分離膜を透過し、掃引ガスで掃引されて液体燃料合成部から(より具体的には、透過側空間の排出口d2から)排ガスとして流出し得る。よって、排ガス(透過側ガスと掃引ガスの混合ガス)は、水蒸気とアンモニアとを含有する。このような排ガスを混合部に供給して残原料ガスと混合することにより、水蒸気の存在下で、残原料ガス中の酸性副生物を透過側ガスに含まれるアンモニアを用いて中和することができる。また例えば、液体燃料合成部が液体燃料分離膜を有する場合、液体燃料合成部の非透過側空間で生成したアンモニアは、液体燃料とともに透過側ガスとして液体燃料分離膜を透過し、掃引ガスで掃引されて液体燃料合成部から(より具体的には、透過側空間の排出口d2から)生成物ガスとして流出し得る。よって、生成物ガス(透過側ガスと掃引ガスの混合ガス)は、液体燃料とアンモニアとを含有する。また、液体燃料合成部の非透過側空間の排出口d1から流出した非透過側ガスは水蒸気と残原料ガスとを含有する。よって、生成物ガスから液体燃料を分離後に、混合部に供給して非透過側ガスと混合することにより、水蒸気の存在下で、残原料ガス中の酸性副生物を透過側ガスに含まれるアンモニアを用いて中和することができる。また、液体燃料と水蒸気とを完全に分離しない液体燃料分離膜によれば、液体燃料合成部の非透過側空間で生成したアンモニアは、液体燃料および水蒸気とともに透過側ガスとして液体燃料分離膜を透過し、掃引ガスで掃引されて液体燃料合成部から生成物ガスとして流出し得る。よって、非透過側ガスが水蒸気を含まない場合や非透過側ガスから水蒸気が分離される場合であっても、液体燃料を分離後の生成物ガスと残原料ガスとを混合部に供給して混合することにより、水蒸気の存在下で、残原料ガス中の酸性副生物を透過側ガスに含まれるアンモニアを用いて中和することができる。
上記排ガスまたは生成物ガスにおけるアンモニア濃度は、例えば10ppm以上、また例えば10000ppm未満である。なお、当該アンモニア濃度は、液体燃料合成部の排出口d2における濃度であり、排ガスまたは生成物ガス中、凝縮性成分を除いて算出される濃度である。
また、変形例4の液体燃料製造システムは、変形例1に記載されるような二酸化炭素回収部を備え、当該二酸化炭素回収部によって大気またはバイオガスから回収された二酸化炭素を含有するガスを用いて原料ガスを調製するように構成されていてもよい。大気またはバイオガスから回収された二酸化炭素を含有するガスは、二酸化炭素に加えて少量の窒素を含有し得ることから、窒素を別途添加することなく、あるいは、少量の窒素を添加するのみで原料ガスを調製することができる。
上記酸性副生物の中和に用いられるアミン化合物は、水素および酸化炭素に加えて窒素を含有する原料ガスを用いた際に、液体燃料合成部において上記水素と窒素とから生成するアンモニアであってよい。アンモニアは分子径が小さく、他のガスに比較して分離膜を透過しやすい。よって、例えば、液体燃料合成部が水蒸気分離膜を有する場合、液体燃料合成部の非透過側空間で生成したアンモニアは、水蒸気とともに透過側ガスとして水蒸気分離膜を透過し、掃引ガスで掃引されて液体燃料合成部から(より具体的には、透過側空間の排出口d2から)排ガスとして流出し得る。よって、排ガス(透過側ガスと掃引ガスの混合ガス)は、水蒸気とアンモニアとを含有する。このような排ガスを混合部に供給して残原料ガスと混合することにより、水蒸気の存在下で、残原料ガス中の酸性副生物を透過側ガスに含まれるアンモニアを用いて中和することができる。また例えば、液体燃料合成部が液体燃料分離膜を有する場合、液体燃料合成部の非透過側空間で生成したアンモニアは、液体燃料とともに透過側ガスとして液体燃料分離膜を透過し、掃引ガスで掃引されて液体燃料合成部から(より具体的には、透過側空間の排出口d2から)生成物ガスとして流出し得る。よって、生成物ガス(透過側ガスと掃引ガスの混合ガス)は、液体燃料とアンモニアとを含有する。また、液体燃料合成部の非透過側空間の排出口d1から流出した非透過側ガスは水蒸気と残原料ガスとを含有する。よって、生成物ガスから液体燃料を分離後に、混合部に供給して非透過側ガスと混合することにより、水蒸気の存在下で、残原料ガス中の酸性副生物を透過側ガスに含まれるアンモニアを用いて中和することができる。また、液体燃料と水蒸気とを完全に分離しない液体燃料分離膜によれば、液体燃料合成部の非透過側空間で生成したアンモニアは、液体燃料および水蒸気とともに透過側ガスとして液体燃料分離膜を透過し、掃引ガスで掃引されて液体燃料合成部から生成物ガスとして流出し得る。よって、非透過側ガスが水蒸気を含まない場合や非透過側ガスから水蒸気が分離される場合であっても、液体燃料を分離後の生成物ガスと残原料ガスとを混合部に供給して混合することにより、水蒸気の存在下で、残原料ガス中の酸性副生物を透過側ガスに含まれるアンモニアを用いて中和することができる。
上記排ガスまたは生成物ガスにおけるアンモニア濃度は、例えば10ppm以上、また例えば10000ppm未満である。なお、当該アンモニア濃度は、液体燃料合成部の排出口d2における濃度であり、排ガスまたは生成物ガス中、凝縮性成分を除いて算出される濃度である。
また、変形例4の液体燃料製造システムは、変形例1に記載されるような二酸化炭素回収部を備え、当該二酸化炭素回収部によって大気またはバイオガスから回収された二酸化炭素を含有するガスを用いて原料ガスを調製するように構成されていてもよい。大気またはバイオガスから回収された二酸化炭素を含有するガスは、二酸化炭素に加えて少量の窒素を含有し得ることから、窒素を別途添加することなく、あるいは、少量の窒素を添加するのみで原料ガスを調製することができる。
B.液体燃料の製造方法
本発明の実施形態による液体燃料の製造方法は、
少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる触媒を含む液体燃料合成部に、上記原料ガスを供給すること(工程I);
上記転化反応を進行させるとともに、未反応の上記水素および上記酸化炭素ならびに酸性副生物を含有する残原料ガスを上記液体燃料合成部から回収すること(工程II);
上記残原料ガスから上記酸性副生物を除去すること(工程III);および
上記酸性副生物を除去後の上記残原料ガスを上記原料ガスの一部として上記液体燃料合成部に再供給すること(工程IV)、
を含む。
代表的には、残原料ガスから酸性副生物を除去することが、水蒸気の存在下で、アミン化合物と、残原料ガスと、を混合して、残原料ガス中の酸性副生物を上記アミン化合物で中和することによって行われる。中和により生成した中和物は、水蒸気の凝縮水とともに除去される。好ましくは、これらの混合ガスから凝縮水と中和物を除去した後のガスが原料ガスの構成成分として液体燃料合成部に供給される。
本発明の実施形態による液体燃料の製造方法は、
少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる触媒を含む液体燃料合成部に、上記原料ガスを供給すること(工程I);
上記転化反応を進行させるとともに、未反応の上記水素および上記酸化炭素ならびに酸性副生物を含有する残原料ガスを上記液体燃料合成部から回収すること(工程II);
上記残原料ガスから上記酸性副生物を除去すること(工程III);および
上記酸性副生物を除去後の上記残原料ガスを上記原料ガスの一部として上記液体燃料合成部に再供給すること(工程IV)、
を含む。
代表的には、残原料ガスから酸性副生物を除去することが、水蒸気の存在下で、アミン化合物と、残原料ガスと、を混合して、残原料ガス中の酸性副生物を上記アミン化合物で中和することによって行われる。中和により生成した中和物は、水蒸気の凝縮水とともに除去される。好ましくは、これらの混合ガスから凝縮水と中和物を除去した後のガスが原料ガスの構成成分として液体燃料合成部に供給される。
未反応の原料ガスを回収および循環させて再度原料ガスとして利用する液体燃料の製造方法においては、循環回数の増加に伴って原料ガス中の酸性副生物の濃度が徐々に増大し、液体燃料の収率低下や液体燃料製造システムの腐食を生じさせる場合がある。これに対し、本発明の実施形態による液体燃料の製造方法によれば、アミン化合物を残原料ガスと混合することで酸性副生物をアミン化合物で中和除去することができ、除去後の混合ガスを原料ガスの構成成分として利用することにより、酸性副生物の濃縮の問題を防止することができる。
本発明の実施形態による液体燃料の製造方法は、A項に記載の液体燃料製造システムを用いて好適に行うことができる。以下、液体燃料合成部が水蒸気分離膜を含み、アミン化合物を含有する掃引ガスを中和用原料ガスとして用いる液体燃料製造システム1Aを用いた実施形態について説明するが、言うまでもなく、本発明の実施形態による液体燃料の製造方法は、液体燃料合成部が液体燃料分離膜を含む液体燃料製造システム、分離膜を含み、酸化炭素および水素に加えて窒素を含有する原料ガスを用いる液体燃料製造システムなどを用いた場合にもA項に記載に従って実施することができる。また、液体燃料製造システム1Dを用いて、転化反応の反応温度を調整するために液体燃料合成部を流通させた後の温調ガスを中和用原料ガスとして用いる場合にも液体燃料製造システム1Aを用いた場合と同様に本発明の実施形態による液体燃料の製造方法を実施することができる。例えば、アミン化合物と水蒸気とを含有する温調ガスを液体燃料合成部に流通させ、液体燃料合成部を流通させた後の温調ガスを用いて酸性副生物を中和および除去することができる。
B-1.工程I
工程Iにおいては、少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる触媒と水蒸気を透過させる水蒸気分離膜とを含む液体燃料合成部に、原料ガスを供給する。A項で記載したとおり、液体燃料合成部10は、触媒12と、水蒸気分離膜14と、非透過側空間10Aと、透過側空間10Bと、を有する。原料ガスは、第1流入口s1から液体燃料合成部10の非透過側空間10Aに供給される。
工程Iにおいては、少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる触媒と水蒸気を透過させる水蒸気分離膜とを含む液体燃料合成部に、原料ガスを供給する。A項で記載したとおり、液体燃料合成部10は、触媒12と、水蒸気分離膜14と、非透過側空間10Aと、透過側空間10Bと、を有する。原料ガスは、第1流入口s1から液体燃料合成部10の非透過側空間10Aに供給される。
原料ガスは、上記のとおり、少なくとも水素および酸化炭素を含有する。原料ガスにおける水素および酸化炭素の濃度は上述のとおりである。原料ガスにおける酸性副生物の濃度(二種以上の酸性副生物が存在する場合は、合計濃度)は、出来る限り少ないことが好ましく、例えば30ppm以下、好ましくは20ppm以下である。
B-2.工程II
工程IIにおいては、上記転化反応を進行させるとともに、未反応の水素および酸化炭素ならびに酸性副生物を含有する残原料ガスを液体燃料合成部から回収する。
工程IIにおいては、上記転化反応を進行させるとともに、未反応の水素および酸化炭素ならびに酸性副生物を含有する残原料ガスを液体燃料合成部から回収する。
転化反応は触媒12において進行し、これにより、液体燃料および水蒸気が生成する。具体的には、上記反応式(2)に表されるとおり、CO2および水素を含有する原料ガスを触媒存在下で接触水素化することでメタノールおよび水蒸気が生成する。また、このとき、水蒸気以外の副生物として、微量の酸性成分(酸性副生物)が生成する。反応条件は、A項で記載したとおりである。
非透過側空間10Aで生成した液体燃料は、未反応の水素および酸化炭素ならびに酸性副生物を含有する残原料ガスとともに第1流出口d1を介して非透過側ガス回収配管31に流出し、第1凝縮器32および第1ドレントラップ33で残原料ガスから気液分離される。これにより、液体燃料が液体燃料回収配管34から回収され、残原料ガスは原料ガス循環配管35から回収される。
B-3.工程III
工程IIIにおいては、上記残原料ガスから酸性副生物を除去する。
液体燃料製造システム1Aは、液体燃料合成部10からそれぞれ別途に回収された掃引ガスと残原料ガスとを混合して原料ガスを調製するように構成されていることから、アミン化合物を含む掃引ガスを用いることで、残原料ガスに含有される酸性副生物を当該アミン化合物との中和により除去することができる。具体的には、以下のとおりである。
工程IIIにおいては、上記残原料ガスから酸性副生物を除去する。
液体燃料製造システム1Aは、液体燃料合成部10からそれぞれ別途に回収された掃引ガスと残原料ガスとを混合して原料ガスを調製するように構成されていることから、アミン化合物を含む掃引ガスを用いることで、残原料ガスに含有される酸性副生物を当該アミン化合物との中和により除去することができる。具体的には、以下のとおりである。
液体燃料製造システム1Aにおいては、非透過側空間10Aで生成した水蒸気および原料ガス中の水素の一部は、水蒸気分離膜14を透過して透過側空間10Bに流入する。透過側空間10Bには、アミン化合物と任意に水素および/または酸化炭素とを含む掃引ガスが第2流入口s2から流入する。透過側空間10Bに流入した水蒸気および水素は、掃引ガスによって掃引され、排ガスとして、第2流出口d2を介して中和用原料ガス供給配管(排ガス回収配管)22に流出する。原料ガス循環配管35が混合部24で中和用原料ガス供給配管22に合流することにより、排ガスと残原料ガスとが混合される。これにより、残原料ガス由来の酸性副生物が排ガスに含有される掃引ガス由来のアミン化合物で中和される。排ガスと残原料ガスとの混合ガスは、第2凝縮器26aおよび第2ドレントラップ26bをこの順に通過し、この間に水蒸気が凝縮されて気液分離され、水分回収配管26cから回収(除去)される。好ましくは、中和により生じた中和物は凝縮水に溶解され、水分回収配管26cから凝縮水と共に除去される。
B-4.工程IV
工程IVにおいては、酸性副生物を除去後の残原料ガスを原料ガスの一部として液体燃料合成部に再供給する。具体的には、工程IIIで水分を除去した後の混合ガスを原料ガスとして増圧部28で所望の温度および圧力に調整後、液体燃料合成部10に供給する。上述のとおり、必要に応じて、工程IIIで水分を除去した後の混合ガスに、水素および/または酸化炭素を混合して原料ガスを所望の組成に調製してもよい。
工程IVにおいては、酸性副生物を除去後の残原料ガスを原料ガスの一部として液体燃料合成部に再供給する。具体的には、工程IIIで水分を除去した後の混合ガスを原料ガスとして増圧部28で所望の温度および圧力に調整後、液体燃料合成部10に供給する。上述のとおり、必要に応じて、工程IIIで水分を除去した後の混合ガスに、水素および/または酸化炭素を混合して原料ガスを所望の組成に調製してもよい。
本発明の実施形態による液体燃料製造システムは、メタノールなどの液体燃料の製造に好適に用いられ得る。
1A-D 液体燃料製造システム
10 液体燃料合成部
20 原料ガス供給部
30 原料ガス循環部
40 掃引ガス供給部
10 液体燃料合成部
20 原料ガス供給部
30 原料ガス循環部
40 掃引ガス供給部
Claims (26)
- 少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる、液体燃料合成部と;
前記液体燃料合成部に前記原料ガスを供給する、原料ガス供給部と;
前記液体燃料合成部から未反応の前記水素および前記酸化炭素と前記転化反応の酸性副生物とを含有する残原料ガスを前記原料ガス供給部に再供給する、原料ガス循環部と;
を備え、
前記原料ガス供給部が、
水蒸気の存在下で、アミン化合物と、前記残原料ガスと、を混合する、混合部と、
前記アミン化合物と前記酸性副生物との中和物を前記水蒸気の凝縮水とともに除去する水分除去部と、を有する、
液体燃料製造システム。 - 前記混合部において、前記アミン化合物を含有する中和用原料ガスと、前記残原料ガスと、を混合する、請求項1に記載の液体燃料製造システム。
- 前記原料ガスが、窒素をさらに含有し、
前記アミン化合物が、前記液体燃料合成部において前記水素と前記窒素とから生成されたアンモニアである、請求項1に記載の液体燃料製造システム。 - 大気またはバイオガスから二酸化炭素を回収する、ガス回収部をさらに備え、
前記ガス回収部から供給される二酸化炭素を含有するガスが、前記中和用原料ガスの構成成分として用いられる、請求項2に記載の液体燃料製造システム。 - 前記液体燃料合成部が、少なくとも水蒸気を透過させる水蒸気分離膜を有し、非透過側から透過側に前記水蒸気分離膜を透過したガスであって、前記転化反応の副生物である水蒸気を含有する透過側ガスと、前記水蒸気分離膜を透過しなかったガスであって、前記液体燃料、未反応の前記水素および前記酸化炭素、ならびに前記酸性副生物を含有する非透過側ガスと、を分離し、
前記透過側ガスを掃引するガスであって、アミン化合物を含有する掃引ガスを、前記液体燃料合成部の前記透過側に供給する、掃引ガス供給部をさらに備え、
前記液体燃料合成部から流出した前記透過側ガスおよび前記掃引ガスが、前記混合部に供給される、請求項2に記載の液体燃料製造システム。 - 前記掃引ガスが、酸化炭素および/または水素をさらに含有する、請求項5に記載の液体燃料製造システム。
- 前記掃引ガスにおける前記アミン化合物濃度が、10ppm以上である、請求項5に記載の液体燃料製造システム。
- 前記液体燃料合成部が、少なくとも水蒸気およびアンモニアを透過させる水蒸気分離膜を有し、非透過側から透過側に前記水蒸気分離膜を透過したガスであって、前記転化反応の副生物である水蒸気および前記アンモニアを含有する透過側ガスと、前記水蒸気分離膜を透過しなかったガスであって、前記液体燃料、未反応の前記水素および前記酸化炭素、ならびに前記酸性副生物を含有する非透過側ガスと、を分離し、
前記透過側ガスを掃引する掃引ガスを、前記液体燃料合成部の前記透過側に供給する、掃引ガス供給部をさらに備え、
前記液体燃料合成部から流出した前記透過側ガスおよび前記掃引ガスが、前記混合部に供給される、請求項3に記載の液体燃料製造システム。 - 前記透過側ガスおよび前記掃引ガスの混合ガスにおける前記アンモニア濃度が、10ppm以上である、請求項8に記載の液体燃料製造システム。
- 前記液体燃料合成部が、少なくとも液体燃料を透過させる液体燃料分離膜を有し、非透過側から透過側に前記液体燃料分離膜を透過したガスであって、前記液体燃料を含有する透過側ガスと、前記液体燃料分離膜を透過しなかったガスであって、前記転化反応の副生物である水蒸気、未反応の前記水素および前記酸化炭素、ならびに前記酸性副生物を含有する非透過側ガスと、を分離し、
前記透過側ガスを掃引するガスであって、アミン化合物を含有する掃引ガスを、前記液体燃料合成部の前記透過側に供給する、掃引ガス供給部をさらに備え、
前記液体燃料合成部から流出した前記掃引ガスが、前記混合部に供給される、請求項2に記載の液体燃料製造システム。 - 前記掃引ガスが、酸化炭素および/または水素をさらに含有する、請求項10に記載の液体燃料製造システム。
- 前記掃引ガスにおける前記アミン化合物濃度が、10ppm以上である、請求項10に記載の液体燃料製造システム。
- 前記液体燃料合成部が、少なくとも液体燃料およびアンモニアを透過させる液体燃料分離膜を有し、非透過側から透過側に前記液体燃料分離膜を透過したガスであって、前記液体燃料および前記アンモニアを含有する透過側ガスと、前記液体燃料分離膜を透過しなかったガスであって、前記転化反応の副生物である水蒸気、未反応の前記水素および前記酸化炭素、ならびに前記酸性副生物を含有する非透過側ガスと、を分離し、
前記透過側ガスを掃引する掃引ガスを、前記液体燃料合成部の前記透過側に供給する、掃引ガス供給部をさらに備え、
前記液体燃料合成部から流出した前記透過側ガスおよび前記掃引ガスが、前記混合部に供給される、請求項3に記載の液体燃料製造システム。 - 前記透過側ガスおよび前記掃引ガスの混合ガスにおける前記アンモニア濃度が、10ppm以上である、請求項13に記載の液体燃料製造システム。
- 前記液体燃料合成部が、前記転化反応を進行させる触媒が配置された第1のガス流路と前記第1のガス流路の温度を調節する温調ガスが流通する第2のガス流路とを有し、
アミン化合物を含有する温調ガスを、前記液体燃料合成部の前記第2のガス流路に供給する、温調ガス供給部をさらに備え、
前記液体燃料合成部から流出した前記温調ガスが、前記混合部に供給される、請求項2に記載の液体燃料製造システム。 - 前記温調ガスが、酸化炭素および/または水素をさらに含有する、請求項15に記載の液体燃料製造システム。
- 前記温調ガスにおける前記アミン化合物濃度が、10ppm以上である、請求項15に記載の液体燃料製造システム。
- 少なくとも水素および酸化炭素を含有する原料ガスから液体燃料への転化反応を進行させる触媒を含む液体燃料合成部に、前記原料ガスを供給すること;
前記転化反応を進行させるとともに、未反応の前記水素および前記酸化炭素ならびに酸性副生物を含有する残原料ガスを前記液体燃料合成部から回収すること;
前記残原料ガスから前記酸性副生物を除去すること;および
前記酸性副生物を除去後の前記残原料ガスを前記原料ガスの一部として前記液体燃料合成部に再供給すること;
を含む、液体燃料の製造方法であって、
前記残原料ガスから前記酸性副生物を除去することが、水蒸気の存在下で、アミン化合物と、前記残原料ガスと、を混合して前記酸性副生物を前記アミン化合物で中和すること、
を含む、液体燃料の製造方法。 - 前記残原料ガスから前記酸性副生物を除去することが、前記液体燃料合成部に供給され、前記液体燃料合成部を流通した後の前記アミン化合物を含有する中和用原料ガスと、前記残原料ガスと、を混合することを含む、請求項18に記載の製造方法。
- 前記原料ガスが、窒素をさらに含有し、
前記アミン化合物が、前記液体燃料合成部において前記水素と前記窒素とから生成されたアンモニアである、請求項18に記載の製造方法。 - 前記中和用原料ガスが、大気またはバイオガスから回収された二酸化炭素を含有するガスを用いて調製される、請求項19に記載の製造方法。
- 前記液体燃料合成部が、少なくとも水蒸気を透過させる水蒸気分離膜を有し、
前記転化反応の副生物である水蒸気を前記水蒸気分離膜の非透過側から透過側に透過させ、前記アミン化合物を含有する掃引ガスで掃引し、前記液体燃料合成部から排ガスとして回収し、
前記排ガスと前記残原料ガスとを混合して、前記残原料ガス中の前記酸性副生物を前記アミン化合物で中和する、請求項19に記載の製造方法。 - 前記液体燃料合成部が、少なくとも液体燃料を透過させる液体燃料分離膜を有し、
前記液体燃料を前記液体燃料分離膜の非透過側から透過側に透過させ、前記アミン化合物を含有する掃引ガスで掃引し、前記液体燃料合成部から生成物ガスとして回収するとともに、前記転化反応の副生物である水蒸気を回収し、
前記生成物ガスを、前記液体燃料と前記掃引ガスとに分離し、
前記掃引ガスと前記残原料ガスと前記水蒸気とを混合して、前記残原料ガス中の前記酸性副生物を前記アミン化合物で中和する、請求項19に記載の製造方法。 - 前記転化反応の反応温度を調整するための前記アミン化合物を含有する温調ガスを前記液体燃料合成部に流通させ、
前記液体燃料合成部を流通した後の前記温調ガスと前記残原料ガスとを混合して、前記残原料ガス中の前記酸性副生物を前記アミン化合物で中和する、請求項19に記載の製造方法。 - 前記液体燃料合成部が、少なくとも水蒸気およびアンモニアを透過させる水蒸気分離膜を有し、
前記転化反応の副生物である水蒸気および前記アンモニアを前記水蒸気分離膜の非透過側から透過側に透過させ、掃引ガスで掃引して、前記液体燃料合成部から排ガスとして回収し、
前記排ガスと前記残原料ガスとを混合して、前記残原料ガス中の前記酸性副生物を前記アンモニアで中和する、請求項20に記載の製造方法。 - 前記液体燃料合成部が、少なくとも液体燃料およびアンモニアを透過させる液体燃料分離膜を有し、
前記液体燃料および前記アンモニアを前記液体燃料分離膜の非透過側から透過側に透過させ、掃引ガスで掃引して、前記液体燃料合成部から生成物ガスとして回収するとともに、前記転化反応の副生物である水蒸気を前記残原料ガスとともに回収し、
前記生成物ガスから前記液体燃料を分離し、次いで、前記残原料ガスおよび前記水蒸気と混合して、前記残原料ガス中の前記酸性副生物を前記アンモニアで中和する、請求項20に記載の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-139589 | 2022-09-01 | ||
JP2022139589 | 2022-09-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024048675A1 true WO2024048675A1 (ja) | 2024-03-07 |
Family
ID=90099730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/031603 WO2024048675A1 (ja) | 2022-09-01 | 2023-08-30 | 液体燃料製造システムおよび液体燃料の製造方法 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202424169A (ja) |
WO (1) | WO2024048675A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010500362A (ja) * | 2006-08-10 | 2010-01-07 | ユニバーシティ オブ サザン カリフォルニア | 唯一の原料としての空気の中の二酸化炭素と水(水蒸気)からメタノール、ジメチルエーテル、合成炭化水素及びそれらの生成物を生産する方法 |
JP2019156730A (ja) * | 2018-03-08 | 2019-09-19 | Jfeスチール株式会社 | メタノールの合成方法 |
JP2019527691A (ja) * | 2016-07-26 | 2019-10-03 | ティッセンクルップ インダストリアル ソリューションズ アクツィエンゲゼルシャフトThyssenKrupp Industrial Solutions AG | メタノールを製造するための方法およびシステム |
-
2023
- 2023-08-30 WO PCT/JP2023/031603 patent/WO2024048675A1/ja unknown
- 2023-09-01 TW TW112133283A patent/TW202424169A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010500362A (ja) * | 2006-08-10 | 2010-01-07 | ユニバーシティ オブ サザン カリフォルニア | 唯一の原料としての空気の中の二酸化炭素と水(水蒸気)からメタノール、ジメチルエーテル、合成炭化水素及びそれらの生成物を生産する方法 |
JP2019527691A (ja) * | 2016-07-26 | 2019-10-03 | ティッセンクルップ インダストリアル ソリューションズ アクツィエンゲゼルシャフトThyssenKrupp Industrial Solutions AG | メタノールを製造するための方法およびシステム |
JP2019156730A (ja) * | 2018-03-08 | 2019-09-19 | Jfeスチール株式会社 | メタノールの合成方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202424169A (zh) | 2024-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101807112B1 (ko) | 쉘-앤-튜브형 천연가스 개질용 반응기 및 이를 이용한 합성가스 또는 수소가스의 제조방법 | |
CA2515514C (en) | Pressure swing reforming for fuel cell systems | |
AU766490B2 (en) | Hydrogen-selective silica based membrane | |
DK3034485T3 (en) | Reaction of carbon dioxide with hydrogen using a permselective membrane | |
WO2023112800A1 (ja) | 液体燃料合成システム及び液体燃料合成方法 | |
JP5010109B2 (ja) | 水素製造装置および水素製造方法 | |
JP6405275B2 (ja) | 水素の製造方法、および水素製造システム | |
JP5061847B2 (ja) | ガスの分離方法 | |
US7897122B2 (en) | Hybrid adsorptive membrane reactor | |
US6537691B1 (en) | Container for receiving an operating means for the operation of fuel cells | |
US9981896B2 (en) | Conversion of methane to dimethyl ether | |
US9296628B2 (en) | Process for the purification of an aqueous stream coming from the Fischer-Tropsch reaction | |
WO2024048675A1 (ja) | 液体燃料製造システムおよび液体燃料の製造方法 | |
US9938217B2 (en) | Fluidized bed membrane reactor | |
JP2014000535A (ja) | 二酸化炭素の分離方法及び二酸化炭素の分離膜 | |
JP4861729B2 (ja) | 水素製造方法および水素製造装置 | |
WO2024048673A1 (ja) | 液体燃料の製造方法および液体燃料合成システム | |
WO2024048636A1 (ja) | 液体燃料製造システムおよび液体燃料の製造方法 | |
WO2024048637A1 (ja) | 液体燃料製造システムおよび液体燃料の製造方法 | |
WO2024048674A1 (ja) | 液体燃料の製造方法および液体燃料合成システム | |
Akamatsu et al. | Hydrogen Produced from Simulated Biogas Using a Membrane Reactor with a Dimethoxydimethylsilane-Derived Silica Membrane Operated under Pressure and without Sweep Gas | |
CN117157379A (zh) | 液体燃料合成系统以及液体燃料合成方法 | |
US20240270663A1 (en) | Carbon dioxide separation, collection, and utilization system and carbon dioxide separation, collection, and utilization method | |
JP4929065B2 (ja) | 選択透過膜型反応器 | |
JP2022116748A (ja) | 低級炭化水素分解方法および低級炭化水素分解装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23860437 Country of ref document: EP Kind code of ref document: A1 |