WO2024048659A1 - PCR PRIMER PAIR FOR HUMAN ALu DETECTION, PCR PROBE FOR HUMAN ALu DETECTION, PCR PRIMER AND PROBE SET FOR HUMAN ALu DETECTION, METHOD FOR DETECTING AND/OR QUANTIFYING HUMAN GENOMIC DNA, AND METHOD FOR ASSISTING PREDICTION OF PRESENCE OR ABSENCE OF RENAL CELL CARCINOMA OR PROSTATE CANCER - Google Patents

PCR PRIMER PAIR FOR HUMAN ALu DETECTION, PCR PROBE FOR HUMAN ALu DETECTION, PCR PRIMER AND PROBE SET FOR HUMAN ALu DETECTION, METHOD FOR DETECTING AND/OR QUANTIFYING HUMAN GENOMIC DNA, AND METHOD FOR ASSISTING PREDICTION OF PRESENCE OR ABSENCE OF RENAL CELL CARCINOMA OR PROSTATE CANCER Download PDF

Info

Publication number
WO2024048659A1
WO2024048659A1 PCT/JP2023/031568 JP2023031568W WO2024048659A1 WO 2024048659 A1 WO2024048659 A1 WO 2024048659A1 JP 2023031568 W JP2023031568 W JP 2023031568W WO 2024048659 A1 WO2024048659 A1 WO 2024048659A1
Authority
WO
WIPO (PCT)
Prior art keywords
human
pcr
nucleotide sequence
primer
probe
Prior art date
Application number
PCT/JP2023/031568
Other languages
French (fr)
Japanese (ja)
Inventor
英雄 明石
一幸 沼倉
伸太郎 成田
Original Assignee
国立大学法人秋田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人秋田大学 filed Critical 国立大学法人秋田大学
Publication of WO2024048659A1 publication Critical patent/WO2024048659A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer

Definitions

  • the present invention relates to a PCR primer pair for detecting human Alu, a PCR probe for detecting human Alu, a PCR primer/probe set for detecting human Alu, a method for detecting and/or quantifying human genomic DNA, and a method for detecting and/or quantifying human genomic DNA, and renal cell carcinoma or prostate cancer.
  • This invention relates to a method for assisting in predicting the presence or absence of.
  • Non-Patent Document 1 Cell-free DNA
  • Non-Patent Document 1 the size distribution of cfDNA in cancer patient plasma was investigated using a microfluidic chip and next-generation sequencing, and the results suggested that fragmented cfDNA may serve as a tumor marker for renal cell carcinoma. .
  • next-generation sequencing devices are sometimes installed in university facilities that specialize in genetic analysis, they are rarely installed in general hospitals or medical testing institutions.
  • next-generation sequence analysis requires a great deal of cost and time, so it is not realistic to use next-generation sequence analysis for general cancer diagnosis. From the above, in order to put into practical use the diagnosis of renal cell carcinoma using fragmented cfDNA as an indicator, it is necessary to develop a method that can easily and inexpensively quantify fragmented cfDNA using more general testing equipment. has been done.
  • the Alu sequence is a repetitive sequence specific to primates, and is known to exist in the human genome in more than 1 million copies, accounting for more than 10% of the human genome. Since the total length of the human genome is about 3 billion nucleotide pairs, a simple calculation shows that there is an average of 1 copy of the Alu sequence for every 3000 nucleotide pairs of human genomic DNA. Due to these characteristics, the possibility of measuring blood cfDNA concentration using the human Alu sequence quantitative PCR method (hereinafter also referred to as "Alu-qPCR") and applying it to cancer diagnosis has been shown for some time (for example, patent Literatures 1, 2, Non-Patent Literature 2). However, a method for quantifying minute amounts of cfDNA and examining its size distribution by Alu-qPCR has not been established.
  • Patent Document 3 and Non-Patent Document 3 disclose primer-probe sets that specifically amplify 63 bp and 106 bp fragments in the Alu sequence, and furthermore, by using them, the conventional technology can be improved. It has been disclosed that fragmented human genomic DNA can be specifically detected with a sensitivity of more than 1,000 times.
  • Renal cell carcinoma is the second most common urological malignant tumor after prostate cancer and bladder cancer, and its incidence is approximately 2.5 per 100,000 people, with a male to female ratio of 2 to 3. It is said that it tends to be more common in men with a score of 1.
  • the common diagnostic methods are CT, ultrasound, and MRI imaging, but it is difficult to detect because there are no characteristic early symptoms. is the current situation.
  • the problem of the present invention is to design primer pairs and probes for quantitatively measuring low-molecular-weight cfDNA for each size, and to quantify cfDNA by using the primer pairs and probes.
  • the object of the present invention is to provide a method for assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer.
  • ultra-sensitive Alu-qPCR an ultra-sensitive human genome detection method (hereinafter referred to as "ultra-sensitive Alu-qPCR") that targets the Alu sequence in the human genome (see Patent Document 3, Non-Patent Document 3). ).
  • the ultra-high-sensitivity Alu-qPCR described above is characterized in that it can accurately quantify low-molecular-weight human genomic DNA ( ⁇ 100 bp).
  • the present inventors applied the ultra-high sensitivity Alu-qPCR described above to design primers and probes that can quantify small-molecular-weight cfDNA by size, and detected human genomic DNA. and/or it has been found that it can be quantified. Furthermore, we discovered that by using a method to detect and/or quantify human genomic DNA, it is possible to use cfDNA as an indicator to assist in predicting the presence or absence of renal cell carcinoma for which no effective biomarker exists. Ta. Furthermore, they discovered that by using a method for detecting and/or quantifying human genomic DNA using the above primers and probes, it is possible to assist in predicting the presence or absence of prostate cancer using cfDNA as an indicator, and completed the present invention. did.
  • the present invention is as follows.
  • [1] For human Alu detection which is composed of the following (a) forward primer and (b) reverse primer, or the following (a') forward primer and (b) reverse primer.
  • PCR primer pair (a) A forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 1 (Alu101F20); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 1; (a') A forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 2 (Alu57F20); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 2; (b) a reverse primer consisting of the nucleotide sequence shown in SEQ ID NO: 3 (Alu237R19); or a nucleotide sequence in
  • a method for assisting in predicting the presence or absence of renal cell cancer or prostate cancer in a subject characterized by comprising the following steps (A) and (B).
  • A Quantifying the amount of human genomic DNA in a biological sample extracted from a subject by the method for detecting and/or quantifying human genomic DNA according to any one of [4] to [6] above;
  • B A step of assisting in predicting that the subject has renal cell cancer or prostate cancer when the amount of human genomic DNA quantified in step (A) is greater than or equal to a predetermined threshold;
  • a method for assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer in a subject characterized by comprising the following steps (A') and (B').
  • the primer pair and probe set of the present invention it becomes possible to specifically detect and/or measure approximately 0.1 to 10 fg of human genomic DNA. Furthermore, by using the primer pair and probe set described above, it becomes possible to detect and/or quantify human genomic DNA with high sensitivity without using next-generation sequencing. Furthermore, by using the primer pair and probe set described above, it becomes possible to predict the presence or absence of renal cell carcinoma or prostate cancer in a minimally invasive and simple manner.
  • FIG. 2 is a diagram showing the positional relationship between the Alu model sequence (SEQ ID NO: 6) and the "63 bp Alu detection primer/probe set” and the "106 bp Alu detection primer/probe set”.
  • FIG. 6 is a diagram showing the positions of the Alu model sequence (SEQ ID NO: 6), "137 bp Alu detection primer/probe set” and "181 bp Alu detection primer/probe set”.
  • FIG. 3 is a diagram showing the results of a calibration curve created based on real-time PCR using Alu144RH20 as a probe in Example 3.
  • FIG. 3 is a diagram showing the results of a calibration curve created based on real-time PCR using Alu140RH16-LNA as a probe in Example 3.
  • FIG. 4 is a diagram showing the results of a box plot of plasma cfDNA concentrations in healthy subjects and renal cell carcinoma patients in Example 4.
  • each cfDNA concentration in plasma determined with the primer/probe set that amplifies and detects 63 bp, 106 bp, and 137 bp in FIG. 5 was determined using the primer/probe set that amplifies and detects 181 bp.
  • FIG. 7 is a diagram showing the results of ROC analysis of cfDNA concentrations in plasma determined using primer-probe sets for amplifying and detecting 63 bp, 106 bp, 137 bp, and 181 bp in Example 5.
  • FIG. 7 is a diagram showing ROC analysis results for 63b/181bp, 106bp/181bp, and 137bp/181bp in Example 5.
  • the respective cfDNA concentrations in plasma determined with primer-probe sets that amplify and detect 63 bp, 106 bp, and 137 bp were compared with those determined with a primer-probe set that amplified and detected 181 bp.
  • Example 5 It is a figure showing the ROC analysis results of the results of reduction by cfDNA concentration (63bp-181bp, 106bp-181bp, 137bp-181bp). Hereinafter, "-" may be used to indicate a decrease.
  • Example 5 it is a diagram showing sensitivity, specificity, and sensitivity + specificity when sensitivity is set to 100%, >95%, >90%, >85%, >80% for 106 bp and 106 bp/181 bp. .
  • the PCR primer pair for human Alu detection of the present invention is composed of the following (a) forward primer and (b) reverse primer, or (a') forward primer and (b) reverse primer.
  • PCR primer pair for human Alu detection (a) A forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 1 (Alu101F20); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 1; (a') A forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 2 (Alu57F20); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 2; (b) a reverse primer consisting of the nucleotide sequence shown in SEQ ID NO: 3 (Alu237R19); or a nucleotide sequence in which
  • the PCR probe for detecting human Alu of the present invention has (c) the nucleotide sequence shown in SEQ ID NO: 4 (Alu140RH16-LNA); or the nucleotide sequence shown in SEQ ID NO: 4 with a deletion of 1 to 3 nucleotides;
  • the probe is not particularly limited as long as it is a probe consisting of a substituted or added nucleotide sequence; hereinafter also referred to as "the present PCR probe for detecting human Alu".
  • the PCR primer/probe set for detecting human Alu of the present invention is a PCR primer/probe set for detecting human Alu, comprising the PCR primer pair for detecting human Alu and the PCR probe for detecting human Alu, or
  • the PCR primer/probe set for human Alu detection which includes the present human Alu detection PCR primer pair and the human Alu detection PCR probe described in (c') above. Also referred to as "Alu detection PCR primer/probe set.”
  • the method of detecting and/or quantifying human genomic DNA in a test sample of the present invention includes the step of performing PCR using the above-mentioned PCR primer pair for detecting human Alu, using DNA extracted from the test sample as a template.
  • a method for detecting and/or quantifying human genomic DNA in the test sample (hereinafter also referred to as "Method 1 for detecting and/or quantifying human genomic DNA”), or the above-mentioned PCR primers and probes for detecting human Alu.
  • a method for detecting and/or quantifying human genomic DNA in the test sample includes a step of performing PCR using a set. can.
  • a method for detecting and/or quantifying human genomic DNA in other test samples of the present invention (I) Performing real-time PCR using the present human Alu detection PCR primer/probe set using the DNA extracted from the test sample as a template; (II) Performing real-time PCR under the same conditions as in step (I) above using a standard sample prepared by serially diluting a known amount of human genomic DNA as a template to create a standard curve; (III) calculating the amount of human genomic DNA in the test sample from the calibration curve;
  • a method for detecting and/or quantifying human genomic DNA in a test sample using the present PCR primer/probe set for detecting human Alu including the steps of ⁇ detecting and/or quantifying human genomic DNA'' can be mentioned. Also called method 3.
  • the method of assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer in a subject of the present invention includes (A) a biological sample extracted from a subject by the above method for detecting and/or quantifying human genomic DNA; Quantifying the amount of human genomic DNA in; (B) assisting in predicting that the subject has renal cell cancer or prostate cancer when the amount of human genomic DNA quantified in step (A) is greater than or equal to a predetermined threshold; A method for assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer in a test subject, which is characterized by comprising steps (A) and (B) (Also referred to as "Method 1 for assisting in predicting the presence or absence of cell cancer or prostate cancer").
  • Another embodiment of the method of assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer in a subject of the present invention is characterized by comprising the following steps (A') and (B'). , a method for assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer in a subject (hereinafter also referred to as "Method 2 for assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer in a subject”) ).
  • Examples include a PCR primer/probe set for detecting human Alu, which includes a probe consisting of a nucleotide sequence.
  • a primer/probe set for amplifying or detecting the 106 bp human Alu sequence the nucleotide sequence shown in SEQ ID NO: 1 (Alu101F20) or the nucleotide sequence shown in SEQ ID NO: 1 in which 1 to 3 nucleotides are deleted, substituted, or a forward primer consisting of an added nucleotide sequence, and a nucleotide sequence shown in SEQ ID NO: 10 (Alu206R20) or a nucleotide in which 1 to 3 nucleotides have been deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 10.
  • a PCR primer/probe set for detecting human Alu comprising a primer pair composed of a reverse primer consisting of a reverse primer sequence, and the present PCR probe for detecting human Alu or the PCR probe for detecting human Alu described in (c') above.
  • the amount of genomic DNA in Methods 1 and 2 for assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer in the subject is preferably the concentration of cfDNA in plasma (pg/ ⁇ l).
  • the nucleotide sequence shown in SEQ ID NO: 1 of the forward primer (a) is the forward primer disclosed in Patent Document 1 mentioned above.
  • the nucleotide sequence (Alu57F20) shown in SEQ ID NO: 2, which is the forward primer (a') was designed for the first time according to the present invention.
  • the nucleotide sequence of the forward primer (a') was designed as a nucleotide sequence that could not be detected with the default settings of primer design software Primer 3.
  • the forward primer (a') may be a forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 2 with 1 to 3 nucleotides deleted, substituted, or added.
  • the nucleotide sequence (Alu237R19) shown in SEQ ID NO: 3 of the reverse primer (b) was designed for the first time according to the present invention.
  • the nucleotide sequence shown in SEQ ID NO: 3 was designed as a nucleotide sequence that cannot be detected with the default settings of primer design software Primer 3.
  • the reverse primer (b) may be a reverse primer consisting of the nucleotide sequence shown in SEQ ID NO: 3 with 1 to 3 nucleotides deleted, substituted, or added.
  • Examples of the present PCR primer pair for human Alu detection include the combination of (a) and (b) above, and the combination of (a') and (b) above.
  • the pair of human Alu detection PCR primers in combination (a) and (b) above it becomes possible to amplify the 101st to 237th sequences in the human Alu model sequence shown in SEQ ID NO: 6.
  • the pair of human Alu detection PCR primers in combination (a') and (b) above it becomes possible to amplify sequences 57 to 237 of the human Alu model sequence.
  • Y represents C or T
  • S represents C or G
  • R represents A or G.
  • Combinations of (a) and (b) above include (1) a forward primer consisting of the nucleotide sequence (Alu101F20) shown in SEQ ID NO: 1, and a reverse primer consisting of the nucleotide sequence (Alu237R19) shown in SEQ ID NO: 3; (2) a forward primer consisting of a nucleotide sequence shown in SEQ ID NO: 1 with 1 to 3 nucleotides deleted, substituted, or added; and a reverse primer consisting of a nucleotide sequence shown in SEQ ID NO: 3; (3) a forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 1, and a reverse primer consisting of a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 3; (4) A forward primer consisting of a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucle
  • Examples include reverse primers consisting of nucleotide sequences in which nucleotides have been deleted, substituted, or added.
  • a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added is preferably a nucleotide sequence in which 1 or 2 nucleotides are deleted, substituted, or added.
  • Preferred examples include nucleotide sequences in which one nucleotide is deleted, substituted, or added.
  • Combinations of (a') and (b) above include (1) a forward primer consisting of the nucleotide sequence (Alu57F20) shown in SEQ ID NO: 2, and a reverse primer consisting of the nucleotide sequence (Alu237R19) shown in SEQ ID NO: 3; (2) A forward primer consisting of a nucleotide sequence shown in SEQ ID NO: 2 with 1 to 3 nucleotides deleted, substituted, or added, and a reverse primer consisting of a nucleotide sequence shown in SEQ ID NO: 3.
  • a forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 2
  • a reverse primer consisting of a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 3
  • a forward primer consisting of a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 2
  • Examples include reverse primers consisting of a nucleotide sequence in which nucleotides have been deleted, substituted, or added.
  • the PCR probe for detecting human Alu consisting of (c) is designed for the first time according to the present invention.
  • the probe consisting of the nucleotide sequence (Alu140RH16-LNA) shown in SEQ ID NO: 4 was designed from the viewpoint of detecting as many human targets as possible.
  • SEQ ID NO: 4 2nd guanine, 3rd guanine, 4th cytosine, 13th guanine, 14th thymine, and 15th adenine are locked nucleic acids (LNA).
  • the present PCR probe for detecting human Alu can hybridize with the 125th to 140th sequences in the human Alu model sequence shown in SEQ ID NO: 6.
  • the LNA monomer can be obtained, for example, by the synthesis method described in WO 1998/039352 pamphlet.
  • the above PCR probe for detecting human Alu contains all or a partial sequence of the Alu sequence that can hybridize under stringent conditions with the PCR probe for detecting human Alu, such as the amplification product of the above PCR primer pair for detecting human Alu. can be detected and/or quantified.
  • the above-mentioned PCR probe for detecting human Alu is preferably labeled with a labeling substance, and from the viewpoint of faster or more sensitive detection or quantification, it is preferably labeled with a fluorescent substance.
  • the labeling substances other than fluorescent substances include biotin, a complex of biotin and avidin, and enzymes such as peroxidase.
  • fluorescent substances examples include fluorescent proteins such as luciferase, as well as fluorescein isothiocyanate (FITC), 6 -Carboxyfluorescein (6-FAM), 6-carboxy-4,7,2',7'-tetrachlorofluorescein (TET), 6-carboxy-4',5'-dichloro2',7'-dimethoxyfluorescein (Preferred examples include fluorescent dyes such as Cy3, Cy5, 4,7,2',4',5,',7'-hexachloro-6-carboxyfluorescein (HEX).
  • fluorescent proteins such as luciferase, as well as fluorescein isothiocyanate (FITC), 6 -Carboxyfluorescein (6-FAM), 6-carboxy-4,7,2',7'-tetrachlorofluorescein (TET), 6-carboxy-4',5'-dichloro2',7'-dimethoxyfluorescein ( Preferred
  • the above-mentioned PCR probe for detecting human Alu is more preferably double-labeled with a fluorescent substance (reporter fluorescent dye) and a quencher substance (quencher fluorescent dye). It is particularly preferred that the 3' end of each of the 3' ends is labeled with a quencher substance (quencher fluorescent dye).
  • fluorescent substances include the aforementioned fluorescent dyes
  • quencher substances include 6-carboxytetramethylrhodamine (TAMRA) and 6-carboxy-X-rhodamine.
  • Rhodamine fluorescent dyes such as (ROX), [(4-(2-nitro-4-methyl-phenyl)-azo)-yl-((2-methoxy-5-methyl-phenyl)-azo)]-aniline (BHQ-1), [(4-(1-nitro-phenyl)-azo)-yl-((2,5-dimethoxy-phenyl)-azo)]-aniline (BHQ-2), etc.
  • 6-carboxyfluorescein (6-FAM) is used as a fluorescent substance (reporter fluorescent dye), and Iowa Black fluorescence quencher (IBFQ), [(4- Preferred examples include (2-nitro-4-methyl-phenyl)-azo)-yl-((2-methoxy-5-methyl-phenyl)-azo)]-aniline (BHQ-1).
  • the above-mentioned stringent conditions refer to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. Specifically, DNAs having an identity of 80% or more, preferably 90% or more, more preferably 95% or more, and even more preferably 100% hybridize with each other, and DNAs with lower identity hybridize with each other. Examples include conditions in which hybridization is not performed, or normal real-time PCR annealing conditions, specifically conditions in which hybridization is performed at 50°C or higher, preferably 52°C or higher, more preferably 54°C or higher, and even more preferably 56°C or higher. .
  • the PCR primer/probe set for detecting human Alu consists of the PCR primer pair for detecting human Alu, the PCR probe for detecting human Alu, or the PCR primer pair for detecting human Alu. and (c') a nucleotide sequence shown in SEQ ID NO: 5 (Alu144RH20); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 5; There is no particular restriction as long as it includes a PCR probe for detecting Alu.
  • nucleotide sequence (Alu101F20) shown in SEQ ID NO: 1 As a forward primer, it is possible to amplify and detect the 137 bp Alu sequence from position 101 to position 237 in the human Alu model sequence shown in SEQ ID NO: 6.
  • nucleotide sequence (Alu57F20) shown in SEQ ID NO: 2 As a forward primer, it is possible to amplify and detect the 181 bp Alu sequence from position 57 to position 237 in the human Alu model sequence shown in SEQ ID NO: 6.
  • human genomic DNA can be quantified by amplifying and detecting the Alu sequence.
  • the human genomic DNA to be quantified includes cfDNA.
  • Method 1 for detecting and/or quantifying human genomic DNA PCR is performed using DNA extracted from the test sample as a template and the subject PCR primer pair for human Alu detection. There is no particular restriction as long as the process is included.
  • test sample is not particularly limited as long as it can contain human genomic DNA, and may also contain DNA derived from non-human organisms in addition to human genomic DNA.
  • test samples include human biological samples, biological samples derived from non-human organisms, old samples, forensic samples, paleontological samples, etc. Among them, human cells transplanted into non-human animals Preferable examples include biological samples derived from xenograft model animals prepared in the same way and old samples derived from ancient human bones.
  • non-human animals include non-human mammals such as mice, rats, guinea pigs, dogs, rabbits, pigs, goats, and cows; rodents such as mice, rats, and guinea pigs; More preferred examples include animals.
  • the above-mentioned "human cells” may be any type of cells of human origin, such as human stem cells, human cancer cells, human somatic cells, human germ cells, etc. Particularly preferred examples include human stem cells such as stem cells, human hematopoietic stem cells, human neural stem cells, human iPS cells, human ES cells, and human somatic cell-derived embryonic stem cells.
  • old sample refers to "unfresh sample” that has been used for several days to several million years under various environments
  • the lower limit of the elapsed time is, for example, 2 days, 1 week
  • Examples include 2 weeks, 1 month, 3 months, 1 year, 3 years, etc.
  • the upper limit of elapsed time is 5 years, 10 years, 20 years, 40 years, 100 years, 200 years, 400 years, 600 years. , 5,000 years, 10,000 years, etc.
  • an old sample derived from ancient human bones refers to a sample derived from human bones several years ago from the time when human DNA was detected and/or quantified; and/or several years to 2 million years ago, 500 to 10,000 years ago, 100 to 10,000 years ago, 200 to 10,000 years ago, 300 to 10,000 years ago, 400 to 10,000 years ago, 50-5000 years ago, 100-5000 years ago, 200-5000 years ago, 300-5000 years ago, 400-5000 years ago, 50-600 years ago, 100-600 years ago, 200-600 years ago, 300- Examples include samples derived from human bones from 600 years ago and 400 to 600 years ago.
  • methods for extracting human genomic DNA from the above test samples include “proteinase K/phenol extraction method,” “proteinase K/phenol/chloroform extraction method,” “alkali lysis method,” “boiling method,” and “magnetic bead method.” ”, “spin column method”, and other known methods are not particularly limited.
  • the above method preferably includes an RNA decomposition step using RNase, and more preferably a method including an RNA decomposition step using RNase A and RNase T.
  • RNA degradation treatment is performed using RNase A and RNase T1 before the proteinase K treatment step in the "proteinase K/phenol extraction method”. be able to.
  • the PCR in the above-mentioned "Method 1 for detecting and/or quantifying human genomic DNA” is not particularly limited as long as it is a PCR using the above-mentioned PCR primer pair for detecting human Alu, and the PCR amplification product is detected at the end of the cycle. It may be an end-point PCR method in which the amount of PCR amplified products is monitored in real time, or a real-time PCR method in which the increase in PCR amplification products is monitored in real time. As the endpoint PCR method, a digital PCR method can be mentioned.
  • the reaction solution after PCR is directly subjected to conventional gel electrophoresis using agarose, etc., and the DNA fragments after electrophoresis are stained with ethidium bromide, fluorescent reagents, etc.
  • An example of how to detect this can be given below.
  • a non-specific DNA intercalating dye is added to the PCR reaction solution in advance, and the double-stranded DNA of the amplified product is detected over time. The law can be exemplified.
  • SYBR registered trademark
  • SYBR registered trademark
  • Green II Green II
  • SYBR registered trademark
  • Gold Gold
  • BEBO YO-PRO-1
  • LCGreen registered trademark
  • SYTO-9 SYTO-13
  • SYTO-16 SYTO-60
  • SYTO-62 SYTO-64
  • SYTO-82 POPO-3
  • TOTO-3 BOBO-3
  • TO-PRO-3 YO-PRO-1
  • PicoGreen registered trademark
  • Non-specific DNA intercalating dyes such as , SYTOX Orange, and EvaGreen (registered trademark)
  • SYBR registered trademark
  • EvaGreen registered trademark
  • Method 2 for detecting and/or quantifying human genomic DNA uses the PCR primer/probe set for detecting human Alu in place of the PCR primer pair for detecting human Alu, and specifically, the method described above ( A PCR probe for detecting human Alu consisting of c) or (c') is used.
  • a PCR probe for detecting human Alu consisting of c) or (c') is used.
  • the type of PCR probe for human Alu detection consisting of (c) or (c') used here is not particularly limited, and examples thereof include hydrolysis probes, molecular beacon probes, cycling probes, Eprobe (registered trademark), and Qprobe.
  • hydrolysis probe can be preferably mentioned.
  • a hydrolysis probe is usually a linear oligonucleotide in which the 5' end of the nucleic acid probe is modified with a fluorescent substance (reporter fluorescent dye) and the 3' end is modified with a quencher.
  • a molecular beacon probe is usually an oligonucleotide that can take a stem-loop structure, with the 5' end of the nucleic acid probe modified with a fluorescent substance (reporter fluorescent dye) and the 3' end modified with a quencher. .
  • Cycling probes are usually chimeric oligonucleotides consisting of RNA and DNA, with one end modified with a fluorescent substance (reporter fluorescent dye) and the other end modified with a quencher.
  • Eprobe is an artificial nucleic acid that usually has two fluorescent dyes in a thymine nucleotide, and when it is in a single-stranded state that is not bound to a target, fluorescence is suppressed, and when it is bound to a target, it emits fluorescence.
  • Qprobe is usually an oligonucleotide with cytosine at the end, and the cytosine at the end is labeled with a fluorescent substance, and is also called a guanine quenching probe.
  • a scorpion probe is an oligonucleotide that can take a hairpin loop structure, with one end of the nucleic acid probe being modified with a fluorescent substance (reporter fluorescent dye) and the 3' end being modified with a quencher.
  • a hybridization-probe consists of a donor probe consisting of an oligonucleotide whose 3' end is modified with a fluorescent dye, and an acceptor probe consisting of an oligonucleotide whose 5' end is modified with a fluorescent dye. When bound to, both fluorescent dyes come into close proximity, and the fluorescent dye of the acceptor probe is excited by the fluorescence of the fluorescent dye of the donor probe, causing it to emit light.
  • the above PCR can be performed according to the method described in literature such as Molecular cloning, A laboratory manual, etc. It can also be carried out using commercially available PCR kits such as Kit (manufactured by TaKaRa) and TaqMan (registered trademark) Real-Time PCR Master Mixes (manufactured by Thermo Fisher Scientific) according to the instructions attached to the product.
  • Kit manufactured by TaKaRa
  • TaqMan registered trademark Real-Time PCR Master Mixes
  • various reagents necessary for the PCR reaction may be used. can.
  • Such reagents include enzymes that polymerize nucleic acids (e.g., polymerases), substances that serve as materials for nucleic acids (e.g., dNTPs), buffers for nucleic acid amplification reactions (e.g., components with a buffering effect such as Tris-Cl, and Tween 20, etc.).
  • enzymes that polymerize nucleic acids e.g., polymerases
  • substances that serve as materials for nucleic acids e.g., dNTPs
  • buffers for nucleic acid amplification reactions e.g., components with a buffering effect such as Tris-Cl, and Tween 20, etc.
  • buffers for nucleic acid amplification reactions e.g., components with a buffering effect such as Tris-Cl, and Tween 20, etc.
  • Mg 2+ surfactants, etc.
  • Mg 2+ surfactants, etc.
  • nucleic acid amplification device When performing the above PCR, a commercially available nucleic acid amplification device can be used depending on the type of nucleic acid amplification reaction used, and in particular, a device capable of measuring probe signals (preferably fluorescent signals) can be used.
  • probe signals preferably fluorescent signals
  • a preferred example is a nucleic acid amplification device.
  • real-time PCR devices capable of both amplifying nucleic acids and measuring fluorescent signals include Applied Biosystems' 7500 real-time PCR instrument, Bio-RAD's CFX96, and Roche's Lightcycler 480. Can be done.
  • steps (I) and (II) may be performed in the order of step (I) followed by step (II), or if step (II) is followed by step (II).
  • steps (I) and (II) may be performed in the order of step (I) followed by step (II), or if step (II) is followed by step (II).
  • step (I) and step (II) may be carried out simultaneously, it is preferable that step (I) and step (II) are carried out simultaneously.
  • the above step (III) is carried out after carrying out steps (I) and (II).
  • the "standard sample” is not particularly limited as long as it is a standard sample prepared by serially diluting a known amount of human genomic DNA, but the amount of human genomic DNA added to each tube for PCR reaction is
  • a standard sample prepared to have a concentration in the range of 1 fg to 10 ng, preferably 0.1 fg to 10 ng, more preferably 0.01 fg to 10 ng can be mentioned.
  • the above-mentioned "standard sample” may further contain, in addition to human genomic DNA, genomic DNA derived from a non-human organism that may be included in the test sample.
  • human genomic DNA contained in the above-mentioned "standard sample” may be fragmented depending on the type of the above-mentioned “test sample”, for example, it may be fragmented into an appropriate size in the range of 20 kbp to 100 bp. human genomic DNA can be used.
  • the method of "creating a standard curve” is, for example, by plotting the intensity level of the fluorescence signal obtained by real-time PCR using the above standard sample as a template against the amount of human genomic DNA. and a method in which the Ct value of the fluorescence signal obtained by real-time PCR using the above-mentioned standard sample as a template is plotted against the amount of human genomic DNA.
  • Ct value means the cycle number at which the amplification curve and the threshold intersect in real-time PCR, and when the amount of fluorescence derived from the generation of PCR amplification products reaches a certain amount (threshold). represents the number of cycles.
  • the Ct value decreases as the amount of target DNA initially contained in the sample increases, and conversely increases as the amount of target DNA contained in the sample decreases.
  • the amount of human genomic DNA contained in the test sample can be calculated by comparing the intensity level or Ct value of the fluorescent signal obtained by real-time PCR of the test sample with the above-mentioned standard curve.
  • kits for detecting and/or quantifying human genomic DNA may be provided with the above-mentioned PCR primer pair for detecting human Alu and/or PCR probe for detecting human Alu.
  • this kit may also contain attached documents such as instruction manuals.
  • the kit of the present invention further includes human genomic DNA for use as a standard sample, and non-human organism-derived DNA for use as a negative control (e.g., mouse genomic DNA, rat genomic DNA, Guinea pig genomic DNA, etc.). You can leave it there.
  • biological samples include blood, serum, and plasma. , saliva, urine, etc.
  • human genomic DNA examples include cfDNA and exosome DNA. It is desirable to determine the concentration of cfDNA in plasma.
  • Known methods can be used to obtain plasma; for example, blood is collected from a subject, centrifuged at 3,000 rpm for 10 minutes, and the supernatant further centrifuged at 12,000 rpm for 15 minutes. can be mentioned.
  • the above threshold value can be determined in advance based on the amount of genomic DNA extracted from biological samples of healthy subjects and renal cell carcinoma patients or prostate cancer patients.
  • the amount of genomic DNA is preferably 166 bp or less, more preferably 63 bp, 106 bp, or 137 bp, depending on the concentration of cfDNA in plasma (pg/ ⁇ l) determined with a primer/probe set that amplifies or detects a 137 bp human Alu sequence. or a combination of these.
  • the concentration of cfDNA in the plasma is determined using a value converted by a predetermined transformation, such as square root transformation, exponential transformation, logarithmic transformation, angular transformation, probit transformation, reciprocal transformation, or power transformation. Alternatively, these converted values may be used in combination for the concentration of cfDNA.
  • the above threshold value can be calculated using a median value, an average value, an AUC (Area under curve) value based on ROC (Receiver Operating Characteristic) curve analysis, a value using the distance from the upper left corner, and a Youden index.
  • the above threshold value is calculated by including the concentration of cfDNA in plasma (pg/ ⁇ l) as well as indicators such as age, body mass index (BMI), weight, gender, medical history, drug prescription history, treatment history, etc. Good too.
  • the threshold value may be determined by adding, subtracting, multiplying or dividing an arbitrary value to the cfDNA concentration in plasma determined with a primer/probe set that amplifies and detects a 63 bp, 106 bp, or 137 bp human Alu sequence.
  • the concentration of cfDNA in plasma determined with a primer/probe set for amplifying and detecting human Alu of a predetermined length is determined using a primer/probe set for amplifying and detecting human Alu of a predetermined length.
  • the threshold value may be calculated using the AUC value based on the value subtracted by the cfDNA concentration in the plasma, the value using the distance from the upper left corner, and the Youden index.
  • the AUC value serving as the threshold value is, for example, 0.7 or more, preferably 0.75 or more, more preferably 0.8 or more, even more preferably 0.84 or more, even more preferably 0.9 or more, and most preferably 0. .92 or higher.
  • the primer/probe set for amplifying and detecting the 181 bp human Alu includes the nucleotide sequence shown in SEQ ID NO: 2 (Alu57F20), or deletions or substitutions of 1 to 3 nucleotides in the nucleotide sequence shown in SEQ ID NO: 2, or a forward primer consisting of an added nucleotide sequence, and a nucleotide sequence shown in SEQ ID NO: 3 (Alu237R19) or a nucleotide in which 1 to 3 nucleotides have been deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 3.
  • a PCR primer/probe set for detecting human Alu comprising a primer pair composed of a reverse primer consisting of a reverse primer sequence, and the present PCR probe for detecting human Alu or the PCR probe for detecting human Alu described in (c') above. can be mentioned.
  • the stage of renal cell carcinoma or prostate cancer in the test subject may be stage 0, stage I, stage II, stage III, or stage IV according to the TNM classification of the International Union against Cancer (UICC), but stage III is preferable. , or stage IV.
  • UCC International Union against Cancer
  • the amount of human genomic DNA in the biological sample extracted from the subject is greater than or equal to a predetermined threshold, it is possible to assist in predicting that the subject has renal cell cancer or prostate cancer. Conversely, when the amount of human genomic DNA in a biological sample extracted from a subject is less than a predetermined threshold, it can be assisted in predicting that the subject does not have renal cell cancer or prostate cancer.
  • genomic DNA extracted from biological samples of renal cell carcinoma patients or prostate cancer patients with different degrees of malignancy especially 63bp, 106bp, and 137bp human Alu sequences in plasma determined with primer-probe sets that amplify or detect human Alu sequences.
  • Setting a threshold based on the concentration of cfDNA (pg/ ⁇ l) can also assist in predicting the malignancy of renal cell carcinoma or prostate cancer in a subject.
  • primer/probe sets for amplifying and detecting human Alu sequences of 63 bp, 106 bp, 137 bp, and 181 bp are referred to as "63 bp Alu detection primer/probe set” and "106 bp Alu detection primer/probe set,” respectively. ⁇ Probe set”, "137 bp Alu detection primer/probe set”, "181 bp Alu detection primer/probe set”.
  • Alu detection primer/probe set Forward primer (Alu212F18): GGCGGAGGTTGCAGTGAG (SEQ ID NO: 7) Reverse primer (Alu274R18): GTCTCGCTCTGTCGCCCA (SEQ ID NO: 8) Probe (antisense) (Alu248RH18): TGCAGTGGCGCGATCTCG (SEQ ID NO: 9)
  • Figure 1 shows the relationship between the Alu model sequence (SEQ ID NO: 6) and each primer and probe.
  • Example 1 Design of new primers
  • Two new primer-probe sets were designed. Note that the reverse primers for 137 bp and 181 bp detection have a common sequence, and the forward primers have different sequences (FIG. 2). Further, the probe sequence (Alu144RH20) is a common sequence for 106 bp, 137 bp, and 181 bp detection.
  • Example 2 Improvement of probe (Alu144RH20)
  • the inventors used next-generation sequencing to analyze the amplified sequences using the forward primer (Alu101F20) and reverse primer (Alu206R20) designed so far.
  • Table 1 shows the number of sequences that match Alu101F20, Alu206R20, and the probe (Alu144RH20) among the total number of 574,485 reads (168,980 types).
  • the analysis results revealed that there were few sequences that matched the probe (Alu144RH20), and only 1.6% (7335/457560) of the sequences amplified by both primer sequences had completely matching sequences. This number was smaller than expected based on Blast analysis of the database.
  • LNA is an artificial nucleic acid cross-linked with 2'-O,4'-C methylene
  • S/N ratio signal/noise ratio
  • Table 2 shows the target types and number of targets in next-generation sequence data when the base length is shortened.
  • the probe (Alu144RH20; SEQ ID NO: 5) described by the present inventor in the above-mentioned Patent Document 1 is a 20 base (complementary strand) TaqMan type probe starting from the 125th position of the Alu model sequence shown in SEQ ID NO: 6.
  • Alu140RH16-LNA By increasing the number of bases to 16 bases, the number of targets increases approximately 3 to 4 times, so Alu140RH16-LNA was produced (SEQ ID NO: 4).
  • Alu140RH16-LNA such a probe may be referred to as "Alu140RH16-LNA.”
  • the 2nd to 4th "+G+G+C" and the 13th to 15th "+G+T+A" are LNAs.
  • Probe Alu140RH16-LNA: C+G+G+CTAATTTTT+G+T+AT (SEQ ID NO: 4)
  • probe Alu140RH16-LNA showed a significantly faster rise in cycle number, and the effect of increasing the number of targets was observed.
  • the saturation point of the trend is high, and it appears that detection can be performed at a faster number of cycles before the inhibitory substance (amplified nucleic acid) accumulates.
  • the specificity is higher, the Tm value is increased by LNA, so the probe binds stably, and the shorter bases allow for faster binding, resulting in a smoother amplification curve and a lower value. It is thought that reliability has improved.
  • Example 3 Confirmation of the sensitivity and specificity of the primer/probe set of the present invention
  • a probe set and the probe designed in Example 2 (Alu140RH16-LNA) were prepared.
  • the Alu144RH20 probe was labeled at the 5' end with FAM and at the 3' end with BHQ1.
  • the Alu140RH16-LNA probe was labeled at the 5' end with FAM and at the 3' end with IBFQ as a quenching label.
  • a 63 bp Alu detection primer/probe set and a 106 bp Alu detection primer/probe set described in the "Conventional Primer/Probe Set" column were similarly prepared. That is, four types of primer/probe sets (63 bp, 106 bp, 137 bp, and 181 bp Alu detection primer/probe sets) were used in this experiment.
  • Alu144RH20 was used in the data shown in FIG. 3 described later, and Alu140RH16-LNA was used in the data shown in FIG. 4.
  • a standard sample containing only fragmented human genomic DNA serially diluted 10 times from 10 fg/ ⁇ L to 1 ng/ ⁇ L was used.
  • the human genome was fragmented using Covaris DNA Shearing System M220 (Covaris).
  • Human genome quantification was performed using Qubit 3.0 Fluorometer (Thermo Fisher Scientific).
  • a 10-fold dilution series was prepared from 10 ng human genome using Easy Dilution (Takara Bio Inc.).
  • PCR samples were prepared as follows using each primer/probe set and the above template.
  • the template and sample were prepared using low-adsorption tubes and chips so as not to lose trace amounts of DNA.
  • Real-time PCR was performed on the PCR sample prepared as described above using LightCycler 480 (Roche). The PCR reaction was performed after heat denaturation at 95°C for 10 minutes, followed by 5 cycles of 30 seconds at 95°C, 4 minutes 30 seconds at 56°C, and 30 seconds at 72°C, followed by 30 seconds at 95°C. A cycle of 30 seconds at 56°C and 30 seconds at 72°C was repeated 45 times.
  • the analysis was performed using the Fit point method using LightCycler (registered trademark) 480 Software release 1.5.0.
  • FIG. 3 shows the results of a calibration curve created based on real-time PCR.
  • Example 4 Measurement of plasma cfDNA concentration in healthy subjects and cancer patients Using the Alu detection primer/probe sets of 63 bp, 106 bp, 137 bp, and 181 bp used to create the calibration curve in Example 3, Alu detection for each size was performed. - cfDNA concentrations in plasma from healthy subjects and renal cell carcinoma patients were quantified by qPCR. As probes, Alu248R18 was used in the case of 63 bp, Alu144RH20 was used in the case of 106 bp, and Alu140RH16-LNA was used in the cases of 137 bp and 181 bp.
  • a primer pair that amplifies 63 bp will amplify a fragment of 63 bp or more.
  • a primer pair that amplifies 106 bp will amplify a fragment of 106 bp or more
  • a primer pair that amplifies 137 bp will amplify a fragment of 137 bp or more
  • a primer pair that amplifies 181 bp will amplify a fragment of 181 bp or more. will be amplified.
  • a primer pair that amplifies 63 bp cannot amplify a fragment of 62 bp or less.
  • a primer pair that amplifies 106 bp cannot amplify a fragment of 105 bp or less
  • a primer pair that amplifies 137 bp cannot amplify a fragment of 136 bp or less
  • a primer pair that amplifies 181 bp cannot amplify a fragment of 180 bp or less. This means that it cannot be amplified.
  • Samples were 26 healthy individuals (all separate individuals), 20 renal cell carcinoma patients (15 individuals, 5 had their blood drawn for the second time at different times) for measurements of 63bp and 131bp, and kidney samples for measurements of 106bp and 181bp.
  • Blood was collected from a total of 34 cell carcinoma patients (23 individuals, 7 had their blood drawn for the second time on different dates and times, and 2 had their blood drawn for the third time on different dates and times), centrifuged at 3,000 rpm for 10 minutes, and the supernatant was further collected. Plasma was obtained by centrifugation at 12,000 rpm for 15 minutes.
  • cfDNA was extracted (50 ⁇ l) from the obtained 200 ⁇ L of plasma using magLEAD12gC (manufactured by Precision System Sciences). The extracted cfDNA was stored at -80°C until measurement. Alu-qPCR (LightCycler 480: manufactured by Roche Diagnostics) was performed using 1 ⁇ l of the mixture.
  • FIG. 5 shows the results of a box plot of the cfDNA concentration in plasma. Further, FIG. 6 shows the results of dividing the measured values of 63 bp, 106 bp, and 137 bp (plasma cfDNA concentration: pg/ ⁇ l) in FIG. 5 by the measured value of 181 bp.
  • ROC Receiveiver Operating Characteristic analysis Based on the results of plasma cfDNA concentration in Example 4, ROC analysis was performed to visualize the effectiveness of distinguishing between healthy subjects and cancer patients and to set a threshold value. went.
  • Figure 7 shows the ROC analysis results for each cfDNA concentration in plasma determined using primer/probe sets that amplify and detect 63bp, 106bp, 137bp, and 181bp. The analysis results are shown in FIG. 8, and the ROC analysis results for 63bp-181bp, 106bp-181bp, and 137bp-181bp are shown in FIG.
  • the cfDNA concentration in each graph is as described at the bottom of each graph.
  • the results of ROC analysis of plasma cfDNA concentration determined using primer/probe sets that amplify and detect 63bp, 106bp, and 137bp show that the AUC (Area under curve) values are all 0.7 or higher, especially for 106bp. It was a high value of 0.85 or more.
  • the ROC analysis results for 63bp/181bp, 106bp/181bp, and 137bp/181bp all have AUC values of 0.8 or higher, and 63bp/181bp and 106bp/181bp have particularly high values of 0.9 or higher.
  • Example 6 Threshold value setting for cancer determination Based on the results of Example 5, if the threshold value is set to a value that allows 100% identification of patients, (i) From Figure 7, plasma determined with a primer/probe set that amplifies and detects 106 bp.
  • the threshold value for the cfDNA concentration in the medium can be set to 5.3 pg/ ⁇ l, and (ii) the threshold value for 106 bp/181 bp can be set to 2.71 according to FIG.
  • the threshold, sensitivity, specificity, and sensitivity + specificity when the sensitivity is 100%, >95%, >90%, >85%, >80% for 106bp, 106bp/181bp, and 106bp-181bp, respectively. It is shown in FIG. From FIG. 10, it was confirmed that sensitivity + specificity increases by setting the sensitivity to >95%.
  • FIG. 11 shows the sensitivity, specificity, and sensitivity+specificity when both the 106 bp and 106 bp/181 bp thresholds are satisfied simultaneously.
  • Example 7 Application to prostate cancer
  • the 106bp, 106bp/181bp, and 106bp-181bp of healthy individuals calculated in Example 5 were applied to prostate cancer patients.
  • Plasma was obtained from three prostate cancer patients by the method described in Example 4.
  • 50 ⁇ l of cfDNA was extracted, and the cfDNA concentration (pg/ ⁇ l) in the plasma was examined by Alu-qPCR using a primer/probe set for amplifying and detecting 106 bp and 181 bp, respectively.
  • the results are shown in Table 4.
  • threshold values for 106 bp, 106 bp/181 bp, and 106 bp-181 bp were determined by the ROC analysis described in Example 5 based on the plasma cfDNA concentrations of 106 bp and 181 bp of the above-mentioned healthy subjects and the above-mentioned prostate cancer patients.
  • Example 8 Application to monitoring after treatment in prostate cancer The concentration of cfDNA in plasma was investigated in monitoring after hormone therapy in prostate cancer patients.
  • Leuplin PRO Takeda Pharmaceutical Co., Ltd.
  • Zytiga Janssen Pharma Co., Ltd.
  • 50 ⁇ l of cfDNA was extracted, and the cfDNA concentration (pg/ ⁇ l) in plasma was examined by Alu-qPCR using primer and probe sets for amplifying and detecting 106 bp and 181 bp.
  • 106bp/181bp and 106bp-181bp were determined based on the plasma cfDNA concentrations of 106bp and 181bp.
  • both of the two prostate cancer patients six months after administration were patients in whom the cancer treatment effect was confirmed based on the PSA value of the prostate cancer marker.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention addresses the problem of providing a method for designing a primer pair and a probe for quantitatively measuring low-molecular cfDNA by size, quantifying cfDNA by using the primer pair and the probe, and assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer. Prepared is a PCR primer pair for human Alu detection composed of the following (a) or (a') forward primer, and (b) reverse primer. (a) A forward primer comprising a nucleotide sequence represented by SEQ ID NO: 1 or 2; (a') a forward primer comprising a nucleotide sequence (Alu57F20) represented by SEQ ID NO: 2, or a nucleotide sequence represented by SEQ ID NO: 2 in which 1-3 nucleotides are deleted, substituted, or added; and (b) a reverse primer comprising a nucleotide sequence represented by SEQ ID NO: 3.

Description

ヒトAlu検出用PCRプライマー対、ヒトAlu検出用PCRプローブ、ヒトAlu検出用PCRプライマー・プローブセット、ヒトゲノムDNAを検出及び/又は定量する方法、及び腎細胞癌又は前立腺癌の有無の予測を補助する方法PCR primer pair for human Alu detection, PCR probe for human Alu detection, PCR primer/probe set for human Alu detection, method for detecting and/or quantifying human genomic DNA, and assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer Method
 本発明はヒトAlu検出用PCRプライマー対や、ヒトAlu検出用PCRプローブや、ヒトAlu検出用PCRプライマー・プローブセットや、ヒトゲノムDNAを検出及び/又は定量する方法や、及び腎細胞癌又は前立腺癌の有無の予測を補助する方法に関する。 The present invention relates to a PCR primer pair for detecting human Alu, a PCR probe for detecting human Alu, a PCR primer/probe set for detecting human Alu, a method for detecting and/or quantifying human genomic DNA, and a method for detecting and/or quantifying human genomic DNA, and renal cell carcinoma or prostate cancer. This invention relates to a method for assisting in predicting the presence or absence of.
 細胞遊離DNA(cell-free DNA:cfDNA)は、細胞の死滅又は破壊により抹消血中に放出される微量のDNAであり、癌との関連が古くから示唆されていた。たとえば、cfDNAは腎細胞癌の腫瘍マーカーとして既に注目されている(例えば、非特許文献1)。非特許文献1では、マイクロ流体チップ及び次世代シーケンスを用いて、癌患者血漿中のcfDNAのサイズ分布を調べた結果、断片化cfDNAが腎細胞癌の腫瘍マーカーとなる可能性が示唆されている。 Cell-free DNA (cfDNA) is a trace amount of DNA released into peripheral blood when cells die or are destroyed, and its association with cancer has long been suggested. For example, cfDNA has already attracted attention as a tumor marker for renal cell carcinoma (for example, Non-Patent Document 1). In Non-Patent Document 1, the size distribution of cfDNA in cancer patient plasma was investigated using a microfluidic chip and next-generation sequencing, and the results suggested that fragmented cfDNA may serve as a tumor marker for renal cell carcinoma. .
 しかし現状では、このような知見を癌診断の臨床現場に応用することは技術的に困難である。なぜなら、現在のところcfDNAのサイズ分布の解析をするためには、次世代シーケンス等によりゲノム情報の網羅的な解析を行うしか方法がないが、このような解析には非常に高価な専用の装置とその操作及び解析を行う専門家が必要である。次世代シーケンス装置は遺伝子解析を専門とする大学施設等には設置されていることもあるが、一般の病院や医療検査機関では配備されていることは殆どない。また、次世代シーケンス解析には多大なコストと時間がかかるため、一般の癌診断として次世代シーケンス解析を使用することは現実的ではない。以上のことから、断片化cfDNAを指標とする腎細胞癌診断の実用化のためには、より一般的な検査装置を用いて、簡便かつ安価に断片化cfDNAを定量できる方法の開発が必要とされている。 However, at present, it is technically difficult to apply such knowledge to the clinical setting of cancer diagnosis. This is because, at present, the only way to analyze the size distribution of cfDNA is to comprehensively analyze genome information using next-generation sequencing, but such analysis requires extremely expensive specialized equipment. It requires experts to operate and analyze it. Although next-generation sequencing devices are sometimes installed in university facilities that specialize in genetic analysis, they are rarely installed in general hospitals or medical testing institutions. Furthermore, next-generation sequence analysis requires a great deal of cost and time, so it is not realistic to use next-generation sequence analysis for general cancer diagnosis. From the above, in order to put into practical use the diagnosis of renal cell carcinoma using fragmented cfDNA as an indicator, it is necessary to develop a method that can easily and inexpensively quantify fragmented cfDNA using more general testing equipment. has been done.
 ここで、Alu配列は霊長類に特異的な反復配列であり、ヒトゲノム中に100万コピー以上存在し、ヒトゲノムの10%以上を占めることが知られている。ヒトゲノムの全長は約30億ヌクレオチド対であることから、単純に計算すると、ヒトゲノムDNA3000ヌクレオチド対につき平均1コピーのAlu配列が存在していることになる。このような特徴から、ヒトAlu配列の定量PCR方法(以下、「Alu-qPCR」ともいう)により血中cfDNA濃度を測定し癌診断に応用する可能性は以前から示されていた(例えば、特許文献1、2、非特許文献2)。しかしながら、Alu-qPCRにより微量のcfDNAを定量してサイズ分布を調べる方法は確立されていなかった。 Here, the Alu sequence is a repetitive sequence specific to primates, and is known to exist in the human genome in more than 1 million copies, accounting for more than 10% of the human genome. Since the total length of the human genome is about 3 billion nucleotide pairs, a simple calculation shows that there is an average of 1 copy of the Alu sequence for every 3000 nucleotide pairs of human genomic DNA. Due to these characteristics, the possibility of measuring blood cfDNA concentration using the human Alu sequence quantitative PCR method (hereinafter also referred to as "Alu-qPCR") and applying it to cancer diagnosis has been shown for some time (for example, patent Literatures 1, 2, Non-Patent Literature 2). However, a method for quantifying minute amounts of cfDNA and examining its size distribution by Alu-qPCR has not been established.
 こうしたなか、本発明者らは、以前に独自クライテリアにより設計したプライマー・プローブセットを用いた、非常に高感度なAlu-qPCRを開発した(特許文献3及び非特許文献3)。具体的には、特許文献3及び非特許文献3では、Alu配列中の63bp及び106bpの断片を特異的に増幅するプライマー・プローブセットが開示されており、さらに、それらを用いることで従来技術の千倍以上の感度で断片化されたヒトゲノムDNAを特異的に検出可能であることが開示されている。 Under these circumstances, the present inventors developed an extremely sensitive Alu-qPCR using a primer/probe set previously designed based on original criteria (Patent Document 3 and Non-Patent Document 3). Specifically, Patent Document 3 and Non-Patent Document 3 disclose primer-probe sets that specifically amplify 63 bp and 106 bp fragments in the Alu sequence, and furthermore, by using them, the conventional technology can be improved. It has been disclosed that fragmented human genomic DNA can be specifically detected with a sensitivity of more than 1,000 times.
国際公開第2016/028316号パンフレットInternational Publication No. 2016/028316 pamphlet 国際公開第2006/128192号パンフレットInternational Publication No. 2006/128192 pamphlet 特許第6892695号公報Patent No. 6892695
 断片化した所定のサイズのcfDNAを血液試料などから高感度で検出できれば、それらを指標とする癌の診断などに応用が可能となる。ここで、腎細胞癌は、泌尿器科系悪性腫瘍の中では、前立腺癌、膀胱癌に次いで多い癌であり、その発症頻度は人口10万人あたり2.5人程度、男女比は2~3:1で男性に多い傾向があるといわれている。腎細胞癌には有効な腫瘍マーカーがなく、CT検査、超音波(エコー)検査、MRI検査の画像検査での診断方法が一般的であるが、特徴的な初期症状もないため発見は難しいのが現状である。これまで微量のcfDNAの正確な定量法は存在せず、特に担癌患者で増加の可能性が示唆される低分子cfDNAのサイズ分布に着目した研究は殆ど進んでいなかった。さらに、前立腺癌についても腫瘍マーカーとして前立腺特異的抗原(PSA)等が用いられているが特異性が低いなどの問題があるほか、確定診断には前立腺生検が行われている。このため、より低侵襲で患者の負担が少ない血液検査により診断可能な手法の開発が強く求められていた。 If fragmented cfDNA of a predetermined size can be detected with high sensitivity from blood samples etc., it will be possible to apply it to cancer diagnosis using them as indicators. Renal cell carcinoma is the second most common urological malignant tumor after prostate cancer and bladder cancer, and its incidence is approximately 2.5 per 100,000 people, with a male to female ratio of 2 to 3. It is said that it tends to be more common in men with a score of 1. There are no effective tumor markers for renal cell carcinoma, and the common diagnostic methods are CT, ultrasound, and MRI imaging, but it is difficult to detect because there are no characteristic early symptoms. is the current situation. Until now, there has been no accurate method for quantifying trace amounts of cfDNA, and in particular, there has been little progress in research focusing on the size distribution of low-molecular-weight cfDNA, which is likely to increase in cancer-bearing patients. Furthermore, prostate-specific antigen (PSA) and the like are used as tumor markers for prostate cancer, but there are problems such as low specificity, and a prostate biopsy is performed for definitive diagnosis. For this reason, there has been a strong demand for the development of a diagnostic method using blood tests that is less invasive and less burdensome to the patient.
 そこで、本発明の課題は、低分子cfDNAをサイズ毎に定量測定するプライマー対及びプローブを設計することや、そのプライマー対及びプローブを用いることで、cfDNAを定量することや、cfDNAの定量に基づいて腎細胞癌や前立腺癌の有無の予測を補助する方法を提供することにある。 Therefore, the problem of the present invention is to design primer pairs and probes for quantitatively measuring low-molecular-weight cfDNA for each size, and to quantify cfDNA by using the primer pairs and probes. The object of the present invention is to provide a method for assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer.
 本発明者らは、2016年にヒトゲノム中のAlu配列を標的とした超高感度ヒトゲノム検出方法(以下、「超高感度Alu-qPCR」という)を開発した(特許文献3、非特許文献3参照)。上記超高感度Alu-qPCRは低分子ヒトゲノムDNA(<100bp)を正確に定量できるという特徴を有する。 In 2016, the present inventors developed an ultra-sensitive human genome detection method (hereinafter referred to as "ultra-sensitive Alu-qPCR") that targets the Alu sequence in the human genome (see Patent Document 3, Non-Patent Document 3). ). The ultra-high-sensitivity Alu-qPCR described above is characterized in that it can accurately quantify low-molecular-weight human genomic DNA (<100 bp).
 本発明者らは、上記課題を解決すべく鋭意検討するなかで、上記超高感度Alu-qPCRを応用して低分子cfDNAをサイズ毎に定量可能なプライマー及びプローブを設計し、ヒトゲノムDNAを検出及び/又は定量できることを見出した。さらに、ヒトゲノムDNAを検出及び/又は定量する方法を用いることにより、有効なバイオマーカーが存在しない腎細胞癌においてcfDNAを指標として腎細胞癌の有無の予測を補助することが可能であることを見出した。さらに、上記プライマー及びプローブを用いてヒトゲノムDNAを検出及び/又は定量する方法を用いることにより、cfDNAを指標として前立腺癌の有無の予測を補助することが可能であることを見出し、本発明を完成した。 In the course of intensive study to solve the above problems, the present inventors applied the ultra-high sensitivity Alu-qPCR described above to design primers and probes that can quantify small-molecular-weight cfDNA by size, and detected human genomic DNA. and/or it has been found that it can be quantified. Furthermore, we discovered that by using a method to detect and/or quantify human genomic DNA, it is possible to use cfDNA as an indicator to assist in predicting the presence or absence of renal cell carcinoma for which no effective biomarker exists. Ta. Furthermore, they discovered that by using a method for detecting and/or quantifying human genomic DNA using the above primers and probes, it is possible to assist in predicting the presence or absence of prostate cancer using cfDNA as an indicator, and completed the present invention. did.
 すなわち、本発明は、以下のとおりである。
〔1〕以下の(a)のフォワードプライマー及び(b)のリバースプライマーにより構成される、又は、以下の(a’)のフォワードプライマー及び(b)のリバースプライマーにより構成される、ヒトAlu検出用PCRプライマー対。
(a)配列番号1に示されるヌクレオチド配列(Alu101F20);又は配列番号1に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列;からなるフォワードプライマー;
(a’)配列番号2に示されるヌクレオチド配列(Alu57F20);又は配列番号2に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列;からなるフォワードプライマー;
(b)配列番号3に示されるヌクレオチド配列(Alu237R19);又は配列番号3に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列;からなるリバースプライマー;
〔2〕以下の(c)からなるヒトAlu検出用PCRプローブ。
(c)配列番号4に示されるヌクレオチド配列(Alu140RH16-LNA);又は配列番号4に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列;
〔3〕上記〔1〕に記載のヒトAlu検出用PCRプライマー対と、上記〔2〕に記載の(c)からなるヒトAlu検出用PCRプローブ;又は
上記〔1〕に記載のヒトAlu検出用PCRプライマー対と、(c’)配列番号5に示されるヌクレオチド配列(Alu144RH20)、若しくは配列番号5に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列;からなるヒトAlu検出用PCRプローブ;
とを備えた、ヒトAlu検出用PCRプライマー・プローブセット。
〔4〕被験試料より抽出されたDNAを鋳型として、上記〔1〕に記載のヒトAlu検出用PCRプライマー対・プローブセットを用いたPCRを行う工程を含む、前記被験試料中のヒトゲノムDNAを検出及び/又は定量する方法。
〔5〕被験試料より抽出されたDNAを鋳型として、上記〔3〕に記載のヒトAlu検出用PCRプライマー・プローブセットを用いたPCRを行う工程を含む、前記被験試料中のヒトゲノムDNAを検出及び/又は定量する方法。
〔6〕上記〔3〕に記載のヒトAlu検出用PCRプライマー・プローブセットを用いて被験試料中のヒトゲノムDNAを検出及び/又は定量する方法であって、以下の(I)~(III)の工程を含む、方法。
(I)前記被験試料より抽出されたDNAを鋳型として、前記プライマー・プローブセットを用いたリアルタイムPCRを行う工程;
(II)既知量のヒトゲノムDNAを段階希釈して調製された標準試料を鋳型として、上記工程(I)と同様の条件においてリアルタイムPCRを行い、検量線を作成する工程;
(III)前記検量線から、前記被験試料中のヒトゲノムDNA量を算出する工程;
〔7〕以下の工程(A)及び(B)を備えたことを特徴とする、被検対象における腎細胞癌又は前立腺癌の有無の予測を補助する方法。
(A)上記〔4〕~〔6〕のいずれかに記載のヒトゲノムDNAを検出及び/又は定量する方法によって、被検対象より抽出された生体試料中のヒトゲノムDNA量を定量する工程;
(B)工程(A)で定量したヒトゲノムDNA量が所定の閾値以上の場合に、被検対象において腎細胞癌又は前立腺癌を有するとの予測を補助する工程 ;
〔8〕以下の工程(A’)及び(B’)を備えたことを特徴とする、被検対象における腎細胞癌又は前立腺癌の有無の予測を補助する方法。
(A’)以下の(I’)~(III’)の工程を含む方法によって、被検対象より抽出された生体試料中のヒトゲノムDNA量を定量する工程;
(I’)前記被験試料より抽出されたDNAを鋳型として、63bp、106bp、及び/又は137bpのヒトAlu配列を増幅若しくは検出するプライマー・プローブセットを用いたリアルタイムPCRを行う工程;
(II)既知量のヒトゲノムDNAを段階希釈して調製された標準試料を鋳型として、上記工程(I)と同様の条件においてリアルタイムPCRを行い、検量線を作成する工程;
(III)前記検量線から、前記被験試料中のヒトゲノムDNA量を算出する工程;
(B’)工程(A’)で定量したヒトゲノムDNA量が所定の閾値以上の場合に、被検対象において腎細胞癌又は前立腺癌を有するとの予測を補助する工程;
〔9〕閾値が、ROC曲線解析から算出されるAUC値によって定めた値であることを特徴とする、上記〔7〕又は〔8〕に記載の被検対象における腎細胞癌又は前立腺癌の有無の予測を補助する方法。
That is, the present invention is as follows.
[1] For human Alu detection, which is composed of the following (a) forward primer and (b) reverse primer, or the following (a') forward primer and (b) reverse primer. PCR primer pair.
(a) A forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 1 (Alu101F20); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 1;
(a') A forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 2 (Alu57F20); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 2;
(b) a reverse primer consisting of the nucleotide sequence shown in SEQ ID NO: 3 (Alu237R19); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 3;
[2] A PCR probe for human Alu detection consisting of the following (c).
(c) the nucleotide sequence shown in SEQ ID NO: 4 (Alu140RH16-LNA); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 4;
[3] A PCR probe for detecting human Alu consisting of the PCR primer pair for detecting human Alu according to [1] above and (c) according to [2] above; or a PCR probe for detecting human Alu according to [1] above. A PCR primer pair and (c') the nucleotide sequence shown in SEQ ID NO: 5 (Alu144RH20), or a nucleotide sequence in which 1 to 3 nucleotides have been deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 5; A PCR probe for human Alu detection consisting of;
A PCR primer/probe set for human Alu detection, comprising:
[4] Detecting human genomic DNA in the test sample, including the step of performing PCR using the PCR primer pair and probe set for human Alu detection described in [1] above, using the DNA extracted from the test sample as a template. and/or methods of quantification.
[5] Detection and detection of human genomic DNA in the test sample, including the step of performing PCR using the PCR primer/probe set for human Alu detection described in [3] above, using the DNA extracted from the test sample as a template. / or method of quantification.
[6] A method for detecting and/or quantifying human genomic DNA in a test sample using the PCR primer/probe set for human Alu detection described in [3] above, which comprises the following (I) to (III). A method, including a process.
(I) Performing real-time PCR using the primer/probe set using the DNA extracted from the test sample as a template;
(II) Performing real-time PCR under the same conditions as in step (I) above using a standard sample prepared by serially diluting a known amount of human genomic DNA as a template to create a standard curve;
(III) calculating the amount of human genomic DNA in the test sample from the calibration curve;
[7] A method for assisting in predicting the presence or absence of renal cell cancer or prostate cancer in a subject, characterized by comprising the following steps (A) and (B).
(A) Quantifying the amount of human genomic DNA in a biological sample extracted from a subject by the method for detecting and/or quantifying human genomic DNA according to any one of [4] to [6] above;
(B) A step of assisting in predicting that the subject has renal cell cancer or prostate cancer when the amount of human genomic DNA quantified in step (A) is greater than or equal to a predetermined threshold;
[8] A method for assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer in a subject, characterized by comprising the following steps (A') and (B').
(A') Quantifying the amount of human genomic DNA in a biological sample extracted from a subject by a method including the following steps (I') to (III');
(I') Performing real-time PCR using the DNA extracted from the test sample as a template and a primer/probe set that amplifies or detects a 63bp, 106bp, and/or 137bp human Alu sequence;
(II) Performing real-time PCR under the same conditions as in step (I) above using a standard sample prepared by serially diluting a known amount of human genomic DNA as a template to create a standard curve;
(III) calculating the amount of human genomic DNA in the test sample from the calibration curve;
(B') A step of assisting in predicting that the subject has renal cell carcinoma or prostate cancer when the amount of human genomic DNA quantified in step (A') is greater than or equal to a predetermined threshold;
[9] The presence or absence of renal cell carcinoma or prostate cancer in the subject described in [7] or [8] above, wherein the threshold value is a value determined by an AUC value calculated from ROC curve analysis. methods to assist in predicting.
 本発明のプライマー対及びプローブセットを用いることで、0.1~10fg程度のヒトゲノムDNAを特異的に検出及び/又は測定することが可能となる。また、上記プライマー対及びプローブセットを用いることで、次世代シークエンスを用いることなく、ヒトゲノムDNAを高感度で検出及び/又は定量することが可能となる。さらに、上記プライマー対及びプローブセットを用いることで、腎細胞癌又は前立腺癌の有無の予測を低侵襲かつ簡便に行うことが可能となる。 By using the primer pair and probe set of the present invention, it becomes possible to specifically detect and/or measure approximately 0.1 to 10 fg of human genomic DNA. Furthermore, by using the primer pair and probe set described above, it becomes possible to detect and/or quantify human genomic DNA with high sensitivity without using next-generation sequencing. Furthermore, by using the primer pair and probe set described above, it becomes possible to predict the presence or absence of renal cell carcinoma or prostate cancer in a minimally invasive and simple manner.
Aluモデル配列(配列番号6)と、「63bpのAlu検出用プライマー・プローブセット」及び「106bpのAlu検出用プライマー・プローブセット」との位置関係を示す図である。FIG. 2 is a diagram showing the positional relationship between the Alu model sequence (SEQ ID NO: 6) and the "63 bp Alu detection primer/probe set" and the "106 bp Alu detection primer/probe set". Aluモデル配列(配列番号6)と、「137bpのAlu検出用プライマー・プローブセット」及び「181bpのAlu検出用プライマー・プローブセット」との位置を示す図である。FIG. 6 is a diagram showing the positions of the Alu model sequence (SEQ ID NO: 6), "137 bp Alu detection primer/probe set" and "181 bp Alu detection primer/probe set". 実施例3において、プローブとしてAlu144RH20を用い、リアルタイムPCRに基づき作成した検量線の結果を示す図である。FIG. 3 is a diagram showing the results of a calibration curve created based on real-time PCR using Alu144RH20 as a probe in Example 3. 実施例3において、プローブとしてAlu140RH16-LNAを用い、リアルタイムPCRに基づき作成した検量線の結果を示す図である。FIG. 3 is a diagram showing the results of a calibration curve created based on real-time PCR using Alu140RH16-LNA as a probe in Example 3. 実施例4において、健常者及び腎細胞癌患者における血漿中のcfDNA濃度をボックスプロットした結果を示す図である。FIG. 4 is a diagram showing the results of a box plot of plasma cfDNA concentrations in healthy subjects and renal cell carcinoma patients in Example 4. 実施例4において、図5の63bp、106bp、及び137bpを増幅・検出するプライマー・プローブセットで決定された血漿中のそれぞれのcfDNA濃度を、181bpを増幅・検出するプライマー・プローブセットで決定された血漿中のcfDNA濃度で除した結果(63b/181bp、106bp/181bp、137bp/181bp)を示す図である。以下、除することを「/」で表すこともある。In Example 4, each cfDNA concentration in plasma determined with the primer/probe set that amplifies and detects 63 bp, 106 bp, and 137 bp in FIG. 5 was determined using the primer/probe set that amplifies and detects 181 bp. It is a figure showing the results of dividing by the cfDNA concentration in plasma (63b/181bp, 106bp/181bp, 137bp/181bp). Hereinafter, division may be expressed by "/". 実施例5において、63bp、106bp、137bp、及び181bpを増幅・検出するプライマー・プローブセットで決定されたそれぞれの血漿中のcfDNA濃度のROC解析結果を示す図である。FIG. 7 is a diagram showing the results of ROC analysis of cfDNA concentrations in plasma determined using primer-probe sets for amplifying and detecting 63 bp, 106 bp, 137 bp, and 181 bp in Example 5. 実施例5において、63b/181bp、106bp/181bp、137bp/181bpのROC解析結果を示す図である。FIG. 7 is a diagram showing ROC analysis results for 63b/181bp, 106bp/181bp, and 137bp/181bp in Example 5. 実施例5において、63bp、106bp、及び137bpを増幅・検出するプライマー・プローブセットで決定された血漿中のそれぞれのcfDNA濃度を、181bpを増幅・検出するプライマー・プローブセットで決定された血漿中のcfDNA濃度で減じた結果(63bp-181bp、106bp-181bp、137bp-181bp)のROC解析結果を示す図である。以下、減ずることを「-」で表すこともある。In Example 5, the respective cfDNA concentrations in plasma determined with primer-probe sets that amplify and detect 63 bp, 106 bp, and 137 bp were compared with those determined with a primer-probe set that amplified and detected 181 bp. It is a figure showing the ROC analysis results of the results of reduction by cfDNA concentration (63bp-181bp, 106bp-181bp, 137bp-181bp). Hereinafter, "-" may be used to indicate a decrease. 実施例5において、106bp、106bp/181bp、106bp-181bpそれぞれについて感度を100%、>95%、>90%、>85%、>80%とした場合の閾値、感度、特異度、及び感度+特異度を示す図である。In Example 5, the threshold, sensitivity, specificity, and sensitivity + when the sensitivity is 100%, >95%, >90%, >85%, and >80% for 106bp, 106bp/181bp, and 106bp-181bp, respectively. It is a figure showing specificity. 実施例5において、106bpかつ106bp/181bpについて感度を100%、>95%、>90%、>85%、>80%とした場合の感度、特異度、及び感度+特異度を示す図である。In Example 5, it is a diagram showing sensitivity, specificity, and sensitivity + specificity when sensitivity is set to 100%, >95%, >90%, >85%, >80% for 106 bp and 106 bp/181 bp. .
 本発明のヒトAlu検出用PCRプライマー対は、以下の(a)のフォワードプライマー及び(b)のリバースプライマーにより構成される、又は、(a’)のフォワードプライマー及び(b)のリバースプライマーにより構成される、ヒトAlu検出用PCRプライマー対:
(a)配列番号1に示されるヌクレオチド配列(Alu101F20);又は配列番号1に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列;からなるフォワードプライマー;
(a’)配列番号2に示されるヌクレオチド配列(Alu57F20);又は配列番号2に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列;からなるフォワードプライマー;
(b)配列番号3に示されるヌクレオチド配列(Alu237R19);又は配列番号3に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列;からなるリバースプライマー;
であれば特に制限されず、以下、「本件ヒトAlu検出用PCRプライマー対」ともいう。
The PCR primer pair for human Alu detection of the present invention is composed of the following (a) forward primer and (b) reverse primer, or (a') forward primer and (b) reverse primer. PCR primer pair for human Alu detection:
(a) A forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 1 (Alu101F20); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 1;
(a') A forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 2 (Alu57F20); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 2;
(b) a reverse primer consisting of the nucleotide sequence shown in SEQ ID NO: 3 (Alu237R19); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 3;
If so, there are no particular limitations, and hereinafter also referred to as "the subject PCR primer pair for human Alu detection."
 さらに、本発明のヒトAlu検出用PCRプローブは、(c)配列番号4に示されるヌクレオチド配列(Alu140RH16-LNA);又は配列番号4に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列;からなるプローブ;であれば特に制限されず、以下、「本件ヒトAlu検出用PCRプローブ」ともいう。 Furthermore, the PCR probe for detecting human Alu of the present invention has (c) the nucleotide sequence shown in SEQ ID NO: 4 (Alu140RH16-LNA); or the nucleotide sequence shown in SEQ ID NO: 4 with a deletion of 1 to 3 nucleotides; The probe is not particularly limited as long as it is a probe consisting of a substituted or added nucleotide sequence; hereinafter also referred to as "the present PCR probe for detecting human Alu".
 また、本発明のヒトAlu検出用PCRプライマー・プローブセットは、本件ヒトAlu検出用PCRプライマー対と、本件ヒトAlu検出用PCRプローブとを備えた、ヒトAlu検出用PCRプライマー・プローブセット、又は、本件ヒトAlu検出用PCRプライマー対と、上記(c’)に記載のヒトAlu検出用PCRプローブとを備えた、ヒトAlu検出用PCRプライマー・プローブセットであれば特に制限されず、以下「本件ヒトAlu検出用PCRプライマー・プローブセット」ともいう。 Further, the PCR primer/probe set for detecting human Alu of the present invention is a PCR primer/probe set for detecting human Alu, comprising the PCR primer pair for detecting human Alu and the PCR probe for detecting human Alu, or There is no particular restriction on the PCR primer/probe set for human Alu detection, which includes the present human Alu detection PCR primer pair and the human Alu detection PCR probe described in (c') above. Also referred to as "Alu detection PCR primer/probe set."
 このほか、本発明の被験試料中のヒトゲノムDNAを検出及び/又は定量する方法は、被験試料より抽出されたDNAを鋳型として、上記本件ヒトAlu検出用PCRプライマー対を用いたPCRを行う工程を含む、前記被験試料中のヒトゲノムDNAを検出及び/又は定量する方法(以下「本件ヒトゲノムDNAを検出及び/又は定量する方法1」ともいう。)、あるいは、上記本件ヒトAlu検出用PCRプライマー・プローブセットを用いたPCRを行う工程を含む、前記被験試料中のヒトゲノムDNAを検出及び/又は定量する方法(以下「本件ヒトゲノムDNAを検出及び/又は定量する方法2」ともいう。)を挙げることができる。 In addition, the method of detecting and/or quantifying human genomic DNA in a test sample of the present invention includes the step of performing PCR using the above-mentioned PCR primer pair for detecting human Alu, using DNA extracted from the test sample as a template. A method for detecting and/or quantifying human genomic DNA in the test sample (hereinafter also referred to as "Method 1 for detecting and/or quantifying human genomic DNA"), or the above-mentioned PCR primers and probes for detecting human Alu. A method for detecting and/or quantifying human genomic DNA in the test sample (hereinafter also referred to as "Method 2 for detecting and/or quantifying human genomic DNA") includes a step of performing PCR using a set. can.
 さらに、本発明の他の被験試料中のヒトゲノムDNAを検出及び/又は定量する方法としては、
(I)前記被験試料より抽出されたDNAを鋳型として、本件ヒトAlu検出用PCRプライマー・プローブセットを用いたリアルタイムPCRを行う工程;
(II)既知量のヒトゲノムDNAを段階希釈して調製された標準試料を鋳型として、上記工程(I)と同様の条件においてリアルタイムPCRを行い、検量線を作成する工程;
(III)前記検量線から、前記被験試料中のヒトゲノムDNA量を算出する工程;
の工程を含む、本件ヒトAlu検出用PCRプライマー・プローブセットを用いて被験試料中のヒトゲノムDNAを検出及び/又は定量する方法を挙げることができ、以下「本件ヒトゲノムDNAを検出及び/又は定量する方法3」ともいう。
Furthermore, as a method for detecting and/or quantifying human genomic DNA in other test samples of the present invention,
(I) Performing real-time PCR using the present human Alu detection PCR primer/probe set using the DNA extracted from the test sample as a template;
(II) Performing real-time PCR under the same conditions as in step (I) above using a standard sample prepared by serially diluting a known amount of human genomic DNA as a template to create a standard curve;
(III) calculating the amount of human genomic DNA in the test sample from the calibration curve;
A method for detecting and/or quantifying human genomic DNA in a test sample using the present PCR primer/probe set for detecting human Alu, including the steps of ``detecting and/or quantifying human genomic DNA'' can be mentioned. Also called method 3.
 また、本発明の被検対象における腎細胞癌又は前立腺癌の有無の予測を補助する方法は、(A)上記ヒトゲノムDNAを検出及び/又は定量する方法によって、被検対象より抽出された生体試料中のヒトゲノムDNA量を定量する工程;
(B)工程(A)で定量したヒトゲノムDNA量が所定の閾値以上の場合に、被検対象において腎細胞癌又は前立腺癌を有するとの予測を補助する工程;
の工程(A)及び(B)を備えたことを特徴とする、被検対象における腎細胞癌又は前立腺癌の有無の予測を補助する方法を挙げることができる(以下「本件被検対象における腎細胞癌又は前立腺癌の有無の予測を補助する方法1」ともいう)。また、本発明の被検対象における腎細胞癌又は前立腺癌の有無の予測を補助する方法の別の態様としては、以下の工程(A’)及び(B’)を備えたことを特徴とする、被検対象における腎細胞癌又は前立腺癌の有無の予測を補助する方法を挙げることができる(以下「本件被検対象における腎細胞癌又は前立腺癌の有無の予測を補助する方法2」ともいう)。
(A’)以下の(I’)~(III’)の工程を含む方法によって、被検対象より抽出された生体試料中のヒトゲノムDNA量を定量する工程;
(I’)前記被験試料より抽出されたDNAを鋳型として、63bp、106bp、及び/又は137bpのヒトAlu配列を増幅若しくは検出するプライマー・プローブセットを用いたリアルタイムPCRを行う工程;
(II’)既知量のヒトゲノムDNAを段階希釈して調製された標準試料を鋳型として、上記工程(I’)と同様の条件においてリアルタイムPCRを行い、検量線を作成する工程;
(III’)前記検量線から、前記被験試料中のヒトゲノムDNA量を算出する工程;
(B’)工程(A’)で定量したヒトゲノムDNA量が所定の閾値以上の場合に、被検対象において腎細胞癌又は前立腺癌を有するとの予測を補助する工程;
 63bpのヒトAlu配列を増幅若しくは検出するプライマー・プローブセットとしては、配列番号7に示されるヌクレオチド配列(Alu212F18)又は配列番号7に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるフォワードプライマー、及び配列番号8に示されるヌクレオチド配列(Alu274R18)又は配列番号8に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるリバースプライマーにより構成されるプライマー対と、配列番号9に示されるヌクレオチド配列(Alu248RH18)又は配列番号9に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるプローブとを備えた、ヒトAlu検出用PCRプライマー・プローブセットを挙げることができる。106bpのヒトAlu配列を増幅若しくは検出するプライマー・プローブセットとしては、配列番号1に示されるヌクレオチド配列(Alu101F20)又は配列番号1に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるフォワードプライマー、及び配列番号10に示されるヌクレオチド配列(Alu206R20)又は配列番号10に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるリバースプライマーにより構成されるプライマー対と、本件ヒトAlu検出用PCRプローブ又は上記(c’)に記載のヒトAlu検出用PCRプローブとを備えた、ヒトAlu検出用PCRプライマー・プローブセットを挙げることができる。本件被検対象における腎細胞癌又は前立腺癌の有無の予測を補助する方法1及び2におけるゲノムDNA量は、血漿中のcfDNAの濃度(pg/μl)とすることが好ましい。
Furthermore, the method of assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer in a subject of the present invention includes (A) a biological sample extracted from a subject by the above method for detecting and/or quantifying human genomic DNA; Quantifying the amount of human genomic DNA in;
(B) assisting in predicting that the subject has renal cell cancer or prostate cancer when the amount of human genomic DNA quantified in step (A) is greater than or equal to a predetermined threshold;
A method for assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer in a test subject, which is characterized by comprising steps (A) and (B) (Also referred to as "Method 1 for assisting in predicting the presence or absence of cell cancer or prostate cancer"). Further, another embodiment of the method of assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer in a subject of the present invention is characterized by comprising the following steps (A') and (B'). , a method for assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer in a subject (hereinafter also referred to as "Method 2 for assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer in a subject") ).
(A') Quantifying the amount of human genomic DNA in a biological sample extracted from a subject by a method including the following steps (I') to (III');
(I') Performing real-time PCR using the DNA extracted from the test sample as a template and a primer/probe set that amplifies or detects a 63bp, 106bp, and/or 137bp human Alu sequence;
(II') Performing real-time PCR under the same conditions as the above step (I') using a standard sample prepared by serially diluting a known amount of human genomic DNA as a template to create a standard curve;
(III') calculating the amount of human genomic DNA in the test sample from the calibration curve;
(B') A step of assisting in predicting that the subject has renal cell carcinoma or prostate cancer when the amount of human genomic DNA quantified in step (A') is greater than or equal to a predetermined threshold;
As a primer/probe set for amplifying or detecting the 63 bp human Alu sequence, the nucleotide sequence shown in SEQ ID NO: 7 (Alu212F18) or the nucleotide sequence shown in SEQ ID NO: 7 in which 1 to 3 nucleotides are deleted, substituted, or a forward primer consisting of an added nucleotide sequence, and a nucleotide sequence shown in SEQ ID NO: 8 (Alu274R18) or a nucleotide in which 1 to 3 nucleotides have been deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 8 A primer pair consisting of a reverse primer consisting of the sequence and the nucleotide sequence shown in SEQ ID NO: 9 (Alu248RH18) or the nucleotide sequence shown in SEQ ID NO: 9 in which 1 to 3 nucleotides have been deleted, substituted, or added. Examples include a PCR primer/probe set for detecting human Alu, which includes a probe consisting of a nucleotide sequence. As a primer/probe set for amplifying or detecting the 106 bp human Alu sequence, the nucleotide sequence shown in SEQ ID NO: 1 (Alu101F20) or the nucleotide sequence shown in SEQ ID NO: 1 in which 1 to 3 nucleotides are deleted, substituted, or a forward primer consisting of an added nucleotide sequence, and a nucleotide sequence shown in SEQ ID NO: 10 (Alu206R20) or a nucleotide in which 1 to 3 nucleotides have been deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 10. A PCR primer/probe set for detecting human Alu, comprising a primer pair composed of a reverse primer consisting of a reverse primer sequence, and the present PCR probe for detecting human Alu or the PCR probe for detecting human Alu described in (c') above. can be mentioned. The amount of genomic DNA in Methods 1 and 2 for assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer in the subject is preferably the concentration of cfDNA in plasma (pg/μl).
◆ヒトAlu検出用PCRプライマー対
 本件ヒトAlu検出用PCRプライマー対において、(a)のフォワードプライマーのうち配列番号1に示されるヌクレオチド配列は上記特許文献1に開示されているフォワードプライマーである。一方、本件ヒトAlu検出用PCRプライマー対において、(a’)のフォワードプライマーである配列番号2に示されるヌクレオチド配列(Alu57F20)は本発明によって初めて設計されたものである。この(a’)のフォワードプライマーのヌクレオチド配列は、プライマー設計ソフトであるプライマー3のデフォルトの設定で検出できないヌクレオチド配列として設計されたものである。なお、(a’)のフォワードプライマーとしては、配列番号2に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるフォワードプライマーとしてもよい。
◆ PCR Primer Pair for Detecting Human Alu In the present PCR primer pair for detecting human Alu, the nucleotide sequence shown in SEQ ID NO: 1 of the forward primer (a) is the forward primer disclosed in Patent Document 1 mentioned above. On the other hand, in the present PCR primer pair for human Alu detection, the nucleotide sequence (Alu57F20) shown in SEQ ID NO: 2, which is the forward primer (a'), was designed for the first time according to the present invention. The nucleotide sequence of the forward primer (a') was designed as a nucleotide sequence that could not be detected with the default settings of primer design software Primer 3. The forward primer (a') may be a forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 2 with 1 to 3 nucleotides deleted, substituted, or added.
 一方、(b)のリバースプライマーの配列番号3に示されるヌクレオチド配列(Alu237R19)は本発明によって初めて設計されたものである。この配列番号3に示されるヌクレオチド配列は、プライマー設計ソフトであるプライマー3のデフォルトの設定で検出できないヌクレオチド配列として設計されたものである。なお、(b)のリバースプライマーとしては、配列番号3に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるリバースプライマーとしてもよい。 On the other hand, the nucleotide sequence (Alu237R19) shown in SEQ ID NO: 3 of the reverse primer (b) was designed for the first time according to the present invention. The nucleotide sequence shown in SEQ ID NO: 3 was designed as a nucleotide sequence that cannot be detected with the default settings of primer design software Primer 3. Note that the reverse primer (b) may be a reverse primer consisting of the nucleotide sequence shown in SEQ ID NO: 3 with 1 to 3 nucleotides deleted, substituted, or added.
 本件ヒトAlu検出用PCRプライマー対としては、上記(a)及び(b)の組み合わせや、上記(a’)と(b)の組み合わせを挙げることができる。上記(a)及び(b)の組み合わせのヒトAlu検出用PCRプライマー対を用いることによって、配列番号6に示すヒトAluのモデル配列における101~237番目の配列を増幅することが可能となる。また、上記(a’)及び(b)の組み合わせのヒトAlu検出用PCRプライマー対を用いることによって、ヒトAluのモデル配列の57~237番目の配列を増幅することが可能となる。 Examples of the present PCR primer pair for human Alu detection include the combination of (a) and (b) above, and the combination of (a') and (b) above. By using the pair of human Alu detection PCR primers in combination (a) and (b) above, it becomes possible to amplify the 101st to 237th sequences in the human Alu model sequence shown in SEQ ID NO: 6. Furthermore, by using the pair of human Alu detection PCR primers in combination (a') and (b) above, it becomes possible to amplify sequences 57 to 237 of the human Alu model sequence.
ヒトAluのモデル配列(配列番号6)
GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGGGATCACTGAGGCAGGAGTTCGAGACCAGCCTGGCCAACATGGTGAAACCCCGTCTCTACTAAAAATACAAAAATTAGCCGGGCGTGGTGGCGGCCTGTATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGGGACAGAGGAGACTCGTCTCAAAAAAAAAAAAAAAAAA
Model sequence of human Alu (SEQ ID NO: 6)
GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG Y GGATCAC Y TGAGG Y CAGGAGTTCGAGACCAGCCTGGCCAACATGGTGAAACCCCGTCTC ACTAAAAAAATACAAAAAAATTAGCCGGGCGTGGTGGCG S G Y GCCTGTA R TCCCA CGCGCCACTGCACTCCAGCCTGGG Y GACAGAG Y GAGACTC Y GTCTCAAAAAAAAAAAAAAA
 配列番号6に示すヒトAluのモデル配列中、YはC又はTを、SはC又はGを、RはA又はGを示す。 In the model sequence of human Alu shown in SEQ ID NO: 6, Y represents C or T, S represents C or G, and R represents A or G.
 上記(a)及び(b)の組み合わせとしては、(1)配列番号1に示されるヌクレオチド配列(Alu101F20)からなるフォワードプライマー、及び配列番号3に示されるヌクレオチド配列(Alu237R19)からなるリバースプライマーや、(2)配列番号1に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるフォワードプライマー、及び配列番号3に示されるヌクレオチド配列からなるリバースプライマーや、(3)配列番号1に示されるヌクレオチド配列からなるフォワードプライマー、及び配列番号3に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるリバースプライマーや、(4)配列番号1に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるフォワードプライマー、及び配列番号3に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるリバースプライマーを挙げることができる。なお、本明細書において、1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列としては、好ましくは1又は2個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列、より好ましくは1個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列を挙げることができる。 Combinations of (a) and (b) above include (1) a forward primer consisting of the nucleotide sequence (Alu101F20) shown in SEQ ID NO: 1, and a reverse primer consisting of the nucleotide sequence (Alu237R19) shown in SEQ ID NO: 3; (2) a forward primer consisting of a nucleotide sequence shown in SEQ ID NO: 1 with 1 to 3 nucleotides deleted, substituted, or added; and a reverse primer consisting of a nucleotide sequence shown in SEQ ID NO: 3; (3) a forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 1, and a reverse primer consisting of a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 3; (4) A forward primer consisting of a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 1, and a forward primer consisting of a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 3. Examples include reverse primers consisting of nucleotide sequences in which nucleotides have been deleted, substituted, or added. In this specification, a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added is preferably a nucleotide sequence in which 1 or 2 nucleotides are deleted, substituted, or added. Preferred examples include nucleotide sequences in which one nucleotide is deleted, substituted, or added.
 上記(a’)及び(b)の組み合わせとしては、(1)配列番号2に示されるヌクレオチド配列(Alu57F20)からなるフォワードプライマー、及び配列番号3に示されるヌクレオチド配列(Alu237R19)からなるリバースプライマーや、(2)配列番号2に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるフォワードプライマー、及び配列番号3に示されるヌクレオチド配列からなるリバースプライマーや、(3)配列番号2に示されるヌクレオチド配列からなるフォワードプライマー、及び配列番号3に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるリバースプライマーや、(4)配列番号2に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるフォワードプライマー、及び配列番号3に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるリバースプライマーを挙げることができる。 Combinations of (a') and (b) above include (1) a forward primer consisting of the nucleotide sequence (Alu57F20) shown in SEQ ID NO: 2, and a reverse primer consisting of the nucleotide sequence (Alu237R19) shown in SEQ ID NO: 3; (2) A forward primer consisting of a nucleotide sequence shown in SEQ ID NO: 2 with 1 to 3 nucleotides deleted, substituted, or added, and a reverse primer consisting of a nucleotide sequence shown in SEQ ID NO: 3. , (3) a forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 2, and a reverse primer consisting of a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 3; , (4) a forward primer consisting of a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 2, and 1 to 3 nucleotides in the nucleotide sequence shown in SEQ ID NO: 3. Examples include reverse primers consisting of a nucleotide sequence in which nucleotides have been deleted, substituted, or added.
◆ヒトAlu検出用PCRプローブ
 本件ヒトAlu検出用PCRプローブにおいて、(c)からなるヒトAlu検出用PCRプローブは本発明によって初めて設計されたものである。配列番号4に示されるヌクレオチド配列(Alu140RH16-LNA)からなるプローブは、ヒトの標的数をなるべく多く検出するという観点から設計されたものである。配列番号4に示されるヌクレオチド配列のうち、2番目のグアニン、3番目のグアニン、4番目のシトシン、13番目のグアニン、14番目のチミン、15番目のアデニンがlocked nucleic acid(LNA)となっている(C+G+G+CTAATTTTT+G+T+AT;「+」はLNAを示す)。本件ヒトAlu検出用PCRプローブにより、配列番号6に示すヒトAluのモデル配列における125~140番目の配列とハイブリダイズすることが可能となる。なお、本件ヒトAlu検出用PCRプローブの合成において、LNA単量体は、例えば国際公開第1998/039352号パンフレットに記載の合成方法によって得ることができる。
◆ PCR Probe for Detecting Human Alu In the present PCR probe for detecting human Alu, the PCR probe for detecting human Alu consisting of (c) is designed for the first time according to the present invention. The probe consisting of the nucleotide sequence (Alu140RH16-LNA) shown in SEQ ID NO: 4 was designed from the viewpoint of detecting as many human targets as possible. Of the nucleotide sequence shown in SEQ ID NO: 4, 2nd guanine, 3rd guanine, 4th cytosine, 13th guanine, 14th thymine, and 15th adenine are locked nucleic acids (LNA). (C+G+G+CTAATTTT+G+T+AT; "+" indicates LNA). The present PCR probe for detecting human Alu can hybridize with the 125th to 140th sequences in the human Alu model sequence shown in SEQ ID NO: 6. In the synthesis of the present PCR probe for human Alu detection, the LNA monomer can be obtained, for example, by the synthesis method described in WO 1998/039352 pamphlet.
 上記本件ヒトAlu検出用PCRプローブは、上記本件ヒトAlu検出用PCRプライマー対による増幅産物等の本件ヒトAlu検出用PCRプローブとストリンジェントな条件下でハイブリダイズ可能なAlu配列の全部又は部分配列を検出及び/又は定量することができる。上記本件ヒトAlu検出用PCRプローブは、標識物質で標識されていることが好ましく、より迅速又はより高感度で検出又は定量する観点から、蛍光物質で標識されていることが好ましい。蛍光物質以外の上記標識物質としては、ビオチン、ビオチンとアビジンの複合体、あるいはペルオキシダーゼ等の酵素が挙げられ、上記蛍光物質としては、ルシフェラーゼ等の蛍光タンパク質のほか、フルオレセインイソチオシアネート(FITC)、6-カルボキシフルオレセイン(6-FAM)、6-カルボキシ-4,7,2’,7’-テトラクロロフルオレセイン(TET)、6-カルボキシ-4’,5’-ジクロロ2’,7’-ジメトキシフルオレセイン(JOE)、Cy3、Cy5、4,7,2’,4’,5,’,7’-ヘキサクロロ-6-カルボキシフルオレセイン(HEX)等の蛍光色素が好ましく挙げられる。また、上記本件ヒトAlu検出用PCRプローブは、蛍光物質(レポーター蛍光色素)とクエンチャー物質(クエンチャー蛍光色素)で二重標識されていることがより好ましく、蛍光物質(レポーター蛍光色素)により5’末端が、クエンチャー物質(クエンチャー蛍光色素)により3’末端がそれぞれ標識されていることが特に好ましい。蛍光物質(レポーター蛍光色素)の例としては前述の蛍光色素が挙げられ、クエンチャー物質(クエンチャー蛍光色素)の例としては、6-カルボキシテトラメチルローダミン(TAMRA)、6-カルボキシ-X-ローダミン(ROX)等のローダミン系蛍光色素や、[(4-(2-ニトロ-4-メチル-フェニル)-アゾ)-イル-((2-メトキシ-5-メチル-フェニル)-アゾ)]-アニリン(BHQ-1)、[(4-(1-ニトロ-フェニル)-アゾ)-イル-((2,5-ジメトキシ-フェニル)-アゾ)]-アニリン(BHQ-2)等のブラックホールクエンチャーが挙げられるが、なかでも、蛍光物質(レポーター蛍光色素)として6-カルボキシフルオレセイン(6-FAM)を、クエンチャー物質(クエンチャー蛍光色素)としてIowa Black蛍光クエンチャー(IBFQ)、[(4-(2-ニトロ-4-メチル-フェニル)-アゾ)-イル-((2-メトキシ-5-メチル-フェニル)-アゾ)]-アニリン(BHQ-1)を好適に挙げることができる。 The above PCR probe for detecting human Alu contains all or a partial sequence of the Alu sequence that can hybridize under stringent conditions with the PCR probe for detecting human Alu, such as the amplification product of the above PCR primer pair for detecting human Alu. can be detected and/or quantified. The above-mentioned PCR probe for detecting human Alu is preferably labeled with a labeling substance, and from the viewpoint of faster or more sensitive detection or quantification, it is preferably labeled with a fluorescent substance. Examples of the labeling substances other than fluorescent substances include biotin, a complex of biotin and avidin, and enzymes such as peroxidase. Examples of the fluorescent substances include fluorescent proteins such as luciferase, as well as fluorescein isothiocyanate (FITC), 6 -Carboxyfluorescein (6-FAM), 6-carboxy-4,7,2',7'-tetrachlorofluorescein (TET), 6-carboxy-4',5'-dichloro2',7'-dimethoxyfluorescein ( Preferred examples include fluorescent dyes such as Cy3, Cy5, 4,7,2',4',5,',7'-hexachloro-6-carboxyfluorescein (HEX). Moreover, the above-mentioned PCR probe for detecting human Alu is more preferably double-labeled with a fluorescent substance (reporter fluorescent dye) and a quencher substance (quencher fluorescent dye). It is particularly preferred that the 3' end of each of the 3' ends is labeled with a quencher substance (quencher fluorescent dye). Examples of fluorescent substances (reporter fluorescent dyes) include the aforementioned fluorescent dyes, and examples of quencher substances (quencher fluorescent dyes) include 6-carboxytetramethylrhodamine (TAMRA) and 6-carboxy-X-rhodamine. Rhodamine fluorescent dyes such as (ROX), [(4-(2-nitro-4-methyl-phenyl)-azo)-yl-((2-methoxy-5-methyl-phenyl)-azo)]-aniline (BHQ-1), [(4-(1-nitro-phenyl)-azo)-yl-((2,5-dimethoxy-phenyl)-azo)]-aniline (BHQ-2), etc. Among them, 6-carboxyfluorescein (6-FAM) is used as a fluorescent substance (reporter fluorescent dye), and Iowa Black fluorescence quencher (IBFQ), [(4- Preferred examples include (2-nitro-4-methyl-phenyl)-azo)-yl-((2-methoxy-5-methyl-phenyl)-azo)]-aniline (BHQ-1).
 上記ストリンジェントな条件としては、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。具体的には、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは100%の同一性を有するDNA同士がハイブリダイズし、それより同一性が低いDNA同士がハイブリダイズしない条件、あるいは通常のリアルタイムPCRのアニーリングの条件、具体的には50℃以上、好ましくは52℃以上、より好ましくは54℃以上、さらに好ましくは56℃以上でハイブリダイズする条件を挙げることができる。 The above-mentioned stringent conditions refer to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. Specifically, DNAs having an identity of 80% or more, preferably 90% or more, more preferably 95% or more, and even more preferably 100% hybridize with each other, and DNAs with lower identity hybridize with each other. Examples include conditions in which hybridization is not performed, or normal real-time PCR annealing conditions, specifically conditions in which hybridization is performed at 50°C or higher, preferably 52°C or higher, more preferably 54°C or higher, and even more preferably 56°C or higher. .
◆ヒトAlu検出用PCRプライマー・プローブセット
 本件ヒトAlu検出用PCRプライマー・プローブセットは、本件ヒトAlu検出用PCRプライマー対と、本件ヒトAlu検出用PCRプローブ、又は、本件ヒトAlu検出用PCRプライマー対と、(c’)配列番号5に示されるヌクレオチド配列(Alu144RH20);又は配列番号5に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列;からなるヒトAlu検出用PCRプローブ;を備えていれば特に制限されない。フォワードプライマーとして配列番号1に示されるヌクレオチド配列(Alu101F20)を用いれば、配列番号6に示すヒトAluのモデル配列における101番目から237番目の137bpのAlu配列を増幅し、検出することができる。フォワードプライマーとして配列番号2に示されるヌクレオチド配列(Alu57F20)を用いれば、配列番号6に示すヒトAluのモデル配列における57番目から237番目の181bpのAlu配列を増幅し、検出することができる。なお、Alu配列を増幅し、検出することによってヒトゲノムDNAを定量できる。定量する上記ヒトゲノムDNAにはcfDNAが含まれる。
◆ PCR primer/probe set for detecting human Alu The PCR primer/probe set for detecting human Alu consists of the PCR primer pair for detecting human Alu, the PCR probe for detecting human Alu, or the PCR primer pair for detecting human Alu. and (c') a nucleotide sequence shown in SEQ ID NO: 5 (Alu144RH20); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 5; There is no particular restriction as long as it includes a PCR probe for detecting Alu. By using the nucleotide sequence (Alu101F20) shown in SEQ ID NO: 1 as a forward primer, it is possible to amplify and detect the 137 bp Alu sequence from position 101 to position 237 in the human Alu model sequence shown in SEQ ID NO: 6. By using the nucleotide sequence (Alu57F20) shown in SEQ ID NO: 2 as a forward primer, it is possible to amplify and detect the 181 bp Alu sequence from position 57 to position 237 in the human Alu model sequence shown in SEQ ID NO: 6. Note that human genomic DNA can be quantified by amplifying and detecting the Alu sequence. The human genomic DNA to be quantified includes cfDNA.
◆ヒトゲノムDNAを検出及び/又は定量する方法
 ヒトゲノムDNAを検出及び/又は定量する方法1としては、被験試料より抽出されたDNAを鋳型として、本件ヒトAlu検出用PCRプライマー対を用いたPCRを行う工程を含む限り特に制限されない。
◆Method for detecting and/or quantifying human genomic DNA As method 1 for detecting and/or quantifying human genomic DNA, PCR is performed using DNA extracted from the test sample as a template and the subject PCR primer pair for human Alu detection. There is no particular restriction as long as the process is included.
 上記「被験試料」としては、ヒトゲノムDNAを含み得る試料であれば特に制限されず、ヒトゲノムDNA以外に、非ヒト生物由来のDNAをさらに含み得るものであってもよい。上記「被験試料」の例としては、ヒト生体試料、非ヒト生物由来の生体試料、陳旧試料、法医学試料、古生物試料等を挙げることができ、なかでも、非ヒト動物にヒト細胞を移植して作製された異種移植モデル動物由来の生体試料や古人骨由来の陳旧試料を好ましく挙げることができる。また、上記「非ヒト動物」の例としては、マウス、ラット、ギニアピッグ、イヌ、ウサギ、ブタ、ヤギ、ウシ等の非ヒト哺乳動物を挙げることができ、マウス、ラット、ギニアピッグ等のげっ歯類動物をより好ましく挙げることができる。さらに、上記「ヒト細胞」としては、ヒト幹細胞、ヒトがん細胞、ヒト体細胞、ヒト生殖細胞等のヒト由来の細胞であればどのような種類の細胞であってもよいが、ヒト間葉系幹細胞、ヒト造血幹細胞、ヒト神経幹細胞、ヒトiPS細胞、ヒトES細胞、ヒト体細胞由来胚性幹細胞等のヒト幹細胞を特に好適に例示することができる。なお、本明細書において「陳旧試料」とは、様々な環境下で数日~数百万年以上経過した「新鮮でない試料」を指し、経過時間の下限としては例えば2日、1週間、2週間、1ヶ月、3か月、1年、3年などが挙げられ、経過時間の上限としては、5年、10年、20年、40年、100年、200年、400年、600年、5000年、1万年などが挙げられる。なかでも、「古人骨由来の陳旧試料」とは、ヒトDNAを検出及び/又は定量する時点から数年以上前の人骨由来の試料を意味し、かかる陳旧試料には、ヒトDNAを検出及び/又は定量する時点から数年~200万年前、50~1万年前、100~1万年前、200~1万年前、300~1万年前、400~1万年前、50~5000年前、100~5000年前、200~5000年前、300~5000年前、400~5000年前、50~600年前、100~600年前、200~600年前、300~600年前、400~600年前の人骨由来の試料が挙げられる。 The above-mentioned "test sample" is not particularly limited as long as it can contain human genomic DNA, and may also contain DNA derived from non-human organisms in addition to human genomic DNA. Examples of the above-mentioned "test samples" include human biological samples, biological samples derived from non-human organisms, old samples, forensic samples, paleontological samples, etc. Among them, human cells transplanted into non-human animals Preferable examples include biological samples derived from xenograft model animals prepared in the same way and old samples derived from ancient human bones. Furthermore, examples of the above-mentioned "non-human animals" include non-human mammals such as mice, rats, guinea pigs, dogs, rabbits, pigs, goats, and cows; rodents such as mice, rats, and guinea pigs; More preferred examples include animals. Furthermore, the above-mentioned "human cells" may be any type of cells of human origin, such as human stem cells, human cancer cells, human somatic cells, human germ cells, etc. Particularly preferred examples include human stem cells such as stem cells, human hematopoietic stem cells, human neural stem cells, human iPS cells, human ES cells, and human somatic cell-derived embryonic stem cells. Note that in this specification, "old sample" refers to "unfresh sample" that has been used for several days to several million years under various environments, and the lower limit of the elapsed time is, for example, 2 days, 1 week, Examples include 2 weeks, 1 month, 3 months, 1 year, 3 years, etc., and the upper limit of elapsed time is 5 years, 10 years, 20 years, 40 years, 100 years, 200 years, 400 years, 600 years. , 5,000 years, 10,000 years, etc. In particular, "an old sample derived from ancient human bones" refers to a sample derived from human bones several years ago from the time when human DNA was detected and/or quantified; and/or several years to 2 million years ago, 500 to 10,000 years ago, 100 to 10,000 years ago, 200 to 10,000 years ago, 300 to 10,000 years ago, 400 to 10,000 years ago, 50-5000 years ago, 100-5000 years ago, 200-5000 years ago, 300-5000 years ago, 400-5000 years ago, 50-600 years ago, 100-600 years ago, 200-600 years ago, 300- Examples include samples derived from human bones from 600 years ago and 400 to 600 years ago.
 また、上記被験試料よりヒトゲノムDNAを抽出する方法としては、「プロテイナーゼK/フェノール抽出法」、「プロテイナーゼK/フェノール/クロロホルム抽出法」、「アルカリ溶解法」、「ボイリング法」、「磁気ビーズ法」、「スピンカラム法」等の公知の方法であれば特に制限されない。上記方法においては、RNaseによるRNA分解工程を含む方法であることが好ましく、RNase A及びRNase TによるRNA分解工程を含む方法であることがさらに好ましい。具体的には、上記被験試料よりDNAを抽出する方法としては、「プロテイナーゼK/フェノール抽出法」においてプロテイナーゼK処理工程の前に、RNase A及びRNase T1を用いてRNA分解処理を行う方法を挙げることができる。 In addition, methods for extracting human genomic DNA from the above test samples include "proteinase K/phenol extraction method," "proteinase K/phenol/chloroform extraction method," "alkali lysis method," "boiling method," and "magnetic bead method." ”, “spin column method”, and other known methods are not particularly limited. The above method preferably includes an RNA decomposition step using RNase, and more preferably a method including an RNA decomposition step using RNase A and RNase T. Specifically, as a method for extracting DNA from the above test sample, there is a method in which RNA degradation treatment is performed using RNase A and RNase T1 before the proteinase K treatment step in the "proteinase K/phenol extraction method". be able to.
 上記「本件ヒトゲノムDNAを検出及び/又は定量する方法1」におけるPCRとしては、上記本件ヒトAlu検出用PCRプライマー対を用いたPCRであれば特に制限されず、PCR増幅産物をサイクルの終わりに検出するエンドポイントPCR法であっても、PCR増幅産物の増加をリアルタイムでモニタリングするリアルタイムPCR法であってもよい。エンドポイントPCR法としては、デジタルPCR法を挙げることができる。エンドポイントPCR法において増幅産物を検出する方法としては、PCRを終えた反応液をそのままアガロースなどを使用した慣用のゲル電気泳動に付し、電気泳動後のDNA断片をエチジウムブロマイド染色、蛍光試薬などで検出する方法を例示することができる。また、リアルタイムPCR法において増幅産物を検出する方法としては、非特異的DNAインターカレート色素を、あらかじめPCR反応液中に添加し、増幅産物の二重鎖DNAを経時的に検出するインターカレーション法を例示することができる。上記インターカレーション法においては、SYBR(登録商標)GreenI、SYBR(登録商標)GreenII、SYBR(登録商標)Gold、BEBO、YO-PRO-1、LCGreen(登録商標)、SYTO-9、SYTO-13、SYTO-16、SYTO-60、SYTO-62、SYTO-64、SYTO-82、POPO-3、TOTO-3、BOBO-3、TO-PRO-3、YO-PRO-1、PicoGreen(登録商標)、SYTOX Orange、EvaGreen(登録商標)等の非特異的DNAインターカレート色素を用いることができるが、なかでも、SYBR(登録商標)GreenIを用いることが好ましい。 The PCR in the above-mentioned "Method 1 for detecting and/or quantifying human genomic DNA" is not particularly limited as long as it is a PCR using the above-mentioned PCR primer pair for detecting human Alu, and the PCR amplification product is detected at the end of the cycle. It may be an end-point PCR method in which the amount of PCR amplified products is monitored in real time, or a real-time PCR method in which the increase in PCR amplification products is monitored in real time. As the endpoint PCR method, a digital PCR method can be mentioned. To detect amplified products in the endpoint PCR method, the reaction solution after PCR is directly subjected to conventional gel electrophoresis using agarose, etc., and the DNA fragments after electrophoresis are stained with ethidium bromide, fluorescent reagents, etc. An example of how to detect this can be given below. In addition, as a method for detecting amplified products in real-time PCR, a non-specific DNA intercalating dye is added to the PCR reaction solution in advance, and the double-stranded DNA of the amplified product is detected over time. The law can be exemplified. In the above intercalation method, SYBR (registered trademark) Green I, SYBR (registered trademark) Green II, SYBR (registered trademark) Gold, BEBO, YO-PRO-1, LCGreen (registered trademark), SYTO-9, SYTO-13 , SYTO-16, SYTO-60, SYTO-62, SYTO-64, SYTO-82, POPO-3, TOTO-3, BOBO-3, TO-PRO-3, YO-PRO-1, PicoGreen (registered trademark) Non-specific DNA intercalating dyes such as , SYTOX Orange, and EvaGreen (registered trademark) can be used, and among them, it is preferable to use SYBR (registered trademark) Green I.
 また、本件ヒトゲノムDNAを検出及び/又は定量する方法2は、本件ヒトAlu検出用PCRプライマー対の代わりに本件ヒトAlu検出用PCRプライマー・プローブセットを用いるものであり、具体的には、上記(c)又は(c’)からなるヒトAlu検出用PCRプローブを用いる。本件ヒトゲノムDNAを検出及び/又は定量する方法2においては、蛍光標識した上記(c)又は(c’)からなるヒトAlu検出用PCRプローブを用いることが好ましい。ここで使用される上記(c)又は(c’)からなるヒトAlu検出用PCRプローブのタイプは特に制限されず、例として加水分解プローブ、分子ビーコンプローブ、サイクリングプローブ、Eprobe(登録商標)、Qprobe(登録商標)、スコーピオンプローブ、hybridization-probe等を挙げることができるが、なかでも、加水分解プローブを好ましく挙げることができる。加水分解プローブは、通常、核酸プローブの5’末端が蛍光物質(レポーター蛍光色素)で修飾され、3’末端が消光物質(クエンチャー)で修飾されたリニアオリゴヌクレオチドである。分子ビーコンプローブは、通常、核酸プローブの5’末端が蛍光物質(レポーター蛍光色素)で修飾され、3’末端が消光物質(クエンチャー)で修飾された、ステムループ構造を取り得るオリゴヌクレオチドである。サイクリングプローブは、通常、RNAとDNAからなるキメラオリゴヌクレオチドであり、一方の末端が蛍光物質(レポーター蛍光色素)で修飾され、他方の末端が消光物質(クエンチャー)で修飾されたオリゴヌクレオチドである。Eprobeは、通常、チミンヌクレオチドに蛍光色素を2つ有する人工核酸であり、ターゲットと結合していない1本鎖の状態では蛍光発光が抑制され、ターゲットと結合すると蛍光を発する。Qprobeは、通常、シトシンを末端とするオリゴヌクレオチドであり、その末端のシトシンが蛍光物質で標識されており、グアニン消光プローブとも呼ばれる。スコーピオンプローブは、通常、核酸プローブの一方の末端が蛍光物質(レポーター蛍光色素)で修飾され、3’末端が消光物質(クエンチャー)で修飾された、ヘアピンループ構造を取り得るオリゴヌクレオチドである。hybridization-probeは、3’末端が蛍光色素で修飾されたオリゴヌクレオチドからなるドナープローブと、5’末端が蛍光色素で修飾されたオリゴヌクレオチドからなるアクセプタープローブから構成されており、これらプローブがターゲットに結合すると両方の蛍光色素が近接して、ドナープローブの蛍光色素の蛍光によってアクセプタープローブの蛍光色素が励起して発光するものである。 In addition, Method 2 for detecting and/or quantifying human genomic DNA uses the PCR primer/probe set for detecting human Alu in place of the PCR primer pair for detecting human Alu, and specifically, the method described above ( A PCR probe for detecting human Alu consisting of c) or (c') is used. In method 2 for detecting and/or quantifying human genomic DNA, it is preferable to use a fluorescently labeled PCR probe for human Alu detection consisting of (c) or (c') above. The type of PCR probe for human Alu detection consisting of (c) or (c') used here is not particularly limited, and examples thereof include hydrolysis probes, molecular beacon probes, cycling probes, Eprobe (registered trademark), and Qprobe. (registered trademark), Scorpion probe, hybridization-probe, etc. Among them, hydrolysis probe can be preferably mentioned. A hydrolysis probe is usually a linear oligonucleotide in which the 5' end of the nucleic acid probe is modified with a fluorescent substance (reporter fluorescent dye) and the 3' end is modified with a quencher. A molecular beacon probe is usually an oligonucleotide that can take a stem-loop structure, with the 5' end of the nucleic acid probe modified with a fluorescent substance (reporter fluorescent dye) and the 3' end modified with a quencher. . Cycling probes are usually chimeric oligonucleotides consisting of RNA and DNA, with one end modified with a fluorescent substance (reporter fluorescent dye) and the other end modified with a quencher. . Eprobe is an artificial nucleic acid that usually has two fluorescent dyes in a thymine nucleotide, and when it is in a single-stranded state that is not bound to a target, fluorescence is suppressed, and when it is bound to a target, it emits fluorescence. Qprobe is usually an oligonucleotide with cytosine at the end, and the cytosine at the end is labeled with a fluorescent substance, and is also called a guanine quenching probe. A scorpion probe is an oligonucleotide that can take a hairpin loop structure, with one end of the nucleic acid probe being modified with a fluorescent substance (reporter fluorescent dye) and the 3' end being modified with a quencher. A hybridization-probe consists of a donor probe consisting of an oligonucleotide whose 3' end is modified with a fluorescent dye, and an acceptor probe consisting of an oligonucleotide whose 5' end is modified with a fluorescent dye. When bound to, both fluorescent dyes come into close proximity, and the fluorescent dye of the acceptor probe is excited by the fluorescence of the fluorescent dye of the donor probe, causing it to emit light.
 上記PCRは、モレキュラー・クローニング(Molecular cloning)、ア・ラボラトリーマニュアル(A laboratory manual)等の文献に記載の方法に従って行うこともできるし、KOD-Plus-Neo(東洋紡績社製)、TaKaRa PCR Amplification Kit(TaKaRa社製)、TaqMan(登録商標)Real-Time PCR Master Mixes(Thermo Fisher Scientific社製)等の市販のPCR用キットを用いて、製品添付の説明書に従って行うこともできる。また、上記PCRには、被検試料から得られた核酸と、本件ヒトAlu検出用PCRプライマー対又は本件ヒトAlu検出用PCRプライマー・プローブセットの他、PCR反応に必要な各試薬を用いることができる。かかる試薬としては、核酸を重合させる酵素(例えばポリメラーゼ)、核酸の材料となる物質(例えばdNTP)、核酸増幅反応用のバッファー(例えば、Tris-Cl等の緩衝作用を有する成分や、Tween20等の界面活性剤など)、及び、Mg2+からなる群から選択される1種又は2種以上が挙げられる他、PCRの種類に応じて、必要な試薬を追加的に用いることもができる。 The above PCR can be performed according to the method described in literature such as Molecular cloning, A laboratory manual, etc. It can also be carried out using commercially available PCR kits such as Kit (manufactured by TaKaRa) and TaqMan (registered trademark) Real-Time PCR Master Mixes (manufactured by Thermo Fisher Scientific) according to the instructions attached to the product. In addition, in the above PCR, in addition to the nucleic acid obtained from the test sample and the PCR primer pair for human Alu detection or the PCR primer/probe set for human Alu detection, various reagents necessary for the PCR reaction may be used. can. Such reagents include enzymes that polymerize nucleic acids (e.g., polymerases), substances that serve as materials for nucleic acids (e.g., dNTPs), buffers for nucleic acid amplification reactions (e.g., components with a buffering effect such as Tris-Cl, and Tween 20, etc.). In addition to one or more selected from the group consisting of Mg 2+ (surfactants, etc.) and Mg 2+ , other necessary reagents can be used additionally depending on the type of PCR.
 上記PCRを行う際には、用いる核酸増幅反応の種類などに応じて、市販の核酸増幅装置を用いることができ、なかでも、プローブのシグナル(好ましくは蛍光シグナル)を測定し得る装置も備えた核酸増幅装置を好ましく挙げることができる。核酸の増幅と、蛍光シグナルの測定の両方が可能なリアルタイムPCR装置として、Applied Biosystems社製の7500 real-time PCR instrument、Bio-RAD社製のCFX96、Roche社製のLight cycler 480等を挙げることができる。 When performing the above PCR, a commercially available nucleic acid amplification device can be used depending on the type of nucleic acid amplification reaction used, and in particular, a device capable of measuring probe signals (preferably fluorescent signals) can be used. A preferred example is a nucleic acid amplification device. Examples of real-time PCR devices capable of both amplifying nucleic acids and measuring fluorescent signals include Applied Biosystems' 7500 real-time PCR instrument, Bio-RAD's CFX96, and Roche's Lightcycler 480. Can be done.
 上記本件ヒトゲノムDNAを検出及び/又は定量する方法3においては、工程(I)及び(II)は、工程(I)に次いで工程(II)の順序であっても、工程(II)に次いで工程(I)の順序であってもよく、あるいは、工程(I)及び工程(II)は同時に実施されてもよいが、工程(I)及び工程(II)が同時に実施されることが好ましい。上記工程(III)は、工程(I)及び(II)を実施した後に実施される。 In the above method 3 for detecting and/or quantifying human genomic DNA, steps (I) and (II) may be performed in the order of step (I) followed by step (II), or if step (II) is followed by step (II). Although the order of (I) may be used, or step (I) and step (II) may be carried out simultaneously, it is preferable that step (I) and step (II) are carried out simultaneously. The above step (III) is carried out after carrying out steps (I) and (II).
 本明細書において、「標準試料」としては、既知量のヒトゲノムDNAを段階希釈して調製された標準試料であれば特に制限されないが、PCR反応用のチューブごとに添加されるヒトゲノムDNAの量が、例えば、1fg~10ng、好ましくは0.1fg~10ng、より好ましくは0.01fg~10ngの範囲となるように調製された標準試料を挙げることができる。また、上記「標準試料」は、ヒトゲノムDNAに加えて、被験試料に含まれ得る非ヒト生物由来のゲノムDNAをさらに含んでいてもよい。さらに、上記「標準試料」に含まれるヒトゲノムDNAは、上記「被験試料」の種類に応じて断片化されたものであってもよく、例えば、20kbp~100bpの範囲の適切なサイズに断片化されたヒトゲノムDNAを用いることができる。 In this specification, the "standard sample" is not particularly limited as long as it is a standard sample prepared by serially diluting a known amount of human genomic DNA, but the amount of human genomic DNA added to each tube for PCR reaction is For example, a standard sample prepared to have a concentration in the range of 1 fg to 10 ng, preferably 0.1 fg to 10 ng, more preferably 0.01 fg to 10 ng can be mentioned. Moreover, the above-mentioned "standard sample" may further contain, in addition to human genomic DNA, genomic DNA derived from a non-human organism that may be included in the test sample. Furthermore, the human genomic DNA contained in the above-mentioned "standard sample" may be fragmented depending on the type of the above-mentioned "test sample", for example, it may be fragmented into an appropriate size in the range of 20 kbp to 100 bp. human genomic DNA can be used.
 上記工程(II)において「検量線を作成する」方法としては、例えば、上記標準試料を鋳型としたリアルタイムPCRによって得られる蛍光シグナルの強度レベルを、ヒトゲノムDNAの量に対してプロットすることより作成する方法や、上記標準試料を鋳型としたリアルタイムPCRによって得られる蛍光シグナルのCt値を、ヒトゲノムDNAの量に対してプロットすることにより作成する方法を挙げることができる。ここで、「Ct値」とは、リアルタイムPCRにおいて、増幅曲線と閾値(Threshold)が交差するサイクル数を意味し、PCR増幅産物の生成に由来する蛍光量がある所定量(閾値)に達するときのサイクル数を表す。Ct値は試料中に最初に含まれる標的DNA量が多い程小さく、逆に試料中に含まれる標的DNA量が少ない程大きくなる。上記工程(III)においては、被験試料のリアルタイムPCRによって得られた蛍光シグナルの強度レベル又はCt値を、上記検量線と比較することにより被験試料に含まれるヒトゲノムDNA量を算出することができる。 In the above step (II), the method of "creating a standard curve" is, for example, by plotting the intensity level of the fluorescence signal obtained by real-time PCR using the above standard sample as a template against the amount of human genomic DNA. and a method in which the Ct value of the fluorescence signal obtained by real-time PCR using the above-mentioned standard sample as a template is plotted against the amount of human genomic DNA. Here, "Ct value" means the cycle number at which the amplification curve and the threshold intersect in real-time PCR, and when the amount of fluorescence derived from the generation of PCR amplification products reaches a certain amount (threshold). represents the number of cycles. The Ct value decreases as the amount of target DNA initially contained in the sample increases, and conversely increases as the amount of target DNA contained in the sample decreases. In the above step (III), the amount of human genomic DNA contained in the test sample can be calculated by comparing the intensity level or Ct value of the fluorescent signal obtained by real-time PCR of the test sample with the above-mentioned standard curve.
◆ヒトゲノムDNA検出及び/又は定量用キット
 上記ヒトAlu検出用PCRプライマー対及び/又はヒトAlu検出用PCRプローブを備えて、ヒトゲノムDNA検出及び/又は定量用キットとしてもよい。このキットには、一般にこの種の検出キットに用いられる成分(例えば、担体、pH緩衝剤、安定剤など)の他、取扱説明書等の添付文書を含んでいてもよい。また、本発明のキットには、標準試料として用いるためのヒトゲノムDNA、ネガティブコントロールとして用いるための非ヒト生物由来DNA(例えば、マウスゲノムDNA、ラットゲノムDNA、ギニアピッグゲノムDNA等)がさらに含まれていてもよい。
◆Kit for detecting and/or quantifying human genomic DNA A kit for detecting and/or quantifying human genomic DNA may be provided with the above-mentioned PCR primer pair for detecting human Alu and/or PCR probe for detecting human Alu. In addition to the components generally used in this type of detection kit (eg, carrier, pH buffer, stabilizer, etc.), this kit may also contain attached documents such as instruction manuals. Furthermore, the kit of the present invention further includes human genomic DNA for use as a standard sample, and non-human organism-derived DNA for use as a negative control (e.g., mouse genomic DNA, rat genomic DNA, Guinea pig genomic DNA, etc.). You can leave it there.
◆被検対象における腎細胞癌又は前立腺癌の有無の予測を補助する方法
 本件被検対象における腎細胞癌又は前立腺癌の有無の予測を補助する方法において、生体試料としては、血液、血清、血漿、唾液、尿等を挙げることができる。また、ヒトゲノムDNAとしてcfDNAやエクソソームDNAを挙げることができる。cfDNAの濃度としては血漿中の濃度を求めることが望ましい。血漿を得る方法としては公知の方法を採用できるが、たとえば被験者から採血をし、3,000rpmで10分の条件等で遠心して上清をさらに12,000rpmで15分等の条件で遠心する方法を挙げることができる。
◆Method to assist in predicting the presence or absence of renal cell carcinoma or prostate cancer in a subject In this method to assist in predicting the presence or absence of renal cell carcinoma or prostate cancer in a subject, biological samples include blood, serum, and plasma. , saliva, urine, etc. Furthermore, examples of human genomic DNA include cfDNA and exosome DNA. It is desirable to determine the concentration of cfDNA in plasma. Known methods can be used to obtain plasma; for example, blood is collected from a subject, centrifuged at 3,000 rpm for 10 minutes, and the supernatant further centrifuged at 12,000 rpm for 15 minutes. can be mentioned.
 上記閾値は、予め健常者と腎細胞癌患者又は前立腺癌患者の生体試料から抽出したゲノムDNA量に基づいて定めることができる。前記ゲノムDNA量としては、好ましくは166bp以下、より好ましくは63bp、106bp、又は137bpのヒトAlu配列を増幅若しくは検出するプライマー・プローブセットで決定された血漿中のcfDNAの濃度(pg/μl)に基づいて、あるいはこれらを組み合わせて定めることができる。上記閾値の算出においては、上記血漿中のcfDNAの濃度は所定の変換、例えば、平方根変換、指数変換、対数変換、角変換、プロビット変換、逆数変換、又はべき乗変換などで変換した値を用いてもよく、また、上記cfDNAの濃度に対してこれらの変換した値を組み合わせて用いてもよい。 The above threshold value can be determined in advance based on the amount of genomic DNA extracted from biological samples of healthy subjects and renal cell carcinoma patients or prostate cancer patients. The amount of genomic DNA is preferably 166 bp or less, more preferably 63 bp, 106 bp, or 137 bp, depending on the concentration of cfDNA in plasma (pg/μl) determined with a primer/probe set that amplifies or detects a 137 bp human Alu sequence. or a combination of these. In calculating the above threshold value, the concentration of cfDNA in the plasma is determined using a value converted by a predetermined transformation, such as square root transformation, exponential transformation, logarithmic transformation, angular transformation, probit transformation, reciprocal transformation, or power transformation. Alternatively, these converted values may be used in combination for the concentration of cfDNA.
 上記閾値は中央値、平均値、ROC(Receiver Operating Characteristic)曲線解析に基づくAUC(Area under curve)値、左上隅からの距離を利用した値、Youden indexにより算出することが可能である。上記閾値においては、血漿中のcfDNAの濃度(pg/μl)と共に、さらに年齢、肥満度(BMI)、体重、性別、既往歴、薬処方歴、治療歴、などの指標を含めて算出してもよい。さらに、例えば63bp、106bp、又は137bpのヒトAlu配列を増幅・検出するプライマー・プローブセットで決定された血漿中のcfDNA濃度に対して任意の値を加減乗除して閾値を求めてもよい。たとえば、167bp以上の所定の長さ、たとえば167~332bp、好ましくは181bpのヒトAluを増幅・検出するプライマー・プローブセットで決定された血漿中のcfDNA濃度で除した値や、63bp、106bp、137bpのヒトAluを増幅・検出するプライマー・プローブセットで決定された血漿中のcfDNA濃度を所定の長さ、たとえば166~332bp、好ましくは181bpのヒトAluを増幅・検出するプライマー・プローブセットで決定された血漿中のcfDNA濃度で減じた値に基づいてAUC値、左上隅からの距離を利用した値、Youden indexにより閾値を算出してもよい。閾値となるAUC値としては、たとえば0.7以上、好ましくは0.75以上、より好ましくは0.8以上、更に好ましくは0.84以上、より更に好ましくは0.9以上、最も好ましくは0.92以上を挙げることができる。 The above threshold value can be calculated using a median value, an average value, an AUC (Area under curve) value based on ROC (Receiver Operating Characteristic) curve analysis, a value using the distance from the upper left corner, and a Youden index. The above threshold value is calculated by including the concentration of cfDNA in plasma (pg/μl) as well as indicators such as age, body mass index (BMI), weight, gender, medical history, drug prescription history, treatment history, etc. Good too. Furthermore, the threshold value may be determined by adding, subtracting, multiplying or dividing an arbitrary value to the cfDNA concentration in plasma determined with a primer/probe set that amplifies and detects a 63 bp, 106 bp, or 137 bp human Alu sequence. For example, the value divided by the plasma cfDNA concentration determined with a primer/probe set that amplifies and detects human Alu with a predetermined length of 167 bp or more, such as 167 to 332 bp, preferably 181 bp, or 63 bp, 106 bp, or 137 bp. The concentration of cfDNA in plasma determined with a primer/probe set for amplifying and detecting human Alu of a predetermined length, for example, 166 to 332 bp, preferably 181 bp, is determined using a primer/probe set for amplifying and detecting human Alu of a predetermined length. The threshold value may be calculated using the AUC value based on the value subtracted by the cfDNA concentration in the plasma, the value using the distance from the upper left corner, and the Youden index. The AUC value serving as the threshold value is, for example, 0.7 or more, preferably 0.75 or more, more preferably 0.8 or more, even more preferably 0.84 or more, even more preferably 0.9 or more, and most preferably 0. .92 or higher.
 上記181bpのヒトAluを増幅・検出するプライマー・プローブセットとしては、配列番号2に示されるヌクレオチド配列(Alu57F20)又は配列番号2に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるフォワードプライマー、及び配列番号3に示されるヌクレオチド配列(Alu237R19)又は配列番号3に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列からなるリバースプライマーにより構成されるプライマー対と、本件ヒトAlu検出用PCRプローブ又は上記(c’)に記載のヒトAlu検出用PCRプローブとを備えた、ヒトAlu検出用PCRプライマー・プローブセットを挙げることができる。 The primer/probe set for amplifying and detecting the 181 bp human Alu includes the nucleotide sequence shown in SEQ ID NO: 2 (Alu57F20), or deletions or substitutions of 1 to 3 nucleotides in the nucleotide sequence shown in SEQ ID NO: 2, or a forward primer consisting of an added nucleotide sequence, and a nucleotide sequence shown in SEQ ID NO: 3 (Alu237R19) or a nucleotide in which 1 to 3 nucleotides have been deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 3. A PCR primer/probe set for detecting human Alu, comprising a primer pair composed of a reverse primer consisting of a reverse primer sequence, and the present PCR probe for detecting human Alu or the PCR probe for detecting human Alu described in (c') above. can be mentioned.
 なお、被検対象における腎細胞癌又は前立腺癌におけるステージは、国際対がん連合(UICC)のTNM分類で0期、I期、II期、III期、IV期のいずれでもよいが、好ましくはIII期、又はIV期を挙げることができる。 The stage of renal cell carcinoma or prostate cancer in the test subject may be stage 0, stage I, stage II, stage III, or stage IV according to the TNM classification of the International Union Against Cancer (UICC), but stage III is preferable. , or stage IV.
 被検対象より抽出された生体試料中のヒトゲノムDNA量が所定の閾値以上の場合に、被検対象において腎細胞癌又は前立腺癌を有するとの予測を補助することができる。逆に、被検対象より抽出された生体試料中のヒトゲノムDNA量が所定の閾値未満の場合に、被検対象において腎細胞癌又は前立腺癌を有さないとの予測を補助することができる。 If the amount of human genomic DNA in the biological sample extracted from the subject is greater than or equal to a predetermined threshold, it is possible to assist in predicting that the subject has renal cell cancer or prostate cancer. Conversely, when the amount of human genomic DNA in a biological sample extracted from a subject is less than a predetermined threshold, it can be assisted in predicting that the subject does not have renal cell cancer or prostate cancer.
 さらに、予め悪性度が異なる腎細胞癌患者又は前立腺癌患者の生体試料から抽出したゲノムDNA、特に63bp、106bp、137bpのヒトAlu配列を増幅若しくは検出するプライマー・プローブセットで決定された血漿中のcfDNAの濃度(pg/μl)に基づいて閾値を定めることで、被検対象において腎細胞癌又は前立腺癌の悪性度の予測を補助することもできる。 Furthermore, genomic DNA extracted from biological samples of renal cell carcinoma patients or prostate cancer patients with different degrees of malignancy, especially 63bp, 106bp, and 137bp human Alu sequences in plasma determined with primer-probe sets that amplify or detect human Alu sequences. Setting a threshold based on the concentration of cfDNA (pg/μl) can also assist in predicting the malignancy of renal cell carcinoma or prostate cancer in a subject.
 以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。なお、以下の実施例において、63bp、106bp、137bp、181bpのヒトAlu配列を増幅・検出するプライマー・プローブセットをそれぞれ順に「63bpのAlu検出用プライマー・プローブセット」、「106bpのAlu検出用プライマー・プローブセット」、「137bpのAlu検出用プライマー・プローブセット」、「181bpのAlu検出用プライマー・プローブセット」ともいう。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the technical scope of the present invention is not limited to these examples. In the following examples, primer/probe sets for amplifying and detecting human Alu sequences of 63 bp, 106 bp, 137 bp, and 181 bp are referred to as "63 bp Alu detection primer/probe set" and "106 bp Alu detection primer/probe set," respectively.・Probe set", "137 bp Alu detection primer/probe set", "181 bp Alu detection primer/probe set".
[従来のプライマー・プローブセット]
 まず、本発明者らは、上記特許文献1において、上記ヒトAluモデル配列(配列番号6)を開示している。また、本発明者らは、上記特許文献1において、Alu-qPCR用プライマー・プローブ選定のためのクライテリア1~15を設定し、かかるクライテリアに基づいて選定された以下の2セットのプライマー・プローブセットを開示している。
[Conventional primer/probe set]
First, the present inventors have disclosed the human Alu model sequence (SEQ ID NO: 6) in the above-mentioned Patent Document 1. Furthermore, in Patent Document 1, the present inventors set criteria 1 to 15 for selecting primers and probes for Alu-qPCR, and the following two sets of primers and probes were selected based on the criteria. is disclosed.
<63bpのAlu検出用プライマー・プローブセット>
フォワードプライマー(Alu212F18):
  GGCGGAGGTTGCAGTGAG(配列番号7)
リバースプライマー(Alu274R18):
  GTCTCGCTCTGTCGCCCA(配列番号8)
プローブ(アンチセンス)(Alu248RH18):
  TGCAGTGGCGCGATCTCG(配列番号9)
<63bp Alu detection primer/probe set>
Forward primer (Alu212F18):
GGCGGAGGTTGCAGTGAG (SEQ ID NO: 7)
Reverse primer (Alu274R18):
GTCTCGCTCTGTCGCCCA (SEQ ID NO: 8)
Probe (antisense) (Alu248RH18):
TGCAGTGGCGCGATCTCG (SEQ ID NO: 9)
<106bpのAlu検出用プライマー・プローブセット>
フォワードプライマー(Alu101F20):
  GGTGAAACCCCGTCTCTACT(配列番号1)
リバースプライマー(Alu206R20):
  GGTTCAAGCGATTCTCCTGC(配列番号10)
プローブ(アンチセンス)(Alu144RH20)
  CGCCCGGCTAATTTTTGTAT(配列番号5)
<106bp Alu detection primer/probe set>
Forward primer (Alu101F20):
GGTGAAAACCCCGTCTCTACT (SEQ ID NO: 1)
Reverse primer (Alu206R20):
GGTTCAAGCGATTCTCCTGC (SEQ ID NO: 10)
Probe (antisense) (Alu144RH20)
CGCCCGGCTAATTTTGTAT (SEQ ID NO: 5)
 図1に、Aluモデル配列(配列番号6)及び各プライマー、プローブの関係を示す。 Figure 1 shows the relationship between the Alu model sequence (SEQ ID NO: 6) and each primer and probe.
[実施例1]新プライマーの設計
 本発明では、さらに異なるサイズのヒトAlu配列を検出するために、「137bpのAlu検出用プライマー・プローブセット」及び「181bpのAlu検出用プライマー・プローブセット」の2つのプライマー・プローブセットを新たに設計した。なお、137bp及び181bp検出用のリバースプライマーは共通の配列であり、フォワードプライマーの配列はそれぞれ異なる(図2)。また、プローブ配列(Alu144RH20)は、106bp、137bp及び181bp検出用で共通の配列である。
[Example 1] Design of new primers In the present invention, in order to detect human Alu sequences of different sizes, we have developed a “137bp Alu detection primer/probe set” and a “181bp Alu detection primer/probe set”. Two new primer-probe sets were designed. Note that the reverse primers for 137 bp and 181 bp detection have a common sequence, and the forward primers have different sequences (FIG. 2). Further, the probe sequence (Alu144RH20) is a common sequence for 106 bp, 137 bp, and 181 bp detection.
<137bpのAlu検出用プライマー・プローブセット>
フォワードプライマー(Alu101F20):
  GGTGAAACCCCGTCTCTACT(配列番号1)
リバースプライマー(Alu237R19):
  GATCTCGGCTCACTGCAAC(配列番号3)
プローブ(アンチセンス)(Alu144RH20):
  CGCCCGGCTAATTTTTGTAT(配列番号5)
<137bp Alu detection primer/probe set>
Forward primer (Alu101F20):
GGTGAAAACCCCGTCTCTACT (SEQ ID NO: 1)
Reverse primer (Alu237R19):
GATCTCGGCTCACTGCAAC (SEQ ID NO: 3)
Probe (antisense) (Alu144RH20):
CGCCCGGCTAATTTTGTAT (SEQ ID NO: 5)
<181bpのAlu検出用プライマー・プローブセット>
フォワードプライマー(Alu57F20):
  CGGATCACTTGAGGTCAGGA(配列番号2)
リバースプライマー(Alu237R19):
  GATCTCGGCTCACTGCAAC(配列番号3)
プローブ(アンチセンス)(Alu144RH20):
  CGCCCGGCTAATTTTTGTAT(配列番号5)
<181bp Alu detection primer/probe set>
Forward primer (Alu57F20):
CGGATCACTTGAGGTCAGGA (SEQ ID NO: 2)
Reverse primer (Alu237R19):
GATCTCGGCTCACTGCAAC (SEQ ID NO: 3)
Probe (antisense) (Alu144RH20):
CGCCCGGCTAATTTTGTAT (SEQ ID NO: 5)
[実施例2]プローブ(Alu144RH20)の改良
 発明者らは次世代シーケンスを用い、これまで設計したフォワードプライマー(Alu101F20)、リバースプライマー(Alu206R20)による増幅配列を解析した。表1に、全配列数574485リード(168980種類)のうち、Alu101F20、Alu206R20、プローブ(Alu144RH20)と一致する配列数を示す。解析結果から、プローブ(Alu144RH20)と一致する配列が少なく、両プライマー配列による増幅配列のうち、1.6%(7335/457560)しか完全一致する配列がないことが明らかとなった。これはデータベースのBlast解析により想定していたよりも少ない数であった。
[Example 2] Improvement of probe (Alu144RH20) The inventors used next-generation sequencing to analyze the amplified sequences using the forward primer (Alu101F20) and reverse primer (Alu206R20) designed so far. Table 1 shows the number of sequences that match Alu101F20, Alu206R20, and the probe (Alu144RH20) among the total number of 574,485 reads (168,980 types). The analysis results revealed that there were few sequences that matched the probe (Alu144RH20), and only 1.6% (7335/457560) of the sequences amplified by both primer sequences had completely matching sequences. This number was smaller than expected based on Blast analysis of the database.
 そこで発明者らは、LNAを用いてプローブの塩基長を短くすることにより、完全マッチの配列数を増加させれば、特に低濃度における良い分離が期待できると考えた。LNAは、2’-O,4’-Cメチレンで架橋した人工核酸であり、LNAをオリゴヌクレオチドに組み込むと、二本鎖の熱安定性が高まり、オリゴヌクレオチドの標的配列へのハイブリダイゼーションの特異性が向上する。特にqPCRの場合は、ターゲット以外の配列への結合によるバックグラウンド蛍光が減少し、シグナル/ノイズ比(S/N比)が高まる。また、qPCRプローブの標的へのハイブリダイゼーションの向上によって、DNAオリゴヌクレオチドと比較して、融解温度(Tm)が、中間塩状態でのLNAモノマー置換あたり最大8℃上昇する可能性があるとされている。 Therefore, the inventors thought that if the number of perfectly matched sequences was increased by shortening the base length of the probe using LNA, good separation could be expected, especially at low concentrations. LNA is an artificial nucleic acid cross-linked with 2'-O,4'-C methylene, and when LNA is incorporated into an oligonucleotide, the thermal stability of the duplex is increased and the specificity of hybridization to the target sequence of the oligonucleotide is increased. Improves sex. Particularly in the case of qPCR, background fluorescence due to binding to sequences other than the target is reduced, increasing the signal/noise ratio (S/N ratio). It has also been shown that improved hybridization of qPCR probes to targets can increase the melting temperature (Tm) by up to 8°C per LNA monomer displacement in the intermediate salt state compared to DNA oligonucleotides. There is.
 表2に塩基長を短くした時の、次世代シーケンスデータにおける標的種類、標的数を表す。 Table 2 shows the target types and number of targets in next-generation sequence data when the base length is shortened.
 本発明者が上記特許文献1に記載したプローブ(Alu144RH20;配列番号5)は、配列番号6に示すAluモデル配列の125番目から開始する20塩基(の相補鎖)TaqMan型プローブである。塩基数を16塩基とすることで、標的数は約3~4倍に増えることから、Alu140RH16-LNAを作製した(配列番号4)。以下、かかるプローブを「Alu140RH16-LNA」と称する場合がある。また、プローブ140RH16-LNAのうち2~4番目の「+G+G+C」、13~15番目の「+G+T+A」がLNAである。 The probe (Alu144RH20; SEQ ID NO: 5) described by the present inventor in the above-mentioned Patent Document 1 is a 20 base (complementary strand) TaqMan type probe starting from the 125th position of the Alu model sequence shown in SEQ ID NO: 6. By increasing the number of bases to 16 bases, the number of targets increases approximately 3 to 4 times, so Alu140RH16-LNA was produced (SEQ ID NO: 4). Hereinafter, such a probe may be referred to as "Alu140RH16-LNA." Further, among the probes 140RH16-LNA, the 2nd to 4th "+G+G+C" and the 13th to 15th "+G+T+A" are LNAs.
プローブ(Alu140RH16-LNA):
  C+G+G+CTAATTTTT+G+T+AT(配列番号4)
Probe (Alu140RH16-LNA):
C+G+G+CTAATTTTT+G+T+AT (SEQ ID NO: 4)
 なお、表2に示すように、プローブ長を14塩基にした場合には約20倍の標的数上昇が見込める。しかし、14塩基ではLNA6個を導入しても十分にTm値が上がらなかったため、Alu138RH14は設計しなかった。また、125から始まるプローブを選んだ理由は、マウスと交叉しないことを考慮したためである。 As shown in Table 2, when the probe length is set to 14 bases, an approximately 20-fold increase in the number of targets can be expected. However, with 14 bases, the Tm value did not increase sufficiently even when six LNAs were introduced, so Alu138RH14 was not designed. Further, the reason why the probe starting with 125 was selected was that it would not intersect with the mouse.
 プローブAlu144RH20とプローブAlu140RH16-LNAそれぞれを用いてアニーリング温度56℃でqPCRを行ったところ、プローブAlu140RH16-LNAの方がサイクル数の立ち上がりが顕著に早く、標的数の増加の効果が見られた。また、傾向の飽和点が高く、阻害物質(増幅核酸)の蓄積前の、より早いサイクル数での検出が可能であると思われる。さらに、特異性が高くなったこと、Tm値がLNAにより上昇したため安定的にプローブが結合したこと、塩基が短くなったためにより素早い結合が可能となったことから、増幅曲線がより滑らかで値の信頼性が向上したと考えられる。 When qPCR was performed using probe Alu144RH20 and probe Alu140RH16-LNA at an annealing temperature of 56°C, probe Alu140RH16-LNA showed a significantly faster rise in cycle number, and the effect of increasing the number of targets was observed. In addition, the saturation point of the trend is high, and it appears that detection can be performed at a faster number of cycles before the inhibitory substance (amplified nucleic acid) accumulates. In addition, the specificity is higher, the Tm value is increased by LNA, so the probe binds stably, and the shorter bases allow for faster binding, resulting in a smoother amplification curve and a lower value. It is thought that reliability has improved.
 さらに、アニーリング温度を58℃でqPCRを行ったところ、プローブAlu144RH20では滑らかな増幅曲線を示さず、プローブのTm値が十分でないと思われたが、プローブAlu140RH16-LNAを用いた場合は、58℃でも安定できれいな増幅曲線であった。さらに、10fgとNTC(no template control)のサイクル数の差がプローブAlu140RH16-LNAを用いた場合は大きくなった。このことは、低濃度領域において特異性が高くなったことにより感度が上昇したと考えられる。 Furthermore, when qPCR was performed at an annealing temperature of 58°C, the probe Alu144RH20 did not show a smooth amplification curve, suggesting that the Tm value of the probe was insufficient. However, the amplification curve was stable and clean. Furthermore, the difference in the number of cycles between 10 fg and NTC (no template control) was increased when probe Alu140RH16-LNA was used. This is considered to be due to increased sensitivity due to increased specificity in the low concentration region.
[実施例3]本発明のプライマー・プローブセットの感度及び特異性の確認
(1)リアルタイムPCRの条件
 上記実施例1で設計した137bpのAlu検出用プライマー・プローブセット及び181bpのAlu検出用プライマー・プローブセット、さらに実施例2で設計したプローブ(Alu140RH16-LNA)を作製した。さらに、Alu144RH20プローブは5’末端をFAMで、3’末端をBHQ1でそれぞれ標識した。Alu140RH16-LNAプローブは、5’末端をFAMで、3’を消光標識としてIBFQでそれぞれ標識した。また、参考(コントロール)として「従来のプライマー・プローブセット」欄に記載した63bpのAlu検出用プライマー・プローブセット及び106bpのAlu検出用プライマー・プローブセットも同様に作製した。すなわち、本実験には、4種類のプライマー・プローブセット(63bp、106bp、137bp、及び181bpのAlu検出用プライマー・プローブセット)を用いた。プローブとしては後述の図3に示すデータではAlu144RH20を、図4に示すデータではAlu140RH16-LNAを用いた。
[Example 3] Confirmation of the sensitivity and specificity of the primer/probe set of the present invention (1) Real-time PCR conditions The 137 bp Alu detection primer/probe set designed in Example 1 above and the 181 bp Alu detection primer/probe set designed in Example 1 above. A probe set and the probe designed in Example 2 (Alu140RH16-LNA) were prepared. Furthermore, the Alu144RH20 probe was labeled at the 5' end with FAM and at the 3' end with BHQ1. The Alu140RH16-LNA probe was labeled at the 5' end with FAM and at the 3' end with IBFQ as a quenching label. Furthermore, as a reference (control), a 63 bp Alu detection primer/probe set and a 106 bp Alu detection primer/probe set described in the "Conventional Primer/Probe Set" column were similarly prepared. That is, four types of primer/probe sets (63 bp, 106 bp, 137 bp, and 181 bp Alu detection primer/probe sets) were used in this experiment. As the probe, Alu144RH20 was used in the data shown in FIG. 3 described later, and Alu140RH16-LNA was used in the data shown in FIG. 4.
 PCRのテンプレートとして、10fg/μLから1ng/μLまでの10倍毎に段階希釈した断片化ヒトゲノムDNAのみを含むスタンダードサンプルを用いた。具体的には、ヒトゲノムは、Covaris DNA Shearing System M220(Covaris社)を用いて断片化した。ヒトゲノム定量は、Qubit 3.0 Fluorometer(Thermo Fisher Scientific社)により行った。10ngヒトゲノムから、Easy Dilution(タカラバイオ社)を用いて、10倍希釈系列を調製した。 As a template for PCR, a standard sample containing only fragmented human genomic DNA serially diluted 10 times from 10 fg/μL to 1 ng/μL was used. Specifically, the human genome was fragmented using Covaris DNA Shearing System M220 (Covaris). Human genome quantification was performed using Qubit 3.0 Fluorometer (Thermo Fisher Scientific). A 10-fold dilution series was prepared from 10 ng human genome using Easy Dilution (Takara Bio Inc.).
 各プライマー・プローブセットと上記テンプレートとを用いて以下のようにPCRサンプルを調製した。なお、テンプレート及びサンプルの調製は、微量のDNAが失われないように低吸着チューブ及びチップを用いて行った。
 テンプレート                        1μL
 TaqMan Universal Master MixII, no UNG(Thermo Fisher Scientific社)
                              10μL
 フォワードプライマー(10μM)            0.4μL
 リバースプライマー(10μM)             0.4μL
 プローブ(10μM)                  0.5μL
 水                           7.7μL
                     (トータル)   20μL
PCR samples were prepared as follows using each primer/probe set and the above template. The template and sample were prepared using low-adsorption tubes and chips so as not to lose trace amounts of DNA.
Template 1μL
TaqMan Universal Master MixII, no UNG (Thermo Fisher Scientific)
10μL
Forward primer (10μM) 0.4μL
Reverse primer (10μM) 0.4μL
Probe (10μM) 0.5μL
Water 7.7μL
(Total) 20μL
 LightCycler480(Roche社)を用いて、上記のように調製したPCRサンプルのリアルタイムPCRを行った。PCR反応は、95℃で10分間の熱変性の後、95℃で30秒、56℃で4分30秒、及び72℃で30秒のサイクルを5回繰り返した後、95℃で30秒、56℃で30秒、及び72℃で30秒のサイクルを45回繰り返した。解析はLightCycler(登録商標)480 Software release 1.5.0を用いて、Fit point法で行った。リアルタイムPCRに基づき作成した検量線の結果を図3に示す。 Real-time PCR was performed on the PCR sample prepared as described above using LightCycler 480 (Roche). The PCR reaction was performed after heat denaturation at 95°C for 10 minutes, followed by 5 cycles of 30 seconds at 95°C, 4 minutes 30 seconds at 56°C, and 30 seconds at 72°C, followed by 30 seconds at 95°C. A cycle of 30 seconds at 56°C and 30 seconds at 72°C was repeated 45 times. The analysis was performed using the Fit point method using LightCycler (registered trademark) 480 Software release 1.5.0. FIG. 3 shows the results of a calibration curve created based on real-time PCR.
 図3の結果、63bp、106bp、137bp、及び181bpのAlu検出用プライマー・プローブセットの全てにおいて、1ngから10fgまで、相関係数0.99以上の極めて直線性が高い検量線が得られた。これらの結果から、上記プライマー・プローブセットを用いたqPCRはいずれも、10fgまでの断片化ヒトゲノムDNAの検出が可能であることが明らかとなった。これらのプライマー・プローブセットを用いたAlu-qPCRにより、異なる4つのサイズ(63bp、106bp、137bp、及び181bp)以上の大きさのヒトゲノムDNAを超高感度で検出する方法を確立することができた。 As shown in FIG. 3, extremely linear calibration curves with a correlation coefficient of 0.99 or higher were obtained from 1 ng to 10 fg for all of the 63 bp, 106 bp, 137 bp, and 181 bp Alu detection primer/probe sets. These results revealed that qPCR using the above primer-probe set can detect up to 10 fg of fragmented human genomic DNA. Using Alu-qPCR using these primer-probe sets, we were able to establish a method to detect human genomic DNA of four different sizes (63 bp, 106 bp, 137 bp, and 181 bp) or more with ultrahigh sensitivity. .
 また、106bp、137bp、及び181bpのcfDNAの定量に関し、上記図3のデータに用いたプローブAlu144RH20に代えて、Alu140RH16-LNAを用いて同様の実験を行った。結果を図4に示す。 Furthermore, regarding the quantification of 106 bp, 137 bp, and 181 bp cfDNA, similar experiments were conducted using Alu140RH16-LNA instead of the probe Alu144RH20 used for the data in FIG. 3 above. The results are shown in Figure 4.
 図4より、Alu140RH16-LNAを用いてもヒトゲノムDNA(106bp、137bp、及び181bp)を超高感度で検出することが確認された。 From FIG. 4, it was confirmed that human genomic DNA (106 bp, 137 bp, and 181 bp) could be detected with ultrahigh sensitivity even when Alu140RH16-LNA was used.
[実施例4]健常者及び癌患者の血漿中cfDNA濃度測定
 実施例3の検量線作成に用いた63bp、106bp、137bp、及び181bpのAlu検出用プライマー・プローブセットを利用して、サイズ毎Alu-qPCRにより、健常者及び腎細胞癌患者由来の血漿中のcfDNA濃度を定量した。プローブとしては、63bpの場合はAlu248R18を、106bpの場合はAlu144RH20を、137bp、及び181bpの場合はAlu140RH16-LNAを用いた。なお、63bpを増幅するプライマー対は63bp以上の断片を増幅することになる。同様に、106bpを増幅するプライマー対は106bp以上の断片を増幅することになり、137bpを増幅するプライマー対は137bp以上の断片を増幅することになり、181bpを増幅するプライマー対は181bp以上の断片を増幅することになる。言い換えれば、63bpを増幅するプライマー対は62bp以下の断片を増幅できないことになる。同様に、106bpを増幅するプライマー対は105bp以下の断片を増幅できないことになり、137bpを増幅するプライマー対は136bp以下の断片を増幅できないことになり、181bpを増幅するプライマー対は180bp以下の断片を増幅できないことになる。
[Example 4] Measurement of plasma cfDNA concentration in healthy subjects and cancer patients Using the Alu detection primer/probe sets of 63 bp, 106 bp, 137 bp, and 181 bp used to create the calibration curve in Example 3, Alu detection for each size was performed. - cfDNA concentrations in plasma from healthy subjects and renal cell carcinoma patients were quantified by qPCR. As probes, Alu248R18 was used in the case of 63 bp, Alu144RH20 was used in the case of 106 bp, and Alu140RH16-LNA was used in the cases of 137 bp and 181 bp. Note that a primer pair that amplifies 63 bp will amplify a fragment of 63 bp or more. Similarly, a primer pair that amplifies 106 bp will amplify a fragment of 106 bp or more, a primer pair that amplifies 137 bp will amplify a fragment of 137 bp or more, and a primer pair that amplifies 181 bp will amplify a fragment of 181 bp or more. will be amplified. In other words, a primer pair that amplifies 63 bp cannot amplify a fragment of 62 bp or less. Similarly, a primer pair that amplifies 106 bp cannot amplify a fragment of 105 bp or less, a primer pair that amplifies 137 bp cannot amplify a fragment of 136 bp or less, and a primer pair that amplifies 181 bp cannot amplify a fragment of 180 bp or less. This means that it cannot be amplified.
 サンプルとして健常者26人(全て別個人)、63bp及び131bpの測定においては腎細胞癌患者のべ20人(15個人、5人は異なる日時で2回目採血)、106bp及び181bpの測定においては腎細胞癌患者のべ34人(23個人、7人は異なる日時で2回目採血、2人は異なる日時で3回目採血)から採血をして、3,000rpmで10分遠心し、上清をさらに12,000rpmで15分遠心することで血漿を得た。次に、得られた200μLの血漿からmagLEAD12gC(プレシジョン・システム・サイエンス社製)を用いてcfDNAを抽出(50μl)した。抽出したcfDNAは測定時まで-80℃で保存した。そのうち1μlを使ってAlu-qPCR(LightCycler480:ロシュ・ダイアグノスティックス社製)を行った。 Samples were 26 healthy individuals (all separate individuals), 20 renal cell carcinoma patients (15 individuals, 5 had their blood drawn for the second time at different times) for measurements of 63bp and 131bp, and kidney samples for measurements of 106bp and 181bp. Blood was collected from a total of 34 cell carcinoma patients (23 individuals, 7 had their blood drawn for the second time on different dates and times, and 2 had their blood drawn for the third time on different dates and times), centrifuged at 3,000 rpm for 10 minutes, and the supernatant was further collected. Plasma was obtained by centrifugation at 12,000 rpm for 15 minutes. Next, cfDNA was extracted (50 μl) from the obtained 200 μL of plasma using magLEAD12gC (manufactured by Precision System Sciences). The extracted cfDNA was stored at -80°C until measurement. Alu-qPCR (LightCycler 480: manufactured by Roche Diagnostics) was performed using 1 μl of the mixture.
 血漿中のcfDNA濃度をボックスプロットした結果を図5示す。また、図5の63bp、106bp、及び137bpの測定値(血漿中のcfDNA濃度:pg/μl)を181bpの測定値で除した結果を図6示す。 Figure 5 shows the results of a box plot of the cfDNA concentration in plasma. Further, FIG. 6 shows the results of dividing the measured values of 63 bp, 106 bp, and 137 bp (plasma cfDNA concentration: pg/μl) in FIG. 5 by the measured value of 181 bp.
 図5、6の結果から、小さいサイズのcfDNA(63bp、106bp、137bp)では、健常者よりも腎細胞癌患者において血漿中のcfDNA濃度が高いこと、及び181bpでは健常者と腎細胞癌患者で差がないことが明らかになった。さらに、63bp、106bp、及び137bpの血漿中のcfDNA濃度を、181bpの血漿中のcfDNA濃度で除することで、より健常者と腎細胞癌患者とで差が生じることが明らかとなった。 The results in Figures 5 and 6 show that for small size cfDNA (63bp, 106bp, 137bp), the plasma cfDNA concentration is higher in renal cell carcinoma patients than in healthy subjects, and for 181bp, the plasma cfDNA concentration is higher in renal cell carcinoma patients than in healthy subjects. It became clear that there was no difference. Furthermore, it was revealed that by dividing the plasma cfDNA concentrations of 63 bp, 106 bp, and 137 bp by the 181 bp plasma cfDNA concentration, there is a greater difference between healthy subjects and renal cell carcinoma patients.
[実施例5]ROC(Receiver Operating Characteristic)解析
 実施例4の血漿中のcfDNA濃度の結果に基づいて、健常者と癌患者の識別の有効性を視覚化し、閾値を設定するためにROC解析を行った。63bp、106bp、137bp、及び181bpを増幅・検出するプライマー・プローブセットで決定された血漿中のそれぞれのcfDNA濃度のROC解析結果を図7に、63bp/181bp、106bp/181bp、137bp/181bpのROC解析結果を図8に、63bp-181bp、106bp-181bp、137bp-181bpのROC解析結果を図9に示す。それぞれのグラフにおけるcfDNA濃度は各グラフの下部に記載のとおりである。
[Example 5] ROC (Receiver Operating Characteristic) analysis Based on the results of plasma cfDNA concentration in Example 4, ROC analysis was performed to visualize the effectiveness of distinguishing between healthy subjects and cancer patients and to set a threshold value. went. Figure 7 shows the ROC analysis results for each cfDNA concentration in plasma determined using primer/probe sets that amplify and detect 63bp, 106bp, 137bp, and 181bp. The analysis results are shown in FIG. 8, and the ROC analysis results for 63bp-181bp, 106bp-181bp, and 137bp-181bp are shown in FIG. The cfDNA concentration in each graph is as described at the bottom of each graph.
 63bp、106bp、137bpを増幅・検出するプライマー・プローブセットで決定された血漿中のcfDNA濃度のROC解析結果はAUC(Area under curve)値がいずれも0.7以上の数値であり、特に106bpでは0.85以上と高値であった。また、63bp/181bp、106bp/181bp、137bp/181bpのROC解析結果はAUC値がいずれも0.8以上の数値であり、特に63bp/181bp、106bp/181bpは0.9以上と高値であり、それぞれ単独よりも181bpのcfDNA濃度で除した方が健常者と腎細胞癌患者で差があることが明らかとなった。さらに、63bp-181bp、106bp-181bp、137bp-181bpのROC解析結果はAUC値がいずれも0.78以上の数値であり、特に63bp-181bpは0.848、106bp-181bpは0.921と高値であり、それぞれ単独よりも181bpのcfDNA濃度で減じた方がよいことが明らかとなった。 The results of ROC analysis of plasma cfDNA concentration determined using primer/probe sets that amplify and detect 63bp, 106bp, and 137bp show that the AUC (Area under curve) values are all 0.7 or higher, especially for 106bp. It was a high value of 0.85 or more. In addition, the ROC analysis results for 63bp/181bp, 106bp/181bp, and 137bp/181bp all have AUC values of 0.8 or higher, and 63bp/181bp and 106bp/181bp have particularly high values of 0.9 or higher. It became clear that there was a greater difference between healthy subjects and renal cell carcinoma patients when dividing by the 181 bp cfDNA concentration than when each was used alone. Furthermore, the ROC analysis results for 63bp-181bp, 106bp-181bp, and 137bp-181bp all have AUC values of 0.78 or higher, and especially high values of 0.848 for 63bp-181bp and 0.921 for 106bp-181bp. Therefore, it became clear that it is better to reduce the cfDNA concentration to 181 bp than each of them alone.
[実施例6]癌判定の閾値設定
 実施例5の結果から、患者を100%識別できる値に閾値を設定すると(i)図7より106bpを増幅・検出するプライマー・プローブセットで決定された血漿中のcfDNA濃度の閾値は5.3pg/μl、(ii)図8により106bp/181bpの閾値は2.71とすることができる。(i)及び(ii)を組み合わせて用いた場合、感度1.0(34/34)、特異度0.82(28/34)と非常に信頼性の高いスクリーニングが可能であることが示された(表3)。腎細胞癌患者と健常者をこのように高い確率で判別できる方法は従来なかったものであり、上記サイズ毎Alu-qPCRは低侵襲な腎細胞癌診断として非常に有用であることが示された。
[Example 6] Threshold value setting for cancer determination Based on the results of Example 5, if the threshold value is set to a value that allows 100% identification of patients, (i) From Figure 7, plasma determined with a primer/probe set that amplifies and detects 106 bp. The threshold value for the cfDNA concentration in the medium can be set to 5.3 pg/μl, and (ii) the threshold value for 106 bp/181 bp can be set to 2.71 according to FIG. When (i) and (ii) are used in combination, it has been shown that very reliable screening is possible with a sensitivity of 1.0 (34/34) and a specificity of 0.82 (28/34). (Table 3). There has never been a method that can distinguish between renal cell carcinoma patients and healthy individuals with such high probability, and the size-specific Alu-qPCR described above has been shown to be extremely useful as a minimally invasive method for diagnosing renal cell carcinoma. .
 さらに、106bp、106bp/181bp、106bp-181bpそれぞれについて感度を100%、>95%、>90%、>85%、>80%とした時の閾値、感度、特異度、及び感度+特異度を図10に示す。図10より、感度を>95%とすることで感度+特異度が高まることが確認された。加えて、106bp及び106bp/181bpの両方の閾値を同時に満たす場合の感度、特異度、及び感度+特異度を図11に示す。106bpと106bp/181bpの閾値を同時に満たす場合、特異度の上昇が見られ、106bpの閾値6.6pg/μl、106bp/181bpの閾値2.73の時(図10、>95%参照)、感度0.971、特異度0.923であった。 Furthermore, the threshold, sensitivity, specificity, and sensitivity + specificity when the sensitivity is 100%, >95%, >90%, >85%, >80% for 106bp, 106bp/181bp, and 106bp-181bp, respectively. It is shown in FIG. From FIG. 10, it was confirmed that sensitivity + specificity increases by setting the sensitivity to >95%. In addition, FIG. 11 shows the sensitivity, specificity, and sensitivity+specificity when both the 106 bp and 106 bp/181 bp thresholds are satisfied simultaneously. When the thresholds of 106bp and 106bp/181bp are met simultaneously, an increase in specificity is observed, and when the threshold of 106bp is 6.6 pg/μl and the threshold of 106bp/181bp is 2.73 (see Figure 10, >95%), the sensitivity increases. The specificity was 0.971 and the specificity was 0.923.
[実施例7]前立腺癌への適用
 実施例5で算出した健常者の106bp、106bp/181bp、106bp-181bpを、前立腺癌患者に適用した。実施例4に記載の方法により、前立腺癌患者3人から血漿を得た。次に、cfDNAを50μl抽出して106bp、181bpのそれぞれを増幅・検出するプライマー・プローブセットを用いて血漿中のcfDNA濃度(pg/μl)をAlu-qPCRにより調べた。結果を表4に示す。そして、上記健常者及び上記前立腺癌患者の106bp、及び181bpの血漿中のcfDNA濃度に基づいて実施例5に記載のROC解析により106bp、106bp/181bp及び106bp-181bpそれぞれの閾値を求めた。
[Example 7] Application to prostate cancer The 106bp, 106bp/181bp, and 106bp-181bp of healthy individuals calculated in Example 5 were applied to prostate cancer patients. Plasma was obtained from three prostate cancer patients by the method described in Example 4. Next, 50 μl of cfDNA was extracted, and the cfDNA concentration (pg/μl) in the plasma was examined by Alu-qPCR using a primer/probe set for amplifying and detecting 106 bp and 181 bp, respectively. The results are shown in Table 4. Then, threshold values for 106 bp, 106 bp/181 bp, and 106 bp-181 bp were determined by the ROC analysis described in Example 5 based on the plasma cfDNA concentrations of 106 bp and 181 bp of the above-mentioned healthy subjects and the above-mentioned prostate cancer patients.
 106bpの閾値を6.89、106bp/181bpの閾値を2.71としたとき、106bpかつ106bp/181bpにおいて感度1、特異度0.92を得た。また、106bp-181bpの閾値を5.08とした時、感度1、特異度0.81を得た。したがって、上記サイズ毎Alu-qPCRは低侵襲な前立腺癌診断としても非常に有用であることが示された。 When the threshold for 106 bp was 6.89 and the threshold for 106 bp/181 bp was 2.71, sensitivity of 1 and specificity of 0.92 were obtained for 106 bp and 106 bp/181 bp. Furthermore, when the threshold value of 106 bp to 181 bp was set to 5.08, a sensitivity of 1 and a specificity of 0.81 were obtained. Therefore, the size-specific Alu-qPCR described above was shown to be very useful as a minimally invasive diagnosis of prostate cancer.
[実施例8]前立腺癌における治療後のモニタリングへの適用
 前立腺癌患者においてホルモン療法後のモニタリングにおいて血漿中のcfDNA濃度を調べた。前立腺癌患者2人にホルモン療法としてリュープリンPRO(武田薬品工業社)又はザイティガ(ヤンセンファーマ社)を用い、投与前及び投与から6ヶ月後に血漿を得た。次に、cfDNAを50μl抽出し、106bp、181bpのそれぞれを増幅・検出するプライマー・プローブセットを用いて血漿中のcfDNA濃度(pg/μl)をAlu-qPCRにより調べた。そして、106bp、及び181bpの血漿中のcfDNA濃度に基づいて106bp/181bp及び106bp-181bpを求めた。なお、投与から6ヶ月後における前立腺癌患者2人はいずれも前立腺がんマーカーのPSA値に基づいて癌治療効果が確認された患者である。
[Example 8] Application to monitoring after treatment in prostate cancer The concentration of cfDNA in plasma was investigated in monitoring after hormone therapy in prostate cancer patients. Leuplin PRO (Takeda Pharmaceutical Co., Ltd.) or Zytiga (Janssen Pharma Co., Ltd.) was used as hormone therapy for two prostate cancer patients, and plasma was obtained before administration and 6 months after administration. Next, 50 μl of cfDNA was extracted, and the cfDNA concentration (pg/μl) in plasma was examined by Alu-qPCR using primer and probe sets for amplifying and detecting 106 bp and 181 bp. Then, 106bp/181bp and 106bp-181bp were determined based on the plasma cfDNA concentrations of 106bp and 181bp. In addition, both of the two prostate cancer patients six months after administration were patients in whom the cancer treatment effect was confirmed based on the PSA value of the prostate cancer marker.
 表5に示すように、106bp、106bp/181bp及び106bp-181bpのいずれもホルモン療法から6月後に低下していた。したがって、106bp、181bpを増幅・検出するプライマー・プローブセットで決定された血漿中のcfDNA濃度や、それらの濃度により106bp/181bpや106bp-181bpを算出することで、癌治療後のモニタリングに適用できる。 As shown in Table 5, all of 106bp, 106bp/181bp, and 106bp-181bp decreased six months after hormone therapy. Therefore, by calculating the cfDNA concentration in plasma determined using a primer/probe set that amplifies and detects 106bp and 181bp, and by calculating 106bp/181bp and 106bp-181bp based on these concentrations, it can be applied to monitoring after cancer treatment. .

Claims (9)

  1. 以下の(a)のフォワードプライマー及び(b)のリバースプライマーにより構成される、又は、以下の(a’)のフォワードプライマー及び(b)のリバースプライマーにより構成される、ヒトAlu検出用PCRプライマー対。
    (a)配列番号1に示されるヌクレオチド配列(Alu101F20);又は配列番号1に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列;からなるフォワードプライマー;
    (a’)配列番号2に示されるヌクレオチド配列(Alu57F20);又は配列番号2に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列;からなるフォワードプライマー;
    (b)配列番号3に示されるヌクレオチド配列(Alu237R19);又は配列番号3に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列;からなるリバースプライマー;
    A PCR primer pair for human Alu detection consisting of the following forward primer (a) and (b) reverse primer, or the following (a') forward primer and (b) reverse primer. .
    (a) A forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 1 (Alu101F20); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 1;
    (a') A forward primer consisting of the nucleotide sequence shown in SEQ ID NO: 2 (Alu57F20); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 2;
    (b) a reverse primer consisting of the nucleotide sequence shown in SEQ ID NO: 3 (Alu237R19); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 3;
  2. 以下の(c)からなるヒトAlu検出用PCRプローブ。
    (c)配列番号4に示されるヌクレオチド配列(Alu140RH16-LNA);又は配列番号4に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列;
    A PCR probe for human Alu detection consisting of the following (c).
    (c) the nucleotide sequence shown in SEQ ID NO: 4 (Alu140RH16-LNA); or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 4;
  3. 請求項1に記載のヒトAlu検出用PCRプライマー対と、請求項2に記載の(c)からなるヒトAlu検出用PCRプローブ;又は
    請求項1に記載のヒトAlu検出用PCRプライマー対と、(c’)配列番号5に示されるヌクレオチド配列(Alu144RH20)、若しくは配列番号5に示されるヌクレオチド配列において1~3個のヌクレオチドが欠失、置換、若しくは付加されたヌクレオチド配列;からなるヒトAlu検出用PCRプローブ;
    とを備えた、ヒトAlu検出用PCRプライマー・プローブセット。
    A PCR primer pair for detecting human Alu according to claim 1 and a PCR probe for detecting human Alu consisting of (c) according to claim 2; or a pair of PCR primers for detecting human Alu according to claim 1, ( c') A nucleotide sequence shown in SEQ ID NO: 5 (Alu144RH20), or a nucleotide sequence in which 1 to 3 nucleotides are deleted, substituted, or added to the nucleotide sequence shown in SEQ ID NO: 5; for human Alu detection. PCR probe;
    A PCR primer/probe set for human Alu detection, comprising:
  4. 被験試料より抽出されたDNAを鋳型として、請求項1に記載のヒトAlu検出用PCRプライマー対を用いたPCRを行う工程を含む、前記被験試料中のヒトゲノムDNAを検出及び/又は定量する方法。 A method for detecting and/or quantifying human genomic DNA in a test sample, comprising the step of performing PCR using the PCR primer pair for human Alu detection according to claim 1, using DNA extracted from the test sample as a template.
  5. 被験試料より抽出されたDNAを鋳型として、請求項3に記載のヒトAlu検出用PCRプライマー・プローブセットを用いたPCRを行う工程を含む、前記被験試料中のヒトゲノムDNAを検出及び/又は定量する方法。 Detecting and/or quantifying human genomic DNA in the test sample, including the step of performing PCR using the PCR primer/probe set for human Alu detection according to claim 3, using the DNA extracted from the test sample as a template. Method.
  6. 請求項3に記載のヒトAlu検出用PCRプライマー・プローブセットを用いて被験試料中のヒトゲノムDNAを検出及び/又は定量する方法であって、以下の(I)~(III)の工程を含む、方法。
    (I)前記被験試料より抽出されたDNAを鋳型として、前記プライマー・プローブセットを用いたリアルタイムPCRを行う工程;
    (II)既知量のヒトゲノムDNAを段階希釈して調製された標準試料を鋳型として、上記工程(I)と同様の条件においてリアルタイムPCRを行い、検量線を作成する工程;
    (III)前記検量線から、前記被験試料中のヒトゲノムDNA量を算出する工程;
    A method for detecting and/or quantifying human genomic DNA in a test sample using the PCR primer/probe set for human Alu detection according to claim 3, comprising the following steps (I) to (III): Method.
    (I) Performing real-time PCR using the primer/probe set using the DNA extracted from the test sample as a template;
    (II) Performing real-time PCR under the same conditions as in step (I) above using a standard sample prepared by serially diluting a known amount of human genomic DNA as a template to create a standard curve;
    (III) calculating the amount of human genomic DNA in the test sample from the calibration curve;
  7. 以下の工程(A)及び(B)を備えたことを特徴とする、被検対象における腎細胞癌又は前立腺癌の有無の予測を補助する方法。
    (A)請求項4~6のいずれかに記載のヒトゲノムDNAを検出及び/又は定量する方法によって、被検対象より抽出された生体試料中のヒトゲノムDNA量を定量する工程;
    (B)工程(A)で定量したヒトゲノムDNA量が所定の閾値以上の場合に、被検対象において腎細胞癌又は前立腺癌を有するとの予測を補助する工程;
    A method for assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer in a subject, characterized by comprising the following steps (A) and (B).
    (A) Quantifying the amount of human genomic DNA in a biological sample extracted from a subject by the method for detecting and/or quantifying human genomic DNA according to any one of claims 4 to 6;
    (B) assisting in predicting that the subject has renal cell cancer or prostate cancer when the amount of human genomic DNA quantified in step (A) is greater than or equal to a predetermined threshold;
  8. 以下の工程(A’)及び(B’)を備えたことを特徴とする、被検対象における腎細胞癌又は前立腺癌の有無の予測を補助する方法。
    (A’)以下の(I’)~(III’)の工程を含む方法によって、被検対象より抽出された生体試料中のヒトゲノムDNA量を定量する工程;
    (I’)前記被験試料より抽出されたDNAを鋳型として、63bp、106bp、及び/又は137bpのヒトAlu配列を増幅若しくは検出するプライマー・プローブセットを用いたリアルタイムPCRを行う工程;
    (II’)既知量のヒトゲノムDNAを段階希釈して調製された標準試料を鋳型として、上記工程(I’)と同様の条件においてリアルタイムPCRを行い、検量線を作成する工程;
    (III’)前記検量線から、前記被験試料中のヒトゲノムDNA量を算出する工程;
    (B’)工程(A’)で定量したヒトゲノムDNA量が所定の閾値以上の場合に、被検対象において腎細胞癌又は前立腺癌を有するとの予測を補助する工程;
    A method for assisting in predicting the presence or absence of renal cell carcinoma or prostate cancer in a subject, characterized by comprising the following steps (A') and (B').
    (A') Quantifying the amount of human genomic DNA in a biological sample extracted from a subject by a method including the following steps (I') to (III');
    (I') Performing real-time PCR using the DNA extracted from the test sample as a template and a primer/probe set that amplifies or detects a 63bp, 106bp, and/or 137bp human Alu sequence;
    (II') Performing real-time PCR under the same conditions as the above step (I') using a standard sample prepared by serially diluting a known amount of human genomic DNA as a template to create a calibration curve;
    (III') calculating the amount of human genomic DNA in the test sample from the calibration curve;
    (B') A step of assisting in predicting that the subject has renal cell carcinoma or prostate cancer when the amount of human genomic DNA quantified in step (A') is greater than or equal to a predetermined threshold;
  9.  閾値が、ROC曲線解析から算出されるAUC値によって定めた値であることを特徴とする、請求項7又は8に記載の被検対象における腎細胞癌又は前立腺癌の有無の予測を補助する方法。

     
    The method for assisting in predicting the presence or absence of renal cell cancer or prostate cancer in a subject according to claim 7 or 8, wherein the threshold value is a value determined by an AUC value calculated from ROC curve analysis. .

PCT/JP2023/031568 2022-08-30 2023-08-30 PCR PRIMER PAIR FOR HUMAN ALu DETECTION, PCR PROBE FOR HUMAN ALu DETECTION, PCR PRIMER AND PROBE SET FOR HUMAN ALu DETECTION, METHOD FOR DETECTING AND/OR QUANTIFYING HUMAN GENOMIC DNA, AND METHOD FOR ASSISTING PREDICTION OF PRESENCE OR ABSENCE OF RENAL CELL CARCINOMA OR PROSTATE CANCER WO2024048659A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022137012 2022-08-30
JP2022-137012 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024048659A1 true WO2024048659A1 (en) 2024-03-07

Family

ID=90099722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031568 WO2024048659A1 (en) 2022-08-30 2023-08-30 PCR PRIMER PAIR FOR HUMAN ALu DETECTION, PCR PROBE FOR HUMAN ALu DETECTION, PCR PRIMER AND PROBE SET FOR HUMAN ALu DETECTION, METHOD FOR DETECTING AND/OR QUANTIFYING HUMAN GENOMIC DNA, AND METHOD FOR ASSISTING PREDICTION OF PRESENCE OR ABSENCE OF RENAL CELL CARCINOMA OR PROSTATE CANCER

Country Status (1)

Country Link
WO (1) WO2024048659A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545418A (en) * 2005-05-27 2008-12-18 ジョン ウェイン キャンサー インスティチュート Use of free circulating DNA for cancer diagnosis, prognosis, and treatment
JP2010068800A (en) * 2008-08-19 2010-04-02 Sumitomo Chemical Co Ltd Method for quantifying or detecting dna
JP2012518435A (en) * 2009-02-25 2012-08-16 ダイアカルタ リミテッド ライアビリティ カンパニー Blood free DNA biomarker and application method thereof
WO2018101375A1 (en) * 2016-11-30 2018-06-07 国立大学法人秋田大学 Method for detecting human genomic dna
WO2021127462A1 (en) * 2019-12-19 2021-06-24 Cadex Genomics, Corp. Multiplexed assay using differential fragment size to identify cancer specific cell-free dna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545418A (en) * 2005-05-27 2008-12-18 ジョン ウェイン キャンサー インスティチュート Use of free circulating DNA for cancer diagnosis, prognosis, and treatment
JP2010068800A (en) * 2008-08-19 2010-04-02 Sumitomo Chemical Co Ltd Method for quantifying or detecting dna
JP2012518435A (en) * 2009-02-25 2012-08-16 ダイアカルタ リミテッド ライアビリティ カンパニー Blood free DNA biomarker and application method thereof
WO2018101375A1 (en) * 2016-11-30 2018-06-07 国立大学法人秋田大学 Method for detecting human genomic dna
WO2021127462A1 (en) * 2019-12-19 2021-06-24 Cadex Genomics, Corp. Multiplexed assay using differential fragment size to identify cancer specific cell-free dna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AKASHI, HIDEO ET AL.: "P-314 Development of using LNA in high-performance Alu probe with high-speed human genome detection", PROGRAM AND ABSTRACTS OF THE 125TH ANNUAL MEETING OF THE JAPANESE ASSOCIATION OF ANATOMISTS; UBE, YAMAGUCHI; MARCH 25-27, 2020, vol. 125, 1 January 2020 (2020-01-01) - 27 March 2020 (2020-03-27), pages 202, XP009553471 *

Similar Documents

Publication Publication Date Title
US20210292811A1 (en) Multiplexed assay for quantitating and assessing integrity of cell-free dna in biological fluids for cancer diagnosis, prognosis and surveillance
JP4568716B2 (en) Use of intron RNA to measure gene expression
JP6543569B2 (en) Quantitative multiplex methylation specific PCR method-cMeth DNA, reagent, and use thereof
JP7072385B2 (en) Means for Diagnosing, Predicting or Monitoring Pneumocystis Pneumonia
US20230366034A1 (en) Compositions and methods for diagnosing lung cancers using gene expression profiles
JP2006518602A5 (en)
JP5851400B2 (en) Colorectal tumor detection method
JP6438119B2 (en) A method for rapid and sensitive detection of hot spot mutations
US20100184015A1 (en) Method for detection of xmrv
Varghese et al. Analysis of dysplasia in patients with Barrett’s esophagus based on expression pattern of 90 genes
JP2013516984A (en) Method for ensuring amplification of abnormal nucleic acids in a sample
CN107988427A (en) Prawn hepatopancreatic parvovirus(HPV)RAA constant temperature fluorescence detection method and reagent
JP2022130509A (en) Analytical method and kit
CN105745335A (en) Compositions and methods for multimodal analysis of cMET nucleic acids
JP2001204483A (en) DETERMINATION OF hTERT mRNA EXPRESSION
US20230175070A1 (en) Tumor detection reagent and kit
KR20210074204A (en) Method for evaluating risk of ischemic stroke
WO2024048659A1 (en) PCR PRIMER PAIR FOR HUMAN ALu DETECTION, PCR PROBE FOR HUMAN ALu DETECTION, PCR PRIMER AND PROBE SET FOR HUMAN ALu DETECTION, METHOD FOR DETECTING AND/OR QUANTIFYING HUMAN GENOMIC DNA, AND METHOD FOR ASSISTING PREDICTION OF PRESENCE OR ABSENCE OF RENAL CELL CARCINOMA OR PROSTATE CANCER
JP6269493B2 (en) Method for acquiring information on brain tumor, and marker and kit for acquiring information on brain tumor
Eini et al. Chimeric external control to quantify cell free DNA in plasma samples by real time PCR
JP2022517008A (en) Methods and systems for identifying spinal muscular atrophy
US20050037373A1 (en) Assay for bcr/abl gene rearrangement
CN114250286B (en) Combination for nucleic acid detection, kit and application thereof
Velmanickam et al. Low-cost and Rapid micro-RNA Assay for Identification of Pancreactic Cancer
EP3325643B1 (en) Methods and means for dysplasia analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860421

Country of ref document: EP

Kind code of ref document: A1