WO2024048604A1 - Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device - Google Patents

Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device Download PDF

Info

Publication number
WO2024048604A1
WO2024048604A1 PCT/JP2023/031310 JP2023031310W WO2024048604A1 WO 2024048604 A1 WO2024048604 A1 WO 2024048604A1 JP 2023031310 W JP2023031310 W JP 2023031310W WO 2024048604 A1 WO2024048604 A1 WO 2024048604A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
resin composition
cured product
compound
Prior art date
Application number
PCT/JP2023/031310
Other languages
French (fr)
Japanese (ja)
Inventor
敦靖 野崎
享平 崎田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024048604A1 publication Critical patent/WO2024048604A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a resin composition, a cured product, a laminate, a method for producing a cured product, a method for producing a laminate, a method for producing a semiconductor device, and a semiconductor device.
  • resin materials manufactured from resin compositions containing resin are utilized in various fields.
  • polyimide has excellent heat resistance and insulation properties, so it is used for various purposes.
  • the above-mentioned uses are not particularly limited, but in the case of semiconductor devices for mounting, for example, they may be used as materials for insulating films and sealing materials, or as protective films. It is also used as a base film and coverlay for flexible substrates.
  • polyimide is used in the form of a resin composition containing a polyimide precursor.
  • a resin composition is applied to a base material by coating, for example, to form a photosensitive film, and then, as necessary, exposure, development, heating, etc. are performed to form a cured product on the base material. be able to.
  • the polyimide precursor is cyclized, for example, by heating, and becomes polyimide in the cured product. Since the resin composition can be applied by known coating methods, there is a high degree of freedom in designing the shape, size, application position, etc. of the resin composition when it is applied. It can be said that it has excellent characteristics. In addition to the high performance of polyimide, there are increasing expectations for the industrial application of the above-mentioned resin composition due to its excellent manufacturing adaptability.
  • Patent Document 1 contains a polyimide precursor having a polymerizable unsaturated bond, a polymerizable monomer having an aliphatic cyclic skeleton and at least two methacryloyloxy groups, a photopolymerization initiator, and a solvent.
  • a photosensitive resin composition is described.
  • Patent Document 2 describes that (A) a polyimide precursor having a polymerizable unsaturated bond, (B) a polymerizable monomer having an aliphatic cyclic skeleton, (C) a photopolymerization initiator, and (D) a thermal crosslinking agent.
  • a photosensitive resin composition containing the same is described.
  • cured products containing polyimide it is required to reduce the dielectric constant of the cured products from the viewpoint of suppressing transmission loss.
  • improvement in chemical resistance is required from the viewpoint of improving resistance to developers when laminated in multiple layers, resistance to solvents contained in resin compositions, etc.
  • the present invention relates to a resin composition from which a cured product having a low dielectric constant and excellent chemical resistance can be obtained, a cured product obtained by curing the above resin composition, a laminate containing the above cured product, and a cured product obtained from the above cured product. It is an object of the present invention to provide a manufacturing method of a semiconductor device including a manufacturing method, a method of manufacturing the laminate, a method of manufacturing the cured product, and a semiconductor device including the cured product.
  • Y 11 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by any of the following formulas (a), (b), or (c), Or, it represents a divalent linking group, and at least one of X 11 and Y 11 has two or more hydrogen atoms removed from the structure represented by formula (a), formula (b), or formula (c).
  • R 11 and R 12 are each independently a hydrogen atom or a monovalent organic group, and at least one of R 11 and R 12 is a monovalent organic group containing a polymerizable group. be.
  • X 1 and X 2 are each independently a hydrogen atom or an alkyl group optionally substituted with a halogen atom
  • R 1 and R 2 are each independently , represents a hydrogen atom or a monovalent substituent, and R 1 and R 2 may be combined to form a ring structure.
  • Y 11 is a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by formula (a), formula (b) or formula (c), in ⁇ 1> The resin composition described.
  • R 21 and R 22 are each independently a hydrogen atom or a monovalent organic group, and out of all R 21 and R 22 contained in the polyimide precursor, 2 polymerizable groups are The proportion of R 21 and R 22 , which are monovalent organic groups containing at least one group, is 50 mol% or more.
  • X 1 and X 2 are each independently a hydrogen atom or an alkyl group optionally substituted with a halogen atom
  • R 1 and R 2 are each independently , represents a hydrogen atom or a monovalent substituent, and R 1 and R 2 may be combined to form a ring structure.
  • ⁇ 6> The resin composition according to any one of ⁇ 1> to ⁇ 5>, wherein the polymerizable compound includes a compound having a ClogP value of 3.0 or more.
  • ⁇ 7> Any one of ⁇ 1> to ⁇ 6>, wherein the polymerizable compound includes a compound having a ClogP value of 3.0 or more and having an aromatic ring structure or an aliphatic ring structure having 6 or more carbon atoms.
  • the resin composition according to item 1. ⁇ 8> The resin composition according to any one of ⁇ 1> to ⁇ 7>, further comprising an azole compound and a silane coupling agent.
  • ⁇ 9> The resin composition according to any one of ⁇ 1> to ⁇ 8>, which is used for forming an interlayer insulating film for a rewiring layer.
  • ⁇ 11> A laminate including two or more layers made of the cured product according to ⁇ 10> and a metal layer between any of the layers made of the cured product.
  • ⁇ 12> A method for producing a cured product, comprising a film forming step of applying the resin composition according to any one of ⁇ 1> to ⁇ 9> onto a substrate to form a film.
  • the method for producing a cured product according to ⁇ 12> comprising an exposure step of selectively exposing the film and a development step of developing the film using a developer to form a pattern.
  • the method for producing a cured product according to ⁇ 12> or ⁇ 13> which includes a heating step of heating the film at 50 to 450°C.
  • a method for producing a laminate including the method for producing a cured product according to any one of ⁇ 12> to ⁇ 14>.
  • ⁇ 16> A method for manufacturing a semiconductor device, comprising the method for manufacturing a cured product according to any one of ⁇ 12> to ⁇ 14>.
  • ⁇ 17> A semiconductor device comprising the cured product according to ⁇ 10>.
  • a resin composition capable of obtaining a cured product having a low dielectric constant and excellent chemical resistance, a cured product obtained by curing the above resin composition, a laminate containing the above cured product, and the above
  • a method for producing a cured product, a method for producing the laminate, a method for producing a semiconductor device including the method for producing the cured product, and a semiconductor device including the cured product are provided.
  • a numerical range expressed using the symbol " ⁇ ” means a range that includes the numerical values written before and after " ⁇ " as the lower limit and upper limit, respectively.
  • the term “step” includes not only independent steps but also steps that cannot be clearly distinguished from other steps as long as the intended effect of the step can be achieved.
  • substitution or unsubstitution includes a group having a substituent (atomic group) as well as a group having no substituent (atomic group).
  • alkyl group includes not only an alkyl group without a substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • exposure includes not only exposure using light but also exposure using particle beams such as electron beams and ion beams, unless otherwise specified. Examples of the light used for exposure include actinic rays or radiation such as the bright line spectrum of a mercury lamp, far ultraviolet rays typified by excimer lasers, extreme ultraviolet rays (EUV light), X-rays, and electron beams.
  • (meth)acrylate means both “acrylate” and “methacrylate”, or either “(meth)acrylate”
  • (meth)acrylic means both “acrylic” and “methacrylic”
  • (meth)acryloyl means either or both of "acryloyl” and “methacryloyl.”
  • Me in the structural formula represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • the total solid content refers to the total mass of all components of the composition excluding the solvent.
  • the solid content concentration is the mass percentage of other components excluding the solvent with respect to the total mass of the composition.
  • weight average molecular weight (Mw) and number average molecular weight (Mn) are values measured using gel permeation chromatography (GPC), and are defined as polystyrene equivalent values.
  • weight average molecular weight (Mw) and number average molecular weight (Mn) are expressed using, for example, HLC-8220GPC (manufactured by Tosoh Corporation) and guard column HZ-L, TSKgel Super HZM-M, TSKgel.
  • THF tetrahydrofuran
  • NMP N-methyl-2-pyrrolidone
  • a detector with a wavelength of 254 nm of UV rays is used for detection in the GPC measurement.
  • each layer constituting a laminate when the positional relationship of each layer constituting a laminate is described as "upper” or “lower", there is another layer above or below the reference layer among the plurality of layers of interest. It would be good if there was. That is, a third layer or element may be further interposed between the reference layer and the other layer, and the reference layer and the other layer do not need to be in contact with each other.
  • the direction in which layers are stacked on the base material is referred to as "top”, or if there is a resin composition layer, the direction from the base material to the resin composition layer is referred to as "top”. , the opposite direction is called "down".
  • the composition may contain, as each component contained in the composition, two or more compounds corresponding to that component. Further, unless otherwise specified, the content of each component in the composition means the total content of all compounds corresponding to that component.
  • the temperature is 23° C.
  • the atmospheric pressure is 101,325 Pa (1 atm)
  • the relative humidity is 50% RH. In this specification, combinations of preferred aspects are more preferred aspects.
  • the resin composition according to the first aspect of the present invention contains a repeating unit represented by formula (1-1), and contains a polymerizable group. It contains a polyimide precursor, a polymerization initiator, and a polymerizable compound having an amount of 2 mmol/g or more and an amide bond content of 1.5 mmol/g or less.
  • the resin composition according to the second aspect of the present invention (hereinafter also simply referred to as “second resin composition”) has a content of repeating units represented by formula (1-2) that is higher than that of the polyimide precursor.
  • first resin composition contains a polyimide precursor, a polymerization initiator, and a polymerizable compound that is 90% by mass or more based on the total mass and has a polymerizable group content of 2 mmol/g or more.
  • first resin composition and the second resin composition are also simply referred to as "resin composition”.
  • a polyimide precursor containing a repeating unit represented by formula (1-1) and having a polymerizable group content of 2 mmol/g or more and an amide bond content of 1.5 mmol/g or less will be referred to as " Also referred to as “first polyimide precursor.”
  • the content of the repeating unit represented by formula (1-2) is 90% by mass or more based on the total mass of the polyimide precursor, and the content of the polymerizable group is 2 mmol/g or more.
  • the polyimide precursor is also referred to as a "second polyimide precursor.”
  • polyimide precursor when it is simply described as “polyimide precursor”, it refers to both the first polyimide precursor and the second polyimide precursor.
  • the first polyimide precursor and the second polyimide precursor are also collectively referred to as a "specific resin.”
  • the resin composition of the present invention is preferably used to form a photosensitive film that is subjected to exposure and development, and is preferably used to form a film that is subjected to exposure and development using a developer containing an organic solvent.
  • the resin composition of the present invention can be used, for example, to form an insulating film of a semiconductor device, an interlayer insulating film for a rewiring layer, a stress buffer film, etc., and can be used for forming an interlayer insulating film for a rewiring layer. preferable.
  • the resin composition of the present invention is used for forming an interlayer insulating film for a rewiring layer.
  • the resin composition of the present invention is preferably used for forming a photosensitive film to be subjected to negative development.
  • negative development refers to development in which non-exposed areas are removed by development during exposure and development
  • positive development refers to development in which exposed areas are removed by development.
  • the above-mentioned exposure method, the above-mentioned developer, and the above-mentioned development method include, for example, the exposure method explained in the exposure step in the description of the method for producing a cured product, and the developer and development method explained in the development step. is used.
  • the first resin composition of the present invention includes a first polyimide precursor.
  • the first polyimide precursor has an amide bond content of 1.5 mmol/g or less, and in formula (1-1), at least one of X 11 and Y 11 has a structure having a relatively large molecular weight. It includes a structure represented by any one of formulas (a) to (c). For this reason, the content ratio of imide structures in the polyimide obtained after curing becomes small. It is presumed that a cured product with a low dielectric constant can be obtained by reducing the content ratio of polarized structures such as imide structures in this way. Further, the first polyimide precursor has a polymerizable group content of 2 mmol/g or more.
  • a crosslinked structure is sufficiently formed between the polyimides or between the polyimide and the polymerizable compound, and a cured product with excellent chemical resistance is obtained. It is assumed that.
  • the content of the repeating unit represented by formula (1-2) in the second polyimide precursor is 90% by mass or more based on the total mass of the polyimide precursor, and in formula (1-2), At least one of Y 21 and Y 21 contains a structure represented by any one of formulas (a) to (c) that has a relatively large molecular weight. As a result, the content of imide structures in the polyimide obtained after curing becomes smaller.
  • the second polyimide precursor has a polymerizable group content of 2 mmol/g or more, and among all R 11 and R 12 , it is a monovalent organic group containing two or more polymerizable groups.
  • the ratio of R 21 and R 22 is 50 mol% or more. Therefore, in the cured product obtained from the second resin composition, a crosslinked structure is sufficiently formed between the polyimides or between the polyimide and the polymerizable compound, and a cured product with excellent chemical resistance is obtained. It is assumed that.
  • Patent Documents 1 and 2 do not describe a resin composition containing a specific resin.
  • the first resin composition contains a repeating unit represented by formula (1-1), has a polymerizable group content of 2 mmol/g or more, and an amide bond content of 1.5 mmol/g or less.
  • a certain polyimide precursor (first polyimide precursor) is included.
  • first polyimide precursor represents a tetravalent linking group
  • Y 11 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by any of the following formulas (a), (b), or (c), Or, it represents a divalent linking group, and at least one of X 11 and Y 11 has two or more hydrogen atoms removed from the structure represented by formula (a), formula (b), or formula (c).
  • R 11 and R 12 are each independently a hydrogen atom or a monovalent organic group, and at least one of R 11 and R 12 is a monovalent organic group containing a polymerizable group.
  • X 1 and X 2 are each independently a hydrogen atom or an alkyl group optionally substituted with a halogen atom
  • R 1 and R 2 are each independently , represents a hydrogen atom or a monovalent substituent, and R 1 and R 2 may be combined to form a ring structure.
  • X 11 is preferably a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by any one of formula (a), formula (b), or formula (c).
  • X 1 and X 2 are preferably an alkyl group optionally substituted with a halogen atom, and preferably an alkyl group having 1 to 4 carbon atoms and optionally substituted with a halogen atom. More preferred is a methyl group or a trifluoromethyl group.
  • R 1 and R 2 are preferably each independently a hydrogen atom. When R 1 and R 2 combine to form a ring structure, the structure formed by combining R 1 and R 2 is preferably a single bond, -O- or -CR 2 -, and -O - or -CR 2 - is more preferred, and -O- is even more preferred.
  • R represents a hydrogen atom or a monovalent organic group, preferably a hydrogen atom, an alkyl group or an aryl group, and more preferably a hydrogen atom.
  • X 11 is a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by formula (a)
  • X 11 is represented by the following formula (a-1) or formula (a-2).
  • a group represented by formula (a-2) is preferable, and a group represented by formula (a-2) is preferable from the viewpoint of lowering the amine value in the resin.
  • a bond that intersects with a side of a ring structure means substituting one of the hydrogen atoms in the ring structure.
  • * represents a bonding site with four carbonyl groups to which X 11 in formula (1-1) is bonded.
  • preferred embodiments of X 1 and X 2 are as described above.
  • the hydrogen atoms in these structures may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
  • X 11 is a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by formula (b), it is preferable that X 11 is a group represented by formula (b-1) below.
  • * represents a bonding site with four carbonyl groups to which X 11 in formula (1-1) is bonded
  • n represents an integer from 1 to 5.
  • the hydrogen atom in the structure below may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
  • X 11 is a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by formula (c)
  • X 11 is represented by the following formula (c-1) or formula (c-2).
  • a group represented by formula (c-2) is preferable, and a group represented by formula (c-2) is preferable from the viewpoint of lowering the dielectric constant.
  • * represents a bonding site with four carbonyl groups to which X 11 in formula (1-1) is bonded.
  • R 1 and R 2 are as described above.
  • the hydrogen atoms in these structures may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
  • X 11 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by formula (a), formula (b), or formula (c), X 11 is one of the following: Preferably, it is a structure. In the following formula, * represents a bonding site with four carbonyl groups to which X 11 in formula (1-1) is bonded. Further, the hydrogen atoms in these structures may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
  • X 11 is a tetravalent linking group different from a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by any one of formula (a), formula (b) and formula (c)
  • X 11 is preferably a tetravalent organic group containing an aromatic ring, and more preferably a group represented by the following formula (5) or formula (6).
  • formula (5) or formula (6) * each independently represents a bonding site with another structure.
  • R 112 is a single bond or a divalent linking group, and is a single bond or an aliphatic hydrocarbon group having 1 to 10 carbon atoms, which may be substituted with a fluorine atom, -O-, -CO-, -S-, -SO 2 -, -NHCO-, and a group selected from combinations thereof (excluding structures corresponding to the above formula (a)), More preferably, it is a single bond or a group selected from -O-, -CO-, -S- and -SO 2 -.
  • X 11 include tetracarboxylic acid residues remaining after removal of the anhydride group from tetracarboxylic dianhydride.
  • the polyimide precursor may contain only one type of tetracarboxylic dianhydride residue, or may contain two or more types of tetracarboxylic dianhydride residues as the structure corresponding to X11 . It is preferable that the tetracarboxylic dianhydride is represented by the following formula (O).
  • X 11 represents a tetravalent organic group.
  • the preferred range of X 11 is the same as the preferred range of X 11 in formula (1-1).
  • tetracarboxylic dianhydride examples include pyromellitic dianhydride (PMDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride, 3,3',4,4'- Diphenylsulfidetetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 3,3' , 4,4'-diphenylmethanetetracarboxylic dianhydride, 2,2',3,3'-diphenylmethanetetracarboxylic dianhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 2,3,3',4'-benzophenonetetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, 2,3,
  • X 11 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by formula (a), formula (b), or formula (c), tetracarboxylic dianhydride It is preferable to use the following compounds as Further, the hydrogen atoms in these structures may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
  • preferred examples include tetracarboxylic dianhydrides (DAA-1) to (DAA-5) described in paragraph 0038 of International Publication No. 2017/038598.
  • X 11 is represented by formula (a), formula (b), or formula (c).
  • the proportion of repeating units that are groups containing a structure in which two or more hydrogen atoms are removed is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and 70 to 100 mol%. is even more preferable.
  • Y 11 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by formula (a), formula (b), or formula (c), or 2 represents a valent linking group.
  • Y 11 is preferably a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by any one of formula (a), formula (b), or formula (c).
  • a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by either formula (a) or formula (c) is particularly preferable.
  • Preferred embodiments of X 1 and X 2 in formula (a) and R 1 and R 2 in formula (c) are X 1 and X 2 in formula (a) in the above-mentioned X 11 , and The preferred embodiments of R 1 and R 2 are similar to those of R 1 and R 2 .
  • Y 11 is a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by formula (a)
  • Y 11 is represented by the following formula (a-3) or formula (a-4).
  • a group represented by formula (a-4) is preferable, and a group represented by formula (a-4) is preferable from the viewpoint of lowering the amine value in the resin.
  • * represents a bonding site with two nitrogen atoms to which Y 11 in formula (1-1) is bonded.
  • preferred embodiments of X 1 and X 2 are as described above.
  • the hydrogen atoms in these structures may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
  • Y 11 is a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by formula (b), Y 11 is preferably a group represented by formula (b-2) below.
  • * represents a bonding site with two nitrogen atoms to which Y 11 in formula (1-1) is bonded
  • n represents an integer from 1 to 5.
  • the hydrogen atom in the structure below may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
  • Y 11 is a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by formula (c)
  • Y 11 is represented by the following formula (c-3) or formula (c-4).
  • a group represented by formula (c-3) is preferable, and a group represented by formula (c-3) is preferable from the viewpoint of lowering the dielectric constant.
  • * represents a bonding site with two nitrogen atoms to which Y 11 in formula (1-1) is bonded.
  • R 1 and R 2 are as described above.
  • the hydrogen atoms in these structures may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
  • Y 11 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by formula (a), formula (b), or formula (c), Y 11 is one of the following: Preferably, it is a structure. In the following formula, * represents a bonding site with two nitrogen atoms to which Y 11 in formula (1-1) is bonded. Further, the hydrogen atoms in these structures may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
  • a divalent organic group is preferred.
  • divalent organic groups include groups containing straight-chain or branched aliphatic groups, cyclic aliphatic groups, and aromatic groups, including straight-chain or branched aliphatic groups having 2 to 20 carbon atoms, A group consisting of a cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 3 to 20 carbon atoms, or a combination thereof is preferable, and a group containing an aromatic group having 6 to 20 carbon atoms is more preferable.
  • the hydrocarbon group in the chain may be substituted with a group containing a hetero atom, and in the above cyclic aliphatic group and aromatic group, the hydrocarbon group in the chain may be substituted with a hetero atom. may be substituted with a group containing.
  • Examples of Y 11 in formula (1-1) include groups represented by -Ar- and -Ar-L-Ar-, with a group represented by -Ar-L-Ar- being preferred.
  • Ar is each independently an aromatic group
  • L is a single bond or an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, -O-, -CO -, -S-, -SO 2 -, -NHCO-, or a group consisting of a combination of two or more of the above (however, the structure corresponding to the above formula (a) is excluded).
  • Y 11 is derived from a diamine.
  • diamines used in the production of polyimide precursors include linear or branched aliphatic, cyclic aliphatic, and aromatic diamines.
  • One type of diamine may be used, or two or more types may be used.
  • Y 11 is a linear or branched aliphatic group having 2 to 20 carbon atoms, a cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 3 to 20 carbon atoms, or any of these.
  • a diamine containing a combination of groups is preferable, and a diamine containing an aromatic group having 6 to 20 carbon atoms is more preferable.
  • the above straight chain or branched aliphatic group may have a hydrocarbon group in the chain substituted with a group containing a hetero atom.
  • the above cyclic aliphatic group and aromatic group may have a ring member hydrocarbon group substituted with a hetero atom. may be substituted with a group containing.
  • groups containing aromatic groups include the following.
  • * represents a bonding site with another structure.
  • diamine specifically, 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane or 1,6-diaminohexane; 1,2- or 1,3-diaminocyclopentane, 1,2-, 1,3- or 1,4-diaminocyclohexane, 1,2-, 1,3- or 1,4-bis(aminomethyl)cyclohexane , bis-(4-aminocyclohexyl)methane, bis-(3-aminocyclohexyl)methane, 4,4'-diamino-3,3'-dimethylcyclohexylmethane and isophoronediamine; m- or p-phenylenediamine, diaminotoluene, 4,4'- or 3,3'-diaminobiphenyl, 4,4'-diaminodipheny
  • Y 11 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by formula (a), formula (b), or formula (c), the following compounds may be used as the diamine. It is preferable to use Further, the hydrogen atoms in these structures may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
  • diamines (DA-1) to (DA-18) described in paragraphs 0030 to 0031 of International Publication No. 2017/038598.
  • diamines having two or more alkylene glycol units in the main chain described in paragraphs 0032 to 0034 of International Publication No. 2017/038598 are also preferably used.
  • R 111 is preferably represented by -Ar-L-Ar- from the viewpoint of flexibility of the resulting organic film.
  • Ar is each independently an aromatic group
  • L is an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-, -S- , -SO 2 -, -NHCO-, or a combination of two or more of the above.
  • Ar is preferably a phenylene group
  • L is preferably an aliphatic hydrocarbon group having 1 or 2 carbon atoms optionally substituted with a fluorine atom, -O-, -CO-, -S- or -SO 2 - .
  • the aliphatic hydrocarbon group here is preferably an alkylene group.
  • R 111 is preferably a divalent organic group represented by the following formula (51) or formula (61).
  • a divalent organic group represented by formula (61) is more preferable.
  • R 50 to R 57 are each independently a hydrogen atom, a fluorine atom, or a monovalent organic group, and at least one of R 50 to R 57 is a fluorine atom, a methyl group, or a trifluoro It is a methyl group, and each * independently represents a bonding site with the nitrogen atom in formula (1-1).
  • the monovalent organic groups R 50 to R 57 include unsubstituted alkyl groups having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms), and unsubstituted alkyl groups having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms). Examples include fluorinated alkyl groups.
  • R 58 and R 59 each independently represent a fluorine atom, a methyl group, or a trifluoromethyl group, and * each independently represents a bond with the nitrogen atom in formula (1-1). Represents a part.
  • Examples of the diamine giving the structure of formula (51) or formula (61) include 2,2'-dimethylbenzidine, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'- Bis(fluoro)-4,4'-diaminobiphenyl, 4,4'-diaminoctafluorobiphenyl, and the like. These may be used alone or in combination of two or more.
  • Y 11 is represented by formula (a), formula (b), or formula (c).
  • the proportion of repeating units that are groups containing a structure in which two or more hydrogen atoms are removed is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and 70 to 100 mol%. is even more preferable.
  • X 11 is two or more hydrogen atoms from a structure represented by formula (a), formula (b), or formula (c).
  • R 11 and R 12 - R 11 and R 12 in formula (1-1) each independently represent a hydrogen atom or a monovalent organic group.
  • the monovalent organic group preferably includes a linear or branched alkyl group, a cyclic alkyl group, an aromatic group, or a polyalkyleneoxy group.
  • at least one of R 11 and R 12 is a monovalent organic group containing a polymerizable group.
  • An embodiment in which both R 11 and R 12 are monovalent organic groups containing a polymerizable group is also one of the preferred embodiments of the present invention.
  • the polymerizable group may be a cationically polymerizable group, but preferably a radically polymerizable group.
  • polymerizable groups examples include epoxy groups, oxetanyl groups, alkoxymethyl groups, acyloxymethyl groups, methylol groups, blocked isocyanate groups, and groups containing ethylenically unsaturated bonds. It is preferable that it is a group.
  • the group containing an ethylenically unsaturated bond is preferably a radically polymerizable group.
  • Groups containing ethylenically unsaturated bonds include vinyl groups, allyl groups, isoallyl groups, 2-methylallyl groups, groups having an aromatic ring directly bonded to a vinyl group (for example, vinyl phenyl groups, etc.), (meth) Examples include an acrylamide group, a (meth)acryloyloxy group, a vinylphenyl group, a (meth)acrylamide group, or a (meth)acryloyloxy group, and a (meth)acrylamide group or a (meth)acryloyloxy group. More preferred.
  • the number of polymerizable groups in the monovalent organic group containing a polymerizable group in R 11 and R 12 is preferably 1 to 10.
  • the lower limit is preferably 2 or more from the viewpoint of increasing the polymerizable group value.
  • the upper limit is preferably 5 or less, more preferably 3 or less.
  • the monovalent organic group containing a polymerizable group is a monovalent organic group containing two polymerizable groups.
  • each polymerizable group may have the same structure or different structures.
  • an embodiment in which at least one of R 11 and R 12 in formula (1-1) is a monovalent organic group containing two or more polymerizable groups is also one of the preferred embodiments of the present invention.
  • the monovalent organic group containing a polymerizable group in R 11 and R 12 is preferably a group represented by the following formula (R-1).
  • L R1 represents an n1+1-valent linking group
  • R R1 represents a polymerizable group
  • n1 represents an integer from 1 to 10
  • * represents an oxygen atom in formula (1-1).
  • L R1 is selected from the group consisting of a hydrocarbon group, or a hydrocarbon group and -O-, -CO-, -S-, -SO 2 -, and -NR N -.
  • a group represented by a combination with at least one structure is preferable, and a hydrocarbon group is more preferable.
  • R N is a hydrogen atom or a monovalent organic group, preferably a hydrogen atom or a hydrocarbon group, more preferably a hydrogen atom, an alkyl group or a phenyl group, and even more preferably a hydrogen atom.
  • a hydrocarbon group an aliphatic hydrocarbon group is preferable, and a saturated aliphatic hydrocarbon group is preferable.
  • the hydrocarbon group preferably has 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms.
  • L R1 L R1 .
  • * has the same meaning as * in formula (R-1), and # represents the binding site with R R1 .
  • R R1 represents a polymerizable group, and preferred embodiments of the polymerizable group are as described above.
  • n1 is preferably an integer of 2 to 10, more preferably an integer of 2 to 5, and even more preferably 2 or 3. Further, the embodiment 2 is also one of the preferred embodiments of the present invention.
  • the formula weight of formula (R-1) is preferably 100 to 1,000, more preferably 150 to 800, even more preferably 200 to 500.
  • the monovalent organic group containing a polymerizable group in R 11 and R 12 may be a group represented by the following formula (III).
  • R 200 represents a hydrogen atom, a methyl group, an ethyl group, or a methylol group, and preferably a hydrogen atom or a methyl group.
  • * represents a bonding site with another structure.
  • R 201 represents an alkylene group having 2 to 12 carbon atoms, -CH 2 CH(OH)CH 2 -, a cycloalkylene group or a polyalkyleneoxy group.
  • R 201 examples include alkylene groups such as ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, octamethylene group, and dodecamethylene group, 1,2-butanediyl group, 1, Examples include 3-butanediyl group, -CH 2 CH(OH)CH 2 -, polyalkyleneoxy group, alkylene groups such as ethylene group and propylene group, -CH 2 CH(OH)CH 2 -, cyclohexyl group, polyalkylene group.
  • An oxy group is more preferred, and an alkylene group such as an ethylene group or a propylene group, or a polyalkyleneoxy group is even more preferred.
  • the polyalkyleneoxy group a polyethyleneoxy group or a polypropyleneoxy group is preferable, and a polyethyleneoxy group is more preferable.
  • the polyimide precursor forms a counter salt with a tertiary amine compound having an ethylenically unsaturated bond. It's okay.
  • a tertiary amine compound having such an ethylenically unsaturated bond is N,N-dimethylaminopropyl methacrylate.
  • the proportion of R 11 and R 12 which are monovalent organic groups containing two or more polymerizable groups, among all R 11 and R 12 in the first polyimide precursor is , is preferably 50 mol% or more, more preferably 70 mol% or more, and even more preferably 80 mol% or more.
  • the upper limit is not particularly limited and may be 100 mol%.
  • the proportion of R 11 and R 12 which are monovalent organic groups containing one or more polymerizable groups, is 60 mol%. It is preferably at least 70 mol%, more preferably at least 80 mol%.
  • the upper limit is not particularly limited and may be 100 mol%.
  • R 11 and R 12 which are monovalent organic groups containing a polymerizable group in the first polyimide precursor
  • R 11 and R 12 which are monovalent organic groups containing two or more polymerizable groups The proportion is preferably 60 mol% or more, more preferably 70 mol% or more, and even more preferably 80 mol% or more.
  • the upper limit is not particularly limited and may be 100 mol%.
  • the content of the repeating unit represented by formula (1-1) with respect to all repeating units contained in the first polyimide precursor is preferably 50 to 100 mol%, more preferably 60 to 100 mol%. It is preferably 70 to 100 mol%, more preferably 70 to 100 mol%.
  • the content of the repeating unit represented by formula (1-1) with respect to the total mass of the first polyimide precursor is preferably 60 to 100% by mass, more preferably 70 to 100% by mass. , more preferably 80 to 100% by mass.
  • the first polyimide precursor may include a repeating unit different from that of formula (1-1) (another repeating unit).
  • Other repeating units include a repeating unit represented by the following formula (2).
  • formula (2 ) represents a valent linking group
  • Y A is different from a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by any of the above formulas (a), (b), and (c). It represents a divalent linking group
  • R A1 and R A2 are each independently a hydrogen atom or a monovalent organic group.
  • a preferred embodiment of X A is such that in formula (1-1) above, X 11 is two or more from the structure represented by any of formula (a), formula (b), and formula (c).
  • a preferred embodiment of Y A is such that X 11 in the above formula (1-1) is two or more from the structure represented by any one of formula (a), formula (b), and formula (c). This is the same as the preferred embodiment in the case where it is a divalent linking group different from a group containing a structure excluding a hydrogen atom.
  • preferred embodiments of R A1 and R A2 are the same as the preferred embodiments of R 11 and R 12 in the above-mentioned formula (1-1), respectively.
  • the structure may be such that neither R 11 nor R 12 is a monovalent organic group containing a polymerizable group.
  • the content of the repeating unit represented by formula (2) with respect to all repeating units contained in the first polyimide precursor is preferably 40 mol% or less, more preferably 30 mol% or less, and 20 mol% It is more preferable that it is the following.
  • the lower limit of the above content is not particularly limited, and may be 0 mol%.
  • the content of the repeating unit represented by formula (2) with respect to the total mass of the first polyimide precursor is preferably 40% by mass or less, more preferably 30% by mass or less, and 20% by mass. It is more preferable that it is the following.
  • the lower limit of the content is not particularly limited, and may be 0% by mass.
  • the total content of repeating units represented by formula (1-1) and repeating units represented by formula (2) with respect to all repeating units contained in the first polyimide precursor is 70 mol% or more. It is preferably at least 80 mol%, more preferably at least 90 mol%.
  • the upper limit of the content is not particularly limited, and may be 100 mol%.
  • the total content of the repeating unit represented by formula (1-1) and the repeating unit represented by formula (2) with respect to the total mass of the first polyimide precursor may be 70% by mass or more. It is preferably 80% by mass or less, more preferably 90% by mass or less.
  • the upper limit of the content is not particularly limited, and may be 100% by mass.
  • the content of the repeating unit represented by the following formula (1-2) in the second resin composition is 90% by mass or more based on the total mass of the polyimide precursor, and the content of the polymerizable group is 2 mmol/g or more (second polyimide precursor).
  • R 21 and R 22 are each independently a hydrogen atom or a monovalent organic group, and out of all R 21 and R 22 contained in the polyimide precursor, 2 polymerizable groups are The proportion of R 21 and R 22 , which are monovalent organic groups containing at least one group, is 50 mol% or more.
  • X 1 and X 2 are each independently a hydrogen atom or an alkyl group optionally substituted with a halogen atom
  • R 1 and R 2 are each independently , represents a hydrogen atom or a monovalent substituent, and R 1 and R 2 may be combined to form a ring structure.
  • X 21 , Y 21 , R 21 and R 22 are the same as preferred embodiments of X 11 , Y 11 , R 11 and R 12 in formula (1-1). .
  • the proportion of R21 and R22 in the second polyimide precursor is 50 mol% or more, and 60 mol%. % or more, more preferably 70 mol% or more.
  • the upper limit is not particularly limited and may be 100 mol%.
  • the proportion of R 21 and R 22 in the second polyimide precursor is preferably 50 mol% or more. , more preferably 60 mol% or more, and still more preferably 80 mol% or more.
  • the upper limit is not particularly limited and may be 100 mol%.
  • R 21 and R 22 which are monovalent organic groups containing a polymerizable group in the second polyimide precursor
  • R 21 and R 22 which are monovalent organic groups containing two or more polymerizable groups The proportion is preferably 50 mol% or more, more preferably 60 mol% or more, and even more preferably 80 mol% or more.
  • the upper limit is not particularly limited and may be 100 mol%.
  • the content of the repeating unit represented by formula (1-2) with respect to all repeating units contained in the second polyimide precursor is preferably 80 to 100 mol%, more preferably 85 to 100 mol%. It is preferably 90 to 100 mol%, more preferably 90 to 100 mol%.
  • the content of the repeating unit represented by formula (1-2) with respect to the total mass of the second polyimide precursor is 90% by mass or more, preferably 92% by mass or more, and 95% by mass or more. It is even more preferable that there be.
  • the upper limit is not particularly limited and may be 100% by mass.
  • the second polyimide precursor may contain a repeating unit different from that of formula (1-2) (another repeating unit).
  • Other repeating units include the repeating unit represented by the above formula (2).
  • the content of the repeating unit represented by formula (2) with respect to all repeating units contained in the second polyimide precursor is preferably 10 mol% or less, more preferably 8 mol% or less, and 5 mol% It is more preferable that it is the following.
  • the lower limit of the above content is not particularly limited, and may be 0 mol%.
  • the content of the repeating unit represented by formula (2) with respect to the total mass of the second polyimide precursor is preferably 10% by mass or less, more preferably 8% by mass or less, and 5% by mass. It is more preferable that it is the following.
  • the lower limit of the content is not particularly limited, and may be 0% by mass.
  • the total content of the repeating unit represented by formula (1-2) and the repeating unit represented by formula (2) with respect to all repeating units contained in the second polyimide precursor is 90 mol% or more It is preferably 95 mol% or more, more preferably 98 mol% or more.
  • the upper limit of the content is not particularly limited, and may be 100 mol%.
  • the total content of the repeating unit represented by formula (1-2) and the repeating unit represented by formula (2) with respect to the total mass of the second polyimide precursor may be 90% by mass or more. It is preferably 92% by mass or less, more preferably 95% by mass or less.
  • the upper limit of the content is not particularly limited, and may be 100% by mass.
  • the content of polymerizable groups in the polyimide precursor (hereinafter also referred to as "polymerizable group value”) is 2 mmol/g or more, preferably 2.2 mmol/g or more, and 2.5 mmol/g or more. It is more preferable that there be. Although the upper limit is not particularly limited, it is preferably 4.0 mmol/g or less.
  • the content of polymerizable groups in the polyimide precursor is calculated as the ratio of the molar amount of the polymerizable groups contained in the polyimide precursor to the number average molecular weight of the polyimide precursor.
  • the content of amide bonds (hereinafter also referred to as "amide value") in the first polyimide precursor is 1.5 mmol/g or less.
  • the amide value of the second polyimide precursor is preferably 1.5 mmol/g or less.
  • the amide value of the polyimide precursor is more preferably 1.48 mmol/g or less, and even more preferably 1.46 mmol/g or less.
  • the lower limit is not particularly limited, but from the viewpoint of elongation at break, etc., it is preferably 1.0 mmol/g or more.
  • the content of amide bonds in the polyimide precursor is calculated as the ratio of the molar amount of amide bonds contained in the polyimide precursor to the number average molecular weight of the polyimide precursor.
  • the weight average molecular weight (Mw) of the polyimide precursor is preferably 5,000 to 100,000, more preferably 10,000 to 50,000, even more preferably 15,000 to 40,000.
  • the number average molecular weight (Mn) of the polyimide precursor is preferably 2,000 to 40,000, more preferably 3,000 to 30,000, and even more preferably 4,000 to 20,000.
  • the molecular weight dispersity of the polyimide precursor is preferably 1.5 or more, more preferably 1.8 or more, and even more preferably 2.0 or more.
  • the upper limit of the degree of molecular weight dispersion of the polyimide precursor is not particularly determined, for example, it is preferably 7.0 or less, more preferably 6.5 or less, and even more preferably 6.0 or less.
  • the molecular weight dispersity is a value calculated from weight average molecular weight/number average molecular weight.
  • the weight average molecular weight, number average molecular weight, and degree of dispersion of at least one type of polyimide precursor are within the above ranges.
  • the weight average molecular weight, number average molecular weight, and degree of dispersion calculated from the plurality of types of polyimide precursors as one resin are each within the above ranges.
  • polyimide precursors can be obtained by reacting tetracarboxylic dianhydride and diamine at low temperature, by reacting tetracarboxylic dianhydride and diamine at low temperature to obtain polyamic acid, and by using a condensing agent or an alkylating agent.
  • Examples of the condensing agent include dicyclohexylcarbodiimide, diisopropylcarbodiimide, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, 1,1-carbonyldioxy-di-1,2,3-benzotriazole, N, Examples include N'-disuccinimidyl carbonate and trifluoroacetic anhydride.
  • Examples of the alkylating agent include N,N-dimethylformamide dimethyl acetal, N,N-dimethylformamide diethyl acetal, N,N-dialkylformamide dialkyl acetal, trimethyl orthoformate, and triethyl orthoformate.
  • halogenating agent examples include thionyl chloride, oxalyl chloride, phosphorus oxychloride, and the like.
  • an organic solvent used in the method for producing polyimide precursors, etc.
  • the number of organic solvents may be one or two or more.
  • the organic solvent can be determined as appropriate depending on the raw material, and examples include pyridine, diethylene glycol dimethyl ether (diglyme), N-methylpyrrolidone, N-ethylpyrrolidone, ethyl propionate, dimethylacetamide, dimethylformamide, tetrahydrofuran, ⁇ -butyrolactone, etc. is exemplified.
  • a basic compound in the method for producing polyimide precursors, etc., it is preferable to add a basic compound during the reaction.
  • the number of basic compounds may be one or two or more.
  • the basic compound can be determined as appropriate depending on the raw material, but triethylamine, diisopropylethylamine, pyridine, 1,8-diazabicyclo[5.4.0]undec-7-ene, N,N-dimethyl-4-amino Examples include pyridine.
  • -Terminal sealing agent- In the production method of polyimide precursors, etc., in order to further improve storage stability, it is preferable to seal the carboxylic acid anhydride, acid anhydride derivative, or amino group remaining at the end of the resin such as the polyimide precursor.
  • examples of the terminal capping agent include monoalcohol, phenol, thiol, thiophenol, monoamine, etc. From the viewpoint of properties, it is more preferable to use monoalcohols, phenols, and monoamines.
  • Preferred monoalcohol compounds include primary alcohols such as methanol, ethanol, propanol, butanol, hexanol, octanol, dodecinol, benzyl alcohol, 2-phenylethanol, 2-methoxyethanol, 2-chloromethanol, furfuryl alcohol, and isopropanol. , 2-butanol, cyclohexyl alcohol, cyclopentanol, secondary alcohols such as 1-methoxy-2-propanol, and tertiary alcohols such as t-butyl alcohol and adamantane alcohol.
  • primary alcohols such as methanol, ethanol, propanol, butanol, hexanol, octanol, dodecinol, benzyl alcohol, 2-phenylethanol, 2-methoxyethanol, 2-chloromethanol, furfuryl alcohol, and isopropanol.
  • 2-butanol cyclohexyl alcohol
  • Preferred phenolic compounds include phenols such as phenol, methoxyphenol, methylphenol, naphthalen-1-ol, naphthalen-2-ol, and hydroxystyrene.
  • Preferred monoamine compounds include aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6- Aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1- Carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminona
  • sealing agents for amino groups include carboxylic acid anhydrides, carboxylic acid chlorides, carboxylic acid bromides, sulfonic acid chlorides, sulfonic anhydrides, and sulfonic acid carboxylic acid anhydrides, with carboxylic acid anhydrides and carboxylic acid chlorides being more preferred. preferable.
  • Preferred carboxylic anhydride compounds include acetic anhydride, propionic anhydride, oxalic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, and the like.
  • Preferred carboxylic acid chloride compounds include acetyl chloride, acrylic acid chloride, propionyl chloride, methacrylic acid chloride, pivaloyl chloride, cyclohexane carbonyl chloride, 2-ethylhexanoyl chloride, cinnamoyl chloride, and 1-adamantane carbonyl chloride. , heptafluorobutyryl chloride, stearic acid chloride, benzoyl chloride, and the like.
  • the method for producing a polyimide precursor or the like may include a step of precipitating a solid. Specifically, after filtering off the water-absorbed by-products of the dehydration condensation agent coexisting in the reaction solution, the obtained product is added to a poor solvent such as water, aliphatic lower alcohol, or a mixture thereof.
  • a polyimide precursor or the like can be obtained by depositing the polymer component as a solid and drying it. In order to improve the degree of purification, operations such as redissolving the polyimide precursor, reprecipitation, drying, etc. may be repeated.
  • the method may include a step of removing ionic impurities using an ion exchange resin.
  • Specific examples of the specific resin include SP-1 to SP-15 in Examples described below, but the present invention is not limited thereto.
  • the content of the specific resin in the resin composition of the present invention is preferably 20% by mass or more, more preferably 30% by mass or more, and 40% by mass or more based on the total solid content of the resin composition. It is even more preferable that the amount is 50% by mass or more. Further, the content of the resin in the resin composition of the present invention is preferably 99.5% by mass or less, more preferably 99% by mass or less, and 98% by mass or less based on the total solid content of the resin composition. % or less, even more preferably 97% by mass or less, even more preferably 95% by mass or less.
  • the resin composition of the present invention may contain only one type of specific resin, or may contain two or more types of specific resin. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition of the present invention contains at least two types of resin.
  • the resin composition of the present invention may contain a total of two or more types of specific resin and other resins described below, or may contain two or more types of specific resin, but may contain a specific resin. It is preferable to include two or more types.
  • the resin composition of the present invention contains two or more types of specific resins, for example, a polyimide precursor and a dianhydride-derived structure (X 11 in the above formula (1-1), formula (1-2 It is preferable that two or more types of polyimide precursors having different X 21 ) in ) are included.
  • the resin composition of the present invention may contain the above-mentioned specific resin and another resin different from the specific resin (hereinafter also simply referred to as "other resin").
  • Other resins include other polyimide precursors different from the specific resin, polyimides, polybenzoxazole precursors, polybenzoxazole, polyamideimide precursors, polyamideimides, aromatic polyethers, phenolic resins, polyamides, epoxy resins, Examples include polysiloxane, resins containing siloxane structures, (meth)acrylic resins, (meth)acrylamide resins, urethane resins, butyral resins, styryl resins, polyether resins, and polyester resins.
  • polyimide precursors include the compounds described in paragraphs 0017 to 0138 of International Publication No. 2022/145355. The above description is incorporated herein.
  • the aromatic polyether is not particularly limited, but polyphenylene ether is preferred. It is preferable that the polyphenylene ether contains a repeating unit represented by the following formula (PE).
  • R E1 represents a hydrogen atom or a substituent. Examples of the substituent include a halogen atom, an alkyl group that may have a substituent, an alkoxy group that may have a substituent, an amino group that may have a substituent, a nitro group, a carboxy group, etc. .
  • polyphenylene ether is a compound having a polymerizable group.
  • the above polymerizable group is preferably an epoxy group, an oxetanyl group, an oxazolyl group, a methylol group, an alkoxymethyl group, an acyloxymethyl group, a blocked isocyanate group, or a group having an ethylenically unsaturated bond. More preferable groups have the following.
  • Examples of the group having an ethylenically unsaturated bond include a vinyl group, an allyl group, an isoallyl group, a 2-methylallyl group, a group having an aromatic ring directly bonded to a vinyl group (for example, a vinyl phenyl group, etc.), and a (meth)acrylamide group.
  • (meth)acryloyloxy group, etc. preferably vinylphenyl group, (meth)acrylamide group or (meth)acryloyloxy group, more preferably vinylphenyl group or (meth)acryloyloxy group, (meth)acryloyloxy group, etc. More preferred are groups.
  • polyphenylene ether is a compound having a polymerizable group
  • the position of the polymerizable group is not particularly limited, but, for example, a structure in which the polymerizable group is introduced at the end of the main chain is preferable.
  • the polyphenylene ether may also contain other repeating units.
  • the content of the other repeating units mentioned above is preferably 30% by mass or less, more preferably 20% by mass or less, and preferably 10% by mass or less based on the total mass of polyphenylene ether. More preferred.
  • the number average molecular weight of polyphenylene ether is not particularly limited, but is preferably from 500 to 50,000.
  • the lower limit of the number average molecular weight is preferably 800 or more, more preferably 1000 or more, and even more preferably 1500 or more.
  • the upper limit of the number average molecular weight is preferably 30,000 or less, more preferably 20,000 or less, and even more preferably 10,000 or less.
  • polyphenylene ether examples include poly(2,6-dimethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), and poly(2-methyl-6-ethyl-1,4-phenylene ether).
  • PPE polyphenylene ether
  • poly(2,6-dimethyl-1,4-phenylene ether) examples include poly(2,6-dimethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), and poly(2-methyl-6-ethyl-1,4-phenylene ether).
  • -methyl-6-phenyl-1,4-phenylene ether poly(2,6-dichloro-1,4-phenylene ether), 2,6-dimethylphenol and other phenols (e.g.
  • polyphenylene ether copolymers obtained by coupling 2,6-dimethylphenol with biphenols or bisphenols; , 6-dimethyl-1,4-phenylene ether), etc., with a phenol compound such as bisphenols or trisphenols in the presence of an organic peroxide in a toluene solvent, and a redistribution reaction is performed.
  • examples include polyphenylene ether having a linear structure or a branched structure, but are not limited thereto.
  • a resin composition with excellent coating properties can be obtained, and a pattern (cured product) with excellent solvent resistance can be obtained.
  • a polymerizable group having a high polymerizable group value with a weight average molecular weight of 20,000 or less may be used instead of or in addition to the polymerizable compound described below.
  • a polymerizable group having a high polymerizable group value with a weight average molecular weight of 20,000 or less for example, the molar amount of polymerizable groups contained in 1 g of resin
  • a (meth)acrylic resin having a concentration of 1 ⁇ 10 ⁇ 3 mol/g or more
  • it is possible to improve the coating properties of the resin composition, the solvent resistance of the pattern (cured product), etc. can.
  • the resin composition of the present invention preferably further contains at least one resin selected from the group consisting of polyimide, polybenzoxazole, and aromatic polyether.
  • polyimide examples include compounds described in paragraphs 0045 to 0072 of International Publication No. 2022/145355. The above description is incorporated herein. Among these, polyimides having ethylenically unsaturated bonds are particularly preferred.
  • polybenzoxazole examples include compounds described in paragraphs 0096 to 0103 of International Publication No. 2022/145355. The above description is incorporated herein.
  • the aromatic polyether is not particularly limited, but polyphenylene ether is preferred. It is preferable that the polyphenylene ether contains a repeating unit represented by the following formula (PE).
  • R E1 represents a hydrogen atom or a substituent. Examples of the substituent include a halogen atom, an alkyl group that may have a substituent, an alkoxy group that may have a substituent, an amino group that may have a substituent, a nitro group, a carboxy group, etc. .
  • polyphenylene ether is a compound having a polymerizable group.
  • the above polymerizable group is preferably an epoxy group, an oxetanyl group, an oxazolyl group, a methylol group, an alkoxymethyl group, an acyloxymethyl group, a blocked isocyanate group, or a group having an ethylenically unsaturated bond. More preferable groups have the following.
  • Examples of the group having an ethylenically unsaturated bond include a vinyl group, an allyl group, an isoallyl group, a 2-methylallyl group, a group having an aromatic ring directly bonded to a vinyl group (for example, a vinyl phenyl group, etc.), and a (meth)acrylamide group.
  • (meth)acryloyloxy group, etc. preferably vinylphenyl group, (meth)acrylamide group or (meth)acryloyloxy group, more preferably vinylphenyl group or (meth)acryloyloxy group, (meth)acryloyloxy group, etc. More preferred are groups.
  • polyphenylene ether is a compound having a polymerizable group
  • the position of the polymerizable group is not particularly limited, but, for example, a structure in which the polymerizable group is introduced at the end of the main chain is preferable.
  • the polyphenylene ether may also contain other repeating units.
  • the content of the other repeating units mentioned above is preferably 30% by mass or less, more preferably 20% by mass or less, and preferably 10% by mass or less based on the total mass of polyphenylene ether. More preferred.
  • the number average molecular weight of polyphenylene ether is not particularly limited, but is preferably from 500 to 50,000.
  • the lower limit of the number average molecular weight is preferably 800 or more, more preferably 1,000 or more, and even more preferably 1,500 or more.
  • the upper limit of the number average molecular weight is preferably 30,000 or less, more preferably 20,000 or more, and even more preferably 10,000 or more.
  • polyphenylene ether examples include poly(2,6-dimethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), and poly(2-methyl-6-ethyl-1,4-phenylene ether).
  • PPE polyphenylene ether
  • poly(2,6-dimethyl-1,4-phenylene ether) examples include poly(2,6-dimethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), and poly(2-methyl-6-ethyl-1,4-phenylene ether).
  • -methyl-6-phenyl-1,4-phenylene ether poly(2,6-dichloro-1,4-phenylene ether), 2,6-dimethylphenol and other phenols (e.g.
  • polyphenylene ether copolymers obtained by coupling 2,6-dimethylphenol with biphenols or bisphenols; , 6-dimethyl-1,4-phenylene ether) and the like with a phenol compound such as bisphenols or trisphenols in a toluene solvent in the presence of an organic peroxide, resulting in a redistribution reaction.
  • a phenol compound such as bisphenols or trisphenols in a toluene solvent in the presence of an organic peroxide, resulting in a redistribution reaction.
  • examples include, but are not limited to, polyphenylene ether having a linear structure or a branched structure.
  • the content of the other resins is preferably 0.01% by mass or more, and 0.05% by mass or more based on the total solid content of the resin composition. It is more preferably 1% by mass or more, even more preferably 2% by mass or more, even more preferably 5% by mass or more, and even more preferably 10% by mass or more. More preferred.
  • the content of other resins in the resin composition of the present invention is preferably 80% by mass or less, more preferably 75% by mass or less, and 70% by mass based on the total solid content of the resin composition. It is more preferably at most 60% by mass, even more preferably at most 50% by mass.
  • the content of other resins may be low.
  • the content of the other resin is preferably 20% by mass or less, more preferably 15% by mass or less, and 10% by mass or less based on the total solid content of the resin composition. is more preferable, even more preferably 5% by mass or less, even more preferably 1% by mass or less.
  • the lower limit of the content is not particularly limited, and may be 0% by mass or more.
  • the resin composition further contains at least one resin selected from the group consisting of polyimide, polybenzoxazole, and aromatic polyether
  • the content of these resins (if it contains multiple types, or When a plurality of the same kind are included, the total content is preferably 5 to 150 parts by mass based on 100 parts by mass of the specific resin.
  • the lower limit is preferably 8 parts by mass or more, more preferably 10 parts by mass or more.
  • the upper limit is preferably 120 parts by mass or less, more preferably 100 parts by mass or less.
  • the resin composition of the present invention may contain only one type of other resin, or may contain two or more types of other resins. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition of the present invention contains a polymerizable compound.
  • the polymerizable compound contains a compound having a ClogP value of 3.0 or more, and having an aromatic ring structure or carbon number. It is more preferable to include a compound having six or more aliphatic ring structures.
  • the ClogP value of a compound is defined as below.
  • the octanol-water partition coefficient (logP value) can generally be measured by the flask immersion method described in JIS Japanese Industrial Standard Z7260-107 (2000). Further, the octanol-water partition coefficient (logP value) can also be estimated by a computational chemical method or an empirical method instead of actual measurement. Calculation methods include Crippen's fragmentation method (J. Chem. Inf. Comput. Sci., 27, 21 (1987)) and Viswanadhan's fragmentation method (J. Chem. Inf. Comput. Sci., 29, 16). 3 (1989)), Broto's fragmentation method (Eur. J. Med. Chem.-Chim.
  • Theor., 19, 71 (1984)), etc. are known to be used.
  • Crippen's fragmentation method J. Chem. Inf. Comput. Sci., 27, 21 (1987)
  • the ClogP value is a value obtained by calculating the common logarithm logP of the partition coefficient P between 1-octanol and water.
  • known methods and software can be used to calculate the ClogP value, unless otherwise specified, the present invention uses the ClogP program incorporated in the PCModels system of Daylight Chemical Information Systems.
  • the ClogP value is preferably 4.0 or more, more preferably 6.0 or more. Further, the upper limit of the ClogP value is not particularly limited, but is preferably 15.0 or less.
  • the aromatic ring structure may be an aromatic hydrocarbon ring or an aromatic heterocycle, but an aromatic hydrocarbon ring is preferable, and it is more preferable to include a benzene ring. Moreover, from the viewpoint of lowering the dielectric constant, a fused ring such as a fluorene ring is preferable.
  • a fused ring such as a fluorene ring is preferable.
  • an aliphatic ring structure having 6 to 30 carbon atoms is preferable, and an aliphatic ring structure having 6 to 20 carbon atoms is more preferable.
  • Examples of aliphatic ring structures having 6 or more carbon atoms include monocycles such as a cyclohexane ring, dicyclopentane rings, and double rings such as tricyclo[5.2.1.0 2,6 ]decane rings. It is preferable that there be.
  • Polymerizable compounds with a ClogP value of 3.0 or more are ethylenically unsaturated.
  • a compound containing a group having a bond is preferable, and a compound containing two or more groups having an ethylenically unsaturated bond is more preferable. Further, it is also preferable that the compound contains two groups having ethylenically unsaturated bonds.
  • polymerizable compounds having a ClogP value of 3.0 or more are described below.
  • the compound is a radical crosslinking agent.
  • polymerizable compounds having a ClogP value of 3.0 or more include, but are not limited to, the following compounds.
  • Examples of the polymerizable compound include radical crosslinking agents and other crosslinking agents.
  • the resin composition of the present invention contains a radical crosslinking agent.
  • a radical crosslinking agent is a compound having a radically polymerizable group.
  • the radically polymerizable group a group containing an ethylenically unsaturated bond is preferable.
  • the group containing an ethylenically unsaturated bond include a vinyl group, an allyl group, a vinyl phenyl group, a (meth)acryloyl group, a maleimide group, and a (meth)acrylamide group.
  • (meth)acryloyl group, (meth)acrylamide group, and vinylphenyl group are preferable, and from the viewpoint of reactivity, (meth)acryloyl group is more preferable.
  • the radical crosslinking agent is preferably a compound having one or more ethylenically unsaturated bonds, more preferably a compound having two or more ethylenically unsaturated bonds.
  • the radical crosslinking agent may have three or more ethylenically unsaturated bonds.
  • the compound having two or more ethylenically unsaturated bonds is preferably a compound having 2 to 15 ethylenically unsaturated bonds, more preferably a compound having 2 to 10 ethylenically unsaturated bonds, and more preferably a compound having 2 to 6 ethylenically unsaturated bonds. More preferred are compounds having the following.
  • the resin composition of the present invention contains a compound having two ethylenically unsaturated bonds and a compound having three or more of the above ethylenically unsaturated bonds. It is also preferable.
  • the molecular weight of the radical crosslinking agent is preferably 2,000 or less, more preferably 1,500 or less, and even more preferably 900 or less.
  • the lower limit of the molecular weight of the radical crosslinking agent is preferably 100 or more.
  • radical crosslinking agents include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), their esters, and amides. These are esters of saturated carboxylic acids and polyhydric alcohol compounds, and amides of unsaturated carboxylic acids and polyhydric amine compounds.
  • addition reaction products of unsaturated carboxylic acid esters or amides having nucleophilic substituents such as hydroxy groups, amino groups, and sulfanyl groups with monofunctional or polyfunctional isocyanates or epoxies, and monofunctional or polyfunctional A dehydration condensation reaction product with a functional carboxylic acid is also preferably used.
  • the radical crosslinking agent is also preferably a compound having a boiling point of 100°C or higher under normal pressure.
  • Examples of the compound having a boiling point of 100° C. or higher under normal pressure include the compounds described in paragraph 0203 of International Publication No. 2021/112189. This content is incorporated herein.
  • Preferred radical crosslinking agents other than those mentioned above include radically polymerizable compounds described in paragraphs 0204 to 0208 of International Publication No. 2021/112189. This content is incorporated herein.
  • radical crosslinking agents examples include dipentaerythritol triacrylate (commercially available product: KAYARAD D-330 (manufactured by Nippon Kayaku Co., Ltd.)), dipentaerythritol tetraacrylate (commercially available product: KAYARAD D-320 (made by Nippon Kayaku Co., Ltd.) Co., Ltd.), A-TMMT (Shin Nakamura Chemical Co., Ltd.)), dipentaerythritol penta(meth)acrylate (commercially available products include KAYARAD D-310 (Nippon Kayaku Co., Ltd.)), dipenta Erythritol hexa(meth)acrylate (commercially available products are KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.) and A-DPH (manufactured by Shin Nakamura Chemical Industry Co., Ltd.)), and these (meth)acryloyl groups are ethylene glyco
  • radical crosslinking agents include, for example, SR-494, which is a tetrafunctional acrylate with four ethyleneoxy chains, and SR-209, 231, and 239, which are difunctional methacrylates with four ethyleneoxy chains (all of which are sold by Sartomer Co., Ltd.). (manufactured by Nippon Kayaku Co., Ltd.), DPCA-60, a hexafunctional acrylate with six pentyleneoxy chains, TPA-330, a trifunctional acrylate with three isobutyleneoxy chains (manufactured by Nippon Kayaku Co., Ltd.), and urethane oligomers.
  • SR-494 which is a tetrafunctional acrylate with four ethyleneoxy chains
  • SR-209, 231, and 239 which are difunctional methacrylates with four ethyleneoxy chains (all of which are sold by Sartomer Co., Ltd.).
  • DPCA-60 a hexafunctional acrylate with six penty
  • urethane acrylates as described in Japanese Patent Publication No. 48-041708, Japanese Patent Application Publication No. 51-037193, Japanese Patent Publication No. 02-032293, and Japanese Patent Publication No. 02-016765, Urethane compounds having an ethylene oxide skeleton described in Japanese Patent Publication No. 58-049860, Japanese Patent Publication No. 56-017654, Japanese Patent Publication No. 62-039417, and Japanese Patent Publication No. 62-039418 are also suitable.
  • radical crosslinking agent compounds having an amino structure or a sulfide structure in the molecule, which are described in JP-A-63-277653, JP-A-63-260909, and JP-A-01-105238, can also be used. can.
  • the radical crosslinking agent may be a radical crosslinking agent having an acid group such as a carboxy group or a phosphoric acid group.
  • the radical crosslinking agent having an acid group is preferably an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and the unreacted hydroxy group of the aliphatic polyhydroxy compound is reacted with a non-aromatic carboxylic acid anhydride to form an acid group.
  • a radical crosslinking agent having the following is more preferable.
  • the aliphatic polyhydroxy compound is pentaerythritol or dipentaerythritol. It is a compound that is Commercially available products include, for example, polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd., such as M-510 and M-520.
  • the acid value of the radical crosslinking agent having an acid group is preferably 0.1 to 300 mgKOH/g, more preferably 1 to 100 mgKOH/g. If the acid value of the radical crosslinking agent is within the above range, it will have excellent handling properties during production and excellent developability. Moreover, it has good polymerizability. The above acid value is measured in accordance with the description of JIS K 0070:1992.
  • bifunctional methacrylate or acrylate as the resin composition from the viewpoint of pattern resolution and film stretchability.
  • Specific compounds include triethylene glycol diacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol diacrylate, PEG (polyethylene glycol) 200 diacrylate, PEG 200 dimethacrylate, PEG 600 diacrylate, and PEG 600 diacrylate.
  • PEG200 diacrylate refers to polyethylene glycol diacrylate in which the formula weight of polyethylene glycol chains is about 200.
  • a monofunctional radical crosslinking agent can preferably be used as the radical crosslinking agent from the viewpoint of suppressing warpage of the pattern (cured product).
  • monofunctional radical crosslinking agents include n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, butoxyethyl (meth)acrylate, carbitol (meth)acrylate, and cyclohexyl (meth)acrylate.
  • (meth)acrylate benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, N-methylol (meth)acrylamide, glycidyl (meth)acrylate, polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, etc.
  • Acrylic acid derivatives, N-vinyl compounds such as N-vinylpyrrolidone and N-vinylcaprolactam, allyl glycidyl ether, and the like are preferably used.
  • the monofunctional radical crosslinking agent a compound having a boiling point of 100° C. or higher at normal pressure is also preferred in order to suppress volatilization before exposure.
  • examples of the radical crosslinking agent having two or more functional groups include allyl compounds such as diallyl phthalate and triallyl trimellitate.
  • the content of the radical crosslinking agent is preferably more than 0% by mass and 60% by mass or less based on the total solid content of the resin composition.
  • the lower limit is more preferably 5% by mass or more.
  • the upper limit is more preferably 50% by mass or less, and even more preferably 30% by mass or less.
  • One type of radical crosslinking agent may be used alone, or a mixture of two or more types may be used. When two or more types are used together, it is preferable that the total amount falls within the above range.
  • the resin composition of the present invention contains another crosslinking agent different from the above-mentioned radical crosslinking agent.
  • Other crosslinking agents refer to crosslinking agents other than the above-mentioned radical crosslinking agents, and the above-mentioned photoacid generators or photobase generators are photosensitive to other compounds in the composition or their reaction products.
  • the compound has a plurality of groups in its molecule that promote the reaction of forming a covalent bond between the compounds, and the reaction of forming a covalent bond with other compounds in the composition or the reaction products thereof is preferably Compounds having a plurality of groups in the molecule that are promoted by the action of acids or bases are preferred.
  • the acid or base is preferably an acid or base generated from a photoacid generator or a photobase generator in the exposure step.
  • Other crosslinking agents include compounds described in paragraphs 0179 to 0207 of International Publication No. 2022/145355. The above description is incorporated herein.
  • the resin composition of the present invention contains a polymerization initiator.
  • the polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator, but it is particularly preferable to include a photopolymerization initiator.
  • the photopolymerization initiator is preferably a radical photopolymerization initiator.
  • the radical photopolymerization initiator is not particularly limited and can be appropriately selected from known radical photopolymerization initiators. For example, a photoradical polymerization initiator that is sensitive to light in the ultraviolet to visible range is preferred. Alternatively, it may be an activator that acts with a photoexcited sensitizer to generate active radicals.
  • the photoradical polymerization initiator contains at least one compound having a molar absorption coefficient of at least about 50 L ⁇ mol ⁇ 1 ⁇ cm ⁇ 1 within the wavelength range of about 240 to 800 nm (preferably 330 to 500 nm). It is preferable.
  • the molar extinction coefficient of a compound can be measured using a known method. For example, it is preferable to measure at a concentration of 0.01 g/L using an ethyl acetate solvent with an ultraviolet-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian).
  • any known compound can be used.
  • halogenated hydrocarbon derivatives e.g., compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having a trihalomethyl group, etc.
  • acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazole, oxime derivatives, etc.
  • ketone compound examples include compounds described in paragraph 0087 of JP-A-2015-087611, the contents of which are incorporated herein.
  • Kayacure-DETX-S manufactured by Nippon Kayaku Co., Ltd. is also suitably used.
  • a hydroxyacetophenone compound, an aminoacetophenone compound, and an acylphosphine compound can be suitably used as the photoradical polymerization initiator. More specifically, for example, the aminoacetophenone-based initiator described in JP-A-10-291969 and the acylphosphine oxide-based initiator described in Japanese Patent No. 4225898 can be used, the content of which is herein incorporated by reference. Incorporated.
  • ⁇ -hydroxyketone initiators examples include Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127 (manufactured by IGM Resins B.V.), IRGACURE 184 (IRGACURE is a registered trademark), DA ROCUR 1173, IRGACURE 500, IRGACURE -2959 and IRGACURE 127 (manufactured by BASF) can be used.
  • ⁇ -aminoketone initiators examples include Omnirad 907, Omnirad 369, Omnirad 369E, Omnirad 379EG (manufactured by IGM Resins B.V.), IRGACURE 907, IRGACURE 369. , and IRGACURE 379 (manufactured by BASF) can be used.
  • aminoacetophenone initiator the acylphosphine oxide initiator, and the metallocene compound, for example, the compounds described in paragraphs 0161 to 0163 of International Publication No. 2021/112189 can also be suitably used. This content is incorporated herein.
  • photoradical polymerization initiator include oxime compounds.
  • an oxime compound By using an oxime compound, it becomes possible to improve exposure latitude more effectively.
  • Oxime compounds are particularly preferred because they have a wide exposure latitude (exposure margin) and also act as photocuring accelerators.
  • oxime compounds include compounds described in JP-A-2001-233842, compounds described in JP-A 2000-080068, compounds described in JP-A 2006-342166, J. C. S. Perkin II (1979, pp. 1653-1660); C. S. Compounds described in Perkin II (1979, pp. 156-162), compounds described in Journal of Photopolymer Science and Technology (1995, pp. 202-232), JP-A-2000-0 Compounds described in Publication No. 66385, Compounds described in Japanese Patent Publication No. 2004-534797, compounds described in Japanese Patent Application Publication No. 2017-019766, compounds described in Patent No. 6065596, compounds described in International Publication No. 2015/152153, International Publication No.
  • Preferred oxime compounds include, for example, compounds with the following structures, 3-(benzoyloxy(imino))butan-2-one, 3-(acetoxy(imino))butan-2-one, 3-(propionyloxy( imino))butan-2-one, 2-(acetoxy(imino))pentan-3-one, 2-(acetoxy(imino))-1-phenylpropan-1-one, 2-(benzoyloxy(imino)) -1-phenylpropan-1-one, 3-((4-toluenesulfonyloxy)imino)butan-2-one, and 2-(ethoxycarbonyloxy(imino))-1-phenylpropan-1-one, etc.
  • an oxime compound as a photoradical polymerization initiator.
  • oxime compounds include IRGACURE OXE 01, IRGACURE OXE 02, IRGACURE OXE 03, IRGACURE OXE 04 (manufactured by BASF), ADEKA Optomer N-1919 (manufactured by ADEKA Corporation, Japanese Patent Application Laid-open No. 2012-014052).
  • Photoradical polymerization initiator 2 described in the publication, TR-PBG-304, TR-PBG-305 (manufactured by Changzhou Strong Electronics New Materials Co., Ltd.), Adeka Arcles NCI-730, NCI-831, and Adeka Arcles NCI- 930 (manufactured by ADEKA Co., Ltd.), DFI-091 (manufactured by Daito Chemix Co., Ltd.), and SpeedCure PDO (manufactured by SARTOMER ARKEMA). Moreover, oxime compounds having the following structures can also be used.
  • Examples of the photoradical polymerization initiator include oxime compounds having a fluorene ring described in paragraphs 0169 to 0171 of International Publication No. 2021/112189, and oximes having a skeleton in which at least one benzene ring of a carbazole ring is a naphthalene ring.
  • Compounds, oxime compounds having a fluorine atom can also be used.
  • an oxime compound having a nitro group, an oxime compound having a benzofuran skeleton, and an oxime compound having a substituent having a hydroxy group bonded to a carbazole skeleton described in paragraphs 0208 to 0210 of International Publication No. 2021/020359 may be used. You can also do it. Their contents are incorporated herein.
  • oxime compound OX an oxime compound having an aromatic ring group Ar OX1 (hereinafter also referred to as oxime compound OX) in which an electron-withdrawing group is introduced into the aromatic ring.
  • Examples of the electron-withdrawing group possessed by the aromatic ring group Ar OX1 include an acyl group, a nitro group, a trifluoromethyl group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, and a cyano group,
  • An acyl group and a nitro group are preferred, an acyl group is more preferred because a film with excellent light resistance can be easily formed, and a benzoyl group is even more preferred.
  • the benzoyl group may have a substituent.
  • substituents include halogen atoms, cyano groups, nitro groups, hydroxy groups, alkyl groups, alkoxy groups, aryl groups, aryloxy groups, heterocyclic groups, heterocyclic oxy groups, alkenyl groups, alkylsulfanyl groups, arylsulfanyl groups, It is preferably an acyl group or an amino group, and more preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a heterocyclicoxy group, an alkylsulfanyl group, an arylsulfanyl group, or an amino group. More preferably, it is a sulfanyl group or an amino group.
  • the oxime compound OX is preferably at least one selected from a compound represented by formula (OX1) and a compound represented by formula (OX2), and more preferably a compound represented by formula (OX2). preferable.
  • R X3 to R X14 each independently represent a hydrogen atom or a substituent. However, at least one of R X10 to R X14 is an electron-withdrawing group.
  • R X12 is preferably an electron-withdrawing group
  • R X10 , R X11 , R X13 , and R X14 are preferably hydrogen atoms.
  • oxime compound OX examples include compounds described in paragraph numbers 0083 to 0105 of Japanese Patent No. 4,600,600, the contents of which are incorporated herein.
  • Particularly preferable oxime compounds include oxime compounds having a specific substituent group as shown in JP-A No. 2007-269779, and oxime compounds having a thioaryl group as shown in JP-A No. 2009-191061. Incorporated herein.
  • photoradical polymerization initiators include trihalomethyltriazine compounds, benzyl dimethyl ketal compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, and triaryl compounds. selected from the group consisting of imidazole dimers, onium salt compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complexes and salts thereof, halomethyloxadiazole compounds, and 3-aryl substituted coumarin compounds.
  • Compounds such as
  • the photoradical polymerization initiator is a trihalomethyltriazine compound, an ⁇ -aminoketone compound, an acylphosphine compound, a phosphine oxide compound, a metallocene compound, an oxime compound, a triarylimidazole dimer, an onium salt compound, a benzophenone compound, an acetophenone compound, At least one compound selected from the group consisting of trihalomethyltriazine compounds, ⁇ -aminoketone compounds, metallocene compounds, oxime compounds, triarylimidazole dimers, and benzophenone compounds is more preferred, and metallocene compounds or oxime compounds are even more preferred.
  • a difunctional, trifunctional or more functional photoradical polymerization initiator may be used as the photoradical polymerization initiator.
  • a radical photopolymerization initiator two or more radicals are generated from one molecule of the radical photopolymerization initiator, so that good sensitivity can be obtained.
  • the crystallinity decreases and the solubility in solvents improves, making it difficult to precipitate over time, thereby improving the stability of the resin composition over time.
  • Specific examples of bifunctional or trifunctional or more functional photoradical polymerization initiators include those listed in Japanese Patent Publication No. 2010-527339, Japanese Patent Publication No. 2011-524436, International Publication No.
  • the resin composition contains a photopolymerization initiator
  • its content is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, and 0.5% by mass based on the total solid content of the resin composition. It is more preferably from 1.0 to 10% by weight, and even more preferably from 1.0 to 10% by weight.
  • the photopolymerization initiator may contain only one type, or may contain two or more types. When containing two or more types of photopolymerization initiators, it is preferable that the total amount is within the above range. Note that since the photopolymerization initiator may also function as a thermal polymerization initiator, crosslinking by the photopolymerization initiator may be further promoted by heating with an oven, a hot plate, or the like.
  • the resin composition may contain a sensitizer.
  • the sensitizer absorbs specific actinic radiation and becomes electronically excited.
  • the sensitizer in an electronically excited state comes into contact with a thermal radical polymerization initiator, a photoradical polymerization initiator, etc., and effects such as electron transfer, energy transfer, and heat generation occur.
  • the thermal radical polymerization initiator and the photo radical polymerization initiator undergo a chemical change and are decomposed to generate radicals, acids, or bases.
  • Usable sensitizers include benzophenone series, Michler's ketone series, coumarin series, pyrazole azo series, anilinoazo series, triphenylmethane series, anthraquinone series, anthracene series, anthrapyridone series, benzylidene series, oxonol series, and pyrazolotriazole azo series.
  • pyridone azo type cyanine type, phenothiazine type, pyrrolopyrazole azomethine type, xanthene type, phthalocyanine type, penzopyran type, indigo type and the like can be used.
  • sensitizer examples include Michler's ketone, 4,4'-bis(diethylamino)benzophenone, 2,5-bis(4'-diethylaminobenzal)cyclopentane, 2,6-bis(4'-diethylaminobenzal) Cyclohexanone, 2,6-bis(4'-diethylaminobenzal)-4-methylcyclohexanone, 4,4'-bis(dimethylamino)chalcone, 4,4'-bis(diethylamino)chalcone, p-dimethylaminocinnamyl Denindanone, p-dimethylaminobenzylideneindanone, 2-(p-dimethylaminophenylbiphenylene)-benzothiazole, 2-(p-dimethylaminophenylvinylene)benzothiazole, 2-(p-dimethylaminophenylvinylene)iso Naphthothiazole, 1,3-
  • the content of the sensitizer is preferably 0.01 to 20% by mass, more preferably 0.1 to 15% by mass, based on the total solid content of the resin composition. More preferably 0.5 to 10% by mass.
  • the sensitizers may be used alone or in combination of two or more.
  • the resin composition of the present invention may contain a chain transfer agent.
  • Chain transfer agents are defined, for example, in the Polymer Dictionary, Third Edition (edited by the Society of Polymer Science, 2005), pages 683-684.
  • Examples of chain transfer agents include compounds having -S-S-, -SO 2 -S-, -N-O-, SH, PH, SiH, and GeH in the molecule, and RAFT (Reversible Addition Fragmentation chain Transfer).
  • Dithiobenzoate, trithiocarbonate, dithiocarbamate, xanthate compounds and the like having a thiocarbonylthio group used in polymerization are used. These can generate radicals by donating hydrogen to low-activity radicals, or can generate radicals by being oxidized and then deprotonated.
  • thiol compounds can be preferably used.
  • the content of the chain transfer agent is preferably 0.01 to 20 parts by mass, and 0.1 to 10 parts by mass based on 100 parts by mass of the total solid content of the resin composition. More preferably, 0.5 to 5 parts by mass is even more preferred.
  • the number of chain transfer agents may be one, or two or more. When there are two or more types of chain transfer agents, it is preferable that the total is within the above range.
  • the resin composition of the present invention may also contain a base generator.
  • the base generator is a compound that can generate a base by physical or chemical action.
  • Preferred base generators include thermal base generators and photobase generators.
  • the resin composition contains a base generator.
  • the resin composition contains a thermal base generator, the cyclization reaction of the precursor can be promoted by heating, for example, and the cured product has good mechanical properties and chemical resistance. The performance as an interlayer insulating film for wiring layers is improved.
  • the base generator may be an ionic base generator or a nonionic base generator. Examples of the base generated from the base generator include secondary amines and tertiary amines.
  • the base generator is not particularly limited, and any known base generator can be used.
  • Known base generators include, for example, carbamoyloxime compounds, carbamoylhydroxylamine compounds, carbamic acid compounds, formamide compounds, acetamide compounds, carbamate compounds, benzyl carbamate compounds, nitrobenzyl carbamate compounds, sulfonamide compounds, imidazole derivative compounds, and amine imides. compounds, pyridine derivative compounds, ⁇ -aminoacetophenone derivative compounds, quaternary ammonium salt derivative compounds, iminium salts, pyridinium salts, ⁇ -lactone ring derivative compounds, amine imide compounds, phthalimide derivative compounds, acyloxyimino compounds, and the like.
  • Specific examples of nonionic base generators include compounds described in paragraphs 0249 to 0275 of International Publication No. 2022/145355. The above description is incorporated herein.
  • Examples of the base generator include, but are not limited to, the following compounds.
  • the molecular weight of the nonionic base generator is preferably 800 or less, more preferably 600 or less, and even more preferably 500 or less.
  • the lower limit is preferably 100 or more, more preferably 200 or more, and even more preferably 300 or more.
  • Specific preferred compounds of the ionic base generator include, for example, the compounds described in paragraph numbers 0148 to 0163 of International Publication No. 2018/038002.
  • ammonium salts include, but are not limited to, the following compounds.
  • iminium salts include, but are not limited to, the following compounds.
  • the content of the base generator is preferably 0.1 to 50 parts by weight based on 100 parts by weight of the resin in the resin composition.
  • the lower limit is more preferably 0.3 parts by mass or more, and even more preferably 0.5 parts by mass or more.
  • the upper limit is more preferably 30 parts by mass or less, even more preferably 20 parts by mass or less, even more preferably 10 parts by mass or less, even more preferably 5 parts by mass or less, and particularly preferably 4 parts by mass or less.
  • One type or two or more types of base generators can be used. When two or more types are used, the total amount is preferably within the above range.
  • the resin composition of the present invention preferably contains a solvent. Any known solvent can be used as the solvent.
  • the solvent is preferably an organic solvent. Examples of the organic solvent include compounds such as esters, ethers, ketones, cyclic hydrocarbons, sulfoxides, amides, ureas, and alcohols.
  • esters include ethyl acetate, n-butyl acetate, isobutyl acetate, hexyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone.
  • alkyloxyacetates e.g., methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (e.g., methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate) , methyl ethoxy acetate, ethyl ethoxy acetate, etc.
  • 3-alkyloxypropionate alkyl esters e.g., methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc.
  • alkyl 2-alkyloxypropionate esters e.g., methyl 2-alkyloxypropionate, 2-alkyloxypropionate
  • propyl 2-alkyloxypropionate etc.
  • Methyl 2-alkyloxy-2-methylpropionate and ethyl 2-alkyloxy-2-methylpropionate for example, methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxy-2-methylpropionate, etc.
  • Methyl pyruvate, ethyl pyruvate, propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, methyl 2-oxobutanoate, ethyl 2-oxobutanoate, ethyl hexanoate, ethyl heptanoate, dimethyl malonate, diethyl malonate, etc. are preferred. It is mentioned as something.
  • ethers include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol dimethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether, ethylene glycol Suitable examples include monobutyl ether acetate
  • Suitable ketones include, for example, methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, 3-methylcyclohexanone, levoglucosenone, dihydrolevoglucosenone, and the like.
  • Suitable examples of cyclic hydrocarbons include aromatic hydrocarbons such as toluene, xylene, and anisole, and cyclic terpenes such as limonene.
  • Suitable examples of sulfoxides include dimethyl sulfoxide.
  • Amides include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, N,N-dimethylisobutyramide, Preferred examples include 3-methoxy-N,N-dimethylpropionamide, 3-butoxy-N,N-dimethylpropionamide, N-formylmorpholine, and N-acetylmorpholine.
  • Suitable ureas include N,N,N',N'-tetramethylurea, 1,3-dimethyl-2-imidazolidinone, and the like.
  • Alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol, 1-hexanol, benzyl alcohol, ethylene glycol monomethyl ether, 1-methoxy-2-propanol, 2-ethoxyethanol, Diethylene glycol monoethyl ether, diethylene glycol monohexyl ether, triethylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether, polyethylene glycol monomethyl ether, polypropylene glycol, tetraethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monobenzyl ether, Examples include ethylene glycol monophenyl ether, methylphenyl carbinol, n-amyl alcohol, methyl amyl alcohol, and diacetone alcohol.
  • solvent selected from methyl ether acetate, levoglucosenone, and dihydrolevoglucosenone, or a mixed solvent composed of two or more types is preferable.
  • Particularly preferred is the combination of amide, ⁇ -butyrolactone and dimethyl sulfoxide, or the combination of N-methyl-2-pyrrolidone and ethyl lactate.
  • toluene is further added to the solvent used in combination in an amount of about 1 to 10% by mass based on the total mass of the solvent.
  • an embodiment containing ⁇ -valerolactone as a solvent is also one of the preferred embodiments of the present invention.
  • the content of ⁇ -valerolactone based on the total mass of the solvent is preferably 50% by mass or more, more preferably 60% by mass or more, and still more preferably 70% by mass or more. preferable.
  • the upper limit of the content is not particularly limited and may be 100% by mass. The above content may be determined in consideration of the solubility of components such as the specific resin contained in the resin composition.
  • dimethyl sulfoxide and ⁇ -valerolactone when dimethyl sulfoxide and ⁇ -valerolactone are used together, it is preferable to contain 60 to 90% by mass of ⁇ -valerolactone and 10 to 40% by mass of dimethyl sulfoxide, based on the total mass of the solvent. It is more preferable to contain ⁇ 90% by mass of ⁇ -valerolactone and 10 to 30% by mass of dimethyl sulfoxide, and more preferably to contain 75 to 85% by mass of ⁇ -valerolactone and 15 to 25% by mass of dimethyl sulfoxide. More preferred.
  • the content of the solvent is preferably such that the total solids concentration of the resin composition of the present invention is 5 to 80% by mass, and preferably 5 to 75% by mass. More preferably, the amount is 10 to 70% by mass, and even more preferably 20 to 70% by mass.
  • the solvent content may be adjusted depending on the desired thickness of the coating and the application method. When two or more types of solvents are contained, it is preferable that the total amount is within the above range.
  • the resin composition of the present invention preferably contains a metal adhesion improver from the viewpoint of improving adhesion to metal materials used for electrodes, wiring, etc.
  • metal adhesion improvers include silane coupling agents having alkoxysilyl groups, aluminum adhesion aids, titanium adhesion aids, compounds having a sulfonamide structure and thiourea structure, phosphoric acid derivative compounds, and ⁇ -keto esters. compounds, amino compounds, etc.
  • silane coupling agent examples include the compounds described in paragraph 0316 of International Publication No. 2021/112189 and the compounds described in paragraphs 0067 to 0078 of JP 2018-173573, the contents of which are not included herein. Incorporated. It is also preferable to use two or more different silane coupling agents as described in paragraphs 0050 to 0058 of JP-A-2011-128358. It is also preferable to use the following compounds as the silane coupling agent. In the following formula, Me represents a methyl group and Et represents an ethyl group. Further, the following R includes a structure derived from a blocking agent in a blocked isocyanate group.
  • the blocking agent may be selected depending on the desorption temperature, and includes alcohol compounds, phenol compounds, pyrazole compounds, triazole compounds, lactam compounds, active methylene compounds, and the like. For example, from the viewpoint of desiring a desorption temperature of 160 to 180°C, caprolactam and the like are preferred. Commercially available products of such compounds include X-12-1293 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • silane coupling agents examples include vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane.
  • an oligomer type compound having a plurality of alkoxysilyl groups can also be used as the silane coupling agent.
  • examples of such oligomer type compounds include compounds containing a repeating unit represented by the following formula (S-1).
  • R S1 represents a monovalent organic group
  • R S2 represents a hydrogen atom, a hydroxy group, or an alkoxy group
  • n represents an integer of 0 to 2.
  • R S1 preferably has a structure containing a polymerizable group.
  • Examples of the polymerizable group include a group having an ethylenically unsaturated bond, an epoxy group, an oxetanyl group, a benzoxazolyl group, a blocked isocyanate group, and an amino group.
  • Examples of the group having an ethylenically unsaturated bond include a vinyl group, an allyl group, an isoallyl group, a 2-methylallyl group, a group having an aromatic ring directly bonded to a vinyl group (for example, a vinyl phenyl group, etc.), and a (meth)acrylamide group.
  • R S2 is preferably an alkoxy group, more preferably a methoxy group or an ethoxy group.
  • n represents an integer from 0 to 2, preferably 1.
  • n is 1 or 2 in at least one of the plurality of repeating units represented by formula (S-1) contained in the oligomer type compound, and n is 1 or 2 in at least two. More preferably, n is 2, and even more preferably n is 1 in at least two cases.
  • Commercially available products can be used as such oligomer type compounds, and examples of commercially available products include KR-513 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • Aluminum-based adhesion aid examples include aluminum tris (ethyl acetoacetate), aluminum tris (acetylacetonate), ethylacetoacetate aluminum diisopropylate, and the like.
  • the content of the metal adhesion improver is preferably 0.01 to 30 parts by weight, more preferably 0.1 to 10 parts by weight, and even more preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the specific resin.
  • the content of the metal adhesion improver is preferably 0.01 to 30 parts by weight, more preferably 0.1 to 10 parts by weight, and even more preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the specific resin.
  • the resin composition of the present invention further contains a migration inhibitor.
  • a migration inhibitor for example, when a resin composition is applied to a metal layer (or metal wiring) to form a film, metal ions derived from the metal layer (or metal wiring) may migrate into the film. can be effectively suppressed.
  • Migration inhibitors are not particularly limited, but include heterocycles (pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole ring, isothiazole ring, tetrazole ring, pyridine ring) , pyridazine ring, pyrimidine ring, pyrazine ring, piperidine ring, piperazine ring, morpholine ring, 2H-pyran ring and 6H-pyran ring, triazine ring), compounds having thioureas and sulfanyl groups, hindered phenol type compounds, salicylic acid derivative compounds, and hydrazide derivative compounds.
  • heterocycles pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole
  • triazole compounds such as 1,2,4-triazole, benzotriazole, 3-amino-1,2,4-triazole, 3,5-diamino-1,2,4-triazole, 1H-tetrazole, 5- Tetrazole compounds such as phenyltetrazole and 5-amino-1H-tetrazole can be preferably used.
  • the resin composition of the present invention contains an azole compound.
  • An azole compound is a compound containing an azole structure, and an azole structure refers to a 5-membered ring structure containing a nitrogen atom as a ring member, and may be a 5-membered ring structure containing 2 or more nitrogen atoms as a ring member.
  • examples of the azole structure include an imidazole structure, a triazole structure, and a tetrazole structure. These structures may form a polycyclic ring by condensation with other ring structures, such as benzimidazole and benzotriazole.
  • a compound in which a group represented by the following formula (R-1) or the following formula (R-2) is directly bonded to the azole structure is also preferable.
  • R 1 represents a monovalent organic group
  • * represents a bonding site with an azole structure.
  • R-2 represents a hydrogen atom or a monovalent organic group
  • R 3 represents a monovalent organic group
  • * represents a bonding site with an azole structure.
  • a group represented by a bond with at least one group selected from the group consisting of - is preferable.
  • R N is as described above.
  • the hydrocarbon group is preferably an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a combination thereof. Further, the total number of carbon atoms in R 1 is preferably 1 to 30, preferably 2 to 25, and more preferably 3 to 20.
  • the bonding site in R 1 with the carbonyl group in formula (R-1) is preferably a hydrocarbon group or -NR N -.
  • R 2 is preferably a hydrogen atom.
  • R 2 is a monovalent organic group
  • R N is as described above.
  • the hydrocarbon group is preferably an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a combination thereof.
  • R 2 when R 2 is a monovalent organic group, the total number of carbon atoms is preferably 1 to 30, preferably 2 to 25, and more preferably 3 to 20.
  • a group represented by a bond with at least one group selected from the group consisting of - is preferable.
  • R N is as described above.
  • the hydrocarbon group is preferably an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a combination thereof. Further, when R 3 is a monovalent organic group, the total number of carbon atoms is preferably 1 to 30, preferably 2 to 25, and more preferably 3 to 20.
  • * represents a bonding site with an azole structure, and is preferably a bonding site with a carbon atom that is a ring member of the azole structure.
  • an ion trapping agent that traps anions such as halogen ions can also be used.
  • Other migration inhibitors include the rust inhibitors described in paragraph 0094 of JP-A-2013-015701, the compounds described in paragraphs 0073 to 0076 of JP-A-2009-283711, and the compounds described in JP-A-2011-059656.
  • Compounds described in paragraph 0052, compounds described in paragraphs 0114, 0116, and 0118 of JP 2012-194520, compounds described in paragraph 0166 of WO 2015/199219, etc. can be used, and the contents thereof is incorporated herein.
  • migration inhibitors include the following compounds.
  • the content of the migration inhibitor is preferably 0.01 to 5.0% by mass, and 0.01 to 5.0% by mass based on the total solid content of the resin composition.
  • the amount is more preferably 0.05 to 2.0% by weight, and even more preferably 0.1 to 1.0% by weight.
  • Only one type of migration inhibitor may be used, or two or more types may be used. When there are two or more types of migration inhibitors, it is preferable that the total is within the above range.
  • the resin composition of the present invention preferably further contains the above-mentioned azole compound and the above-mentioned silane coupling agent from the viewpoint of improving the adhesion to the base material.
  • the adhesiveness with the base material is easily maintained even after the cured product is exposed to high temperature and high humidity conditions.
  • the resin composition of the present invention contains a polymerization inhibitor.
  • the polymerization inhibitor include phenolic compounds, quinone compounds, amino compounds, N-oxyl free radical compounds, nitro compounds, nitroso compounds, heteroaromatic compounds, and metal compounds.
  • Specific compounds of the polymerization inhibitor include the compound described in paragraph 0310 of International Publication No. 2021/112189, p-hydroquinone, o-hydroquinone, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1- Examples include oxyl free radical, phenoxazine, 1,4,4-trimethyl-2,3-diazabicyclo[3.2.2]non-2-ene-N,N-dioxide, and the like. This content is incorporated herein.
  • the content of the polymerization inhibitor is preferably 0.01 to 20% by mass, and 0.02 to 20% by mass based on the total solid content of the resin composition.
  • the content is more preferably 15% by mass, and even more preferably 0.05 to 10% by mass.
  • Only one type of polymerization inhibitor may be used, or two or more types may be used. When there are two or more types of polymerization inhibitors, it is preferable that the total is within the above range.
  • the resin composition of the present invention contains a compound (light absorber) whose absorbance at the exposure wavelength decreases upon exposure.
  • Whether or not a certain compound a contained in the resin composition corresponds to a light absorber can be determined by the following method. First, a solution of compound a with the same concentration as that contained in the resin composition is prepared, and the molar extinction coefficient (mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 , also referred to as “molar extinction coefficient 1”) of compound a at the wavelength of exposure light is determined. ). The above measurement is performed quickly so as to minimize the influence of changes such as a decrease in the molar extinction coefficient of compound a.
  • the solvent in the above solution when the resin composition contains a solvent, that solvent is used, and when the resin composition does not contain a solvent, N-methyl-2-pyrrolidone is used.
  • the solution of compound a is irradiated with exposure light.
  • the exposure amount is 500 mJ as an integrated amount for 1 mol of compound a.
  • the molar extinction coefficient (mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 , also referred to as “molar extinction coefficient 2”) of compound a at the wavelength of the exposure light is measured.
  • the attenuation rate is preferably 10% or more, more preferably 20% or more.
  • the lower limit of the above-mentioned attenuation rate is not particularly limited, and may be 0% or more.
  • the wavelength of the exposure light may be any wavelength at which the photosensitive film is exposed. Further, the wavelength of the exposure light is preferably a wavelength to which the photopolymerization initiator contained in the resin composition is sensitive.
  • a photopolymerization initiator having sensitivity to a certain wavelength means that a polymerization initiation species is generated when the photopolymerization initiator is exposed to light at a certain wavelength.
  • the wavelength of the exposure light is (1) semiconductor laser (wavelength: 830 nm, 532 nm, 488 nm, 405 nm, 375 nm, 355 nm, etc.), (2) metal halide lamp, (3) high pressure mercury lamp, G-line (wavelength 436nm), H-line (wavelength 405nm), I-line (wavelength 365nm), Broad (3 wavelengths of g, h, i-line), (4) Excimer laser, KrF excimer laser (wavelength 248nm), ArF excimer Laser (wavelength 193 nm), F2 excimer laser (wavelength 157 nm), (5) Extreme ultraviolet light; EUV (wavelength 13.6 nm), (6) Electron beam, (7) YAG laser second harmonic 532 nm, third harmonic Examples include 355 nm.
  • the wavelength of the exposure light may be selected, for example, from a wavelength to which the photopolymerization initiator is sensitive, preferably the h-line (wavelength: 405 nm) or the i-line (wavelength: 365 nm), and more preferably the i-line (wavelength: 365 nm).
  • the light absorber may be a compound that generates radical polymerization initiation species upon exposure to light, but from the viewpoint of resolution and chemical resistance, it is preferably a compound that does not generate radical polymerization initiation species upon exposure. Whether the light absorber is a compound that generates radical polymerization initiating species upon exposure to light is determined by the following method. A solution containing a light absorber and a radical crosslinking agent at the same concentration as that contained in the resin composition is prepared. When the resin composition contains a radical crosslinking agent, the same compound as the radical crosslinking agent contained in the resin composition is used at the same concentration as the radical crosslinking agent in the solution.
  • the resin composition does not contain a radical crosslinker, methyl methacrylate is used at a concentration five times that of the light absorber. After that, exposure light is irradiated. The exposure amount is 500 mJ as an integrated amount.
  • the polymerization of the polymerizable compound is determined by, for example, high performance liquid chromatography, and if the ratio of the molar amount of the polymerizable compound to the total molar amount of the polymerizable compound is 10% or less, the light absorber is It is determined that the compound does not generate radical polymerization initiation species upon exposure to light.
  • the molar amount ratio is preferably 5% or less, more preferably 3% or less.
  • the lower limit of the above molar amount ratio is not particularly limited, and may be 0%.
  • the wavelength of the exposure light may be any wavelength at which the photosensitive film is exposed. Further, the wavelength of the exposure light is preferably a wavelength to which the photopolymerization initiator contained in the resin composition is sensitive.
  • Examples of the compound that generates a radical polymerization initiator upon exposure to light include the same compounds as the above-mentioned photoradical polymerization initiators.
  • the composition contains a photoradical polymerization initiator as a light absorber
  • the one having the lowest polymerization initiating ability of the generated radical species is the light absorber
  • the others are the photopolymerization initiators.
  • Examples of compounds that do not generate radical polymerization initiation species upon exposure include photoacid generators, photobase generators, and dyes whose absorption wavelength changes upon exposure.
  • the light absorber is preferably a naphthoquinone diazide compound or a dye whose absorbance changes upon exposure, and more preferably a naphthoquinone diazide compound. It is also conceivable to use, as a light absorber, a combination of, for example, a photoacid generator or a photobase generator and a compound whose absorbance at the exposure wavelength decreases depending on the pH.
  • Naphthoquinonediazide compound examples include compounds that produce indenecarboxylic acid upon exposure and have a low absorbance at the exposure wavelength, and compounds having a 1,2-naphthoquinonediazide structure are preferred.
  • the naphthoquinone diazide compound is preferably a naphthoquinone diazide sulfonic acid ester of a hydroxy compound.
  • compounds represented by any of the following formulas (H1) to (H6) are preferred.
  • R 1 and R 2 each independently represent a monovalent organic group
  • R 3 and R 4 each independently represent a hydrogen atom or a monovalent organic group
  • n1, n2, m1 and m2 are each independently an integer of 0 to 5
  • at least one of m1 and m2 is an integer of 1 to 5.
  • Z represents a tetravalent organic group
  • L 1 , L 2 , L 3 and L 4 each independently represent a single bond or a divalent organic group
  • R 5 , R 6 , R 7 and R8 each independently represent a monovalent organic group
  • n3, n4, n5 and n6 each independently represent an integer of 0 to 3
  • m3, m4, m5 and m6 each independently represent 0 ⁇ 2, and at least one of m3, m4, m5, and m6 is 1 or 2.
  • R 9 and R 10 each independently represent a hydrogen atom or a monovalent organic group
  • L 5 each independently represents a divalent organic group
  • n7 represents an integer from 3 to 8. represent.
  • L 6 represents a divalent organic group
  • L 7 and L 8 each independently represent a divalent organic group containing an aliphatic tertiary or quaternary carbon.
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 each independently represent a hydrogen atom, a halogen atom or a monovalent organic represents a group
  • L 9 , L 10 and L 11 each independently represent a single bond or a divalent organic group
  • m7, m8, m9, m10 each independently represent an integer from 0 to 2, m7, At least one of m8, m9, and m10 is 1 or 2.
  • R 42 , R 43 , R 44 , and R 45 each independently represent a hydrogen atom or a monovalent organic group
  • R 46 and R 47 each independently represent a monovalent organic group.
  • n16 and n17 each independently represent an integer from 0 to 4
  • m11 and m12 each independently represent an integer from 0 to 4
  • at least one of m11 and m12 is an integer from 1 to 4. be.
  • R 1 and R 2 are each independently preferably a monovalent organic group having 1 to 60 carbon atoms, more preferably a monovalent organic group having 1 to 30 carbon atoms.
  • Examples of the monovalent organic group in R 1 and R 2 include a hydrocarbon group that may have a substituent, such as an aromatic hydrocarbon group that may have a substituent such as a hydroxy group. Can be mentioned.
  • R 3 and R 4 are each independently preferably a monovalent organic group having 1 to 60 carbon atoms, more preferably a monovalent organic group having 1 to 30 carbon atoms. .
  • Examples of the monovalent organic group in R 3 and R 4 include a hydrocarbon group that may have a substituent, such as a hydrocarbon group that may have a substituent such as a hydroxy group.
  • n1 and n2 are each independently preferably 0 or 1, and more preferably 0.
  • m1 and m2 are preferably both 1.
  • the compound represented by formula (H1) is preferably a compound represented by any one of formulas (H1-1) to (H1-5).
  • R 21 , R 22 and R 23 each independently represent a hydrogen atom or a monovalent organic group, preferably a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, and hydrogen An atom or a group represented by the following formula (R-1) is more preferable.
  • R 29 represents a hydrogen atom, an alkyl group, or an alkoxy group
  • n13 represents an integer of 0 to 2
  • * represents a bonding site with another structure.
  • n8, n9 and n10 each independently represent an integer of 0 to 2, preferably 0 or 1.
  • R 24 represents a hydrogen atom or a monovalent organic group, and is preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms.
  • n14, n15 and n16 each independently represent an integer from 0 to 2.
  • R 30 represents a hydrogen atom or an alkyl group.
  • R 25 , R 26 , R 27 and R 28 each independently represent a monovalent organic group, and are represented by a hydrogen atom, an alkyl group, or the above formula (R-1). It is preferable that it is a group.
  • n11, n12 and n13 each independently represent an integer of 0 to 2, preferably 0 or 1.
  • the compound represented by formula (H1-1) is preferably a compound represented by any one of the following formulas (H1-1-1) to (H1-1-4).
  • the compound represented by the formula (H1-2) is preferably a compound represented by the following formula (H1-2-1) or (H1-2-2).
  • Z is preferably a tetravalent group having 1 to 20 carbon atoms, and more preferably a group represented by any of the following formulas (Z-1) to (Z-4).
  • * represents a bonding site with another structure.
  • L 1 , L 2 , L 3 and L 4 are preferably each independently a single bond or a methylene group.
  • R 5 , R 6 , R 7 and R 8 are each independently preferably an organic group having 1 to 30 carbon atoms.
  • n3, n4, n5 and n6 are each independently preferably an integer of 0 to 2, more preferably 0 or 1.
  • m3, m4, m5 and m6 are each independently preferably 1 or 2, more preferably 1.
  • Examples of the compound represented by formula (H2) include compounds having the following structure.
  • R 9 and R 10 each independently preferably represent a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • each L 5 is preferably independently a group represented by the following formula (L-1).
  • R 30 represents a monovalent organic group having 1 to 20 carbon atoms
  • n14 represents an integer of 1 to 5
  • * represents a bonding site with another structure.
  • n7 is preferably an integer of 4 to 6. Examples of the compound represented by formula (H3) include the following compounds.
  • each n independently represents an integer of 0 to 9.
  • L 7 and L 8 are each independently preferably a divalent organic group having 2 to 20 carbon atoms. Examples of the compound represented by formula (H4) include the following compounds.
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkenyl , an alkoxy group, an allyl group or an acyl group.
  • R 31 and R 32 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, or an aryl group
  • R 34 , R 35 , R 36 and R 37 each independently represents a hydrogen atom or an alkyl group
  • n15 is an integer of 1 to 5
  • R 38 , R 39 , R 40 and R 41 each independently represent a hydrogen atom or an alkyl group
  • Examples of the compound represented by formula (H5) include the following compounds.
  • R 42 , R 43 , R 44 , and R 45 each independently represent a hydrogen atom or a monovalent organic group, preferably a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. , a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.
  • R 46 and R 47 are each independently preferably an alkyl group, an alkoxy group, or an aryl group, and more preferably an alkyl group.
  • n16 and n17 are each independently preferably an integer of 0 to 2, more preferably 0 or 1.
  • n16 and n17 are each independently preferably an integer of 1 to 3, more preferably 2 or 3. Examples of the compound represented by formula (H6) include the following compounds.
  • hydroxy compounds include 2,3,4-trihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 2,3,4-trihydroxy-2'- Methylbenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2,4,6,3',4'-pentahydroxybenzophenone, 2,3, 4,2',4'-pentahydroxybenzophenone, 2,3,4,2',5'-pentahydroxybenzophenone, 2,4,6,3',4',5'-hexahydroxybenzophenone, 2,3 , 4,3',4',5'-hexahydroxybenzophenone and other polyhydroxybenzophenones; Polyhydroxyphenylalkyl ketones such as 2,3,4-trihydroxyacetophenone, 2,3,4-trihydroxyphenylpentyl ketone, 2,3,4-trihydroxyphenylhexyl ketone, Bis(
  • polyhydroxybiphenyls Bis(polyhydroxy) sulfides such as 4,4'-thiobis(1,3-dihydroxy)benzene, Bis(polyhydroxyphenyl) ethers such as 2,2',4,4'-tetrahydroxydiphenyl ether, Bis(polyhydroxyphenyl) sulfoxides such as 2,2',4,4'-tetrahydroxydiphenyl sulfoxide, Bis(polyhydroxyphenyl)sulfones such as 2,2',4,4'-diphenylsulfone, Tris(4-hydroxyphenyl)methane, 4,4',4''-trihydroxy-3,5,3',5'-tetramethyltriphenylmethane, 4,4',3'',4''-tetrahydroxy- 3,5,3',5'-tetramethyltriphenylmethane, 4-[bis(3,5-dimethyl-4-hydroxyphenyl)methyl]-2-methoxy-phenol, 4,
  • JP-A-4-253058 Polyhydroxy compounds described in JP-A-5-224410, such as ⁇ , ⁇ , ⁇ ′, ⁇ ′, ⁇ ′′, ⁇ ′′-hexakis-(4-hydroxyphenyl)-1,3,5-triethylbenzene, etc. JP-A-5-303200, EP-530148 of polyhydroxy compounds, 1,2,2,3-tetra(p-hydroxyphenyl)propane, 1,3,3,5-tetra(p-hydroxyphenyl)pentane, etc.
  • naphthoquinone diazide sulfonic acid examples include 6-diazo 5,6-dihydro-5-oxo-1-naphthalene sulfonic acid, 1,2-naphthoquinone-(2)-diazo-5-sulfonic acid, and mixtures thereof. It may also be used as
  • the method for producing naphthoquinonediazide sulfonyl ester of a hydroxy compound is not particularly limited, but for example, naphthoquinonediazide sulfonic acid is converted into a sulfonyl chloride with chlorosulfonic acid or thionyl chloride, and the resulting naphthoquinonediazide sulfonyl chloride is condensed with a hydroxy compound. Obtained by reaction.
  • esterification is performed by reacting a predetermined amount of a hydroxy compound and naphthoquinonediazide sulfonyl chloride in a solvent such as dioxane, acetone, or tetrahydrofuran in the presence of a basic catalyst such as triethylamine, and the resulting product is washed with water. , can be obtained by drying.
  • a solvent such as dioxane, acetone, or tetrahydrofuran
  • a basic catalyst such as triethylamine
  • the esterification rate of the naphthoquinonediazide sulfonic acid ester is not particularly limited, but is preferably 10% or more, more preferably 20% or more. Further, the upper limit of the esterification rate is not particularly limited, and may be 100%. The esterification rate can be confirmed by 1 H-NMR or the like as the proportion of esterified groups among the hydroxy groups of the hydroxy compound.
  • the resin composition of the present invention may optionally contain various additives, such as surfactants, higher fatty acid derivatives, thermal polymerization initiators, inorganic particles, ultraviolet absorbers, etc., as long as the effects of the present invention can be obtained.
  • additives such as surfactants, higher fatty acid derivatives, thermal polymerization initiators, inorganic particles, ultraviolet absorbers, etc.
  • properties such as film physical properties can be adjusted.
  • inorganic particles include calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and glass.
  • the average particle diameter of the inorganic particles is preferably 0.01 to 2.0 ⁇ m, more preferably 0.02 to 1.5 ⁇ m, even more preferably 0.03 to 1.0 ⁇ m, and particularly preferably 0.04 to 0.5 ⁇ m. .
  • the above average particle diameter of the inorganic particles is a primary particle diameter and a volume average particle diameter.
  • the volume average particle diameter can be measured, for example, by a dynamic light scattering method using Nanotrac WAVE II EX-150 (manufactured by Nikkiso Co., Ltd.). If the above measurement is difficult, measurement can also be performed by centrifugal sedimentation light transmission method, X-ray transmission method, or laser diffraction/scattering method.
  • organic titanium compounds examples include those in which an organic group is bonded to a titanium atom via a covalent bond or an ionic bond. Specific examples of organic titanium compounds are shown in I) to VII) below:
  • I) Titanium chelate compound A titanium chelate compound having two or more alkoxy groups is more preferred because the resin composition has good storage stability and a good curing pattern can be obtained. Specific examples include titanium bis(triethanolamine) diisopropoxide, titanium di(n-butoxide) bis(2,4-pentanedionate), titanium diisopropoxide bis(2,4-pentanedionate).
  • Tetraalkoxytitanium compounds for example, titanium tetra(n-butoxide), titanium tetraethoxide, titanium tetra(2-ethylhexoxide), titanium tetraisobutoxide, titanium tetraisopropoxide, titanium tetramethoxide , titanium tetramethoxypropoxide, titanium tetramethyl phenoxide, titanium tetra(n-nonyloxide), titanium tetra(n-propoxide), titanium tetrastearyloxide, titanium tetrakis[bis ⁇ 2,2-(allyloxymethyl)] butoxide ⁇ ], etc.
  • Titanocene compounds for example, pentamethylcyclopentadienyl titanium trimethoxide, bis( ⁇ 5-2,4-cyclopentadien-1-yl)bis(2,6-difluorophenyl)titanium, bis( ⁇ 5-2, 4-cyclopentadien-1-yl)bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium and the like.
  • Monoalkoxytitanium compounds For example, titanium tris(dioctyl phosphate) isopropoxide, titanium tris(dodecylbenzenesulfonate) isopropoxide, and the like.
  • Titanium oxide compound For example, titanium oxide bis(pentanedionate), titanium oxide bis(tetramethylheptanedionate), phthalocyanine titanium oxide, etc.
  • the organic titanium compound is at least one compound selected from the group consisting of the above I) titanium chelate compounds, II) tetraalkoxytitanium compounds, and III) titanocene compounds. It is preferable that there be.
  • titanium diisopropoxide bis(ethylacetoacetate), titanium tetra(n-butoxide), and bis( ⁇ 5-2,4-cyclopentadien-1-yl)bis(2,6-difluoro-3-(1H -pyrrol-1-yl)phenyl)titanium is preferred.
  • an organic titanium compound When an organic titanium compound is included, its content is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the specific resin. When the content is 0.05 parts by mass or more, the resulting cured pattern has better heat resistance and chemical resistance, and when the content is 10 parts by mass or less, the storage stability of the composition is better.
  • These other additives include compounds described in paragraphs 0316 to 0358 of WO 2022/145355. The above description is incorporated herein.
  • the viscosity of the resin composition of the present invention can be adjusted by adjusting the solid content concentration of the resin composition.
  • it is preferably 1,000 mm 2 /s to 12,000 mm 2 /s, more preferably 2,000 mm 2 /s to 10,000 mm 2 /s, and 2,500 mm 2 /s to 8,000 mm. 2 /s is more preferable.
  • it becomes easy to obtain a coating film with high uniformity. If it is 1,000 mm 2 /s or more, it is easy to coat with the thickness required for example as an insulating film for rewiring, and if it is 12,000 mm 2 /s or less, the coating surface quality is excellent. A coating film is obtained.
  • the water content of the resin composition of the present invention is preferably less than 2.0% by mass, more preferably less than 1.5% by mass, and even more preferably less than 1.0% by mass. If it is less than 2.0%, the storage stability of the resin composition will improve.
  • Methods for maintaining the moisture content include adjusting the humidity during storage conditions and reducing the porosity of the storage container during storage.
  • the metal content of the resin composition of the present invention is preferably less than 5 mass ppm (parts per million), more preferably less than 1 mass ppm, and even more preferably less than 0.5 mass ppm, from the viewpoint of insulation.
  • metals include sodium, potassium, magnesium, calcium, iron, copper, chromium, and nickel, but metals included as complexes of organic compounds and metals are excluded. When a plurality of metals are included, the total of these metals is preferably within the above range.
  • a method for reducing metal impurities that is unintentionally included in the resin composition of the present invention is to select a raw material with a low metal content as a raw material constituting the resin composition of the present invention.
  • Methods include filtering the raw materials constituting the product, lining the inside of the apparatus with polytetrafluoroethylene, etc., and performing distillation under conditions that suppress contamination as much as possible.
  • the resin composition of the present invention has a halogen atom content of preferably less than 500 mass ppm, more preferably less than 300 mass ppm, and more preferably less than 200 mass ppm from the viewpoint of wiring corrosion. is even more preferable.
  • those present in the form of halogen ions are preferably less than 5 ppm by mass, more preferably less than 1 ppm by mass, and even more preferably less than 0.5 ppm by mass.
  • the halogen atom include a chlorine atom and a bromine atom. It is preferable that the total of chlorine atoms and bromine atoms, or the total of chlorine ions and bromine ions, is each within the above range.
  • Preferred methods for adjusting the content of halogen atoms include ion exchange treatment.
  • the storage container may be a multilayer bottle whose inner wall is made of 6 types of 6 layers of resin, or a container with 7 layers of 6 types of resin. It is also preferred to use structured bottles. Examples of such a container include the container described in JP-A No. 2015-123351.
  • a cured product of the resin composition By curing the resin composition of the present invention, a cured product of the resin composition can be obtained.
  • the cured product of the present invention is a cured product obtained by curing a resin composition.
  • the resin composition is preferably cured by heating, and the heating temperature is more preferably 120°C to 400°C, even more preferably 140°C to 380°C, and particularly preferably 170°C to 350°C.
  • the form of the cured product of the resin composition is not particularly limited, and can be selected depending on the purpose, such as film, rod, sphere, or pellet form. In the present invention, the cured product is preferably in the form of a film.
  • the thickness of the cured product is preferably 0.5 ⁇ m or more and 150 ⁇ m or less.
  • the shrinkage rate when the resin composition of the present invention is cured is preferably 50% or less, more preferably 45% or less, and even more preferably 40% or less.
  • the imidization reaction rate of the cured product of the resin composition of the present invention is preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more. If it is 70% or more, the cured product may have excellent mechanical properties.
  • the elongation at break of the cured product of the resin composition of the present invention is preferably 30% or more, more preferably 40% or more, and even more preferably 50% or more.
  • the glass transition temperature (Tg) of the cured product of the resin composition of the present invention is preferably 180°C or higher, more preferably 210°C or higher, and even more preferably 230°C or higher.
  • the resin composition of the present invention can be prepared by mixing the above components.
  • the mixing method is not particularly limited and can be performed by a conventionally known method. Examples of the mixing method include mixing using a stirring blade, mixing using a ball mill, and mixing using a rotating tank.
  • the temperature during mixing is preferably 10 to 30°C, more preferably 15 to 25°C.
  • the filter pore diameter is, for example, preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, even more preferably 0.5 ⁇ m or less, and even more preferably 0.1 ⁇ m or less.
  • the material of the filter is preferably polytetrafluoroethylene, polyethylene or nylon. When the material of the filter is polyethylene, it is more preferably HDPE (high density polyethylene).
  • the filter may be washed in advance with an organic solvent. In the filter filtration step, a plurality of types of filters may be connected in series or in parallel. When using multiple types of filters, filters with different pore sizes or materials may be used in combination.
  • connection mode examples include a mode in which an HDPE filter with a pore diameter of 1 ⁇ m is connected in series as the first stage and an HDPE filter with a pore diameter of 0.2 ⁇ m as the second stage. Additionally, various materials may be filtered multiple times. When filtration is performed multiple times, circulation filtration may be used. Alternatively, filtration may be performed under pressure.
  • the pressure to be applied is preferably, for example, 0.01 MPa or more and 1.0 MPa or less, more preferably 0.03 MPa or more and 0.9 MPa or less, still more preferably 0.05 MPa or more and 0.7 MPa or less, and 0.01 MPa or more and 0.9 MPa or less, still more preferably 0.05 MPa or more and 0.7 MPa or less, and 0.01 MPa or more and 0.9 MPa or less, for example. Even more preferably 0.05 MPa or more and 0.5 MPa or less.
  • impurity removal treatment using an adsorbent may be performed. Filter filtration and impurity removal treatment using an adsorbent may be combined.
  • a known adsorbent can be used. Examples include inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon. After filtration using a filter, the resin composition filled in the bottle may be placed under reduced pressure and degassed.
  • the method for producing a cured product of the present invention preferably includes a film forming step of applying the resin composition onto a base material to form a film.
  • the method for producing a cured product includes the above film forming step, an exposure step of selectively exposing the film formed in the film forming step, and developing the film exposed in the exposure step using a developer to form a pattern. It is more preferable to include a developing step.
  • the method for producing a cured product includes the film formation step, the exposure step, the development step, a heating step of heating the pattern obtained in the development step, and a post-development exposure step of exposing the pattern obtained in the development step. It is particularly preferable to include at least one of them.
  • the method for producing a cured product includes the above-mentioned film forming step and the step of heating the above-mentioned film. The details of each step will be explained below.
  • the resin composition of the present invention can be used in a film forming step in which a film is formed by applying it on a substrate.
  • the method for producing a cured product of the present invention preferably includes a film forming step of applying the resin composition onto a base material to form a film.
  • the type of base material can be appropriately determined depending on the purpose and is not particularly limited.
  • the base material include semiconductor manufacturing base materials such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon, quartz, glass, optical films, ceramic materials, vapor deposited films, magnetic films, reflective films, Ni, Cu,
  • a metal base material such as Cr or Fe (for example, a base material formed from a metal or a base material on which a metal layer is formed by, for example, plating or vapor deposition), paper, SOG (Spin On Examples include glass), TFT (thin film transistor) array substrates, mold substrates, and electrode plates for plasma display panels (PDP).
  • the base material is particularly preferably a semiconductor production base material, and more preferably a silicon base material, a Cu base material, and a mold base material. These base materials may be provided with a layer such as an adhesive layer or an oxidized layer made of hexamethyldisilazane (HMDS) or the like on the surface.
  • the shape of the base material is not particularly limited, and may be circular or rectangular. As for the size of the base material, if it is circular, the diameter is preferably 100 to 450 mm, more preferably 200 to 450 mm. If it is rectangular, the length of the short side is preferably 100 to 1000 mm, more preferably 200 to 700 mm.
  • a plate-shaped, preferably panel-shaped base material (substrate) is used as the base material.
  • the resin layer or metal layer serves as the base material.
  • Coating is preferred as a means for applying the resin composition onto the substrate.
  • the methods to be applied include dip coating method, air knife coating method, curtain coating method, wire bar coating method, gravure coating method, extrusion coating method, spray coating method, spin coating method, slit coating method, Examples include inkjet method. From the viewpoint of uniformity of film thickness, spin coating method, slit coating method, spray coating method, or inkjet method is preferable, and from the viewpoint of uniformity of film thickness and productivity, spin coating method and slit coating method are preferable. A coating method is more preferred. A film with a desired thickness can be obtained by adjusting the solid content concentration and application conditions of the resin composition depending on the means to be applied.
  • the coating method can be appropriately selected depending on the shape of the substrate, and for circular substrates such as wafers, spin coating, spray coating, inkjet methods, etc. are preferable, and for rectangular substrates, slit coating, spray coating, etc. method, inkjet method, etc. are preferred.
  • spin coating it can be applied, for example, at a rotation speed of 500 to 3,500 rpm for about 10 seconds to 3 minutes. It is also possible to apply a method in which a coating film that has been previously formed on a temporary support by the above-mentioned application method is transferred onto a base material.
  • the transfer method the production method described in paragraphs 0023, 0036 to 0051 of JP-A No.
  • 2006-023696 and paragraphs 0096 to 0108 of JP-A No. 2006-047592 can be suitably used. Further, a step of removing excess film may be performed at the end of the base material. Examples of such processes include edge bead rinsing (EBR), back rinsing, and the like.
  • EBR edge bead rinsing
  • a pre-wet process may be employed in which various solvents are applied to the base material before the resin composition is applied to the base material to improve the wettability of the base material, and then the resin composition is applied.
  • the film may be subjected to a step of drying the formed film (layer) (drying step) in order to remove the solvent.
  • the method for producing a cured product of the present invention may include a drying step of drying the film formed in the film forming step.
  • the drying step is preferably performed after the film forming step and before the exposure step.
  • the drying temperature of the membrane in the drying step is preferably 50 to 150°C, more preferably 70 to 130°C, even more preferably 90 to 110°C.
  • drying may be performed under reduced pressure.
  • the drying time is exemplified by 30 seconds to 20 minutes, preferably 1 minute to 10 minutes, and more preferably 2 minutes to 7 minutes.
  • the film may be subjected to an exposure process that selectively exposes the film.
  • the method for producing a cured product may include an exposure step of selectively exposing the film formed in the film forming step. Selectively exposing means exposing a portion of the film. Furthermore, by selectively exposing the film, an exposed area (exposed area) and an unexposed area (unexposed area) are formed in the film.
  • the exposure amount is not particularly limited as long as it can cure the resin composition of the present invention, but for example, it is preferably 50 to 10,000 mJ/cm 2 and more preferably 200 to 8,000 mJ/cm 2 in terms of exposure energy at a wavelength of 365 nm. preferable.
  • the exposure wavelength can be appropriately determined in the range of 190 to 1,000 nm, preferably 240 to 550 nm.
  • the exposure wavelength is: (1) semiconductor laser (wavelength: 830 nm, 532 nm, 488 nm, 405 nm, 375 nm, 355 nm, etc.), (2) metal halide lamp, (3) high pressure mercury lamp, G-line (wavelength) 436 nm), h line (wavelength 405 nm), i line (wavelength 365 nm), broad (three wavelengths of g, h, i line), (4) excimer laser, KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm) ), F2 excimer laser (wavelength 157 nm), (5) extreme ultraviolet light; EUV (wavelength 13.6 nm), (6) electron beam, (7) YAG laser second harmonic 532 nm, third harmonic 355 nm, etc.
  • semiconductor laser wavelength: 830 nm, 532 nm, 488 nm, 405 nm, 375 nm,
  • the resin composition of the present invention exposure using a high-pressure mercury lamp is particularly preferred, and from the viewpoint of exposure sensitivity, exposure using i-line is more preferred.
  • the method of exposure is not particularly limited, and may be any method as long as at least a portion of the film made of the resin composition of the present invention is exposed to light, and examples thereof include exposure using a photomask, exposure using a laser direct imaging method, etc. .
  • the film may be subjected to a heating step after exposure (post-exposure heating step). That is, the method for producing a cured product of the present invention may include a post-exposure heating step of heating the film exposed in the exposure step.
  • the post-exposure heating step can be performed after the exposure step and before the development step.
  • the heating temperature in the post-exposure heating step is preferably 50°C to 140°C, more preferably 60°C to 120°C.
  • the heating time in the post-exposure heating step is preferably 30 seconds to 300 minutes, more preferably 1 minute to 10 minutes.
  • the temperature increase rate in the post-exposure heating step is preferably 1 to 12°C/min, more preferably 2 to 10°C/min, and even more preferably 3 to 10°C/min from the temperature at the start of heating to the maximum heating temperature. Further, the temperature increase rate may be changed as appropriate during heating.
  • the heating means in the post-exposure heating step is not particularly limited, and a known hot plate, oven, infrared heater, etc. can be used. It is also preferable that the heating be performed in an atmosphere with a low oxygen concentration, such as by flowing an inert gas such as nitrogen, helium, or argon.
  • the film after exposure may be subjected to a development step of developing a pattern using a developer.
  • the method for producing a cured product of the present invention may include a development step of developing the film exposed in the exposure step using a developer to form a pattern. By performing development, one of the exposed and non-exposed areas of the film is removed and a pattern is formed.
  • development in which the non-exposed areas of the film are removed in the developing step is referred to as negative development
  • development in which the exposed areas of the film are removed in the development process is referred to as positive development.
  • Examples of the developer used in the development step include an alkaline aqueous solution or a developer containing an organic solvent.
  • basic compounds that the alkaline aqueous solution may contain include inorganic alkalis, primary amines, secondary amines, tertiary amines, and quaternary ammonium salts.
  • TMAH tetramethylammonium hydroxide
  • potassium hydroxide sodium carbonate, sodium hydroxide, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-butylamine, triethylamine, methyldiethylamine , dimethylethanolamine, triethanolamine, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide, tetrahexylammonium hydroxide, tetraoctylammonium hydroxide, ethyltrimethylammonium hydroxide, Butyltrimethylammonium hydroxide, methyltriamylammonium hydroxide, dibutyldipentylammonium hydroxide, dimethylbis(2-hydroxyethyl)ammoni
  • the compound described in paragraph 0387 of International Publication No. 2021/112189 can be used as the organic solvent.
  • alcohols include methanol, ethanol, propanol, isopropanol, butanol, pentanol, octanol, diethylene glycol, propylene glycol, methylisobutylcarbinol, triethylene glycol, etc.
  • Amides include N-methylpyrrolidone, N-ethylpyrrolidone, Dimethylformamide and the like are also suitable.
  • the developer contains an organic solvent
  • one type of organic solvent or a mixture of two or more types can be used.
  • a developer containing at least one member selected from the group consisting of cyclopentanone, ⁇ -butyrolactone, dimethyl sulfoxide, N-methyl-2-pyrrolidone, and cyclohexanone is particularly preferred.
  • a developer containing at least one selected from the group consisting of and dimethyl sulfoxide is more preferred, and a developer containing cyclopentanone is particularly preferred.
  • the content of the organic solvent relative to the total mass of the developer is preferably 50% by mass or more, more preferably 70% by mass or more, and 80% by mass or more. is more preferable, and particularly preferably 90% by mass or more. Moreover, the said content may be 100 mass %.
  • the developer may further contain at least one of a basic compound and a base generator.
  • the developer may further contain at least one of the basic compound and the base generator in the developer permeates into the pattern, performance such as elongation at break of the pattern may be improved.
  • an organic base is preferable from the viewpoint of reliability when remaining in the cured film (adhesion to the substrate when the cured product is further heated).
  • a basic compound having an amino group is preferable, and primary amines, secondary amines, tertiary amines, ammonium salts, tertiary amides, etc.
  • a primary amine, a secondary amine, a tertiary amine or an ammonium salt is preferred, a secondary amine, a tertiary amine or an ammonium salt is more preferred, a secondary amine or a tertiary amine is even more preferred, and a tertiary amine is particularly preferred.
  • the basic compound is preferably one that does not easily remain in the cured film (obtained cured product), and from the viewpoint of promoting cyclization, it can be used by vaporization etc. It is preferable that the amount remaining is not likely to decrease before heating.
  • the boiling point of the basic compound is preferably 30°C to 350°C, more preferably 80°C to 270°C, and even more preferably 100°C to 230°C at normal pressure (101,325 Pa).
  • the boiling point of the basic compound is preferably higher than the boiling point of the organic solvent contained in the developer minus 20°C, and more preferably higher than the boiling point of the organic solvent contained in the developer.
  • the basic compound used preferably has a boiling point of 80°C or higher, more preferably 100°C or higher.
  • the developer may contain only one type of basic compound, or may contain two or more types of basic compounds.
  • basic compounds include ethanolamine, diethanolamine, triethanolamine, ethylamine, diethylamine, triethylamine, hexylamine, dodecylamine, cyclohexylamine, cyclohexylmethylamine, cyclohexyldimethylamine, aniline, N-methylaniline, N, N-dimethylaniline, diphenylamine, pyridine, butylamine, isobutylamine, dibutylamine, tributylamine, dicyclohexylamine, DBU (diazabicycloundecene), DABCO (1,4-diazabicyclo[2.2.2]octane), N , N-diisopropylethylamine, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, ethylenediamine, butanediamine, 1,5-diaminopentane, N-methylhexy
  • the preferred embodiments of the base generator are the same as the preferred embodiments of the base generator contained in the above-mentioned composition.
  • the base generator is preferably a thermal base generator.
  • the content of the basic compound or base generator is preferably 10% by mass or less, and 5% by mass or less based on the total mass of the developer. More preferred.
  • the lower limit of the above content is not particularly limited, but is preferably 0.1% by mass or more, for example. If the basic compound or base generator is solid in the environment in which the developer is used, the content of the basic compound or base generator should be 70 to 100% by mass based on the total solid content of the developer. is also preferable.
  • the developer may contain only one type of at least one of a basic compound and a base generator, or may contain two or more types. When at least one of the basic compound and the base generator is two or more types, it is preferable that the total is within the above range.
  • the developer may further contain other components.
  • other components include known surfactants and known antifoaming agents.
  • the method of supplying the developer is not particularly limited as long as the desired pattern can be formed, and methods include immersing the base material on which the film is formed in the developer, and supplying the developer to the film formed on the base material using a nozzle.
  • a method of supplying with a spray nozzle is more preferable.
  • the base material is spun to remove the developer from the base material, and after spin drying, the developer is continuously supplied again using the straight nozzle, the base material is spun, and the developer is applied to the base material.
  • a process of removing from above may be adopted, or this process may be repeated multiple times.
  • Methods for supplying the developer in the development process include a process in which the developer is continuously supplied to the base material, a process in which the developer is kept in a substantially stationary state on the base material, and a process in which the developer is applied to the base material using ultrasonic waves. Examples include a step of vibrating with the like, and a step of combining these.
  • the development time is preferably 10 seconds to 10 minutes, more preferably 20 seconds to 5 minutes.
  • the temperature of the developer during development is not particularly limited, but is preferably 10 to 45°C, more preferably 18 to 30°C.
  • the pattern may be further cleaned (rinsed) with a rinse solution.
  • a method such as supplying a rinsing liquid before the developer in contact with the pattern is completely dried may be adopted.
  • the developing solution is an alkaline aqueous solution
  • water can be used as the rinsing solution, for example.
  • the developer is a developer containing an organic solvent, for example, a solvent different from the solvent contained in the developer (e.g., water, an organic solvent different from the organic solvent contained in the developer) is used as the rinse agent. be able to.
  • Examples of the organic solvent when the rinsing liquid contains an organic solvent include the same organic solvents as those exemplified in the case where the above-mentioned developer contains an organic solvent.
  • the organic solvent contained in the rinsing liquid is preferably an organic solvent different from the organic solvent contained in the developer, and more preferably an organic solvent in which the pattern has a lower solubility than the organic solvent contained in the developer.
  • the rinsing liquid contains an organic solvent
  • the organic solvent is preferably cyclopentanone, ⁇ -butyrolactone, dimethyl sulfoxide, N-methylpyrrolidone, cyclohexanone, PGMEA, or PGME, more preferably cyclopentanone, ⁇ -butyrolactone, dimethyl sulfoxide, PGMEA, or PGME, and cyclohexanone or PGMEA. More preferred.
  • the organic solvent is preferably 50% by mass or more, more preferably 70% by mass or more, and even more preferably 90% by mass or more, based on the total mass of the rinsing liquid. Moreover, the organic solvent may be 100% by mass with respect to the total mass of the rinsing liquid.
  • the rinsing liquid may contain at least one of a basic compound and a base generator.
  • a basic compound and a base generator when the developer contains an organic solvent, one preferred embodiment of the present invention is an embodiment in which the rinsing solution contains the organic solvent and at least one of a basic compound and a base generator.
  • the basic compound and base generator contained in the rinsing solution include the compounds exemplified as the basic compound and base generator that may be included when the above-mentioned developer contains an organic solvent, and preferred embodiments are also included. The same is true.
  • the basic compound and base generator contained in the rinsing liquid may be selected in consideration of their solubility in the solvent in the rinsing liquid.
  • the content of the basic compound or base generator is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the rinsing liquid. preferable.
  • the lower limit of the above content is not particularly limited, but is preferably 0.1% by mass or more, for example. If the basic compound or base generator is solid in the environment where the rinse solution is used, the content of the basic compound or base generator should be 70 to 100% by mass based on the total solid content of the rinse solution. is also preferable.
  • the rinsing liquid may contain only one type of at least one of the basic compound and the base generator, or may contain two or more types of the basic compound and the base generator. .
  • the total is within the above range.
  • the rinse solution may further contain other components.
  • other components include known surfactants and known antifoaming agents.
  • a method of supplying the rinsing liquid using a spray nozzle is more preferable.
  • a method of supplying the rinsing liquid using a spray nozzle is more preferable.
  • the type of nozzle and examples include straight nozzles, shower nozzles, spray nozzles, and the like.
  • the rinsing step is preferably a step in which the rinsing liquid is supplied to the exposed film through a straight nozzle or continuously, and more preferably a step in which the rinsing liquid is supplied through a spray nozzle.
  • Methods for supplying the rinsing liquid in the rinsing process include a process in which the rinsing liquid is continuously supplied to the substrate, a process in which the rinsing liquid is kept almost stationary on the substrate, and a process in which the rinsing liquid is applied to the substrate by ultrasonic waves. It is possible to adopt a process of vibrating the wafer, etc., and a process of combining these.
  • the rinsing time is preferably 10 seconds to 10 minutes, more preferably 20 seconds to 5 minutes.
  • the temperature of the rinsing liquid during rinsing is not particularly limited, but is preferably 10 to 45°C, more preferably 18 to 30°C.
  • the developing step may include a step of bringing the processing solution into contact with the pattern after processing using the developer or after cleaning the pattern with a rinse solution.
  • a method may be adopted in which the processing liquid is supplied before the developing liquid or the rinsing liquid in contact with the pattern is completely dried.
  • the treatment liquid examples include a treatment liquid containing at least one of water and an organic solvent, and at least one of a basic compound and a base generator.
  • Preferred embodiments of the organic solvent, and at least one of the basic compound and base generator are the same as the preferred embodiments of the organic solvent, and at least one of the basic compound and base generator used in the above-mentioned rinsing liquid.
  • the method for supplying the treatment liquid to the pattern can be the same as the method for supplying the rinsing liquid described above, and the preferred embodiments are also the same.
  • the content of the basic compound or base generator in the treatment liquid is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the treatment liquid.
  • the lower limit of the content is not particularly limited, but is preferably 0.1% by mass or more, for example.
  • the content of the basic compound or base generator is 70 to 100% by mass based on the total solid content of the treatment liquid. It's also good to have one.
  • the processing liquid contains at least one of a basic compound and a base generator
  • the processing liquid may contain only one type of at least one of the basic compound and the base generator, or may contain two or more types of the basic compound and the base generator. .
  • at least one of the basic compound and the base generator is two or more types, it is preferable that the total is within the above range.
  • the pattern obtained by the development step may be subjected to a heating step of heating the pattern obtained by the development. That is, the method for producing a cured product of the present invention may include a heating step of heating the pattern obtained in the developing step. Further, the method for producing a cured product of the present invention may include a heating step of heating a pattern obtained by another method without performing a developing step, or a film obtained by a film forming step. In the heating step, a resin such as a polyimide precursor is cyclized to become a resin such as polyimide.
  • the heating temperature (maximum heating temperature) in the heating step is preferably 50 to 450°C, more preferably 150 to 350°C, even more preferably 150 to 250°C, even more preferably 160 to 250°C, particularly 160 to 230°C. preferable.
  • the heating step is preferably a step of promoting the cyclization reaction of the polyimide precursor within the pattern by heating and the action of a base generated from the base generator.
  • Heating in the heating step is preferably carried out at a temperature increase rate of 1 to 12° C./min from the temperature at the start of heating to the maximum heating temperature.
  • the temperature increase rate is more preferably 2 to 10°C/min, and even more preferably 3 to 10°C/min.
  • the temperature at the start of heating is preferably 20°C to 150°C, more preferably 20°C to 130°C, even more preferably 25°C to 120°C.
  • the temperature at the start of heating refers to the temperature at which the process of heating to the maximum heating temperature is started.
  • the temperature of the film (layer) after drying is, for example, 30°C higher than the boiling point of the solvent contained in the resin composition. It is preferable to raise the temperature from a lower temperature by ⁇ 200°C.
  • the heating time (heating time at the highest heating temperature) is preferably 5 to 360 minutes, more preferably 10 to 300 minutes, and even more preferably 15 to 240 minutes.
  • the heating temperature is preferably 30°C or higher, more preferably 80°C or higher, even more preferably 100°C or higher, and particularly preferably 120°C or higher.
  • the upper limit of the heating temperature is preferably 350°C or lower, more preferably 250°C or lower, and even more preferably 240°C or lower.
  • Heating may be performed in stages. As an example, the temperature is raised from 25°C to 120°C at a rate of 3°C/min, held at 120°C for 60 minutes, and the temperature is raised from 120°C to 180°C at a rate of 2°C/min, and held at 180°C for 120 minutes. , etc. may be performed. It is also preferable to perform the treatment while irradiating ultraviolet rays as described in US Pat. No. 9,159,547. Such pretreatment steps can improve the properties of the film. The pretreatment step is preferably carried out for a short time of about 10 seconds to 2 hours, more preferably 15 seconds to 30 minutes.
  • the pretreatment step may be performed in two or more steps, for example, the first pretreatment step is performed at a temperature of 100 to 150°C, and then the second pretreatment step is performed at a temperature of 150 to 200°C. Good too. Furthermore, cooling may be performed after heating, and the cooling rate in this case is preferably 1 to 5° C./min.
  • the heating step is preferably performed in an atmosphere with a low oxygen concentration, such as by flowing an inert gas such as nitrogen, helium, or argon, or under reduced pressure, from the viewpoint of preventing decomposition of the specific resin.
  • the oxygen concentration is preferably 50 ppm (volume ratio) or less, more preferably 20 ppm (volume ratio) or less.
  • the heating means in the heating step is not particularly limited, but includes, for example, a hot plate, an infrared oven, an electric oven, a hot air oven, an infrared oven, and the like.
  • the pattern obtained in the development process (in the case of performing a rinsing process, the pattern after rinsing) is subjected to a post-development exposure process in which the pattern after the development process is exposed to light, instead of or in addition to the above heating process.
  • the method for producing a cured product of the present invention may include a post-development exposure step of exposing the pattern obtained in the development step.
  • the method for producing a cured product of the present invention may include a heating step and a post-development exposure step, or may include only one of the heating step and the post-development exposure step.
  • the post-development exposure step for example, the reaction of cyclization of the polyimide precursor etc.
  • the post-development exposure step can be promoted by exposure to the photobase generator.
  • the post-development exposure step at least a portion of the pattern obtained in the development step may be exposed, but it is preferable that the entire pattern be exposed.
  • the exposure amount in the post-development exposure step is preferably 50 to 20,000 mJ/cm 2 , more preferably 100 to 15,000 mJ/cm 2 in terms of exposure energy at the wavelength to which the photosensitive compound is sensitive.
  • the post-development exposure step can be performed, for example, using the light source used in the above-mentioned exposure step, and it is preferable to use broadband light.
  • the pattern obtained by the development process may be subjected to a metal layer forming process of forming a metal layer on the pattern. That is, the method for producing a cured product of the present invention includes a metal layer forming step of forming a metal layer on the pattern obtained in the development step (preferably one that has been subjected to at least one of a heating step and a post-development exposure step). It is preferable to include.
  • metal layer existing metal species can be used without particular limitation, and examples include copper, aluminum, nickel, vanadium, titanium, chromium, cobalt, gold, tungsten, tin, silver, and alloys containing these metals. copper and aluminum are more preferred, and copper is even more preferred.
  • the method for forming the metal layer is not particularly limited, and any existing method can be applied.
  • the methods described in JP 2007-157879, JP 2001-521288, JP 2004-214501, JP 2004-101850, US Patent No. 7888181B2, and US Patent No. 9177926B2 are used. can do.
  • photolithography, PVD (physical vapor deposition), CVD (chemical vapor deposition), lift-off, electrolytic plating, electroless plating, etching, printing, and a combination thereof can be used.
  • a patterning method that combines sputtering, photolithography, and etching, and a patterning method that combines photolithography and electrolytic plating can be mentioned.
  • a preferred embodiment of plating includes electrolytic plating using copper sulfate or copper cyanide plating solution.
  • the thickness of the metal layer is preferably 0.01 to 50 ⁇ m, more preferably 1 to 10 ⁇ m at the thickest part.
  • Fields to which the method for producing a cured product of the present invention or the cured product can be applied include insulating films for electronic devices, interlayer insulating films for rewiring layers, stress buffer films, and the like. Other methods include forming a pattern by etching a sealing film, a substrate material (a base film or coverlay of a flexible printed circuit board, an interlayer insulating film), or an insulating film for mounting purposes as described above.
  • a substrate material a base film or coverlay of a flexible printed circuit board, an interlayer insulating film
  • an insulating film for mounting purposes as described above.
  • the method for producing a cured product of the present invention or the cured product of the present invention can be used for producing plates such as offset plates or screen plates, for etching molded parts, and for use in protective lacquers and dielectric layers in electronics, particularly microelectronics. It can also be used for manufacturing.
  • the laminate of the present invention refers to a structure having a plurality of layers made of the cured product of the present invention.
  • the laminate is a laminate including two or more layers made of cured material, and may be a laminate in which three or more layers are laminated. At least one of the two or more layers made of the cured product contained in the laminate is a layer made of the cured product of the present invention, and shrinkage of the cured product or deformation of the cured product due to the shrinkage, etc. From the viewpoint of suppression, it is also preferable that all the layers made of the cured product contained in the above-mentioned laminate are layers made of the cured product of the present invention.
  • the method for producing a laminate of the present invention preferably includes the method for producing a cured product of the present invention, and more preferably includes repeating the method for producing a cured product of the present invention multiple times.
  • the laminate of the present invention preferably includes two or more layers made of a cured product and includes a metal layer between any of the layers made of the cured product.
  • the metal layer is preferably formed by the metal layer forming step. That is, the method for producing a laminate of the present invention preferably further includes a metal layer forming step of forming a metal layer on the layer made of the cured product during the method for producing the cured product which is performed multiple times. A preferred embodiment of the metal layer forming step is as described above.
  • the resin composition of the present invention used to form the layer made of the first cured product and the resin composition of the present invention used to form the layer made of the second cured product have the same composition. It may be a product or a composition having a different composition.
  • the metal layer in the laminate of the present invention is preferably used as metal wiring such as a rewiring layer.
  • the method for manufacturing a laminate of the present invention includes a lamination step.
  • the lamination process refers to (a) film formation process (layer formation process), (b) exposure process, (c) development process, (d) heating process and development on the surface of the pattern (resin layer) or metal layer again. This is a series of steps including performing at least one of the post-exposure steps in this order.
  • an embodiment may be adopted in which at least one of (a) the film forming step and (d) the heating step and the post-development exposure step are repeated.
  • a metal layer forming step may be included after at least one of the (d) heating step and the post-development exposure step.
  • the lamination step may further include the above-mentioned drying step and the like as appropriate.
  • a surface activation treatment step may be performed after the exposure step, the heating step, or the metal layer forming step.
  • Plasma treatment is exemplified as the surface activation treatment. Details of the surface activation treatment will be described later.
  • the above lamination step is preferably performed 2 to 20 times, more preferably 2 to 9 times.
  • the above layers may have the same composition, shape, thickness, etc., or may have different compositions, shapes, thicknesses, etc.
  • a cured product (resin layer) of the resin composition of the present invention is further formed to cover the metal layer.
  • the following steps are repeated in the following order: (a) film formation step, (b) exposure step, (c) development step, (d) at least one of the heating step and post-development exposure step, and (e) metal layer formation step.
  • an embodiment may be mentioned in which (a) a film forming step, (d) at least one of a heating step and a post-development exposure step, and (e) a metal layer forming step are repeated in this order.
  • the method for producing a laminate of the present invention preferably includes a surface activation treatment step of surface activation treatment of at least a portion of the metal layer and the resin composition layer.
  • the surface activation treatment step is usually performed after the metal layer forming step, but after the development step (preferably after at least one of the heating step and the post-development exposure step), the resin composition layer is subjected to the surface activation treatment. After performing this step, the metal layer forming step may be performed.
  • the surface activation treatment may be performed on at least a portion of the metal layer, or may be performed on at least a portion of the resin composition layer after exposure, or the surface activation treatment may be performed on at least a portion of the metal layer and the resin composition layer after exposure.
  • the surface activation treatment is preferably performed on at least a part of the metal layer, and it is preferable that the surface activation treatment is performed on a part or all of the region of the metal layer on which the resin composition layer is to be formed.
  • the surface activation treatment is also performed on part or all of the resin composition layer (resin layer) after exposure.
  • the resin composition layer when the resin composition layer is hardened, such as when performing negative development, it is less likely to be damaged by surface treatment and adhesion is likely to be improved.
  • the surface activation treatment can be performed, for example, by the method described in paragraph 0415 of International Publication No. 2021/112189. This content is incorporated herein.
  • the present invention also discloses a semiconductor device containing the cured product or laminate of the present invention.
  • the present invention also discloses a method for manufacturing a semiconductor device, including a method for manufacturing a cured product of the present invention or a method for manufacturing a laminate.
  • a semiconductor device using the resin composition of the present invention for forming an interlayer insulating film for a rewiring layer the descriptions in paragraphs 0213 to 0218 of JP 2016-027357A and the description in FIG. 1 can be referred to, Their contents are incorporated herein.
  • a diester of phenoxy)bis(phthalic anhydride) and glycerol dimethacrylate was produced. Then, after cooling the mixture to -10°C, 9.53 g (79.2 lmol) of thionyl chloride was added dropwise over 90 minutes and stirred for 2 hours to obtain a white precipitate of pyridinium hydrochloride. Next, 13.47 g (32.8 mmol) of 4,4'-isopropylidenebis[(4-aminophenoxy)benzene] was dissolved in 100 mL of NMP (N-methyl-2-pyrrolidone) for 2 hours. It dripped. Then 10.0 g (217 mmol) of ethanol was added and the mixture was stirred for 2 hours.
  • NMP N-methyl-2-pyrrolidone
  • the polyimide precursor resin was then precipitated in 4 liters of water and the water-polyimide precursor resin mixture was stirred at a speed of 500 rpm for 15 minutes.
  • the polyimide precursor resin was obtained by filtration, stirred again in 4 liters of water for 30 minutes, filtered again, and dried at 40° C. for 2 days. Subsequently, the resin dried above was dissolved in 200 g of tetrahydrofuran, 50 g of ion exchange resin (MB-1: manufactured by Organo) was added, and the mixture was stirred for 6 hours.
  • the polyimide precursor resin was then precipitated in 4 liters of water and the water-polyimide precursor resin mixture was stirred at a speed of 500 rpm for 15 minutes.
  • a polyimide precursor resin was obtained by filtration and dried at 45° C. for 2 days under reduced pressure to obtain a polyimide precursor (SP-1).
  • the weight average molecular weight of the obtained polyimide precursor (SP-1) was 28,500, and the number average molecular weight was 10,400. Note that the proportion of polymerizable groups was 2.96 mmol/g, and the content of amide bonds was 1.46 mmol/g.
  • the polyimide precursor (SP-1) is a resin having a repeating unit represented by the following formula (SP-1). The structure of the repeating unit was determined from the 1 H-NMR spectrum.
  • Synthesis examples SP-2 to SP-15 Synthesis of polyimide precursors (SP-2) to (SP-15)]
  • Polyimide precursors (SP-2) to (SP-148) were synthesized in the same manner as polyimide precursor (SP-1), except that the carboxylic dianhydride, alcohol, and diamine used were changed as appropriate.
  • a polyimide precursor (SP-15) was synthesized in the same manner as the comparative polyimide precursor (A-1) described below, except that the carboxylic dianhydride, alcohol, and diamine used were changed as appropriate.
  • the polyimide precursors (SP-2) to (SP-15) are resins having repeating units represented by the following formulas (SP-2) to (SP-15), respectively.
  • each repeating unit was determined from the 1 H-NMR spectrum.
  • the ratios represent the molar ratios contained in each structure. Further, the weight average molecular weight and number average molecular weight of these resins are listed in the table below.
  • acetic acid manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • 2,2,6,6-tetramethylpiperidine 1-oxyl free radical manufactured by Tokyo Chemical Industry Co., Ltd. 0.03 g was weighed out, 200 mL of isopropyl alcohol (IPA) and 30 mL of pure water were added, and the mixture was stirred.
  • IPA isopropyl alcohol
  • 16.2 g of dinitro compound (A-1) was added little by little over 1 hour, and the mixture was stirred for 30 minutes.
  • the external temperature was raised to 85°C, stirred for 2 hours, cooled to 25°C or lower, and then filtered using Celite (registered trademark).
  • the filtrate was concentrated using a rotary evaporator and dissolved in 800 mL of ethyl acetate. This was transferred to a separating funnel and washed twice with 300 mL of saturated sodium bicarbonate solution, followed by 300 mL of water and 300 mL of saturated saline solution. After separation and washing, the mixture was dried over 30 g of magnesium sulfate, concentrated using an evaporator, and dried under vacuum to obtain 11.0 g of diamine (AA-1). It was confirmed from the 1 H-NMR spectrum that it was diamine (AA-1).
  • polyimide resin (PI-1)
  • the weight average molecular weight of PI-1 was 23,200, and the number average molecular weight was 12,800.
  • Polyimide (PI-1) is a resin having a repeating unit represented by the following formula (PI-1). The structure of the repeating unit was determined from the 1 H-NMR spectrum.
  • polyimide PI-2 A polyimide precursor (PI-2) was synthesized in the same manner as polyimide (PI-1), except that the carboxylic dianhydride, alcohol, and diamine used were changed as appropriate.
  • Polyimide (PI-2) is a resin having two repeating units represented by the following formula (PI-2). The structure of each repeating unit was determined from the 1 H-NMR spectrum. The subscripts in parentheses represent the molar ratio of each repeating unit. Further, the weight average molecular weight of the polyimide (PI-2) was 20,100, and the number average molecular weight was 8,900.
  • PB-1 polybenzoxazole
  • the weight average molecular weight of PB-1 was 20,400.
  • Polybenzoxazole (PB-1) is a resin having a repeating unit represented by the following formula (PB-1). The structure of the repeating unit was determined from the 1 H-NMR spectrum.
  • the resulting reaction solution was added to 3 liters of ethyl alcohol to produce a precipitate consisting of a crude polymer.
  • the produced crude polymer was collected by filtration and dissolved in 1.5 liters of tetrahydrofuran to obtain a crude polymer solution.
  • the obtained crude polymer solution was dropped into 28 liters of water to precipitate the polymer, and the obtained precipitate was collected by filtration and vacuum-dried to obtain a powdered comparative polyimide precursor (A-1). Obtained.
  • the weight average molecular weight (Mw) of this comparative polyimide precursor (A-1) was measured and found to be 22,600.
  • the comparative polyimide precursor (A-1) is a resin having a repeating unit represented by the following formula (A-1). The structure of the repeating unit was determined from the 1 H-NMR spectrum. The molar ratio of each repeating unit is 1:1.
  • a comparative polyimide precursor (A-2) was synthesized in the same manner as the comparative polyimide precursor (A-1), except that the carboxylic dianhydride and diamine were changed. The weight average molecular weight (Mw) of the comparative polyimide precursor (A-2) was measured and found to be 30,400. Note that the proportion of polymerizable groups was 1.90 mmol/g, and the content of amide bonds was 1.90 mmol/g.
  • Examples and comparative examples> In each Example, the components listed in the table below were mixed to obtain each resin composition. In each comparative example, the components listed in the table below were mixed to obtain comparative compositions. Specifically, the content of each component listed in the table was the amount (parts by mass) listed in the "addition amount” column in each column of the table. The obtained resin composition and comparative composition were filtered under pressure using a polytetrafluoroethylene filter with a pore width of 0.5 ⁇ m. Furthermore, in the table, the description "-" indicates that the composition does not contain the corresponding component.
  • ⁇ resin ⁇ - SP-1 to SP-15 Polyimide precursors (SP-1) to (SP-15) synthesized above.
  • ⁇ A-1 to A-2 Comparative polyimide precursors (A-1) to (A-2) synthesized above ⁇ PI-1 to PI-2: Polyimide (PI-1) to polyimide (PI-2) synthesized above ⁇ PB-1: Polybenzoxazole (PB-1) synthesized above ⁇ PE-1: NORYL (registered trademark) SA9000 (manufactured by Sabic)
  • DMSO/GBL dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • ⁇ I-1 N-phenyldiethanolamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • ⁇ I-2 2,2',3,3'-tetrahydro-3,3,3',3'-tetramethyl-1,1'-spirobi(1H-indene)-5,5',6,6 Ester of ',7,7'hexanol and 1,2-naphthoquinone-(2)-diazo-5-sulfonic acid
  • I-3 Synthetic product below
  • ⁇ Other additives Synthesis of diazonaphthoquinone compound I-3> 29.72 g (70 mmol) of 4,4'-(1-(2-(4hydroxyphenyl)-2-propyl)phenyl)ethylidene)bisphenol (manufactured by Honshu Chemical Industry Co., Ltd.: Tris-PA)) was placed in a flask. was added.
  • a resin composition layer was formed by applying a resin composition or a comparative composition onto a silicon wafer by a spin coating method.
  • the silicon wafer to which the obtained resin composition layer was applied was dried on a hot plate at 100° C. for 5 minutes to obtain a resin composition layer with a uniform thickness of about 15 ⁇ m on the silicon wafer.
  • the entire surface of the obtained resin composition layer was exposed to i-line using a stepper (Nikon NSR 2005 i9C) at an exposure energy of 500 mJ/cm 2 .
  • the peeled cured film was punched out using a punching machine to produce a test piece with a sample width of 3 mm and a sample length of 30 mm.
  • the obtained test piece was tested using a tensile tester (Tensilon) at a crosshead speed of 300 mm/min in an environment of 25°C and 65% RH (relative humidity) in accordance with JIS-K6251.
  • the elongation at break in the longitudinal direction was measured.
  • the evaluation was performed five times each, and the arithmetic mean value of the elongation rate when the test piece broke (elongation rate at break) was used as an index value.
  • the above index values were evaluated according to the following evaluation criteria, and the evaluation results are listed in the "Elongation at Break” column of the table. It can be said that the larger the index value is, the better the film strength (elongation at break) of the resulting cured film is.
  • evaluation criteria A: The above index value was 70% or more.
  • D The above index value was less than 50%.
  • a resin composition layer was formed by applying a resin composition or a comparative composition onto a silicon wafer by a spin coating method.
  • the silicon wafer to which the obtained resin composition layer was applied was dried on a hot plate at 100° C. for 5 minutes to obtain a curable resin composition layer with a uniform thickness of about 15 ⁇ m on the silicon wafer.
  • the entire surface of the obtained curable resin composition layer was exposed to i-line using a stepper (Nikon NSR 2005 i9C). The exposure amount was 400 mJ/cm 2 .
  • the curable resin composition layer (resin layer) after the above exposure is developed using the developer listed in the "Development conditions (developer)" column of the table, and the developer listed in the "Rinse solution” column of the table. Washed using the rinsing solution. Subsequently, the temperature was raised at a rate of 10°C/min in a nitrogen atmosphere, and after reaching the temperature listed in the "Temperature” column of “Curing conditions” in the table, heating was carried out for 3 hours in the table, and 25 Cooled to °C. Heating was carried out under nitrogen using a CLH-21 manufactured by Koyo.
  • the film was immersed in the mixed solution at 75°C for 15 minutes, and the film thickness before and after immersion was compared to calculate the remaining film ratio (film thickness after immersion/film thickness before immersion).
  • Residual film rate without input into high temperature and high humidity tank / Remaining film rate with input x 100 (%, ratio of residual film rate) is less than 20%, A is 20-40%, B is 40%. Those exceeding 60% were rated C, and those exceeding 60% were rated D.
  • the evaluation results are listed in the "Moisture resistance" column of the table. It can be said that the smaller the ratio of the above-mentioned residual film ratio is, the more excellent the resulting cured film is in moisture resistance.
  • Each curable resin composition or comparative composition prepared in each Example and Comparative Example was applied onto a silicon wafer by a spin coating method to form a curable resin composition layer.
  • the silicon wafer to which the obtained curable resin composition layer was applied was dried on a hot plate at 100° C. for 5 minutes to form a curable resin composition layer with a uniform thickness of 15 ⁇ m on the silicon wafer.
  • the entire surface of the curable resin composition layer on the silicon wafer was exposed using a stepper (Nikon NSR 2005 i9C) with an exposure energy of 500 mJ/ cm2 , and the exposed curable resin composition layer (resin layer) was It was developed using the developer described in the column “Development conditions (developer)" in Table 1, and washed using the rinse solution described in the column “Rinse solution” in the table. Subsequently, the temperature was raised in a nitrogen atmosphere at a temperature increase rate of 10° C./min, and heated for 180 minutes at the temperature listed in the "curing conditions” column of Table 2 to form a cured layer of the curable resin composition layer. (resin layer) was obtained.
  • the obtained resin layer was immersed in the following chemical solution under the following conditions, and the dissolution rate was calculated.
  • Chemical solution 90:10 (mass ratio) mixture of dimethyl sulfoxide (DMSO) and 25% by mass aqueous solution of tetramethylammonium hydroxide (TMAH)
  • Evaluation conditions Immerse the resin layer in the chemical solution at 75°C for 15 minutes before and after immersion
  • the film thicknesses were compared and the dissolution rate (nm/min) was calculated. Evaluation was performed according to the following evaluation criteria, and the evaluation results are listed in the "Chemical Resistance" column of the table. It can be said that the lower the dissolution rate, the better the chemical resistance.
  • -Evaluation criteria- A The dissolution rate was less than 200 nm/min.
  • the dissolution rate was 200 nm/min or more and less than 300 nm/min.
  • C The dissolution rate was 300 nm/min or more and less than 400 nm/min.
  • D The dissolution rate was 400 nm/min or more.
  • Each resin composition or comparative composition prepared in each Example and Comparative Example was applied onto a 12-inch silicon wafer by spin coating to form a resin composition layer.
  • the silicon wafer to which the obtained resin composition layer was applied was dried on a hot plate at 100° C. for 5 minutes to form a resin composition layer with a uniform thickness of 15 ⁇ m on the silicon wafer.
  • the entire surface of the resin composition layer on the silicon wafer was exposed using a stepper (Nikon NSR 2005 i9C) with an exposure energy of 500 mJ/cm 2 , and the exposed resin composition layer (resin layer) was exposed under a nitrogen atmosphere.
  • the temperature was raised at a temperature increase rate of 10° C./min and heated for 180 minutes at the temperature listed in the "Temperature” column of “Curing conditions” in the table to obtain a cured layer (resin layer) of the resin composition layer. .
  • the cured layer (resin film) after curing was immersed in a 4.9% by mass hydrofluoric acid aqueous solution, and the cured film was peeled off from the silicon wafer.
  • the dielectric constant (Dk) and dielectric loss tangent (Df) of the film sample at 28 GHz were measured using the resonator perturbation method.
  • Example 101 The resin composition used in Example 1 was applied in a layered manner by spin coating to the surface of the thin copper layer of the resin base material on which the thin copper layer was formed, and dried at 100°C for 4 minutes to determine the film thickness. After forming a 20 ⁇ m resin composition layer, it was exposed using a stepper (NSR1505 i6, manufactured by Nikon Corporation). Exposure was performed at a wavelength of 365 nm through a mask (a binary mask with a 1:1 line-and-space pattern and a line width of 10 ⁇ m). After exposure, it was heated at 100° C. for 4 minutes. After the heating, it was developed with cyclopentanone for 2 minutes and rinsed with PGMEA for 30 seconds to obtain a layer pattern.
  • NSR1505 i6 manufactured by Nikon Corporation
  • the temperature was raised at a rate of 10° C./min in a nitrogen atmosphere, and after reaching 230° C., the temperature was maintained at 230° C. for 3 hours to form an interlayer insulating film for a rewiring layer.
  • This rewiring layer interlayer insulating film had excellent insulation properties. Furthermore, when semiconductor devices were manufactured using these interlayer insulating films for rewiring layers, it was confirmed that they operated without problems.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

A resin composition containing a polyimide precursor that includes a repeating unit represented by formula (1-1) and that has a polymerizable group content of 2 mmol/g or more and an amide bond content of 1.5 mmol/ g or less, a polymerization initiator and a polymerizable compound; a cured product; a laminate; a method for producing a cured product; a method for producing a laminate; a method for producing a semiconductor device; and a semiconductor device.

Description

樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイスResin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device
 本発明は、樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイスに関する。 The present invention relates to a resin composition, a cured product, a laminate, a method for producing a cured product, a method for producing a laminate, a method for producing a semiconductor device, and a semiconductor device.
 現代では様々な分野において、樹脂を含む樹脂組成物から製造された樹脂材料を活用することが行われている。
 例えば、ポリイミドは、耐熱性及び絶縁性等に優れるため、様々な用途に適用されている。上記用途としては、特に限定されないが、実装用の半導体デバイスを例に挙げると、絶縁膜や封止材の材料、又は、保護膜としての利用が挙げられる。また、フレキシブル基板のベースフィルムやカバーレイなどとしても用いられている。
BACKGROUND ART In modern times, resin materials manufactured from resin compositions containing resin are utilized in various fields.
For example, polyimide has excellent heat resistance and insulation properties, so it is used for various purposes. The above-mentioned uses are not particularly limited, but in the case of semiconductor devices for mounting, for example, they may be used as materials for insulating films and sealing materials, or as protective films. It is also used as a base film and coverlay for flexible substrates.
 例えば上述した用途において、ポリイミドは、ポリイミド前駆体を含む樹脂組成物の形態で用いられる。
 このような樹脂組成物を、例えば塗布等により基材に適用して感光膜を形成し、その後、必要に応じて露光、現像、加熱等を行うことにより、硬化物を基材上に形成することができる。
 ポリイミド前駆体は、例えば加熱により環化され、硬化物中でポリイミドとなる。
 樹脂組成物は、公知の塗布方法等により適用可能であるため、例えば、適用される樹脂組成物の適用時の形状、大きさ、適用位置等の設計の自由度が高いなど、製造上の適応性に優れるといえる。ポリイミドが有する高い性能に加え、このような製造上の適応性に優れる観点から、上述の樹脂組成物の産業上の応用展開がますます期待されている。
For example, in the above-mentioned applications, polyimide is used in the form of a resin composition containing a polyimide precursor.
Such a resin composition is applied to a base material by coating, for example, to form a photosensitive film, and then, as necessary, exposure, development, heating, etc. are performed to form a cured product on the base material. be able to.
The polyimide precursor is cyclized, for example, by heating, and becomes polyimide in the cured product.
Since the resin composition can be applied by known coating methods, there is a high degree of freedom in designing the shape, size, application position, etc. of the resin composition when it is applied. It can be said that it has excellent characteristics. In addition to the high performance of polyimide, there are increasing expectations for the industrial application of the above-mentioned resin composition due to its excellent manufacturing adaptability.
 例えば、特許文献1には、重合性の不飽和結合を有するポリイミド前駆体と、脂肪族環状骨格及び少なくとも2つのメタクリロイルオキシ基を有する重合性モノマーと、光重合開始剤と、溶剤と、を含有する感光性樹脂組成物が記載されている。
 特許文献2には、(A)重合性の不飽和結合を有するポリイミド前駆体、(B)脂肪族環状骨格を有する重合性モノマー、(C)光重合開始剤、及び(D)熱架橋剤を含有する感光性樹脂組成物が記載されている。
For example, Patent Document 1 contains a polyimide precursor having a polymerizable unsaturated bond, a polymerizable monomer having an aliphatic cyclic skeleton and at least two methacryloyloxy groups, a photopolymerization initiator, and a solvent. A photosensitive resin composition is described.
Patent Document 2 describes that (A) a polyimide precursor having a polymerizable unsaturated bond, (B) a polymerizable monomer having an aliphatic cyclic skeleton, (C) a photopolymerization initiator, and (D) a thermal crosslinking agent. A photosensitive resin composition containing the same is described.
特開2022-021933号公報JP2022-021933A 特開2018-084626号公報JP2018-084626A
 ポリイミドを含む硬化物について、伝送損失抑制の観点から硬化物の誘電率を減少させることが求められている。
 また、ポリイミドを含む硬化物について、多層に積層する場合の現像液への耐性、樹脂組成物等に含まれる溶剤への耐性等を向上させる観点から、耐薬品性の向上が求められている。
Regarding cured products containing polyimide, it is required to reduce the dielectric constant of the cured products from the viewpoint of suppressing transmission loss.
In addition, for cured products containing polyimide, improvement in chemical resistance is required from the viewpoint of improving resistance to developers when laminated in multiple layers, resistance to solvents contained in resin compositions, etc.
 本発明は低誘電率であり、かつ、耐薬品性に優れた硬化物が得られる樹脂組成物、上記樹脂組成物を硬化してなる硬化物、上記硬化物を含む積層体、上記硬化物の製造方法、上記積層体の製造方法、上記硬化物の製造方法を含む半導体デバイスの製造方法、並びに、上記硬化物を含む半導体デバイスを提供することを目的とする。 The present invention relates to a resin composition from which a cured product having a low dielectric constant and excellent chemical resistance can be obtained, a cured product obtained by curing the above resin composition, a laminate containing the above cured product, and a cured product obtained from the above cured product. It is an object of the present invention to provide a manufacturing method of a semiconductor device including a manufacturing method, a method of manufacturing the laminate, a method of manufacturing the cured product, and a semiconductor device including the cured product.
 本発明の代表的な実施態様の例を以下に示す。
<1> 下記式(1-1)で表される繰返し単位を含み、重合性基の含有量が2mmol/g以上、かつ、アミド結合の含有量が1.5mmol/g以下であるポリイミド前駆体、
 重合開始剤、及び、
 重合性化合物を含む
 樹脂組成物。

 式(1-1)中、X11は、下記式(a)、式(b)若しくは式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基、又は、4価の連結基を表し、Y11は、下記式(a)、式(b)若しくは式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基、又は、2価の連結基を表し、X11及びY11の少なくとも一方は式(a)、式(b)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基であり、R11及びR12はそれぞれ独立に、水素原子、又は1価の有機基であり、R11及びR12の少なくとも1つは重合性基を含む1価の有機基である。

式(a)中、X及びXはそれぞれ独立に、水素原子、又は、ハロゲン原子により置換されていてもよいアルキル基であり、式(c)中、R及びRはそれぞれ独立に、水素原子又は1価の置換基を表し、RとRが結合して環構造を形成してもよい。
<2> 式(1-1)中、X11が、式(a)、式(b)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基であり、かつ、Y11が式(a)、式(b)または式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基である、<1>に記載の樹脂組成物。
<3> 上記式(1-1)中、R11及びR12の少なくとも1つが重合性基を2つ以上含む1価の有機基である、<1>又は<2>に記載の樹脂組成物。
<4> 下記式(1-2)で表される繰返し単位の含有量が、ポリイミド前駆体の全質量に対して90質量%以上であり、かつ、重合性基の含有量が2mmol/g以上であるポリイミド前駆体、
 重合開始剤、及び、
 重合性化合物を含む
 樹脂組成物。

 式(1-2)中、X21は、下記式(a)、式(b)若しくは式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基、又は、4価の連結基を表し、Y21は、下記式(a)、式(b)若しくは式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基、又は、2価の連結基を表し、X21及びY21の少なくとも一方は式(a)、式(b)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基であり、R21及びR22はそれぞれ独立に、水素原子、又は1価の有機基であり、ポリイミド前駆体に含まれる全てのR21及びR22のうち、重合性基を2つ以上含む1価の有機基であるR21及びR22の割合が、50モル%以上である。

式(a)中、X及びXはそれぞれ独立に、水素原子、又は、ハロゲン原子により置換されていてもよいアルキル基であり、式(c)中、R及びRはそれぞれ独立に、水素原子又は1価の置換基を表し、RとRが結合して環構造を形成してもよい。
<5> ポリイミド、ポリベンゾオキサゾール、及び、芳香族ポリエーテルよりなる群から選ばれた少なくとも1種の樹脂を更に含む、<1>~<4>のいずれか1つに記載の樹脂組成物。
<6> 上記重合性化合物として、ClogP値が3.0以上である化合物を含む、<1>~<5>のいずれか1つに記載の樹脂組成物。
<7> 上記重合性化合物として、ClogP値が3.0以上であり、かつ、芳香環構造又は炭素数6以上の脂肪族環構造を有する化合物を含む、<1>~<6>のいずれか1つに記載の樹脂組成物。
<8> アゾール化合物、及び、シランカップリング剤を更に含む、<1>~<7>のいずれか1つに記載の樹脂組成物。
<9> 再配線層用層間絶縁膜の形成に用いられる、<1>~<8>のいずれか1つに記載の樹脂組成物。
<10> <1>~<9>のいずれか1つに記載の樹脂組成物を硬化してなる硬化物。
<11> <10>に記載の硬化物からなる層を2層以上含み、上記硬化物からなる層同士のいずれかの間に金属層を含む積層体。
<12> <1>~<9>のいずれか1つに記載の樹脂組成物を基材上に適用して膜を形成する膜形成工程を含む、硬化物の製造方法。
<13> 上記膜を選択的に露光する露光工程及び上記膜を現像液を用いて現像してパターンを形成する現像工程を含む、<12>に記載の硬化物の製造方法。
<14> 上記膜を50~450℃で加熱する加熱工程を含む、<12>又は<13>に記載の硬化物の製造方法。
<15> <12>~<14>のいずれか1つに記載の硬化物の製造方法を含む、積層体の製造方法。
<16> <12>~<14>のいずれか1つに記載の硬化物の製造方法を含む、半導体デバイスの製造方法。
<17> <10>に記載の硬化物を含む、半導体デバイス。
Examples of representative embodiments of the invention are shown below.
<1> A polyimide precursor containing a repeating unit represented by the following formula (1-1), having a polymerizable group content of 2 mmol/g or more and an amide bond content of 1.5 mmol/g or less ,
a polymerization initiator, and
A resin composition containing a polymerizable compound.

In formula ( 1-1 ), , represents a tetravalent linking group, and Y 11 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by any of the following formulas (a), (b), or (c), Or, it represents a divalent linking group, and at least one of X 11 and Y 11 has two or more hydrogen atoms removed from the structure represented by formula (a), formula (b), or formula (c). R 11 and R 12 are each independently a hydrogen atom or a monovalent organic group, and at least one of R 11 and R 12 is a monovalent organic group containing a polymerizable group. be.

In formula (a), X 1 and X 2 are each independently a hydrogen atom or an alkyl group optionally substituted with a halogen atom, and in formula (c), R 1 and R 2 are each independently , represents a hydrogen atom or a monovalent substituent, and R 1 and R 2 may be combined to form a ring structure.
<2> In formula ( 1-1 ), and Y 11 is a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by formula (a), formula (b) or formula (c), in <1> The resin composition described.
<3> The resin composition according to <1> or <2>, wherein in the above formula (1-1), at least one of R 11 and R 12 is a monovalent organic group containing two or more polymerizable groups. .
<4> The content of the repeating unit represented by the following formula (1-2) is 90% by mass or more based on the total mass of the polyimide precursor, and the content of the polymerizable group is 2 mmol/g or more a polyimide precursor that is
a polymerization initiator, and
A resin composition containing a polymerizable compound.

In formula ( 1-2 ), , represents a tetravalent linking group, and Y21 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by any of the following formulas (a), (b), or (c), Or, it represents a divalent linking group, and at least one of X 21 and Y 21 has two or more hydrogen atoms removed from the structure represented by formula (a), formula (b), or formula (c). R 21 and R 22 are each independently a hydrogen atom or a monovalent organic group, and out of all R 21 and R 22 contained in the polyimide precursor, 2 polymerizable groups are The proportion of R 21 and R 22 , which are monovalent organic groups containing at least one group, is 50 mol% or more.

In formula (a), X 1 and X 2 are each independently a hydrogen atom or an alkyl group optionally substituted with a halogen atom, and in formula (c), R 1 and R 2 are each independently , represents a hydrogen atom or a monovalent substituent, and R 1 and R 2 may be combined to form a ring structure.
<5> The resin composition according to any one of <1> to <4>, further comprising at least one resin selected from the group consisting of polyimide, polybenzoxazole, and aromatic polyether.
<6> The resin composition according to any one of <1> to <5>, wherein the polymerizable compound includes a compound having a ClogP value of 3.0 or more.
<7> Any one of <1> to <6>, wherein the polymerizable compound includes a compound having a ClogP value of 3.0 or more and having an aromatic ring structure or an aliphatic ring structure having 6 or more carbon atoms. 1. The resin composition according to item 1.
<8> The resin composition according to any one of <1> to <7>, further comprising an azole compound and a silane coupling agent.
<9> The resin composition according to any one of <1> to <8>, which is used for forming an interlayer insulating film for a rewiring layer.
<10> A cured product obtained by curing the resin composition according to any one of <1> to <9>.
<11> A laminate including two or more layers made of the cured product according to <10> and a metal layer between any of the layers made of the cured product.
<12> A method for producing a cured product, comprising a film forming step of applying the resin composition according to any one of <1> to <9> onto a substrate to form a film.
<13> The method for producing a cured product according to <12>, comprising an exposure step of selectively exposing the film and a development step of developing the film using a developer to form a pattern.
<14> The method for producing a cured product according to <12> or <13>, which includes a heating step of heating the film at 50 to 450°C.
<15> A method for producing a laminate, including the method for producing a cured product according to any one of <12> to <14>.
<16> A method for manufacturing a semiconductor device, comprising the method for manufacturing a cured product according to any one of <12> to <14>.
<17> A semiconductor device comprising the cured product according to <10>.
 本発明によれば、低誘電率であり、かつ、耐薬品性に優れた硬化物が得られる樹脂組成物、上記樹脂組成物を硬化してなる硬化物、上記硬化物を含む積層体、上記硬化物の製造方法、上記積層体の製造方法、上記硬化物の製造方法を含む半導体デバイスの製造方法、並びに、上記硬化物を含む半導体デバイスが提供される。 According to the present invention, a resin composition capable of obtaining a cured product having a low dielectric constant and excellent chemical resistance, a cured product obtained by curing the above resin composition, a laminate containing the above cured product, and the above A method for producing a cured product, a method for producing the laminate, a method for producing a semiconductor device including the method for producing the cured product, and a semiconductor device including the cured product are provided.
 以下、本発明の主要な実施形態について説明する。しかしながら、本発明は、明示した実施形態に限られるものではない。
 本明細書において「~」という記号を用いて表される数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を意味する。
 本明細書において「工程」との語は、独立した工程だけではなく、その工程の所期の作用が達成できる限りにおいて、他の工程と明確に区別できない工程も含む意味である。
 本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有しない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた露光も含む。また、露光に用いられる光としては、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線又は放射線が挙げられる。
 本明細書において、「(メタ)アクリレート」は、「アクリレート」及び「メタクリレート」の両方、又は、いずれかを意味し、「(メタ)アクリル」は、「アクリル」及び「メタクリル」の両方、又は、いずれかを意味し、「(メタ)アクリロイル」は、「アクリロイル」及び「メタクリロイル」の両方、又は、いずれかを意味する。
 本明細書において、構造式中のMeはメチル基を表し、Etはエチル基を表し、Buはブチル基を表し、Phはフェニル基を表す。
 本明細書において、全固形分とは、組成物の全成分から溶剤を除いた成分の総質量をいう。また本明細書において、固形分濃度とは、組成物の総質量に対する、溶剤を除く他の成分の質量百分率である。
 本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、特に述べない限り、ゲル浸透クロマトグラフィ(GPC)法を用いて測定した値であり、ポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、HLC-8220GPC(東ソー(株)製)を用い、カラムとしてガードカラムHZ-L、TSKgel Super HZM-M、TSKgel Super HZ4000、TSKgel Super HZ3000、及び、TSKgel Super HZ2000(以上、東ソー(株)製)を直列に連結して用いることによって求めることができる。それらの分子量は特に述べない限り、溶離液としてTHF(テトラヒドロフラン)を用いて測定したものとする。ただし、溶解性が低い場合など、溶離液としてTHFが適していない場合にはNMP(N-メチル-2-ピロリドン)を用いることもできる。また、GPC測定における検出は特に述べない限り、UV線(紫外線)の波長254nm検出器を使用したものとする。
 本明細書において、積層体を構成する各層の位置関係について、「上」又は「下」と記載したときには、注目している複数の層のうち基準となる層の上側又は下側に他の層があればよい。すなわち、基準となる層と上記他の層の間に、更に第3の層や要素が介在していてもよく、基準となる層と上記他の層は接している必要はない。特に断らない限り、基材に対し層が積み重なっていく方向を「上」と称し、又は、樹脂組成物層がある場合には、基材から樹脂組成物層へ向かう方向を「上」と称し、その反対方向を「下」と称する。なお、このような上下方向の設定は、本明細書中における便宜のためであり、実際の態様においては、本明細書における「上」方向は、鉛直上向きと異なることもありうる。
 本明細書において、特段の記載がない限り、組成物は、組成物に含まれる各成分として、その成分に該当する2種以上の化合物を含んでもよい。また、特段の記載がない限り、組成物における各成分の含有量とは、その成分に該当する全ての化合物の合計含有量を意味する。
 本明細書において、特に述べない限り、温度は23℃、気圧は101,325Pa(1気圧)、相対湿度は50%RHである。
 本明細書において、好ましい態様の組み合わせは、より好ましい態様である。
Main embodiments of the present invention will be described below. However, the invention is not limited to the illustrated embodiments.
In this specification, a numerical range expressed using the symbol "~" means a range that includes the numerical values written before and after "~" as the lower limit and upper limit, respectively.
As used herein, the term "step" includes not only independent steps but also steps that cannot be clearly distinguished from other steps as long as the intended effect of the step can be achieved.
In the description of a group (atomic group) in this specification, the description that does not indicate substitution or unsubstitution includes a group having a substituent (atomic group) as well as a group having no substituent (atomic group). For example, "alkyl group" includes not only an alkyl group without a substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
In this specification, "exposure" includes not only exposure using light but also exposure using particle beams such as electron beams and ion beams, unless otherwise specified. Examples of the light used for exposure include actinic rays or radiation such as the bright line spectrum of a mercury lamp, far ultraviolet rays typified by excimer lasers, extreme ultraviolet rays (EUV light), X-rays, and electron beams.
As used herein, "(meth)acrylate" means both "acrylate" and "methacrylate", or either "(meth)acrylate", and "(meth)acrylic" means both "acrylic" and "methacrylic", or , and "(meth)acryloyl" means either or both of "acryloyl" and "methacryloyl."
In this specification, Me in the structural formula represents a methyl group, Et represents an ethyl group, Bu represents a butyl group, and Ph represents a phenyl group.
In this specification, the total solid content refers to the total mass of all components of the composition excluding the solvent. Further, in this specification, the solid content concentration is the mass percentage of other components excluding the solvent with respect to the total mass of the composition.
In this specification, unless otherwise stated, weight average molecular weight (Mw) and number average molecular weight (Mn) are values measured using gel permeation chromatography (GPC), and are defined as polystyrene equivalent values. In this specification, weight average molecular weight (Mw) and number average molecular weight (Mn) are expressed using, for example, HLC-8220GPC (manufactured by Tosoh Corporation) and guard column HZ-L, TSKgel Super HZM-M, TSKgel. It can be determined by using Super HZ4000, TSKgel Super HZ3000, and TSKgel Super HZ2000 (all manufactured by Tosoh Corporation) connected in series. Unless otherwise stated, those molecular weights are measured using THF (tetrahydrofuran) as an eluent. However, if THF is not suitable as an eluent, such as when the solubility is low, NMP (N-methyl-2-pyrrolidone) can also be used. Furthermore, unless otherwise specified, a detector with a wavelength of 254 nm of UV rays (ultraviolet rays) is used for detection in the GPC measurement.
In this specification, when the positional relationship of each layer constituting a laminate is described as "upper" or "lower", there is another layer above or below the reference layer among the plurality of layers of interest. It would be good if there was. That is, a third layer or element may be further interposed between the reference layer and the other layer, and the reference layer and the other layer do not need to be in contact with each other. Unless otherwise specified, the direction in which layers are stacked on the base material is referred to as "top", or if there is a resin composition layer, the direction from the base material to the resin composition layer is referred to as "top". , the opposite direction is called "down". Note that such a setting in the vertical direction is for convenience in this specification, and in an actual embodiment, the "up" direction in this specification may be different from vertically upward.
In this specification, unless otherwise specified, the composition may contain, as each component contained in the composition, two or more compounds corresponding to that component. Further, unless otherwise specified, the content of each component in the composition means the total content of all compounds corresponding to that component.
In this specification, unless otherwise stated, the temperature is 23° C., the atmospheric pressure is 101,325 Pa (1 atm), and the relative humidity is 50% RH.
In this specification, combinations of preferred aspects are more preferred aspects.
(樹脂組成物)
 本発明の第一の態様に係る樹脂組成物(以下、単に「第一の樹脂組成物」ともいう。)は、式(1-1)で表される繰返し単位を含み、重合性基の含有量が2mmol/g以上、かつ、アミド結合の含有量が1.5mmol/g以下であるポリイミド前駆体、重合開始剤、及び、重合性化合物を含む。
 本発明の第二の態様に係る樹脂組成物(以下、単に「第二の樹脂組成物」ともいう。)は、式(1-2)で表される繰返し単位の含有量がポリイミド前駆体の全質量に対して90質量%以上であり、かつ、重合性基の含有量が2mmol/g以上であるポリイミド前駆体、重合開始剤、及び、重合性化合物を含む。
 以下、第一の樹脂組成物と第二の樹脂組成物とを合わせて単に「樹脂組成物」ともいう。
 以下、式(1-1)で表される繰返し単位を含み、重合性基の含有量が2mmol/g以上、かつ、アミド結合の含有量が1.5mmol/g以下であるポリイミド前駆体を「第一のポリイミド前駆体」ともいう。
 以下、式(1-2)で表される繰返し単位の含有量が、ポリイミド前駆体の全質量に対して90質量%以上であり、かつ、重合性基の含有量が2mmol/g以上であるポリイミド前駆体を「第二のポリイミド前駆体」ともいう。
 以下、単に「ポリイミド前駆体」と記載した場合には、第一のポリイミド前駆体と、第二のポリイミド前駆体との両方を指すものとする。
 また、第一のポリイミド前駆体と、第二のポリイミド前駆体とを合わせて、「特定樹脂」ともいう。
(Resin composition)
The resin composition according to the first aspect of the present invention (hereinafter also simply referred to as "first resin composition") contains a repeating unit represented by formula (1-1), and contains a polymerizable group. It contains a polyimide precursor, a polymerization initiator, and a polymerizable compound having an amount of 2 mmol/g or more and an amide bond content of 1.5 mmol/g or less.
The resin composition according to the second aspect of the present invention (hereinafter also simply referred to as "second resin composition") has a content of repeating units represented by formula (1-2) that is higher than that of the polyimide precursor. It contains a polyimide precursor, a polymerization initiator, and a polymerizable compound that is 90% by mass or more based on the total mass and has a polymerizable group content of 2 mmol/g or more.
Hereinafter, the first resin composition and the second resin composition are also simply referred to as "resin composition".
Hereinafter, a polyimide precursor containing a repeating unit represented by formula (1-1) and having a polymerizable group content of 2 mmol/g or more and an amide bond content of 1.5 mmol/g or less will be referred to as " Also referred to as "first polyimide precursor."
Hereinafter, the content of the repeating unit represented by formula (1-2) is 90% by mass or more based on the total mass of the polyimide precursor, and the content of the polymerizable group is 2 mmol/g or more. The polyimide precursor is also referred to as a "second polyimide precursor."
Hereinafter, when it is simply described as "polyimide precursor", it refers to both the first polyimide precursor and the second polyimide precursor.
Moreover, the first polyimide precursor and the second polyimide precursor are also collectively referred to as a "specific resin."
 本発明の樹脂組成物は、露光及び現像に供される感光膜の形成に用いられることが好ましく、露光及び有機溶剤を含む現像液を用いた現像に供される膜の形成に用いられることが好ましい。
 本発明の樹脂組成物は、例えば、半導体デバイスの絶縁膜、再配線層用層間絶縁膜、ストレスバッファ膜等の形成に用いることができ、再配線層用層間絶縁膜の形成に用いられることが好ましい。
 特に、本発明の樹脂組成物が、再配線層用層間絶縁膜の形成に用いられることも、本発明の好ましい態様の1つである。
 また、本発明の樹脂組成物は、ネガ型現像に供される感光膜の形成に用いられることが好ましい。
 本発明において、ネガ型現像とは、露光及び現像において、現像により非露光部が除去される現像をいい、ポジ型現像とは、現像により露光部が除去される現像をいう。
 上記露光の方法、上記現像液、及び、上記現像の方法としては、例えば、後述する硬化物の製造方法の説明における露光工程において説明された露光方法、現像工程において説明された現像液及び現像方法が使用される。
The resin composition of the present invention is preferably used to form a photosensitive film that is subjected to exposure and development, and is preferably used to form a film that is subjected to exposure and development using a developer containing an organic solvent. preferable.
The resin composition of the present invention can be used, for example, to form an insulating film of a semiconductor device, an interlayer insulating film for a rewiring layer, a stress buffer film, etc., and can be used for forming an interlayer insulating film for a rewiring layer. preferable.
In particular, it is one of the preferred embodiments of the present invention that the resin composition of the present invention is used for forming an interlayer insulating film for a rewiring layer.
Further, the resin composition of the present invention is preferably used for forming a photosensitive film to be subjected to negative development.
In the present invention, negative development refers to development in which non-exposed areas are removed by development during exposure and development, and positive development refers to development in which exposed areas are removed by development.
The above-mentioned exposure method, the above-mentioned developer, and the above-mentioned development method include, for example, the exposure method explained in the exposure step in the description of the method for producing a cured product, and the developer and development method explained in the development step. is used.
 本発明の樹脂組成物によれば、低誘電率であり、かつ耐薬品性に優れた硬化物が得られる。
 上記効果が得られるメカニズムは不明であるが、下記のように推測される。
According to the resin composition of the present invention, a cured product having a low dielectric constant and excellent chemical resistance can be obtained.
Although the mechanism by which the above effects are obtained is unknown, it is assumed as follows.
 本発明の第一の樹脂組成物は、第一のポリイミド前駆体を含む。
 第一のポリイミド前駆体は、アミド結合の含有量が1.5mmol/g以下であり、式(1-1)中、X11及びY11の少なくとも一方に、比較的分子量が大きい構造である式(a)~式(c)のいずれかで表される構造を含む。このため、硬化後に得られるポリイミドにおけるイミド構造の含有割合が小さくなる。このように、イミド構造のような分極した構造の含有割合が小さくなることにより、誘電率が低い硬化物が得られると推測される。
 また、第一のポリイミド前駆体は重合性基の含有量が2mmol/g以上である。このため、第一の樹脂組成物から得られる硬化物においては、ポリイミド同士、又は、ポリイミドと重合性化合物との間で十分に架橋構造が形成され、耐薬品性に優れた硬化物が得られると推測される。
 第二のポリイミド前駆体は、式(1-2)で表される繰返し単位の含有量が、ポリイミド前駆体の全質量に対して90質量%以上であり、式(1-2)中、X21及びY21の少なくとも一方に、比較的分子量が大きい構造である式(a)~式(c)のいずれかで表される構造を含む。その結果、硬化後に得られるポリイミドにおけるイミド構造の含有割合が小さくなる。このように、イミド構造のような分極した構造の含有割合が小さくなることにより、誘電率が低い硬化物が得られると推測される。
 また、第二のポリイミド前駆体は重合性基の含有量が2mmol/g以上であり、かつ、全てのR11及びR12のうち、重合性基を2つ以上含む1価の有機基であるR21及びR22の割合が、50モル%以上である。このため、第二の樹脂組成物から得られる硬化物においては、ポリイミド同士、又は、ポリイミドと重合性化合物との間で十分に架橋構造が形成され、耐薬品性に優れた硬化物が得られると推測される。
The first resin composition of the present invention includes a first polyimide precursor.
The first polyimide precursor has an amide bond content of 1.5 mmol/g or less, and in formula (1-1), at least one of X 11 and Y 11 has a structure having a relatively large molecular weight. It includes a structure represented by any one of formulas (a) to (c). For this reason, the content ratio of imide structures in the polyimide obtained after curing becomes small. It is presumed that a cured product with a low dielectric constant can be obtained by reducing the content ratio of polarized structures such as imide structures in this way.
Further, the first polyimide precursor has a polymerizable group content of 2 mmol/g or more. Therefore, in the cured product obtained from the first resin composition, a crosslinked structure is sufficiently formed between the polyimides or between the polyimide and the polymerizable compound, and a cured product with excellent chemical resistance is obtained. It is assumed that.
The content of the repeating unit represented by formula (1-2) in the second polyimide precursor is 90% by mass or more based on the total mass of the polyimide precursor, and in formula (1-2), At least one of Y 21 and Y 21 contains a structure represented by any one of formulas (a) to (c) that has a relatively large molecular weight. As a result, the content of imide structures in the polyimide obtained after curing becomes smaller. It is presumed that a cured product with a low dielectric constant can be obtained by reducing the content ratio of polarized structures such as imide structures in this way.
Further, the second polyimide precursor has a polymerizable group content of 2 mmol/g or more, and among all R 11 and R 12 , it is a monovalent organic group containing two or more polymerizable groups. The ratio of R 21 and R 22 is 50 mol% or more. Therefore, in the cured product obtained from the second resin composition, a crosslinked structure is sufficiently formed between the polyimides or between the polyimide and the polymerizable compound, and a cured product with excellent chemical resistance is obtained. It is assumed that.
 ここで、特許文献1及び2には、特定樹脂を含有する樹脂組成物については記載されていない。 Here, Patent Documents 1 and 2 do not describe a resin composition containing a specific resin.
 以下、本発明の樹脂組成物に含まれる成分について詳細に説明する。 Hereinafter, the components contained in the resin composition of the present invention will be explained in detail.
<特定樹脂>
 第一の樹脂組成物は、式(1-1)で表される繰返し単位を含み、重合性基の含有量が2mmol/g以上、かつ、アミド結合の含有量が1.5mmol/g以下であるポリイミド前駆体(第一のポリイミド前駆体)を含む。

 式(1-1)中、X11は、下記式(a)、式(b)若しくは式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基、又は、4価の連結基を表し、Y11は、下記式(a)、式(b)若しくは式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基、又は、2価の連結基を表し、X11及びY11の少なくとも一方は式(a)、式(b)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基であり、R11及びR12はそれぞれ独立に、水素原子又は1価の有機基であり、R11及びR12の少なくとも1つは重合性基を含む1価の有機基である。

 式(a)中、X及びXはそれぞれ独立に、水素原子、又は、ハロゲン原子により置換されていてもよいアルキル基であり、式(c)中、R及びRはそれぞれ独立に、水素原子又は1価の置換基を表し、RとRが結合して環構造を形成してもよい。
<Specific resin>
The first resin composition contains a repeating unit represented by formula (1-1), has a polymerizable group content of 2 mmol/g or more, and an amide bond content of 1.5 mmol/g or less. A certain polyimide precursor (first polyimide precursor) is included.

In formula ( 1-1 ), , represents a tetravalent linking group, and Y 11 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by any of the following formulas (a), (b), or (c), Or, it represents a divalent linking group, and at least one of X 11 and Y 11 has two or more hydrogen atoms removed from the structure represented by formula (a), formula (b), or formula (c). A group containing a structure, R 11 and R 12 are each independently a hydrogen atom or a monovalent organic group, and at least one of R 11 and R 12 is a monovalent organic group containing a polymerizable group. .

In formula (a), X 1 and X 2 are each independently a hydrogen atom or an alkyl group optionally substituted with a halogen atom, and in formula (c), R 1 and R 2 are each independently , represents a hydrogen atom or a monovalent substituent, and R 1 and R 2 may be combined to form a ring structure.
〔式(1-1)で表される繰返し単位〕
-X11
 式(1-1)中、X11は式(a)、式(b)若しくは式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基、又は、4価の連結基を表す。
 X11は式(a)、式(b)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基であることが好ましい。
 破断伸びの観点からは式(a)又は式(b)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基を含むことが好ましく、耐薬品性の観点からは式(b)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基を含むことが好ましく、低誘電率化の観点からは、式(a)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基を含むことが好ましい。
 式(a)中、X及びXはハロゲン原子により置換されていてもよいアルキル基であることが好ましく、ハロゲン原子により置換されていてもよい炭素数1~4のアルキル基であることがより好ましく、メチル基又はトリフルオロメチル基が更に好ましい。
 式(c)中、R及びRはそれぞれ独立に、水素原子であることが好ましい。
とRが結合して環構造を形成する場合、RとRが結合して形成される構造は、単結合、-O-又は-CR-であることが好ましく、-O-又は-CR-であることがより好ましく、-O-であることが更に好ましい。Rは水素原子又は1価の有機基を表し、水素原子、アルキル基又はアリール基が好ましく、水素原子が更に好ましい。
[Repeating unit expressed by formula (1-1)]
-X 11 -
In formula ( 1-1 ), represents a valent linking group.
X 11 is preferably a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by any one of formula (a), formula (b), or formula (c).
From the viewpoint of elongation at break, it is preferable to include a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by either formula (a) or formula (b), and from the viewpoint of chemical resistance, the formula It is preferable to include a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by either formula (b) or formula (c), and from the viewpoint of lowering the dielectric constant, formula (a) or formula It is preferable to include a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by any one of (c).
In formula (a), X 1 and X 2 are preferably an alkyl group optionally substituted with a halogen atom, and preferably an alkyl group having 1 to 4 carbon atoms and optionally substituted with a halogen atom. More preferred is a methyl group or a trifluoromethyl group.
In formula (c), R 1 and R 2 are preferably each independently a hydrogen atom.
When R 1 and R 2 combine to form a ring structure, the structure formed by combining R 1 and R 2 is preferably a single bond, -O- or -CR 2 -, and -O - or -CR 2 - is more preferred, and -O- is even more preferred. R represents a hydrogen atom or a monovalent organic group, preferably a hydrogen atom, an alkyl group or an aryl group, and more preferably a hydrogen atom.
 X11が、式(a)で表される構造から2以上の水素原子を除いた構造を含む基である場合、X11は下記式(a-1)又は式(a-2)で表される基であることが好ましく、樹脂におけるアミン価を下げる等の観点からは、式(a-2)で表される基であることが好ましい。本明細書において、環構造の辺と交差する結合は、その環構造における水素原子のいずれかを置換することを意味している。下記式中、*は式(1-1)中のX11が結合する4つのカルボニル基との結合部位を表す。また、X及びXの好ましい態様は上述の通りである。また、これらの構造における水素原子は、ヒドロキシ基、炭化水素基等の公知の置換基により更に置換されていてもよい。
 
When X 11 is a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by formula (a), X 11 is represented by the following formula (a-1) or formula (a-2). A group represented by formula (a-2) is preferable, and a group represented by formula (a-2) is preferable from the viewpoint of lowering the amine value in the resin. In this specification, a bond that intersects with a side of a ring structure means substituting one of the hydrogen atoms in the ring structure. In the following formula, * represents a bonding site with four carbonyl groups to which X 11 in formula (1-1) is bonded. Further, preferred embodiments of X 1 and X 2 are as described above. Further, the hydrogen atoms in these structures may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
 X11が、式(b)で表される構造から2以上の水素原子を除いた構造を含む基である場合、X11は下記式(b-1)で表される基であることが好ましい。下記式中、*は式(1-1)中のX11が結合する4つのカルボニル基との結合部位を表し、nは1~5の整数を表す。また、下記構造における水素原子は、ヒドロキシ基、炭化水素基等の公知の置換基により更に置換されていてもよい。
 
When X 11 is a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by formula (b), it is preferable that X 11 is a group represented by formula (b-1) below. . In the following formula, * represents a bonding site with four carbonyl groups to which X 11 in formula (1-1) is bonded, and n represents an integer from 1 to 5. Further, the hydrogen atom in the structure below may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
 X11が、式(c)で表される構造から2以上の水素原子を除いた構造を含む基である場合、X11は下記式(c-1)又は式(c-2)で表される基であることが好ましく、誘電率を低下させる等の観点からは、式(c-2)で表される基であることが好ましい。下記式中、*は式(1-1)中のX11が結合する4つのカルボニル基との結合部位を表す。また、R及びRの好ましい態様は上述の通りである。また、これらの構造における水素原子は、ヒドロキシ基、炭化水素基等の公知の置換基により更に置換されていてもよい。
 
When X 11 is a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by formula (c), X 11 is represented by the following formula (c-1) or formula (c-2). A group represented by formula (c-2) is preferable, and a group represented by formula (c-2) is preferable from the viewpoint of lowering the dielectric constant. In the following formula, * represents a bonding site with four carbonyl groups to which X 11 in formula (1-1) is bonded. Further, preferred embodiments of R 1 and R 2 are as described above. Further, the hydrogen atoms in these structures may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
 X11が式(a)、式(b)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基である場合、X11は以下のいずれかの構造であることが好ましい。下記式中、*は式(1-1)中のX11が結合する4つのカルボニル基との結合部位を表す。また、これらの構造における水素原子は、ヒドロキシ基、炭化水素基等の公知の置換基により更に置換されていてもよい。
 
When X 11 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by formula (a), formula (b), or formula (c), X 11 is one of the following: Preferably, it is a structure. In the following formula, * represents a bonding site with four carbonyl groups to which X 11 in formula (1-1) is bonded. Further, the hydrogen atoms in these structures may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
 X11が式(a)、式(b)及び式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基とは異なる4価の連結基である場合、X11は芳香環を含む4価の有機基が好ましく、下記式(5)又は式(6)で表される基がより好ましい。
式(5)又は式(6)中、*はそれぞれ独立に、他の構造との結合部位を表す。

 式(5)中、R112は単結合又は2価の連結基であり、単結合、又は、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-、及び-NHCO-、ならびに、これらの組み合わせから選択される基(ただし、上述の式(a)に該当する構造は除く)であることが好ましく、単結合、または、-O-、-CO-、-S-及び-SO-から選択される基であることがより好ましい。
When X 11 is a tetravalent linking group different from a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by any one of formula (a), formula (b) and formula (c), X 11 is preferably a tetravalent organic group containing an aromatic ring, and more preferably a group represented by the following formula (5) or formula (6).
In formula (5) or formula (6), * each independently represents a bonding site with another structure.

In formula (5), R 112 is a single bond or a divalent linking group, and is a single bond or an aliphatic hydrocarbon group having 1 to 10 carbon atoms, which may be substituted with a fluorine atom, -O-, -CO-, -S-, -SO 2 -, -NHCO-, and a group selected from combinations thereof (excluding structures corresponding to the above formula (a)), More preferably, it is a single bond or a group selected from -O-, -CO-, -S- and -SO 2 -.
 X11は、具体的には、テトラカルボン酸二無水物から無水物基の除去後に残存するテトラカルボン酸残基などが挙げられる。ポリイミド前駆体は、X11に該当する構造として、テトラカルボン酸二無水物残基を、1種のみ含んでもよいし、2種以上含んでもよい。
 テトラカルボン酸二無水物は、下記式(O)で表されることが好ましい。

 式(O)中、X11は、4価の有機基を表す。X11の好ましい範囲は式(1-1)におけるX11の好ましい範囲と同様である。
Specific examples of X 11 include tetracarboxylic acid residues remaining after removal of the anhydride group from tetracarboxylic dianhydride. The polyimide precursor may contain only one type of tetracarboxylic dianhydride residue, or may contain two or more types of tetracarboxylic dianhydride residues as the structure corresponding to X11 .
It is preferable that the tetracarboxylic dianhydride is represented by the following formula (O).

In formula (O), X 11 represents a tetravalent organic group. The preferred range of X 11 is the same as the preferred range of X 11 in formula (1-1).
 テトラカルボン酸二無水物の具体例としては、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルフィドテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメタンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルメタンテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,7-ナフタレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、1,3-ジフェニルヘキサフルオロプロパン-3,3,4,4-テトラカルボン酸二無水物、1,4,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、1,2,4,5-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,8,9,10-フェナントレンテトラカルボン酸二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、ならびに、これらの炭素数1~6のアルキル及び炭素数1~6のアルコキシ誘導体が挙げられる。 Specific examples of tetracarboxylic dianhydride include pyromellitic dianhydride (PMDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride, 3,3',4,4'- Diphenylsulfidetetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 3,3' , 4,4'-diphenylmethanetetracarboxylic dianhydride, 2,2',3,3'-diphenylmethanetetracarboxylic dianhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 2,3,3',4'-benzophenonetetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5 , 7-naphthalenetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 2 , 2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, 1,3-diphenylhexafluoropropane-3,3,4,4-tetracarboxylic dianhydride, 1,4,5, 6-naphthalenetetracarboxylic dianhydride, 2,2',3,3'-diphenyltetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 1,2,4, 5-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 1,8,9,10-phenanthrenetetracarboxylic dianhydride, 1,1-bis(2, 3-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, and these Examples include alkyl derivatives having 1 to 6 carbon atoms and alkoxy derivatives having 1 to 6 carbon atoms.
 また、X11が式(a)、式(b)及び式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基である場合、テトラカルボン酸二無水物として以下の化合物を用いることが好ましい。また、これらの構造における水素原子は、ヒドロキシ基、炭化水素基等の公知の置換基により更に置換されていてもよい。
In addition, when X 11 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by formula (a), formula (b), or formula (c), tetracarboxylic dianhydride It is preferable to use the following compounds as Further, the hydrogen atoms in these structures may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
また、国際公開第2017/038598号の段落0038に記載のテトラカルボン酸二無水物(DAA-1)~(DAA-5)も好ましい例として挙げられる。 Further, preferred examples include tetracarboxylic dianhydrides (DAA-1) to (DAA-5) described in paragraph 0038 of International Publication No. 2017/038598.
 第一のポリイミド前駆体に含まれる全ての式(1-1)で表される繰返し単位のうち、X11が式(a)、式(b)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基である繰返し単位の割合は、50~100mol%であることが好ましく、60~100mol%であることがより好ましく、70~100mol%であることが更に好ましい。 Of all the repeating units represented by formula (1-1) contained in the first polyimide precursor, X 11 is represented by formula (a), formula (b), or formula (c). The proportion of repeating units that are groups containing a structure in which two or more hydrogen atoms are removed is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and 70 to 100 mol%. is even more preferable.
-Y11
 式(1-1)中、Y11は式(a)、式(b)若しくは式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基、又は、2価の連結基を表す。
 Y11は式(a)、式(b)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基であることが好ましい。また、低誘電率化の観点からは特に式(a)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基が好ましい。
 式(a)中のX及びX、式(c)中のR及びRの好ましい態様は、上述のX11における式(a)中のX及びX、式(c)中のR及びRの好ましい態様と同様である。
-Y 11 -
In formula (1-1), Y 11 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by formula (a), formula (b), or formula (c), or 2 represents a valent linking group.
Y 11 is preferably a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by any one of formula (a), formula (b), or formula (c). Moreover, from the viewpoint of lowering the dielectric constant, a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by either formula (a) or formula (c) is particularly preferable.
Preferred embodiments of X 1 and X 2 in formula (a) and R 1 and R 2 in formula (c) are X 1 and X 2 in formula (a) in the above-mentioned X 11 , and The preferred embodiments of R 1 and R 2 are similar to those of R 1 and R 2 .
 Y11が、式(a)で表される構造から2以上の水素原子を除いた構造を含む基である場合、Y11は下記式(a-3)又は式(a-4)で表される基であることが好ましく、樹脂におけるアミン価を下げる等の観点からは、式(a-4)で表される基であることが好ましい。下記式中、*は式(1-1)中のY11が結合する2つの窒素原子との結合部位を表す。また、X及びXの好ましい態様は上述の通りである。また、これらの構造における水素原子は、ヒドロキシ基、炭化水素基等の公知の置換基により更に置換されていてもよい。
 
When Y 11 is a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by formula (a), Y 11 is represented by the following formula (a-3) or formula (a-4). A group represented by formula (a-4) is preferable, and a group represented by formula (a-4) is preferable from the viewpoint of lowering the amine value in the resin. In the following formula, * represents a bonding site with two nitrogen atoms to which Y 11 in formula (1-1) is bonded. Further, preferred embodiments of X 1 and X 2 are as described above. Further, the hydrogen atoms in these structures may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
 Y11が、式(b)で表される構造から2以上の水素原子を除いた構造を含む基である場合、Y11は下記式(b-2)で表される基であることが好ましい。下記式中、*は式(1-1)中のY11が結合する2つの窒素原子との結合部位を表し、nは1~5の整数を表す。また、下記構造における水素原子は、ヒドロキシ基、炭化水素基等の公知の置換基により更に置換されていてもよい。
 
When Y 11 is a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by formula (b), Y 11 is preferably a group represented by formula (b-2) below. . In the following formula, * represents a bonding site with two nitrogen atoms to which Y 11 in formula (1-1) is bonded, and n represents an integer from 1 to 5. Further, the hydrogen atom in the structure below may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
 Y11が、式(c)で表される構造から2以上の水素原子を除いた構造を含む基である場合、Y11は下記式(c-3)又は式(c-4)で表される基であることが好ましく、誘電率を低下させる等の観点からは、式(c-3)で表される基であることが好ましい。下記式中、*は式(1-1)中のY11が結合する2つの窒素原子との結合部位を表す。また、R及びRの好ましい態様は上述の通りである。また、これらの構造における水素原子は、ヒドロキシ基、炭化水素基等の公知の置換基により更に置換されていてもよい。
 
When Y 11 is a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by formula (c), Y 11 is represented by the following formula (c-3) or formula (c-4). A group represented by formula (c-3) is preferable, and a group represented by formula (c-3) is preferable from the viewpoint of lowering the dielectric constant. In the following formula, * represents a bonding site with two nitrogen atoms to which Y 11 in formula (1-1) is bonded. Further, preferred embodiments of R 1 and R 2 are as described above. Further, the hydrogen atoms in these structures may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
 Y11が式(a)、式(b)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基である場合、Y11は以下のいずれかの構造であることが好ましい。下記式中、*は式(1-1)中のY11が結合する2つの窒素原子との結合部位を表す。また、これらの構造における水素原子は、ヒドロキシ基、炭化水素基等の公知の置換基により更に置換されていてもよい。
When Y 11 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by formula (a), formula (b), or formula (c), Y 11 is one of the following: Preferably, it is a structure. In the following formula, * represents a bonding site with two nitrogen atoms to which Y 11 in formula (1-1) is bonded. Further, the hydrogen atoms in these structures may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
 Y11が式(a)、式(b)及び式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基とは異なる2価の連結基である場合、2価の有機基であることが好ましい。
 2価の有機基としては、直鎖又は分岐の脂肪族基、環状の脂肪族基及び芳香族基を含む基が例示され、炭素数2~20の直鎖又は分岐の脂肪族基、炭素数3~20の環状の脂肪族基、炭素数3~20の芳香族基、又は、これらの組み合わせからなる基が好ましく、炭素数6~20の芳香族基を含む基がより好ましい。上記直鎖又は分岐の脂肪族基は鎖中の炭化水素基がヘテロ原子を含む基で置換されていてもよく、上記環状の脂肪族基および芳香族基は環員の炭化水素基がヘテロ原子を含む基で置換されていてもよい。式(1-1)におけるY11の例としては、-Ar-および-Ar-L-Ar-で表される基が挙げられ、-Ar-L-Ar-で表される基が好ましい。但し、Arは、それぞれ独立に、芳香族基であり、Lは、単結合、又は、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-若しくは-NHCO-、あるいは、上記の2つ以上の組み合わせからなる基(ただし、上述の式(a)に該当する構造は除く)である。これらの好ましい範囲は、上述のとおりである。
When Y 11 is a divalent linking group different from a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by any of formula (a), formula (b), and formula (c), A divalent organic group is preferred.
Examples of divalent organic groups include groups containing straight-chain or branched aliphatic groups, cyclic aliphatic groups, and aromatic groups, including straight-chain or branched aliphatic groups having 2 to 20 carbon atoms, A group consisting of a cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 3 to 20 carbon atoms, or a combination thereof is preferable, and a group containing an aromatic group having 6 to 20 carbon atoms is more preferable. In the above straight chain or branched aliphatic group, the hydrocarbon group in the chain may be substituted with a group containing a hetero atom, and in the above cyclic aliphatic group and aromatic group, the hydrocarbon group in the chain may be substituted with a hetero atom. may be substituted with a group containing. Examples of Y 11 in formula (1-1) include groups represented by -Ar- and -Ar-L-Ar-, with a group represented by -Ar-L-Ar- being preferred. However, Ar is each independently an aromatic group, and L is a single bond or an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, -O-, -CO -, -S-, -SO 2 -, -NHCO-, or a group consisting of a combination of two or more of the above (however, the structure corresponding to the above formula (a) is excluded). These preferred ranges are as described above.
 Y11は、ジアミンから誘導されることが好ましい。ポリイミド前駆体の製造に用いられるジアミンとしては、直鎖又は分岐の脂肪族、環状の脂肪族又は芳香族ジアミンなどが挙げられる。ジアミンは、1種のみ用いてもよいし、2種以上用いてもよい。
 具体的には、Y11は、炭素数2~20の直鎖又は分岐の脂肪族基、炭素数3~20の環状の脂肪族基、炭素数3~20の芳香族基、又は、これらの組み合わせからなる基を含むジアミンであることが好ましく、炭素数6~20の芳香族基を含むジアミンであることがより好ましい。上記直鎖又は分岐の脂肪族基は鎖中の炭化水素基がヘテロ原子を含む基で置換されていてもよく上記環状の脂肪族基および芳香族基は環員の炭化水素基がヘテロ原子を含む基で置換されていてもよい。芳香族基を含む基の例としては、下記が挙げられる。
Preferably, Y 11 is derived from a diamine. Examples of diamines used in the production of polyimide precursors include linear or branched aliphatic, cyclic aliphatic, and aromatic diamines. One type of diamine may be used, or two or more types may be used.
Specifically, Y 11 is a linear or branched aliphatic group having 2 to 20 carbon atoms, a cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 3 to 20 carbon atoms, or any of these. A diamine containing a combination of groups is preferable, and a diamine containing an aromatic group having 6 to 20 carbon atoms is more preferable. The above straight chain or branched aliphatic group may have a hydrocarbon group in the chain substituted with a group containing a hetero atom.The above cyclic aliphatic group and aromatic group may have a ring member hydrocarbon group substituted with a hetero atom. may be substituted with a group containing. Examples of groups containing aromatic groups include the following.
Figure JPOXMLDOC01-appb-C000022

 式中、Aは単結合又は2価の連結基を表し、単結合、又は、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-C(=O)-、-S-、-SO-、-NHCO-、又は、これらの組み合わせから選択される基(ただし、上述の式(a)に該当する構造は除く)であることが好ましく、単結合、又は、フッ素原子で置換されていてもよい炭素数1~3のアルキレン基、-O-、-C(=O)-、-S-、若しくは、-SO-から選択される基(ただし、上述の式(a)に該当する構造は除く)であることがより好ましく、-O-、-S-、又は、-SO-であることが更に好ましい。
 式中、*は他の構造との結合部位を表す。
Figure JPOXMLDOC01-appb-C000022

In the formula, A represents a single bond or a divalent linking group, and is a single bond or an aliphatic hydrocarbon group having 1 to 10 carbon atoms, which may be substituted with a fluorine atom, -O-, -C(= O)-, -S-, -SO 2 -, -NHCO-, or a combination thereof (excluding structures corresponding to formula (a) above), and is preferably a group selected from A group selected from a bond or an alkylene group having 1 to 3 carbon atoms optionally substituted with a fluorine atom, -O-, -C(=O)-, -S-, or -SO 2 - ( However, structures corresponding to the above formula (a) are more preferable), and -O-, -S-, or -SO 2 - are even more preferable.
In the formula, * represents a bonding site with another structure.
 ジアミンとしては、具体的には、1,2-ジアミノエタン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタン又は1,6-ジアミノヘキサン;
1,2-又は1,3-ジアミノシクロペンタン、1,2-、1,3-又は1,4-ジアミノシクロヘキサン、1,2-、1,3-又は1,4-ビス(アミノメチル)シクロヘキサン、ビス-(4-アミノシクロヘキシル)メタン、ビス-(3-アミノシクロヘキシル)メタン、4,4’-ジアミノ-3,3’-ジメチルシクロヘキシルメタン及びイソホロンジアミン;
m-又はp-フェニレンジアミン、ジアミノトルエン、4,4’-又は3,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、4,4’-又は3,3’-ジアミノジフェニルメタン、4,4’-又は3,3’-ジアミノジフェニルスルホン、4,4’-又は3,3’-ジアミノジフェニルスルフィド、4,4’-又は3,3’-ジアミノベンゾフェノン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)プロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、4,4’-ジアミノパラテルフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(2-アミノフェノキシ)フェニル]スルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、3,3’-ジメチル-4,4’-ジアミノジフェニルスルホン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノオクタフルオロビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、9,9-ビス(4-アミノフェニル)-10-ヒドロアントラセン、3,3’,4,4’-テトラアミノビフェニル、3,3’,4,4’-テトラアミノジフェニルエーテル、1,4-ジアミノアントラキノン、1,5-ジアミノアントラキノン、3,3-ジヒドロキシ-4,4’-ジアミノビフェニル、9,9’-ビス(4-アミノフェニル)フルオレン、4,4’-ジメチル-3,3’-ジアミノジフェニルスルホン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、2,4-及び2,5-ジアミノクメン、2,5-ジメチル-p-フェニレンジアミン、アセトグアナミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,4,6-トリメチル-m-フェニレンジアミン、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(p-アミノフェニル)オクタメチルペンタシロキサン、2,7-ジアミノフルオレン、2,5-ジアミノピリジン、1,2-ビス(4-アミノフェニル)エタン、ジアミノベンズアニリド、ジアミノ安息香酸のエステル、1,5-ジアミノナフタレン、ジアミノベンゾトリフルオライド、1,3-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,4-ビス(4-アミノフェニル)オクタフルオロブタン、1,5-ビス(4-アミノフェニル)デカフルオロペンタン、1,7-ビス(4-アミノフェニル)テトラデカフルオロヘプタン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(2-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ビス(トリフルオロメチル)フェニル]ヘキサフルオロプロパン、p-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-3-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4’-ビス(3-アミノ-5-トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2-ビス[4-(4-アミノ-3-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’,5,5’-テトラメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、2,2’,5,5’,6,6’-ヘキサフルオロトリジン及び4,4’-ジアミノクアテルフェニルから選ばれる少なくとも1種のジアミンが挙げられる。
As the diamine, specifically, 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane or 1,6-diaminohexane;
1,2- or 1,3-diaminocyclopentane, 1,2-, 1,3- or 1,4-diaminocyclohexane, 1,2-, 1,3- or 1,4-bis(aminomethyl)cyclohexane , bis-(4-aminocyclohexyl)methane, bis-(3-aminocyclohexyl)methane, 4,4'-diamino-3,3'-dimethylcyclohexylmethane and isophoronediamine;
m- or p-phenylenediamine, diaminotoluene, 4,4'- or 3,3'-diaminobiphenyl, 4,4'-diaminodiphenyl ether, 3,3-diaminodiphenyl ether, 4,4'- or 3,3' -diaminodiphenylmethane, 4,4'- or 3,3'-diaminodiphenylsulfone, 4,4'- or 3,3'-diaminodiphenylsulfide, 4,4'- or 3,3'-diaminobenzophenone, 3, 3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 2,2-bis(4 -aminophenyl)propane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2-bis(3-hydroxy-4-aminophenyl)propane, 2,2-bis(3-hydroxy-4- aminophenyl) hexafluoropropane, 2,2-bis(3-amino-4-hydroxyphenyl)propane, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, bis(3-amino-4 -hydroxyphenyl) sulfone, bis(4-amino-3-hydroxyphenyl) sulfone, 4,4'-diaminoparaterphenyl, 4,4'-bis(4-aminophenoxy)biphenyl, bis[4-(4- aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, bis[4-(2-aminophenoxy)phenyl]sulfone, 1,4-bis(4-aminophenoxy)benzene, 9, 10-bis(4-aminophenyl)anthracene, 3,3'-dimethyl-4,4'-diaminodiphenylsulfone, 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy) ) Benzene, 1,3-bis(4-aminophenyl)benzene, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 4,4' -diaminooctafluorobiphenyl, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 9,9-bis( 4-aminophenyl)-10-hydroanthracene, 3,3',4,4'-tetraaminobiphenyl, 3,3',4,4'-tetraamino diphenyl ether, 1,4-diaminoanthraquinone, 1,5- Diaminoanthraquinone, 3,3-dihydroxy-4,4'-diaminobiphenyl, 9,9'-bis(4-aminophenyl)fluorene, 4,4'-dimethyl-3,3'-diaminodiphenylsulfone, 3,3 ',5,5'-tetramethyl-4,4'-diaminodiphenylmethane, 2,4- and 2,5-diaminocumene, 2,5-dimethyl-p-phenylenediamine, acetoguanamine, 2,3,5, 6-tetramethyl-p-phenylenediamine, 2,4,6-trimethyl-m-phenylenediamine, bis(3-aminopropyl)tetramethyldisiloxane, bis(p-aminophenyl)octamethylpentasiloxane, 2,7 -Diaminofluorene, 2,5-diaminopyridine, 1,2-bis(4-aminophenyl)ethane, diaminobenzanilide, ester of diaminobenzoic acid, 1,5-diaminonaphthalene, diaminobenzotrifluoride, 1,3- Bis(4-aminophenyl)hexafluoropropane, 1,4-bis(4-aminophenyl)octafluorobutane, 1,5-bis(4-aminophenyl)decafluoropentane, 1,7-bis(4-amino phenyl)tetradecafluoroheptane, 2,2-bis[4-(3-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis[4-(2-aminophenoxy)phenyl]hexafluoropropane, 2,2 -bis[4-(4-aminophenoxy)-3,5-dimethylphenyl]hexafluoropropane, 2,2-bis[4-(4-aminophenoxy)-3,5-bis(trifluoromethyl)phenyl] Hexafluoropropane, p-bis(4-amino-2-trifluoromethylphenoxy)benzene, 4,4'-bis(4-amino-2-trifluoromethylphenoxy)biphenyl, 4,4'-bis(4- Amino-3-trifluoromethylphenoxy)biphenyl, 4,4'-bis(4-amino-2-trifluoromethylphenoxy)diphenylsulfone, 4,4'-bis(3-amino-5-trifluoromethylphenoxy) diphenylsulfone, 2,2-bis[4-(4-amino-3-trifluoromethylphenoxy)phenyl]hexafluoropropane, 3,3',5,5'-tetramethyl-4,4'-diaminobiphenyl, selected from 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl, 2,2',5,5',6,6'-hexafluorotridine and 4,4'-diaminoquaterphenyl At least one type of diamine is mentioned.
 また、Y11が式(a)、式(b)及び式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基である場合、ジアミンとして以下の化合物を用いることが好ましい。また、これらの構造における水素原子は、ヒドロキシ基、炭化水素基等の公知の置換基により更に置換されていてもよい。
In addition, if Y 11 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by formula (a), formula (b), or formula (c), the following compounds may be used as the diamine. It is preferable to use Further, the hydrogen atoms in these structures may be further substituted with a known substituent such as a hydroxy group or a hydrocarbon group.
 また、国際公開第2017/038598号の段落0030~0031に記載のジアミン(DA-1)~(DA-18)も好ましい。 Also preferred are the diamines (DA-1) to (DA-18) described in paragraphs 0030 to 0031 of International Publication No. 2017/038598.
 また、国際公開第2017/038598号の段落0032~0034に記載の2つ以上のアルキレングリコール単位を主鎖にもつジアミンも好ましく用いられる。 In addition, diamines having two or more alkylene glycol units in the main chain described in paragraphs 0032 to 0034 of International Publication No. 2017/038598 are also preferably used.
 R111は、得られる有機膜の柔軟性の観点から、-Ar-L-Ar-で表されることが好ましい。但し、Arは、それぞれ独立に、芳香族基であり、Lは、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-又は-NHCO-、あるいは、上記の2つ以上の組み合わせからなる基である。Arは、フェニレン基が好ましく、Lは、フッ素原子で置換されていてもよい炭素数1又は2の脂肪族炭化水素基、-O-、-CO-、-S-又は-SO-が好ましい。ここでの脂肪族炭化水素基は、アルキレン基が好ましい。 R 111 is preferably represented by -Ar-L-Ar- from the viewpoint of flexibility of the resulting organic film. However, Ar is each independently an aromatic group, and L is an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-, -S- , -SO 2 -, -NHCO-, or a combination of two or more of the above. Ar is preferably a phenylene group, and L is preferably an aliphatic hydrocarbon group having 1 or 2 carbon atoms optionally substituted with a fluorine atom, -O-, -CO-, -S- or -SO 2 - . The aliphatic hydrocarbon group here is preferably an alkylene group.
 また、R111は、i線透過率の観点から、下記式(51)又は式(61)で表される2価の有機基であることが好ましい。特に、i線透過率、入手のし易さの観点から、式(61)で表される2価の有機基であることがより好ましい。
 式(51)

 式(51)中、R50~R57は、それぞれ独立に、水素原子、フッ素原子又は1価の有機基であり、R50~R57の少なくとも1つは、フッ素原子、メチル基又はトリフルオロメチル基であり、*はそれぞれ独立に、式(1-1)中の窒素原子との結合部位を表す。
 R50~R57の1価の有機基としては、炭素数1~10(好ましくは炭素数1~6)の無置換のアルキル基、炭素数1~10(好ましくは炭素数1~6)のフッ化アルキル基等が挙げられる。

 式(61)中、R58及びR59は、それぞれ独立に、フッ素原子、メチル基、又はトリフルオロメチル基であり、*はそれぞれ独立に、式(1-1)中の窒素原子との結合部位を表す。
 式(51)又は式(61)の構造を与えるジアミンとしては、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ビス(フルオロ)-4,4’-ジアミノビフェニル、4,4’-ジアミノオクタフルオロビフェニル等が挙げられる。これらは1種又は2種以上を組み合わせて用いてもよい。
Further, from the viewpoint of i-ray transmittance, R 111 is preferably a divalent organic group represented by the following formula (51) or formula (61). In particular, from the viewpoint of i-ray transmittance and availability, a divalent organic group represented by formula (61) is more preferable.
Formula (51)

In formula (51), R 50 to R 57 are each independently a hydrogen atom, a fluorine atom, or a monovalent organic group, and at least one of R 50 to R 57 is a fluorine atom, a methyl group, or a trifluoro It is a methyl group, and each * independently represents a bonding site with the nitrogen atom in formula (1-1).
The monovalent organic groups R 50 to R 57 include unsubstituted alkyl groups having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms), and unsubstituted alkyl groups having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms). Examples include fluorinated alkyl groups.

In formula (61), R 58 and R 59 each independently represent a fluorine atom, a methyl group, or a trifluoromethyl group, and * each independently represents a bond with the nitrogen atom in formula (1-1). Represents a part.
Examples of the diamine giving the structure of formula (51) or formula (61) include 2,2'-dimethylbenzidine, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'- Bis(fluoro)-4,4'-diaminobiphenyl, 4,4'-diaminoctafluorobiphenyl, and the like. These may be used alone or in combination of two or more.
 第一のポリイミド前駆体に含まれる全ての式(1-1)で表される繰返し単位のうち、Y11が式(a)、式(b)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基である繰返し単位の割合は、50~100mol%であることが好ましく、60~100mol%であることがより好ましく、70~100mol%であることが更に好ましい。 Among all repeating units represented by formula (1-1) contained in the first polyimide precursor, Y 11 is represented by formula (a), formula (b), or formula (c). The proportion of repeating units that are groups containing a structure in which two or more hydrogen atoms are removed is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and 70 to 100 mol%. is even more preferable.
 また、第一のポリイミド前駆体において、式(1-1)中、X11が、式(a)、式(b)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基であり、かつ、Y11が式(a)、式(b)または式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基であることも好ましい。 Further, in the first polyimide precursor, in formula (1-1), X 11 is two or more hydrogen atoms from a structure represented by formula (a), formula (b), or formula (c). A group containing a structure excluding the above, and a group containing a structure in which Y 11 excludes two or more hydrogen atoms from the structure represented by formula (a), formula (b), or formula (c). It is also preferable that
-R11及びR12
 式(1-1)におけるR11及びR12は、それぞれ独立に、水素原子又は1価の有機基を表す。1価の有機基としては、直鎖又は分岐のアルキル基、環状アルキル基、芳香族基、又はポリアルキレンオキシ基を含むことが好ましい。
 また、R11及びR12の少なくとも一方は重合性基を含む1価の有機基である。R11及びR12の両方が重合性基を含む1価の有機基である態様も、本発明の好ましい態様の1つである。
 重合性基としては、カチオン重合性基であってもよいが、ラジカル重合性基であることが好ましい。
 また、重合性基としては、エポキシ基、オキセタニル基、アルコキシメチル基、アシルオキシメチル基、メチロール基、ブロックイソシアネート基、エチレン性不飽和結合を含む基などが挙げられるが、エチレン性不飽和結合を含む基であることが好ましい。
 エチレン性不飽和結合を含む基は、ラジカル重合性基であることが好ましい。
 また、エチレン性不飽和結合を含む基としては、ビニル基、アリル基、イソアリル基、2-メチルアリル基、ビニル基と直接結合した芳香環を有する基(例えば、ビニルフェニル基など)、(メタ)アクリルアミド基、(メタ)アクリロイルオキシ基等が挙げられ、ビニルフェニル基、(メタ)アクリルアミド基、又は、(メタ)アクリロイルオキシ基が好ましく、(メタ)アクリルアミド基、又は、(メタ)アクリロイルオキシ基がより好ましい。
-R 11 and R 12 -
R 11 and R 12 in formula (1-1) each independently represent a hydrogen atom or a monovalent organic group. The monovalent organic group preferably includes a linear or branched alkyl group, a cyclic alkyl group, an aromatic group, or a polyalkyleneoxy group.
Furthermore, at least one of R 11 and R 12 is a monovalent organic group containing a polymerizable group. An embodiment in which both R 11 and R 12 are monovalent organic groups containing a polymerizable group is also one of the preferred embodiments of the present invention.
The polymerizable group may be a cationically polymerizable group, but preferably a radically polymerizable group.
Examples of polymerizable groups include epoxy groups, oxetanyl groups, alkoxymethyl groups, acyloxymethyl groups, methylol groups, blocked isocyanate groups, and groups containing ethylenically unsaturated bonds. It is preferable that it is a group.
The group containing an ethylenically unsaturated bond is preferably a radically polymerizable group.
Groups containing ethylenically unsaturated bonds include vinyl groups, allyl groups, isoallyl groups, 2-methylallyl groups, groups having an aromatic ring directly bonded to a vinyl group (for example, vinyl phenyl groups, etc.), (meth) Examples include an acrylamide group, a (meth)acryloyloxy group, a vinylphenyl group, a (meth)acrylamide group, or a (meth)acryloyloxy group, and a (meth)acrylamide group or a (meth)acryloyloxy group. More preferred.
 R11及びR12における重合性基を含む1価の有機基における重合性基の数は、1~10であることが好ましい。下限は、重合性基価を増加させる観点からは、2以上であることが好ましい。上限は、5以下であることが好ましく、3以下であることがより好ましい。また、重合性基を含む1価の有機基が、重合性基を2つ含む1価の有機基であることも、本発明の好ましい態様の1つである。重合性基を2つ以上含む場合、各重合性基は同一の構造であってもよいし、異なる構造であってもよい。
 特に、式(1-1)中、R11及びR12の少なくとも1つが重合性基を2つ以上含む1価の有機基である態様も、本発明の好ましい態様の一つである。
The number of polymerizable groups in the monovalent organic group containing a polymerizable group in R 11 and R 12 is preferably 1 to 10. The lower limit is preferably 2 or more from the viewpoint of increasing the polymerizable group value. The upper limit is preferably 5 or less, more preferably 3 or less. Further, it is also one of the preferred embodiments of the present invention that the monovalent organic group containing a polymerizable group is a monovalent organic group containing two polymerizable groups. When two or more polymerizable groups are included, each polymerizable group may have the same structure or different structures.
In particular, an embodiment in which at least one of R 11 and R 12 in formula (1-1) is a monovalent organic group containing two or more polymerizable groups is also one of the preferred embodiments of the present invention.
 R11及びR12における重合性基を含む1価の有機基は、下記式(R-1)で表される基であることが好ましい。

 式(R-1)中、LR1はn1+1価の連結基を表し、RR1は重合性基を表し、n1は1~10の整数を表し、*は式(1-1)中の酸素原子との結合部位を表す。
 式(R-1)中、LR1は炭化水素基、又は、炭化水素基と、-O-、-CO-、-S-、-SO-、及び-NR-よりなる群から選ばれた少なくとも1つの構造との組み合わせにより表される基が好ましく、炭化水素基がより好ましい。Rは水素原子又は1価の有機基であり、水素原子又は炭化水素基であることが好ましく、水素原子、アルキル基又はフェニル基であることがより好ましく、水素原子であることが更に好ましい。炭化水素基としては、脂肪族炭化水素基が好ましく、飽和脂肪族炭化水素基が好ましい。
 上記炭化水素基の炭素数は、2~20であることが好ましく、2~10であることがより好ましい。
The monovalent organic group containing a polymerizable group in R 11 and R 12 is preferably a group represented by the following formula (R-1).

In formula (R-1), L R1 represents an n1+1-valent linking group, R R1 represents a polymerizable group, n1 represents an integer from 1 to 10, and * represents an oxygen atom in formula (1-1). represents the binding site with
In formula (R-1), L R1 is selected from the group consisting of a hydrocarbon group, or a hydrocarbon group and -O-, -CO-, -S-, -SO 2 -, and -NR N -. A group represented by a combination with at least one structure is preferable, and a hydrocarbon group is more preferable. R N is a hydrogen atom or a monovalent organic group, preferably a hydrogen atom or a hydrocarbon group, more preferably a hydrogen atom, an alkyl group or a phenyl group, and even more preferably a hydrogen atom. As the hydrocarbon group, an aliphatic hydrocarbon group is preferable, and a saturated aliphatic hydrocarbon group is preferable.
The hydrocarbon group preferably has 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms.
 LR1の具体例を以下に示すが、本発明はこれに限定されるものではない。以下の構造中、*は式(R-1)中の*と同義であり、#はRR1との結合部位を表す。
Specific examples of L R1 are shown below, but the present invention is not limited thereto. In the following structure, * has the same meaning as * in formula (R-1), and # represents the binding site with R R1 .
 式(R-1)中、RR1は重合性基を表し、重合性基の好ましい態様は上述の通りである。 In formula (R-1), R R1 represents a polymerizable group, and preferred embodiments of the polymerizable group are as described above.
 式(R-1)中、n1は2~10の整数であることが好ましく、2~5の整数であることがより好ましく、2又は3であることが更に好ましい。また、2である態様も本発明の好ましい態様の一つである。 In formula (R-1), n1 is preferably an integer of 2 to 10, more preferably an integer of 2 to 5, and even more preferably 2 or 3. Further, the embodiment 2 is also one of the preferred embodiments of the present invention.
 式(R-1)の式量は、100~1,000であることが好ましく、150~800であることがより好ましく、200~500であることが更に好ましい。 The formula weight of formula (R-1) is preferably 100 to 1,000, more preferably 150 to 800, even more preferably 200 to 500.
 また、R11及びR12における重合性基を含む1価の有機基は、下記式(III)で表される基であってもよい。 Further, the monovalent organic group containing a polymerizable group in R 11 and R 12 may be a group represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 式(III)において、R200は、水素原子、メチル基、エチル基又はメチロール基を表し、水素原子又はメチル基が好ましい。
 式(III)において、*は他の構造との結合部位を表す。
 式(III)において、R201は、炭素数2~12のアルキレン基、-CHCH(OH)CH-、シクロアルキレン基又はポリアルキレンオキシ基を表す。
 好適なR201の例は、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、ドデカメチレン基等のアルキレン基、1,2-ブタンジイル基、1,3-ブタンジイル基、-CHCH(OH)CH-、ポリアルキレンオキシ基が挙げられ、エチレン基、プロピレン基等のアルキレン基、-CHCH(OH)CH-、シクロヘキシル基、ポリアルキレンオキシ基がより好ましく、エチレン基、プロピレン基等のアルキレン基、又はポリアルキレンオキシ基が更に好ましい。ポリアルキレンオキシ基としては、ポリエチレンオキシ基又はポリプロピレンオキシ基が好ましく、ポリエチレンオキシ基がより好ましい。
In formula (III), R 200 represents a hydrogen atom, a methyl group, an ethyl group, or a methylol group, and preferably a hydrogen atom or a methyl group.
In formula (III), * represents a bonding site with another structure.
In formula (III), R 201 represents an alkylene group having 2 to 12 carbon atoms, -CH 2 CH(OH)CH 2 -, a cycloalkylene group or a polyalkyleneoxy group.
Suitable examples of R 201 include alkylene groups such as ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, octamethylene group, and dodecamethylene group, 1,2-butanediyl group, 1, Examples include 3-butanediyl group, -CH 2 CH(OH)CH 2 -, polyalkyleneoxy group, alkylene groups such as ethylene group and propylene group, -CH 2 CH(OH)CH 2 -, cyclohexyl group, polyalkylene group. An oxy group is more preferred, and an alkylene group such as an ethylene group or a propylene group, or a polyalkyleneoxy group is even more preferred. As the polyalkyleneoxy group, a polyethyleneoxy group or a polypropyleneoxy group is preferable, and a polyethyleneoxy group is more preferable.
 式(1-1)において、R11が水素原子である場合、又は、R12が水素原子である場合、ポリイミド前駆体はエチレン性不飽和結合を有する3級アミン化合物と対塩を形成していてもよい。このようなエチレン性不飽和結合を有する3級アミン化合物の例としては、N,N-ジメチルアミノプロピルメタクリレートが挙げられる。 In formula (1-1), when R 11 is a hydrogen atom or when R 12 is a hydrogen atom, the polyimide precursor forms a counter salt with a tertiary amine compound having an ethylenically unsaturated bond. It's okay. An example of a tertiary amine compound having such an ethylenically unsaturated bond is N,N-dimethylaminopropyl methacrylate.
 耐薬品性を向上する観点からは、第一のポリイミド前駆体における全てのR11及びR12のうち、重合性基を2つ以上含む1価の有機基であるR11及びR12の割合は、50モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましい。上限は特に限定されず、100モル%であってもよい。
 耐薬品性を向上する第一のポリイミド前駆体における全てのR11及びR12のうち、重合性基を1個以上含む1価の有機基であるR11及びR12の割合は、60モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましい。上限は特に限定されず、100モル%であってもよい。
 また、第一のポリイミド前駆体における、重合性基を含む1価の有機基であるR11及びR12のうち重合性基を2つ以上含む1価の有機基であるR11及びR12の割合は、60モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましい。上限は特に限定されず、100モル%であってもよい。
From the viewpoint of improving chemical resistance, the proportion of R 11 and R 12 , which are monovalent organic groups containing two or more polymerizable groups, among all R 11 and R 12 in the first polyimide precursor is , is preferably 50 mol% or more, more preferably 70 mol% or more, and even more preferably 80 mol% or more. The upper limit is not particularly limited and may be 100 mol%.
Among all R 11 and R 12 in the first polyimide precursor that improves chemical resistance, the proportion of R 11 and R 12 , which are monovalent organic groups containing one or more polymerizable groups, is 60 mol%. It is preferably at least 70 mol%, more preferably at least 80 mol%. The upper limit is not particularly limited and may be 100 mol%.
Moreover, among R 11 and R 12 which are monovalent organic groups containing a polymerizable group in the first polyimide precursor, R 11 and R 12 which are monovalent organic groups containing two or more polymerizable groups The proportion is preferably 60 mol% or more, more preferably 70 mol% or more, and even more preferably 80 mol% or more. The upper limit is not particularly limited and may be 100 mol%.
 第一のポリイミド前駆体に含まれる全繰返し単位に対する、式(1-1)で表される繰返し単位の含有量は、50~100mol%であることが好ましく、60~100mol%であることがより好ましく、70~100mol%であることが更に好ましい。
 第一のポリイミド前駆体の全質量に対する、式(1-1)で表される繰返し単位の含有量は、60~100質量%であることが好ましく、70~100質量%であることがより好ましく、80~100質量%であることが更に好ましい。
The content of the repeating unit represented by formula (1-1) with respect to all repeating units contained in the first polyimide precursor is preferably 50 to 100 mol%, more preferably 60 to 100 mol%. It is preferably 70 to 100 mol%, more preferably 70 to 100 mol%.
The content of the repeating unit represented by formula (1-1) with respect to the total mass of the first polyimide precursor is preferably 60 to 100% by mass, more preferably 70 to 100% by mass. , more preferably 80 to 100% by mass.
 第一のポリイミド前駆体は式(1-1)とは異なる繰返し単位(他の繰返し単位)を含んでもよい。
 他の繰返し単位としては、下記式(2)で表される繰返し単位が挙げられる。

 式(2)中、Xは上述の式(a)、式(b)及び式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基とは異なる4価の連結基を表し、Yは上述の式(a)、式(b)及び式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基とは異なる2価の連結基を表し、RA1及びRA2はそれぞれ独立に、水素原子、又は1価の有機基である。
 式(2)中、Xの好ましい態様は、上述の式(1-1)におけるX11が式(a)、式(b)及び式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基とは異なる4価の連結基である場合の好ましい態様と同様である。
 式(2)中、Yの好ましい態様は、上述の式(1-1)におけるX11が式(a)、式(b)及び式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基とは異なる2価の連結基である場合の好ましい態様と同様である。
 式(2)中、RA1及びRA2の好ましい態様は、それぞれ、上述の式(1-1)におけるR11及びR12の好ましい態様と同様である。ただし、R11及びR12のいずれもが重合性基を含む1価の有機基ではない構造であってもよい。
The first polyimide precursor may include a repeating unit different from that of formula (1-1) (another repeating unit).
Other repeating units include a repeating unit represented by the following formula (2).

In formula (2 ) , represents a valent linking group, and Y A is different from a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by any of the above formulas (a), (b), and (c). It represents a divalent linking group, and R A1 and R A2 are each independently a hydrogen atom or a monovalent organic group.
In formula (2), a preferred embodiment of X A is such that in formula (1-1) above, X 11 is two or more from the structure represented by any of formula (a), formula (b), and formula (c). This is the same as the preferred embodiment in the case where it is a tetravalent linking group different from a group containing a structure excluding a hydrogen atom.
In formula (2), a preferred embodiment of Y A is such that X 11 in the above formula (1-1) is two or more from the structure represented by any one of formula (a), formula (b), and formula (c). This is the same as the preferred embodiment in the case where it is a divalent linking group different from a group containing a structure excluding a hydrogen atom.
In formula (2), preferred embodiments of R A1 and R A2 are the same as the preferred embodiments of R 11 and R 12 in the above-mentioned formula (1-1), respectively. However, the structure may be such that neither R 11 nor R 12 is a monovalent organic group containing a polymerizable group.
 第一のポリイミド前駆体に含まれる全繰返し単位に対する、式(2)で表される繰返し単位の含有量は、40mol%以下であることが好ましく、30mol%以下であることがより好ましく、20mol%以下であることが更に好ましい。上記含有量の下限は特に限定されず、0mol%であってもよい。
 第一のポリイミド前駆体の全質量に対する、式(2)で表される繰返し単位の含有量は、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが更に好ましい。上記含有量の下限は特に限定されず、0質量%であってもよい。
 第一のポリイミド前駆体に含まれる全繰返し単位に対する、式(1-1)で表される繰返し単位と、式(2)で表される繰返し単位との合計含有量は、70mol%以上であることが好ましく、80mol%以上であることがより好ましく、90mol%以上であることが更に好ましい。上記含有量の上限は特に限定されず、100mol%であってもよい。
 第一のポリイミド前駆体の全質量に対する、式(1-1)で表される繰返し単位と、式(2)で表される繰返し単位との合計含有量は、70質量%以上であることが好ましく、80質量%以下であることがより好ましく、90質量%以下であることが更に好ましい。上記含有量の上限は特に限定されず、100質量%であってもよい。
The content of the repeating unit represented by formula (2) with respect to all repeating units contained in the first polyimide precursor is preferably 40 mol% or less, more preferably 30 mol% or less, and 20 mol% It is more preferable that it is the following. The lower limit of the above content is not particularly limited, and may be 0 mol%.
The content of the repeating unit represented by formula (2) with respect to the total mass of the first polyimide precursor is preferably 40% by mass or less, more preferably 30% by mass or less, and 20% by mass. It is more preferable that it is the following. The lower limit of the content is not particularly limited, and may be 0% by mass.
The total content of repeating units represented by formula (1-1) and repeating units represented by formula (2) with respect to all repeating units contained in the first polyimide precursor is 70 mol% or more. It is preferably at least 80 mol%, more preferably at least 90 mol%. The upper limit of the content is not particularly limited, and may be 100 mol%.
The total content of the repeating unit represented by formula (1-1) and the repeating unit represented by formula (2) with respect to the total mass of the first polyimide precursor may be 70% by mass or more. It is preferably 80% by mass or less, more preferably 90% by mass or less. The upper limit of the content is not particularly limited, and may be 100% by mass.
〔式(1-2)で表される繰返し単位〕
 第二の樹脂組成物は、下記式(1-2)で表される繰返し単位の含有量が、ポリイミド前駆体の全質量に対して90質量%以上であり、かつ、重合性基の含有量が2mmol/g以上であるポリイミド前駆体(第二のポリイミド前駆体)を含む。

 式(1-2)中、X21は、下記式(a)、式(b)若しくは式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基、又は、4価の連結基を表し、Y21は、下記式(a)、式(b)若しくは式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基、又は、2価の連結基を表し、X21及びY21の少なくとも一方は式(a)、式(b)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基であり、R21及びR22はそれぞれ独立に、水素原子、又は1価の有機基であり、ポリイミド前駆体に含まれる全てのR21及びR22のうち、重合性基を2つ以上含む1価の有機基であるR21及びR22の割合が、50モル%以上である。
 式(a)中、X及びXはそれぞれ独立に、水素原子、又は、ハロゲン原子により置換されていてもよいアルキル基であり、式(c)中、R及びRはそれぞれ独立に、水素原子又は1価の置換基を表し、RとRが結合して環構造を形成してもよい。
[Repeating unit expressed by formula (1-2)]
The content of the repeating unit represented by the following formula (1-2) in the second resin composition is 90% by mass or more based on the total mass of the polyimide precursor, and the content of the polymerizable group is 2 mmol/g or more (second polyimide precursor).

In formula ( 1-2 ), , represents a tetravalent linking group, and Y21 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by any of the following formulas (a), (b), or (c), Alternatively, it represents a divalent linking group, and at least one of X 21 and Y 21 has two or more hydrogen atoms removed from the structure represented by formula (a), formula (b), or formula (c). R 21 and R 22 are each independently a hydrogen atom or a monovalent organic group, and out of all R 21 and R 22 contained in the polyimide precursor, 2 polymerizable groups are The proportion of R 21 and R 22 , which are monovalent organic groups containing at least one group, is 50 mol% or more.
In formula (a), X 1 and X 2 are each independently a hydrogen atom or an alkyl group optionally substituted with a halogen atom, and in formula (c), R 1 and R 2 are each independently , represents a hydrogen atom or a monovalent substituent, and R 1 and R 2 may be combined to form a ring structure.
 式(1-2)中、X21、Y21、R21及びR22の好ましい態様は、式(1-1)中のX11、Y11、R11及びR12の好ましい態様と同様である。 In formula (1-2), preferred embodiments of X 21 , Y 21 , R 21 and R 22 are the same as preferred embodiments of X 11 , Y 11 , R 11 and R 12 in formula (1-1). .
 第二のポリイミド前駆体における全てのR21及びR22のうち、重合性基を2つ以上含む1価の有機基であるR21及びR22の割合は、50モル%以上であり、60モル%以上であることが好ましく、70モル%以上であることがより好ましい。上限は特に限定されず、100モル%であってもよい。
 第二のポリイミド前駆体における全てのR21及びR22のうち、重合性基を1個以上含む1価の有機基であるR21及びR22の割合は、50モル%以上であることが好ましく、60モル%以上であることがより好ましく、80モル%以上であることが更に好ましい。上限は特に限定されず、100モル%であってもよい。
 また、第二のポリイミド前駆体における、重合性基を含む1価の有機基であるR21及びR22のうち重合性基を2つ以上含む1価の有機基であるR21及びR22の割合は、50モル%以上であることが好ましく、60モル%以上であることがより好ましく、80モル%以上であることが更に好ましい。上限は特に限定されず、100モル%であってもよい。
Among all R21 and R22 in the second polyimide precursor, the proportion of R21 and R22 , which are monovalent organic groups containing two or more polymerizable groups, is 50 mol% or more, and 60 mol%. % or more, more preferably 70 mol% or more. The upper limit is not particularly limited and may be 100 mol%.
Among all R 21 and R 22 in the second polyimide precursor, the proportion of R 21 and R 22 , which are monovalent organic groups containing one or more polymerizable groups, is preferably 50 mol% or more. , more preferably 60 mol% or more, and still more preferably 80 mol% or more. The upper limit is not particularly limited and may be 100 mol%.
Furthermore, among R 21 and R 22 which are monovalent organic groups containing a polymerizable group in the second polyimide precursor, R 21 and R 22 which are monovalent organic groups containing two or more polymerizable groups The proportion is preferably 50 mol% or more, more preferably 60 mol% or more, and even more preferably 80 mol% or more. The upper limit is not particularly limited and may be 100 mol%.
 第二のポリイミド前駆体に含まれる全繰返し単位に対する、式(1-2)で表される繰返し単位の含有量は、80~100mol%であることが好ましく、85~100mol%であることがより好ましく、90~100mol%であることが更に好ましい。
 第二のポリイミド前駆体の全質量に対する、式(1-2)で表される繰返し単位の含有量は、90質量%以上であり、92質量%以上であることが好ましく、95質量%以上であることが更に好ましい。上限は特に限定されず、100質量%であってもよい。
The content of the repeating unit represented by formula (1-2) with respect to all repeating units contained in the second polyimide precursor is preferably 80 to 100 mol%, more preferably 85 to 100 mol%. It is preferably 90 to 100 mol%, more preferably 90 to 100 mol%.
The content of the repeating unit represented by formula (1-2) with respect to the total mass of the second polyimide precursor is 90% by mass or more, preferably 92% by mass or more, and 95% by mass or more. It is even more preferable that there be. The upper limit is not particularly limited and may be 100% by mass.
 第二のポリイミド前駆体は式(1-2)とは異なる繰返し単位(他の繰返し単位)を含んでもよい。
 他の繰返し単位としては、上述の式(2)で表される繰返し単位が挙げられる。
The second polyimide precursor may contain a repeating unit different from that of formula (1-2) (another repeating unit).
Other repeating units include the repeating unit represented by the above formula (2).
 第二のポリイミド前駆体に含まれる全繰返し単位に対する、式(2)で表される繰返し単位の含有量は、10mol%以下であることが好ましく、8mol%以下であることがより好ましく、5mol%以下であることが更に好ましい。上記含有量の下限は特に限定されず、0mol%であってもよい。
 第二のポリイミド前駆体の全質量に対する、式(2)で表される繰返し単位の含有量は、10質量%以下であることが好ましく、8質量%以下であることがより好ましく、5質量%以下であることが更に好ましい。上記含有量の下限は特に限定されず、0質量%であってもよい。
 第二のポリイミド前駆体に含まれる全繰返し単位に対する、式(1-2)で表される繰返し単位と、式(2)で表される繰返し単位との合計含有量は、90mol%以上であることが好ましく、95mol%以上であることがより好ましく、98mol%以上であることが更に好ましい。上記含有量の上限は特に限定されず、100mol%であってもよい。
 第二のポリイミド前駆体の全質量に対する、式(1-2)で表される繰返し単位と、式(2)で表される繰返し単位との合計含有量は、90質量%以上であることが好ましく、92質量%以下であることがより好ましく、95質量%以下であることが更に好ましい。上記含有量の上限は特に限定されず、100質量%であってもよい。
The content of the repeating unit represented by formula (2) with respect to all repeating units contained in the second polyimide precursor is preferably 10 mol% or less, more preferably 8 mol% or less, and 5 mol% It is more preferable that it is the following. The lower limit of the above content is not particularly limited, and may be 0 mol%.
The content of the repeating unit represented by formula (2) with respect to the total mass of the second polyimide precursor is preferably 10% by mass or less, more preferably 8% by mass or less, and 5% by mass. It is more preferable that it is the following. The lower limit of the content is not particularly limited, and may be 0% by mass.
The total content of the repeating unit represented by formula (1-2) and the repeating unit represented by formula (2) with respect to all repeating units contained in the second polyimide precursor is 90 mol% or more It is preferably 95 mol% or more, more preferably 98 mol% or more. The upper limit of the content is not particularly limited, and may be 100 mol%.
The total content of the repeating unit represented by formula (1-2) and the repeating unit represented by formula (2) with respect to the total mass of the second polyimide precursor may be 90% by mass or more. It is preferably 92% by mass or less, more preferably 95% by mass or less. The upper limit of the content is not particularly limited, and may be 100% by mass.
-重合性基価-
 ポリイミド前駆体における重合性基の含有量(以下、「重合性基価」ともいう)は、2mmol/g以上であり、2.2mmol/g以上であることが好ましく、2.5mmol/g以上であることがより好ましい。上限は特に限定されないが、4.0mmol/g以下であることが好ましい。
 ポリイミド前駆体における重合性基の含有量は、ポリイミド前駆体の数平均分子量に対する、ポリイミド前駆体に含まれる重合性基のモル量の割合として算出される。
-Polymerizable group value-
The content of polymerizable groups in the polyimide precursor (hereinafter also referred to as "polymerizable group value") is 2 mmol/g or more, preferably 2.2 mmol/g or more, and 2.5 mmol/g or more. It is more preferable that there be. Although the upper limit is not particularly limited, it is preferably 4.0 mmol/g or less.
The content of polymerizable groups in the polyimide precursor is calculated as the ratio of the molar amount of the polymerizable groups contained in the polyimide precursor to the number average molecular weight of the polyimide precursor.
-アミド価-
 第一のポリイミド前駆体におけるアミド結合の含有量(以下、「アミド価」ともいう)は1.5mmol/g以下である。
 第二のポリイミド前駆体におけるアミド価は、1.5mmol/g以下であることが好ましい。
 ポリイミド前駆体のアミド価は、1.48mmol/g以下であることがより好ましく、1.46mmol/g以下であることが更に好ましい。下限は特に限定されないが、破断伸び等の観点からは、1.0mmol/g以上であることが好ましい。
 本発明において、アミド結合とは、*-NR-C(=O)-*で表される結合であり、*はそれぞれ炭素原子との結合部位を表し、Rはそれぞれ独立に、水素原子又は1価の有機基を表し、*はそれぞれ、炭素原子との結合部位を表す。
 *はそれぞれ炭化水素基との結合部位であることが好ましい。
 Rの好ましい態様は上述の通りである。
 ポリイミド前駆体におけるアミド結合の含有量は、ポリイミド前駆体の数平均分子量に対する、ポリイミド前駆体に含まれるアミド結合のモル量の割合として算出される。
-Amide value-
The content of amide bonds (hereinafter also referred to as "amide value") in the first polyimide precursor is 1.5 mmol/g or less.
The amide value of the second polyimide precursor is preferably 1.5 mmol/g or less.
The amide value of the polyimide precursor is more preferably 1.48 mmol/g or less, and even more preferably 1.46 mmol/g or less. The lower limit is not particularly limited, but from the viewpoint of elongation at break, etc., it is preferably 1.0 mmol/g or more.
In the present invention, an amide bond is a bond represented by *-NR N -C(=O)-*, where * each represents a bonding site with a carbon atom, and R N each independently represents a hydrogen atom. or represents a monovalent organic group, and each * represents a bonding site with a carbon atom.
Each * is preferably a bonding site with a hydrocarbon group.
Preferred embodiments of R N are as described above.
The content of amide bonds in the polyimide precursor is calculated as the ratio of the molar amount of amide bonds contained in the polyimide precursor to the number average molecular weight of the polyimide precursor.
 ポリイミド前駆体の重量平均分子量(Mw)は、5,000~100,000が好ましく、10,000~50,000がより好ましく、15,000~40,000が更に好ましい。ポリイミド前駆体の数平均分子量(Mn)は、2,000~40,000が好ましく、3,000~30,000がより好ましく、4,000~20,000が更に好ましい。
 上記ポリイミド前駆体の分子量の分散度は、1.5以上が好ましく、1.8以上がより好ましく、2.0以上であることが更に好ましい。ポリイミド前駆体の分子量の分散度の上限値は特に定めるものではないが、例えば、7.0以下が好ましく、6.5以下がより好ましく、6.0以下が更に好ましい。
 本明細書において、分子量の分散度とは、重量平均分子量/数平均分子量により算出される値である。
 樹脂組成物が特定樹脂として複数種のポリイミド前駆体を含む場合、少なくとも1種のポリイミド前駆体の重量平均分子量、数平均分子量、及び、分散度が上記範囲であることが好ましい。また、上記複数種のポリイミド前駆体を1つの樹脂として算出した重量平均分子量、数平均分子量、及び、分散度が、それぞれ、上記範囲内であることも好ましい。
The weight average molecular weight (Mw) of the polyimide precursor is preferably 5,000 to 100,000, more preferably 10,000 to 50,000, even more preferably 15,000 to 40,000. The number average molecular weight (Mn) of the polyimide precursor is preferably 2,000 to 40,000, more preferably 3,000 to 30,000, and even more preferably 4,000 to 20,000.
The molecular weight dispersity of the polyimide precursor is preferably 1.5 or more, more preferably 1.8 or more, and even more preferably 2.0 or more. Although the upper limit of the degree of molecular weight dispersion of the polyimide precursor is not particularly determined, for example, it is preferably 7.0 or less, more preferably 6.5 or less, and even more preferably 6.0 or less.
In this specification, the molecular weight dispersity is a value calculated from weight average molecular weight/number average molecular weight.
When the resin composition contains multiple types of polyimide precursors as the specific resin, it is preferable that the weight average molecular weight, number average molecular weight, and degree of dispersion of at least one type of polyimide precursor are within the above ranges. Further, it is also preferable that the weight average molecular weight, number average molecular weight, and degree of dispersion calculated from the plurality of types of polyimide precursors as one resin are each within the above ranges.
〔ポリイミド前駆体等の製造方法〕
 ポリイミド前駆体等は、例えば、低温中でテトラカルボン酸二無水物とジアミンを反応させる方法、低温中でテトラカルボン酸二無水物とジアミンを反応させてポリアミック酸を得、縮合剤又はアルキル化剤を用いてエステル化する方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得て、その後ジアミンと縮合剤の存在下で反応させる方法、テトラカルボン酸二無水物とアルコール(例えば、重合性基を2個以上有するアルコール)とによりジエステルを得、その後残りのジカルボン酸をハロゲン化剤を用いて酸ハロゲン化し、ジアミンと反応させる方法、などの方法を利用して得ることができる。上記製造方法のうち、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後残りのジカルボン酸をハロゲン化剤を用いて酸ハロゲン化し、ジアミンと反応させる方法がより好ましい。
 上記縮合剤としては、例えばジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、1-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキノリン、1,1-カルボニルジオキシ-ジ-1,2,3-ベンゾトリアゾール、N,N’-ジスクシンイミジルカーボネート、無水トリフルオロ酢酸等が挙げられる。
 上記アルキル化剤としては、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジアルキルホルムアミドジアルキルアセタール、オルトギ酸トリメチル、オルトギ酸トリエチル等が挙げられる。
 上記ハロゲン化剤としては、塩化チオニル、塩化オキサリル、オキシ塩化リン等が挙げられる。
 ポリイミド前駆体等の製造方法では、反応に際し、有機溶剤を用いることが好ましい。有機溶剤は1種でもよいし、2種以上でもよい。
 有機溶剤としては、原料に応じて適宜定めることができるが、ピリジン、ジエチレングリコールジメチルエーテル(ジグリム)、N-メチルピロリドン、N-エチルピロリドン、プロピオン酸エチル、ジメチルアセトアミド、ジメチルホルムアミド、テトラヒドロフラン、γ-ブチロラクトン等が例示される。
 ポリイミド前駆体等の製造方法では、反応に際し、塩基性化合物を添加することが好ましい。塩基性化合物は1種でもよいし、2種以上でもよい。
 塩基性化合物は、原料に応じて適宜定めることができるが、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、N,N-ジメチル-4-アミノピリジン等が例示される。
[Method for producing polyimide precursor, etc.]
For example, polyimide precursors can be obtained by reacting tetracarboxylic dianhydride and diamine at low temperature, by reacting tetracarboxylic dianhydride and diamine at low temperature to obtain polyamic acid, and by using a condensing agent or an alkylating agent. A method in which a diester is obtained by using a tetracarboxylic dianhydride and an alcohol, and a method in which the diester is obtained by subsequently reacting with a diamine in the presence of a condensing agent. (alcohol having two or more of) to obtain a diester, and then the remaining dicarboxylic acid is acid halogenated using a halogenating agent and reacted with a diamine. Among the above production methods, a method in which a diester is obtained from a tetracarboxylic dianhydride and an alcohol, and then the remaining dicarboxylic acid is acid-halogenated using a halogenating agent and reacted with a diamine is more preferable.
Examples of the condensing agent include dicyclohexylcarbodiimide, diisopropylcarbodiimide, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, 1,1-carbonyldioxy-di-1,2,3-benzotriazole, N, Examples include N'-disuccinimidyl carbonate and trifluoroacetic anhydride.
Examples of the alkylating agent include N,N-dimethylformamide dimethyl acetal, N,N-dimethylformamide diethyl acetal, N,N-dialkylformamide dialkyl acetal, trimethyl orthoformate, and triethyl orthoformate.
Examples of the halogenating agent include thionyl chloride, oxalyl chloride, phosphorus oxychloride, and the like.
In the method for producing polyimide precursors, etc., it is preferable to use an organic solvent during the reaction. The number of organic solvents may be one or two or more.
The organic solvent can be determined as appropriate depending on the raw material, and examples include pyridine, diethylene glycol dimethyl ether (diglyme), N-methylpyrrolidone, N-ethylpyrrolidone, ethyl propionate, dimethylacetamide, dimethylformamide, tetrahydrofuran, γ-butyrolactone, etc. is exemplified.
In the method for producing polyimide precursors, etc., it is preferable to add a basic compound during the reaction. The number of basic compounds may be one or two or more.
The basic compound can be determined as appropriate depending on the raw material, but triethylamine, diisopropylethylamine, pyridine, 1,8-diazabicyclo[5.4.0]undec-7-ene, N,N-dimethyl-4-amino Examples include pyridine.
-末端封止剤-
 ポリイミド前駆体等の製造方法に際し、保存安定性をより向上させるため、ポリイミド前駆体等の樹脂末端に残存するカルボン酸無水物、酸無水物誘導体、或いは、アミノ基を封止することが好ましい。樹脂末端に残存するカルボン酸無水物、及び酸無水物誘導体を封止する際、末端封止剤としては、モノアルコール、フェノール、チオール、チオフェノール、モノアミン等が挙げられ、反応性、膜の安定性から、モノアルコール、フェノール類やモノアミンを用いることがより好ましい。モノアルコールの好ましい化合物としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、オクタノール、ドデシノール、ベンジルアルコール、2-フェニルエタノール、2-メトキシエタノール、2-クロロメタノール、フルフリルアルコール等の1級アルコール、イソプロパノール、2-ブタノール、シクロヘキシルアルコール、シクロペンタノール、1-メトキシ-2-プロパノール等の2級アルコール、t-ブチルアルコール、アダマンタンアルコール等の3級アルコールが挙げられる。フェノール類の好ましい化合物としては、フェノール、メトキシフェノール、メチルフェノール、ナフタレン-1-オール、ナフタレン-2-オール、ヒドロキシスチレン等のフェノール類などが挙げられる。また、モノアミンの好ましい化合物としては、アニリン、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどが挙げられる。これらを2種以上用いてもよく、複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。
 また、樹脂末端のアミノ基を封止する際、アミノ基と反応可能な官能基を有する化合物で封止することが可能である。アミノ基に対する好ましい封止剤は、カルボン酸無水物、カルボン酸クロリド、カルボン酸ブロミド、スルホン酸クロリド、無水スルホン酸、スルホン酸カルボン酸無水物などが好ましく、カルボン酸無水物、カルボン酸クロリドがより好ましい。カルボン酸無水物の好ましい化合物としては、無水酢酸、無水プロピオン酸、無水シュウ酸、無水コハク酸、無水マレイン酸、無水フタル酸、無水安息香酸、5-ノルボルネン-2,3-ジカルボン酸無水物などが挙げられる。また、カルボン酸クロリドの好ましい化合物としては、塩化アセチル、アクリル酸クロリド、プロピオニルクロリド、メタクリル酸クロリド、ピバロイルクロリド、シクロヘキサンカルボニルクロリド、2-エチルヘキサノイルクロリド、シンナモイルクロリド、1-アダマンタンカルボニルクロリド、ヘプタフルオロブチリルクロリド、ステアリン酸クロリド、ベンゾイルクロリド、などが挙げられる。
-Terminal sealing agent-
In the production method of polyimide precursors, etc., in order to further improve storage stability, it is preferable to seal the carboxylic acid anhydride, acid anhydride derivative, or amino group remaining at the end of the resin such as the polyimide precursor. When sealing carboxylic acid anhydride and acid anhydride derivatives remaining at the end of the resin, examples of the terminal capping agent include monoalcohol, phenol, thiol, thiophenol, monoamine, etc. From the viewpoint of properties, it is more preferable to use monoalcohols, phenols, and monoamines. Preferred monoalcohol compounds include primary alcohols such as methanol, ethanol, propanol, butanol, hexanol, octanol, dodecinol, benzyl alcohol, 2-phenylethanol, 2-methoxyethanol, 2-chloromethanol, furfuryl alcohol, and isopropanol. , 2-butanol, cyclohexyl alcohol, cyclopentanol, secondary alcohols such as 1-methoxy-2-propanol, and tertiary alcohols such as t-butyl alcohol and adamantane alcohol. Preferred phenolic compounds include phenols such as phenol, methoxyphenol, methylphenol, naphthalen-1-ol, naphthalen-2-ol, and hydroxystyrene. Preferred monoamine compounds include aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6- Aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1- Carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy-5-amino Naphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzenesulfonic acid, 3-aminobenzenesulfonic acid, 4 -Aminobenzenesulfonic acid, 3-amino-4,6-dihydroxypyrimidine, 2-aminophenol, 3-aminophenol, 4-aminophenol, 2-aminothiophenol, 3-aminothiophenol, 4-aminothiophenol, etc. can be mentioned. Two or more types of these may be used, and a plurality of different terminal groups may be introduced by reacting a plurality of terminal capping agents.
Furthermore, when sealing the amino group at the end of the resin, it is possible to seal with a compound having a functional group that can react with the amino group. Preferred sealing agents for amino groups include carboxylic acid anhydrides, carboxylic acid chlorides, carboxylic acid bromides, sulfonic acid chlorides, sulfonic anhydrides, and sulfonic acid carboxylic acid anhydrides, with carboxylic acid anhydrides and carboxylic acid chlorides being more preferred. preferable. Preferred carboxylic anhydride compounds include acetic anhydride, propionic anhydride, oxalic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, and the like. can be mentioned. Preferred carboxylic acid chloride compounds include acetyl chloride, acrylic acid chloride, propionyl chloride, methacrylic acid chloride, pivaloyl chloride, cyclohexane carbonyl chloride, 2-ethylhexanoyl chloride, cinnamoyl chloride, and 1-adamantane carbonyl chloride. , heptafluorobutyryl chloride, stearic acid chloride, benzoyl chloride, and the like.
-固体析出-
 ポリイミド前駆体等の製造方法に際し、固体を析出する工程を含んでいてもよい。具体的には、反応液中に共存している脱水縮合剤の吸水副生物を必要に応じて濾別した後、水、脂肪族低級アルコール、又はその混合液等の貧溶媒に、得られた重合体成分を投入し、重合体成分を析出させることで、固体として析出させ、乾燥させることでポリイミド前駆体等を得ることができる。精製度を向上させるために、ポリイミド前駆体等を再溶解、再沈析出、乾燥等の操作を繰返してもよい。さらに、イオン交換樹脂を用いてイオン性不純物を除去する工程を含んでいてもよい。
-Solid precipitation-
The method for producing a polyimide precursor or the like may include a step of precipitating a solid. Specifically, after filtering off the water-absorbed by-products of the dehydration condensation agent coexisting in the reaction solution, the obtained product is added to a poor solvent such as water, aliphatic lower alcohol, or a mixture thereof. By introducing a polymer component and precipitating the polymer component, a polyimide precursor or the like can be obtained by depositing the polymer component as a solid and drying it. In order to improve the degree of purification, operations such as redissolving the polyimide precursor, reprecipitation, drying, etc. may be repeated. Furthermore, the method may include a step of removing ionic impurities using an ion exchange resin.
〔具体例〕
 特定樹脂の具体例としては、後述する実施例におけるSP-1~SP-15等が挙げられるが、本発明はこれに限定されるものではない。
〔Concrete example〕
Specific examples of the specific resin include SP-1 to SP-15 in Examples described below, but the present invention is not limited thereto.
〔含有量〕
 本発明の樹脂組成物における特定樹脂の含有量は、樹脂組成物の全固形分に対し20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることが更に好ましく、50質量%以上であることが一層好ましい。また、本発明の樹脂組成物における樹脂の含有量は、樹脂組成物の全固形分に対し、99.5質量%以下であることが好ましく、99質量%以下であることがより好ましく、98質量%以下であることが更に好ましく、97質量%以下であることが一層好ましく、95質量%以下であることがより一層好ましい。
 本発明の樹脂組成物は、特定樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
〔Content〕
The content of the specific resin in the resin composition of the present invention is preferably 20% by mass or more, more preferably 30% by mass or more, and 40% by mass or more based on the total solid content of the resin composition. It is even more preferable that the amount is 50% by mass or more. Further, the content of the resin in the resin composition of the present invention is preferably 99.5% by mass or less, more preferably 99% by mass or less, and 98% by mass or less based on the total solid content of the resin composition. % or less, even more preferably 97% by mass or less, even more preferably 95% by mass or less.
The resin composition of the present invention may contain only one type of specific resin, or may contain two or more types of specific resin. When two or more types are included, it is preferable that the total amount falls within the above range.
 本発明の樹脂組成物は、少なくとも2種の樹脂を含むことも好ましい。
 具体的には、本発明の樹脂組成物は、特定樹脂と、後述する他の樹脂とを合計で2種以上含んでもよいし、特定樹脂を2種以上含んでいてもよいが、特定樹脂を2種以上含むことが好ましい。
 本発明の樹脂組成物が特定樹脂を2種以上含む場合、例えば、ポリイミド前駆体であって、二無水物由来の構造(上述の式(1-1)でいうX11、式(1-2)でいうX21)が異なる2種以上のポリイミド前駆体を含むことが好ましい。
It is also preferable that the resin composition of the present invention contains at least two types of resin.
Specifically, the resin composition of the present invention may contain a total of two or more types of specific resin and other resins described below, or may contain two or more types of specific resin, but may contain a specific resin. It is preferable to include two or more types.
When the resin composition of the present invention contains two or more types of specific resins, for example, a polyimide precursor and a dianhydride-derived structure (X 11 in the above formula (1-1), formula (1-2 It is preferable that two or more types of polyimide precursors having different X 21 ) in ) are included.
<他の樹脂>
 本発明の樹脂組成物は、上述した特定樹脂と、特定樹脂とは異なる他の樹脂(以下、単に「他の樹脂」ともいう)とを含んでもよい。
 他の樹脂としては、特定樹脂とは異なる他のポリイミド前駆体、ポリイミド、ポリベンゾオキサゾール前駆体、ポリベンゾオキサゾール、ポリアミドイミド前駆体、ポリアミドイミド、芳香族ポリエーテル、フェノール樹脂、ポリアミド、エポキシ樹脂、ポリシロキサン、シロキサン構造を含む樹脂、(メタ)アクリル樹脂、(メタ)アクリルアミド樹脂、ウレタン樹脂、ブチラール樹脂、スチリル樹脂、ポリエーテル樹脂、ポリエステル樹脂等が挙げられる。
 他のポリイミド前駆体、ポリイミド、ポリベンゾオキサゾール前駆体、ポリベンゾオキサゾール、ポリアミドイミド前駆体、ポリアミドイミドとしては、国際公開第2022/145355号の段落0017~0138に記載の化合物が挙げられる。上記記載は本明細書に組み込まれる。
<Other resins>
The resin composition of the present invention may contain the above-mentioned specific resin and another resin different from the specific resin (hereinafter also simply referred to as "other resin").
Other resins include other polyimide precursors different from the specific resin, polyimides, polybenzoxazole precursors, polybenzoxazole, polyamideimide precursors, polyamideimides, aromatic polyethers, phenolic resins, polyamides, epoxy resins, Examples include polysiloxane, resins containing siloxane structures, (meth)acrylic resins, (meth)acrylamide resins, urethane resins, butyral resins, styryl resins, polyether resins, and polyester resins.
Other polyimide precursors, polyimides, polybenzoxazole precursors, polybenzoxazole, polyamideimide precursors, and polyamideimides include the compounds described in paragraphs 0017 to 0138 of International Publication No. 2022/145355. The above description is incorporated herein.
 芳香族ポリエーテルとしては、特に限定されないが、ポリフェニレンエーテルであることが好ましい。
 ポリフェニレンエーテルは、下記式(PE)で表される繰返し単位を含むことが好ましい。

 式(PE)中、RE1は水素原子又は置換基を表す。置換基としては、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアミノ基、ニトロ基、カルボキシ基等が挙げられる。
The aromatic polyether is not particularly limited, but polyphenylene ether is preferred.
It is preferable that the polyphenylene ether contains a repeating unit represented by the following formula (PE).

In formula (PE), R E1 represents a hydrogen atom or a substituent. Examples of the substituent include a halogen atom, an alkyl group that may have a substituent, an alkoxy group that may have a substituent, an amino group that may have a substituent, a nitro group, a carboxy group, etc. .
 また、ポリフェニレンエーテルは、重合性基を有する化合物であることも好ましい。
 上記重合性基としては、エポキシ基、オキセタニル基、オキサゾリル基、メチロール基、アルコキシメチル基、アシルオキシメチル基、ブロックイソシアネート基、又は、エチレン性不飽和結合を有する基が好ましく、エチレン性不飽和結合を有する基がより好ましい。
 エチレン性不飽和結合を有する基としては、ビニル基、アリル基、イソアリル基、2-メチルアリル基、ビニル基と直接結合した芳香環を有する基(例えば、ビニルフェニル基など)、(メタ)アクリルアミド基、(メタ)アクリロイルオキシ基などが挙げられ、ビニルフェニル基、(メタ)アクリルアミド基又は(メタ)アクリロイルオキシ基が好ましく、ビニルフェニル基又は(メタ)アクリロイルオキシ基がより好ましく、(メタ)アクリロイルオキシ基が更に好ましい。
 ポリフェニレンエーテルが重合性基を有する化合物である場合、その重合性基の位置は特に限定されないが、例えば、主鎖末端に重合性基が導入された構造であることが好ましい。
Moreover, it is also preferable that polyphenylene ether is a compound having a polymerizable group.
The above polymerizable group is preferably an epoxy group, an oxetanyl group, an oxazolyl group, a methylol group, an alkoxymethyl group, an acyloxymethyl group, a blocked isocyanate group, or a group having an ethylenically unsaturated bond. More preferable groups have the following.
Examples of the group having an ethylenically unsaturated bond include a vinyl group, an allyl group, an isoallyl group, a 2-methylallyl group, a group having an aromatic ring directly bonded to a vinyl group (for example, a vinyl phenyl group, etc.), and a (meth)acrylamide group. , (meth)acryloyloxy group, etc., preferably vinylphenyl group, (meth)acrylamide group or (meth)acryloyloxy group, more preferably vinylphenyl group or (meth)acryloyloxy group, (meth)acryloyloxy group, etc. More preferred are groups.
When polyphenylene ether is a compound having a polymerizable group, the position of the polymerizable group is not particularly limited, but, for example, a structure in which the polymerizable group is introduced at the end of the main chain is preferable.
 ポリフェニレンエーテルは、他の繰返し単位を含んでもよい。ただし、上記他の繰返し単位の含有量は、ポリフェニレンエーテルの全質量に対して、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。 The polyphenylene ether may also contain other repeating units. However, the content of the other repeating units mentioned above is preferably 30% by mass or less, more preferably 20% by mass or less, and preferably 10% by mass or less based on the total mass of polyphenylene ether. More preferred.
 ポリフェニレンエーテルの数平均分子量は、特に限定されないが、500~50,000であることが好ましい。
 上記数平均分子量の下限は、800以上であることが好ましく、1000以上であることがより好ましく、1500以上であることが更に好ましい。
 上記数平均分子量の上限は、30,000以下であることが好ましく、20,000以下であることがより好ましく、10,000以下であることが更に好ましい。
The number average molecular weight of polyphenylene ether is not particularly limited, but is preferably from 500 to 50,000.
The lower limit of the number average molecular weight is preferably 800 or more, more preferably 1000 or more, and even more preferably 1500 or more.
The upper limit of the number average molecular weight is preferably 30,000 or less, more preferably 20,000 or less, and even more preferably 10,000 or less.
 ポリフェニレンエーテル(PPE)の具体例としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)、2,6-ジメチルフェノールと、他のフェノール類(例えば、2,3,6-トリメチルフェノール、2-メチル-6-ブチルフェノール等)との共重合体、2,6-ジメチルフェノールと、ビフェノール類又はビスフェノール類とをカップリングさせて得られるポリフェニレンエーテル共重合体、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)等をビスフェノール類やトリスフェノール類のようなフェノール化合物と、トルエン溶媒中、有機過酸化物の存在下で加熱し、再分配反応させて得られる、直鎖構造もしくは分岐構造を有するポリフェニレンエーテル等が挙げられるが、これに限定されるものではない。
 例えば、(メタ)アクリル樹脂を更に加えることにより、塗布性に優れた樹脂組成物が得られ、また、耐溶剤性に優れたパターン(硬化物)が得られる。
 例えば、後述する重合性化合物に代えて、又は、後述する重合性化合物に加えて、重量平均分子量が20,000以下の重合性基価の高い(例えば、樹脂1gにおける重合性基の含有モル量が1×10-3モル/g以上である)(メタ)アクリル樹脂を樹脂組成物に添加することにより、樹脂組成物の塗布性、パターン(硬化物)の耐溶剤性等を向上させることができる。
Specific examples of polyphenylene ether (PPE) include poly(2,6-dimethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), and poly(2-methyl-6-ethyl-1,4-phenylene ether). -methyl-6-phenyl-1,4-phenylene ether), poly(2,6-dichloro-1,4-phenylene ether), 2,6-dimethylphenol and other phenols (e.g. 2,3, 6-trimethylphenol, 2-methyl-6-butylphenol, etc.); polyphenylene ether copolymers obtained by coupling 2,6-dimethylphenol with biphenols or bisphenols; , 6-dimethyl-1,4-phenylene ether), etc., with a phenol compound such as bisphenols or trisphenols in the presence of an organic peroxide in a toluene solvent, and a redistribution reaction is performed. Examples include polyphenylene ether having a linear structure or a branched structure, but are not limited thereto.
For example, by further adding a (meth)acrylic resin, a resin composition with excellent coating properties can be obtained, and a pattern (cured product) with excellent solvent resistance can be obtained.
For example, instead of or in addition to the polymerizable compound described below, a polymerizable group having a high polymerizable group value with a weight average molecular weight of 20,000 or less (for example, the molar amount of polymerizable groups contained in 1 g of resin) may be used. By adding a (meth)acrylic resin (having a concentration of 1×10 −3 mol/g or more) to a resin composition, it is possible to improve the coating properties of the resin composition, the solvent resistance of the pattern (cured product), etc. can.
 また、本発明の樹脂組成物は、誘電率を低下させる観点から、ポリイミド、ポリベンゾオキサゾール、及び、芳香族ポリエーテルよりなる群から選ばれた少なくとも1種の樹脂を更に含むことが好ましい。 Furthermore, from the viewpoint of lowering the dielectric constant, the resin composition of the present invention preferably further contains at least one resin selected from the group consisting of polyimide, polybenzoxazole, and aromatic polyether.
 ポリイミドとしては、国際公開第2022/145355号の段落0045~0072に記載の化合物が挙げられる。上記記載は本明細書に組み込まれる。これらの中でも、特にエチレン性不飽和結合を有するポリイミドが好ましい。 Examples of the polyimide include compounds described in paragraphs 0045 to 0072 of International Publication No. 2022/145355. The above description is incorporated herein. Among these, polyimides having ethylenically unsaturated bonds are particularly preferred.
 ポリベンゾオキサゾールとしては、国際公開第2022/145355号の段落0096~0103に記載の化合物が挙げられる。上記記載は本明細書に組み込まれる。 Examples of the polybenzoxazole include compounds described in paragraphs 0096 to 0103 of International Publication No. 2022/145355. The above description is incorporated herein.
 芳香族ポリエーテルとしては、特に限定されないが、ポリフェニレンエーテルであることが好ましい。
 ポリフェニレンエーテルは、下記式(PE)で表される繰返し単位を含むことが好ましい。

 式(PE)中、RE1は水素原子又は置換基を表す。置換基としては、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアミノ基、ニトロ基、カルボキシ基等が挙げられる。
The aromatic polyether is not particularly limited, but polyphenylene ether is preferred.
It is preferable that the polyphenylene ether contains a repeating unit represented by the following formula (PE).

In formula (PE), R E1 represents a hydrogen atom or a substituent. Examples of the substituent include a halogen atom, an alkyl group that may have a substituent, an alkoxy group that may have a substituent, an amino group that may have a substituent, a nitro group, a carboxy group, etc. .
 また、ポリフェニレンエーテルは、重合性基を有する化合物であることも好ましい。
 上記重合性基としては、エポキシ基、オキセタニル基、オキサゾリル基、メチロール基、アルコキシメチル基、アシルオキシメチル基、ブロックイソシアネート基、又は、エチレン性不飽和結合を有する基が好ましく、エチレン性不飽和結合を有する基がより好ましい。
 エチレン性不飽和結合を有する基としては、ビニル基、アリル基、イソアリル基、2-メチルアリル基、ビニル基と直接結合した芳香環を有する基(例えば、ビニルフェニル基など)、(メタ)アクリルアミド基、(メタ)アクリロイルオキシ基などが挙げられ、ビニルフェニル基、(メタ)アクリルアミド基又は(メタ)アクリロイルオキシ基が好ましく、ビニルフェニル基又は(メタ)アクリロイルオキシ基がより好ましく、(メタ)アクリロイルオキシ基が更に好ましい。
 ポリフェニレンエーテルが重合性基を有する化合物である場合、その重合性基の位置は特に限定されないが、例えば、主鎖末端に重合性基が導入された構造であることが好ましい。
Moreover, it is also preferable that polyphenylene ether is a compound having a polymerizable group.
The above polymerizable group is preferably an epoxy group, an oxetanyl group, an oxazolyl group, a methylol group, an alkoxymethyl group, an acyloxymethyl group, a blocked isocyanate group, or a group having an ethylenically unsaturated bond. More preferable groups have the following.
Examples of the group having an ethylenically unsaturated bond include a vinyl group, an allyl group, an isoallyl group, a 2-methylallyl group, a group having an aromatic ring directly bonded to a vinyl group (for example, a vinyl phenyl group, etc.), and a (meth)acrylamide group. , (meth)acryloyloxy group, etc., preferably vinylphenyl group, (meth)acrylamide group or (meth)acryloyloxy group, more preferably vinylphenyl group or (meth)acryloyloxy group, (meth)acryloyloxy group, etc. More preferred are groups.
When polyphenylene ether is a compound having a polymerizable group, the position of the polymerizable group is not particularly limited, but, for example, a structure in which the polymerizable group is introduced at the end of the main chain is preferable.
 ポリフェニレンエーテルは、他の繰返し単位を含んでもよい。ただし、上記他の繰返し単位の含有量は、ポリフェニレンエーテルの全質量に対して、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。 The polyphenylene ether may also contain other repeating units. However, the content of the other repeating units mentioned above is preferably 30% by mass or less, more preferably 20% by mass or less, and preferably 10% by mass or less based on the total mass of polyphenylene ether. More preferred.
 ポリフェニレンエーテルの数平均分子量は、特に限定されないが、500~50,000であることが好ましい。
 上記数平均分子量の下限は、800以上であることが好ましく、1,000以上であることがより好ましく、1,500以上であることが更に好ましい。
 上記数平均分子量の上限は、30,000以下であることが好ましく、20,000以上であることがより好ましく、10,000以上であることが更に好ましい。
The number average molecular weight of polyphenylene ether is not particularly limited, but is preferably from 500 to 50,000.
The lower limit of the number average molecular weight is preferably 800 or more, more preferably 1,000 or more, and even more preferably 1,500 or more.
The upper limit of the number average molecular weight is preferably 30,000 or less, more preferably 20,000 or more, and even more preferably 10,000 or more.
 ポリフェニレンエーテル(PPE)の具体例としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)、2,6-ジメチルフェノールと、他のフェノール類(例えば、2,3,6-トリメチルフェノール、2-メチル-6-ブチルフェノール等)との共重合体、2,6-ジメチルフェノールと、ビフェノール類又はビスフェノール類とをカップリングさせて得られるポリフェニレンエーテル共重合体、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)等をビスフェノール類やトリスフェノール類のようなフェノール化合物と、トルエン溶媒中、有機過酸化物の存在下で加熱し、再分配反応させて得られる、直鎖構造もしくは分岐構造を有するポリフェニレンエーテル等が挙げられるが、これに限定されるものではない。 Specific examples of polyphenylene ether (PPE) include poly(2,6-dimethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), and poly(2-methyl-6-ethyl-1,4-phenylene ether). -methyl-6-phenyl-1,4-phenylene ether), poly(2,6-dichloro-1,4-phenylene ether), 2,6-dimethylphenol and other phenols (e.g. 2,3, 6-trimethylphenol, 2-methyl-6-butylphenol, etc.); polyphenylene ether copolymers obtained by coupling 2,6-dimethylphenol with biphenols or bisphenols; , 6-dimethyl-1,4-phenylene ether) and the like with a phenol compound such as bisphenols or trisphenols in a toluene solvent in the presence of an organic peroxide, resulting in a redistribution reaction. Examples include, but are not limited to, polyphenylene ether having a linear structure or a branched structure.
 本発明の樹脂組成物が他の樹脂を含む場合、他の樹脂の含有量は、樹脂組成物の全固形分に対し、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、1質量%以上であることが更に好ましく、2質量%以上であることが一層好ましく、5質量%以上であることがより一層好ましく、10質量%以上であることが更に一層好ましい。
 本発明の樹脂組成物における、他の樹脂の含有量は、樹脂組成物の全固形分に対し、80質量%以下であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることが更に好ましく、60質量%以下であることが一層好ましく、50質量%以下であることがより一層好ましい。
 本発明の樹脂組成物の好ましい一態様として、他の樹脂の含有量が低含有量である態様とすることもできる。上記態様において、他の樹脂の含有量は、樹脂組成物の全固形分に対し、20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることが更に好ましく、5質量%以下であることが一層好ましく、1質量%以下であることがより一層好ましい。上記含有量の下限は特に限定されず、0質量%以上であればよい。
 特に、樹脂組成物が、ポリイミド、ポリベンゾオキサゾール、及び、芳香族ポリエーテルよりなる群から選ばれた少なくとも1種の樹脂を更に含む場合、これらの樹脂の含有量(複数種を含む場合、又は同種を複数個含む場合は合計含有量)は、特定樹脂の100質量部に対し、5~150質量部であることが好ましい。上記下限は、8質量部以上であることが好ましく、10質量部以上であることがより好ましい。上記上限は、120質量部以下であることが好ましく、100質量部以下であることがより好ましい。
 本発明の樹脂組成物は、他の樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
When the resin composition of the present invention contains other resins, the content of the other resins is preferably 0.01% by mass or more, and 0.05% by mass or more based on the total solid content of the resin composition. It is more preferably 1% by mass or more, even more preferably 2% by mass or more, even more preferably 5% by mass or more, and even more preferably 10% by mass or more. More preferred.
The content of other resins in the resin composition of the present invention is preferably 80% by mass or less, more preferably 75% by mass or less, and 70% by mass based on the total solid content of the resin composition. It is more preferably at most 60% by mass, even more preferably at most 50% by mass.
As a preferable embodiment of the resin composition of the present invention, the content of other resins may be low. In the above embodiment, the content of the other resin is preferably 20% by mass or less, more preferably 15% by mass or less, and 10% by mass or less based on the total solid content of the resin composition. is more preferable, even more preferably 5% by mass or less, even more preferably 1% by mass or less. The lower limit of the content is not particularly limited, and may be 0% by mass or more.
In particular, when the resin composition further contains at least one resin selected from the group consisting of polyimide, polybenzoxazole, and aromatic polyether, the content of these resins (if it contains multiple types, or When a plurality of the same kind are included, the total content is preferably 5 to 150 parts by mass based on 100 parts by mass of the specific resin. The lower limit is preferably 8 parts by mass or more, more preferably 10 parts by mass or more. The upper limit is preferably 120 parts by mass or less, more preferably 100 parts by mass or less.
The resin composition of the present invention may contain only one type of other resin, or may contain two or more types of other resins. When two or more types are included, it is preferable that the total amount falls within the above range.
<重合性化合物>
 本発明の樹脂組成物は、重合性化合物を含む。
 特に、誘電率を低下させる観点からは、重合性化合物として、ClogP値が3.0以上である化合物を含むことが好ましく、ClogP値が3.0以上であり、かつ、芳香環構造又は炭素数6以上の脂肪族環構造を有する化合物を含むことがより好ましい。
<Polymerizable compound>
The resin composition of the present invention contains a polymerizable compound.
In particular, from the viewpoint of lowering the dielectric constant, it is preferable that the polymerizable compound contains a compound having a ClogP value of 3.0 or more, and having an aromatic ring structure or carbon number. It is more preferable to include a compound having six or more aliphatic ring structures.
 本明細書において化合物のClogP値は下記の定義による。
 オクタノール-水分配係数(logP値)の測定は、一般にJIS日本工業規格Z7260-107(2000)に記載のフラスコ浸とう法により実施することができる。また、オクタノール-水分配係数(logP値)は実測に代わって、計算化学的手法あるいは経験的方法により見積もることも可能である。計算方法としては、Crippen’s fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987))、Viswanadhan’s fragmentation法(J.Chem.Inf.Comput.Sci.,29,163(1989))、Broto’s fragmentation法(Eur.J.Med.Chem.-Chim.Theor.,19,71(1984))などを用いることが知られている。本発明では、Crippen’s fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987))を用いる。
 ClogP値とは、1-オクタノールと水への分配係数Pの常用対数logPを計算によって求めた値である。ClogP値の計算に用いる方法やソフトウェアについては公知の物を用いることができるが、特に断らない限り、本発明ではDaylight Chemical Information Systems社のシステム:PCModelsに組み込まれたClogPプログラムを用いることとする。
In this specification, the ClogP value of a compound is defined as below.
The octanol-water partition coefficient (logP value) can generally be measured by the flask immersion method described in JIS Japanese Industrial Standard Z7260-107 (2000). Further, the octanol-water partition coefficient (logP value) can also be estimated by a computational chemical method or an empirical method instead of actual measurement. Calculation methods include Crippen's fragmentation method (J. Chem. Inf. Comput. Sci., 27, 21 (1987)) and Viswanadhan's fragmentation method (J. Chem. Inf. Comput. Sci., 29, 16). 3 (1989)), Broto's fragmentation method (Eur. J. Med. Chem.-Chim. Theor., 19, 71 (1984)), etc. are known to be used. In the present invention, Crippen's fragmentation method (J. Chem. Inf. Comput. Sci., 27, 21 (1987)) is used.
The ClogP value is a value obtained by calculating the common logarithm logP of the partition coefficient P between 1-octanol and water. Although known methods and software can be used to calculate the ClogP value, unless otherwise specified, the present invention uses the ClogP program incorporated in the PCModels system of Daylight Chemical Information Systems.
 上記ClogP値は、4.0以上であることが好ましく、6.0以上であることがより好ましい。
 また、上記ClogP値の上限は、特に限定されないが、15.0以下であることが好ましい。
The ClogP value is preferably 4.0 or more, more preferably 6.0 or more.
Further, the upper limit of the ClogP value is not particularly limited, but is preferably 15.0 or less.
 上記芳香環構造としては、芳香族炭化水素環であっても芳香族複素環であってもよいが、芳香族炭化水素環が好ましく、ベンゼン環を含むことがより好ましい。また、誘電率を低下させる観点からは、フルオレン環等の縮合環であることが好ましい。
 炭素数6以上の脂肪族環構造としては、炭素数6~30の脂肪族環構造が好ましく、炭素数6~20の脂肪族環構造がより好ましい。
 炭素数6以上の脂肪族環構造としては、シクロヘキサン環等の単環、ジシクロペンタン環、トリシクロ[5.2.1.02,6]デカン環等の複環が挙げられ、複環であることが好ましい。
The aromatic ring structure may be an aromatic hydrocarbon ring or an aromatic heterocycle, but an aromatic hydrocarbon ring is preferable, and it is more preferable to include a benzene ring. Moreover, from the viewpoint of lowering the dielectric constant, a fused ring such as a fluorene ring is preferable.
As the aliphatic ring structure having 6 or more carbon atoms, an aliphatic ring structure having 6 to 30 carbon atoms is preferable, and an aliphatic ring structure having 6 to 20 carbon atoms is more preferable.
Examples of aliphatic ring structures having 6 or more carbon atoms include monocycles such as a cyclohexane ring, dicyclopentane rings, and double rings such as tricyclo[5.2.1.0 2,6 ]decane rings. It is preferable that there be.
 ClogP値が3.0以上である重合性化合物(特に、ClogP値が3.0以上であり、かつ、芳香環構造又は炭素数6以上の脂肪族環構造を有する化合物)は、エチレン性不飽和結合を有する基を含む化合物であることが好ましく、エチレン性不飽和結合を有する基を2以上含む化合物であることがより好ましい。また、エチレン性不飽和結合を有する基を2つ含む化合物であることも好ましい。
 また、ClogP値が3.0以上である重合性化合物(特に、ClogP値が3.0以上であり、かつ、芳香環構造又は炭素数6以上の脂肪族環構造を有する化合物)は、後述するラジカル架橋剤に該当する化合物であることが好ましい。
Polymerizable compounds with a ClogP value of 3.0 or more (especially compounds with a ClogP value of 3.0 or more and an aromatic ring structure or an aliphatic ring structure with 6 or more carbon atoms) are ethylenically unsaturated. A compound containing a group having a bond is preferable, and a compound containing two or more groups having an ethylenically unsaturated bond is more preferable. Further, it is also preferable that the compound contains two groups having ethylenically unsaturated bonds.
In addition, polymerizable compounds having a ClogP value of 3.0 or more (particularly compounds having a ClogP value of 3.0 or more and having an aromatic ring structure or an aliphatic ring structure having 6 or more carbon atoms) are described below. Preferably, the compound is a radical crosslinking agent.
 ClogP値が3.0以上である重合性化合物の具体例としては、以下の化合物が挙げられるが、これに限定されるものではない。
Specific examples of polymerizable compounds having a ClogP value of 3.0 or more include, but are not limited to, the following compounds.
 重合性化合物としては、ラジカル架橋剤、又は、他の架橋剤が挙げられる。 Examples of the polymerizable compound include radical crosslinking agents and other crosslinking agents.
〔ラジカル架橋剤〕
 本発明の樹脂組成物は、ラジカル架橋剤を含むことが好ましい。
 ラジカル架橋剤は、ラジカル重合性基を有する化合物である。ラジカル重合性基としては、エチレン性不飽和結合を含む基が好ましい。上記エチレン性不飽和結合を含む基としては、ビニル基、アリル基、ビニルフェニル基、(メタ)アクリロイル基、マレイミド基、(メタ)アクリルアミド基などが挙げられる。
 これらの中でも、(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニルフェニル基が好ましく、反応性の観点からは、(メタ)アクリロイル基がより好ましい。
[Radical crosslinking agent]
It is preferable that the resin composition of the present invention contains a radical crosslinking agent.
A radical crosslinking agent is a compound having a radically polymerizable group. As the radically polymerizable group, a group containing an ethylenically unsaturated bond is preferable. Examples of the group containing an ethylenically unsaturated bond include a vinyl group, an allyl group, a vinyl phenyl group, a (meth)acryloyl group, a maleimide group, and a (meth)acrylamide group.
Among these, (meth)acryloyl group, (meth)acrylamide group, and vinylphenyl group are preferable, and from the viewpoint of reactivity, (meth)acryloyl group is more preferable.
 ラジカル架橋剤は、エチレン性不飽和結合を1個以上有する化合物であることが好ましいが、2個以上有する化合物であることがより好ましい。ラジカル架橋剤は、エチレン性不飽和結合を3個以上有していてもよい。
 上記エチレン性不飽和結合を2個以上有する化合物としては、エチレン性不飽和結合を2~15個有する化合物が好ましく、エチレン性不飽和結合を2~10個有する化合物がより好ましく、2~6個有する化合物が更に好ましい。
 得られるパターン(硬化物)の膜強度の観点からは、本発明の樹脂組成物は、エチレン性不飽和結合を2個有する化合物と、上記エチレン性不飽和結合を3個以上有する化合物とを含むことも好ましい。
The radical crosslinking agent is preferably a compound having one or more ethylenically unsaturated bonds, more preferably a compound having two or more ethylenically unsaturated bonds. The radical crosslinking agent may have three or more ethylenically unsaturated bonds.
The compound having two or more ethylenically unsaturated bonds is preferably a compound having 2 to 15 ethylenically unsaturated bonds, more preferably a compound having 2 to 10 ethylenically unsaturated bonds, and more preferably a compound having 2 to 6 ethylenically unsaturated bonds. More preferred are compounds having the following.
From the viewpoint of the film strength of the obtained pattern (cured product), the resin composition of the present invention contains a compound having two ethylenically unsaturated bonds and a compound having three or more of the above ethylenically unsaturated bonds. It is also preferable.
 ラジカル架橋剤の分子量は、2,000以下が好ましく、1,500以下がより好ましく、900以下が更に好ましい。ラジカル架橋剤の分子量の下限は、100以上が好ましい。 The molecular weight of the radical crosslinking agent is preferably 2,000 or less, more preferably 1,500 or less, and even more preferably 900 or less. The lower limit of the molecular weight of the radical crosslinking agent is preferably 100 or more.
 ラジカル架橋剤の具体例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)やそのエステル類、アミド類が挙げられ、好ましくは、不飽和カルボン酸と多価アルコール化合物とのエステル、及び不飽和カルボン酸と多価アミン化合物とのアミド類である。また、ヒドロキシ基やアミノ基、スルファニル基等の求核性置換基を有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能イソシアネート類又はエポキシ類との付加反応物や、単官能若しくは多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基やエポキシ基等の親電子性置換基を有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との付加反応物、更に、ハロゲノ基やトシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等のビニルベンゼン誘導体、ビニルエーテル、アリルエーテル等に置き換えた化合物群を使用することも可能である。具体例としては、特開2016-027357号公報の段落0113~0122の記載を参酌でき、これらの内容は本明細書に組み込まれる。 Specific examples of radical crosslinking agents include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), their esters, and amides. These are esters of saturated carboxylic acids and polyhydric alcohol compounds, and amides of unsaturated carboxylic acids and polyhydric amine compounds. In addition, addition reaction products of unsaturated carboxylic acid esters or amides having nucleophilic substituents such as hydroxy groups, amino groups, and sulfanyl groups with monofunctional or polyfunctional isocyanates or epoxies, and monofunctional or polyfunctional A dehydration condensation reaction product with a functional carboxylic acid is also preferably used. In addition, addition reaction products of unsaturated carboxylic acid esters or amides having electrophilic substituents such as isocyanate groups and epoxy groups with monofunctional or polyfunctional alcohols, amines, and thiols, and furthermore, halogen groups Substitution reaction products of unsaturated carboxylic acid esters or amides having a leaving substituent such as or tosyloxy group and monofunctional or polyfunctional alcohols, amines, and thiols are also suitable. Further, as another example, it is also possible to use a group of compounds in which the unsaturated carboxylic acid mentioned above is replaced with an unsaturated phosphonic acid, a vinylbenzene derivative such as styrene, vinyl ether, allyl ether, or the like. As a specific example, the descriptions in paragraphs 0113 to 0122 of JP-A No. 2016-027357 can be referred to, and the contents thereof are incorporated into the present specification.
 ラジカル架橋剤は、常圧下で100℃以上の沸点を持つ化合物も好ましい。常圧下で100℃以上の沸点を持つ化合物としては、国際公開第2021/112189号公報の段落0203に記載の化合物等が挙げられる。この内容は本明細書に組み込まれる。 The radical crosslinking agent is also preferably a compound having a boiling point of 100°C or higher under normal pressure. Examples of the compound having a boiling point of 100° C. or higher under normal pressure include the compounds described in paragraph 0203 of International Publication No. 2021/112189. This content is incorporated herein.
 上述以外の好ましいラジカル架橋剤としては、国際公開第2021/112189号公報の段落0204~0208に記載のラジカル重合性化合物等が挙げられる。この内容は本明細書に組み込まれる。 Preferred radical crosslinking agents other than those mentioned above include radically polymerizable compounds described in paragraphs 0204 to 0208 of International Publication No. 2021/112189. This content is incorporated herein.
 ラジカル架橋剤としては、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330(日本化薬(株)製))、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320(日本化薬(株)製)、A-TMMT(新中村化学工業(株)製))、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310(日本化薬(株)製))、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA(日本化薬(株)製)、A-DPH(新中村化学工業社製))、及びこれらの(メタ)アクリロイル基がエチレングリコール残基又はプロピレングリコール残基を介して結合している構造が好ましい。これらのオリゴマータイプも使用できる。 Examples of radical crosslinking agents include dipentaerythritol triacrylate (commercially available product: KAYARAD D-330 (manufactured by Nippon Kayaku Co., Ltd.)), dipentaerythritol tetraacrylate (commercially available product: KAYARAD D-320 (made by Nippon Kayaku Co., Ltd.) Co., Ltd.), A-TMMT (Shin Nakamura Chemical Co., Ltd.)), dipentaerythritol penta(meth)acrylate (commercially available products include KAYARAD D-310 (Nippon Kayaku Co., Ltd.)), dipenta Erythritol hexa(meth)acrylate (commercially available products are KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.) and A-DPH (manufactured by Shin Nakamura Chemical Industry Co., Ltd.)), and these (meth)acryloyl groups are ethylene glycol residues or A structure in which they are linked via a propylene glycol residue is preferred. These oligomeric types can also be used.
 ラジカル架橋剤の市販品としては、例えばエチレンオキシ鎖を4個有する4官能アクリレートであるSR-494、エチレンオキシ鎖を4個有する2官能メタクリレートであるSR-209、231、239(以上、サートマー社製)、ペンチレンオキシ鎖を6個有する6官能アクリレートであるDPCA-60、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA-330(以上、日本化薬(株)製)、ウレタンオリゴマーであるUAS-10、UAB-140(以上、日本製紙社製)、NKエステルM-40G、NKエステル4G、NKエステルM-9300、NKエステルA-9300、UA-7200(以上、新中村化学工業社製)、DPHA-40H(日本化薬(株)製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600(以上、共栄社化学社製)、ブレンマーPME400(日油(株)製)などが挙げられる。 Commercially available radical crosslinking agents include, for example, SR-494, which is a tetrafunctional acrylate with four ethyleneoxy chains, and SR-209, 231, and 239, which are difunctional methacrylates with four ethyleneoxy chains (all of which are sold by Sartomer Co., Ltd.). (manufactured by Nippon Kayaku Co., Ltd.), DPCA-60, a hexafunctional acrylate with six pentyleneoxy chains, TPA-330, a trifunctional acrylate with three isobutyleneoxy chains (manufactured by Nippon Kayaku Co., Ltd.), and urethane oligomers. Certain UAS-10, UAB-140 (all manufactured by Nippon Paper Industries), NK Ester M-40G, NK Ester 4G, NK Ester M-9300, NK Ester A-9300, UA-7200 (all manufactured by Shin-Nakamura Chemical Industries) ), DPHA-40H (manufactured by Nippon Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, T-600, AI-600 (manufactured by Kyoeisha Chemical Co., Ltd.), Blenmar PME400 (manufactured by NOF Corporation).
 ラジカル架橋剤としては、特公昭48-041708号公報、特開昭51-037193号公報、特公平02-032293号公報、特公平02-016765号公報に記載されているようなウレタンアクリレート類や、特公昭58-049860号公報、特公昭56-017654号公報、特公昭62-039417号公報、特公昭62-039418号公報に記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。ラジカル架橋剤として、特開昭63-277653号公報、特開昭63-260909号公報、特開平01-105238号公報に記載される、分子内にアミノ構造やスルフィド構造を有する化合物を用いることもできる。 As the radical crosslinking agent, urethane acrylates as described in Japanese Patent Publication No. 48-041708, Japanese Patent Application Publication No. 51-037193, Japanese Patent Publication No. 02-032293, and Japanese Patent Publication No. 02-016765, Urethane compounds having an ethylene oxide skeleton described in Japanese Patent Publication No. 58-049860, Japanese Patent Publication No. 56-017654, Japanese Patent Publication No. 62-039417, and Japanese Patent Publication No. 62-039418 are also suitable. As a radical crosslinking agent, compounds having an amino structure or a sulfide structure in the molecule, which are described in JP-A-63-277653, JP-A-63-260909, and JP-A-01-105238, can also be used. can.
 ラジカル架橋剤は、カルボキシ基、リン酸基等の酸基を有するラジカル架橋剤であってもよい。酸基を有するラジカル架橋剤は、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましく、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシ基に非芳香族カルボン酸無水物を反応させて酸基を持たせたラジカル架橋剤がより好ましい。特に好ましくは、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシ基に非芳香族カルボン酸無水物を反応させて酸基を持たせたラジカル架橋剤において、脂肪族ポリヒドロキシ化合物がペンタエリスリトール又はジペンタエリスリトールである化合物である。市販品としては、例えば、東亞合成(株)製の多塩基酸変性アクリルオリゴマーとして、M-510、M-520などが挙げられる。 The radical crosslinking agent may be a radical crosslinking agent having an acid group such as a carboxy group or a phosphoric acid group. The radical crosslinking agent having an acid group is preferably an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and the unreacted hydroxy group of the aliphatic polyhydroxy compound is reacted with a non-aromatic carboxylic acid anhydride to form an acid group. A radical crosslinking agent having the following is more preferable. Particularly preferably, in the radical crosslinking agent in which an unreacted hydroxy group of an aliphatic polyhydroxy compound is reacted with a non-aromatic carboxylic acid anhydride to have an acid group, the aliphatic polyhydroxy compound is pentaerythritol or dipentaerythritol. It is a compound that is Commercially available products include, for example, polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd., such as M-510 and M-520.
 酸基を有するラジカル架橋剤の酸価は、0.1~300mgKOH/gが好ましく、1~100mgKOH/gがより好ましい。ラジカル架橋剤の酸価が上記範囲であれば、製造上の取扱性に優れ、現像性に優れる。また、重合性が良好である。上記酸価は、JIS K 0070:1992の記載に準拠して測定される。 The acid value of the radical crosslinking agent having an acid group is preferably 0.1 to 300 mgKOH/g, more preferably 1 to 100 mgKOH/g. If the acid value of the radical crosslinking agent is within the above range, it will have excellent handling properties during production and excellent developability. Moreover, it has good polymerizability. The above acid value is measured in accordance with the description of JIS K 0070:1992.
 樹脂組成物は、パターンの解像性と膜の伸縮性の観点から、2官能のメタアクリレート又はアクリレートを用いることが好ましい。
 具体的な化合物としては、トリエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、テトラエチレングリコールジアクリレート、PEG(ポリエチレングリコール)200ジアクリレート、PEG200ジメタクリレート、PEG600ジアクリレート、PEG600ジメタクリレート、ポリテトラエチレングリコールジアクリレート、ポリテトラエチレングリコールジメタクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート、3-メチル-1,5-ペンタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ジメチロール-トリシクロデカンジメタクリレート、ビスフェノールAのEO(エチレンオキシド)付加物ジアクリレート、ビスフェノールAのEO付加物ジメタクリレート、ビスフェノールAのPO(プロピレンオキシド)付加物ジアクリレート、ビスフェノールAのPO付加物ジメタクリレート、2-ヒドロキシー3-アクリロイロキシプロピルメタクリレート、イソシアヌル酸EO変性ジアクリレート、イソシアヌル酸EO変性ジメタクリレート、その他ウレタン結合を有する2官能アクリレート、ウレタン結合を有する2官能メタクリレートを使用することができる。これらは必要に応じ、2種以上を混合し使用することができる。
 なお、例えばPEG200ジアクリレートとは、ポリエチレングリコールジアクリレートであって、ポリエチレングリコール鎖の式量が200程度のものをいう。
 本発明の樹脂組成物は、パターン(硬化物)の反り抑制の観点から、ラジカル架橋剤として、単官能ラジカル架橋剤を好ましく用いることができる。単官能ラジカル架橋剤としては、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、カルビトール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等の(メタ)アクリル酸誘導体、N-ビニルピロリドン、N-ビニルカプロラクタム等のN-ビニル化合物類、アリルグリシジルエーテル等が好ましく用いられる。単官能ラジカル架橋剤としては、露光前の揮発を抑制するため、常圧下で100℃以上の沸点を持つ化合物も好ましい。
 その他、2官能以上のラジカル架橋剤としては、ジアリルフタレート、トリアリルトリメリテート等のアリル化合物類が挙げられる。
It is preferable to use bifunctional methacrylate or acrylate as the resin composition from the viewpoint of pattern resolution and film stretchability.
Specific compounds include triethylene glycol diacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol diacrylate, PEG (polyethylene glycol) 200 diacrylate, PEG 200 dimethacrylate, PEG 600 diacrylate, and PEG 600 diacrylate. Methacrylate, polytetraethylene glycol diacrylate, polytetraethylene glycol dimethacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, neopentyl glycol diacrylate, neopentyl glycol dimethacrylate, 3-methyl-1,5-pentanediol Diacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, dimethylol-tricyclodecane diacrylate, dimethylol-tricyclodecane dimethacrylate, EO (ethylene oxide) adduct diacrylate of bisphenol A, bisphenol EO adduct dimethacrylate of A, PO (propylene oxide) adduct diacrylate of bisphenol A, PO adduct dimethacrylate of bisphenol A, 2-hydroxy-3-acryloyloxypropyl methacrylate, isocyanuric acid EO-modified diacrylate, isocyanuric acid EO-modified dimethacrylate, other bifunctional acrylates having urethane bonds, and bifunctional methacrylates having urethane bonds can be used. These can be used as a mixture of two or more types, if necessary.
Note that, for example, PEG200 diacrylate refers to polyethylene glycol diacrylate in which the formula weight of polyethylene glycol chains is about 200.
In the resin composition of the present invention, a monofunctional radical crosslinking agent can preferably be used as the radical crosslinking agent from the viewpoint of suppressing warpage of the pattern (cured product). Examples of monofunctional radical crosslinking agents include n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, butoxyethyl (meth)acrylate, carbitol (meth)acrylate, and cyclohexyl (meth)acrylate. (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, N-methylol (meth)acrylamide, glycidyl (meth)acrylate, polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, etc. Acrylic acid derivatives, N-vinyl compounds such as N-vinylpyrrolidone and N-vinylcaprolactam, allyl glycidyl ether, and the like are preferably used. As the monofunctional radical crosslinking agent, a compound having a boiling point of 100° C. or higher at normal pressure is also preferred in order to suppress volatilization before exposure.
In addition, examples of the radical crosslinking agent having two or more functional groups include allyl compounds such as diallyl phthalate and triallyl trimellitate.
 ラジカル架橋剤を含有する場合、ラジカル架橋剤の含有量は、樹脂組成物の全固形分に対して、0質量%超60質量%以下であることが好ましい。下限は5質量%以上がより好ましい。上限は、50質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。 When containing a radical crosslinking agent, the content of the radical crosslinking agent is preferably more than 0% by mass and 60% by mass or less based on the total solid content of the resin composition. The lower limit is more preferably 5% by mass or more. The upper limit is more preferably 50% by mass or less, and even more preferably 30% by mass or less.
 ラジカル架橋剤は1種を単独で用いてもよいが、2種以上を混合して用いてもよい。2種以上を併用する場合にはその合計量が上記の範囲となることが好ましい。 One type of radical crosslinking agent may be used alone, or a mixture of two or more types may be used. When two or more types are used together, it is preferable that the total amount falls within the above range.
〔他の架橋剤〕
 本発明の樹脂組成物は、上述したラジカル架橋剤とは異なる、他の架橋剤を含むことも好ましい。
 他の架橋剤とは、上述したラジカル架橋剤以外の架橋剤をいい、上述の光酸発生剤、又は、光塩基発生剤の感光により、組成物中の他の化合物又はその反応生成物との間で共有結合を形成する反応が促進される基を分子内に複数個有する化合物であることが好ましく、組成物中の他の化合物又はその反応生成物との間で共有結合を形成する反応が酸又は塩基の作用によって促進される基を分子内に複数個有する化合物が好ましい。
 上記酸又は塩基は、露光工程において、光酸発生剤又は光塩基発生剤から発生する酸又は塩基であることが好ましい。
 他の架橋剤としては、国際公開第2022/145355号の段落0179~0207に記載の化合物が挙げられる。上記記載は本明細書に組み込まれる。
[Other crosslinking agents]
It is also preferable that the resin composition of the present invention contains another crosslinking agent different from the above-mentioned radical crosslinking agent.
Other crosslinking agents refer to crosslinking agents other than the above-mentioned radical crosslinking agents, and the above-mentioned photoacid generators or photobase generators are photosensitive to other compounds in the composition or their reaction products. It is preferable that the compound has a plurality of groups in its molecule that promote the reaction of forming a covalent bond between the compounds, and the reaction of forming a covalent bond with other compounds in the composition or the reaction products thereof is preferably Compounds having a plurality of groups in the molecule that are promoted by the action of acids or bases are preferred.
The acid or base is preferably an acid or base generated from a photoacid generator or a photobase generator in the exposure step.
Other crosslinking agents include compounds described in paragraphs 0179 to 0207 of International Publication No. 2022/145355. The above description is incorporated herein.
〔重合開始剤〕
 本発明の樹脂組成物は、重合開始剤を含む。重合開始剤は熱重合開始剤であっても光重合開始剤であってもよいが、特に光重合開始剤を含むことが好ましい。
 光重合開始剤は、光ラジカル重合開始剤であることが好ましい。光ラジカル重合開始剤としては、特に制限はなく、公知の光ラジカル重合開始剤の中から適宜選択することができる。例えば、紫外線領域から可視領域の光線に対して感光性を有する光ラジカル重合開始剤が好ましい。また、光励起された増感剤と作用し、活性ラジカルを生成する活性剤であってもよい。
[Polymerization initiator]
The resin composition of the present invention contains a polymerization initiator. The polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator, but it is particularly preferable to include a photopolymerization initiator.
The photopolymerization initiator is preferably a radical photopolymerization initiator. The radical photopolymerization initiator is not particularly limited and can be appropriately selected from known radical photopolymerization initiators. For example, a photoradical polymerization initiator that is sensitive to light in the ultraviolet to visible range is preferred. Alternatively, it may be an activator that acts with a photoexcited sensitizer to generate active radicals.
 光ラジカル重合開始剤は、波長約240~800nm(好ましくは330~500nm)の範囲内で少なくとも約50L・mol-1・cm-1のモル吸光係数を有する化合物を、少なくとも1種含有していることが好ましい。化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、紫外可視分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチル溶剤を用い、0.01g/Lの濃度で測定することが好ましい。 The photoradical polymerization initiator contains at least one compound having a molar absorption coefficient of at least about 50 L·mol −1 ·cm −1 within the wavelength range of about 240 to 800 nm (preferably 330 to 500 nm). It is preferable. The molar extinction coefficient of a compound can be measured using a known method. For example, it is preferable to measure at a concentration of 0.01 g/L using an ethyl acetate solvent with an ultraviolet-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian).
 光ラジカル重合開始剤としては、公知の化合物を任意に使用できる。例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物、トリハロメチル基を有する化合物など)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノンなどのα-アミノケトン化合物、ヒドロキシアセトフェノンなどのα-ヒドロキシケトン化合物、アゾ系化合物、アジド化合物、メタロセン化合物、有機ホウ素化合物、鉄アレーン錯体などが挙げられる。これらの詳細については、特開2016-027357号公報の段落0165~0182、国際公開第2015/199219号の段落0138~0151の記載を参酌でき、この内容は本明細書に組み込まれる。また、特開2014-130173号公報の段落0065~0111、特許第6301489号公報に記載された化合物、MATERIAL STAGE 37~60p,vol.19,No.3,2019に記載されたパーオキサイド系光重合開始剤、国際公開第2018/221177号に記載の光重合開始剤、国際公開第2018/110179号に記載の光重合開始剤、特開2019-043864号公報に記載の光重合開始剤、特開2019-044030号公報に記載の光重合開始剤、特開2019-167313号公報に記載の過酸化物系開始剤が挙げられ、これらの内容は本明細書に組み込まれる。 As the photoradical polymerization initiator, any known compound can be used. For example, halogenated hydrocarbon derivatives (e.g., compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having a trihalomethyl group, etc.), acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazole, oxime derivatives, etc. oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ketooxime ethers, α-aminoketone compounds such as aminoacetophenone, α-hydroxyketone compounds such as hydroxyacetophenone, azo compounds, azide compounds, Examples include metallocene compounds, organic boron compounds, iron arene complexes, and the like. For these details, the descriptions in paragraphs 0165 to 0182 of Japanese Patent Application Publication No. 2016-027357 and paragraphs 0138 to 0151 of International Publication No. 2015/199219 can be referred to, and the contents thereof are incorporated herein. In addition, compounds described in paragraphs 0065 to 0111 of JP 2014-130173, Japanese Patent No. 6301489, MATERIAL STAGE 37 to 60p, vol. 19, No. 3,2019, the photopolymerization initiator described in International Publication No. 2018/221177, the photopolymerization initiator described in International Publication No. 2018/110179, JP 2019-043864 The photopolymerization initiators described in JP-A No. 2019-044030, the peroxide-based initiators described in JP-A No. 2019-167313, and the contents of these are Incorporated into the specification.
 ケトン化合物としては、例えば、特開2015-087611号公報の段落0087に記載の化合物が例示され、この内容は本明細書に組み込まれる。市販品では、カヤキュア-DETX-S(日本化薬(株)製)も好適に用いられる。 Examples of the ketone compound include compounds described in paragraph 0087 of JP-A-2015-087611, the contents of which are incorporated herein. As a commercially available product, Kayacure-DETX-S (manufactured by Nippon Kayaku Co., Ltd.) is also suitably used.
 本発明の一実施態様において、光ラジカル重合開始剤としては、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、及び、アシルホスフィン化合物を好適に用いることができる。より具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、特許第4225898号に記載のアシルホスフィンオキシド系開始剤を用いることができ、この内容は本明細書に組み込まれる。 In one embodiment of the present invention, a hydroxyacetophenone compound, an aminoacetophenone compound, and an acylphosphine compound can be suitably used as the photoradical polymerization initiator. More specifically, for example, the aminoacetophenone-based initiator described in JP-A-10-291969 and the acylphosphine oxide-based initiator described in Japanese Patent No. 4225898 can be used, the content of which is herein incorporated by reference. Incorporated.
 α-ヒドロキシケトン系開始剤としては、Omnirad 184、Omnirad 1173、Omnirad 2959、Omnirad 127(以上、IGM Resins B.V.社製)、IRGACURE 184(IRGACUREは登録商標)、DAROCUR 1173、IRGACURE 500、IRGACURE-2959、IRGACURE 127(以上、BASF社製)を用いることができる。 Examples of α-hydroxyketone initiators include Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127 (manufactured by IGM Resins B.V.), IRGACURE 184 (IRGACURE is a registered trademark), DA ROCUR 1173, IRGACURE 500, IRGACURE -2959 and IRGACURE 127 (manufactured by BASF) can be used.
 α-アミノケトン系開始剤としては、Omnirad 907、Omnirad 369、Omnirad 369E、Omnirad 379EG(以上、IGM Resins B.V.社製)、IRGACURE 907、IRGACURE 369、及び、IRGACURE 379(以上、BASF社製)を用いることができる。 Examples of α-aminoketone initiators include Omnirad 907, Omnirad 369, Omnirad 369E, Omnirad 379EG (manufactured by IGM Resins B.V.), IRGACURE 907, IRGACURE 369. , and IRGACURE 379 (manufactured by BASF) can be used.
 アミノアセトフェノン系開始剤、アシルホスフィンオキシド系開始剤、メタロセン化合物としては、例えば、国際公開第2021/112189号の段落0161~0163に記載の化合物も好適に使用することができる。この内容は本明細書に組み込まれる。 As the aminoacetophenone initiator, the acylphosphine oxide initiator, and the metallocene compound, for example, the compounds described in paragraphs 0161 to 0163 of International Publication No. 2021/112189 can also be suitably used. This content is incorporated herein.
 光ラジカル重合開始剤として、より好ましくはオキシム化合物が挙げられる。オキシム化合物を用いることにより、露光ラチチュードをより効果的に向上させることが可能になる。オキシム化合物は、露光ラチチュード(露光マージン)が広く、かつ、光硬化促進剤としても働くため、特に好ましい。 More preferred examples of the photoradical polymerization initiator include oxime compounds. By using an oxime compound, it becomes possible to improve exposure latitude more effectively. Oxime compounds are particularly preferred because they have a wide exposure latitude (exposure margin) and also act as photocuring accelerators.
 オキシム化合物の具体例としては、特開2001-233842号公報に記載の化合物、特開2000-080068号公報に記載の化合物、特開2006-342166号公報に記載の化合物、J.C.S.Perkin II(1979年、pp.1653-1660)に記載の化合物、J.C.S.Perkin II(1979年、pp.156-162)に記載の化合物、Journal of Photopolymer Science and Technology(1995年、pp.202-232)に記載の化合物、特開2000-066385号公報に記載の化合物、特表2004-534797号公報に記載の化合物、特開2017-019766号公報に記載の化合物、特許第6065596号公報に記載の化合物、国際公開第2015/152153号に記載の化合物、国際公開第2017/051680号に記載の化合物、特開2017-198865号公報に記載の化合物、国際公開第2017/164127号の段落番号0025~0038に記載の化合物、国際公開第2013/167515号に記載の化合物などが挙げられ、この内容は本明細書に組み込まれる。 Specific examples of oxime compounds include compounds described in JP-A-2001-233842, compounds described in JP-A 2000-080068, compounds described in JP-A 2006-342166, J. C. S. Perkin II (1979, pp. 1653-1660); C. S. Compounds described in Perkin II (1979, pp. 156-162), compounds described in Journal of Photopolymer Science and Technology (1995, pp. 202-232), JP-A-2000-0 Compounds described in Publication No. 66385, Compounds described in Japanese Patent Publication No. 2004-534797, compounds described in Japanese Patent Application Publication No. 2017-019766, compounds described in Patent No. 6065596, compounds described in International Publication No. 2015/152153, International Publication No. 2017 /051680, compounds described in JP 2017-198865, compounds described in paragraph numbers 0025 to 0038 of International Publication No. 2017/164127, compounds described in International Publication No. 2013/167515, etc. , the contents of which are incorporated herein.
 好ましいオキシム化合物としては、例えば、下記の構造の化合物や、3-(ベンゾイルオキシ(イミノ))ブタン-2-オン、3-(アセトキシ(イミノ))ブタン-2-オン、3-(プロピオニルオキシ(イミノ))ブタン-2-オン、2-(アセトキシ(イミノ))ペンタン-3-オン、2-(アセトキシ(イミノ))-1-フェニルプロパン-1-オン、2-(ベンゾイルオキシ(イミノ))-1-フェニルプロパン-1-オン、3-((4-トルエンスルホニルオキシ)イミノ)ブタン-2-オン、及び2-(エトキシカルボニルオキシ(イミノ))-1-フェニルプロパン-1-オンなどが挙げられる。樹脂組成物においては、特に光ラジカル重合開始剤としてオキシム化合物を用いることが好ましい。光ラジカル重合開始剤としてのオキシム化合物は、分子内に>C=N-O-C(=O)-の連結基を有する。 Preferred oxime compounds include, for example, compounds with the following structures, 3-(benzoyloxy(imino))butan-2-one, 3-(acetoxy(imino))butan-2-one, 3-(propionyloxy( imino))butan-2-one, 2-(acetoxy(imino))pentan-3-one, 2-(acetoxy(imino))-1-phenylpropan-1-one, 2-(benzoyloxy(imino)) -1-phenylpropan-1-one, 3-((4-toluenesulfonyloxy)imino)butan-2-one, and 2-(ethoxycarbonyloxy(imino))-1-phenylpropan-1-one, etc. Can be mentioned. In the resin composition, it is particularly preferable to use an oxime compound as a photoradical polymerization initiator. The oxime compound used as a photoradical polymerization initiator has a >C=N-O-C(=O)- linking group in the molecule.
 オキシム化合物の市販品としては、IRGACURE OXE 01、IRGACURE OXE 02、IRGACURE OXE 03、IRGACURE OXE 04(以上、BASF社製)、アデカオプトマーN-1919((株)ADEKA製、特開2012-014052号公報に記載の光ラジカル重合開始剤2)、TR-PBG-304、TR-PBG-305(常州強力電子新材料有限公司製)、アデカアークルズNCI-730、NCI-831及びアデカアークルズNCI-930((株)ADEKA製)、DFI-091(ダイトーケミックス(株)製)、SpeedCure PDO(SARTOMER ARKEMA製)が挙げられる。また、下記の構造のオキシム化合物を用いることもできる。
Commercially available oxime compounds include IRGACURE OXE 01, IRGACURE OXE 02, IRGACURE OXE 03, IRGACURE OXE 04 (manufactured by BASF), ADEKA Optomer N-1919 (manufactured by ADEKA Corporation, Japanese Patent Application Laid-open No. 2012-014052). Photoradical polymerization initiator 2) described in the publication, TR-PBG-304, TR-PBG-305 (manufactured by Changzhou Strong Electronics New Materials Co., Ltd.), Adeka Arcles NCI-730, NCI-831, and Adeka Arcles NCI- 930 (manufactured by ADEKA Co., Ltd.), DFI-091 (manufactured by Daito Chemix Co., Ltd.), and SpeedCure PDO (manufactured by SARTOMER ARKEMA). Moreover, oxime compounds having the following structures can also be used.
 光ラジカル重合開始剤としては、例えば、国際公開第2021/112189号の段落0169~0171に記載のフルオレン環を有するオキシム化合物、カルバゾール環の少なくとも1つのベンゼン環がナフタレン環となった骨格を有するオキシム化合物、フッ素原子を有するオキシム化合物を用いることもできる。
 また、国際公開第2021/020359号に記載の段落0208~0210に記載のニトロ基を有するオキシム化合物、ベンゾフラン骨格を有するオキシム化合物、カルバゾール骨格にヒドロキシ基を有する置換基が結合したオキシム化合物を用いることもできる。これらの内容は本明細書に組み込まれる。
Examples of the photoradical polymerization initiator include oxime compounds having a fluorene ring described in paragraphs 0169 to 0171 of International Publication No. 2021/112189, and oximes having a skeleton in which at least one benzene ring of a carbazole ring is a naphthalene ring. Compounds, oxime compounds having a fluorine atom can also be used.
Furthermore, an oxime compound having a nitro group, an oxime compound having a benzofuran skeleton, and an oxime compound having a substituent having a hydroxy group bonded to a carbazole skeleton described in paragraphs 0208 to 0210 of International Publication No. 2021/020359 may be used. You can also do it. Their contents are incorporated herein.
 光重合開始剤としては、芳香族環に電子求引性基が導入された芳香族環基ArOX1を有するオキシム化合物(以下、オキシム化合物OXともいう)を用いることもできる。上記芳香族環基ArOX1が有する電子求引性基としては、アシル基、ニトロ基、トリフルオロメチル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、シアノ基が挙げられ、アシル基およびニトロ基が好ましく、耐光性に優れた膜を形成しやすいという理由からアシル基であることがより好ましく、ベンゾイル基であることが更に好ましい。ベンゾイル基は、置換基を有していてもよい。置換基としては、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、アルキル基、アルコキシ基、アリール基、アリールオキシ基、複素環基、複素環オキシ基、アルケニル基、アルキルスルファニル基、アリールスルファニル基、アシル基またはアミノ基であることが好ましく、アルキル基、アルコキシ基、アリール基、アリールオキシ基、複素環オキシ基、アルキルスルファニル基、アリールスルファニル基またはアミノ基であることがより好ましく、アルコキシ基、アルキルスルファニル基またはアミノ基であることが更に好ましい。 As the photopolymerization initiator, it is also possible to use an oxime compound having an aromatic ring group Ar OX1 (hereinafter also referred to as oxime compound OX) in which an electron-withdrawing group is introduced into the aromatic ring. Examples of the electron-withdrawing group possessed by the aromatic ring group Ar OX1 include an acyl group, a nitro group, a trifluoromethyl group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, and a cyano group, An acyl group and a nitro group are preferred, an acyl group is more preferred because a film with excellent light resistance can be easily formed, and a benzoyl group is even more preferred. The benzoyl group may have a substituent. Examples of substituents include halogen atoms, cyano groups, nitro groups, hydroxy groups, alkyl groups, alkoxy groups, aryl groups, aryloxy groups, heterocyclic groups, heterocyclic oxy groups, alkenyl groups, alkylsulfanyl groups, arylsulfanyl groups, It is preferably an acyl group or an amino group, and more preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a heterocyclicoxy group, an alkylsulfanyl group, an arylsulfanyl group, or an amino group. More preferably, it is a sulfanyl group or an amino group.
 オキシム化合物OXは、式(OX1)で表される化合物および式(OX2)で表される化合物から選ばれる少なくとも1種であることが好ましく、式(OX2)で表される化合物であることがより好ましい。

 式中、RX1は、アルキル基、アルケニル基、アルコキシ基、アリール基、アリールオキシ基、複素環基、複素環オキシ基、アルキルスルファニル基、アリールスルファニル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、アシル基、アシルオキシ基、アミノ基、ホスフィノイル基、カルバモイル基またはスルファモイル基を表し、
 RX2は、アルキル基、アルケニル基、アルコキシ基、アリール基、アリールオキシ基、複素環基、複素環オキシ基、アルキルスルファニル基、アリールスルファニル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、アシルオキシ基またはアミノ基を表し、
 RX3~RX14は、それぞれ独立して水素原子または置換基を表す。
 ただし、RX10~RX14のうち少なくとも1つは、電子求引性基である。
The oxime compound OX is preferably at least one selected from a compound represented by formula (OX1) and a compound represented by formula (OX2), and more preferably a compound represented by formula (OX2). preferable.

In the formula, R group, arylsulfonyl group, acyl group, acyloxy group, amino group, phosphinoyl group, carbamoyl group or sulfamoyl group,
R Represents a sulfonyl group, acyloxy group or amino group,
R X3 to R X14 each independently represent a hydrogen atom or a substituent.
However, at least one of R X10 to R X14 is an electron-withdrawing group.
 上記式において、RX12が電子求引性基であり、RX10、RX11、RX13、RX14は水素原子であることが好ましい。 In the above formula, R X12 is preferably an electron-withdrawing group, and R X10 , R X11 , R X13 , and R X14 are preferably hydrogen atoms.
 オキシム化合物OXの具体例としては、特許第4600600号公報の段落番号0083~0105に記載の化合物が挙げられ、この内容は本明細書に組み込まれる。 Specific examples of the oxime compound OX include compounds described in paragraph numbers 0083 to 0105 of Japanese Patent No. 4,600,600, the contents of which are incorporated herein.
 特に好ましいオキシム化合物としては、特開2007-269779号公報に示される特定置換基を有するオキシム化合物や、特開2009-191061号公報に示されるチオアリール基を有するオキシム化合物などが挙げられ、この内容は本明細書に組み込まれる。 Particularly preferable oxime compounds include oxime compounds having a specific substituent group as shown in JP-A No. 2007-269779, and oxime compounds having a thioaryl group as shown in JP-A No. 2009-191061. Incorporated herein.
 光ラジカル重合開始剤は、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物及びその誘導体、シクロペンタジエン-ベンゼン-鉄錯体及びその塩、ハロメチルオキサジアゾール化合物、3-アリール置換クマリン化合物からなる群より選択される化合物が好ましい。 From the viewpoint of exposure sensitivity, photoradical polymerization initiators include trihalomethyltriazine compounds, benzyl dimethyl ketal compounds, α-hydroxyketone compounds, α-aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, and triaryl compounds. selected from the group consisting of imidazole dimers, onium salt compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complexes and salts thereof, halomethyloxadiazole compounds, and 3-aryl substituted coumarin compounds. Compounds such as
 また、光ラジカル重合開始剤は、トリハロメチルトリアジン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾフェノン化合物、アセトフェノン化合物であり、トリハロメチルトリアジン化合物、α-アミノケトン化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、ベンゾフェノン化合物からなる群より選ばれる少なくとも1種の化合物がより好ましく、メタロセン化合物又はオキシム化合物が更に好ましい。 Further, the photoradical polymerization initiator is a trihalomethyltriazine compound, an α-aminoketone compound, an acylphosphine compound, a phosphine oxide compound, a metallocene compound, an oxime compound, a triarylimidazole dimer, an onium salt compound, a benzophenone compound, an acetophenone compound, At least one compound selected from the group consisting of trihalomethyltriazine compounds, α-aminoketone compounds, metallocene compounds, oxime compounds, triarylimidazole dimers, and benzophenone compounds is more preferred, and metallocene compounds or oxime compounds are even more preferred.
 光ラジカル重合開始剤としては、国際公開第2021/020359号に記載の段落0175~0179に記載の化合物、国際公開第2015/125469号の段落0048~0055に記載の化合物を用いることもでき、この内容は本明細書に組み込まれる。 As the photoradical polymerization initiator, compounds described in paragraphs 0175 to 0179 of WO 2021/020359 and compounds described in paragraphs 0048 to 0055 of WO 2015/125469 can also be used; The contents are incorporated herein.
 光ラジカル重合開始剤としては、2官能あるいは3官能以上の光ラジカル重合開始剤を用いてもよい。そのような光ラジカル重合開始剤を用いることにより、光ラジカル重合開始剤の1分子から2つ以上のラジカルが発生するため、良好な感度が得られる。また、非対称構造の化合物を用いた場合においては、結晶性が低下して溶剤などへの溶解性が向上して、経時で析出しにくくなり、樹脂組成物の経時安定性を向上させることができる。2官能あるいは3官能以上の光ラジカル重合開始剤の具体例としては、特表2010-527339号公報、特表2011-524436号公報、国際公開第2015/004565号、特表2016-532675号公報の段落番号0407~0412、国際公開第2017/033680号の段落番号0039~0055に記載されているオキシム化合物の2量体、特表2013-522445号公報に記載されている化合物(E)および化合物(G)、国際公開第2016/034963号に記載されているCmpd1~7、特表2017-523465号公報の段落番号0007に記載されているオキシムエステル類光開始剤、特開2017-167399号公報の段落番号0020~0033に記載されている光開始剤、特開2017-151342号公報の段落番号0017~0026に記載されている光重合開始剤(A)、特許第6469669号公報に記載されているオキシムエステル光開始剤などが挙げられ、この内容は本明細書に組み込まれる。 As the photoradical polymerization initiator, a difunctional, trifunctional or more functional photoradical polymerization initiator may be used. By using such a radical photopolymerization initiator, two or more radicals are generated from one molecule of the radical photopolymerization initiator, so that good sensitivity can be obtained. In addition, when a compound with an asymmetric structure is used, the crystallinity decreases and the solubility in solvents improves, making it difficult to precipitate over time, thereby improving the stability of the resin composition over time. . Specific examples of bifunctional or trifunctional or more functional photoradical polymerization initiators include those listed in Japanese Patent Publication No. 2010-527339, Japanese Patent Publication No. 2011-524436, International Publication No. 2015/004565, and Japanese Patent Application Publication No. 2016-532675. Dimers of oxime compounds described in paragraph numbers 0407 to 0412, paragraph numbers 0039 to 0055 of International Publication No. 2017/033680, compound (E) and compound ( G), Cmpd1 to 7 described in International Publication No. 2016/034963, oxime ester photoinitiators described in paragraph number 0007 of Japanese Patent Publication No. 2017-523465, Photoinitiators described in paragraph numbers 0020 to 0033, photoinitiators (A) described in paragraph numbers 0017 to 0026 of JP2017-151342A, and photoinitiators (A) described in Japanese Patent No. 6469669. Oxime ester photoinitiators and the like, the contents of which are incorporated herein.
 樹脂組成物が光重合開始剤を含む場合、その含有量は、樹脂組成物の全固形分に対し0.1~30質量%が好ましく、0.1~20質量%がより好ましく、0.5~15質量%が更に好ましく、1.0~10質量%が更により好ましい。光重合開始剤は1種のみ含有していてもよいし、2種以上含有していてもよい。光重合開始剤を2種以上含有する場合は、合計量が上記範囲であることが好ましい。
 なお、光重合開始剤は熱重合開始剤としても機能する場合があるため、オーブンやホットプレート等の加熱によって光重合開始剤による架橋を更に進行させられる場合がある。
When the resin composition contains a photopolymerization initiator, its content is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, and 0.5% by mass based on the total solid content of the resin composition. It is more preferably from 1.0 to 10% by weight, and even more preferably from 1.0 to 10% by weight. The photopolymerization initiator may contain only one type, or may contain two or more types. When containing two or more types of photopolymerization initiators, it is preferable that the total amount is within the above range.
Note that since the photopolymerization initiator may also function as a thermal polymerization initiator, crosslinking by the photopolymerization initiator may be further promoted by heating with an oven, a hot plate, or the like.
〔増感剤〕
 樹脂組成物は、増感剤を含んでいてもよい。増感剤は、特定の活性放射線を吸収して電子励起状態となる。電子励起状態となった増感剤は、熱ラジカル重合開始剤、光ラジカル重合開始剤などと接触して、電子移動、エネルギー移動、発熱などの作用が生じる。これにより、熱ラジカル重合開始剤、光ラジカル重合開始剤は化学変化を起こして分解し、ラジカル、酸又は塩基を生成する。
 使用可能な増感剤として、ベンゾフェノン系、ミヒラーズケトン系、クマリン系、ピラゾールアゾ系、アニリノアゾ系、トリフェニルメタン系、アントラキノン系、アントラセン系、アントラピリドン系、ベンジリデン系、オキソノール系、ピラゾロトリアゾールアゾ系、ピリドンアゾ系、シアニン系、フェノチアジン系、ピロロピラゾールアゾメチン系、キサンテン系、フタロシアニン系、ペンゾピラン系、インジゴ系等の化合物を使用することができる。
 増感剤としては、例えば、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2,5-ビス(4’-ジエチルアミノベンザル)シクロペンタン、2,6-ビス(4’-ジエチルアミノベンザル)シクロヘキサノン、2,6-ビス(4’-ジエチルアミノベンザル)-4-メチルシクロヘキサノン、4,4’-ビス(ジメチルアミノ)カルコン、4,4’-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビフェニレン)-ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4’-ジメチルアミノベンザル)アセトン、1,3-ビス(4’-ジエチルアミノベンザル)アセトン、3,3’-カルボニル-ビス(7-ジエチルアミノクマリン)、3-アセチル-7-ジメチルアミノクマリン、3-エトキシカルボニル-7-ジメチルアミノクマリン、3-ベンジロキシカルボニル-7-ジメチルアミノクマリン、3-メトキシカルボニル-7-ジエチルアミノクマリン、3-エトキシカルボニル-7-ジエチルアミノクマリン(7-(ジエチルアミノ)クマリン-3-カルボン酸エチル)、N-フェニル-N’-エチルエタノールアミン、N-フェニルジエタノールアミン、N-p-トリルジエタノールアミン、N-フェニルエタノールアミン、4-モルホリノベンゾフェノン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、2-メルカプトベンズイミダゾール、1-フェニル-5-メルカプトテトラゾール、2-メルカプトベンゾチアゾール、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンゾチアゾール、2-(p-ジメチルアミノスチリル)ナフト(1,2-d)チアゾール、2-(p-ジメチルアミノベンゾイル)スチレン、ジフェニルアセトアミド、ベンズアニリド、N-メチルアセトアニリド、3‘,4’-ジメチルアセトアニリド等が挙げられる。
 また、他の増感色素を用いてもよい。
 増感色素の詳細については、特開2016-027357号公報の段落0161~0163の記載を参酌でき、この内容は本明細書に組み込まれる。
[Sensitizer]
The resin composition may contain a sensitizer. The sensitizer absorbs specific actinic radiation and becomes electronically excited. The sensitizer in an electronically excited state comes into contact with a thermal radical polymerization initiator, a photoradical polymerization initiator, etc., and effects such as electron transfer, energy transfer, and heat generation occur. As a result, the thermal radical polymerization initiator and the photo radical polymerization initiator undergo a chemical change and are decomposed to generate radicals, acids, or bases.
Usable sensitizers include benzophenone series, Michler's ketone series, coumarin series, pyrazole azo series, anilinoazo series, triphenylmethane series, anthraquinone series, anthracene series, anthrapyridone series, benzylidene series, oxonol series, and pyrazolotriazole azo series. , pyridone azo type, cyanine type, phenothiazine type, pyrrolopyrazole azomethine type, xanthene type, phthalocyanine type, penzopyran type, indigo type and the like can be used.
Examples of the sensitizer include Michler's ketone, 4,4'-bis(diethylamino)benzophenone, 2,5-bis(4'-diethylaminobenzal)cyclopentane, 2,6-bis(4'-diethylaminobenzal) Cyclohexanone, 2,6-bis(4'-diethylaminobenzal)-4-methylcyclohexanone, 4,4'-bis(dimethylamino)chalcone, 4,4'-bis(diethylamino)chalcone, p-dimethylaminocinnamyl Denindanone, p-dimethylaminobenzylideneindanone, 2-(p-dimethylaminophenylbiphenylene)-benzothiazole, 2-(p-dimethylaminophenylvinylene)benzothiazole, 2-(p-dimethylaminophenylvinylene)iso Naphthothiazole, 1,3-bis(4'-dimethylaminobenzal)acetone, 1,3-bis(4'-diethylaminobenzal)acetone, 3,3'-carbonyl-bis(7-diethylaminocoumarin), 3 -Acetyl-7-dimethylaminocoumarin, 3-ethoxycarbonyl-7-dimethylaminocoumarin, 3-benzyloxycarbonyl-7-dimethylaminocoumarin, 3-methoxycarbonyl-7-diethylaminocoumarin, 3-ethoxycarbonyl-7-diethylaminocoumarin Coumarin (ethyl 7-(diethylamino)coumarin-3-carboxylate), N-phenyl-N'-ethylethanolamine, N-phenyldiethanolamine, N-p-tolyldiethanolamine, N-phenylethanolamine, 4-morpholinobenzophenone, Isoamyl dimethylaminobenzoate, isoamyl diethylaminobenzoate, 2-mercaptobenzimidazole, 1-phenyl-5-mercaptotetrazole, 2-mercaptobenzothiazole, 2-(p-dimethylaminostyryl)benzoxazole, 2-(p-dimethyl) aminostyryl)benzothiazole, 2-(p-dimethylaminostyryl)naphtho(1,2-d)thiazole, 2-(p-dimethylaminobenzoyl)styrene, diphenylacetamide, benzanilide, N-methylacetanilide, 3',4 '-dimethylacetanilide and the like.
Also, other sensitizing dyes may be used.
For details of the sensitizing dye, the descriptions in paragraphs 0161 to 0163 of JP-A-2016-027357 can be referred to, and the contents thereof are incorporated herein.
 樹脂組成物が増感剤を含む場合、増感剤の含有量は、樹脂組成物の全固形分に対し、0.01~20質量%が好ましく、0.1~15質量%がより好ましく、0.5~10質量%が更に好ましい。増感剤は、1種単独で用いてもよいし、2種以上を併用してもよい。 When the resin composition contains a sensitizer, the content of the sensitizer is preferably 0.01 to 20% by mass, more preferably 0.1 to 15% by mass, based on the total solid content of the resin composition. More preferably 0.5 to 10% by mass. The sensitizers may be used alone or in combination of two or more.
〔連鎖移動剤〕
 本発明の樹脂組成物は、連鎖移動剤を含有してもよい。連鎖移動剤は、例えば高分子辞典第三版(高分子学会編、2005年)683-684頁に定義されている。連鎖移動剤としては、例えば、分子内に-S-S-、-SO-S-、-N-O-、SH、PH、SiH、及びGeHを有する化合物群、RAFT(Reversible Addition Fragmentation chain Transfer)重合に用いられるチオカルボニルチオ基を有するジチオベンゾアート、トリチオカルボナート、ジチオカルバマート、キサンタート化合物等が用いられる。これらは、低活性のラジカルに水素を供与して、ラジカルを生成するか、若しくは、酸化された後、脱プロトンすることによりラジカルを生成しうる。特に、チオール化合物を好ましく用いることができる。
[Chain transfer agent]
The resin composition of the present invention may contain a chain transfer agent. Chain transfer agents are defined, for example, in the Polymer Dictionary, Third Edition (edited by the Society of Polymer Science, 2005), pages 683-684. Examples of chain transfer agents include compounds having -S-S-, -SO 2 -S-, -N-O-, SH, PH, SiH, and GeH in the molecule, and RAFT (Reversible Addition Fragmentation chain Transfer). ) Dithiobenzoate, trithiocarbonate, dithiocarbamate, xanthate compounds and the like having a thiocarbonylthio group used in polymerization are used. These can generate radicals by donating hydrogen to low-activity radicals, or can generate radicals by being oxidized and then deprotonated. In particular, thiol compounds can be preferably used.
 また、連鎖移動剤は、国際公開第2015/199219号の段落0152~0153に記載の化合物を用いることもでき、この内容は本明細書に組み込まれる。 Further, as the chain transfer agent, compounds described in paragraphs 0152 to 0153 of International Publication No. 2015/199219 can also be used, the contents of which are incorporated herein.
 樹脂組成物が連鎖移動剤を有する場合、連鎖移動剤の含有量は、樹脂組成物の全固形分100質量部に対し、0.01~20質量部が好ましく、0.1~10質量部がより好ましく、0.5~5質量部が更に好ましい。連鎖移動剤は1種のみでもよいし、2種以上であってもよい。連鎖移動剤が2種以上の場合は、その合計が上記範囲であることが好ましい。 When the resin composition has a chain transfer agent, the content of the chain transfer agent is preferably 0.01 to 20 parts by mass, and 0.1 to 10 parts by mass based on 100 parts by mass of the total solid content of the resin composition. More preferably, 0.5 to 5 parts by mass is even more preferred. The number of chain transfer agents may be one, or two or more. When there are two or more types of chain transfer agents, it is preferable that the total is within the above range.
<塩基発生剤>
 本発明の樹脂組成物は、塩基発生剤を含んでもよい。ここで、塩基発生剤とは、物理的または化学的な作用によって塩基を発生することができる化合物である。好ましい塩基発生剤としては、熱塩基発生剤および光塩基発生剤が挙げられる。
 特に、樹脂組成物が環化樹脂の前駆体を含む場合、樹脂組成物は塩基発生剤を含むことが好ましい。樹脂組成物が熱塩基発生剤を含有することによって、例えば加熱により前駆体の環化反応を促進でき、硬化物の機械特性や耐薬品性が良好なものとなり、例えば半導体パッケージ中に含まれる再配線層用層間絶縁膜としての性能が良好となる。
 塩基発生剤としては、イオン型塩基発生剤でもよく、非イオン型塩基発生剤でもよい。塩基発生剤から発生する塩基としては、例えば、2級アミン、3級アミンが挙げられる。
 塩基発生剤は特に限定されず、公知の塩基発生剤を用いることができる。公知の塩基発生剤としては、例えば、カルバモイルオキシム化合物、カルバモイルヒドロキシルアミン化合物、カルバミン酸化合物、ホルムアミド化合物、アセトアミド化合物、カルバメート化合物、ベンジルカルバメート化合物、ニトロベンジルカルバメート化合物、スルホンアミド化合物、イミダゾール誘導体化合物、アミンイミド化合物、ピリジン誘導体化合物、α-アミノアセトフェノン誘導体化合物、4級アンモニウム塩誘導体化合物、イミニウム塩、ピリジニウム塩、α-ラクトン環誘導体化合物、アミンイミド化合物、フタルイミド誘導体化合物、アシルオキシイミノ化合物等が挙げられる。
 非イオン型塩基発生剤の具体例としては、国際公開第2022/145355号の段落0249~0275に記載の化合物が挙げられる。上記記載は本明細書に組み込まれる。
<Base generator>
The resin composition of the present invention may also contain a base generator. Here, the base generator is a compound that can generate a base by physical or chemical action. Preferred base generators include thermal base generators and photobase generators.
In particular, when the resin composition contains a precursor of a cyclized resin, it is preferable that the resin composition contains a base generator. When the resin composition contains a thermal base generator, the cyclization reaction of the precursor can be promoted by heating, for example, and the cured product has good mechanical properties and chemical resistance. The performance as an interlayer insulating film for wiring layers is improved.
The base generator may be an ionic base generator or a nonionic base generator. Examples of the base generated from the base generator include secondary amines and tertiary amines.
The base generator is not particularly limited, and any known base generator can be used. Known base generators include, for example, carbamoyloxime compounds, carbamoylhydroxylamine compounds, carbamic acid compounds, formamide compounds, acetamide compounds, carbamate compounds, benzyl carbamate compounds, nitrobenzyl carbamate compounds, sulfonamide compounds, imidazole derivative compounds, and amine imides. compounds, pyridine derivative compounds, α-aminoacetophenone derivative compounds, quaternary ammonium salt derivative compounds, iminium salts, pyridinium salts, α-lactone ring derivative compounds, amine imide compounds, phthalimide derivative compounds, acyloxyimino compounds, and the like.
Specific examples of nonionic base generators include compounds described in paragraphs 0249 to 0275 of International Publication No. 2022/145355. The above description is incorporated herein.
 塩基発生剤としては、下記の化合物が挙げられるが、これらに限定されない。 Examples of the base generator include, but are not limited to, the following compounds.
 非イオン型塩基発生剤の分子量は、800以下が好ましく、600以下がより好ましく、500以下が更に好ましい。下限は、100以上が好ましく、200以上がより好ましく、300以上が更に好ましい。 The molecular weight of the nonionic base generator is preferably 800 or less, more preferably 600 or less, and even more preferably 500 or less. The lower limit is preferably 100 or more, more preferably 200 or more, and even more preferably 300 or more.
 イオン型塩基発生剤の具体的な好ましい化合物としては、例えば、国際公開第2018/038002号の段落番号0148~0163に記載の化合物が挙げられる。 Specific preferred compounds of the ionic base generator include, for example, the compounds described in paragraph numbers 0148 to 0163 of International Publication No. 2018/038002.
 アンモニウム塩の具体例としては、下記の化合物が挙げられるが、これらに限定されない。
Specific examples of ammonium salts include, but are not limited to, the following compounds.
 イミニウム塩の具体例としては、下記の化合物が挙げられるが、これらに限定されない。
Specific examples of iminium salts include, but are not limited to, the following compounds.
 樹脂組成物が塩基発生剤を含む場合、塩基発生剤の含有量は、樹脂組成物中の樹脂100質量部に対し、0.1~50質量部が好ましい。下限は、0.3質量部以上がより好ましく、0.5質量部以上が更に好ましい。上限は、30質量部以下がより好ましく、20質量部以下が更に好ましく、10質量部以下が一層好ましく、5質量部以下がより一層好ましく、4質量部以下が特に好ましい。
 塩基発生剤は、1種又は2種以上を用いることができる。2種以上を用いる場合は、合計量が上記範囲であることが好ましい。
When the resin composition contains a base generator, the content of the base generator is preferably 0.1 to 50 parts by weight based on 100 parts by weight of the resin in the resin composition. The lower limit is more preferably 0.3 parts by mass or more, and even more preferably 0.5 parts by mass or more. The upper limit is more preferably 30 parts by mass or less, even more preferably 20 parts by mass or less, even more preferably 10 parts by mass or less, even more preferably 5 parts by mass or less, and particularly preferably 4 parts by mass or less.
One type or two or more types of base generators can be used. When two or more types are used, the total amount is preferably within the above range.
<溶剤>
 本発明の樹脂組成物は、溶剤を含むことが好ましい。
 溶剤は、公知の溶剤を任意に使用できる。溶剤は有機溶剤が好ましい。有機溶剤としては、エステル類、エーテル類、ケトン類、環状炭化水素類、スルホキシド類、アミド類、ウレア類、アルコール類などの化合物が挙げられる。
<Solvent>
The resin composition of the present invention preferably contains a solvent.
Any known solvent can be used as the solvent. The solvent is preferably an organic solvent. Examples of the organic solvent include compounds such as esters, ethers, ketones, cyclic hydrocarbons, sulfoxides, amides, ureas, and alcohols.
 エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、酢酸へキシル、ギ酸アミル、酢酸イソアミル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、γ-バレロラクトン、アルキルオキシ酢酸アルキル(例えば、アルキルオキシ酢酸メチル、アルキルオキシ酢酸エチル、アルキルオキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-アルキルオキシプロピオン酸アルキルエステル類(例えば、3-アルキルオキシプロピオン酸メチル、3-アルキルオキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-アルキルオキシプロピオン酸アルキルエステル類(例えば、2-アルキルオキシプロピオン酸メチル、2-アルキルオキシプロピオン酸エチル、2-アルキルオキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-アルキルオキシ-2-メチルプロピオン酸メチル及び2-アルキルオキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル、ヘキサン酸エチル、ヘプタン酸エチル、マロン酸ジメチル、マロン酸ジエチル等が好適なものとして挙げられる。 Examples of esters include ethyl acetate, n-butyl acetate, isobutyl acetate, hexyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, γ-butyrolactone. , ε-caprolactone, δ-valerolactone, γ-valerolactone, alkyloxyacetates (e.g., methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (e.g., methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate) , methyl ethoxy acetate, ethyl ethoxy acetate, etc.), 3-alkyloxypropionate alkyl esters (e.g., methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc. (e.g., methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, etc.), alkyl 2-alkyloxypropionate esters (e.g., methyl 2-alkyloxypropionate, 2-alkyloxypropionate) ethyl, propyl 2-alkyloxypropionate, etc. (e.g., methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate), Methyl 2-alkyloxy-2-methylpropionate and ethyl 2-alkyloxy-2-methylpropionate (for example, methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxy-2-methylpropionate, etc.), Methyl pyruvate, ethyl pyruvate, propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, methyl 2-oxobutanoate, ethyl 2-oxobutanoate, ethyl hexanoate, ethyl heptanoate, dimethyl malonate, diethyl malonate, etc. are preferred. It is mentioned as something.
 エーテル類として、例えば、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノプロピルエーテルアセテート、ジプロピレングリコールジメチルエーテル等が好適なものとして挙げられる。 Examples of ethers include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether, ethylene glycol Suitable examples include monobutyl ether acetate, diethylene glycol ethyl methyl ether, propylene glycol monopropyl ether acetate, and dipropylene glycol dimethyl ether.
 ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン、3-メチルシクロヘキサノン、レボグルコセノン、ジヒドロレボグルコセノン等が好適なものとして挙げられる。 Suitable ketones include, for example, methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, 3-methylcyclohexanone, levoglucosenone, dihydrolevoglucosenone, and the like.
 環状炭化水素類として、例えば、トルエン、キシレン、アニソール等の芳香族炭化水素類、リモネン等の環式テルペン類が好適なものとして挙げられる。 Suitable examples of cyclic hydrocarbons include aromatic hydrocarbons such as toluene, xylene, and anisole, and cyclic terpenes such as limonene.
 スルホキシド類として、例えば、ジメチルスルホキシドが好適なものとして挙げられる。 Suitable examples of sulfoxides include dimethyl sulfoxide.
 アミド類として、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジメチルイソブチルアミド、3-メトキシ-N,N-ジメチルプロピオンアミド、3-ブトキシ-N,N-ジメチルプロピオンアミド、N-ホルミルモルホリン、N-アセチルモルホリン等が好適なものとして挙げられる。 Amides include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, N,N-dimethylisobutyramide, Preferred examples include 3-methoxy-N,N-dimethylpropionamide, 3-butoxy-N,N-dimethylpropionamide, N-formylmorpholine, and N-acetylmorpholine.
 ウレア類として、N,N,N’,N’-テトラメチルウレア、1,3-ジメチル-2-イミダゾリジノン等が好適なものとして挙げられる。 Suitable ureas include N,N,N',N'-tetramethylurea, 1,3-dimethyl-2-imidazolidinone, and the like.
アルコール類として、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、1-ペンタノール、1-ヘキサノール、ベンジルアルコール、エチレングリコールモノメチルエーテル、1-メトキシ-2-プロパノール、2-エトキシエタノール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノヘキシルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、ポリエチレングリコールモノメチルエーテル、ポリプロピレングリコール、テトラエチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノベンジルエーテル、エチレングリコールモノフェニルエーテル、メチルフェニルカルビノール、n-アミルアルコール、メチルアミルアルコール、および、ダイアセトンアルコール等が挙げられる。 Alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol, 1-hexanol, benzyl alcohol, ethylene glycol monomethyl ether, 1-methoxy-2-propanol, 2-ethoxyethanol, Diethylene glycol monoethyl ether, diethylene glycol monohexyl ether, triethylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether, polyethylene glycol monomethyl ether, polypropylene glycol, tetraethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monobenzyl ether, Examples include ethylene glycol monophenyl ether, methylphenyl carbinol, n-amyl alcohol, methyl amyl alcohol, and diacetone alcohol.
 溶剤は、塗布面性状の改良などの観点から、2種以上を混合する形態も好ましい。 From the viewpoint of improving the properties of the coated surface, it is also preferable to use a mixture of two or more solvents.
 本発明では、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、γ-ブチロラクトン、γ-バレロラクトン、3-メトキシ-N,N-ジメチルプロピオンアミド、トルエン、ジメチルスルホキシド、エチルカルビトールアセテート、ブチルカルビトールアセテート、N-メチル-2-ピロリドン、プロピレングリコールメチルエーテル、及びプロピレングリコールメチルエーテルアセテート、レボグルコセノン、ジヒドロレボグルコセノンから選択される1種の溶剤、又は、2種以上で構成される混合溶剤が好ましい。ジメチルスルホキシドとγ-ブチロラクトンとの併用、ジメチルスルホキシドとγ-バレロラクトンとの併用、3-メトキシ-N,N-ジメチルプロピオンアミドとγ-ブチロラクトンとの併用、3-メトキシ-N,N-ジメチルプロピオンアミドとγ-ブチロラクトンとジメチルスルホキシドとの併用又は、N-メチル-2-ピロリドンと乳酸エチルとの併用が特に好ましい。また、これらの併用された溶剤に、更にトルエンを溶剤の全質量に対して1~10質量%程度添加する態様も、本発明の好ましい態様の1つである。
 特に、樹脂組成物の保存安定性等の観点からは、溶剤としてγ-バレロラクトンを含む態様も、本発明の好ましい態様の1つである。このような態様において、溶剤の全質量に対するγ-バレロラクトンの含有量は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。また、上記含有量の上限は、特に限定されず100質量%であってもよい。上記含有量は、樹脂組成物に含まれる特定樹脂などの成分の溶解度等を考慮して決定すればよい。
 また、ジメチルスルホキシドとγ-バレロラクトンとを併用する場合、溶剤の全質量に対して、60~90質量%のγ-バレロラクトンと、10~40質量%のジメチルスルホキシドを含むことが好ましく、70~90質量%のγ-バレロラクトンと、10~30質量%のジメチルスルホキシドを含むことがより好ましく、75~85質量%のγ-バレロラクトンと、15~25質量%のジメチルスルホキシドを含むことが更に好ましい。
In the present invention, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2-heptanone, cyclohexanone, cyclopentanone, γ- Butyrolactone, γ-valerolactone, 3-methoxy-N,N-dimethylpropionamide, toluene, dimethyl sulfoxide, ethyl carbitol acetate, butyl carbitol acetate, N-methyl-2-pyrrolidone, propylene glycol methyl ether, and propylene glycol One type of solvent selected from methyl ether acetate, levoglucosenone, and dihydrolevoglucosenone, or a mixed solvent composed of two or more types is preferable. Combination of dimethyl sulfoxide and γ-butyrolactone, combination of dimethyl sulfoxide and γ-valerolactone, combination of 3-methoxy-N,N-dimethylpropionamide and γ-butyrolactone, 3-methoxy-N,N-dimethylpropion Particularly preferred is the combination of amide, γ-butyrolactone and dimethyl sulfoxide, or the combination of N-methyl-2-pyrrolidone and ethyl lactate. Further, it is also a preferred embodiment of the present invention that toluene is further added to the solvent used in combination in an amount of about 1 to 10% by mass based on the total mass of the solvent.
In particular, from the viewpoint of storage stability of the resin composition, an embodiment containing γ-valerolactone as a solvent is also one of the preferred embodiments of the present invention. In such an embodiment, the content of γ-valerolactone based on the total mass of the solvent is preferably 50% by mass or more, more preferably 60% by mass or more, and still more preferably 70% by mass or more. preferable. Further, the upper limit of the content is not particularly limited and may be 100% by mass. The above content may be determined in consideration of the solubility of components such as the specific resin contained in the resin composition.
Further, when dimethyl sulfoxide and γ-valerolactone are used together, it is preferable to contain 60 to 90% by mass of γ-valerolactone and 10 to 40% by mass of dimethyl sulfoxide, based on the total mass of the solvent. It is more preferable to contain ~90% by mass of γ-valerolactone and 10 to 30% by mass of dimethyl sulfoxide, and more preferably to contain 75 to 85% by mass of γ-valerolactone and 15 to 25% by mass of dimethyl sulfoxide. More preferred.
 溶剤の含有量は、塗布性の観点から、本発明の樹脂組成物の全固形分濃度が5~80質量%になる量とすることが好ましく、5~75質量%となる量にすることがより好ましく、10~70質量%となる量にすることが更に好ましく、20~70質量%となるようにすることが一層好ましい。溶剤含有量は、塗膜の所望の厚さと塗布方法に応じて調節すればよい。溶剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。 From the viewpoint of coating properties, the content of the solvent is preferably such that the total solids concentration of the resin composition of the present invention is 5 to 80% by mass, and preferably 5 to 75% by mass. More preferably, the amount is 10 to 70% by mass, and even more preferably 20 to 70% by mass. The solvent content may be adjusted depending on the desired thickness of the coating and the application method. When two or more types of solvents are contained, it is preferable that the total amount is within the above range.
<金属接着性改良剤>
 本発明の樹脂組成物は、電極や配線などに用いられる金属材料との接着性を向上させる観点から、金属接着性改良剤を含むことが好ましい。金属接着性改良剤としては、アルコキシシリル基を有するシランカップリング剤、アルミニウム系接着助剤、チタン系接着助剤、スルホンアミド構造を有する化合物及びチオウレア構造を有する化合物、リン酸誘導体化合物、βケトエステル化合物、アミノ化合物等が挙げられる。
<Metal adhesion improver>
The resin composition of the present invention preferably contains a metal adhesion improver from the viewpoint of improving adhesion to metal materials used for electrodes, wiring, etc. Examples of metal adhesion improvers include silane coupling agents having alkoxysilyl groups, aluminum adhesion aids, titanium adhesion aids, compounds having a sulfonamide structure and thiourea structure, phosphoric acid derivative compounds, and β-keto esters. compounds, amino compounds, etc.
〔シランカップリング剤〕
 シランカップリング剤としては、例えば、国際公開第2021/112189号の段落0316に記載の化合物、特開2018-173573の段落0067~0078に記載の化合物が挙げられ、これらの内容は本明細書に組み込まれる。また、特開2011-128358号公報の段落0050~0058に記載のように異なる2種以上のシランカップリング剤を用いることも好ましい。シランカップリング剤は、下記化合物を用いることも好ましい。以下の式中、Meはメチル基を、Etはエチル基を表す。また、下記Rはブロックイソシアネート基におけるブロック化剤由来の構造が挙げられる。ブロック化剤としては、脱離温度に応じて選択すればよいが、アルコール化合物、フェノール化合物、ピラゾール化合物、トリアゾール化合物、ラクタム化合物、活性メチレン化合物等が挙げられる。例えば、脱離温度を160~180℃としたい観点からは、カプロラクタムなどが好ましい。このような化合物の市販品としては、X-12-1293(信越化学工業株式会社製)などが挙げられる。
〔Silane coupling agent〕
Examples of the silane coupling agent include the compounds described in paragraph 0316 of International Publication No. 2021/112189 and the compounds described in paragraphs 0067 to 0078 of JP 2018-173573, the contents of which are not included herein. Incorporated. It is also preferable to use two or more different silane coupling agents as described in paragraphs 0050 to 0058 of JP-A-2011-128358. It is also preferable to use the following compounds as the silane coupling agent. In the following formula, Me represents a methyl group and Et represents an ethyl group. Further, the following R includes a structure derived from a blocking agent in a blocked isocyanate group. The blocking agent may be selected depending on the desorption temperature, and includes alcohol compounds, phenol compounds, pyrazole compounds, triazole compounds, lactam compounds, active methylene compounds, and the like. For example, from the viewpoint of desiring a desorption temperature of 160 to 180°C, caprolactam and the like are preferred. Commercially available products of such compounds include X-12-1293 (manufactured by Shin-Etsu Chemical Co., Ltd.).
 他のシランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピルトリアルコキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物が挙げられる。これらは1種単独または2種以上を組み合わせて使用することができる。
 また、シランカップリング剤として、アルコキシシリル基を複数個有するオリゴマータイプの化合物を用いることもできる。
 このようなオリゴマータイプの化合物としては、下記式(S-1)で表される繰返し単位を含む化合物などが挙げられる。

 式(S-1)中、RS1は1価の有機基を表し、RS2は水素原子、ヒドロキシ基又はアルコキシ基を表し、nは0~2の整数を表す。
 RS1は重合性基を含む構造であることが好ましい。重合性基としては、エチレン性不飽和結合を有する基、エポキシ基、オキセタニル基、ベンゾオキサゾリル基、ブロックイソシアネート基、アミノ基等が挙げられる。エチレン性不飽和結合を有する基としては、ビニル基、アリル基、イソアリル基、2-メチルアリル基、ビニル基と直接結合した芳香環を有する基(例えば、ビニルフェニル基など)、(メタ)アクリルアミド基、(メタ)アクリロイルオキシ基などが挙げられ、ビニルフェニル基、(メタ)アクリルアミド基又は(メタ)アクリロイルオキシ基が好ましく、ビニルフェニル基又は(メタ)アクリロイルオキシ基がより好ましく、(メタ)アクリロイルオキシ基が更に好ましい。
 RS2はアルコキシ基であることが好ましく、メトキシ基又はエトキシ基であることがより好ましい。
 nは0~2の整数を表し、1であることが好ましい。
 ここで、オリゴマータイプの化合物に含まれる複数の式(S-1)で表される繰返し単位の構造は、それぞれ同一であってもよい。
 ここで、オリゴマータイプの化合物に含まれる複数の式(S-1)で表される繰返し単位のうち、少なくとも1つにおいてnが1又は2であることが好ましく、少なくとも2つにおいてnが1又は2であることがより好ましく、少なくとも2つにおいてnが1であることが更に好ましい。
 このようなオリゴマータイプの化合物としては市販品を用いることができ、市販品としては例えば、KR-513(信越化学工業株式会社製)が挙げられる。
Examples of other silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane. Xypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane Silane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2 -(aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane, tris-(trimethoxysilylpropyl)isocyanurate, 3-ureidopropyltrialkoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanate Examples include propyltriethoxysilane and 3-trimethoxysilylpropylsuccinic anhydride. These can be used alone or in combination of two or more.
Moreover, an oligomer type compound having a plurality of alkoxysilyl groups can also be used as the silane coupling agent.
Examples of such oligomer type compounds include compounds containing a repeating unit represented by the following formula (S-1).

In formula (S-1), R S1 represents a monovalent organic group, R S2 represents a hydrogen atom, a hydroxy group, or an alkoxy group, and n represents an integer of 0 to 2.
R S1 preferably has a structure containing a polymerizable group. Examples of the polymerizable group include a group having an ethylenically unsaturated bond, an epoxy group, an oxetanyl group, a benzoxazolyl group, a blocked isocyanate group, and an amino group. Examples of the group having an ethylenically unsaturated bond include a vinyl group, an allyl group, an isoallyl group, a 2-methylallyl group, a group having an aromatic ring directly bonded to a vinyl group (for example, a vinyl phenyl group, etc.), and a (meth)acrylamide group. , (meth)acryloyloxy group, etc., preferably vinylphenyl group, (meth)acrylamide group or (meth)acryloyloxy group, more preferably vinylphenyl group or (meth)acryloyloxy group, (meth)acryloyloxy group, etc. More preferred are groups.
R S2 is preferably an alkoxy group, more preferably a methoxy group or an ethoxy group.
n represents an integer from 0 to 2, preferably 1.
Here, the structures of the plurality of repeating units represented by formula (S-1) contained in the oligomer type compound may be the same.
Here, it is preferable that n is 1 or 2 in at least one of the plurality of repeating units represented by formula (S-1) contained in the oligomer type compound, and n is 1 or 2 in at least two. More preferably, n is 2, and even more preferably n is 1 in at least two cases.
Commercially available products can be used as such oligomer type compounds, and examples of commercially available products include KR-513 (manufactured by Shin-Etsu Chemical Co., Ltd.).
〔アルミニウム系接着助剤〕
 アルミニウム系接着助剤としては、例えば、アルミニウムトリス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、エチルアセトアセテートアルミニウムジイソプロピレート等を挙げることができる。
[Aluminum-based adhesion aid]
Examples of the aluminum adhesive aid include aluminum tris (ethyl acetoacetate), aluminum tris (acetylacetonate), ethylacetoacetate aluminum diisopropylate, and the like.
 その他の金属接着性改良剤としては、特開2014-186186号公報の段落0046~0049に記載の化合物、特開2013-072935号公報の段落0032~0043に記載のスルフィド系化合物を用いることもでき、これらの内容は本明細書に組み込まれる。 As other metal adhesion improvers, compounds described in paragraphs 0046 to 0049 of JP2014-186186A and sulfide compounds described in paragraphs 0032 to 0043 of JP2013-072935A can also be used. , the contents of which are incorporated herein.
 金属接着性改良剤の含有量は特定樹脂100質量部に対して、0.01~30質量部が好ましく、0.1~10質量部がより好ましく、0.5~5質量部が更に好ましい。上記下限値以上とすることでパターンと金属層との接着性が良好となり、上記上限値以下とすることでパターンの耐熱性、機械特性が良好となる。金属接着性改良剤は1種のみでもよいし、2種以上であってもよい。2種以上用いる場合は、その合計が上記範囲であることが好ましい。 The content of the metal adhesion improver is preferably 0.01 to 30 parts by weight, more preferably 0.1 to 10 parts by weight, and even more preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the specific resin. By setting it above the above-mentioned lower limit, the adhesion between the pattern and the metal layer becomes good, and by setting it below the above-mentioned upper limit, the heat resistance and mechanical properties of the pattern become good. There may be only one type of metal adhesion improver, or two or more types may be used. When two or more types are used, it is preferable that the total is within the above range.
<マイグレーション抑制剤>
 本発明の樹脂組成物は、マイグレーション抑制剤を更に含むことが好ましい。マイグレーション抑制剤を含むことにより、例えば、樹脂組成物を金属層(又は金属配線)に適用して膜を形成した際に、金属層(又は金属配線)由来の金属イオンが膜内へ移動することを効果的に抑制することができる。
<Migration inhibitor>
It is preferable that the resin composition of the present invention further contains a migration inhibitor. By including a migration inhibitor, for example, when a resin composition is applied to a metal layer (or metal wiring) to form a film, metal ions derived from the metal layer (or metal wiring) may migrate into the film. can be effectively suppressed.
 マイグレーション抑制剤としては、特に制限はないが、複素環(ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾー000000ル環、テトラゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペリジン環、ピペラジン環、モルホリン環、2H-ピラン環及び6H-ピラン環、トリアジン環)を有する化合物、チオ尿素類及びスルファニル基を有する化合物、ヒンダードフェノール系化合物、サリチル酸誘導体系化合物、ヒドラジド誘導体系化合物が挙げられる。特に、1,2,4-トリアゾール、ベンゾトリアゾール、3-アミノ-1,2,4-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾール等のトリアゾール系化合物、1H-テトラゾール、5-フェニルテトラゾール、5-アミノ―1H-テトラゾール等のテトラゾール系化合物が好ましく使用できる。 Migration inhibitors are not particularly limited, but include heterocycles (pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole ring, isothiazole ring, tetrazole ring, pyridine ring) , pyridazine ring, pyrimidine ring, pyrazine ring, piperidine ring, piperazine ring, morpholine ring, 2H-pyran ring and 6H-pyran ring, triazine ring), compounds having thioureas and sulfanyl groups, hindered phenol type compounds, salicylic acid derivative compounds, and hydrazide derivative compounds. In particular, triazole compounds such as 1,2,4-triazole, benzotriazole, 3-amino-1,2,4-triazole, 3,5-diamino-1,2,4-triazole, 1H-tetrazole, 5- Tetrazole compounds such as phenyltetrazole and 5-amino-1H-tetrazole can be preferably used.
 これらの中でも、本発明の樹脂組成物はアゾール化合物を含むことが好ましい。
アゾール化合物とは、アゾール構造を含む化合物であり、アゾール構造とは、環員として窒素原子を含む5員環構造をいい、環員として2以上の窒素原子を含む5員環構造であることが好ましい。具体的には、アゾール構造は、イミダゾール構造、トリアゾール構造、テトラゾール構造等が挙げられる。これらの構造は、ベンゾイミダゾール、ベンゾトリアゾールなどのように、他の環構造と縮合等により多環を形成していてもよい。
 また、アゾール構造を有する化合物としては、アゾール構造に下記式(R-1)又は下記式(R-2)で表される基が直接結合した化合物も好ましい。

 式(R-1)中、Rは1価の有機基を表し、*はアゾール構造との結合部位を表す。
 式(R-2)中、Rは水素原子又は1価の有機基を表し、Rは1価の有機基を表し、*はアゾール構造との結合部位を表す。
 式(R-1)中、Rは炭化水素基、又は、炭化水素基と、-O-、-C(=O)-、-S-、-S(=O)-及び-NR-からなる群より選ばれた少なくとも1種の基との結合により表される基であることが好ましい。Rは上述の通りである。
 上記炭化水素基としては、脂肪族炭化水素基、芳香族炭化水素基又はこれらの組み合わせにより表される基が好ましい。
 また、Rの総炭素数は1~30が好ましく、2~25が好ましく、3~20がより好ましい。
 Rにおける、式(R-1)中のカルボニル基との結合部位は、炭化水素基又は-NR-が好ましい。
 式(R-1)中、*はアゾール構造との結合部位を表し、アゾール構造の環員である炭素原子との結合部位であることが好ましい。
 式(R-2)中、Rは水素原子であることが好ましい。
 Rが1価の有機基である場合、Rは、炭化水素基、又は、炭化水素基と、-O-、-C(=O)-、-S-、-S(=O)-及び-NR-からなる群より選ばれた少なくとも1種の基との結合により表される基であることが好ましい。Rは上述の通りである。
 上記炭化水素基としては、脂肪族炭化水素基、芳香族炭化水素基又はこれらの組み合わせにより表される基が好ましい。
 また、Rが1価の有機基である場合の総炭素数は1~30が好ましく、2~25が好ましく、3~20がより好ましい。
 Rが1価の有機基である場合、Rにおける式(R-2)中の窒素原子との結合部位は、炭化水素基又は-C(=O)-が好ましい。
 式(R-2)中、Rは炭化水素基、又は、炭化水素基と、-O-、-C(=O)-、-S-、-S(=O)-及び-NR-からなる群より選ばれた少なくとも1種の基との結合により表される基であることが好ましい。Rは上述の通りである。
 上記炭化水素基としては、脂肪族炭化水素基、芳香族炭化水素基又はこれらの組み合わせにより表される基が好ましい。
 また、Rが1価の有機基である場合の総炭素数は1~30が好ましく、2~25が好ましく、3~20がより好ましい。
 Rにおける、式(R-2)中の窒素原子との結合部位は、炭化水素基又は-C(=O)-が好ましい。
 式(R-2)中、*はアゾール構造との結合部位を表し、アゾール構造の環員である炭素原子との結合部位であることが好ましい。
Among these, it is preferable that the resin composition of the present invention contains an azole compound.
An azole compound is a compound containing an azole structure, and an azole structure refers to a 5-membered ring structure containing a nitrogen atom as a ring member, and may be a 5-membered ring structure containing 2 or more nitrogen atoms as a ring member. preferable. Specifically, examples of the azole structure include an imidazole structure, a triazole structure, and a tetrazole structure. These structures may form a polycyclic ring by condensation with other ring structures, such as benzimidazole and benzotriazole.
Further, as the compound having an azole structure, a compound in which a group represented by the following formula (R-1) or the following formula (R-2) is directly bonded to the azole structure is also preferable.

In formula (R-1), R 1 represents a monovalent organic group, and * represents a bonding site with an azole structure.
In formula (R-2), R 2 represents a hydrogen atom or a monovalent organic group, R 3 represents a monovalent organic group, and * represents a bonding site with an azole structure.
In formula (R-1), R 1 is a hydrocarbon group, or a hydrocarbon group and -O-, -C(=O)-, -S-, -S(=O) 2 - and -NR N A group represented by a bond with at least one group selected from the group consisting of - is preferable. R N is as described above.
The hydrocarbon group is preferably an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a combination thereof.
Further, the total number of carbon atoms in R 1 is preferably 1 to 30, preferably 2 to 25, and more preferably 3 to 20.
The bonding site in R 1 with the carbonyl group in formula (R-1) is preferably a hydrocarbon group or -NR N -.
In formula (R-1), * represents a bonding site with an azole structure, and is preferably a bonding site with a carbon atom that is a ring member of the azole structure.
In formula (R-2), R 2 is preferably a hydrogen atom.
When R 2 is a monovalent organic group, R 2 is a hydrocarbon group, or a hydrocarbon group and -O-, -C(=O)-, -S-, -S(=O) 2 A group represented by a bond with at least one group selected from the group consisting of - and -NR N - is preferable. R N is as described above.
The hydrocarbon group is preferably an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a combination thereof.
Further, when R 2 is a monovalent organic group, the total number of carbon atoms is preferably 1 to 30, preferably 2 to 25, and more preferably 3 to 20.
When R 2 is a monovalent organic group, the bonding site in R 2 with the nitrogen atom in formula (R-2) is preferably a hydrocarbon group or -C(=O)-.
In formula (R-2), R 3 is a hydrocarbon group, or a hydrocarbon group and -O-, -C(=O)-, -S-, -S(=O) 2 - and -NR N A group represented by a bond with at least one group selected from the group consisting of - is preferable. R N is as described above.
The hydrocarbon group is preferably an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a combination thereof.
Further, when R 3 is a monovalent organic group, the total number of carbon atoms is preferably 1 to 30, preferably 2 to 25, and more preferably 3 to 20.
The bonding site in R 3 with the nitrogen atom in formula (R-2) is preferably a hydrocarbon group or -C(=O)-.
In formula (R-2), * represents a bonding site with an azole structure, and is preferably a bonding site with a carbon atom that is a ring member of the azole structure.
 マイグレーション抑制剤としては、ハロゲンイオンなどの陰イオンを捕捉するイオントラップ剤を使用することもできる。 As the migration inhibitor, an ion trapping agent that traps anions such as halogen ions can also be used.
 その他のマイグレーション抑制剤としては、特開2013-015701号公報の段落0094に記載の防錆剤、特開2009-283711号公報の段落0073~0076に記載の化合物、特開2011-059656号公報の段落0052に記載の化合物、特開2012-194520号公報の段落0114、0116及び0118に記載の化合物、国際公開第2015/199219号の段落0166に記載の化合物などを使用することができ、この内容は本明細書に組み込まれる。 Other migration inhibitors include the rust inhibitors described in paragraph 0094 of JP-A-2013-015701, the compounds described in paragraphs 0073 to 0076 of JP-A-2009-283711, and the compounds described in JP-A-2011-059656. Compounds described in paragraph 0052, compounds described in paragraphs 0114, 0116, and 0118 of JP 2012-194520, compounds described in paragraph 0166 of WO 2015/199219, etc. can be used, and the contents thereof is incorporated herein.
 マイグレーション抑制剤の具体例としては、下記化合物を挙げることができる。 Specific examples of migration inhibitors include the following compounds.
 本発明の樹脂組成物がマイグレーション抑制剤を有する場合、マイグレーション抑制剤の含有量は、樹脂組成物の全固形分に対して、0.01~5.0質量%であることが好ましく、0.05~2.0質量%であることがより好ましく、0.1~1.0質量%であることが更に好ましい。 When the resin composition of the present invention has a migration inhibitor, the content of the migration inhibitor is preferably 0.01 to 5.0% by mass, and 0.01 to 5.0% by mass based on the total solid content of the resin composition. The amount is more preferably 0.05 to 2.0% by weight, and even more preferably 0.1 to 1.0% by weight.
 マイグレーション抑制剤は1種のみでもよいし、2種以上であってもよい。マイグレーション抑制剤が2種以上の場合は、その合計が上記範囲であることが好ましい。 Only one type of migration inhibitor may be used, or two or more types may be used. When there are two or more types of migration inhibitors, it is preferable that the total is within the above range.
 特に、本発明の樹脂組成物は、基材との密着性を向上する観点から、上述のアゾール化合物、及び、上述のシランカップリング剤を更に含むことが好ましい。これらの化合物を含有することにより、特に硬化物が高温高湿条件に晒された後であっても、基材との密着性が維持されやすい。 In particular, the resin composition of the present invention preferably further contains the above-mentioned azole compound and the above-mentioned silane coupling agent from the viewpoint of improving the adhesion to the base material. By containing these compounds, the adhesiveness with the base material is easily maintained even after the cured product is exposed to high temperature and high humidity conditions.
<重合禁止剤>
 本発明の樹脂組成物は、重合禁止剤を含むことが好ましい。重合禁止剤としてはフェノール系化合物、キノン系化合物、アミノ系化合物、N-オキシルフリーラジカル化合物系化合物、ニトロ系化合物、ニトロソ系化合物、ヘテロ芳香環系化合物、金属化合物などが挙げられる。
<Polymerization inhibitor>
It is preferable that the resin composition of the present invention contains a polymerization inhibitor. Examples of the polymerization inhibitor include phenolic compounds, quinone compounds, amino compounds, N-oxyl free radical compounds, nitro compounds, nitroso compounds, heteroaromatic compounds, and metal compounds.
 重合禁止剤の具体的な化合物としては、国際公開第2021/112189の段落0310に記載の化合物、p-ヒドロキノン、o-ヒドロキノン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、フェノキサジン、1,4,4-トリメチル-2,3-ジアザビシクロ[3.2.2]ノナ-2-エン-N,N-ジオキシド等が挙げられる。この内容は本明細書に組み込まれる。 Specific compounds of the polymerization inhibitor include the compound described in paragraph 0310 of International Publication No. 2021/112189, p-hydroquinone, o-hydroquinone, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1- Examples include oxyl free radical, phenoxazine, 1,4,4-trimethyl-2,3-diazabicyclo[3.2.2]non-2-ene-N,N-dioxide, and the like. This content is incorporated herein.
 本発明の樹脂組成物が重合禁止剤を有する場合、重合禁止剤の含有量は、樹脂組成物の全固形分に対して、0.01~20質量%であることが好ましく、0.02~15質量%であることがより好ましく、0.05~10質量%であることが更に好ましい。 When the resin composition of the present invention contains a polymerization inhibitor, the content of the polymerization inhibitor is preferably 0.01 to 20% by mass, and 0.02 to 20% by mass based on the total solid content of the resin composition. The content is more preferably 15% by mass, and even more preferably 0.05 to 10% by mass.
 重合禁止剤は1種のみでもよいし、2種以上であってもよい。重合禁止剤が2種以上の場合は、その合計が上記範囲であることが好ましい。 Only one type of polymerization inhibitor may be used, or two or more types may be used. When there are two or more types of polymerization inhibitors, it is preferable that the total is within the above range.
<光吸収剤>
 本発明の樹脂組成物は、露光によりその露光波長の吸光度が小さくなる化合物(光吸収剤)を含むことも好ましい。
<Light absorber>
It is also preferable that the resin composition of the present invention contains a compound (light absorber) whose absorbance at the exposure wavelength decreases upon exposure.
 樹脂組成物に含まれるある化合物aが光吸収剤に該当するか否か(すなわち、露光によりその露光波長の吸光度が小さくなるか否か)は、下記の方法により判定することができる。
 まず、樹脂組成物に含まれる濃度と同濃度の化合物aの溶液を調製し、露光光の波長における化合物aのモル吸光係数(mol-1・L・cm-1、「モル吸光係数1」ともいう。)を測定する。上記測定は、化合物aのモル吸光係数の低下などの変化の影響が小さくなるよう手早く行う。上記溶液における溶剤は、樹脂組成物が溶剤を含む場合はその溶剤を、樹脂組成物が溶剤を含まない場合はN-メチル-2-ピロリドンを用いる。
 次に、上記化合物aの溶液に対して露光光の照射を行う。露光量は1モルの化合物aに対して積算量として500mJとする。
 その後、露光後の上記化合物aの溶液を用い、露光光の波長における化合物aのモル吸光係数(mol-1・L・cm-1、「モル吸光係数2」ともいう。)を測定する。
 上記モル吸光係数1及びモル吸光係数2から、下記式に基づいて減衰率(%)を算出し、減衰率(%)が5%以上である場合に、化合物aは露光によりその露光波長の吸光度が小さくなる化合物(すなわち、光吸収剤)であると判断する。
 減衰率(%)=1-モル吸光係数2/モル吸光係数1×100
 上記減衰率は、10%以上であることが好ましく、20%以上であることがより好ましい。また、上記減衰率の下限は特に限定されず、0%以上であればよい。
 上記露光光の波長としては、樹脂組成物を感光膜の形成に用いる場合にはその感光膜が露光される波長であればよい。
 また、上記露光光の波長としては、樹脂組成物に含まれる光重合開始剤が感度を有する波長であることが好ましい。光重合開始剤がある波長に対して感度を有するとは、光重合開始剤をある波長において露光した際に重合開始種を生じることをいう。
 上記露光光の波長としては、光源との関係でいうと、(1)半導体レーザー(波長 830nm、532nm、488nm、405nm、375nm、355nm etc.)、(2)メタルハライドランプ、(3)高圧水銀灯、g線(波長 436nm)、h線(波長 405nm)、i線(波長 365nm)、ブロード(g,h,i線の3波長)、(4)エキシマレーザー、KrFエキシマレーザー(波長 248nm)、ArFエキシマレーザー(波長 193nm)、F2エキシマレーザー(波長 157nm)、(5)極端紫外線;EUV(波長 13.6nm)、(6)電子線、(7)YAGレーザーの第二高調波532nm、第三高調波355nm等が挙げられる。
 露光光の波長は、例えば光重合開始剤が感度を有する波長を選択すればよいが、h線(波長 405nm)又はi線(波長 365nm)が好ましく、i線(波長 365nm)がより好ましい。
Whether or not a certain compound a contained in the resin composition corresponds to a light absorber (that is, whether the absorbance at the exposure wavelength decreases upon exposure) can be determined by the following method.
First, a solution of compound a with the same concentration as that contained in the resin composition is prepared, and the molar extinction coefficient (mol −1 ·L·cm −1 , also referred to as “molar extinction coefficient 1”) of compound a at the wavelength of exposure light is determined. ). The above measurement is performed quickly so as to minimize the influence of changes such as a decrease in the molar extinction coefficient of compound a. As the solvent in the above solution, when the resin composition contains a solvent, that solvent is used, and when the resin composition does not contain a solvent, N-methyl-2-pyrrolidone is used.
Next, the solution of compound a is irradiated with exposure light. The exposure amount is 500 mJ as an integrated amount for 1 mol of compound a.
Thereafter, using the solution of compound a after exposure, the molar extinction coefficient (mol −1 ·L·cm −1 , also referred to as “molar extinction coefficient 2”) of compound a at the wavelength of the exposure light is measured.
Calculate the attenuation rate (%) from the above molar extinction coefficient 1 and molar extinction coefficient 2 based on the following formula, and if the attenuation rate (%) is 5% or more, compound a has an absorbance at the exposure wavelength due to exposure. is determined to be a compound (that is, a light absorber) that reduces the
Attenuation rate (%) = 1 - molar extinction coefficient 2 / molar extinction coefficient 1 x 100
The attenuation rate is preferably 10% or more, more preferably 20% or more. Moreover, the lower limit of the above-mentioned attenuation rate is not particularly limited, and may be 0% or more.
When the resin composition is used to form a photosensitive film, the wavelength of the exposure light may be any wavelength at which the photosensitive film is exposed.
Further, the wavelength of the exposure light is preferably a wavelength to which the photopolymerization initiator contained in the resin composition is sensitive. A photopolymerization initiator having sensitivity to a certain wavelength means that a polymerization initiation species is generated when the photopolymerization initiator is exposed to light at a certain wavelength.
In relation to the light source, the wavelength of the exposure light is (1) semiconductor laser (wavelength: 830 nm, 532 nm, 488 nm, 405 nm, 375 nm, 355 nm, etc.), (2) metal halide lamp, (3) high pressure mercury lamp, G-line (wavelength 436nm), H-line (wavelength 405nm), I-line (wavelength 365nm), Broad (3 wavelengths of g, h, i-line), (4) Excimer laser, KrF excimer laser (wavelength 248nm), ArF excimer Laser (wavelength 193 nm), F2 excimer laser (wavelength 157 nm), (5) Extreme ultraviolet light; EUV (wavelength 13.6 nm), (6) Electron beam, (7) YAG laser second harmonic 532 nm, third harmonic Examples include 355 nm.
The wavelength of the exposure light may be selected, for example, from a wavelength to which the photopolymerization initiator is sensitive, preferably the h-line (wavelength: 405 nm) or the i-line (wavelength: 365 nm), and more preferably the i-line (wavelength: 365 nm).
 光吸収剤は、露光によりラジカル重合開始種を発生する化合物であってもよいが、解像性及び耐薬品性の観点からは、露光によりラジカル重合開始種を発生しない化合物であることが好ましい。
 光吸収剤が露光によりラジカル重合開始種を発生する化合物であるか否かは、下記の方法により判定される。
 樹脂組成物に含まれる濃度と同濃度の光吸収剤、及び、ラジカル架橋剤を含む溶液を調製する。樹脂組成物がラジカル架橋剤を含む場合、上記溶液中のラジカル架橋剤としては、樹脂組成物に含まれるラジカル架橋剤と同一の化合物を同濃度で使用する。樹脂組成物がラジカル架橋剤を含まない場合、メタクリル酸メチルを光吸収剤の5倍の濃度で使用する。
 その後、露光光の照射を行う。露光量は積算量として500mJとする。
 露光後に、例えば高速液体クロマトグラフィにより重合性化合物の重合を判断し、重合性化合物の全モル量に対して重合した重合性化合物のモル量の割合が10%以下である場合に、光吸収剤が露光によりラジカル重合開始種を発生しない化合物であると判定する。
 上記モル量の割合は5%以下であることが好ましく、3%以下であることがより好ましい。また、上記モル量の割合の下限は特に限定されず、0%であってもよい。
 上記露光光の波長としては、樹脂組成物を感光膜の形成に用いる場合にはその感光膜が露光される波長であればよい。
 また、上記露光光の波長としては、樹脂組成物に含まれる光重合開始剤が感度を有する波長であることが好ましい。
The light absorber may be a compound that generates radical polymerization initiation species upon exposure to light, but from the viewpoint of resolution and chemical resistance, it is preferably a compound that does not generate radical polymerization initiation species upon exposure.
Whether the light absorber is a compound that generates radical polymerization initiating species upon exposure to light is determined by the following method.
A solution containing a light absorber and a radical crosslinking agent at the same concentration as that contained in the resin composition is prepared. When the resin composition contains a radical crosslinking agent, the same compound as the radical crosslinking agent contained in the resin composition is used at the same concentration as the radical crosslinking agent in the solution. If the resin composition does not contain a radical crosslinker, methyl methacrylate is used at a concentration five times that of the light absorber.
After that, exposure light is irradiated. The exposure amount is 500 mJ as an integrated amount.
After exposure, the polymerization of the polymerizable compound is determined by, for example, high performance liquid chromatography, and if the ratio of the molar amount of the polymerizable compound to the total molar amount of the polymerizable compound is 10% or less, the light absorber is It is determined that the compound does not generate radical polymerization initiation species upon exposure to light.
The molar amount ratio is preferably 5% or less, more preferably 3% or less. Further, the lower limit of the above molar amount ratio is not particularly limited, and may be 0%.
When the resin composition is used to form a photosensitive film, the wavelength of the exposure light may be any wavelength at which the photosensitive film is exposed.
Further, the wavelength of the exposure light is preferably a wavelength to which the photopolymerization initiator contained in the resin composition is sensitive.
 露光によりラジカル重合開始種を発生する化合物としては、上述の光ラジカル重合開始剤と同様の化合物が挙げられる。組成物が光吸収剤として光ラジカル重合開始剤を含む場合、発生するラジカル種の重合開始能が最も低いものを光吸収剤、それ以外を光重合開始剤とする。
 露光によりラジカル重合開始種を発生しない化合物としては、光酸発生剤、光塩基発生剤、その他、露光により吸収波長が変化する色素等が挙げられる。
 これらの中でも、光吸収剤としては、ナフトキノンジアジド化合物、又は、露光により吸光度が変化する色素であることが好ましく、ナフトキノンジアジド化合物であることがより好ましい。
 また、光吸収剤として、例えば、光酸発生剤又は光塩基発生剤と、pHにより露光波長の吸光度が小さくなる化合物とを組み合わせて用いることも考えられる。
Examples of the compound that generates a radical polymerization initiator upon exposure to light include the same compounds as the above-mentioned photoradical polymerization initiators. When the composition contains a photoradical polymerization initiator as a light absorber, the one having the lowest polymerization initiating ability of the generated radical species is the light absorber, and the others are the photopolymerization initiators.
Examples of compounds that do not generate radical polymerization initiation species upon exposure include photoacid generators, photobase generators, and dyes whose absorption wavelength changes upon exposure.
Among these, the light absorber is preferably a naphthoquinone diazide compound or a dye whose absorbance changes upon exposure, and more preferably a naphthoquinone diazide compound.
It is also conceivable to use, as a light absorber, a combination of, for example, a photoacid generator or a photobase generator and a compound whose absorbance at the exposure wavelength decreases depending on the pH.
〔ナフトキノンジアジド化合物〕
 ナフトキノンジアジド化合物としては、露光によりインデンカルボン酸を生じてその露光波長の吸光度が小さくなる化合物が挙げられ、1,2-ナフトキノンジアジド構造を有する化合物が好ましい。
 ナフトキノンジアジド化合物としては、ヒドロキシ化合物のナフトキノンジアジドスルホン酸エステルであることが好ましい。
 上記ヒドロキシ化合物としては、下記式(H1)~(H6)のいずれかで表される化合物が好ましい。

 式(H1)中、R及びRはそれぞれ独立に、1価の有機基を表し、R及びRはそれぞれ独立に、水素原子又は1価の有機基を表し、n1、n2、m1及びm2はそれぞれ独立に、0~5の整数であり、m1及びm2の少なくとも1つは1~5の整数である。
 式(H2)中、Zは4価の有機基を表し、L、L、L及びLはそれぞれ独立に、単結合又は2価の有機基を表し、R、R、R及びRはそれぞれ独立に、1価の有機基を表し、n3、n4、n5及びn6はそれぞれ独立に、0~3の整数であり、m3、m4、m5及びm6はそれぞれ独立に、0~2の整数であり、m3、m4、m5及びm6のうち少なくとも1つは1又は2である。
 式(H3)中、R及びR10はそれぞれ独立に、水素原子又は1価の有機基を表し、Lはそれぞれ独立に、2価の有機基を表し、n7は3~8の整数を表す。
 式(H4)中、Lは2価の有機基を表し、L及びLはそれぞれ独立に、脂肪族の3級又は4級炭素を含む2価の有機基を表す。
 式(H5)中、R11、R12、R13、R14、R15、R16、R17、R18、R19及びR20はそれぞれ独立に、水素原子、ハロゲン原子又は1価の有機基を表し、L、L10およびL11はそれぞれ独立に、単結合又は2価の有機基を表し、m7、m8、m9、m10はそれぞれ独立に、0~2の整数を表し、m7、m8、m9、m10のうち少なくとも1つは1又は2である。
 式(H6)中、R42、R43、R44、及びR45はそれぞれ独立に、水素原子又は1価の有機基を表し、R46、及びR47はそれぞれ独立に、1価の有機基を表し、n16及びn17はそれぞれ独立に、0~4の整数を表し、m11及びm12はそれぞれ独立に、0~4の整数を表し、m11及びm12のうち少なくとも1つは1~4の整数である。
[Naphthoquinonediazide compound]
Examples of the naphthoquinonediazide compound include compounds that produce indenecarboxylic acid upon exposure and have a low absorbance at the exposure wavelength, and compounds having a 1,2-naphthoquinonediazide structure are preferred.
The naphthoquinone diazide compound is preferably a naphthoquinone diazide sulfonic acid ester of a hydroxy compound.
As the above-mentioned hydroxy compound, compounds represented by any of the following formulas (H1) to (H6) are preferred.

In formula (H1), R 1 and R 2 each independently represent a monovalent organic group, R 3 and R 4 each independently represent a hydrogen atom or a monovalent organic group, and n1, n2, m1 and m2 are each independently an integer of 0 to 5, and at least one of m1 and m2 is an integer of 1 to 5.
In formula (H2), Z represents a tetravalent organic group, L 1 , L 2 , L 3 and L 4 each independently represent a single bond or a divalent organic group, and R 5 , R 6 , R 7 and R8 each independently represent a monovalent organic group, n3, n4, n5 and n6 each independently represent an integer of 0 to 3, m3, m4, m5 and m6 each independently represent 0 ˜2, and at least one of m3, m4, m5, and m6 is 1 or 2.
In formula (H3), R 9 and R 10 each independently represent a hydrogen atom or a monovalent organic group, L 5 each independently represents a divalent organic group, and n7 represents an integer from 3 to 8. represent.
In formula (H4), L 6 represents a divalent organic group, and L 7 and L 8 each independently represent a divalent organic group containing an aliphatic tertiary or quaternary carbon.
In formula (H5), R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 each independently represent a hydrogen atom, a halogen atom or a monovalent organic represents a group, L 9 , L 10 and L 11 each independently represent a single bond or a divalent organic group, m7, m8, m9, m10 each independently represent an integer from 0 to 2, m7, At least one of m8, m9, and m10 is 1 or 2.
In formula (H6), R 42 , R 43 , R 44 , and R 45 each independently represent a hydrogen atom or a monovalent organic group, and R 46 and R 47 each independently represent a monovalent organic group. , n16 and n17 each independently represent an integer from 0 to 4, m11 and m12 each independently represent an integer from 0 to 4, and at least one of m11 and m12 is an integer from 1 to 4. be.
 式(H1)中、R及びRはそれぞれ独立に、炭素数1~60の1価の有機基であることが好ましく、炭素数1~30の1価の有機基であることがより好ましい。R及びRにおける1価の有機基としては、置換基を有してもよい炭化水素基が挙げられ、例えば、ヒドロキシ基等の置換基を有してもよい芳香族炭化水素基等が挙げられる。
 式(H1)中、R及びRはそれぞれ独立に、炭素数1~60の1価の有機基であることが好ましく、炭素数1~30の1価の有機基であることがより好ましい。R及びRにおける1価の有機基としては、置換基を有してもよい炭化水素基が挙げられ、例えば、ヒドロキシ基等の置換基を有してもよい炭化水素基等が挙げられる。
 式(H1)中、n1及びn2はそれぞれ独立に、0又は1であることが好ましく、0であることがより好ましい。
 式(H1)中、m1及びm2はいずれも1であることが好ましい。
In formula (H1), R 1 and R 2 are each independently preferably a monovalent organic group having 1 to 60 carbon atoms, more preferably a monovalent organic group having 1 to 30 carbon atoms. . Examples of the monovalent organic group in R 1 and R 2 include a hydrocarbon group that may have a substituent, such as an aromatic hydrocarbon group that may have a substituent such as a hydroxy group. Can be mentioned.
In formula (H1), R 3 and R 4 are each independently preferably a monovalent organic group having 1 to 60 carbon atoms, more preferably a monovalent organic group having 1 to 30 carbon atoms. . Examples of the monovalent organic group in R 3 and R 4 include a hydrocarbon group that may have a substituent, such as a hydrocarbon group that may have a substituent such as a hydroxy group. .
In formula (H1), n1 and n2 are each independently preferably 0 or 1, and more preferably 0.
In formula (H1), m1 and m2 are preferably both 1.
式(H1)で表される化合物は、式(H1-1)~式(H1-5)のいずれかで表される化合物であることが好ましい。

 式(H1-1)中、R21、R22及びR23はそれぞれ独立に、水素原子又は1価の有機基を表し、水素原子又は炭素数1~20の1価の有機基が好ましく、水素原子又は下記式(R-1)で表される基がより好ましい。

 式(R-1)中、R29は水素原子、アルキル基又はアルコキシ基を表し、n13は0~2の整数を表し、*は他の構造との結合部位を表す。
 (H1-1)中、n8、n9及びn10はそれぞれ独立に、0~2の整数を表し、0又は1が好ましい。
The compound represented by formula (H1) is preferably a compound represented by any one of formulas (H1-1) to (H1-5).

In formula (H1-1), R 21 , R 22 and R 23 each independently represent a hydrogen atom or a monovalent organic group, preferably a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, and hydrogen An atom or a group represented by the following formula (R-1) is more preferable.

In formula (R-1), R 29 represents a hydrogen atom, an alkyl group, or an alkoxy group, n13 represents an integer of 0 to 2, and * represents a bonding site with another structure.
In (H1-1), n8, n9 and n10 each independently represent an integer of 0 to 2, preferably 0 or 1.
 式(H1-2)中、R24は水素原子又は1価の有機基を表し、水素原子、炭素数1~20のアルキル基又は炭素数1~20のアルコキシ基が好ましい。n14、n15及びn16はそれぞれ独立に、0~2の整数を表す。R30は水素原子又はアルキル基を表す。 In formula (H1-2), R 24 represents a hydrogen atom or a monovalent organic group, and is preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms. n14, n15 and n16 each independently represent an integer from 0 to 2. R 30 represents a hydrogen atom or an alkyl group.
 式(H1-3)中、R25、R26、R27及びR28はそれぞれ独立に、1価の有機基を表し、水素原子、アルキル基又は上述の式(R-1)で表される基であることが好ましい。
 式(H1-3)中、n11、n12及びn13はそれぞれ独立に、0~2の整数を表し、0又は1が好ましい。
In formula (H1-3), R 25 , R 26 , R 27 and R 28 each independently represent a monovalent organic group, and are represented by a hydrogen atom, an alkyl group, or the above formula (R-1). It is preferable that it is a group.
In formula (H1-3), n11, n12 and n13 each independently represent an integer of 0 to 2, preferably 0 or 1.
 式(H1-1)で表される化合物としては、下記式(H1-1-1)~式(H1-1-4)のいずれかで表される化合物が好ましい。
 式(H1-2)で表される化合物としては下記式(H1-2-1)または(H1-2-2)で表される化合物が好ましい。
 式(H1-3)で表される化合物としては下記式(H1-3-1)~式(H1-3-3)で表される化合物が好ましい。
The compound represented by formula (H1-1) is preferably a compound represented by any one of the following formulas (H1-1-1) to (H1-1-4).
The compound represented by the formula (H1-2) is preferably a compound represented by the following formula (H1-2-1) or (H1-2-2).
As the compound represented by formula (H1-3), compounds represented by the following formulas (H1-3-1) to (H1-3-3) are preferable.
 式(H2)中、Zは炭素数1~20の4価の基であることが好ましく、下記式(Z-1)~(Z-4)のいずれかで表される基がより好ましい。下記式(Z-1)~(Z-4)中、*は他の構造との結合部位を表す。

 式(H2)中、L、L、L及びLはそれぞれ独立に、単結合又はメチレン基であることが好ましい。
 式(H2)中、R、R、R及びRはそれぞれ独立に、炭素数1~30の有機基が好ましい。
 式(H2)中、n3、n4、n5及びn6はそれぞれ独立に、0~2の整数であることが好ましく、0又は1であることがより好ましい。
 式(H2)中、m3、m4、m5及びm6はそれぞれ独立に、1又は2であることが好ましく、1であることがより好ましい。
 式(H2)で表される化合物としては、下記構造の化合物が例示される。
In formula (H2), Z is preferably a tetravalent group having 1 to 20 carbon atoms, and more preferably a group represented by any of the following formulas (Z-1) to (Z-4). In the following formulas (Z-1) to (Z-4), * represents a bonding site with another structure.

In formula (H2), L 1 , L 2 , L 3 and L 4 are preferably each independently a single bond or a methylene group.
In formula (H2), R 5 , R 6 , R 7 and R 8 are each independently preferably an organic group having 1 to 30 carbon atoms.
In formula (H2), n3, n4, n5 and n6 are each independently preferably an integer of 0 to 2, more preferably 0 or 1.
In formula (H2), m3, m4, m5 and m6 are each independently preferably 1 or 2, more preferably 1.
Examples of the compound represented by formula (H2) include compounds having the following structure.
 式(H3)中、R及びR10はそれぞれ独立に、水素原子又は炭素数1~20の1価の有機基を表すことが好ましい。
 式(H3)中、Lはそれぞれ独立に、下記式(L-1)で表される基であることが好ましい。

 式(L-1)中、R30は炭素数1~20の1価の有機基を表し、n14は1~5の整数を表し、*は他の構造との結合部位を表す。
 式(H3)中、n7は4~6の整数であることが好ましい。
 式(H3)で表される化合物としては、下記化合物が挙げられる。下記式中、nはそれぞれ独立に、0~9の整数を表す。
In formula (H3), R 9 and R 10 each independently preferably represent a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
In formula (H3), each L 5 is preferably independently a group represented by the following formula (L-1).

In formula (L-1), R 30 represents a monovalent organic group having 1 to 20 carbon atoms, n14 represents an integer of 1 to 5, and * represents a bonding site with another structure.
In formula (H3), n7 is preferably an integer of 4 to 6.
Examples of the compound represented by formula (H3) include the following compounds. In the following formula, each n independently represents an integer of 0 to 9.
 式(H4)中、Lは-C(CF-、-S(=O)-又は-C(=O)-であることが好ましい。
 式(H4)中、L及びLはそれぞれ独立に、炭素数2~20の2価の有機基であることが好ましい。
 式(H4)で表される化合物としては、下記化合物が挙げられる。
In formula (H4), L 6 is preferably -C(CF 3 ) 2 -, -S(=O) 2 - or -C(=O)-.
In formula (H4), L 7 and L 8 are each independently preferably a divalent organic group having 2 to 20 carbon atoms.
Examples of the compound represented by formula (H4) include the following compounds.
 式(H5)中、R11、R12、R13、R14、R15、R16、R17、R18、R19及びR20はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルケニル基、アルコキシ基、アリル基又はアシル基が好ましい。
 式(H5)中、L、L10およびL11はそれぞれ独立に、単結合、-O-、-S-、-S(=O)-、-C(=O)-、-C(=O)O-、シクロペンチリデン、シクロヘキシリデン、フェニレンまたは炭素数1~20の2価の有機基が好ましく、下記式(L-2)~式(L-4)のいずれかで表される基であることがより好ましい。

 式(L-2)~式(L-4)中、R31及びR32はそれぞれ独立に、水素原子、アルキル基、アルケニル基又はアリール基を表し、R34、R35、R36及びR37はそれぞれ独立に、水素原子又はアルキル基を表し、n15は、1~5の整数であり、R38、R39、R40及びR41はそれぞれ独立に、水素原子又はアルキル基を表し、*は他の構造との結合部位を表す。
 式(H5)で表される化合物としては、下記化合物が挙げられる。
In formula (H5), R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 and R 20 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkenyl , an alkoxy group, an allyl group or an acyl group.
In formula (H5), L 9 , L 10 and L 11 each independently represent a single bond, -O-, -S-, -S(=O) 2 -, -C(=O)-, -C( =O)O-, cyclopentylidene, cyclohexylidene, phenylene or a divalent organic group having 1 to 20 carbon atoms is preferred, and is represented by any of the following formulas (L-2) to (L-4). It is more preferable that it is a group.

In formulas (L-2) to (L-4), R 31 and R 32 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, or an aryl group, and R 34 , R 35 , R 36 and R 37 each independently represents a hydrogen atom or an alkyl group, n15 is an integer of 1 to 5, R 38 , R 39 , R 40 and R 41 each independently represent a hydrogen atom or an alkyl group, * Represents a binding site with other structures.
Examples of the compound represented by formula (H5) include the following compounds.
 式(H6)中、R42、R43、R44、及びR45はそれぞれ独立に、水素原子又は1価の有機基を表し、水素原子又は炭素数1~20の1価の有機基が好ましく、水素原子又は炭素数1~20のアルキル基がより好ましく、炭素数1~4のアルキル基がより好ましい。
 式(H6)中、R46、及びR47はそれぞれ独立に、アルキル基、アルコキシ基又はアリール基が好ましく、アルキル基がより好ましい。
 式(H6)中、n16及びn17はそれぞれ独立に、0~2の整数が好ましく、0又は1がより好ましい。
 式(H6)中、n16及びn17はそれぞれ独立に、1~3の整数が好ましく、2又は3がより好ましい。
 式(H6)で表される化合物としては、下記化合物が挙げられる。
In formula (H6), R 42 , R 43 , R 44 , and R 45 each independently represent a hydrogen atom or a monovalent organic group, preferably a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. , a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.
In formula (H6), R 46 and R 47 are each independently preferably an alkyl group, an alkoxy group, or an aryl group, and more preferably an alkyl group.
In formula (H6), n16 and n17 are each independently preferably an integer of 0 to 2, more preferably 0 or 1.
In formula (H6), n16 and n17 are each independently preferably an integer of 1 to 3, more preferably 2 or 3.
Examples of the compound represented by formula (H6) include the following compounds.
 その他、ヒドロキシ化合物としては、2,3,4-トリヒドロキシベンゾフェノン、2,4,4′-トリヒドロキシベンゾフェノン、2,4,6-トリヒドロキシベンゾフェノン、2,3,4-トリヒドロキシ-2′-メチルベンゾフェノン、2,3,4,4′-テトラヒドロキシベンゾフェノン、2,2′,4,4′-テトラヒドロキシベンゾフェノン、2,4,6,3′,4′-ペンタヒドロキシベンゾフェノン、2,3,4,2′,4′-ペンタヒドロキシベンゾフェノン、2,3,4,2′,5′-ペンタヒドロキシベンゾフェノン、2,4,6,3′,4′,5′-ヘキサヒドロキシベンゾフェノン、2,3,4,3′,4′,5′-ヘキサヒドロキシベンゾフェノン等のポリヒドロキシベンゾフェノン類、
2,3,4-トリヒドロキシアセトフェノン、2,3,4-トリヒドロキシフェニルペンチルケトン、2,3,4-トリヒドロキシフェニルヘキシルケトン等のポリヒドロキシフェニルアルキルケトン類、
ビス(2,4-ジヒドロキシフェニル)メタン、ビス(2,3,4-トリヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)プロパン-1、ビス(2,3,4-トリヒドロキシフェニル)プロパン-1、ノルジヒドログアイアレチン酸、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン等のビス((ポリ)ヒドロキシフェニル)アルカン類、
3,4,5-トリヒドロキシ安息香酸プロピル、2,3,4-トリヒドロキシ安息香酸フェニル、3,4,5-トリヒドロキシ安息香酸フェニル等のポリヒドロキシ安息香酸エステル類、
ビス(2,3,4-トリヒドロキシベンゾイル)メタン、ビス(3-アセチル-4,5,6-トリヒドロキシフェニル)-メタン、ビス(2,3,4-トリヒドロキシベンゾイル)ベンゼン、ビス(2,4,6-トリヒドロキシベンゾイル)ベンゼン等のビス(ポリヒドロキシベンゾイル)アルカン又はビス(ポリヒドロキシベンゾイル)アリール類、
エチレングリコール-ジ(3,5-ジヒドロキシベンゾエート)、エチレングリコール-ジ(3,4,5-トリヒドロキシベンゾエート)等のアルキレン-ジ(ポリヒドロキシベンゾエート)類、
2,3,4-ビフェニルトリオール、3,4,5-ビフェニルトリオール、3,5,3′,5′-ビフェニルテトロール、2,4,2′,4′-ビフェニルテトロール、2,4,6,3′,5′-ビフェニルペントール、2,4,6,2′,4′,6′-ビフェニルヘキソール、2,3,4,2′,3′,4′-ビフェニルヘキソール等のポリヒドロキシビフェニル類、
4,4′-チオビス(1,3-ジヒドロキシ)ベンゼン等のビス(ポリヒドロキシ)スルフィド類、
2,2′,4,4′-テトラヒドロキシジフェニルエーテル等のビス(ポリヒドロキシフェニル)エーテル類、
2,2′,4,4′-テトラヒドロキシジフェニルスルフォキシド等のビス(ポリヒドロキシフェニル)スルフォキシド類、
2,2′,4,4′-ジフェニルスルフォン等のビス(ポリヒドロキシフェニル)スルフォン類、
トリス(4-ヒドロキシフェニル)メタン、4,4′,4″-トリヒドロキシ-3,5,3′,5′-テトラメチルトリフェニルメタン、4,4′,3″,4″-テトラヒドロキシ-3,5,3′,5′-テトラメチルトリフェニルメタン、4-[ビス(3,5-ジメチル-4-ヒドロキシフェニル)メチル]-2-メトキシ-フェノール、4,4′-(3,4-ジオール-ベンジリデン)ビス[2,6-ジメチルフェノール]、4,4′-[(2-ヒドロキシ-フェニル)メチレン]ビス[2-シクロヘキシル-5-メチルフェノール、4,4′,2″,3″,4″-ペンタヒドロキシ-3,5,3′,5′-テトラメチルトリフェニルメタン、2,3,4,2′,3′,4′-ヘキサヒドロキシ-5,5′-ジアセチルトリフェニルメタン、2,3,4,2′,3′,4′,3″,4″-オクタヒドロキシ-5,5′-ジアセチルトリフェニルメタン、2,4,6,2′,4′,6′-ヘキサヒドロキシ-5,5′-ジプロピオニルトリフェニルメタン等のポリヒドロキシトリフェニルメタン類、4,4′-(フェニルメチレン)ビスフェノール、4,4′-(1-フェニル-エチリデン)ビス[2-メチルフェノール]、4,4′,4″-エチリデン-トリスフェノール等のポリヒドロキシトリフェニルエタン類、
3,3,3′,3′-テトラメチル-1,1′-スピロビ-インダン-5,6,5′,6′-テトロール、3,3,3′,3′-テトラメチル-1,1′-スピロビ-インダン-5,6,7,5′,6′,7′-ヘキソオール、3,3,3′,3′-テトラメチル-1,1′-スピロビ-インダン-4,5,6,4′,5′,6′-ヘキソオール、3,3,3′,3′-テトラメチル-1,1′-スピロビ-インダン-4,5,6,5′,6′,7′-ヘキソオール等のポリヒドロキシスピロビーインダン類、2,4,4-トリメチル-2′,4′,7′-トリヒドロキシフラバン、等のポリヒドロキシフラバン類、
3,3-ビス(3,4-ジヒドロキシフェニル)フタリド、3,3-ビス(2,3,4-トリヒドロキシフェニル)フタリド、3′,4′,5′,6′-テトラヒドロキシスピロ[フタリド-3,9′-キサンテン]等のポリヒドロキシフタリド類、モリン、ケルセチン、ルチン等のフラボノ色素類、
α,α′,α″-トリス(4-ヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、α,α′,α″-トリス(3,5-ジメチル-4-ヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、α,α′,α″-トリス(3,5-ジエチル-4-ヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、α,α′,α″-トリス(3,5-ジn-プロピル-4-ヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、α,α′,α″-トリス(3,5-ジイソプロピル-4-ヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、α,α′,α″-トリス(3,5-ジn-ブチル-4-ヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、α,α′,α″-トリス(3-メチル-4-ヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、α,α′,α″-トリス(3-メトキシ-4-ヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、α,α′,α″-トリス(2,4-ジヒドロキシフェニル)1,3,5-トリイソプロピルベンゼン、1,3,5-トリス(3,5-ジメチル-4-ヒドロキシフェニル)ベンゼン、1,3,5-トリス(5-メチル-2-ヒドロキシフェニル)ベンゼン、2,4,6-トリス(3,5-ジメチル-4-ヒドロキシフェニルチオメチル)メシチレン、1-[α-メチル-α-(4′-ヒドロキシフェニル)エチル]-4-[α,α’-ビス(4″-ヒドロキシフェニル)エチル]ベンゼン、1-[α-メチル(4′-ヒドロキシフェニル)エチル]-3-[α,α’-ビス(4″-ヒドロキシフェニル)エチル]ベンゼン、1-[α-メチル-α-(3′,5′-ジメチル-4′-ヒドロキシフェニル)エチル]-4-[α,α′-ビス(3″,5″-ジメチル-4″-ヒドロキシフェニル)エチル]ベンゼン、1-[α-メチル(3′-メチル-4′-ヒドロキシフェニル)エチル]-4-[α′,α′-ビス(3″-メチル-4″-ヒドロキシフェニル)エチル]ベンゼン、1-[α-メチル-α-(3′-メトキシ-4′-ヒドロキシフェニル)エチル]-4-[α′,α′-ビス(3″-メトキシ-4″-ヒドロキシフェニル)エチル]ベンゼン、1-[α-メチル-α-(2′,4′-ジヒドロキシフェニル)エチル]-4-[α′,α′-ビス(4″-ヒドロキシフェニル)エチル]ベンゼン、1-[α-メチル(2′,4′-ジヒドロキシフェニル)エチル]-3-[α′,α′-ビス(4″-ヒドロキシフェニル)エチル]ベンゼン等の特開平4-253058に記載のポリヒドロキシ化合物、α,α,α′,α′,α″,α″-ヘキサキス-(4-ヒドロキシフェニル)-1,3,5-トリエチルベンゼン等の特開平5-224410号に記載のポリヒドロキシ化合物、1,2,2,3-テトラ(p-ヒドロキシフェニル)プロパン、1,3,3,5-テトラ(p-ヒドロキシフェニル)ペンタン等の特開平5-303200号、EP-530148に記載のポリ(ヒドロキシフェニル)アルカン類、
p-ビス(2,3,4-トリヒドロキシベンゾイル)ベンゼン、p-ビス(2,4,6-トリヒドロキシベンゾイル)ベンゼン、m-ビス(2,3,4-トリヒドロキシベンゾイル)ベンゼン、m-ビス(2,4,6-トリヒドロキシベンゾイル)ベンゼン、p-ビス(2,5-ジヒドロキシ-3-ブロムベンゾイル)ベンゼン、p-ビス(2,3,4-トリヒドロキシ-5-メチルベンゾイル)ベンゼン、p-ビス(2,3,4-トリヒドロキシ-5-メトキシベンゾイル)ベンゼン、p-ビス(2,3,4-トリヒドロキシ-5-ニトロベンゾイル)ベンゼン、p-ビス(2,3,4-トリヒドロキシ-5-シアノベンゾイル)ベンゼン、1,3,5-トリス(2,5-ジヒドロキシベンゾイル)ベンゼン、1,3,5-トリス(2,3,4-トリヒドロキシベンゾイル)ベンゼン、1,2,3-トリス(2,3,4-トリヒドロキシベンゾイル)ベンゼン、1,2,4-トリス(2,3,4-トリヒドロキシベンゾイル)ベンゼン、1,2,4,5-テトラキス(2,3,4-トリヒドロキシベンゾイル)ベンゼン、α,α′-ビス(2,3,4-トリヒドロキシベンゾイル)p-キシレン、α,α′,α′-トリス(2,3,4-トリヒドロキシベンゾイル)メシレン、
 2,6-ビス-(2-ヒドロキシ-3,5-ジメチルベンジル)-p-クレゾール、2,6-ビス-(2-ヒドロキシ-5′-メチルベンジル)-p-クレゾール、2,6-ビス-(2,4,6-トリヒドロキシベンジル)-p-クレゾール、2,6-ビス-(2,3,4-トリヒドロキシベンジル)-p-クレゾール、2,6-ビス(2,3,4-トリヒドロキシベンジル)-3,5-ジメチル-フェノール、4,6-ビス-(4-ヒドロキシ-3,5-ジメチルベンジル)-ピロガロール、2,6-ビス-(4-ヒドロキシ-3,5-ジメチルベンジル)-1,3,4-トリヒドロキシ-フェノール、4,6-ビス-(2,4,6-トリヒドロキシベンジル)-2,4-ジメチル-フェノール、4,6-ビス-(2,3,4-トリヒドロキシベンジル)-2,5-ジメチル-フェノール、2,6-ビス-(4-ヒドロキシベンジル)-p-クレゾール、2,6-ビス(4-ヒドロキシベンジル)-4-シクロヘキシルフェノール、2,6-ビス(4-ヒドロキシ-3-メチルベンジル)-p-クレゾール、2,6-ビス(4-ヒドロキシ-3,5-ジメチルベンジル)-p-クレゾール、2,6-ビス(4-ヒドロキシ-2,5-ジメチルベンジル)-p-クレゾール、2,6-ビス(4-ヒドロキシ-3-メチルベンジル)-4-フェニル-フェノール、2,2′,6,6′-テトラキス[(4-ヒドロキシフェニル)メチル]-4,4′-メチレンジフェノール、2,2′,6,6′-テトラキス[(4-ヒドロキシ-3,5-ジメチルフェニル)メチル]-4,4′-メチレンジフェノール、2,2′,6,6′-テトラキス[(4-ヒドロキシ-3-メチルフェニル)メチル]-4,4′-メチレンジフェノール、2,2′-ビス[(4-ヒドロキシ-3,5-ジメチルフェニル)メチル]6,6′-ジメチル-4,4′-メチレンジフェノール、2,2’,3,3’-テトラヒドロ-3,3,3’,3’-テトラメチル-1,1’-スピロビ(1H-インデン)-5,5’,6,6’,7,7’ヘキサノール、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-(4-ヒドロキシ-3-メトキシフェニル)メタン等を挙げることができる。
 また、ノボラック樹脂等フェノール樹脂の低核体を用いる事もできる。
Other hydroxy compounds include 2,3,4-trihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 2,3,4-trihydroxy-2'- Methylbenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2,4,6,3',4'-pentahydroxybenzophenone, 2,3, 4,2',4'-pentahydroxybenzophenone, 2,3,4,2',5'-pentahydroxybenzophenone, 2,4,6,3',4',5'-hexahydroxybenzophenone, 2,3 , 4,3',4',5'-hexahydroxybenzophenone and other polyhydroxybenzophenones;
Polyhydroxyphenylalkyl ketones such as 2,3,4-trihydroxyacetophenone, 2,3,4-trihydroxyphenylpentyl ketone, 2,3,4-trihydroxyphenylhexyl ketone,
Bis(2,4-dihydroxyphenyl)methane, bis(2,3,4-trihydroxyphenyl)methane, bis(2,4-dihydroxyphenyl)propane-1, bis(2,3,4-trihydroxyphenyl) Bis((poly)hydroxyphenyl) alkanes such as propane-1, nordihydroguaiaretic acid, 1,1-bis(4-hydroxyphenyl)cyclohexane,
Polyhydroxybenzoic acid esters such as propyl 3,4,5-trihydroxybenzoate, phenyl 2,3,4-trihydroxybenzoate, phenyl 3,4,5-trihydroxybenzoate,
Bis(2,3,4-trihydroxybenzoyl)methane, bis(3-acetyl-4,5,6-trihydroxyphenyl)-methane, bis(2,3,4-trihydroxybenzoyl)benzene, bis(2 , 4,6-trihydroxybenzoyl)benzene or other bis(polyhydroxybenzoyl)alkanes or bis(polyhydroxybenzoyl)aryls,
Alkylene di(polyhydroxybenzoates) such as ethylene glycol di(3,5-dihydroxybenzoate) and ethylene glycol di(3,4,5-trihydroxybenzoate);
2,3,4-biphenyltriol, 3,4,5-biphenyltriol, 3,5,3',5'-biphenyltetrol, 2,4,2',4'-biphenyltetrol, 2,4, 6,3',5'-biphenylpentol, 2,4,6,2',4',6'-biphenylhexol, 2,3,4,2',3',4'-biphenylhexol, etc. polyhydroxybiphenyls,
Bis(polyhydroxy) sulfides such as 4,4'-thiobis(1,3-dihydroxy)benzene,
Bis(polyhydroxyphenyl) ethers such as 2,2',4,4'-tetrahydroxydiphenyl ether,
Bis(polyhydroxyphenyl) sulfoxides such as 2,2',4,4'-tetrahydroxydiphenyl sulfoxide,
Bis(polyhydroxyphenyl)sulfones such as 2,2',4,4'-diphenylsulfone,
Tris(4-hydroxyphenyl)methane, 4,4',4''-trihydroxy-3,5,3',5'-tetramethyltriphenylmethane, 4,4',3'',4''-tetrahydroxy- 3,5,3',5'-tetramethyltriphenylmethane, 4-[bis(3,5-dimethyl-4-hydroxyphenyl)methyl]-2-methoxy-phenol, 4,4'-(3,4 -diol-benzylidene)bis[2,6-dimethylphenol], 4,4'-[(2-hydroxy-phenyl)methylene]bis[2-cyclohexyl-5-methylphenol, 4,4',2'',3 ″,4″-pentahydroxy-3,5,3′,5′-tetramethyltriphenylmethane, 2,3,4,2′,3′,4′-hexahydroxy-5,5′-diacetyltriphenyl Methane, 2,3,4,2',3',4',3'',4''-octahydroxy-5,5'-diacetyltriphenylmethane, 2,4,6,2',4',6' -Polyhydroxytriphenylmethanes such as hexahydroxy-5,5'-dipropionyltriphenylmethane, 4,4'-(phenylmethylene)bisphenol, 4,4'-(1-phenyl-ethylidene)bis[2- methylphenol], polyhydroxytriphenylethanes such as 4,4′,4″-ethylidene-trisphenol,
3,3,3',3'-tetramethyl-1,1'-spirobi-indan-5,6,5',6'-tetrol, 3,3,3',3'-tetramethyl-1,1 '-Spirobi-indane-5,6,7,5',6',7'-hexol, 3,3,3',3'-tetramethyl-1,1'-spirobi-indane-4,5,6 ,4',5',6'-hexol, 3,3,3',3'-tetramethyl-1,1'-spirobi-indane-4,5,6,5',6',7'-hexol polyhydroxy spirobiindans such as, polyhydroxyflavans such as 2,4,4-trimethyl-2',4',7'-trihydroxyflavan,
3,3-bis(3,4-dihydroxyphenyl)phthalide, 3,3-bis(2,3,4-trihydroxyphenyl)phthalide, 3',4',5',6'-tetrahydroxyspiro[phthalide -3,9'-xanthene], flavonoid pigments such as morin, quercetin, rutin,
α, α′, α″-tris(4-hydroxyphenyl) 1,3,5-triisopropylbenzene, α, α′, α″-tris(3,5-dimethyl-4-hydroxyphenyl) 1,3, 5-triisopropylbenzene, α,α′,α″-tris(3,5-diethyl-4-hydroxyphenyl) 1,3,5-triisopropylbenzene, α,α′,α″-tris(3,5 -di-n-propyl-4-hydroxyphenyl)1,3,5-triisopropylbenzene, α,α′,α″-tris(3,5-diisopropyl-4-hydroxyphenyl)1,3,5-triisopropyl Benzene, α,α′,α″-tris(3,5-di-n-butyl-4-hydroxyphenyl)1,3,5-triisopropylbenzene, α,α′,α″-tris(3-methyl- 4-hydroxyphenyl)1,3,5-triisopropylbenzene, α,α′,α″-tris(3-methoxy-4-hydroxyphenyl)1,3,5-triisopropylbenzene, α,α′,α ″-tris(2,4-dihydroxyphenyl)1,3,5-triisopropylbenzene, 1,3,5-tris(3,5-dimethyl-4-hydroxyphenyl)benzene, 1,3,5-tris( 5-methyl-2-hydroxyphenyl)benzene, 2,4,6-tris(3,5-dimethyl-4-hydroxyphenylthiomethyl)mesitylene, 1-[α-methyl-α-(4′-hydroxyphenyl) ethyl]-4-[α,α'-bis(4″-hydroxyphenyl)ethyl]benzene, 1-[α-methyl(4′-hydroxyphenyl)ethyl]-3-[α,α’-bis(4 ″-hydroxyphenyl)ethyl]benzene, 1-[α-methyl-α-(3′,5′-dimethyl-4′-hydroxyphenyl)ethyl]-4-[α,α′-bis(3″,5 ″-dimethyl-4″-hydroxyphenyl)ethyl]benzene, 1-[α-methyl(3′-methyl-4′-hydroxyphenyl)ethyl]-4-[α′,α′-bis(3″-methyl -4″-hydroxyphenyl)ethyl]benzene, 1-[α-methyl-α-(3′-methoxy-4′-hydroxyphenyl)ethyl]-4-[α′,α′-bis(3″-methoxy -4″-hydroxyphenyl)ethyl]benzene, 1-[α-methyl-α-(2′,4′-dihydroxyphenyl)ethyl]-4-[α′,α′-bis(4″-hydroxyphenyl) ethyl]benzene, 1-[α-methyl(2′,4′-dihydroxyphenyl)ethyl]-3-[α′,α′-bis(4″-hydroxyphenyl)ethyl]benzene, etc. JP-A-4-253058 Polyhydroxy compounds described in JP-A-5-224410, such as α, α, α′, α′, α″, α″-hexakis-(4-hydroxyphenyl)-1,3,5-triethylbenzene, etc. JP-A-5-303200, EP-530148 of polyhydroxy compounds, 1,2,2,3-tetra(p-hydroxyphenyl)propane, 1,3,3,5-tetra(p-hydroxyphenyl)pentane, etc. poly(hydroxyphenyl)alkanes described in
p-bis(2,3,4-trihydroxybenzoyl)benzene, p-bis(2,4,6-trihydroxybenzoyl)benzene, m-bis(2,3,4-trihydroxybenzoyl)benzene, m- Bis(2,4,6-trihydroxybenzoyl)benzene, p-bis(2,5-dihydroxy-3-brombenzoyl)benzene, p-bis(2,3,4-trihydroxy-5-methylbenzoyl)benzene , p-bis(2,3,4-trihydroxy-5-methoxybenzoyl)benzene, p-bis(2,3,4-trihydroxy-5-nitrobenzoyl)benzene, p-bis(2,3,4 -trihydroxy-5-cyanobenzoyl)benzene, 1,3,5-tris(2,5-dihydroxybenzoyl)benzene, 1,3,5-tris(2,3,4-trihydroxybenzoyl)benzene, 1, 2,3-tris(2,3,4-trihydroxybenzoyl)benzene, 1,2,4-tris(2,3,4-trihydroxybenzoyl)benzene, 1,2,4,5-tetrakis(2, 3,4-trihydroxybenzoyl)benzene, α,α'-bis(2,3,4-trihydroxybenzoyl)p-xylene, α,α',α'-tris(2,3,4-trihydroxybenzoyl) ) mesilene,
2,6-bis-(2-hydroxy-3,5-dimethylbenzyl)-p-cresol, 2,6-bis-(2-hydroxy-5'-methylbenzyl)-p-cresol, 2,6-bis -(2,4,6-trihydroxybenzyl)-p-cresol, 2,6-bis-(2,3,4-trihydroxybenzyl)-p-cresol, 2,6-bis(2,3,4 -trihydroxybenzyl)-3,5-dimethyl-phenol, 4,6-bis-(4-hydroxy-3,5-dimethylbenzyl)-pyrogallol, 2,6-bis-(4-hydroxy-3,5- dimethylbenzyl)-1,3,4-trihydroxy-phenol, 4,6-bis-(2,4,6-trihydroxybenzyl)-2,4-dimethyl-phenol, 4,6-bis-(2, 3,4-trihydroxybenzyl)-2,5-dimethyl-phenol, 2,6-bis-(4-hydroxybenzyl)-p-cresol, 2,6-bis(4-hydroxybenzyl)-4-cyclohexylphenol , 2,6-bis(4-hydroxy-3-methylbenzyl)-p-cresol, 2,6-bis(4-hydroxy-3,5-dimethylbenzyl)-p-cresol, 2,6-bis(4 -Hydroxy-2,5-dimethylbenzyl)-p-cresol, 2,6-bis(4-hydroxy-3-methylbenzyl)-4-phenyl-phenol, 2,2',6,6'-tetrakis [( 4-hydroxyphenyl)methyl]-4,4'-methylene diphenol, 2,2',6,6'-tetrakis[(4-hydroxy-3,5-dimethylphenyl)methyl]-4,4'-methylene Diphenol, 2,2',6,6'-tetrakis[(4-hydroxy-3-methylphenyl)methyl]-4,4'-methylenediphenol, 2,2'-bis[(4-hydroxy-3 ,5-dimethylphenyl)methyl]6,6'-dimethyl-4,4'-methylenediphenol,2,2',3,3'-tetrahydro-3,3,3',3'-tetramethyl-1 , 1'-spirobi(1H-indene)-5,5',6,6',7,7'hexanol, bis(4-hydroxy-3,5-dimethylphenyl)-(4-hydroxy-3-methoxyphenyl) ) Methane, etc.
Furthermore, low-nuclear substances of phenolic resins such as novolac resins can also be used.
 ナフトキノンジアジドスルホン酸としては、6-ジアゾ5,6-ジヒドロ-5-オキソ-1-ナフタレンスルホン酸、1,2-ナフトキノン-(2)-ジアゾ-5-スルホン酸等が挙げられ、これらは混合して用いてもよい。 Examples of the naphthoquinone diazide sulfonic acid include 6-diazo 5,6-dihydro-5-oxo-1-naphthalene sulfonic acid, 1,2-naphthoquinone-(2)-diazo-5-sulfonic acid, and mixtures thereof. It may also be used as
 ヒドロキシ化合物のナフトキノンジアジドスルホン酸エステルの製造方法は、特に限定されないが、例えば、ナフトキノンジアジドスルホン酸をクロルスルホン酸又は塩化チオニルでスルホニルクロリドとし、得られたナフトキノンジアジドスルホニルクロリドと、ヒドロキシ化合物とを縮合反応させることにより得られる。
 例えば、ヒドロキシ化合物とナフトキノンジアジドスルホニルクロリドの所定量をジオキサン、アセトン、又はテトラヒドロフラン等の溶媒中において、トリエチルアミン等の塩基性触媒の存在下で反応させてエステル化を行い、得られた生成物を水洗、乾燥することにより得ることができる。
The method for producing naphthoquinonediazide sulfonyl ester of a hydroxy compound is not particularly limited, but for example, naphthoquinonediazide sulfonic acid is converted into a sulfonyl chloride with chlorosulfonic acid or thionyl chloride, and the resulting naphthoquinonediazide sulfonyl chloride is condensed with a hydroxy compound. Obtained by reaction.
For example, esterification is performed by reacting a predetermined amount of a hydroxy compound and naphthoquinonediazide sulfonyl chloride in a solvent such as dioxane, acetone, or tetrahydrofuran in the presence of a basic catalyst such as triethylamine, and the resulting product is washed with water. , can be obtained by drying.
 ナフトキノンジアジドスルホン酸エステルにおけるエステル化率は、特に限定されないが、10%以上であることが好ましく、20%以上であることがより好ましい。また上記エステル化率の上限は特に限定されず、100%であってもよい。
 上記エステル化率は、ヒドロキシ化合物が有するヒドロキシ基のうち、エステル化された基の割合として、H-NMR等により確認することができる。
The esterification rate of the naphthoquinonediazide sulfonic acid ester is not particularly limited, but is preferably 10% or more, more preferably 20% or more. Further, the upper limit of the esterification rate is not particularly limited, and may be 100%.
The esterification rate can be confirmed by 1 H-NMR or the like as the proportion of esterified groups among the hydroxy groups of the hydroxy compound.
 その他、光吸収剤として、特開2019-206689号公報の段落0088~0108に記載の化合物を用いることもできる。 In addition, compounds described in paragraphs 0088 to 0108 of JP 2019-206689 A can also be used as light absorbers.
<その他の添加剤>
 本発明の樹脂組成物は、本発明の効果が得られる範囲で、必要に応じて、各種の添加物、例えば、界面活性剤、高級脂肪酸誘導体、熱重合開始剤、無機粒子、紫外線吸収剤、有機チタン化合物、酸化防止剤、光酸発生剤、凝集防止剤、フェノール系化合物、他の高分子化合物、可塑剤及びその他の助剤類(例えば、消泡剤、難燃剤など)等を含んでいてもよい。これらの成分を適宜含有させることにより、膜物性などの性質を調整することができる。これらの成分は、例えば、特開2012-003225号公報の段落番号0183以降(対応する米国特許出願公開第2013/0034812号明細書の段落番号0237)の記載、特開2008-250074号公報の段落番号0101~0104、0107~0109等の記載を参酌でき、これらの内容は本明細書に組み込まれる。これらの添加剤を配合する場合、その合計含有量は本発明の樹脂組成物の固形分の3質量%以下とすることが好ましい。
<Other additives>
The resin composition of the present invention may optionally contain various additives, such as surfactants, higher fatty acid derivatives, thermal polymerization initiators, inorganic particles, ultraviolet absorbers, etc., as long as the effects of the present invention can be obtained. Contains organic titanium compounds, antioxidants, photoacid generators, anti-aggregation agents, phenolic compounds, other polymer compounds, plasticizers, and other auxiliary agents (e.g. antifoaming agents, flame retardants, etc.). You can stay there. By appropriately containing these components, properties such as film physical properties can be adjusted. These components are described, for example, in paragraphs 0183 and after of JP-A-2012-003225 (corresponding paragraph 0237 of U.S. Patent Application Publication No. 2013/0034812), and in paragraphs of JP-A-2008-250074. The descriptions of numbers 0101 to 0104, 0107 to 0109, etc. can be referred to, and the contents thereof are incorporated into the present specification. When blending these additives, their total content is preferably 3% by mass or less based on the solid content of the resin composition of the present invention.
〔無機粒子〕
 無機粒子として、具体的には、炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、二酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、ガラス等が挙げられる。
[Inorganic particles]
Specific examples of the inorganic particles include calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and glass.
 無機粒子の平均粒子径は、0.01~2.0μmが好ましく、0.02~1.5μmがより好ましく、0.03~1.0μmがさらに好ましく、0.04~0.5μmが特に好ましい。
 無機粒子の上記平均粒子径は、一次粒子径であり、また体積平均粒子径である。体積平均粒子径は、例えば、Nanotrac WAVE II EX-150(日機装社製)による動的光散乱法で測定できる。
 上記測定が困難である場合は、遠心沈降光透過法、X線透過法、レーザー回折・散乱法で測定することもできる。
The average particle diameter of the inorganic particles is preferably 0.01 to 2.0 μm, more preferably 0.02 to 1.5 μm, even more preferably 0.03 to 1.0 μm, and particularly preferably 0.04 to 0.5 μm. .
The above average particle diameter of the inorganic particles is a primary particle diameter and a volume average particle diameter. The volume average particle diameter can be measured, for example, by a dynamic light scattering method using Nanotrac WAVE II EX-150 (manufactured by Nikkiso Co., Ltd.).
If the above measurement is difficult, measurement can also be performed by centrifugal sedimentation light transmission method, X-ray transmission method, or laser diffraction/scattering method.
〔有機チタン化合物〕 
 樹脂組成物が有機チタン化合物を含有することにより、低温で硬化した場合であっても耐薬品性に優れる樹脂層を形成できる。
[Organotitanium compound]
When the resin composition contains an organic titanium compound, a resin layer having excellent chemical resistance can be formed even when cured at a low temperature.
 使用可能な有機チタン化合物としては、チタン原子に有機基が共有結合又はイオン結合を介して結合しているものが挙げられる。
 有機チタン化合物の具体例を、以下のI)~VII)に示す:
 I)チタンキレート化合物:樹脂組成物の保存安定性がよく、良好な硬化パターンが得られることから、アルコキシ基を2個以上有するチタンキレート化合物がより好ましい。具体的な例は、チタニウムビス(トリエタノールアミン)ジイソプロポキサイド、チタニウムジ(n-ブトキサイド)ビス(2,4-ペンタンジオネート)、チタニウムジイソプロポキサイドビス(2,4-ペンタンジオネート)、チタニウムジイソプロポキサイドビス(テトラメチルヘプタンジオネート)、チタニウムジイソプロポキサイドビス(エチルアセトアセテート)等である。
 II)テトラアルコキシチタン化合物:例えば、チタニウムテトラ(n-ブトキサイド)、チタニウムテトラエトキサイド、チタニウムテトラ(2-エチルヘキソキサイド)、チタニウムテトライソブトキサイド、チタニウムテトライソプロポキサイド、チタニウムテトラメトキサイド、チタニウムテトラメトキシプロポキサイド、チタニウムテトラメチルフェノキサイド、チタニウムテトラ(n-ノニロキサイド)、チタニウムテトラ(n-プロポキサイド)、チタニウムテトラステアリロキサイド、チタニウムテトラキス[ビス{2,2-(アリロキシメチル)ブトキサイド}]等である。
 III)チタノセン化合物:例えば、ペンタメチルシクロペンタジエニルチタニウムトリメトキサイド、ビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロフェニル)チタニウム、ビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム等である。
 IV)モノアルコキシチタン化合物:例えば、チタニウムトリス(ジオクチルホスフェート)イソプロポキサイド、チタニウムトリス(ドデシルベンゼンスルホネート)イソプロポキサイド等である。
 V)チタニウムオキサイド化合物:例えば、チタニウムオキサイドビス(ペンタンジオネート)、チタニウムオキサイドビス(テトラメチルヘプタンジオネート)、フタロシアニンチタニウムオキサイド等である。
 VI)チタニウムテトラアセチルアセトネート化合物:例えば、チタニウムテトラアセチルアセトネート等である。
VII)チタネートカップリング剤:例えば、イソプロピルトリドデシルベンゼンスルホニルチタネート等である。
Examples of organic titanium compounds that can be used include those in which an organic group is bonded to a titanium atom via a covalent bond or an ionic bond.
Specific examples of organic titanium compounds are shown in I) to VII) below:
I) Titanium chelate compound: A titanium chelate compound having two or more alkoxy groups is more preferred because the resin composition has good storage stability and a good curing pattern can be obtained. Specific examples include titanium bis(triethanolamine) diisopropoxide, titanium di(n-butoxide) bis(2,4-pentanedionate), titanium diisopropoxide bis(2,4-pentanedionate). ), titanium diisopropoxide bis(tetramethylheptanedionate), titanium diisopropoxide bis(ethyl acetoacetate), etc.
II) Tetraalkoxytitanium compounds: for example, titanium tetra(n-butoxide), titanium tetraethoxide, titanium tetra(2-ethylhexoxide), titanium tetraisobutoxide, titanium tetraisopropoxide, titanium tetramethoxide , titanium tetramethoxypropoxide, titanium tetramethyl phenoxide, titanium tetra(n-nonyloxide), titanium tetra(n-propoxide), titanium tetrastearyloxide, titanium tetrakis[bis{2,2-(allyloxymethyl)] butoxide}], etc.
III) Titanocene compounds: for example, pentamethylcyclopentadienyl titanium trimethoxide, bis(η5-2,4-cyclopentadien-1-yl)bis(2,6-difluorophenyl)titanium, bis(η5-2, 4-cyclopentadien-1-yl)bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium and the like.
IV) Monoalkoxytitanium compounds: For example, titanium tris(dioctyl phosphate) isopropoxide, titanium tris(dodecylbenzenesulfonate) isopropoxide, and the like.
V) Titanium oxide compound: For example, titanium oxide bis(pentanedionate), titanium oxide bis(tetramethylheptanedionate), phthalocyanine titanium oxide, etc.
VI) Titanium tetraacetylacetonate compound: For example, titanium tetraacetylacetonate.
VII) Titanate coupling agent: for example, isopropyl tridodecyl benzenesulfonyl titanate.
 なかでも、有機チタン化合物としては、より良好な耐薬品性の観点から、上記I)チタンキレート化合物、II)テトラアルコキシチタン化合物、及びIII)チタノセン化合物からなる群より選ばれる少なくとも1種の化合物であることが好ましい。特に、チタニウムジイソプロポキサイドビス(エチルアセトアセテート)、チタニウムテトラ(n-ブトキサイド)、及びビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウムが好ましい。 Among them, from the viewpoint of better chemical resistance, the organic titanium compound is at least one compound selected from the group consisting of the above I) titanium chelate compounds, II) tetraalkoxytitanium compounds, and III) titanocene compounds. It is preferable that there be. In particular, titanium diisopropoxide bis(ethylacetoacetate), titanium tetra(n-butoxide), and bis(η5-2,4-cyclopentadien-1-yl)bis(2,6-difluoro-3-(1H -pyrrol-1-yl)phenyl)titanium is preferred.
 有機チタン化合物を含む場合、その含有量は、特定樹脂100質量部に対し、0.05~10質量部であることが好ましく、0.1~2質量部であることがより好ましい。含有量が0.05質量部以上である場合、得られる硬化パターンの耐熱性及び耐薬品性がより良好となり、10質量部以下である場合、組成物の保存安定性により優れる。
 これらの他の添加剤としては、国際公開第2022/145355号の段落0316~0358に記載の化合物が挙げられる。上記記載は本明細書に組み込まれる。
When an organic titanium compound is included, its content is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the specific resin. When the content is 0.05 parts by mass or more, the resulting cured pattern has better heat resistance and chemical resistance, and when the content is 10 parts by mass or less, the storage stability of the composition is better.
These other additives include compounds described in paragraphs 0316 to 0358 of WO 2022/145355. The above description is incorporated herein.
<樹脂組成物の特性>
 本発明の樹脂組成物の粘度は、樹脂組成物の固形分濃度により調整できる。塗布膜厚の観点から、1,000mm/s~12,000mm/sが好ましく、2,000mm/s~10,000mm/sがより好ましく、2,500mm/s~8,000mm/sが更に好ましい。上記範囲であれば、均一性の高い塗布膜を得ることが容易になる。1,000mm/s以上であれば、例えば再配線用絶縁膜として必要とされる膜厚で塗布することが容易であり、12,000mm/s以下であれば、塗布面状に優れた塗膜が得られる。
<Characteristics of resin composition>
The viscosity of the resin composition of the present invention can be adjusted by adjusting the solid content concentration of the resin composition. From the viewpoint of coating film thickness, it is preferably 1,000 mm 2 /s to 12,000 mm 2 /s, more preferably 2,000 mm 2 /s to 10,000 mm 2 /s, and 2,500 mm 2 /s to 8,000 mm. 2 /s is more preferable. Within the above range, it becomes easy to obtain a coating film with high uniformity. If it is 1,000 mm 2 /s or more, it is easy to coat with the thickness required for example as an insulating film for rewiring, and if it is 12,000 mm 2 /s or less, the coating surface quality is excellent. A coating film is obtained.
<樹脂組成物の含有物質についての制限>
 本発明の樹脂組成物の含水率は、2.0質量%未満であることが好ましく、1.5質量%未満であることがより好ましく、1.0質量%未満であることが更に好ましい。2.0%未満であれば、樹脂組成物の保存安定性が向上する。
 水分の含有量を維持する方法としては、保管条件における湿度の調整、保管時の収容容器の空隙率低減などが挙げられる。 
<Restrictions on substances contained in the resin composition>
The water content of the resin composition of the present invention is preferably less than 2.0% by mass, more preferably less than 1.5% by mass, and even more preferably less than 1.0% by mass. If it is less than 2.0%, the storage stability of the resin composition will improve.
Methods for maintaining the moisture content include adjusting the humidity during storage conditions and reducing the porosity of the storage container during storage.
 本発明の樹脂組成物の金属含有量は、絶縁性の観点から、5質量ppm(parts per million)未満が好ましく、1質量ppm未満がより好ましく、0.5質量ppm未満が更に好ましい。金属としては、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、銅、クロム、ニッケルなどが挙げられるが、有機化合物と金属との錯体として含まれる金属は除く。金属を複数含む場合は、これらの金属の合計が上記範囲であることが好ましい。 The metal content of the resin composition of the present invention is preferably less than 5 mass ppm (parts per million), more preferably less than 1 mass ppm, and even more preferably less than 0.5 mass ppm, from the viewpoint of insulation. Examples of metals include sodium, potassium, magnesium, calcium, iron, copper, chromium, and nickel, but metals included as complexes of organic compounds and metals are excluded. When a plurality of metals are included, the total of these metals is preferably within the above range.
 また、本発明の樹脂組成物に意図せずに含まれる金属不純物を低減する方法としては、本発明の樹脂組成物を構成する原料として金属含有量が少ない原料を選択する、本発明の樹脂組成物を構成する原料に対してフィルターろ過を行う、装置内をポリテトラフルオロエチレン等でライニングしてコンタミネーションを可能な限り抑制した条件下で蒸留を行う等の方法を挙げることができる。 Further, as a method for reducing metal impurities unintentionally contained in the resin composition of the present invention, a method for reducing metal impurities that is unintentionally included in the resin composition of the present invention is to select a raw material with a low metal content as a raw material constituting the resin composition of the present invention. Methods include filtering the raw materials constituting the product, lining the inside of the apparatus with polytetrafluoroethylene, etc., and performing distillation under conditions that suppress contamination as much as possible.
 本発明の樹脂組成物は、半導体材料としての用途を考慮すると、ハロゲン原子の含有量が、配線腐食性の観点から、500質量ppm未満が好ましく、300質量ppm未満がより好ましく、200質量ppm未満が更に好ましい。中でも、ハロゲンイオンの状態で存在するものは、5質量ppm未満が好ましく、1質量ppm未満がより好ましく、0.5質量ppm未満が更に好ましい。ハロゲン原子としては、塩素原子及び臭素原子が挙げられる。塩素原子及び臭素原子、又は塩素イオン及び臭素イオンの合計がそれぞれ上記範囲であることが好ましい。
 ハロゲン原子の含有量を調節する方法としては、イオン交換処理などが好ましく挙げられる。
Considering the use as a semiconductor material, the resin composition of the present invention has a halogen atom content of preferably less than 500 mass ppm, more preferably less than 300 mass ppm, and more preferably less than 200 mass ppm from the viewpoint of wiring corrosion. is even more preferable. Among these, those present in the form of halogen ions are preferably less than 5 ppm by mass, more preferably less than 1 ppm by mass, and even more preferably less than 0.5 ppm by mass. Examples of the halogen atom include a chlorine atom and a bromine atom. It is preferable that the total of chlorine atoms and bromine atoms, or the total of chlorine ions and bromine ions, is each within the above range.
Preferred methods for adjusting the content of halogen atoms include ion exchange treatment.
 本発明の樹脂組成物の収容容器としては従来公知の収容容器を用いることができる。収容容器としては、原材料や本発明の樹脂組成物中への不純物混入を抑制することを目的に、容器内壁を6種6層の樹脂で構成された多層ボトルや、6種の樹脂を7層構造にしたボトルを使用することも好ましい。このような容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。 As a container for storing the resin composition of the present invention, a conventionally known container can be used. For the purpose of suppressing the contamination of impurities into raw materials and the resin composition of the present invention, the storage container may be a multilayer bottle whose inner wall is made of 6 types of 6 layers of resin, or a container with 7 layers of 6 types of resin. It is also preferred to use structured bottles. Examples of such a container include the container described in JP-A No. 2015-123351.
<樹脂組成物の硬化物>
 本発明の樹脂組成物を硬化することにより、樹脂組成物の硬化物を得ることができる。
 本発明の硬化物は、樹脂組成物を硬化してなる硬化物である。
 樹脂組成物の硬化は加熱によるものであることが好ましく、加熱温度が120℃~400℃がより好ましく、140℃~380℃が更に好ましく、170℃~350℃が特に好ましい。樹脂組成物の硬化物の形態は、特に限定されず、フィルム状、棒状、球状、ペレット状など、用途に合わせて選択することができる。本発明において、硬化物は、フィルム状であることが好ましい。樹脂組成物のパターン加工によって、壁面への保護膜の形成、導通のためのビアホール形成、インピーダンスや静電容量あるいは内部応力の調整、放熱機能付与など、用途にあわせて、硬化物の形状を選択することもできる。硬化物(硬化物からなる膜)の膜厚は、0.5μm以上150μm以下であることが好ましい。
 本発明の樹脂組成物を硬化した際の収縮率は、50%以下が好ましく、45%以下がより好ましく、40%以下が更に好ましい。ここで、収縮率は、樹脂組成物の硬化前後の体積変化の百分率を指し、下記の式より算出することができる。
 収縮率[%]=100-(硬化後の体積÷硬化前の体積)×100
<Cured product of resin composition>
By curing the resin composition of the present invention, a cured product of the resin composition can be obtained.
The cured product of the present invention is a cured product obtained by curing a resin composition.
The resin composition is preferably cured by heating, and the heating temperature is more preferably 120°C to 400°C, even more preferably 140°C to 380°C, and particularly preferably 170°C to 350°C. The form of the cured product of the resin composition is not particularly limited, and can be selected depending on the purpose, such as film, rod, sphere, or pellet form. In the present invention, the cured product is preferably in the form of a film. By patterning the resin composition, we can select the shape of the cured product according to the application, such as forming a protective film on the wall surface, forming via holes for conduction, adjusting impedance, capacitance or internal stress, and imparting heat dissipation function. You can also. The thickness of the cured product (film made of the cured product) is preferably 0.5 μm or more and 150 μm or less.
The shrinkage rate when the resin composition of the present invention is cured is preferably 50% or less, more preferably 45% or less, and even more preferably 40% or less. Here, the shrinkage rate refers to the percentage change in volume of the resin composition before and after curing, and can be calculated from the following formula.
Shrinkage rate [%] = 100 - (Volume after curing ÷ Volume before curing) x 100
<樹脂組成物の硬化物の特性> 
 本発明の樹脂組成物の硬化物のイミド化反応率は、70%以上が好ましく、80%以上がより好ましく、90%以上が更に好ましい。70%以上であれば、機械特性に優れた硬化物となる場合がある。
 本発明の樹脂組成物の硬化物の破断伸びは、30%以上が好ましく、40%以上がより好ましく、50%以上が更に好ましい。
 本発明の樹脂組成物の硬化物のガラス転移温度(Tg)は、180℃以上であることが好ましく、210℃以上であることがより好ましく、230℃以上であることがさらに好ましい。
<Characteristics of cured product of resin composition>
The imidization reaction rate of the cured product of the resin composition of the present invention is preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more. If it is 70% or more, the cured product may have excellent mechanical properties.
The elongation at break of the cured product of the resin composition of the present invention is preferably 30% or more, more preferably 40% or more, and even more preferably 50% or more.
The glass transition temperature (Tg) of the cured product of the resin composition of the present invention is preferably 180°C or higher, more preferably 210°C or higher, and even more preferably 230°C or higher.
<樹脂組成物の調製>
 本発明の樹脂組成物は、上記各成分を混合して調製することができる。混合方法は特に限定はなく、従来公知の方法で行うことができる。
 混合方法としては、撹拌羽による混合、ボールミルによる混合、タンクを回転させる混合などが挙げられる。
 混合中の温度は10~30℃が好ましく、15~25℃がより好ましい。
<Preparation of resin composition>
The resin composition of the present invention can be prepared by mixing the above components. The mixing method is not particularly limited and can be performed by a conventionally known method.
Examples of the mixing method include mixing using a stirring blade, mixing using a ball mill, and mixing using a rotating tank.
The temperature during mixing is preferably 10 to 30°C, more preferably 15 to 25°C.
 本発明の樹脂組成物中のゴミや微粒子等の異物を除去する目的で、フィルターを用いたろ過を行うことが好ましい。フィルター孔径は、例えば5μm以下が好ましく、1μm以下がより好ましく、0.5μm以下が更に好ましく、0.1μm以下が更により好ましい。フィルターの材質は、ポリテトラフルオロエチレン、ポリエチレン又はナイロンが好ましい。フィルターの材質がポリエチレンである場合はHDPE(高密度ポリエチレン)であることがより好ましい。フィルターは、有機溶剤であらかじめ洗浄したものを用いてもよい。フィルターろ過工程では、複数種のフィルターを直列又は並列に接続して用いてもよい。複数種のフィルターを使用する場合は、孔径又は材質が異なるフィルターを組み合わせて使用してもよい。接続態様としては、例えば、1段目として孔径1μmのHDPEフィルターを、2段目として孔径0.2μmのHDPEフィルターを、直列に接続した態様が挙げられる。また、各種材料を複数回ろ過してもよい。複数回ろ過する場合は、循環ろ過であってもよい。また、加圧してろ過を行ってもよい。加圧してろ過を行う場合、加圧する圧力は例えば0.01MPa以上1.0MPa以下が好ましく、0.03MPa以上0.9MPa以下がより好ましく、0.05MPa以上0.7MPa以下が更に好ましく、0.05MPa以上0.5MPa以下が更により好ましい。
 フィルターを用いたろ過の他、吸着材を用いた不純物の除去処理を行ってもよい。フィルターろ過と吸着材を用いた不純物除去処理とを組み合わせてもよい。吸着材としては、公知の吸着材を用いることができる。例えば、シリカゲル、ゼオライトなどの無機系吸着材、活性炭などの有機系吸着材が挙げられる。
 フィルターを用いたろ過後、ボトルに充填した樹脂組成物を減圧下に置き、脱気する工程を施しても良い。
In order to remove foreign substances such as dust and fine particles from the resin composition of the present invention, it is preferable to perform filtration using a filter. The filter pore diameter is, for example, preferably 5 μm or less, more preferably 1 μm or less, even more preferably 0.5 μm or less, and even more preferably 0.1 μm or less. The material of the filter is preferably polytetrafluoroethylene, polyethylene or nylon. When the material of the filter is polyethylene, it is more preferably HDPE (high density polyethylene). The filter may be washed in advance with an organic solvent. In the filter filtration step, a plurality of types of filters may be connected in series or in parallel. When using multiple types of filters, filters with different pore sizes or materials may be used in combination. Examples of the connection mode include a mode in which an HDPE filter with a pore diameter of 1 μm is connected in series as the first stage and an HDPE filter with a pore diameter of 0.2 μm as the second stage. Additionally, various materials may be filtered multiple times. When filtration is performed multiple times, circulation filtration may be used. Alternatively, filtration may be performed under pressure. When performing filtration under pressure, the pressure to be applied is preferably, for example, 0.01 MPa or more and 1.0 MPa or less, more preferably 0.03 MPa or more and 0.9 MPa or less, still more preferably 0.05 MPa or more and 0.7 MPa or less, and 0.01 MPa or more and 0.9 MPa or less, still more preferably 0.05 MPa or more and 0.7 MPa or less, and 0.01 MPa or more and 0.9 MPa or less, for example. Even more preferably 0.05 MPa or more and 0.5 MPa or less.
In addition to filtration using a filter, impurity removal treatment using an adsorbent may be performed. Filter filtration and impurity removal treatment using an adsorbent may be combined. As the adsorbent, a known adsorbent can be used. Examples include inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon.
After filtration using a filter, the resin composition filled in the bottle may be placed under reduced pressure and degassed.
(硬化物の製造方法)
 本発明の硬化物の製造方法は、樹脂組成物を基材上に適用して膜を形成する膜形成工程を含むことが好ましい。
 硬化物の製造方法は、上記膜形成工程、膜形成工程により形成された膜を選択的に露光する露光工程、及び、露光工程により露光された膜を現像液を用いて現像してパターンを形成する現像工程を含むことがより好ましい。
 硬化物の製造方法は、上記膜形成工程、上記露光工程、上記現像工程、並びに、現像工程により得られたパターンを加熱する加熱工程及び現像工程により得られたパターンを露光する現像後露光工程の少なくとも一方を含むことが特に好ましい。
 また、硬化物の製造方法は、上記膜形成工程、及び、上記膜を加熱する工程を含むことも好ましい。
 以下、各工程の詳細について説明する。
(Method for producing cured product)
The method for producing a cured product of the present invention preferably includes a film forming step of applying the resin composition onto a base material to form a film.
The method for producing a cured product includes the above film forming step, an exposure step of selectively exposing the film formed in the film forming step, and developing the film exposed in the exposure step using a developer to form a pattern. It is more preferable to include a developing step.
The method for producing a cured product includes the film formation step, the exposure step, the development step, a heating step of heating the pattern obtained in the development step, and a post-development exposure step of exposing the pattern obtained in the development step. It is particularly preferable to include at least one of them.
Moreover, it is also preferable that the method for producing a cured product includes the above-mentioned film forming step and the step of heating the above-mentioned film.
The details of each step will be explained below.
<膜形成工程>
 本発明の樹脂組成物は、基材上に適用して膜を形成する膜形成工程に用いることができる。
 本発明の硬化物の製造方法は、樹脂組成物を基材上に適用して膜を形成する膜形成工程を含むことが好ましい。
<Film formation process>
The resin composition of the present invention can be used in a film forming step in which a film is formed by applying it on a substrate.
The method for producing a cured product of the present invention preferably includes a film forming step of applying the resin composition onto a base material to form a film.
〔基材〕
 基材の種類は、用途に応じて適宜定めることができ、特に限定されない。基材としては、例えば、シリコン、窒化シリコン、ポリシリコン、酸化シリコン、アモルファスシリコンなどの半導体作製基材、石英、ガラス、光学フィルム、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Feなどの金属基材(例えば、金属から形成された基材、及び、金属層が例えばめっきや蒸着等により形成された基材のいずれであってもよい)、紙、SOG(Spin On Glass)、TFT(薄膜トランジスタ)アレイ基材、モールド基材、プラズマディスプレイパネル(PDP)の電極板などが挙げられる。基材は、特に、半導体作製基材が好ましく、シリコン基材、Cu基材およびモールド基材がより好ましい。
 これらの基材にはヘキサメチルジシラザン(HMDS)等による密着層や酸化層などの層が表面に設けられていてもよい。
 基材の形状は特に限定されず、円形状であってもよく、矩形状であってもよい。
 基材のサイズは、円形状であれば、例えば直径が100~450mmが好ましく、200~450mmがより好ましい。矩形状であれば、例えば短辺の長さが100~1000mmが好ましく、200~700mmがより好ましい。
基材としては、例えば板状、好ましくはパネル状の基材(基板)が用いられる。
〔Base material〕
The type of base material can be appropriately determined depending on the purpose and is not particularly limited. Examples of the base material include semiconductor manufacturing base materials such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon, quartz, glass, optical films, ceramic materials, vapor deposited films, magnetic films, reflective films, Ni, Cu, A metal base material such as Cr or Fe (for example, a base material formed from a metal or a base material on which a metal layer is formed by, for example, plating or vapor deposition), paper, SOG (Spin On Examples include glass), TFT (thin film transistor) array substrates, mold substrates, and electrode plates for plasma display panels (PDP). The base material is particularly preferably a semiconductor production base material, and more preferably a silicon base material, a Cu base material, and a mold base material.
These base materials may be provided with a layer such as an adhesive layer or an oxidized layer made of hexamethyldisilazane (HMDS) or the like on the surface.
The shape of the base material is not particularly limited, and may be circular or rectangular.
As for the size of the base material, if it is circular, the diameter is preferably 100 to 450 mm, more preferably 200 to 450 mm. If it is rectangular, the length of the short side is preferably 100 to 1000 mm, more preferably 200 to 700 mm.
As the base material, for example, a plate-shaped, preferably panel-shaped base material (substrate) is used.
 樹脂層(例えば、硬化物からなる層)の表面や金属層の表面に樹脂組成物を適用して膜を形成する場合は、樹脂層や金属層が基材となる。 When forming a film by applying a resin composition to the surface of a resin layer (for example, a layer made of a cured product) or the surface of a metal layer, the resin layer or metal layer serves as the base material.
 樹脂組成物を基材上に適用する手段としては、塗布が好ましい。
 適用する手段としては、具体的には、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スプレーコート法、スピンコート法、スリットコート法、インクジェット法などが挙げられる。膜の厚さの均一性の観点から、スピンコート法、スリットコート法、スプレーコート法、又は、インクジェット法が好ましく、膜の厚さの均一性の観点および生産性の観点からスピンコート法およびスリットコート法がより好ましい。適用する手段に応じて樹脂組成物の固形分濃度や塗布条件を調整することで、所望の厚さの膜を得ることができる。また、基材の形状によっても塗布方法を適宜選択でき、ウエハ等の円形基材であればスピンコート法、スプレーコート法、インクジェット法等が好ましく、矩形基材であればスリットコート法、スプレーコート法、インクジェット法等が好ましい。スピンコート法の場合は、例えば、500~3,500rpmの回転数で、10秒~3分程度適用することができる。
 また、あらかじめ仮支持体上に上記付与方法によって付与して形成した塗膜を、基材上に転写する方法を適用することもできる。
 転写方法に関しては特開2006-023696号公報の段落0023、0036~0051や、特開2006-047592号公報の段落0096~0108に記載の作製方法を好適に用いることができる。
 また、基材の端部において余分な膜の除去を行なう工程を行なってもよい。このような工程の例には、エッジビードリンス(EBR)、バックリンスなどが挙げられる。
 樹脂組成物を基材に塗布する前に基材に種々の溶剤を塗布し、基材の濡れ性を向上させた後に樹脂組成物を塗布するプリウェット工程を採用しても良い。
Coating is preferred as a means for applying the resin composition onto the substrate.
Specifically, the methods to be applied include dip coating method, air knife coating method, curtain coating method, wire bar coating method, gravure coating method, extrusion coating method, spray coating method, spin coating method, slit coating method, Examples include inkjet method. From the viewpoint of uniformity of film thickness, spin coating method, slit coating method, spray coating method, or inkjet method is preferable, and from the viewpoint of uniformity of film thickness and productivity, spin coating method and slit coating method are preferable. A coating method is more preferred. A film with a desired thickness can be obtained by adjusting the solid content concentration and application conditions of the resin composition depending on the means to be applied. In addition, the coating method can be appropriately selected depending on the shape of the substrate, and for circular substrates such as wafers, spin coating, spray coating, inkjet methods, etc. are preferable, and for rectangular substrates, slit coating, spray coating, etc. method, inkjet method, etc. are preferred. In the case of spin coating, it can be applied, for example, at a rotation speed of 500 to 3,500 rpm for about 10 seconds to 3 minutes.
It is also possible to apply a method in which a coating film that has been previously formed on a temporary support by the above-mentioned application method is transferred onto a base material.
Regarding the transfer method, the production method described in paragraphs 0023, 0036 to 0051 of JP-A No. 2006-023696 and paragraphs 0096 to 0108 of JP-A No. 2006-047592 can be suitably used.
Further, a step of removing excess film may be performed at the end of the base material. Examples of such processes include edge bead rinsing (EBR), back rinsing, and the like.
A pre-wet process may be employed in which various solvents are applied to the base material before the resin composition is applied to the base material to improve the wettability of the base material, and then the resin composition is applied.
<乾燥工程>
 上記膜は、膜形成工程(層形成工程)の後に、溶剤を除去するため、形成された膜(層)を乾燥する工程(乾燥工程)に供されてもよい。
 すなわち、本発明の硬化物の製造方法は、膜形成工程により形成された膜を乾燥する乾燥工程を含んでもよい。
 上記乾燥工程は膜形成工程の後、露光工程の前に行われることが好ましい。
 乾燥工程における膜の乾燥温度は50~150℃が好ましく、70℃~130℃がより好ましく、90℃~110℃が更に好ましい。また、減圧により乾燥を行っても良い。乾燥時間としては、30秒~20分が例示され、1分~10分が好ましく、2分~7分がより好ましい。
<Drying process>
After the film forming step (layer forming step), the film may be subjected to a step of drying the formed film (layer) (drying step) in order to remove the solvent.
That is, the method for producing a cured product of the present invention may include a drying step of drying the film formed in the film forming step.
The drying step is preferably performed after the film forming step and before the exposure step.
The drying temperature of the membrane in the drying step is preferably 50 to 150°C, more preferably 70 to 130°C, even more preferably 90 to 110°C. Alternatively, drying may be performed under reduced pressure. The drying time is exemplified by 30 seconds to 20 minutes, preferably 1 minute to 10 minutes, and more preferably 2 minutes to 7 minutes.
<露光工程>
 上記膜は、膜を選択的に露光する露光工程に供されてもよい。
 硬化物の製造方法は、膜形成工程により形成された膜を選択的に露光する露光工程を含んでもよい。
 選択的に露光するとは、膜の一部を露光することを意味している。また、選択的に露光することにより、膜には露光された領域(露光部)と露光されていない領域(非露光部)が形成される。
 露光量は、本発明の樹脂組成物を硬化できる限り特に限定されないが、例えば、波長365nmでの露光エネルギー換算で50~10,000mJ/cmが好ましく、200~8,000mJ/cmがより好ましい。
<Exposure process>
The film may be subjected to an exposure process that selectively exposes the film.
The method for producing a cured product may include an exposure step of selectively exposing the film formed in the film forming step.
Selectively exposing means exposing a portion of the film. Furthermore, by selectively exposing the film, an exposed area (exposed area) and an unexposed area (unexposed area) are formed in the film.
The exposure amount is not particularly limited as long as it can cure the resin composition of the present invention, but for example, it is preferably 50 to 10,000 mJ/cm 2 and more preferably 200 to 8,000 mJ/cm 2 in terms of exposure energy at a wavelength of 365 nm. preferable.
 露光波長は、190~1,000nmの範囲で適宜定めることができ、240~550nmが好ましい。 The exposure wavelength can be appropriately determined in the range of 190 to 1,000 nm, preferably 240 to 550 nm.
 露光波長は、光源との関係でいうと、(1)半導体レーザー(波長 830nm、532nm、488nm、405nm、375nm、355nm etc.)、(2)メタルハライドランプ、(3)高圧水銀灯、g線(波長 436nm)、h線(波長 405nm)、i線(波長 365nm)、ブロード(g,h,i線の3波長)、(4)エキシマレーザー、KrFエキシマレーザー(波長 248nm)、ArFエキシマレーザー(波長 193nm)、Fエキシマレーザー(波長 157nm)、(5)極紫外線;EUV(波長 13.6nm)、(6)電子線、(7)YAGレーザーの第二高調波532nm、第三高調波355nm等が挙げられる。本発明の樹脂組成物については、特に高圧水銀灯による露光が好ましく、露光感度の観点で、i線による露光がより好ましい。
 露光の方式は特に限定されず、本発明の樹脂組成物からなる膜の少なくとも一部が露光される方式であればよいが、フォトマスクを使用した露光、レーザーダイレクトイメージング法による露光等が挙げられる。
In relation to the light source, the exposure wavelength is: (1) semiconductor laser (wavelength: 830 nm, 532 nm, 488 nm, 405 nm, 375 nm, 355 nm, etc.), (2) metal halide lamp, (3) high pressure mercury lamp, G-line (wavelength) 436 nm), h line (wavelength 405 nm), i line (wavelength 365 nm), broad (three wavelengths of g, h, i line), (4) excimer laser, KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm) ), F2 excimer laser (wavelength 157 nm), (5) extreme ultraviolet light; EUV (wavelength 13.6 nm), (6) electron beam, (7) YAG laser second harmonic 532 nm, third harmonic 355 nm, etc. Can be mentioned. For the resin composition of the present invention, exposure using a high-pressure mercury lamp is particularly preferred, and from the viewpoint of exposure sensitivity, exposure using i-line is more preferred.
The method of exposure is not particularly limited, and may be any method as long as at least a portion of the film made of the resin composition of the present invention is exposed to light, and examples thereof include exposure using a photomask, exposure using a laser direct imaging method, etc. .
<露光後加熱工程>
 上記膜は、露光後に加熱する工程(露光後加熱工程)に供されてもよい。
 すなわち、本発明の硬化物の製造方法は、露光工程により露光された膜を加熱する露光後加熱工程を含んでもよい。
 露光後加熱工程は、露光工程後、現像工程前に行うことができる。
 露光後加熱工程における加熱温度は、50℃~140℃が好ましく、60℃~120℃がより好ましい。
 露光後加熱工程における加熱時間は、30秒間~300分間が好ましく、1分間~10分間がより好ましい。
 露光後加熱工程における昇温速度は、加熱開始時の温度から最高加熱温度まで1~12℃/分が好ましく、2~10℃/分がより好ましく、3~10℃/分が更に好ましい。
 また、昇温速度は加熱途中で適宜変更してもよい。
 露光後加熱工程における加熱手段としては、特に限定されず、公知のホットプレート、オーブン、赤外線ヒーター等を用いることができる。
 また、加熱に際し、窒素、ヘリウム、アルゴンなどの不活性ガスを流す等により、低酸素濃度の雰囲気下で行うことも好ましい。
<Post-exposure heating process>
The film may be subjected to a heating step after exposure (post-exposure heating step).
That is, the method for producing a cured product of the present invention may include a post-exposure heating step of heating the film exposed in the exposure step.
The post-exposure heating step can be performed after the exposure step and before the development step.
The heating temperature in the post-exposure heating step is preferably 50°C to 140°C, more preferably 60°C to 120°C.
The heating time in the post-exposure heating step is preferably 30 seconds to 300 minutes, more preferably 1 minute to 10 minutes.
The temperature increase rate in the post-exposure heating step is preferably 1 to 12°C/min, more preferably 2 to 10°C/min, and even more preferably 3 to 10°C/min from the temperature at the start of heating to the maximum heating temperature.
Further, the temperature increase rate may be changed as appropriate during heating.
The heating means in the post-exposure heating step is not particularly limited, and a known hot plate, oven, infrared heater, etc. can be used.
It is also preferable that the heating be performed in an atmosphere with a low oxygen concentration, such as by flowing an inert gas such as nitrogen, helium, or argon.
<現像工程>
 露光後の上記膜は、現像液を用いて現像してパターンを形成する現像工程に供されてもよい。
 すなわち、本発明の硬化物の製造方法は、露光工程により露光された膜を現像液を用いて現像してパターンを形成する現像工程を含んでもよい。
 現像を行うことにより、膜の露光部及び非露光部のうち一方が除去され、パターンが形成される。
 ここで、膜の非露光部が現像工程により除去される現像をネガ型現像といい、膜の露光部が現像工程により除去される現像をポジ型現像という。
<Developing process>
The film after exposure may be subjected to a development step of developing a pattern using a developer.
That is, the method for producing a cured product of the present invention may include a development step of developing the film exposed in the exposure step using a developer to form a pattern.
By performing development, one of the exposed and non-exposed areas of the film is removed and a pattern is formed.
Here, development in which the non-exposed areas of the film are removed in the developing step is referred to as negative development, and development in which the exposed areas of the film are removed in the development process is referred to as positive development.
〔現像液〕
 現像工程において用いられる現像液としては、アルカリ水溶液、又は、有機溶剤を含む現像液が挙げられる。
[Developer]
Examples of the developer used in the development step include an alkaline aqueous solution or a developer containing an organic solvent.
 現像液がアルカリ水溶液である場合、アルカリ水溶液が含みうる塩基性化合物としては、無機アルカリ類、第一級アミン類、第二級アミン類、第三級アミン類、第四級アンモニウム塩が挙げられ、TMAH(テトラメチルアンモニウムヒドロキシド)、水酸化カリウム、炭酸ナトリウム、水酸化ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-ブチルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラペンチルアンモニウムヒドロキシド、テトラヘキシルアンモニウムヒドロキシド、テトラオクチルアンモニウムヒドロキシド、エチルトリメチルアンモニウムヒドロキシド、ブチルトリメチルアンモニウムヒドロキシド、メチルトリアミルアンモニウムヒドロキシド、ジブチルジペンチルアンモニウムヒドロキシド、ジメチルビス(2-ヒドロキシエチル)アンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、ピロール、ピペリジンが好ましく、より好ましくはTMAHである。現像液における塩基性化合物の含有量は、現像液全質量中0.01~10質量%が好ましく、0.1~5質量%がより好ましく、0.3~3質量%が更に好ましい。 When the developer is an alkaline aqueous solution, basic compounds that the alkaline aqueous solution may contain include inorganic alkalis, primary amines, secondary amines, tertiary amines, and quaternary ammonium salts. , TMAH (tetramethylammonium hydroxide), potassium hydroxide, sodium carbonate, sodium hydroxide, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-butylamine, triethylamine, methyldiethylamine , dimethylethanolamine, triethanolamine, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide, tetrahexylammonium hydroxide, tetraoctylammonium hydroxide, ethyltrimethylammonium hydroxide, Butyltrimethylammonium hydroxide, methyltriamylammonium hydroxide, dibutyldipentylammonium hydroxide, dimethylbis(2-hydroxyethyl)ammonium hydroxide, trimethylphenylammonium hydroxide, trimethylbenzylammonium hydroxide, triethylbenzylammonium hydroxide, pyrrole , piperidine is preferred, and TMAH is more preferred. The content of the basic compound in the developer is preferably 0.01 to 10% by weight, more preferably 0.1 to 5% by weight, and even more preferably 0.3 to 3% by weight based on the total weight of the developer.
 現像液が有機溶剤を含む場合、有機溶剤としては、国際公開第2021/112189号の段落0387に記載の化合物を用いることができる。この内容は本明細書に組み込まれる。また、アルコール類として、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール、オクタノール、ジエチレングリコール、プロピレングリコール、メチルイソブチルカルビノール、トリエチレングリコール等、アミド類として、N-メチルピロリドン、N-エチルピロリドン、ジメチルホルムアミド等も好適に挙げられる。 When the developer contains an organic solvent, the compound described in paragraph 0387 of International Publication No. 2021/112189 can be used as the organic solvent. This content is incorporated herein. In addition, alcohols include methanol, ethanol, propanol, isopropanol, butanol, pentanol, octanol, diethylene glycol, propylene glycol, methylisobutylcarbinol, triethylene glycol, etc.Amides include N-methylpyrrolidone, N-ethylpyrrolidone, Dimethylformamide and the like are also suitable.
 現像液が有機溶剤を含む場合、有機溶剤は1種又は、2種以上を混合して使用することができる。本発明では特にシクロペンタノン、γ-ブチロラクトン、ジメチルスルホキシド、N-メチル-2-ピロリドン、及び、シクロヘキサノンよりなる群から選ばれた少なくとも1種を含む現像液が好ましく、シクロペンタノン、γ-ブチロラクトン及びジメチルスルホキシドよりなる群から選ばれた少なくとも1種を含む現像液がより好ましく、シクロペンタノンを含む現像液が特に好ましい。 When the developer contains an organic solvent, one type of organic solvent or a mixture of two or more types can be used. In the present invention, a developer containing at least one member selected from the group consisting of cyclopentanone, γ-butyrolactone, dimethyl sulfoxide, N-methyl-2-pyrrolidone, and cyclohexanone is particularly preferred. A developer containing at least one selected from the group consisting of and dimethyl sulfoxide is more preferred, and a developer containing cyclopentanone is particularly preferred.
 現像液が有機溶剤を含む場合、現像液の全質量に対する有機溶剤の含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。また、上記含有量は、100質量%であってもよい。 When the developer contains an organic solvent, the content of the organic solvent relative to the total mass of the developer is preferably 50% by mass or more, more preferably 70% by mass or more, and 80% by mass or more. is more preferable, and particularly preferably 90% by mass or more. Moreover, the said content may be 100 mass %.
 現像液が有機溶剤を含む場合、現像液は塩基性化合物及び塩基発生剤の少なくとも一方を更に含んでもよい。現像液中の塩基性化合物及び塩基発生剤の少なくとも一方がパターンに浸透することにより、パターンの破断伸び等の性能が向上する場合がある。 When the developer contains an organic solvent, the developer may further contain at least one of a basic compound and a base generator. When at least one of the basic compound and the base generator in the developer permeates into the pattern, performance such as elongation at break of the pattern may be improved.
 塩基性化合物としては、硬化後の膜に残存した場合の信頼性(硬化物を更に加熱した場合の基材との密着性)の観点からは、有機塩基が好ましい。
 塩基性化合物としては、アミノ基を有する塩基性化合物が好ましく、1級アミン、2級アミン、3級アミン、アンモニウム塩、3級アミドなどが好ましいが、イミド化反応を促進する為には、1級アミン、2級アミン、3級アミン又はアンモニウム塩が好ましく、2級アミン、3級アミン又はアンモニウム塩がより好ましく、2級アミン又は3級アミンが更に好ましく、3級アミンが特に好ましい。
 塩基性化合物としては、硬化物の機械特性(破断伸び)の観点からは、硬化膜(得られる硬化物)中に残存しにくいものが好ましく、環化の促進の観点からは、気化等により、加熱前に残存量が減少しにくいものであることが好ましい。
 したがって、塩基性化合物の沸点は、常圧(101,325Pa)で30℃~350℃が好ましく、80℃~270℃がより好ましく、100℃~230℃が更に好ましい。
 塩基性化合物の沸点は、現像液に含まれる有機溶剤の沸点から20℃を減算した温度よりも高いことが好ましく、現像液に含まれる有機溶剤の沸点よりも高いことがより好ましい。
 例えば、有機溶剤の沸点が100℃である場合、使用される塩基性化合物は、沸点が80℃以上が好ましく、沸点が100℃以上がより好ましい。
 現像液は塩基性化合物を1種のみ含有してもよいし、2種以上を含有してもよい。
As the basic compound, an organic base is preferable from the viewpoint of reliability when remaining in the cured film (adhesion to the substrate when the cured product is further heated).
As the basic compound, a basic compound having an amino group is preferable, and primary amines, secondary amines, tertiary amines, ammonium salts, tertiary amides, etc. are preferable, but in order to promote the imidization reaction, 1 A primary amine, a secondary amine, a tertiary amine or an ammonium salt is preferred, a secondary amine, a tertiary amine or an ammonium salt is more preferred, a secondary amine or a tertiary amine is even more preferred, and a tertiary amine is particularly preferred.
From the viewpoint of the mechanical properties (elongation at break) of the cured product, the basic compound is preferably one that does not easily remain in the cured film (obtained cured product), and from the viewpoint of promoting cyclization, it can be used by vaporization etc. It is preferable that the amount remaining is not likely to decrease before heating.
Therefore, the boiling point of the basic compound is preferably 30°C to 350°C, more preferably 80°C to 270°C, and even more preferably 100°C to 230°C at normal pressure (101,325 Pa).
The boiling point of the basic compound is preferably higher than the boiling point of the organic solvent contained in the developer minus 20°C, and more preferably higher than the boiling point of the organic solvent contained in the developer.
For example, when the organic solvent has a boiling point of 100°C, the basic compound used preferably has a boiling point of 80°C or higher, more preferably 100°C or higher.
The developer may contain only one type of basic compound, or may contain two or more types of basic compounds.
 塩基性化合物の具体例としては、エタノールアミン、ジエタノールアミン、トリエタノールアミン、エチルアミン、ジエチルアミン、トリエチルアミン、ヘキシルアミン、ドデシルアミン、シクロヘキシルアミン、シクロヘキシルメチルアミン、シクロヘキシルジメチルアミン、アニリン、N-メチルアニリン、N,N-ジメチルアニリン、ジフェニルアミン、ピリジン、ブチルアミン、イソブチルアミン、ジブチルアミン、トリブチルアミン、ジシクロヘキシルアミン、DBU(ジアザビシクロウンデセン)、DABCO(1,4-ジアザビシクロ[2.2.2]オクタン)、N,N-ジイソプロピルエチルアミン、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、エチレンジアミン、ブタンジアミン、1,5-ジアミノペンタン、N-メチルヘキシルアミン、N-メチルジシクロヘキシルアミン、トリオクチルアミン、N-エチルエチレンジアミン、N,N―ジエチルエチレンジアミン、N,N,N’,N’-テトラブチルー1,6-ヘキサンジアミン、スペルミジン、ジアミノシクロヘキサン、ビス(2-メトキシエチル)アミン、ピペリジン、メチルピペリジン、ジメチルピペリジン、ピペラジン、トロパン、N-フェニルベンジルアミン、1,2-ジアニリノエタン、2-アミノエタノール、トルイジン、アミノフェノール、ヘキシルアニリン、フェニレンジアミン、フェニルエチルアミン、ジベンジルアミン、ピロール、N-メチルピロール、N,N,N,N-テトラメチルエチレンジアミン、N,N,N,N-テトラメチルー1,3-プロパンジアミン等が挙げられる。 Specific examples of basic compounds include ethanolamine, diethanolamine, triethanolamine, ethylamine, diethylamine, triethylamine, hexylamine, dodecylamine, cyclohexylamine, cyclohexylmethylamine, cyclohexyldimethylamine, aniline, N-methylaniline, N, N-dimethylaniline, diphenylamine, pyridine, butylamine, isobutylamine, dibutylamine, tributylamine, dicyclohexylamine, DBU (diazabicycloundecene), DABCO (1,4-diazabicyclo[2.2.2]octane), N , N-diisopropylethylamine, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, ethylenediamine, butanediamine, 1,5-diaminopentane, N-methylhexylamine, N-methyldicyclohexylamine, trioctylamine, N-ethylethylenediamine , N,N-diethylethylenediamine, N,N,N',N'-tetrabutyl-1,6-hexanediamine, spermidine, diaminocyclohexane, bis(2-methoxyethyl)amine, piperidine, methylpiperidine, dimethylpiperidine, piperazine, Tropane, N-phenylbenzylamine, 1,2-dianilinoethane, 2-aminoethanol, toluidine, aminophenol, hexylaniline, phenylenediamine, phenylethylamine, dibenzylamine, pyrrole, N-methylpyrrole, N,N,N, Examples include N-tetramethylethylenediamine, N,N,N,N-tetramethyl-1,3-propanediamine, and the like.
 塩基発生剤の好ましい態様は、上述の組成物に含まれる塩基発生剤の好ましい態様と同様である。特に、塩基発生剤は熱塩基発生剤であることが好ましい。 The preferred embodiments of the base generator are the same as the preferred embodiments of the base generator contained in the above-mentioned composition. In particular, the base generator is preferably a thermal base generator.
 現像液が塩基性化合物及び塩基発生剤の少なくとも一方を含む場合、塩基性化合物又は塩基発生剤の含有量は、現像液の全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。上記含有量の下限は特に限定されないが、例えば0.1質量%以上が好ましい。
 塩基性化合物又は塩基発生剤が現像液が用いられる環境で固体である場合、塩基性化合物又は塩基発生剤の含有量は、現像液の全固形分に対して、70~100質量%であることも好ましい。
 現像液は塩基性化合物及び塩基発生剤の少なくとも一方を1種のみ含有してもよいし、2種以上を含有してもよい。塩基性化合物及び塩基発生剤の少なくとも一方が2種以上である場合は、その合計が上記範囲であることが好ましい。
When the developer contains at least one of a basic compound and a base generator, the content of the basic compound or base generator is preferably 10% by mass or less, and 5% by mass or less based on the total mass of the developer. More preferred. The lower limit of the above content is not particularly limited, but is preferably 0.1% by mass or more, for example.
If the basic compound or base generator is solid in the environment in which the developer is used, the content of the basic compound or base generator should be 70 to 100% by mass based on the total solid content of the developer. is also preferable.
The developer may contain only one type of at least one of a basic compound and a base generator, or may contain two or more types. When at least one of the basic compound and the base generator is two or more types, it is preferable that the total is within the above range.
 現像液は、他の成分を更に含んでもよい。
 他の成分としては、例えば、公知の界面活性剤や公知の消泡剤等が挙げられる。
The developer may further contain other components.
Examples of other components include known surfactants and known antifoaming agents.
〔現像液の供給方法〕
 現像液の供給方法は、所望のパターンを形成できれば特に制限は無く、膜が形成された基材を現像液に浸漬する方法、基材上に形成された膜にノズルを用いて現像液を供給するパドル現像、または、現像液を連続供給する方法がある。ノズルの種類は特に制限は無く、ストレートノズル、シャワーノズル、スプレーノズル等が挙げられる。
 現像液の浸透性、非画像部の除去性、製造上の効率の観点から、現像液をストレートノズルで供給する方法、又はスプレーノズルにて連続供給する方法が好ましく、画像部への現像液の浸透性の観点からは、スプレーノズルで供給する方法がより好ましい。
 また、現像液をストレートノズルにて連続供給後、基材をスピンし現像液を基材上から除去し、スピン乾燥後に再度ストレートノズルにて連続供給後、基材をスピンし現像液を基材上から除去する工程を採用してもよく、この工程を複数回繰り返しても良い。
 現像工程における現像液の供給方法としては、現像液が連続的に基材に供給され続ける工程、基材上で現像液が略静止状態で保たれる工程、基材上で現像液を超音波等で振動させる工程及びそれらを組み合わせた工程などが挙げられる。
[Developer supply method]
The method of supplying the developer is not particularly limited as long as the desired pattern can be formed, and methods include immersing the base material on which the film is formed in the developer, and supplying the developer to the film formed on the base material using a nozzle. There is a method of paddle development, or a method of continuously supplying a developer. There are no particular restrictions on the type of nozzle, and examples include straight nozzles, shower nozzles, spray nozzles, and the like.
From the viewpoint of permeability of the developer, removability of non-image areas, and production efficiency, it is preferable to supply the developer using a straight nozzle or continuously using a spray nozzle. From the viewpoint of permeability, a method of supplying with a spray nozzle is more preferable.
In addition, after continuously supplying the developer using a straight nozzle, the base material is spun to remove the developer from the base material, and after spin drying, the developer is continuously supplied again using the straight nozzle, the base material is spun, and the developer is applied to the base material. A process of removing from above may be adopted, or this process may be repeated multiple times.
Methods for supplying the developer in the development process include a process in which the developer is continuously supplied to the base material, a process in which the developer is kept in a substantially stationary state on the base material, and a process in which the developer is applied to the base material using ultrasonic waves. Examples include a step of vibrating with the like, and a step of combining these.
 現像時間としては、10秒~10分間が好ましく、20秒~5分間がより好ましい。現像時の現像液の温度は、特に定めるものではないが、10~45℃が好ましく、18℃~30℃がより好ましい。 The development time is preferably 10 seconds to 10 minutes, more preferably 20 seconds to 5 minutes. The temperature of the developer during development is not particularly limited, but is preferably 10 to 45°C, more preferably 18 to 30°C.
 現像工程において、現像液を用いた処理の後、更に、リンス液によるパターンの洗浄(リンス)を行ってもよい。また、パターン上に接する現像液が乾燥しきらないうちにリンス液を供給するなどの方法を採用しても良い。 In the development step, after the treatment using the developer, the pattern may be further cleaned (rinsed) with a rinse solution. Alternatively, a method such as supplying a rinsing liquid before the developer in contact with the pattern is completely dried may be adopted.
〔リンス液〕
 現像液がアルカリ水溶液である場合、リンス液としては、例えば水を用いることができる。現像液が有機溶剤を含む現像液である場合、リンス液としては、例えば、現像液に含まれる溶剤とは異なる溶剤(例えば、水、現像液に含まれる有機溶剤とは異なる有機溶剤)を用いることができる。
[Rinse liquid]
When the developing solution is an alkaline aqueous solution, water can be used as the rinsing solution, for example. When the developer is a developer containing an organic solvent, for example, a solvent different from the solvent contained in the developer (e.g., water, an organic solvent different from the organic solvent contained in the developer) is used as the rinse agent. be able to.
 リンス液が有機溶剤を含む場合の有機溶剤としては、上述の現像液が有機溶剤を含む場合において例示した有機溶剤と同様の有機溶剤が挙げられる。
 リンス液に含まれる有機溶剤は、現像液に含まれる有機溶剤とは異なる有機溶剤であることが好ましく、現像液に含まれる有機溶剤よりも、パターンの溶解度が小さい有機溶剤がより好ましい。
Examples of the organic solvent when the rinsing liquid contains an organic solvent include the same organic solvents as those exemplified in the case where the above-mentioned developer contains an organic solvent.
The organic solvent contained in the rinsing liquid is preferably an organic solvent different from the organic solvent contained in the developer, and more preferably an organic solvent in which the pattern has a lower solubility than the organic solvent contained in the developer.
 リンス液が有機溶剤を含む場合、有機溶剤は1種又は、2種以上を混合して使用することができる。有機溶剤は、シクロペンタノン、γ-ブチロラクトン、ジメチルスルホキシド、N-メチルピロリドン、シクロヘキサノン、PGMEA、PGMEが好ましく、シクロペンタノン、γ-ブチロラクトン、ジメチルスルホキシド、PGMEA、PGMEがより好ましく、シクロヘキサノン、PGMEAがさらに好ましい。 When the rinsing liquid contains an organic solvent, one type of organic solvent or a mixture of two or more types can be used. The organic solvent is preferably cyclopentanone, γ-butyrolactone, dimethyl sulfoxide, N-methylpyrrolidone, cyclohexanone, PGMEA, or PGME, more preferably cyclopentanone, γ-butyrolactone, dimethyl sulfoxide, PGMEA, or PGME, and cyclohexanone or PGMEA. More preferred.
 リンス液が有機溶剤を含む場合、リンス液の全質量に対し、有機溶剤は50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましい。また、リンス液の全質量に対し、有機溶剤は100質量%であってもよい。 When the rinsing liquid contains an organic solvent, the organic solvent is preferably 50% by mass or more, more preferably 70% by mass or more, and even more preferably 90% by mass or more, based on the total mass of the rinsing liquid. Moreover, the organic solvent may be 100% by mass with respect to the total mass of the rinsing liquid.
 リンス液は塩基性化合物及び塩基発生剤の少なくとも一方を含んでもよい。
 特に限定されないが、現像液が有機溶剤を含む場合、リンス液が有機溶剤と塩基性化合物及び塩基発生剤の少なくとも一方とを含む態様も、本発明の好ましい態様の1つである。
 リンス液に含まれる塩基性化合物及び塩基発生剤としては、上述の現像液が有機溶剤を含む場合に含まれてもよい塩基性化合物及び塩基発生剤として例示された化合物が挙げられ、好ましい態様も同様である。
 リンス液に含まれる塩基性化合物及び塩基発生剤は、リンス液における溶剤への溶解度等を考慮して選択すればよい。
The rinsing liquid may contain at least one of a basic compound and a base generator.
Although not particularly limited, when the developer contains an organic solvent, one preferred embodiment of the present invention is an embodiment in which the rinsing solution contains the organic solvent and at least one of a basic compound and a base generator.
Examples of the basic compound and base generator contained in the rinsing solution include the compounds exemplified as the basic compound and base generator that may be included when the above-mentioned developer contains an organic solvent, and preferred embodiments are also included. The same is true.
The basic compound and base generator contained in the rinsing liquid may be selected in consideration of their solubility in the solvent in the rinsing liquid.
 リンス液が塩基性化合物及び塩基発生剤の少なくとも一方を含む場合、塩基性化合物又は塩基発生剤の含有量はリンス液の全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。上記含有量の下限は特に限定されないが、例えば0.1質量%以上が好ましい。
 塩基性化合物又は塩基発生剤がリンス液が用いられる環境で固体である場合、塩基性化合物又は塩基発生剤の含有量は、リンス液の全固形分に対して、70~100質量%であることも好ましい。
 リンス液が塩基性化合物及び塩基発生剤の少なくとも一方を含む場合、リンス液は塩基性化合物及び塩基発生剤の少なくとも一方を1種のみ含有してもよいし、2種以上を含有してもよい。塩基性化合物及び塩基発生剤の少なくとも一方が2種以上である場合は、その合計が上記範囲であることが好ましい。
When the rinsing liquid contains at least one of a basic compound and a base generator, the content of the basic compound or base generator is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the rinsing liquid. preferable. The lower limit of the above content is not particularly limited, but is preferably 0.1% by mass or more, for example.
If the basic compound or base generator is solid in the environment where the rinse solution is used, the content of the basic compound or base generator should be 70 to 100% by mass based on the total solid content of the rinse solution. is also preferable.
When the rinsing liquid contains at least one of a basic compound and a base generator, the rinsing liquid may contain only one type of at least one of the basic compound and the base generator, or may contain two or more types of the basic compound and the base generator. . When at least one of the basic compound and the base generator is two or more types, it is preferable that the total is within the above range.
 リンス液は、他の成分を更に含んでもよい。
 他の成分としては、例えば、公知の界面活性剤や公知の消泡剤等が挙げられる。
The rinse solution may further contain other components.
Examples of other components include known surfactants and known antifoaming agents.
〔リンス液の供給方法〕
 リンス液の供給方法は、所望のパターンを形成できれば特に制限は無く、基材をリンス液に浸漬する方法、基材に液盛りによりリンス液を供給する方法、基材にリンス液をシャワーで供給する方法、基材上にストレートノズル等の手段によりリンス液を連続供給する方法がある。
 リンス液の浸透性、非画像部の除去性、製造上の効率の観点から、リンス液をシャワーノズル、ストレートノズル、スプレーノズルなどで供給する方法があり、スプレーノズルにて連続供給する方法が好ましく、画像部へのリンス液の浸透性の観点からは、スプレーノズルで供給する方法がより好ましい。ノズルの種類は特に制限は無く、ストレートノズル、シャワーノズル、スプレーノズル等が挙げられる。
 すなわち、リンス工程は、リンス液を上記露光後の膜に対してストレートノズルにより供給、又は、連続供給する工程であることが好ましく、リンス液をスプレーノズルにより供給する工程であることがより好ましい。
 リンス工程におけるリンス液の供給方法としては、リンス液が連続的に基材に供給され続ける工程、基材上でリンス液が略静止状態で保たれる工程、基材上でリンス液を超音波等で振動させる工程及びそれらを組み合わせた工程などが採用可能である。
[How to supply rinsing liquid]
There are no particular restrictions on the method of supplying the rinsing liquid as long as the desired pattern can be formed; methods include immersing the substrate in the rinsing liquid, supplying the rinsing liquid to the substrate by piling up the liquid, and supplying the rinsing liquid to the substrate by showering. There is a method of continuously supplying the rinsing liquid onto the substrate using a means such as a straight nozzle.
From the viewpoint of permeability of the rinsing liquid, removability of non-image areas, and manufacturing efficiency, there are methods of supplying the rinsing liquid using a shower nozzle, straight nozzle, spray nozzle, etc., and a continuous supply method using a spray nozzle is preferable. From the viewpoint of permeability of the rinsing liquid into the image area, a method of supplying the rinsing liquid using a spray nozzle is more preferable. There are no particular restrictions on the type of nozzle, and examples include straight nozzles, shower nozzles, spray nozzles, and the like.
That is, the rinsing step is preferably a step in which the rinsing liquid is supplied to the exposed film through a straight nozzle or continuously, and more preferably a step in which the rinsing liquid is supplied through a spray nozzle.
Methods for supplying the rinsing liquid in the rinsing process include a process in which the rinsing liquid is continuously supplied to the substrate, a process in which the rinsing liquid is kept almost stationary on the substrate, and a process in which the rinsing liquid is applied to the substrate by ultrasonic waves. It is possible to adopt a process of vibrating the wafer, etc., and a process of combining these.
 リンス時間としては、10秒~10分間が好ましく、20秒~5分間がより好ましい。リンス時のリンス液の温度は、特に定めるものではないが、10~45℃が好ましく、18℃~30℃がより好ましい。 The rinsing time is preferably 10 seconds to 10 minutes, more preferably 20 seconds to 5 minutes. The temperature of the rinsing liquid during rinsing is not particularly limited, but is preferably 10 to 45°C, more preferably 18 to 30°C.
 現像工程において、現像液を用いた処理の後、又は、リンス液によるパターンの洗浄の後に、処理液とパターンとを接触させる工程を含んでもよい。また、パターン上に接する現像液又はリンス液が乾燥しきらないうちに処理液を供給するなどの方法を採用しても良い。 The developing step may include a step of bringing the processing solution into contact with the pattern after processing using the developer or after cleaning the pattern with a rinse solution. Alternatively, a method may be adopted in which the processing liquid is supplied before the developing liquid or the rinsing liquid in contact with the pattern is completely dried.
 上記処理液としては、水及び有機溶剤の少なくとも一方と、塩基性化合物及び塩基発生剤の少なくとも一方とを含む処理液が挙げられる。
 上記有機溶剤、及び、塩基性化合物及び塩基発生剤の少なくとも一方の好ましい態様は、上述のリンス液において用いられる有機溶剤、及び、塩基性化合物及び塩基発生剤の少なくとも一方の好ましい態様と同様である。
 処理液のパターンへの供給方法は、上述のリンス液の供給方法と同様の方法を用いることができ、好ましい態様も同様である。
Examples of the treatment liquid include a treatment liquid containing at least one of water and an organic solvent, and at least one of a basic compound and a base generator.
Preferred embodiments of the organic solvent, and at least one of the basic compound and base generator are the same as the preferred embodiments of the organic solvent, and at least one of the basic compound and base generator used in the above-mentioned rinsing liquid. .
The method for supplying the treatment liquid to the pattern can be the same as the method for supplying the rinsing liquid described above, and the preferred embodiments are also the same.
 処理液における塩基性化合物又は塩基発生剤の含有量は、処理液の全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。上記含有量の下限は特に限定されないが、例えば0.1質量%以上であることが好ましい。
 また、塩基性化合物又は塩基発生剤が処理液が用いられる環境で固体である場合、塩基性化合物又は塩基発生剤の含有量は、処理液の全固形分に対して、70~100質量%であることも好ましい。
 処理液が塩基性化合物及び塩基発生剤の少なくとも一方を含む場合、処理液は塩基性化合物及び塩基発生剤の少なくとも一方を1種のみ含有してもよいし、2種以上を含有してもよい。塩基性化合物及び塩基発生剤の少なくとも一方が2種以上である場合は、その合計が上記範囲であることが好ましい。
The content of the basic compound or base generator in the treatment liquid is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the treatment liquid. The lower limit of the content is not particularly limited, but is preferably 0.1% by mass or more, for example.
In addition, if the basic compound or base generator is solid in the environment where the treatment liquid is used, the content of the basic compound or base generator is 70 to 100% by mass based on the total solid content of the treatment liquid. It's also good to have one.
When the processing liquid contains at least one of a basic compound and a base generator, the processing liquid may contain only one type of at least one of the basic compound and the base generator, or may contain two or more types of the basic compound and the base generator. . When at least one of the basic compound and the base generator is two or more types, it is preferable that the total is within the above range.
<加熱工程>
 現像工程により得られたパターン(リンス工程を行う場合は、リンス後のパターン)は、上記現像により得られたパターンを加熱する加熱工程に供されてもよい。
 すなわち、本発明の硬化物の製造方法は、現像工程により得られたパターンを加熱する加熱工程を含んでもよい。
 また、本発明の硬化物の製造方法は、現像工程を行わずに他の方法で得られたパターン、又は、膜形成工程により得られた膜を加熱する加熱工程を含んでもよい。
 加熱工程において、ポリイミド前駆体等の樹脂は環化してポリイミド等の樹脂となる。
 また、特定樹脂、又は特定樹脂以外の架橋剤における未反応の架橋性基の架橋なども進行する。
 加熱工程における加熱温度(最高加熱温度)としては、50~450℃が好ましく、150~350℃がより好ましく、150~250℃が更に好ましく、160~250℃が一層好ましく、160~230℃が特に好ましい。
<Heating process>
The pattern obtained by the development step (in the case of performing the rinsing step, the pattern after rinsing) may be subjected to a heating step of heating the pattern obtained by the development.
That is, the method for producing a cured product of the present invention may include a heating step of heating the pattern obtained in the developing step.
Further, the method for producing a cured product of the present invention may include a heating step of heating a pattern obtained by another method without performing a developing step, or a film obtained by a film forming step.
In the heating step, a resin such as a polyimide precursor is cyclized to become a resin such as polyimide.
Further, crosslinking of unreacted crosslinkable groups in the specific resin or a crosslinking agent other than the specific resin also progresses.
The heating temperature (maximum heating temperature) in the heating step is preferably 50 to 450°C, more preferably 150 to 350°C, even more preferably 150 to 250°C, even more preferably 160 to 250°C, particularly 160 to 230°C. preferable.
 加熱工程は、加熱により、上記塩基発生剤から発生した塩基等の作用により、上記パターン内で上記ポリイミド前駆体の環化反応を促進する工程であることが好ましい。 The heating step is preferably a step of promoting the cyclization reaction of the polyimide precursor within the pattern by heating and the action of a base generated from the base generator.
 加熱工程における加熱は、加熱開始時の温度から最高加熱温度まで1~12℃/分の昇温速度で行うことが好ましい。上記昇温速度は2~10℃/分がより好ましく、3~10℃/分が更に好ましい。昇温速度を1℃/分以上とすることにより、生産性を確保しつつ、酸又は溶剤の過剰な揮発を防止することができ、昇温速度を12℃/分以下とすることにより、硬化物の残存応力を緩和することができる。
 加えて、急速加熱可能なオーブンの場合、加熱開始時の温度から最高加熱温度まで1~8℃/秒の昇温速度で行うことが好ましく、2~7℃/秒がより好ましく、3~6℃/秒が更に好ましい。
Heating in the heating step is preferably carried out at a temperature increase rate of 1 to 12° C./min from the temperature at the start of heating to the maximum heating temperature. The temperature increase rate is more preferably 2 to 10°C/min, and even more preferably 3 to 10°C/min. By setting the heating rate to 1°C/min or more, it is possible to prevent excessive volatilization of acid or solvent while ensuring productivity, and by setting the heating rate to 12°C/min or less, curing can be achieved. Residual stress in objects can be alleviated.
In addition, in the case of an oven capable of rapid heating, it is preferable to raise the temperature from the temperature at the start of heating to the maximum heating temperature at a heating rate of 1 to 8°C/second, more preferably 2 to 7°C/second, and 3 to 6°C. C/sec is more preferred.
 加熱開始時の温度は、20℃~150℃が好ましく、20℃~130℃がより好ましく、25℃~120℃が更に好ましい。加熱開始時の温度は、最高加熱温度まで加熱する工程を開始する際の温度のことをいう。例えば、本発明の樹脂組成物を基材の上に適用した後、乾燥させる場合、この乾燥後の膜(層)の温度であり、例えば、樹脂組成物に含まれる溶剤の沸点よりも、30~200℃低い温度から昇温させることが好ましい。 The temperature at the start of heating is preferably 20°C to 150°C, more preferably 20°C to 130°C, even more preferably 25°C to 120°C. The temperature at the start of heating refers to the temperature at which the process of heating to the maximum heating temperature is started. For example, when the resin composition of the present invention is applied onto a substrate and then dried, the temperature of the film (layer) after drying is, for example, 30°C higher than the boiling point of the solvent contained in the resin composition. It is preferable to raise the temperature from a lower temperature by ~200°C.
 加熱時間(最高加熱温度での加熱時間)は、5~360分が好ましく、10~300分がより好ましく、15~240分が更に好ましい。 The heating time (heating time at the highest heating temperature) is preferably 5 to 360 minutes, more preferably 10 to 300 minutes, and even more preferably 15 to 240 minutes.
 特に多層の積層体を形成する場合、層間の密着性の観点から、加熱温度は30℃以上であることが好ましく、80℃以上がより好ましく、100℃以上が更に好ましく、120℃以上が特に好ましい。
 上記加熱温度の上限は、350℃以下が好ましく、250℃以下がより好ましく、240℃以下が更に好ましい。
In particular, when forming a multilayer laminate, from the viewpoint of interlayer adhesion, the heating temperature is preferably 30°C or higher, more preferably 80°C or higher, even more preferably 100°C or higher, and particularly preferably 120°C or higher. .
The upper limit of the heating temperature is preferably 350°C or lower, more preferably 250°C or lower, and even more preferably 240°C or lower.
 加熱は段階的に行ってもよい。例として、25℃から120℃まで3℃/分で昇温し、120℃にて60分保持し、120℃から180℃まで2℃/分で昇温し、180℃にて120分保持する、といった工程を行ってもよい。また、米国特許第9159547号明細書に記載のように紫外線を照射しながら処理することも好ましい。このような前処理工程により膜の特性を向上させることが可能である。前処理工程は10秒間~2時間程度の短い時間で行うとよく、15秒~30分間がより好ましい。前処理工程は2段階以上のステップとしてもよく、例えば100~150℃の範囲で1段階目の前処理工程を行い、その後に150~200℃の範囲で2段階目の前処理工程を行ってもよい。
 更に、加熱後冷却してもよく、この場合の冷却速度としては、1~5℃/分であることが好ましい。
Heating may be performed in stages. As an example, the temperature is raised from 25°C to 120°C at a rate of 3°C/min, held at 120°C for 60 minutes, and the temperature is raised from 120°C to 180°C at a rate of 2°C/min, and held at 180°C for 120 minutes. , etc. may be performed. It is also preferable to perform the treatment while irradiating ultraviolet rays as described in US Pat. No. 9,159,547. Such pretreatment steps can improve the properties of the film. The pretreatment step is preferably carried out for a short time of about 10 seconds to 2 hours, more preferably 15 seconds to 30 minutes. The pretreatment step may be performed in two or more steps, for example, the first pretreatment step is performed at a temperature of 100 to 150°C, and then the second pretreatment step is performed at a temperature of 150 to 200°C. Good too.
Furthermore, cooling may be performed after heating, and the cooling rate in this case is preferably 1 to 5° C./min.
 加熱工程は、窒素、ヘリウム、アルゴンなどの不活性ガスを流す、減圧下で行う等により、低酸素濃度の雰囲気で行うことが特定樹脂の分解を防ぐ観点で好ましい。酸素濃度は、50ppm(体積比)以下が好ましく、20ppm(体積比)以下がより好ましい。
 加熱工程における加熱手段としては、特に限定されないが、例えばホットプレート、赤外炉、電熱式オーブン、熱風式オーブン、赤外線オーブンなどが挙げられる。
The heating step is preferably performed in an atmosphere with a low oxygen concentration, such as by flowing an inert gas such as nitrogen, helium, or argon, or under reduced pressure, from the viewpoint of preventing decomposition of the specific resin. The oxygen concentration is preferably 50 ppm (volume ratio) or less, more preferably 20 ppm (volume ratio) or less.
The heating means in the heating step is not particularly limited, but includes, for example, a hot plate, an infrared oven, an electric oven, a hot air oven, an infrared oven, and the like.
<現像後露光工程>
 現像工程により得られたパターン(リンス工程を行う場合は、リンス後のパターン)は、上記加熱工程に代えて、又は、上記加熱工程に加えて、現像工程後のパターンを露光する現像後露光工程に供されてもよい。
 すなわち、本発明の硬化物の製造方法は、現像工程により得られたパターンを露光する現像後露光工程を含んでもよい。本発明の硬化物の製造方法は、加熱工程及び現像後露光工程を含んでもよいし、加熱工程及び現像後露光工程の一方のみを含んでもよい。
 現像後露光工程においては、例えば、光塩基発生剤の感光によってポリイミド前駆体等の環化が進行する反応を促進することができる。
 現像後露光工程においては、現像工程において得られたパターンの少なくとも一部が露光されればよいが、上記パターンの全部が露光されることが好ましい。
 現像後露光工程における露光量は、感光性化合物が感度を有する波長における露光エネルギー換算で、50~20,000mJ/cmが好ましく、100~15,000mJ/cmがより好ましい。
 現像後露光工程は、例えば、上述の露光工程における光源を用いて行うことができ、ブロードバンド光を用いることが好ましい。
<Post-development exposure process>
The pattern obtained in the development process (in the case of performing a rinsing process, the pattern after rinsing) is subjected to a post-development exposure process in which the pattern after the development process is exposed to light, instead of or in addition to the above heating process. may be provided.
That is, the method for producing a cured product of the present invention may include a post-development exposure step of exposing the pattern obtained in the development step. The method for producing a cured product of the present invention may include a heating step and a post-development exposure step, or may include only one of the heating step and the post-development exposure step.
In the post-development exposure step, for example, the reaction of cyclization of the polyimide precursor etc. can be promoted by exposure to the photobase generator.
In the post-development exposure step, at least a portion of the pattern obtained in the development step may be exposed, but it is preferable that the entire pattern be exposed.
The exposure amount in the post-development exposure step is preferably 50 to 20,000 mJ/cm 2 , more preferably 100 to 15,000 mJ/cm 2 in terms of exposure energy at the wavelength to which the photosensitive compound is sensitive.
The post-development exposure step can be performed, for example, using the light source used in the above-mentioned exposure step, and it is preferable to use broadband light.
<金属層形成工程>
 現像工程により得られたパターン(加熱工程及び現像後露光工程の少なくとも一方に供されたものが好ましい)は、パターン上に金属層を形成する金属層形成工程に供されてもよい。
 すなわち、本発明の硬化物の製造方法は、現像工程により得られたパターン(加熱工程及び現像後露光工程の少なくとも一方に供されたものが好ましい)上に金属層を形成する金属層形成工程を含むことが好ましい。
<Metal layer formation process>
The pattern obtained by the development process (preferably one that has been subjected to at least one of a heating process and a post-development exposure process) may be subjected to a metal layer forming process of forming a metal layer on the pattern.
That is, the method for producing a cured product of the present invention includes a metal layer forming step of forming a metal layer on the pattern obtained in the development step (preferably one that has been subjected to at least one of a heating step and a post-development exposure step). It is preferable to include.
 金属層としては、特に限定なく、既存の金属種を使用することができ、銅、アルミニウム、ニッケル、バナジウム、チタン、クロム、コバルト、金、タングステン、錫、銀及びこれらの金属を含む合金が例示され、銅及びアルミニウムがより好ましく、銅が更に好ましい。 As the metal layer, existing metal species can be used without particular limitation, and examples include copper, aluminum, nickel, vanadium, titanium, chromium, cobalt, gold, tungsten, tin, silver, and alloys containing these metals. copper and aluminum are more preferred, and copper is even more preferred.
 金属層の形成方法は、特に限定なく、既存の方法を適用することができる。例えば、特開2007-157879号公報、特表2001-521288号公報、特開2004-214501号公報、特開2004-101850号公報、米国特許第7888181B2、米国特許第9177926B2に記載された方法を使用することができる。例えば、フォトリソグラフィ、PVD(物理蒸着法)、CVD(化学気相成長法)、リフトオフ、電解めっき、無電解めっき、エッチング、印刷、及びこれらを組み合わせた方法などが考えられる。より具体的には、スパッタリング、フォトリソグラフィ及びエッチングを組み合わせたパターニング方法、フォトリソグラフィと電解めっきを組み合わせたパターニング方法が挙げられる。めっきの好ましい態様としては、硫酸銅やシアン化銅めっき液を用いた電解めっきが挙げられる。 The method for forming the metal layer is not particularly limited, and any existing method can be applied. For example, the methods described in JP 2007-157879, JP 2001-521288, JP 2004-214501, JP 2004-101850, US Patent No. 7888181B2, and US Patent No. 9177926B2 are used. can do. For example, photolithography, PVD (physical vapor deposition), CVD (chemical vapor deposition), lift-off, electrolytic plating, electroless plating, etching, printing, and a combination thereof can be used. More specifically, a patterning method that combines sputtering, photolithography, and etching, and a patterning method that combines photolithography and electrolytic plating can be mentioned. A preferred embodiment of plating includes electrolytic plating using copper sulfate or copper cyanide plating solution.
 金属層の厚さとしては、最も厚肉の部分で、0.01~50μmが好ましく、1~10μmがより好ましい。 The thickness of the metal layer is preferably 0.01 to 50 μm, more preferably 1 to 10 μm at the thickest part.
<用途>
 本発明の硬化物の製造方法、又は、硬化物の適用可能な分野としては、電子デバイスの絶縁膜、再配線層用層間絶縁膜、ストレスバッファ膜などが挙げられる。そのほか、封止フィルム、基板材料(フレキシブルプリント基板のベースフィルムやカバーレイ、層間絶縁膜)、又は上記のような実装用途の絶縁膜をエッチングでパターン形成することなどが挙げられる。これらの用途については、例えば、サイエンス&テクノロジー(株)「ポリイミドの高機能化と応用技術」2008年4月、柿本雅明/監修、CMCテクニカルライブラリー「ポリイミド材料の基礎と開発」2011年11月発行、日本ポリイミド・芳香族系高分子研究会/編「最新ポリイミド 基礎と応用」エヌ・ティー・エス,2010年8月等を参照することができる。
<Application>
Fields to which the method for producing a cured product of the present invention or the cured product can be applied include insulating films for electronic devices, interlayer insulating films for rewiring layers, stress buffer films, and the like. Other methods include forming a pattern by etching a sealing film, a substrate material (a base film or coverlay of a flexible printed circuit board, an interlayer insulating film), or an insulating film for mounting purposes as described above. For information on these uses, see, for example, Science & Technology Co., Ltd., "Advanced Functionality and Applied Technology of Polyimide," April 2008, Masaaki Kakimoto/Supervised, CMC Technical Library, "Basics and Development of Polyimide Materials," November 2011. You can refer to "Latest Polyimide Fundamentals and Applications" published by Japan Polyimide and Aromatic Polymer Research Group/editor, NTS, August 2010, etc.
 本発明の硬化物の製造方法、又は、本発明の硬化物は、オフセット版面又はスクリーン版面などの版面の製造、成形部品のエッチングへの使用、エレクトロニクス、特に、マイクロエレクトロニクスにおける保護ラッカー及び誘電層の製造などにも用いることもできる。 The method for producing a cured product of the present invention or the cured product of the present invention can be used for producing plates such as offset plates or screen plates, for etching molded parts, and for use in protective lacquers and dielectric layers in electronics, particularly microelectronics. It can also be used for manufacturing.
(積層体、及び、積層体の製造方法)
 本発明の積層体とは、本発明の硬化物からなる層を複数層有する構造体をいう。
 積層体は、硬化物からなる層を2層以上含む積層体であり、3層以上積層した積層体としてもよい。
 上記積層体に含まれる2層以上の上記硬化物からなる層のうち、少なくとも1つが本発明の硬化物からなる層であり、硬化物の収縮、又は、上記収縮に伴う硬化物の変形等を抑制する観点からは、上記積層体に含まれる全ての硬化物からなる層が本発明の硬化物からなる層であることも好ましい。
(Laminated body and method for manufacturing the laminate)
The laminate of the present invention refers to a structure having a plurality of layers made of the cured product of the present invention.
The laminate is a laminate including two or more layers made of cured material, and may be a laminate in which three or more layers are laminated.
At least one of the two or more layers made of the cured product contained in the laminate is a layer made of the cured product of the present invention, and shrinkage of the cured product or deformation of the cured product due to the shrinkage, etc. From the viewpoint of suppression, it is also preferable that all the layers made of the cured product contained in the above-mentioned laminate are layers made of the cured product of the present invention.
 すなわち、本発明の積層体の製造方法は、本発明の硬化物の製造方法を含むことが好ましく、本発明の硬化物の製造方法を複数回繰り返すことを含むことがより好ましい。 That is, the method for producing a laminate of the present invention preferably includes the method for producing a cured product of the present invention, and more preferably includes repeating the method for producing a cured product of the present invention multiple times.
 本発明の積層体は、硬化物からなる層を2層以上含み、上記硬化物からなる層同士のいずれかの間に金属層を含む態様が好ましい。上記金属層は、上記金属層形成工程により形成されることが好ましい。
 すなわち、本発明の積層体の製造方法は、複数回行われる硬化物の製造方法の間に、硬化物からなる層上に金属層を形成する金属層形成工程を更に含むことが好ましい。金属層形成工程の好ましい態様は上述の通りである。
 上記積層体としては、例えば、第一の硬化物からなる層、金属層、第二の硬化物からなる層の3つの層がこの順に積層された層構造を少なくとも含む積層体が好ましいものとして挙げられる。
 上記第一の硬化物からなる層及び上記第二の硬化物からなる層は、いずれも本発明の硬化物からなる層であることが好ましい。上記第一の硬化物からなる層の形成に用いられる本発明の樹脂組成物と、上記第二の硬化物からなる層の形成に用いられる本発明の樹脂組成物とは、組成が同一の組成物であってもよいし、組成が異なる組成物であってもよい。本発明の積層体における金属層は、再配線層などの金属配線として好ましく用いられる。
The laminate of the present invention preferably includes two or more layers made of a cured product and includes a metal layer between any of the layers made of the cured product. The metal layer is preferably formed by the metal layer forming step.
That is, the method for producing a laminate of the present invention preferably further includes a metal layer forming step of forming a metal layer on the layer made of the cured product during the method for producing the cured product which is performed multiple times. A preferred embodiment of the metal layer forming step is as described above.
As the above-mentioned laminate, for example, a laminate including at least a layered structure in which three layers, ie, a layer consisting of a first cured product, a metal layer, and a layer consisting of a second cured product are laminated in this order, is preferred. It will be done.
It is preferable that the layer made of the first cured product and the layer made of the second cured product are both layers made of the cured product of the present invention. The resin composition of the present invention used to form the layer made of the first cured product and the resin composition of the present invention used to form the layer made of the second cured product have the same composition. It may be a product or a composition having a different composition. The metal layer in the laminate of the present invention is preferably used as metal wiring such as a rewiring layer.
<積層工程>
 本発明の積層体の製造方法は、積層工程を含むことが好ましい。
 積層工程とは、パターン(樹脂層)又は金属層の表面に、再度、(a)膜形成工程(層形成工程)、(b)露光工程、(c)現像工程、(d)加熱工程及び現像後露光工程の少なくとも一方を、この順に行うことを含む一連の工程である。ただし、(a)膜形成工程および(d)加熱工程及び現像後露光工程の少なくとも一方を繰り返す態様であってもよい。また、(d)加熱工程及び現像後露光工程の少なくとも一方の後には(e)金属層形成工程を含んでもよい。積層工程には、更に、上記乾燥工程等を適宜含んでいてもよいことは言うまでもない。
<Lamination process>
It is preferable that the method for manufacturing a laminate of the present invention includes a lamination step.
The lamination process refers to (a) film formation process (layer formation process), (b) exposure process, (c) development process, (d) heating process and development on the surface of the pattern (resin layer) or metal layer again. This is a series of steps including performing at least one of the post-exposure steps in this order. However, an embodiment may be adopted in which at least one of (a) the film forming step and (d) the heating step and the post-development exposure step are repeated. Furthermore, (e) a metal layer forming step may be included after at least one of the (d) heating step and the post-development exposure step. It goes without saying that the lamination step may further include the above-mentioned drying step and the like as appropriate.
 積層工程後、更に積層工程を行う場合には、上記露光工程後、上記加熱工程の後、又は、上記金属層形成工程後に、更に、表面活性化処理工程を行ってもよい。表面活性化処理としては、プラズマ処理が例示される。表面活性化処理の詳細については後述する。 If a lamination step is further performed after the lamination step, a surface activation treatment step may be performed after the exposure step, the heating step, or the metal layer forming step. Plasma treatment is exemplified as the surface activation treatment. Details of the surface activation treatment will be described later.
 上記積層工程は、2~20回行うことが好ましく、2~9回行うことがより好ましい。
 例えば、樹脂層/金属層/樹脂層/金属層/樹脂層/金属層のように、樹脂層を2層以上20層以下とする構成が好ましく、2層以上9層以下とする構成が更に好ましい。
 上記各層はそれぞれ、組成、形状、膜厚等が同一であってもよいし、異なっていてもよい。
The above lamination step is preferably performed 2 to 20 times, more preferably 2 to 9 times.
For example, a configuration in which the number of resin layers is 2 or more and 20 or less, such as resin layer/metal layer/resin layer/metal layer/resin layer/metal layer, is preferable, and a configuration in which the number of resin layers is 2 or more and 9 or less is more preferable. .
The above layers may have the same composition, shape, thickness, etc., or may have different compositions, shapes, thicknesses, etc.
 本発明では特に、金属層を設けた後、更に、上記金属層を覆うように、上記本発明の樹脂組成物の硬化物(樹脂層)を形成する態様が好ましい。具体的には、(a)膜形成工程、(b)露光工程、(c)現像工程、(d)加熱工程及び現像後露光工程の少なくとも一方、(e)金属層形成工程、の順序で繰り返す態様、又は、(a)膜形成工程、(d)加熱工程及び現像後露光工程の少なくとも一方、(e)金属層形成工程の順序で繰り返す態様が挙げられる。本発明の樹脂組成物層(樹脂層)を積層する積層工程と、金属層形成工程を交互に行うことにより、本発明の樹脂組成物層(樹脂層)と金属層を交互に積層することができる。 In the present invention, it is particularly preferable that after providing the metal layer, a cured product (resin layer) of the resin composition of the present invention is further formed to cover the metal layer. Specifically, the following steps are repeated in the following order: (a) film formation step, (b) exposure step, (c) development step, (d) at least one of the heating step and post-development exposure step, and (e) metal layer formation step. Alternatively, an embodiment may be mentioned in which (a) a film forming step, (d) at least one of a heating step and a post-development exposure step, and (e) a metal layer forming step are repeated in this order. By alternately performing the lamination step of laminating the resin composition layer (resin layer) of the present invention and the metal layer forming step, the resin composition layer (resin layer) of the present invention and the metal layer can be alternately laminated. can.
(表面活性化処理工程)
 本発明の積層体の製造方法は、上記金属層および樹脂組成物層の少なくとも一部を表面活性化処理する、表面活性化処理工程を含むことが好ましい。
 表面活性化処理工程は、通常、金属層形成工程の後に行うが、上記現像工程の後(好ましくは、加熱工程及び現像後露光工程の少なくとも一方の後)、樹脂組成物層に表面活性化処理工程を行ってから、金属層形成工程を行ってもよい。
 表面活性化処理は、金属層の少なくとも一部のみに行ってもよいし、露光後の樹脂組成物層の少なくとも一部のみに行ってもよいし、金属層および露光後の樹脂組成物層の両方について、それぞれ、少なくとも一部に行ってもよい。表面活性化処理は、金属層の少なくとも一部について行うことが好ましく、金属層のうち、表面に樹脂組成物層を形成する領域の一部または全部に表面活性化処理を行うことが好ましい。このように、金属層の表面に表面活性化処理を行うことにより、その表面に設けられる樹脂組成物層(膜)との密着性を向上させることができる。
 表面活性化処理は、露光後の樹脂組成物層(樹脂層)の一部または全部についても行うことが好ましい。このように、樹脂組成物層の表面に表面活性化処理を行うことにより、表面活性化処理した表面に設けられる金属層や樹脂層との密着性を向上させることができる。特にネガ型現像を行う場合など、樹脂組成物層が硬化されている場合には、表面処理によるダメージを受けにくく、密着性が向上しやすい。
 表面活性化処理は、例えば、国際公開第2021/112189号の段落0415に記載の方法により実施することができる。この内容は本明細書に組み込まれる。
(Surface activation treatment process)
The method for producing a laminate of the present invention preferably includes a surface activation treatment step of surface activation treatment of at least a portion of the metal layer and the resin composition layer.
The surface activation treatment step is usually performed after the metal layer forming step, but after the development step (preferably after at least one of the heating step and the post-development exposure step), the resin composition layer is subjected to the surface activation treatment. After performing this step, the metal layer forming step may be performed.
The surface activation treatment may be performed on at least a portion of the metal layer, or may be performed on at least a portion of the resin composition layer after exposure, or the surface activation treatment may be performed on at least a portion of the metal layer and the resin composition layer after exposure. Both may be performed at least in part, respectively. The surface activation treatment is preferably performed on at least a part of the metal layer, and it is preferable that the surface activation treatment is performed on a part or all of the region of the metal layer on which the resin composition layer is to be formed. By performing surface activation treatment on the surface of the metal layer in this way, it is possible to improve the adhesion with the resin composition layer (film) provided on the surface.
It is preferable that the surface activation treatment is also performed on part or all of the resin composition layer (resin layer) after exposure. By performing surface activation treatment on the surface of the resin composition layer in this way, it is possible to improve the adhesion with the metal layer or resin layer provided on the surface that has been surface activated. In particular, when the resin composition layer is hardened, such as when performing negative development, it is less likely to be damaged by surface treatment and adhesion is likely to be improved.
The surface activation treatment can be performed, for example, by the method described in paragraph 0415 of International Publication No. 2021/112189. This content is incorporated herein.
(半導体デバイス及びその製造方法)
 本発明は、本発明の硬化物、又は、積層体を含む半導体デバイスも開示する。
 また、本発明は、本発明の硬化物の製造方法、又は、積層体の製造方法を含む半導体デバイスの製造方法も開示する。
 本発明の樹脂組成物を再配線層用層間絶縁膜の形成に用いた半導体デバイスの具体例としては、特開2016-027357号公報の段落0213~0218の記載及び図1の記載を参酌でき、これらの内容は本明細書に組み込まれる。
(Semiconductor device and its manufacturing method)
The present invention also discloses a semiconductor device containing the cured product or laminate of the present invention.
The present invention also discloses a method for manufacturing a semiconductor device, including a method for manufacturing a cured product of the present invention or a method for manufacturing a laminate.
As a specific example of a semiconductor device using the resin composition of the present invention for forming an interlayer insulating film for a rewiring layer, the descriptions in paragraphs 0213 to 0218 of JP 2016-027357A and the description in FIG. 1 can be referred to, Their contents are incorporated herein.
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。「部」、「%」は特に述べない限り、質量基準である。 The present invention will be explained in more detail with reference to Examples below. The materials, usage amounts, ratios, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below. "Parts" and "%" are based on mass unless otherwise stated.
<ポリイミド前駆体の合成>
〔合成例SP-1:ポリイミド前駆体(SP-1)の合成〕
19.90g(38.1ミリモル)の4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物と、17.80g(77.8ミリモル)のグリセロールジメタクリレートと、0.05gのハイドロキノンと、13.40g(169ミリモル)のピリジンと、70gのジエチレングリコールモノメチルエーテルとを混合し、60℃の温度で5時間撹拌して、4,4’-(4,4’-イソプロピリデンジフェノキシ)ビス(フタル酸無水物)と、グリセロールジメタクリレートのジエステルを製造した。次いで、混合物を-10℃まで冷却した後、塩化チオニル 9.53g(79.2リモル)を90分かけて滴下し、2時間撹拌し、ピリジニウムヒドロクロリドの白色沈澱が得られた。次いで、4,4’-イソプロピリデンビス[(4-アミノフェノキシ)ベンゼン]13.47g(32.8ミリモル)をNMP(N-メチル-2-ピロリドン) 100mL中に溶解させたものを、2時間かけて滴下した。次いで、エタノール 10.0g(217ミリモル)を加え、混合物を2時間撹拌した。次いで、4リットルの水の中でポリイミド前駆体樹脂を沈殿させ、水-ポリイミド前駆体樹脂混合物を500rpmの速度で15分間撹拌した。ポリイミド前駆体樹脂を濾過して取得し、4リットルの水の中で再度30分間撹拌し再び濾過し、40℃で2日乾燥した。続いて、上記で乾燥した樹脂をテトラヒドロフラン200gに溶解し、イオン交換樹脂(MB-1:オルガノ社製)50gを添加し、6時間撹拌した。次いで、4リットルの水の中でポリイミド前駆体樹脂を沈殿させ、水-ポリイミド前駆体樹脂混合物を500rpmの速度で15分間撹拌した。ポリイミド前駆体樹脂を濾過して取得し、減圧下、45℃で2日間乾燥しポリイミド前駆体(SP-1)を得た。得られたポリイミド前駆体(SP-1)の重量平均分子量は28,500、数平均分子量は10,400であった。なお、重合性基の割合が2.96mmol/gであり、アミド結合の含有量が1.46mmol/gであった。ポリイミド前駆体(SP-1)は、下記式(SP-1)で表される繰返し単位を有する樹脂である。繰返し単位の構造は、H-NMRスペクトルから決定した。
<Synthesis of polyimide precursor>
[Synthesis Example SP-1: Synthesis of polyimide precursor (SP-1)]
19.90 g (38.1 mmol) of 4,4'-(4,4'-isopropylidenediphenoxy)diphthalic anhydride, 17.80 g (77.8 mmol) of glycerol dimethacrylate, and 0.05 g of hydroquinone, 13.40 g (169 mmol) of pyridine, and 70 g of diethylene glycol monomethyl ether were mixed and stirred at a temperature of 60°C for 5 hours to form 4,4'-(4,4'-isopropylidene diamide). A diester of phenoxy)bis(phthalic anhydride) and glycerol dimethacrylate was produced. Then, after cooling the mixture to -10°C, 9.53 g (79.2 lmol) of thionyl chloride was added dropwise over 90 minutes and stirred for 2 hours to obtain a white precipitate of pyridinium hydrochloride. Next, 13.47 g (32.8 mmol) of 4,4'-isopropylidenebis[(4-aminophenoxy)benzene] was dissolved in 100 mL of NMP (N-methyl-2-pyrrolidone) for 2 hours. It dripped. Then 10.0 g (217 mmol) of ethanol was added and the mixture was stirred for 2 hours. The polyimide precursor resin was then precipitated in 4 liters of water and the water-polyimide precursor resin mixture was stirred at a speed of 500 rpm for 15 minutes. The polyimide precursor resin was obtained by filtration, stirred again in 4 liters of water for 30 minutes, filtered again, and dried at 40° C. for 2 days. Subsequently, the resin dried above was dissolved in 200 g of tetrahydrofuran, 50 g of ion exchange resin (MB-1: manufactured by Organo) was added, and the mixture was stirred for 6 hours. The polyimide precursor resin was then precipitated in 4 liters of water and the water-polyimide precursor resin mixture was stirred at a speed of 500 rpm for 15 minutes. A polyimide precursor resin was obtained by filtration and dried at 45° C. for 2 days under reduced pressure to obtain a polyimide precursor (SP-1). The weight average molecular weight of the obtained polyimide precursor (SP-1) was 28,500, and the number average molecular weight was 10,400. Note that the proportion of polymerizable groups was 2.96 mmol/g, and the content of amide bonds was 1.46 mmol/g. The polyimide precursor (SP-1) is a resin having a repeating unit represented by the following formula (SP-1). The structure of the repeating unit was determined from the 1 H-NMR spectrum.
〔合成例SP-2~SP-15:ポリイミド前駆体(SP-2)~(SP-15)の合成〕
 使用するカルボン酸二無水物、アルコール及びジアミンを適宜変更した以外は、ポリイミド前駆体(SP-1)と同様の方法で、ポリイミド前駆体(SP-2)~(SP―148)を合成した。
 また、使用するカルボン酸二無水物、アルコール及びジアミンを適宜変更した以外は、後述する比較用ポリイミド前駆体(A-1)と同様の方法で、ポリイミド前駆体(SP-15)を合成した。
 ポリイミド前駆体(SP-2)~(SP-15)は、それぞれ、下記式(SP-2)~(SP-15)で表される繰返し単位を有する樹脂である。各繰返し単位の構造は、H-NMRスペクトルから決定した。下記構造中、比率の記載は各構造の含有モル比を表す。また、これらの樹脂の重量平均分子量及び数平均分子量については下記表に記載した。


[Synthesis examples SP-2 to SP-15: Synthesis of polyimide precursors (SP-2) to (SP-15)]
Polyimide precursors (SP-2) to (SP-148) were synthesized in the same manner as polyimide precursor (SP-1), except that the carboxylic dianhydride, alcohol, and diamine used were changed as appropriate.
In addition, a polyimide precursor (SP-15) was synthesized in the same manner as the comparative polyimide precursor (A-1) described below, except that the carboxylic dianhydride, alcohol, and diamine used were changed as appropriate.
The polyimide precursors (SP-2) to (SP-15) are resins having repeating units represented by the following formulas (SP-2) to (SP-15), respectively. The structure of each repeating unit was determined from the 1 H-NMR spectrum. In the structures below, the ratios represent the molar ratios contained in each structure. Further, the weight average molecular weight and number average molecular weight of these resins are listed in the table below.


〔ジアミン(AA-1)の合成〕
 コンデンサー及び撹拌機を取り付けたフラスコに、還元鉄(富士フイルム和光純薬(株)製)27.9g(500ミリモル)、塩化アンモニウム(富士フイルム和光純薬(株)製)5.9g(110ミリモル)、酢酸(富士フイルム和光純薬(株)製)3.0g(50ミリモル)、2,2,6,6-テトラメチルピペリジン 1-オキシル フリーラジカル(東京化成工業(株)製)0.03gを秤り取り、イソプロピルアルコール(IPA)200mL、純水30mLを添加し、撹拌した。
 次いで、ジニトロ体(A-1)16.2gを少量ずつ1時間かけて添加し、30分撹拌した。次に、外温を85℃に昇温し、2時間撹拌し、25℃以下に冷却した後、セライト(登録商標)を使用してろ過した。ろ液をロータリーエバポレーターで濃縮し、酢酸エチル800mLに溶解した。これを分液ロートに移し、飽和重曹水300mLで2回洗浄し、水300mL、飽和食塩水300mLで順に洗浄した。分液洗浄後、硫酸マグネシウム30gで乾燥後、エバポレーターを用いて濃縮、真空乾燥し、ジアミン(AA-1)を11.0g得た。ジアミン(AA-1)であることはH-NMRスペクトルから確認した。
H-NMRデータ(重クロロホルム、400MHz、内部標準:テトラメチルシラン)
δ(ppm)=1.95(s、3H)、3.68(s、4H)、4.45-4.47(m、2H)、4.50-4.53(m、2H)、5.58(s、1H)、6.14(s、1H)、6.19-6.20(t、1H)、6.77-6.78(d、2H)
[Synthesis of diamine (AA-1)]
In a flask equipped with a condenser and a stirrer, 27.9 g (500 mmol) of reduced iron (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 5.9 g (110 mmol) of ammonium chloride (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were added. ), acetic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 3.0 g (50 mmol), 2,2,6,6-tetramethylpiperidine 1-oxyl free radical (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.03 g was weighed out, 200 mL of isopropyl alcohol (IPA) and 30 mL of pure water were added, and the mixture was stirred.
Next, 16.2 g of dinitro compound (A-1) was added little by little over 1 hour, and the mixture was stirred for 30 minutes. Next, the external temperature was raised to 85°C, stirred for 2 hours, cooled to 25°C or lower, and then filtered using Celite (registered trademark). The filtrate was concentrated using a rotary evaporator and dissolved in 800 mL of ethyl acetate. This was transferred to a separating funnel and washed twice with 300 mL of saturated sodium bicarbonate solution, followed by 300 mL of water and 300 mL of saturated saline solution. After separation and washing, the mixture was dried over 30 g of magnesium sulfate, concentrated using an evaporator, and dried under vacuum to obtain 11.0 g of diamine (AA-1). It was confirmed from the 1 H-NMR spectrum that it was diamine (AA-1).
1H -NMR data (deuterochloroform, 400MHz, internal standard: tetramethylsilane)
δ (ppm) = 1.95 (s, 3H), 3.68 (s, 4H), 4.45-4.47 (m, 2H), 4.50-4.53 (m, 2H), 5 .58 (s, 1H), 6.14 (s, 1H), 6.19-6.20 (t, 1H), 6.77-6.78 (d, 2H)
<ポリイミドの合成>
〔ポリイミドPI-1の合成〕
 撹拌機、コンデンサーを取りつけたフラスコ内で、20℃~30℃の範囲内で、20.8g(40.0ミリモル)の4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物を100gのN-メチルピロリドンに溶解した。続いて、4,4’-イソプロピリデンビス[(4-アミノフェノキシ)ベンゼン]15.3g(37.2ミリモル)を添加し、1時間撹拌した。続いて窒素をフローしながら、190℃に昇温し、5時間撹拌し、30℃以下まで冷却した。続いて、テトラヒドロフラン50gで希釈した後、2Lのメタノールに沈殿させ、ろ過し、これを回収して45℃で1日真空乾燥し、ポリイミド樹脂(PI-1)を得た。
PI-1の重量平均分子量は、23,200、数平均分子量は、12,800であった。ポリイミド(PI-1)は、下記式(PI-1)で表される繰返し単位を有する樹脂である。繰返し単位の構造は、H-NMRスペクトルから決定した。
<Synthesis of polyimide>
[Synthesis of polyimide PI-1]
In a flask equipped with a stirrer and a condenser, 20.8 g (40.0 mmol) of 4,4'-(4,4'-isopropylidenediphenoxy)diphthalic anhydride was added at a temperature of 20°C to 30°C. The material was dissolved in 100 g of N-methylpyrrolidone. Subsequently, 15.3 g (37.2 mmol) of 4,4'-isopropylidene bis[(4-aminophenoxy)benzene] was added and stirred for 1 hour. Subsequently, while flowing nitrogen, the temperature was raised to 190°C, stirred for 5 hours, and cooled to 30°C or lower. Subsequently, the mixture was diluted with 50 g of tetrahydrofuran, precipitated in 2 L of methanol, filtered, collected, and vacuum-dried at 45° C. for 1 day to obtain a polyimide resin (PI-1).
The weight average molecular weight of PI-1 was 23,200, and the number average molecular weight was 12,800. Polyimide (PI-1) is a resin having a repeating unit represented by the following formula (PI-1). The structure of the repeating unit was determined from the 1 H-NMR spectrum.
〔ポリイミドPI-2の合成〕
 使用するカルボン酸二無水物、アルコール及びジアミンを適宜変更した以外は、ポリイミド(PI-1)と同様の方法で、ポリイミド前駆体(PI-2)を合成した。
 ポリイミド(PI-2)は、下記式(PI-2)で表される2つの繰返し単位を有する樹脂である。各繰返し単位の構造は、H-NMRスペクトルから決定した。括弧の添え字は各繰返し単位の含有モル比を表す。また、ポリイミド(PI-2)の重量平均分子量は20,100、数平均分子量は8,900であった。
[Synthesis of polyimide PI-2]
A polyimide precursor (PI-2) was synthesized in the same manner as polyimide (PI-1), except that the carboxylic dianhydride, alcohol, and diamine used were changed as appropriate.
Polyimide (PI-2) is a resin having two repeating units represented by the following formula (PI-2). The structure of each repeating unit was determined from the 1 H-NMR spectrum. The subscripts in parentheses represent the molar ratio of each repeating unit. Further, the weight average molecular weight of the polyimide (PI-2) was 20,100, and the number average molecular weight was 8,900.
<ポリベンゾオキサゾールの合成>
 2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン10.98g(30ミリモル)、ピリジン4.75g(60ミリモル)を70gのN-メチルピロリドンに溶解し、0℃に冷却した。続いて、イソフタル酸クロリド5.48g(27ミリモル)を添加し、1時間撹拌した後、25℃に昇温して3時間撹拌した。テトラヒドロフラン50gで希釈した後、1Lのメタノールと1Lの水の混合液に沈殿させ、ろ過し、ろ物を回収して45℃で1日真空乾燥した。得られた乾燥物を70gのN-メチルピロリドンに溶解し、205℃で10時間撹拌し、25℃に冷却した。これを2Lのメタノールに沈殿させ、ポリベンゾオキサゾールPB-1を得た。PB-1の重量平均分子量は、20,400であった。ポリベンゾオキサゾール(PB-1)は、下記式(PB-1)で表される繰返し単位を有する樹脂である。繰返し単位の構造は、H-NMRスペクトルから決定した。
<Synthesis of polybenzoxazole>
10.98 g (30 mmol) of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane and 4.75 g (60 mmol) of pyridine were dissolved in 70 g of N-methylpyrrolidone and cooled to 0°C. . Subsequently, 5.48 g (27 mmol) of isophthalic acid chloride was added and stirred for 1 hour, then heated to 25° C. and stirred for 3 hours. After diluting with 50 g of tetrahydrofuran, it was precipitated in a mixture of 1 L of methanol and 1 L of water, filtered, and the filtrate was collected and vacuum-dried at 45° C. for 1 day. The obtained dried product was dissolved in 70 g of N-methylpyrrolidone, stirred at 205°C for 10 hours, and cooled to 25°C. This was precipitated in 2 L of methanol to obtain polybenzoxazole PB-1. The weight average molecular weight of PB-1 was 20,400. Polybenzoxazole (PB-1) is a resin having a repeating unit represented by the following formula (PB-1). The structure of the repeating unit was determined from the 1 H-NMR spectrum.
〔比較用ポリイミド前駆体(A-1)の合成〕
 4,4’-オキシジフタル酸二無水物(ODPA)77.5gと、4,4’-ビフタル酸二無水物73.5gをセパラブルフラスコに入れ、2-ヒドロキシエチルメタクリレート(HEMA)134.0g及びγ-ブチロラクトン400mlを加えた。室温下で撹拌しながら、ピリジン79.1gを加えることにより、反応混合物を得た。反応による発熱の終了後、室温まで放冷し、更に16時間静置した。
 次に、氷冷下において、反応混合物に、ジシクロヘキシルカルボジイミド(DCC)206.3gをγ-ブチロラクトン180mlに溶解した溶液を、撹拌しながら40分かけて加えた。続いて、4,4’-ジアミノジフェニルエーテル93.0gをγ-ブチロラクトン350mlに懸濁した懸濁液を、撹拌しながら60分かけて加えた。更に室温で2時間撹拌した後、エチルアルコール30mlを加えて1時間撹拌した。その後、γ-ブチロラクトン400mlを加えた。反応混合物に生じた沈殿物を、ろ過により取得し、反応液を得た。
 得られた反応液を3リットルのエチルアルコールに加えて、粗ポリマーからなる沈殿物を生成した。生成した粗ポリマーを濾取し、テトラヒドロフラン1.5リットルに溶解して粗ポリマー溶液を得た。得られた粗ポリマー溶液を28リットルの水に滴下してポリマーを沈殿させ、得られた沈殿物を濾取した後に真空乾燥することにより、粉末状の比較用ポリイミド前駆体(A-1)を得た。この比較用ポリイミド前駆体(A-1)の重量平均分子量(Mw)を測定したところ、22,600であった。
 なお、重合性基の割合が2.75mmol/gであり、アミド結合の含有量が2,75mmol/gであった。
 比較用ポリイミド前駆体(A-1)は、下記式(A-1)で表される繰返し単位を有する樹脂である。繰返し単位の構造は、H-NMRスペクトルから決定した。各繰返し単位の含有モル比は1:1である。

〔比較用ポリイミド前駆体(A-2)の合成〕
 カルボン酸二無水物とジアミンを変更した以外は、比較用ポリイミド前駆体(A-1)と同様の方法で比較用ポリイミド前駆体(A-2)を合成した。
 比較用ポリイミド前駆体(A-2)の重量平均分子量(Mw)を測定したところ、30,400であった。
なお、重合性基の割合が1.90mmol/gであり、アミド結合の含有量が1.90mmol/gであった。
[Synthesis of comparative polyimide precursor (A-1)]
Put 77.5 g of 4,4'-oxydiphthalic dianhydride (ODPA) and 73.5 g of 4,4'-biphthalic dianhydride into a separable flask, and add 134.0 g of 2-hydroxyethyl methacrylate (HEMA) and 400 ml of γ-butyrolactone was added. A reaction mixture was obtained by adding 79.1 g of pyridine while stirring at room temperature. After the exotherm due to the reaction had ended, the mixture was allowed to cool to room temperature and was further left standing for 16 hours.
Next, under ice cooling, a solution of 206.3 g of dicyclohexylcarbodiimide (DCC) dissolved in 180 ml of γ-butyrolactone was added to the reaction mixture over 40 minutes with stirring. Subsequently, a suspension of 93.0 g of 4,4'-diaminodiphenyl ether in 350 ml of γ-butyrolactone was added over 60 minutes with stirring. After further stirring at room temperature for 2 hours, 30 ml of ethyl alcohol was added and stirred for 1 hour. Then, 400 ml of γ-butyrolactone was added. The precipitate produced in the reaction mixture was collected by filtration to obtain a reaction solution.
The resulting reaction solution was added to 3 liters of ethyl alcohol to produce a precipitate consisting of a crude polymer. The produced crude polymer was collected by filtration and dissolved in 1.5 liters of tetrahydrofuran to obtain a crude polymer solution. The obtained crude polymer solution was dropped into 28 liters of water to precipitate the polymer, and the obtained precipitate was collected by filtration and vacuum-dried to obtain a powdered comparative polyimide precursor (A-1). Obtained. The weight average molecular weight (Mw) of this comparative polyimide precursor (A-1) was measured and found to be 22,600.
Note that the proportion of polymerizable groups was 2.75 mmol/g, and the content of amide bonds was 2.75 mmol/g.
The comparative polyimide precursor (A-1) is a resin having a repeating unit represented by the following formula (A-1). The structure of the repeating unit was determined from the 1 H-NMR spectrum. The molar ratio of each repeating unit is 1:1.

[Synthesis of comparative polyimide precursor (A-2)]
A comparative polyimide precursor (A-2) was synthesized in the same manner as the comparative polyimide precursor (A-1), except that the carboxylic dianhydride and diamine were changed.
The weight average molecular weight (Mw) of the comparative polyimide precursor (A-2) was measured and found to be 30,400.
Note that the proportion of polymerizable groups was 1.90 mmol/g, and the content of amide bonds was 1.90 mmol/g.
<実施例及び比較例>
 各実施例において、それぞれ、下記表に記載の成分を混合し、各樹脂組成物を得た。また、各比較例において、それぞれ、下記表に記載の成分を混合し、各比較用組成物を得た。
 具体的には、表に記載の各成分の含有量は、表の各欄の「添加量」の欄に記載の量(質量部)とした。
 得られた樹脂組成物及び比較用組成物を、細孔の幅が0.5μmのポリテトラフルオロエチレン製フィルターを用いて加圧ろ過した。
 また、表中、「-」の記載は該当する成分を組成物が含有していないことを示している。
<Examples and comparative examples>
In each Example, the components listed in the table below were mixed to obtain each resin composition. In each comparative example, the components listed in the table below were mixed to obtain comparative compositions.
Specifically, the content of each component listed in the table was the amount (parts by mass) listed in the "addition amount" column in each column of the table.
The obtained resin composition and comparative composition were filtered under pressure using a polytetrafluoroethylene filter with a pore width of 0.5 μm.
Furthermore, in the table, the description "-" indicates that the composition does not contain the corresponding component.
 表に記載した各成分の詳細は下記の通りである。 The details of each component listed in the table are as follows.
〔樹脂〕
・SP-1~SP-15:上記で合成したポリイミド前駆体(SP-1)~(SP-15)。
・A-1~A-2:上記で合成した比較用ポリイミド前駆体(A-1)~(A-2)
・PI-1~PI-2:上記で合成したポリイミド(PI-1)~ポリイミド(PI-2)
・PB-1:上記で合成したポリベンゾオキサゾール(PB-1)
・PE-1:NORYL(登録商標) SA9000(Sabic社製)
〔resin〕
- SP-1 to SP-15: Polyimide precursors (SP-1) to (SP-15) synthesized above.
・A-1 to A-2: Comparative polyimide precursors (A-1) to (A-2) synthesized above
・PI-1 to PI-2: Polyimide (PI-1) to polyimide (PI-2) synthesized above
・PB-1: Polybenzoxazole (PB-1) synthesized above
・PE-1: NORYL (registered trademark) SA9000 (manufactured by Sabic)
〔重合性化合物〕
・B-1~B-2:下記構造の重合性化合物

・B-3:SR-209(サートマー社製)
・B-4:ADPH:ジペンタエリスリトールヘキサアクリレート(新中村化学工業(株)製)
[Polymerizable compound]
・B-1 to B-2: Polymerizable compounds with the following structure

・B-3: SR-209 (manufactured by Sartomer)
・B-4: ADPH: Dipentaerythritol hexaacrylate (manufactured by Shin Nakamura Chemical Industry Co., Ltd.)
〔溶剤〕
・DMSO:ジメチルスルホキシド
・GBL:γ-ブチロラクトン
・NMP:N-メチルピロリドン
・γ-V:γ-バレロラクトン
 表中、「DMSO/GBL」及び、「DMSO/γ-B」の記載はDMSOとGBLをDMSO:GBL=80:20の混合比(質量比)及び、DMSO:γ-バレロラクトン=80:20で混合したものを用いたことを示している。
〔solvent〕
・DMSO: dimethyl sulfoxide ・GBL: γ-butyrolactone ・NMP: N-methylpyrrolidone ・γ-V: γ-valerolactone In the table, "DMSO/GBL" and "DMSO/γ-B" refer to DMSO and GBL. It shows that a mixture of DMSO:GBL=80:20 (mass ratio) and DMSO:γ-valerolactone=80:20 was used.
〔重合開始剤(いずれも商品名)〕
・OXE-01:IRGACURE OXE 01(BASF社製)
・OXE-02:IRGACURE OXE 02(BASF社製)
・Irgcue784:Irgcue784 (BASF社製)
[Polymerization initiator (all product names)]
・OXE-01: IRGACURE OXE 01 (manufactured by BASF)
・OXE-02: IRGACURE OXE 02 (manufactured by BASF)
・Irgcue784: Irgcue784 (manufactured by BASF)
〔マイグレーション抑制剤〕
・E-1~E-7:下記構造の化合物
[Migration inhibitor]
・E-1 to E-7: Compounds with the following structure
〔金属接着性改良剤〕
・F-1~F-3:下記構造の化合物

F-4:X-12-1293(信越化学工業株式会社製)
F-5:KR-513(信越化学工業株式会社製)
[Metal adhesion improver]
・F-1 to F-3: Compounds with the following structure

F-4: X-12-1293 (manufactured by Shin-Etsu Chemical Co., Ltd.)
F-5: KR-513 (manufactured by Shin-Etsu Chemical Co., Ltd.)
〔重合禁止剤〕
・G-1:1,4-ベンゾキノン
・G-2:4-メトキシフェノール
・G-3:1,4-ジヒドロキシベンゼン
・G-4:下記構造の化合物
[Polymerization inhibitor]
・G-1: 1,4-benzoquinone ・G-2: 4-methoxyphenol ・G-3: 1,4-dihydroxybenzene ・G-4: Compound with the following structure
〔塩基発生剤〕
・D-1~D-3:下記構造の化合物
[Base generator]
・D-1 to D-3: Compounds with the following structure
〔その他の添加剤〕
・I-1:N-フェニルジエタノールアミン(東京化成工業(株)製)
・I-2:2,2’,3,3’-テトラヒドロ-3,3,3’,3’-テトラメチル-1,1’-スピロビ(1H-インデン)-5,5’,6,6’,7,7’ヘキサノールと1,2-ナフトキノン-(2)-ジアゾ-5-スルホン酸とのエステル
・I-3:下記合成品
[Other additives]
・I-1: N-phenyldiethanolamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
・I-2: 2,2',3,3'-tetrahydro-3,3,3',3'-tetramethyl-1,1'-spirobi(1H-indene)-5,5',6,6 Ester of ',7,7'hexanol and 1,2-naphthoquinone-(2)-diazo-5-sulfonic acid I-3: Synthetic product below
<その他添加剤:ジアゾナフトキノン化合物I-3の合成>
 フラスコに4,4’-(1-(2-(4ヒドロキシフェニル)-2-プロピル)フェニル)エチリデン)ビスフェノール(本州化学工業(株)製:Tris-PA))を29.72g(70ミリモル)を添加した。続いて、アセトン300gに1,2-ナフトキノンジアジド-5-スルホン酸クロライドを46.93g(174.9ミリモル)、トリエチルアミン17.9gを撹拌溶解し、滴下ロートを用いてフラスコに30分かけて滴下し、内温30℃で30分撹拌した。続いて、塩酸を滴下して、更に30分攪拌した。続いて、ビーカーに純水1640gと塩酸30gの溶解液を準備し、これに、反応液中の塩酸塩をろ過したろ液を滴下し、析出物をろ過、水洗し、40℃で50時間真空乾燥し、ジアゾナフトキノン化合物I-3を得た。
<Other additives: Synthesis of diazonaphthoquinone compound I-3>
29.72 g (70 mmol) of 4,4'-(1-(2-(4hydroxyphenyl)-2-propyl)phenyl)ethylidene)bisphenol (manufactured by Honshu Chemical Industry Co., Ltd.: Tris-PA)) was placed in a flask. was added. Subsequently, 46.93 g (174.9 mmol) of 1,2-naphthoquinonediazide-5-sulfonic acid chloride and 17.9 g of triethylamine were dissolved in 300 g of acetone with stirring, and the mixture was added dropwise to the flask over 30 minutes using a dropping funnel. The mixture was stirred for 30 minutes at an internal temperature of 30°C. Subsequently, hydrochloric acid was added dropwise and the mixture was further stirred for 30 minutes. Next, prepare a solution of 1,640 g of pure water and 30 g of hydrochloric acid in a beaker, drop the filtrate obtained by filtering the hydrochloride in the reaction solution, filter the precipitate, wash it with water, and vacuum at 40°C for 50 hours. After drying, diazonaphthoquinone compound I-3 was obtained.
〔リンス液〕
・リンス液-1:PGMEA(プロピレングリコールモノメチルエーテルアセテート)
・リンス液-2:N,N-ジメチルシクロヘキシルアミン5質量%PGMEA溶液
[Rinse liquid]
・Rinse liquid-1: PGMEA (propylene glycol monomethyl ether acetate)
・Rinse liquid-2: N,N-dimethylcyclohexylamine 5% by mass PGMEA solution
<評価>
〔破断伸びの評価〕
 各実施例及び比較例において、それぞれ、樹脂組成物又は比較用組成物をスピンコート法でシリコンウエハ上に適用して樹脂組成物層を形成した。得られた樹脂組成物層を適用したシリコンウエハをホットプレート上で、100℃で5分間乾燥し、シリコンウエハ上に約15μmの均一な厚さの樹脂組成物層を得た。
 得られた樹脂組成物層の全面に対して、ステッパー(Nikon NSR 2005 i9C)を用いて、500mJ/cmの露光エネルギーでi線露光した。
 上記露光後の樹脂組成物層(樹脂層)を、表の「現像条件(現像液)」の欄に記載の現像液を使用して現像し、表の「リンス液」の欄に記載のリンス液を用いて洗浄した。窒素雰囲気下で、10℃/分の昇温速度で昇温し、表の「硬化条件」の「温度」の欄に記載の温度に達した後、3時間加熱した。硬化後の樹脂層(硬化膜)を4.9質量%フッ化水素酸水溶液に浸漬し、シリコンウエハから硬化膜を剥離した。剥離した硬化膜を、打ち抜き機を用いて打ち抜いて、試料幅3mm、試料長30mmの試験片を作製した。得られた試験片を、引張り試験機(テンシロン)を用いて、クロスヘッドスピード300mm/分で、25℃、65%RH(相対湿度)の環境下にて、JIS-K6251に準拠して試験片の長手方向の破断伸び率を測定した。評価は各5回ずつ実施し、試験片が破断した時の伸び率(破断伸び率)について、その算術平均値を指標値として用いた。
 上記指標値を下記評価基準に従って評価し、評価結果は表の「破断伸び」の欄に記載した。上記指標値が大きいほど、得られる硬化膜の膜強度(破断伸び)に優れるといえる。
(評価基準)
 A:上記指標値が70%以上であった。
 B:上記指標値が60%以上70%未満であった。
 C:上記指標値が50%以上60%未満であった。
 D:上記指標値が50%未満であった。
<Evaluation>
[Evaluation of elongation at break]
In each Example and Comparative Example, a resin composition layer was formed by applying a resin composition or a comparative composition onto a silicon wafer by a spin coating method. The silicon wafer to which the obtained resin composition layer was applied was dried on a hot plate at 100° C. for 5 minutes to obtain a resin composition layer with a uniform thickness of about 15 μm on the silicon wafer.
The entire surface of the obtained resin composition layer was exposed to i-line using a stepper (Nikon NSR 2005 i9C) at an exposure energy of 500 mJ/cm 2 .
Develop the exposed resin composition layer (resin layer) using the developer listed in the "Development conditions (developer)" column of the table, and rinse with the developer listed in the "Rinse solution" column of the table. Washed with liquid. The temperature was raised at a rate of 10° C./min in a nitrogen atmosphere, and after reaching the temperature listed in the “Temperature” column of “Curing Conditions” in the table, it was heated for 3 hours. The cured resin layer (cured film) was immersed in a 4.9% by mass aqueous hydrofluoric acid solution, and the cured film was peeled off from the silicon wafer. The peeled cured film was punched out using a punching machine to produce a test piece with a sample width of 3 mm and a sample length of 30 mm. The obtained test piece was tested using a tensile tester (Tensilon) at a crosshead speed of 300 mm/min in an environment of 25°C and 65% RH (relative humidity) in accordance with JIS-K6251. The elongation at break in the longitudinal direction was measured. The evaluation was performed five times each, and the arithmetic mean value of the elongation rate when the test piece broke (elongation rate at break) was used as an index value.
The above index values were evaluated according to the following evaluation criteria, and the evaluation results are listed in the "Elongation at Break" column of the table. It can be said that the larger the index value is, the better the film strength (elongation at break) of the resulting cured film is.
(Evaluation criteria)
A: The above index value was 70% or more.
B: The above index value was 60% or more and less than 70%.
C: The above index value was 50% or more and less than 60%.
D: The above index value was less than 50%.
〔耐湿性の評価〕
各実施例及び比較例において、それぞれ、樹脂組成物又は比較用組成物をスピンコート法でシリコンウェハ上に適用して樹脂組成物層を形成した。得られた樹脂組成物層を適用したシリコンウェハをホットプレート上で、100℃で5分間乾燥し、シリコンウェハ上に約15μmの均一な厚さの硬化性樹脂組成物層を得た。続いて、得られた硬化性樹脂組成物層の全面に対して、ステッパー(Nikon NSR 2005 i9C)を用いてi線露光した。露光量は400mJ/cmとした。上記露光後の硬化性樹脂組成物層(樹脂層)を、表の「現像条件(現像液)」の欄に記載の現像液を使用して現像し、表の「リンス液」の欄に記載のリンス液を用いて洗浄した。続いて、窒素雰囲気下で、10℃/分の昇温速度で昇温し、表の「硬化条件」の「温度」欄に記載の温度に達した後、表の3時間において加熱し、25℃まで冷却した。加熱はKoyo製、CLH-21により窒素下でおこなった。
 硬化膜、および、上記硬化膜を温度121℃湿度100%の高温高湿槽に250時間投入した後の硬化膜それぞれをDMSO/TMAH(テトラメチルアンモニウムヒドロキシド)=97.5/2.5の混合溶液に75℃x15min浸漬し、浸漬前後の膜厚を比較し残膜率(浸漬後の膜厚/浸漬前の膜厚)を算出した。高温高湿槽に投入なしの残膜率 / 投入ありの残膜率×100(%、残膜率の比)が20%未満のものをA、20~40%のものをB、40%を超え60%以下のものをC、60%を超えるものをDとした。評価結果は表の「耐湿性」の欄に記載した。上記残膜率の比が小さいほど、得られる硬化膜は耐湿性に優れるといえる。
[Evaluation of moisture resistance]
In each Example and Comparative Example, a resin composition layer was formed by applying a resin composition or a comparative composition onto a silicon wafer by a spin coating method. The silicon wafer to which the obtained resin composition layer was applied was dried on a hot plate at 100° C. for 5 minutes to obtain a curable resin composition layer with a uniform thickness of about 15 μm on the silicon wafer. Subsequently, the entire surface of the obtained curable resin composition layer was exposed to i-line using a stepper (Nikon NSR 2005 i9C). The exposure amount was 400 mJ/cm 2 . The curable resin composition layer (resin layer) after the above exposure is developed using the developer listed in the "Development conditions (developer)" column of the table, and the developer listed in the "Rinse solution" column of the table. Washed using the rinsing solution. Subsequently, the temperature was raised at a rate of 10°C/min in a nitrogen atmosphere, and after reaching the temperature listed in the "Temperature" column of "Curing conditions" in the table, heating was carried out for 3 hours in the table, and 25 Cooled to ℃. Heating was carried out under nitrogen using a CLH-21 manufactured by Koyo.
The cured film and the cured film after putting the above cured film into a high temperature and high humidity tank at a temperature of 121° C. and a humidity of 100% for 250 hours were treated with DMSO/TMAH (tetramethylammonium hydroxide) = 97.5/2.5. The film was immersed in the mixed solution at 75°C for 15 minutes, and the film thickness before and after immersion was compared to calculate the remaining film ratio (film thickness after immersion/film thickness before immersion). Residual film rate without input into high temperature and high humidity tank / Remaining film rate with input x 100 (%, ratio of residual film rate) is less than 20%, A is 20-40%, B is 40%. Those exceeding 60% were rated C, and those exceeding 60% were rated D. The evaluation results are listed in the "Moisture resistance" column of the table. It can be said that the smaller the ratio of the above-mentioned residual film ratio is, the more excellent the resulting cured film is in moisture resistance.
〔耐薬品性の評価〕
 各実施例及び比較例において調製した各硬化性樹脂組成物又は比較用組成物を、それぞれ、シリコンウェハ上にスピンコート法により適用し、硬化性樹脂組成物層を形成した。得られた硬化性樹脂組成物層を適用したシリコンウェハをホットプレート上で、100℃で5分間乾燥し、シリコンウェハ上に15μmの均一な厚さの硬化性樹脂組成物層を形成した。シリコンウェハ上の硬化性樹脂組成物層を、ステッパー(Nikon NSR 2005 i9C)を用いて、500mJ/cmの露光エネルギーで全面露光し、露光した硬化性樹脂組成物層(樹脂層)を、表の「現像条件(現像液)」の欄に記載の現像液を使用して現像し、表の「リンス液」の欄に記載のリンス液を用いて洗浄した。続いて、窒素雰囲気下で、10℃/分の昇温速度で昇温し、表2の「硬化条件」の欄に記載の温度で180分間加熱して、硬化性樹脂組成物層の硬化層(樹脂層)を得た。
 得られた樹脂層について下記の薬液に下記の条件で浸漬し、溶解速度を算定した。
薬液:ジメチルスルホキシド(DMSO)と25質量%のテトラメチルアンモニウムヒドロキシド(TMAH)水溶液の90:10(質量比)の混合物
評価条件:薬液中に樹脂層を75℃で15分間浸漬して浸漬前後の膜厚を比較し、溶解速度(nm/分)を算出した。
 評価は下記評価基準に従って行い、評価結果は表の「耐薬品性」の欄に記載した。溶解速度が小さいほど、耐薬品性に優れるといえる。
-評価基準-
A 溶解速度が200nm/分未満であった。
B 溶解速度が200nm/分以上300nm/分未満であった。
C 溶解速度が300nm/分以上400nm/分未満であった。
D 溶解速度が400nm/分以上であった。
[Evaluation of chemical resistance]
Each curable resin composition or comparative composition prepared in each Example and Comparative Example was applied onto a silicon wafer by a spin coating method to form a curable resin composition layer. The silicon wafer to which the obtained curable resin composition layer was applied was dried on a hot plate at 100° C. for 5 minutes to form a curable resin composition layer with a uniform thickness of 15 μm on the silicon wafer. The entire surface of the curable resin composition layer on the silicon wafer was exposed using a stepper (Nikon NSR 2005 i9C) with an exposure energy of 500 mJ/ cm2 , and the exposed curable resin composition layer (resin layer) was It was developed using the developer described in the column "Development conditions (developer)" in Table 1, and washed using the rinse solution described in the column "Rinse solution" in the table. Subsequently, the temperature was raised in a nitrogen atmosphere at a temperature increase rate of 10° C./min, and heated for 180 minutes at the temperature listed in the "curing conditions" column of Table 2 to form a cured layer of the curable resin composition layer. (resin layer) was obtained.
The obtained resin layer was immersed in the following chemical solution under the following conditions, and the dissolution rate was calculated.
Chemical solution: 90:10 (mass ratio) mixture of dimethyl sulfoxide (DMSO) and 25% by mass aqueous solution of tetramethylammonium hydroxide (TMAH) Evaluation conditions: Immerse the resin layer in the chemical solution at 75°C for 15 minutes before and after immersion The film thicknesses were compared and the dissolution rate (nm/min) was calculated.
Evaluation was performed according to the following evaluation criteria, and the evaluation results are listed in the "Chemical Resistance" column of the table. It can be said that the lower the dissolution rate, the better the chemical resistance.
-Evaluation criteria-
A: The dissolution rate was less than 200 nm/min.
B: The dissolution rate was 200 nm/min or more and less than 300 nm/min.
C: The dissolution rate was 300 nm/min or more and less than 400 nm/min.
D: The dissolution rate was 400 nm/min or more.
〔誘電率の評価〕
各実施例及び比較例において調製した各樹脂組成物又は比較用組成物を、それぞれ、12インチのシリコンウエハ上にスピンコート法により適用し、樹脂組成物層を形成した。得られた樹脂組成物層を適用したシリコンウエハをホットプレート上で、100℃で5分間乾燥し、シリコンウエハ上に膜厚15μmの均一な厚さの樹脂組成物層を形成した。シリコンウェハ上の樹脂組成物層を、ステッパー(Nikon NSR 2005 i9C)を用いて、500mJ/cmの露光エネルギーで全面露光し、露光した樹脂組成物層(樹脂層)を、窒素雰囲気下で、10℃/分の昇温速度で昇温し、表の「硬化条件」の「温度」の欄に記載の温度で180分間加熱して、樹脂組成物層の硬化層(樹脂層)を得た。
硬化後の硬化層(樹脂膜)を4.9質量%フッ化水素酸水溶液に浸漬し、シリコンウエハから硬化膜を剥離した。
フィルムサンプルについて共振器摂動法にて28GHzにおける比誘電率(Dk)と誘電正接(Df)を測定した。
<測定方法>
スプリットシリンダ共振器(CR-728)
(装置構成)
ネットワークアナライザ:N5230A(KEYSIGHT社製)
(評価基準)
比誘電率(Dk)
 A:膜の比誘電率(Dk)が2.9未満であった。
 B:膜の比誘電率(Dk)が2.9~3.0未満であった。 
 C:膜の比誘電率(Dk)が3.0~3.2未満であった。 
 D:膜の比誘電率(Dk)が3.2以上であった。
誘電正接(Df)
 A:誘電正接(Df)が0.015未満であった。
 B:誘電正接(Df)が0.015~0.02未満であった。 
 C:誘電正接(Df)が0.02~0.025未満であった。 
 D:誘電正接(Df)が0.025以上であった。
[Evaluation of permittivity]
Each resin composition or comparative composition prepared in each Example and Comparative Example was applied onto a 12-inch silicon wafer by spin coating to form a resin composition layer. The silicon wafer to which the obtained resin composition layer was applied was dried on a hot plate at 100° C. for 5 minutes to form a resin composition layer with a uniform thickness of 15 μm on the silicon wafer. The entire surface of the resin composition layer on the silicon wafer was exposed using a stepper (Nikon NSR 2005 i9C) with an exposure energy of 500 mJ/cm 2 , and the exposed resin composition layer (resin layer) was exposed under a nitrogen atmosphere. The temperature was raised at a temperature increase rate of 10° C./min and heated for 180 minutes at the temperature listed in the "Temperature" column of "Curing conditions" in the table to obtain a cured layer (resin layer) of the resin composition layer. .
The cured layer (resin film) after curing was immersed in a 4.9% by mass hydrofluoric acid aqueous solution, and the cured film was peeled off from the silicon wafer.
The dielectric constant (Dk) and dielectric loss tangent (Df) of the film sample at 28 GHz were measured using the resonator perturbation method.
<Measurement method>
Split cylinder resonator (CR-728)
(Device configuration)
Network analyzer: N5230A (manufactured by KEYSIGHT)
(Evaluation criteria)
Specific permittivity (Dk)
A: The dielectric constant (Dk) of the film was less than 2.9.
B: The dielectric constant (Dk) of the film was 2.9 to less than 3.0.
C: The dielectric constant (Dk) of the film was 3.0 to less than 3.2.
D: The dielectric constant (Dk) of the film was 3.2 or more.
Dielectric loss tangent (Df)
A: Dielectric loss tangent (Df) was less than 0.015.
B: Dielectric loss tangent (Df) was 0.015 to less than 0.02.
C: Dielectric loss tangent (Df) was 0.02 to less than 0.025.
D: Dielectric loss tangent (Df) was 0.025 or more.
<実施例101>
 実施例1において使用した樹脂組成物を、表面に銅薄層が形成された樹脂基材の銅薄層の表面にスピンコート法により層状に適用して、100℃で4分間乾燥し、膜厚20μmの樹脂組成物層を形成した後、ステッパー((株)ニコン製、NSR1505 i6)を用いて露光した。露光はマスク(パターンが1:1ラインアンドスペースであり、線幅が10μmであるバイナリマスク)を介して、波長365nmで行った。露光後、100℃で4分間加熱した。上記加熱後、シクロペンタノンで2分間現像し、PGMEAで30秒間リンスし、層のパターンを得た。
 次いで、窒素雰囲気下で、10℃/分の昇温速度で昇温し、230℃に達した後、230℃で3時間維持して、再配線層用層間絶縁膜を形成した。この再配線層用層間絶縁膜は、絶縁性に優れていた。
 また、これらの再配線層用層間絶縁膜を使用して半導体デバイスを製造したところ、問題なく動作することを確認した。
<Example 101>
The resin composition used in Example 1 was applied in a layered manner by spin coating to the surface of the thin copper layer of the resin base material on which the thin copper layer was formed, and dried at 100°C for 4 minutes to determine the film thickness. After forming a 20 μm resin composition layer, it was exposed using a stepper (NSR1505 i6, manufactured by Nikon Corporation). Exposure was performed at a wavelength of 365 nm through a mask (a binary mask with a 1:1 line-and-space pattern and a line width of 10 μm). After exposure, it was heated at 100° C. for 4 minutes. After the heating, it was developed with cyclopentanone for 2 minutes and rinsed with PGMEA for 30 seconds to obtain a layer pattern.
Next, the temperature was raised at a rate of 10° C./min in a nitrogen atmosphere, and after reaching 230° C., the temperature was maintained at 230° C. for 3 hours to form an interlayer insulating film for a rewiring layer. This rewiring layer interlayer insulating film had excellent insulation properties.
Furthermore, when semiconductor devices were manufactured using these interlayer insulating films for rewiring layers, it was confirmed that they operated without problems.

Claims (17)

  1.  下記式(1-1)で表される繰返し単位を含み、重合性基の含有量が2mmol/g以上、かつ、アミド結合の含有量が1.5mmol/g以下であるポリイミド前駆体、
     重合開始剤、及び、
     重合性化合物を含む
     樹脂組成物。

     式(1-1)中、X11は、下記式(a)、式(b)若しくは式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基、又は、4価の連結基を表し、Y11は、下記式(a)、式(b)若しくは式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基、又は、2価の連結基を表し、X11及びY11の少なくとも一方は式(a)、式(b)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基であり、R11及びR12はそれぞれ独立に、水素原子、又は1価の有機基であり、R11及びR12の少なくとも1つは重合性基を含む1価の有機基である。

    式(a)中、X及びXはそれぞれ独立に、水素原子、又は、ハロゲン原子により置換されていてもよいアルキル基であり、式(c)中、R及びRはそれぞれ独立に、水素原子又は1価の置換基を表し、RとRが結合して環構造を形成してもよい。
    A polyimide precursor containing a repeating unit represented by the following formula (1-1), having a polymerizable group content of 2 mmol/g or more and an amide bond content of 1.5 mmol/g or less,
    a polymerization initiator, and
    A resin composition containing a polymerizable compound.

    In formula ( 1-1 ), , represents a tetravalent linking group, and Y 11 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by any of the following formulas (a), (b), or (c), Or, it represents a divalent linking group, and at least one of X 11 and Y 11 has two or more hydrogen atoms removed from the structure represented by formula (a), formula (b), or formula (c). R 11 and R 12 are each independently a hydrogen atom or a monovalent organic group, and at least one of R 11 and R 12 is a monovalent organic group containing a polymerizable group. be.

    In formula (a), X 1 and X 2 are each independently a hydrogen atom or an alkyl group optionally substituted with a halogen atom, and in formula (c), R 1 and R 2 are each independently , represents a hydrogen atom or a monovalent substituent, and R 1 and R 2 may be combined to form a ring structure.
  2.  式(1-1)中、X11が、式(a)、式(b)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基であり、かつ、Y11が式(a)、式(b)または式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基である、請求項1に記載の樹脂組成物。 In formula (1-1), X 11 is a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by formula (a), formula (b) or formula (c), and the resin according to claim 1, wherein Y 11 is a group containing a structure obtained by removing two or more hydrogen atoms from the structure represented by any one of formula (a), formula (b), or formula (c). Composition.
  3.  前記式(1-1)中、R11及びR12の少なくとも1つが重合性基を2つ以上含む1価の有機基である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein in the formula (1-1), at least one of R 11 and R 12 is a monovalent organic group containing two or more polymerizable groups.
  4.  下記式(1-2)で表される繰返し単位の含有量が、ポリイミド前駆体の全質量に対して90質量%以上であり、かつ、重合性基の含有量が2mmol/g以上であるポリイミド前駆体、
     重合開始剤、及び、
     重合性化合物を含む
     樹脂組成物。

     式(1-2)中、X21は、下記式(a)、式(b)若しくは式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基、又は、4価の連結基を表し、Y21は、下記式(a)、式(b)若しくは式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基、又は、2価の連結基を表し、X21及びY21の少なくとも一方は式(a)、式(b)又は式(c)のいずれかで表される構造から2以上の水素原子を除いた構造を含む基であり、R21及びR22はそれぞれ独立に、水素原子、又は1価の有機基であり、ポリイミド前駆体に含まれる全てのR21及びR22のうち、重合性基を2つ以上含む1価の有機基であるR21及びR22の割合が、50モル%以上である。

    式(a)中、X及びXはそれぞれ独立に、水素原子、又は、ハロゲン原子により置換されていてもよいアルキル基であり、式(c)中、R及びRはそれぞれ独立に、水素原子又は1価の置換基を表し、RとRが結合して環構造を形成してもよい。
    A polyimide in which the content of repeating units represented by the following formula (1-2) is 90% by mass or more based on the total mass of the polyimide precursor, and the content of polymerizable groups is 2 mmol/g or more precursor,
    a polymerization initiator, and
    A resin composition containing a polymerizable compound.

    In formula ( 1-2 ), , represents a tetravalent linking group, and Y21 is a group containing a structure in which two or more hydrogen atoms are removed from the structure represented by any of the following formulas (a), (b), or (c), Alternatively, it represents a divalent linking group, and at least one of X 21 and Y 21 has two or more hydrogen atoms removed from the structure represented by formula (a), formula (b), or formula (c). R 21 and R 22 are each independently a hydrogen atom or a monovalent organic group, and out of all R 21 and R 22 contained in the polyimide precursor, 2 polymerizable groups are The proportion of R 21 and R 22 , which are monovalent organic groups containing at least one group, is 50 mol% or more.

    In formula (a), X 1 and X 2 are each independently a hydrogen atom or an alkyl group optionally substituted with a halogen atom, and in formula (c), R 1 and R 2 are each independently , represents a hydrogen atom or a monovalent substituent, and R 1 and R 2 may be combined to form a ring structure.
  5.  ポリイミド、ポリベンゾオキサゾール、及び、芳香族ポリエーテルよりなる群から選ばれた少なくとも1種の樹脂を更に含む、請求項1~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, further comprising at least one resin selected from the group consisting of polyimide, polybenzoxazole, and aromatic polyether.
  6.  前記重合性化合物として、ClogP値が3.0以上である化合物を含む、請求項1~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, comprising a compound having a ClogP value of 3.0 or more as the polymerizable compound.
  7.  前記重合性化合物として、ClogP値が3.0以上であり、かつ、芳香環構造又は炭素数6以上の脂肪族環構造を有する化合物を含む、請求項1~4のいずれか1項に記載の樹脂組成物。 The polymerizable compound according to any one of claims 1 to 4, comprising a compound having a ClogP value of 3.0 or more and having an aromatic ring structure or an aliphatic ring structure having 6 or more carbon atoms. Resin composition.
  8.  アゾール化合物、及び、シランカップリング剤を更に含む、請求項1~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, further comprising an azole compound and a silane coupling agent.
  9.  再配線層用層間絶縁膜の形成に用いられる、請求項1~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, which is used for forming an interlayer insulating film for a rewiring layer.
  10.  請求項1~4のいずれか1項に記載の樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the resin composition according to any one of claims 1 to 4.
  11.  請求項10に記載の硬化物からなる層を2層以上含み、前記硬化物からなる層同士のいずれかの間に金属層を含む積層体。 A laminate comprising two or more layers made of the cured product according to claim 10, and a metal layer between any of the layers made of the cured product.
  12.  請求項1~4のいずれか1項に記載の樹脂組成物を基材上に適用して膜を形成する膜形成工程を含む、硬化物の製造方法。 A method for producing a cured product, comprising a film forming step of applying the resin composition according to any one of claims 1 to 4 on a substrate to form a film.
  13.  前記膜を選択的に露光する露光工程及び前記膜を現像液を用いて現像してパターンを形成する現像工程を含む、請求項12に記載の硬化物の製造方法。 The method for producing a cured product according to claim 12, comprising an exposure step of selectively exposing the film and a development step of developing the film using a developer to form a pattern.
  14.  前記膜を50~450℃で加熱する加熱工程を含む、請求項12に記載の硬化物の製造方法。 The method for producing a cured product according to claim 12, comprising a heating step of heating the film at 50 to 450°C.
  15.  請求項12に記載の硬化物の製造方法を含む、積層体の製造方法。 A method for manufacturing a laminate, comprising the method for manufacturing a cured product according to claim 12.
  16.  請求項12に記載の硬化物の製造方法を含む、半導体デバイスの製造方法。 A method for manufacturing a semiconductor device, comprising the method for manufacturing a cured product according to claim 12.
  17.  請求項10に記載の硬化物を含む、半導体デバイス。 A semiconductor device comprising the cured product according to claim 10.
PCT/JP2023/031310 2022-08-31 2023-08-29 Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device WO2024048604A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-138259 2022-08-31
JP2022138259 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048604A1 true WO2024048604A1 (en) 2024-03-07

Family

ID=90099518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031310 WO2024048604A1 (en) 2022-08-31 2023-08-29 Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device

Country Status (1)

Country Link
WO (1) WO2024048604A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990632A (en) * 1995-09-28 1997-04-04 Sumitomo Bakelite Co Ltd Photosensitive resin composition and its pattern forming method
JPH09329893A (en) * 1996-06-10 1997-12-22 Sumitomo Bakelite Co Ltd Photosensitive resin composition
JP2018165819A (en) * 2017-03-28 2018-10-25 東レ株式会社 Photosensitive resin composition, photosensitive sheet, their cured films, and production methods therefor
JP2020024374A (en) * 2018-04-23 2020-02-13 旭化成株式会社 Photosensitive resin composition, and method for producing cured relief pattern

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990632A (en) * 1995-09-28 1997-04-04 Sumitomo Bakelite Co Ltd Photosensitive resin composition and its pattern forming method
JPH09329893A (en) * 1996-06-10 1997-12-22 Sumitomo Bakelite Co Ltd Photosensitive resin composition
JP2018165819A (en) * 2017-03-28 2018-10-25 東レ株式会社 Photosensitive resin composition, photosensitive sheet, their cured films, and production methods therefor
JP2020024374A (en) * 2018-04-23 2020-02-13 旭化成株式会社 Photosensitive resin composition, and method for producing cured relief pattern

Similar Documents

Publication Publication Date Title
JP7259141B1 (en) Method for producing cured product, method for producing laminate, method for producing semiconductor device, and treatment liquid
JP2023159205A (en) Resin composition, cured film, laminate, manufacturing method of cured film, and semiconductor device
JP2023153860A (en) Curable resin composition, cured film, laminate, method for producing cured film, semiconductor device, and resin
JP7335964B2 (en) Curable resin composition, cured film, laminate, method for producing cured film, semiconductor device, resin, and method for producing resin
WO2023190064A1 (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2023157911A1 (en) Resin composition, cured product, multilayer body, method for producing cured product, method for producing multilayer body, method for producing semiconductor device, and semiconductor device
WO2022210532A1 (en) Resin composition, cured product, laminate, cured product production method, semiconductor device, and polyimide precursor and method for producing same
WO2022050041A1 (en) Cured product production method, laminate production method, and electronic device production method
WO2022050135A1 (en) Cured product production method, laminate production method, and semiconductor device production method
WO2024048604A1 (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2024048603A1 (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device
TW202128839A (en) Pattern forming method, photocurable resin composition, layered body manufacturing method, and electronic device manufacturing method
WO2024101295A1 (en) Production method for cured product, production method for laminate, production method for semiconductor device, and semiconductor device
WO2024071237A1 (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2024095885A1 (en) Resin composition, cured object, layered object, method for producing cured object, method for producing layered object, method for producing semiconductor device, and semiconductor device
WO2024048605A1 (en) Resin composition, cured product, layered body, method for producing cured product, method for producing layered body, method for producing semiconductor device, and semiconductor device
WO2024053655A1 (en) Photosensitive resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2024048436A1 (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2024048435A1 (en) Resin composition, cured article, laminate, method for producing cured article, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2024071380A1 (en) Resin composition, cured object, layered product, method for producing cured object, method for producing layered product, method for producing semiconductor device, and semiconductor device
WO2023190060A1 (en) Photosensitive resin composition, cured product, multilayer body, method for producing cured product, method for producing multilayer body, method for producing semiconductor device, and semiconductor device
WO2023190062A1 (en) Resin composition, cured article, laminate, method for producing cured article, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2024063025A1 (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2024095884A1 (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for manufacturing semiconductor device, and semiconductor device
WO2024101266A1 (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860366

Country of ref document: EP

Kind code of ref document: A1