WO2024048531A1 - Compost production method and compost - Google Patents

Compost production method and compost Download PDF

Info

Publication number
WO2024048531A1
WO2024048531A1 PCT/JP2023/031023 JP2023031023W WO2024048531A1 WO 2024048531 A1 WO2024048531 A1 WO 2024048531A1 JP 2023031023 W JP2023031023 W JP 2023031023W WO 2024048531 A1 WO2024048531 A1 WO 2024048531A1
Authority
WO
WIPO (PCT)
Prior art keywords
source material
compost
combustion ash
carbon source
nitrogen source
Prior art date
Application number
PCT/JP2023/031023
Other languages
French (fr)
Japanese (ja)
Inventor
一成 謝花
拓人 南出
薫 大嶺
翔 菊池
美登志 望月
浩一 渕上
Original Assignee
株式会社リュウクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リュウクス filed Critical 株式会社リュウクス
Publication of WO2024048531A1 publication Critical patent/WO2024048531A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/30Destroying solid waste or transforming solid waste into something useful or harmless involving mechanical treatment
    • B09B3/38Stirring or kneading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/60Biochemical treatment, e.g. by using enzymes
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F3/00Fertilisers from human or animal excrements, e.g. manure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the present invention relates to a compost using biological waste as a raw material and a method for producing compost.
  • the present invention provides a compost production method for producing compost through a mixing step of mixing a nitrogen source material and a carbon source material, the nitrogen source material being a reformed nitrogen source material by mixing biomass combustion ash with the nitrogen source material.
  • the present invention is characterized by a method for producing a compost, and a compost, in which a reforming step is performed, and the modified nitrogen source material and the carbon source material are mixed in the mixing step after the nitrogen source reforming step.
  • FIG. 1 is a schematic configuration diagram showing the configuration of a circulating fluidized bed boiler.
  • FIG. 1 is a schematic configuration diagram showing the configuration of a stoker boiler.
  • a flow diagram for producing compost from biomass combustion ash derived from vegetable biomass fuel The flow diagram for producing compost from biomass combustion ash derived from vegetable biomass fuel in a modified example.
  • biomass power generation uses plants, etc. (plant-based materials) as fuel (vegetable biomass fuel), in which the carbon dioxide absorbed during the growth process of plants is greater than the carbon dioxide generated when burning the fuel. Based on the concept of carbon neutrality, thermal power generation with a low environmental impact is becoming increasingly popular.
  • biomass power generation uses plants as fuel, a certain amount of combustion ash is generated.
  • the generated combustion ash is treated as industrial waste and is generally disposed of in a landfill, but there is a problem in that it requires securing a large amount of land for landfill, and the effectiveness of combustion ash as a byproduct of biomass power generation as a resource is limited. Its use has been considered.
  • the compost of the present invention contains, as raw materials, biomass combustion ash including at least combustion ash of burned vegetable biomass fuel, a nitrogen source material, a carbon source material, and an active material.
  • Biomass combustion ash is produced by burning and ashes vegetable biomass fuel, and is mainly produced as a byproduct of thermal power generation (biomass power generation) that uses vegetable biomass fuel as fuel. Plant biomass fuel can also be called biological waste.
  • plants of the Poaceae family can be used as a raw material for vegetable biomass fuel.
  • plants belonging to the Poaceae family such as bagasse (residue after sugarcane juice extraction), sorghum, rice husk, and wheat straw.
  • bagasse due to sugarcane juice extraction
  • sorghum a substance that has a large yield
  • rice husk a plant that has a large yield
  • wheat straw a plant that has a large yield, and can be stably obtained as fuel, so they are suitable as vegetable biomass fuels.
  • Palm shells, wood chips, wood pellets, and the like can also be used as raw materials for vegetable biomass fuel.
  • Palm shell is the seed shell of a coconut called palm palm, and is a residue generated during the process of producing palm oil. Palm shells contain calcium components and a trace amount of palm oil that remains unextracted, so they have high combustion efficiency and are suitable as a vegetable biomass fuel.
  • Wood chips are artificially manufactured by crushing wood such as logs, bark, branches and leaves, and scraps generated during lumbering into granules. It is made by compression molding the resulting wood-derived material. Both wood chips and wood pellets are suitable as vegetable biomass fuels because they are easy to produce and obtain, and can be stably obtained as fuel.
  • the vegetable biomass fuel may be made of a single substance (plant) or may be a mixture of multiple types (two or more types) of substances (plants).
  • a mixture of palm shells and wood pellets can be used as a vegetable biomass fuel.
  • Each of the nitrogen source material and carbon source material is a material (organic material) derived from living things (animals, plants, etc.). More specifically, each of the nitrogen source material and the carbon source material is composed of animal or plant-derived waste (biological waste). Therefore, the nitrogen source material can also be called an organic nitrogen source material, and the carbon source material can also be called an organic carbon source material.
  • Nitrogen source materials are materials that contain at least nitrogen, and include livestock manure such as cow manure, pig manure, chicken manure, horse manure, sheep manure, and animal manure such as sewage sludge (sludge discharged from wastewater treatment facilities, etc.). or a mixture of two or more of these materials. Further, livestock manure such as cow manure, pig manure, chicken manure, horse manure, sheep manure, etc., which also contains urine, may be used as livestock manure such as cow manure, pig manure, chicken manure, horse manure, sheep manure, etc.
  • livestock manure such as cow manure, pig manure, chicken manure, horse manure, sheep manure, etc.
  • Carbon source materials are materials that contain at least carbon, such as sawdust, chips, bagasse, waste fungal beds, grass clippings, bamboo, bark, rice husks, wheat straw, rice straw, pruned branches, bark, tree leaves, and phytoplankton. It is composed of plant-derived materials such as algae and algae, or a mixture of two or more of these materials.
  • the active material is a fermenting bacteria or an active liquid containing fermenting bacteria.
  • the fermentation bacteria for example, bacteria such as Bacillus microorganisms, actinomycetes, filamentous bacteria, nitrite bacteria, nitrate bacteria, cellulose-degrading bacteria, etc. can be used.
  • the boiler (combustion furnace) used for thermal power generation using vegetable biomass fuel is not limited to any type and can be of various types as long as it can be used for biomass power generation.
  • a fluidized bed boiler, a stoker boiler, or the like can be used as a boiler for burning vegetable biomass fuel (hereinafter referred to as a "biomass combustion boiler").
  • a fluidized bed boiler is a boiler equipped with a fluidized bed (bed) that uses sand as a fluidizing medium.
  • a stoker-type boiler incinerates vegetable biomass fuel on a plurality of stokers arranged in a stepped manner.
  • the fluidized bed boiler is more preferably a circulating fluidized bed boiler equipped with a mechanism (circulation mechanism) for forcibly circulating sand as a fluidized medium.
  • FIG. 1 is a schematic configuration diagram showing the configuration of a circulating fluidized bed boiler 10. As shown in FIG. The configuration of the circulating fluidized bed boiler 10 will be described below with reference to FIG.
  • the circulating fluidized bed boiler 10 includes a furnace body 10a, a fuel supply port 11, a bed material 12, a furnace 13, an air inflow path 14 for introducing air into the furnace 13, and a furnace 13.
  • the furnace outlet 15 communicates with the side surface of the upper space of the furnace 13, the ash (biomass combustion ash) contained in the combustion gas generated by combustion in the furnace 13, and some of the bed material 12 that has flowed together with the biomass combustion ash.
  • a cyclone 16 that collects and separates the combustion gas, an exhaust passage 17 that exhausts the combustion gas in the cyclone 16 together with fine powder (fine biomass combustion ash) to the outside of the furnace body 10a, and a bottom of the cyclone 16 and a lower side of the furnace 13.
  • the ash return pipe 18 is connected to the ash return pipe 18.
  • the fuel supply port (fuel input part) 11 communicates with the inside of the furnace body 10a (furnace 13) and is provided to supply vegetable biomass fuel to the furnace 13 from the outside of the furnace body 10a. That is, the fuel supply port 11 communicates the external space of the furnace body 10a and the internal space of the furnace 13.
  • the bed material 12 is, for example, a granular member mainly composed of silica sand.
  • the bed material 12 is located inside the furnace 13 and is mixed with vegetable biomass fuel (fuel) supplied from the fuel supply port 11 inside the furnace 13.
  • the bed material 12 may contain limestone for flue gas desulfurization in addition to silica sand.
  • the circulating fluidized bed boiler 10 is provided with a heating device for heating the furnace 13 at an appropriate position.
  • the furnace 13 is heated by a heating device to a temperature (combustion temperature) for burning the vegetable biomass fuel and the bed material 12.
  • the combustion temperature is appropriately set from the viewpoints of securing a sufficient amount of heat, the type of vegetable biomass fuel, the amount of combustion ash, etc.
  • the lower limit of the combustion temperature in the circulating fluidized bed boiler 10 can be 600°C or higher, preferably 700°C or higher.
  • the upper limit of the combustion temperature can be 1100°C or less, preferably 900°C or less.
  • the air inflow path 14 is provided at the lower part of the furnace 13. Air is supplied into the furnace 13 through the air inflow path 14 .
  • the vegetable biomass fuel and the bed material 12 are combusted and flowed up and down in the furnace 13 by the air supplied from the air inflow path 14 to the furnace 13 from the lower part of the furnace 13 .
  • the temperature inside the furnace 13 is made uniform, and combustion efficiency can be improved.
  • the furnace outlet 15 is provided so as to communicate with the side surface of the upper space of the furnace 13.
  • the vegetable biomass fuel and the bed material 12 become biomass combustion ash, which has a smaller particle size (particle diameter) and is lighter in weight than the fuel (before combustion).
  • the biomass combustion ash whose weight has become lighter than a predetermined weight is blown up to the height of the furnace outlet 15 together with the combustion gas generated by combustion, and moves through the furnace outlet 15 to the communicating cyclone 16.
  • the position (height) at which the furnace outlet 15 communicates with the furnace 13 is at the upper end (the highest point) of the range where the vegetable biomass fuel and bed material 12 before combustion (before the weight becomes lighter) flow in the furnace 13. ) is preferably located above.
  • the light biomass combustion ash reaches the height of the furnace outlet 15 and flows into the furnace outlet 15, and moves through the furnace outlet 15 to the cyclone 16, but the light biomass combustion ash is heavier than the biomass combustion ash. Since the vegetable biomass fuel and bed material 12 do not reach the height of the furnace outlet 15, they do not flow into the furnace outlet 15. That is, it is possible to efficiently move (transport) what has been burned into biomass combustion ash to the cyclone 16, and to suppress the outflow of the unburned vegetable biomass fuel and bed material 12 from the furnace outlet 15.
  • the cyclone 16 settles (moves downward) the biomass combustion ash that is relatively coarse-grained (large grain size and relatively heavy) transported from the furnace 13 through the furnace outlet 15. , separating coarse (heavy) biomass combustion ash and fine (light) biomass combustion ash.
  • the coarse biomass combustion ash is returned to the bottom of the furnace 13 through an ash return pipe 18 communicating with the bottom of the cyclone 16, and is combusted again to become fine biomass combustion ash and returned to the cyclone 16.
  • the fine biomass combustion ash is introduced into the exhaust passage 17 together with the combustion gas.
  • the combustion gas and biomass combustion ash introduced into the exhaust passage 17 are separated by an appropriate separation mechanism through a convection heat transfer section that generates steam from the heat of the combustion gas and supplies the steam to a turbine generator (not shown). separated by A bag filter or an electrostatic precipitator can be used as the separation mechanism.
  • the combustion gas is desulfurized to remove sulfur oxides and then released into the atmosphere as flue gas.
  • a desulfurization treatment method a limestone/gypsum method or the like can be used. If the bed material 12 contains limestone, the same effect as the desulfurization treatment can be obtained in the combustion stage (sulfur oxides are removed), so the desulfurization treatment of the combustion gas can be omitted.
  • the biomass combustion ash separated from the combustion gas can be recovered by an appropriate method.
  • Biomass combustion ash can be obtained by the above method from a thermal power generation facility (thermal power plant) that is equipped with such a circulating fluidized bed boiler 10 and uses vegetable biomass fuel as fuel.
  • FIG. 2 is a schematic configuration diagram showing the configuration of the stoker boiler 20. As shown in FIG. Hereinafter, a schematic configuration of the stoker boiler 20 will be described with reference to FIG. 2.
  • the stoker boiler 20 includes a furnace body 20a, a fuel input hopper 21 communicating with the inside of the furnace body 20a, a fuel supply section 22, a stoker section 23, a stoker lower hopper 24, and an ash It includes a passage 25, a combustion chamber 26, a waste heat boiler 27, an air supply section 28, a combustion ash recovery section 29, a combustion ash conveyance section 30, and the like.
  • the fuel input hopper (fuel input unit) 21 is provided to communicate with the inside of the furnace body 20a and to supply vegetable biomass fuel to the fuel supply unit 22 from the outside of the furnace body 20a. That is, the fuel input hopper 21 communicates the outside of the furnace body 20a with the inside of the furnace body 20a.
  • the fuel supply section 22 is provided below the outlet of the fuel input hopper 21 and supplies the vegetable biomass fuel discharged from the fuel input hopper 21 to the stoker section 23. Further, the fuel supply section 22 includes a pusher that performs reciprocating motion, a drive source that operates the pusher, a control section that controls the drive source, and the like. In the fuel supply section 22, the stroke, operation speed, and operation interval of the pusher are adjusted as appropriate, and the amount (supply amount) of the vegetable biomass fuel supplied to the stoker section 23 is controlled.
  • the stoker portion 23 is provided so as to be inclined downward in the direction away from the fuel supply portion 22, with its base end facing toward the fuel supply portion 22.
  • This stoker part 23 has a plurality of grate, and the plurality of grate goes from the base end (the end on the fuel supply part 22 side) to the tip part (the end on the opposite side to the fuel supply part 22). They are arranged in a stair-like manner, gradually getting lower and lower.
  • the plurality of grate includes a movable grate that reciprocates between the base end side and the distal end side of the stoker portion 23, and a fixed grate that is fixed (does not move). The movable grate and the fixed grate are alternately arranged from the base end side to the distal end side of the stoker portion 23.
  • the vegetable biomass fuel supplied to the stoker section 23 moves on the plurality of fire grates arranged in a stepped manner from the base end (upstream side) to the tip end (downstream side) while being heated.
  • the stoker lower hopper 24 is provided to cover the lower part of the stoker part 23. Air flows into the stoker lower hopper 24 from an air supply section 28 such as a blower (forced air blower) provided on the opposite side of the stoker section 23 (in this embodiment, below the stoker lower hopper 24). The air that has flowed into the stoker lower hopper 24 passes through the stoker portion 23 (fire grate) from below to above.
  • an air supply section 28 such as a blower (forced air blower) provided on the opposite side of the stoker section 23 (in this embodiment, below the stoker lower hopper 24).
  • the air that has flowed into the stoker lower hopper 24 passes through the stoker portion 23 (fire grate) from below to above.
  • the stoker unit 23 includes, in order from the upstream side, a drying stoker 23a for drying the vegetable biomass fuel by evaporating moisture in the vegetable biomass fuel, and a combustion stoker for burning (main combustion) the dried vegetable biomass fuel. 23b, it has an after-combustion stoker 23c for completely burning the unburned remains of the vegetable biomass fuel after combustion.
  • the lower stoker hopper 24 also includes a dry stoker hopper 24a that covers the lower part of the dry stoker 23a, a combustion stoker hopper 24b that covers the lower part of the combustion stoker 23b, and an after-combustion stoker hopper 24c that covers the lower part of the after-combustion stoker 23c. .
  • the vegetable biomass fuel heated on the stoker section 23 is blown upward by air supplied from the lower stoker hopper 24 and burns in the combustion chamber 26.
  • the lower limit of the combustion temperature in the stoker boiler 20 can be 600°C or higher, preferably 700°C or higher.
  • the upper limit of the combustion temperature can be 1100°C or less, preferably 900°C or less.
  • Combustion gas generated by combustion of the vegetable biomass fuel in the combustion chamber 26 flows into a waste heat boiler 27 communicating above the combustion chamber 26 .
  • the waste heat boiler 27 recovers heat from the combustion gas, heats and evaporates water, further superheats the generated steam to become superheated steam, and supplies this superheated steam to a turbine generator (not shown). Further, the waste heat boiler 27 includes a radiant heat transfer chamber 27a having a radiant heat transfer surface for receiving radiant heat from the combustion gas that has passed through the combustion chamber 26 and generating steam.
  • the inner wall of the radiant heat transfer chamber 27a is formed of a water tube wall. This water tube wall has a plurality of water tubes arranged in parallel, and a strip-shaped connecting member that connects adjacent water tubes in an airtight manner. That is, the inner surface of the water tube wall that forms the inner wall of the radiant heat transfer chamber 27a serves as a boiler radiant heat transfer surface, and the water inside the water tube is heated by the combustion gas through the radiant heat transfer surface and becomes superheated steam. Become.
  • the vegetable biomass fuel is burned in the stoker section 23, and becomes biomass combustion ash, which has smaller particle size and lighter weight than the fuel. Furthermore, an ash passage 25 is provided at the tip of the stoker section 23 and communicates with the combustion ash collection section 29 and extends downward, and the biomass combustion ash discharged from the stoker section 23 is transported back and forth between the movable grate. Due to the movement, the ash is guided to the ash passage 25 and moves (falls) through the ash passage 25 to the combustion ash recovery section 29 . That is, the biomass combustion ash burned in the stoker section 23 is transported to the combustion ash recovery section 29. Further, some of the biomass combustion ash may fall into the lower stoker hopper 24.
  • combustion ash transport section 30 that includes a conveyor, an extrusion mechanism, etc., and transports the biomass combustion ash to the combustion ash recovery section 29. Therefore, the biomass combustion ash that has fallen into the stoker lower hopper 24 and the ash passage 25 is transported to the combustion ash recovery section 29 by the combustion ash transport section 30.
  • biomass combustion ash transported to the combustion ash recovery section 29 can be recovered by an appropriate method.
  • Biomass combustion ash can be obtained by the above method from a thermal power generation facility (thermal power plant) that is equipped with such a stoker boiler 20 and uses vegetable biomass fuel as fuel.
  • biomass combustion ash can be obtained. That is, with the circulating fluidized bed boiler 10 and the stoker boiler 20, biomass combustion ash suitable as a raw material for compost can be obtained.
  • FIG. 3 is a flow diagram of the compost production process (compost production method) of the present invention, which produces (manufactures) compost from biomass combustion ash derived from vegetable biomass fuel.
  • vegetable biomass fuel is first burned (step S1).
  • vegetable biomass fuel as a fuel for thermal power generation is charged into a biomass combustion boiler (circulating fluidized bed boiler 10 or stoker boiler 20 as described above), and the vegetable biomass fuel is combusted.
  • the biomass combustion ash discharged from the biomass combustion boiler is recovered by an appropriate method (step S2).
  • the particle size of biomass combustion ash is defined by volume average particle size (MV), number average particle size (MN), area average particle size (MA), or cumulative average particle size (median size, D50).
  • the upper limit of the volume average particle diameter (MV) of biomass combustion ash as a raw material for compost is preferably 100 ⁇ m or less, more preferably 40 ⁇ m or less.
  • the upper limit of the number average particle diameter (MN) of the biomass combustion ash is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 15 ⁇ m or less.
  • the upper limit of the area average particle size (MA) of the biomass combustion ash is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less.
  • the upper limit of the cumulative average diameter (median diameter, D50) of the biomass combustion ash is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less.
  • the lower limit of the volume average particle diameter (MV), number average particle diameter (MN), area average particle diameter (MA), or cumulative average diameter (median diameter, D50) of biomass combustion ash shall be 1 ⁇ m or more. Can be done. In this way, by using biomass combustion ash having a particle size below a predetermined size as a raw material for compost, the specific surface area of the compost and the biomass combustion ash contained therein increases.
  • biomass combustion ash as a raw material for compost contains 15 to 50% by weight of calcium oxide components.
  • Calcium oxide contained in biomass combustion ash is an oxidized substance derived from the calcium component originally contained in the vegetable biomass fuel used as fuel for thermal power generation.
  • calcium oxide or a substance containing calcium oxide may be added as appropriate to keep it within the above range.
  • substances containing calcium oxide include limestone used in desulfurization treatment. In this case, calcium oxide released from the limestone used in the desulfurization process can be appropriately collected and added to the biomass combustion ash.
  • calcium oxide generated during desulfurization treatment is mixed in during the biomass combustion ash discharge process, so biomass combustion ash mixed with limestone-derived calcium oxide may be used as is. .
  • biomass combustion ash as a raw material for compost contains 30 to 60% by weight of silicon dioxide.
  • silicon dioxide contained in the biomass combustion ash is a component derived from silica sand, which is used as a bed material for thermal power generation when the circulating fluidized bed boiler 10 is used.
  • the total proportion of the calcium oxide component and the silicon dioxide component contained in the biomass combustion ash can be 90% by weight or less of the entire biomass combustion ash.
  • step S3 nitrogen source reforming step.
  • the lower limit of the amount of biomass combustion ash added in step S3 can be 15% by mass or more, preferably 20% by mass or more, and preferably 30% by mass or more with respect to 100% by mass of the nitrogen source material. More preferred.
  • the upper limit of the amount of biomass combustion ash added in step S3 can be 45% by mass or less, preferably 40% by mass or less, and 30% by mass or less based on 100% by mass of the nitrogen source material. It is more preferable.
  • step S4 mixing step
  • each material is homogenized (modified nitrogen source material and The carbon source material and the active material are mixed so that they are substantially uniformly dispersed (step S5).
  • step S6 it is determined whether the moisture content of the mixture prepared up to step S5 is within an allowable range.
  • the lower limit of the permissible moisture content of the mixture can be 40% or more, preferably 50% or more, and more preferably 55% or more.
  • the upper limit of the allowable range of the water content of the mixture can be 65% or less, preferably 60% or less, and more preferably 55% or less.
  • step S6 If the water content of the mixture is not within the permissible range, that is, if the water content of the mixture is outside the permissible range (step S6: NO), return to step S4, adjust the mixing ratio of each material, and adjust the mixing ratio of each material in step S5. Mix again until homogeneous. That is, if the water content of the mixture is not within the allowable range, the processes of step S4 and step S5 are repeated.
  • step S7 the mixture can be fermented in a plurality of steps (processes).
  • the mixture can be fermented in three steps: a primary fermentation step (7 to 10 days), a secondary fermentation step (7 to 10 days), and a tertiary fermentation step (7 to 10 days).
  • the period of each fermentation step can be changed as appropriate.
  • the lumps larger than a predetermined size may be returned to the beginning of the primary fermentation step.
  • the standard size (diameter) of the lump can be 10 mm, 12 mm, 15 mm, or 20 mm.
  • biomass combustion ash is added to the nitrogen source material to obtain a modified nitrogen source material.
  • This modified nitrogen source material is less susceptible to decay than the nitrogen source material before modification (conventional), and can be stored for a longer period of time (for example, 1 week to 10 days) than conventional nitrogen source materials. Ta.
  • the frequency of mixing operations can be reduced, and workability during compost production can be improved (labor saving can be achieved).
  • the amount of modified nitrogen source material input in one mixing operation can be increased, mass production becomes possible, and the efficiency of producing compost can be improved. did it.
  • by adding biomass combustion ash to the nitrogen source material it has a moisture adjustment effect, stabilizes its properties, and makes it easier to handle. It also reduces odor and improves fermentation conditions. Ta.
  • the compost of the present invention uses biomass combustion ash produced by combustion of vegetable biomass fuel as a raw material.
  • Vegetable biomass fuel is a fuel for biomass power generation, which has a small environmental impact among thermal power generation
  • biomass combustion ash which is a byproduct generated in the power generation process of biomass power generation, can be used as a raw material for the compost of the present invention. This configuration makes it possible to reduce waste and provide environmentally friendly compost.
  • the biomass combustion ash which is the raw material for the compost of the present invention, contains a predetermined amount of calcium oxide and silicon dioxide, it is possible to produce compost rich in calcium oxide and silicon dioxide.
  • each material nitrogen source material, carbon source material, etc.
  • biomass combustion ash is mixed so as to be almost uniformly dispersed, so variations in compost performance can be suppressed. Can be done.
  • the humidity control function of the biomass combustion ash makes it difficult to form lumps during the composting process, improving the yield of the compost product. That is, when a lump is formed, it is necessary to return the lump to the beginning of the fermentation process in the next compost production and process it again, but such work can be reduced and compost can be produced efficiently. In addition, since lumps are less likely to form, handling becomes easier.
  • biomass combustion ash may be added to a carbon source material to produce a modified carbon source material, and the modified carbon source material may be mixed with a modified nitrogen source material or an active material instead of the carbon source material.
  • biomass combustion ash is added to the carbon source material (mixing the biomass combustion ash and the carbon source material) to produce the reformed carbon source.
  • step S11 carbon source modification step
  • step S12 mixing step
  • step S5 Step S5 Proceed to.
  • the moisture content of the reformed carbon source material can be stabilized regardless of the season or weather due to the humidity control function of the biomass combustion ash, and the fermentation conditions in the fermentation step are stabilized.
  • the composting process which conventionally required the experience of a skilled worker, can be made into a manual, thereby improving workability and efficiency.
  • the lower limit of the amount of biomass combustion ash added during production of the modified carbon source material can be 20% by mass or more, preferably 25% by mass or more, based on 100% by mass of the carbon source material.
  • the content is 30% by mass or more.
  • the upper limit of the amount of biomass combustion ash added during production of the modified carbon source material can be 40% by mass or less, preferably 35% by mass or less, based on 100% by mass of the carbon source material, More preferably, the content is 30% by mass or less. In this way, it is possible to appropriately stabilize the moisture content of the modified carbon source material, enhance the rot suppression effect, and improve workability and efficiency during compost production.
  • the carbon source modification step is not limited to being performed at the time of compost creation, but may be performed before being recovered as a carbon source material.
  • a waste bacteria bed is used as bedding in a cowshed, it is possible to create compost using this bedding as a carbon source material.
  • This bedding is mixed with biomass combustion ash and used in the cowshed, and what is collected after use is used as a carbon source material (bedding) with biomass combustion ash already mixed therein, and this is used to make compost using the process described above. You may do so. In this case as well, the same effects as described above can be achieved.
  • a mixture of waste bacteria bed (carbon source material) and biomass combustion ash can be used as bedding material for livestock barns (for example, cow barns).
  • livestock barns for example, cow barns
  • a mixture of waste bacteria bed and sawdust was used as bedding, but only a few of the prepared mixtures could be used as a homogeneous powder, resulting in poor yields.
  • the yield was significantly improved. Additionally, the moisture control effect of the bedding has been improved, reducing the frequency of bedding replacement. Additionally, handling (workability) when replacing bedding has been improved.
  • This invention can be used in industries that produce compost using biological waste as raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fertilizers (AREA)

Abstract

The present invention can provide: a compost production method by which workability can be improved; and compost. A compost production method according to the present invention is a compost production method in which compost is produced through a mixing step for mixing an animal-derived nitrogen source material with a plant-derived carbon source material. The compost production method according to the present invention involves: performing a nitrogen source modifying step for mixing biomass combustion ash, which is combustion ash discharged by thermal power generation using a combusted plant-based biomass fuel, with the nitrogen source material to obtain a modified nitrogen source material; and mixing the modified nitrogen source material with the carbon source material as the mixing step after the nitrogen source modifying step.

Description

堆肥製造方法および堆肥Compost production method and compost
 この発明は、生物系廃棄物を原材料とした堆肥および堆肥製造方法に関する。 The present invention relates to a compost using biological waste as a raw material and a method for producing compost.
 従来、畜産施設から廃棄物として排出される牛糞、豚糞、鶏糞等の畜産糞を原料として、嫌気性処理および乾燥処理等の適宜の処理を行い、これによって堆肥を製造する堆肥製造方法が提案されている(特許文献1参照)。 Conventionally, a compost production method has been proposed in which livestock manure, such as cow manure, pig manure, and chicken manure, which is discharged as waste from livestock facilities, is used as a raw material and is subjected to appropriate treatments such as anaerobic treatment and drying treatment, thereby producing compost. (See Patent Document 1).
 しかしながら、特許文献1で提案されているような従来の堆肥製造方法においては、窒素源材料である畜産糞が腐敗しやすいという問題がある。このため、窒素源材料が腐敗する前に炭素源材料との混合作業を行わなければならず、高頻度で混合作業が発生するという問題がある。すなわち、作業性の観点で改善の余地がある。 However, in the conventional compost production method as proposed in Patent Document 1, there is a problem that livestock manure, which is a nitrogen source material, is easily putrefied. For this reason, it is necessary to perform a mixing operation with the carbon source material before the nitrogen source material spoils, and there is a problem in that the mixing operation occurs frequently. In other words, there is room for improvement in terms of workability.
特開2004-051474号公報Japanese Patent Application Publication No. 2004-051474
 この発明は、上述の問題に鑑みて、作業性の向上を図ることができる堆肥製造方法および堆肥を提供することを目的とする。 In view of the above-mentioned problems, it is an object of the present invention to provide a compost manufacturing method and compost that can improve workability.
 この発明は、窒素源材料と炭素源材料を混合する混合工程を経て堆肥を製造する堆肥製造方法であって、バイオマス燃焼灰を前記窒素源材料に混合して改質窒素源材料とする窒素源改質工程を行い、前記窒素源改質工程の後に前記混合工程として前記改質窒素源材料と前記炭素源材料を混合する堆肥製造方法および堆肥であることを特徴とする。 The present invention provides a compost production method for producing compost through a mixing step of mixing a nitrogen source material and a carbon source material, the nitrogen source material being a reformed nitrogen source material by mixing biomass combustion ash with the nitrogen source material. The present invention is characterized by a method for producing a compost, and a compost, in which a reforming step is performed, and the modified nitrogen source material and the carbon source material are mixed in the mixing step after the nitrogen source reforming step.
 この発明により、作業性の向上を図ることができる堆肥製造方法および堆肥を提供することができる。 According to the present invention, it is possible to provide a compost manufacturing method and compost that can improve workability.
循環流動層ボイラの構成を示す概略構成図。1 is a schematic configuration diagram showing the configuration of a circulating fluidized bed boiler. ストーカ式ボイラの構成を示す概略構成図。FIG. 1 is a schematic configuration diagram showing the configuration of a stoker boiler. 植物性バイオマス燃料由来のバイオマス燃焼灰から堆肥を作製するフロー図。A flow diagram for producing compost from biomass combustion ash derived from vegetable biomass fuel. 変形例における植物性バイオマス燃料由来のバイオマス燃焼灰から堆肥を作製するフロー図。The flow diagram for producing compost from biomass combustion ash derived from vegetable biomass fuel in a modified example.
 従来、火力発電においては、エネルギー効率の観点から石炭、石油、天然ガス等の化石燃料が多く使用されてきた。しかし、化石燃料は燃焼した際に発生する二酸化炭素量が多く、地球温暖化が進行する可能性があるとして、環境負荷が低い別の燃料が検討されてきた。その中でも、植物等(植物系材料)を燃料(植物性バイオマス燃料)として使用するバイオマス発電は、植物の成長過程で吸収する二酸化炭素が、燃料使用時に燃焼させた際に発生する二酸化炭素よりも多い(カーボンニュートラル)という考えの元、環境負荷が低い火力発電として普及が進んでいる。 Traditionally, fossil fuels such as coal, oil, and natural gas have been used extensively in thermal power generation from the viewpoint of energy efficiency. However, fossil fuels produce a large amount of carbon dioxide when burned, which could contribute to global warming, so other fuels with a lower environmental impact have been considered. Among these, biomass power generation uses plants, etc. (plant-based materials) as fuel (vegetable biomass fuel), in which the carbon dioxide absorbed during the growth process of plants is greater than the carbon dioxide generated when burning the fuel. Based on the concept of carbon neutrality, thermal power generation with a low environmental impact is becoming increasingly popular.
 しかし、バイオマス発電は燃料に植物等を使用することから、一定量の燃焼灰が発生する。発生する燃焼灰は産業廃棄物として扱われ、一般に埋め立て処理がされているが、広大な埋め立て地の確保が必要であるという問題があり、バイオマス発電の副産物としての燃焼灰の、資源としての有効利用が検討されてきた。 However, since biomass power generation uses plants as fuel, a certain amount of combustion ash is generated. The generated combustion ash is treated as industrial waste and is generally disposed of in a landfill, but there is a problem in that it requires securing a large amount of land for landfill, and the effectiveness of combustion ash as a byproduct of biomass power generation as a resource is limited. Its use has been considered.
 このようなバイオマス発電で発生する燃焼灰の有効利用について、出願人は鋭意研究した。そして、植物を原料とする燃料(以下、「植物性バイオマス燃料」という。)を用いた火力発電にて排出されるバイオマス燃焼灰(植物性バイオマス燃焼灰)を用いた堆肥および堆肥製造方法を発明した。 The applicant has conducted extensive research into the effective use of combustion ash generated in such biomass power generation. Then, we invented compost and a method for producing compost using biomass combustion ash (vegetable biomass combustion ash) discharged from thermal power generation using fuel made from plants (hereinafter referred to as "vegetable biomass fuel"). did.
 以下、この発明の一実施形態を図面と共に説明する。本発明の堆肥は、原材料として、少なくとも燃焼した植物性バイオマス燃料の燃焼灰を含むバイオマス燃焼灰と、窒素源材料と、炭素源材料と、活性材料を含有する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings. The compost of the present invention contains, as raw materials, biomass combustion ash including at least combustion ash of burned vegetable biomass fuel, a nitrogen source material, a carbon source material, and an active material.
 バイオマス燃焼灰は、植物性バイオマス燃料を燃焼して灰化させたものであって、主に植物性バイオマス燃料を燃料とする火力発電(バイオマス発電)の副産物として生成される。植物性バイオマス燃料は、生物系廃棄物ということもできる。 Biomass combustion ash is produced by burning and ashes vegetable biomass fuel, and is mainly produced as a byproduct of thermal power generation (biomass power generation) that uses vegetable biomass fuel as fuel. Plant biomass fuel can also be called biological waste.
 植物性バイオマス燃料の原料としては、イネ科の植物を用いることができる。たとえば、植物性バイオマス燃料の原料としては、イネ科の植物である、バガス(サトウキビ搾汁後の残渣)、ソルガム、イネの籾殻、麦藁等を用いることができる。これらのイネ科の植物は、栽培適用範囲が広いことからその収穫量も多く、燃料として安定的に入手することができるから、植物性バイオマス燃料として好適である。 As a raw material for vegetable biomass fuel, plants of the Poaceae family can be used. For example, as raw materials for vegetable biomass fuel, it is possible to use plants belonging to the Poaceae family, such as bagasse (residue after sugarcane juice extraction), sorghum, rice husk, and wheat straw. These Gramineae plants have a wide range of cultivation applications, have a large yield, and can be stably obtained as fuel, so they are suitable as vegetable biomass fuels.
 また、植物性バイオマス燃料の原料としては、イネ科の植物由来の物質の他に、パームヤシ殻、木質チップ、および木質ペレット(ウッドペレット)等を用いることもできる。パームヤシ殻は、パームヤシと呼ばれるヤシの種子殻であって、パーム油を生産する過程で発生する残渣である。パームヤシ殻にはカルシウム成分と、抽出されずに残った微量のパーム油とが含まれることから燃焼効率が高く、植物性バイオマス燃料として好適である。木質チップとは、丸太、樹皮、枝葉や製材時に発生する端材などの木材を顆粒状に破砕して人工的に製造したものであり、木質ペレットとは、木質チップまたは木質チップの製造過程で生じる木材由来の物質を圧縮成型したものである。木質チップおよび木質ペレットのいずれも、製造および入手が容易であり、燃料として安定的に入手することができるから、植物性バイオマス燃料として好適である。 In addition to substances derived from plants of the Poaceae family, palm shells, wood chips, wood pellets, and the like can also be used as raw materials for vegetable biomass fuel. Palm shell is the seed shell of a coconut called palm palm, and is a residue generated during the process of producing palm oil. Palm shells contain calcium components and a trace amount of palm oil that remains unextracted, so they have high combustion efficiency and are suitable as a vegetable biomass fuel. Wood chips are artificially manufactured by crushing wood such as logs, bark, branches and leaves, and scraps generated during lumbering into granules. It is made by compression molding the resulting wood-derived material. Both wood chips and wood pellets are suitable as vegetable biomass fuels because they are easy to produce and obtain, and can be stably obtained as fuel.
 なお、植物性バイオマス燃料としては、単一の物質(植物)からなるものであっても良いし、複数種類(二種類以上)の物質(植物)を混合したものであっても良い。たとえば、パームヤシ殻と木質ペレットを混合したものを植物性バイオマス燃料として使用することができる。 Note that the vegetable biomass fuel may be made of a single substance (plant) or may be a mixture of multiple types (two or more types) of substances (plants). For example, a mixture of palm shells and wood pellets can be used as a vegetable biomass fuel.
 窒素源材料および炭素源材料のそれぞれは、生物(動物または植物等)由来の材料(有機資材)である。より詳しくは、窒素源材料および炭素源材料のそれぞれは、動物または植物由来の廃棄物(生物系廃棄物)により構成されるものである。したがって、窒素源材料は有機質窒素源材料ということもでき、炭素源材料は有機質炭素源材料ということもできる。 Each of the nitrogen source material and carbon source material is a material (organic material) derived from living things (animals, plants, etc.). More specifically, each of the nitrogen source material and the carbon source material is composed of animal or plant-derived waste (biological waste). Therefore, the nitrogen source material can also be called an organic nitrogen source material, and the carbon source material can also be called an organic carbon source material.
 窒素源材料は、少なくとも窒素を含有する材料であり、牛糞、豚糞、鶏糞、馬糞、羊糞等の畜産糞や下水汚泥(廃水処理施設等から排出される汚泥)など、動物の糞が含まれる材料、または、これらの材料の二種類以上の材料を混合した材料で構成される。また、これらの牛糞、豚糞、鶏糞、馬糞、羊糞等の畜産糞は、尿も混じっている牛糞尿、豚糞尿、鶏糞尿、馬糞尿、羊糞尿等の畜産糞尿を用いても良い。 Nitrogen source materials are materials that contain at least nitrogen, and include livestock manure such as cow manure, pig manure, chicken manure, horse manure, sheep manure, and animal manure such as sewage sludge (sludge discharged from wastewater treatment facilities, etc.). or a mixture of two or more of these materials. Further, livestock manure such as cow manure, pig manure, chicken manure, horse manure, sheep manure, etc., which also contains urine, may be used as livestock manure such as cow manure, pig manure, chicken manure, horse manure, sheep manure, etc.
 炭素源材料は、少なくとも炭素を含有する材料であり、おが粉、チップ、バガス、廃菌床、刈草、竹、バーク、もみ殻、麦わら、稲わら、剪定枝、樹皮、木葉、植物性プランクトンや藻類などの植物由来の材料、または、これらの材料の二種以上の材料を混合した材料で構成される。 Carbon source materials are materials that contain at least carbon, such as sawdust, chips, bagasse, waste fungal beds, grass clippings, bamboo, bark, rice husks, wheat straw, rice straw, pruned branches, bark, tree leaves, and phytoplankton. It is composed of plant-derived materials such as algae and algae, or a mixture of two or more of these materials.
 活性材料は、発酵菌または発酵菌を含有する活性液である。発酵菌は、たとえばバチルス属微生物などの細菌、放線菌、糸状菌、亜硝酸菌、硝酸菌、セルロース分解菌などを用いることができる。 The active material is a fermenting bacteria or an active liquid containing fermenting bacteria. As the fermentation bacteria, for example, bacteria such as Bacillus microorganisms, actinomycetes, filamentous bacteria, nitrite bacteria, nitrate bacteria, cellulose-degrading bacteria, etc. can be used.
 植物性バイオマス燃料を使用した火力発電に用いるボイラ(燃焼炉)は、バイオマス発電に用いることができるボイラであれば形式を限定せず様々な種類のボイラを採用できる。たとえば、植物性バイオマス燃料を燃焼させるためのボイラ(以下、「バイオマス燃焼ボイラ」という。)としては、流動床式ボイラやストーカ式ボイラなどを使用することができる。 The boiler (combustion furnace) used for thermal power generation using vegetable biomass fuel is not limited to any type and can be of various types as long as it can be used for biomass power generation. For example, a fluidized bed boiler, a stoker boiler, or the like can be used as a boiler for burning vegetable biomass fuel (hereinafter referred to as a "biomass combustion boiler").
 簡単に説明すると、流動床式ボイラは、流動媒体として砂を使用する流動層(床)を備えたボイラである。ストーカ式ボイラは、植物性バイオマス燃料を階段状に設けられた複数のストーカ上で焼却処理するものである。 Briefly, a fluidized bed boiler is a boiler equipped with a fluidized bed (bed) that uses sand as a fluidizing medium. A stoker-type boiler incinerates vegetable biomass fuel on a plurality of stokers arranged in a stepped manner.
 流動床式ボイラは、流動媒体として砂を強制的に循環させる機構(循環機構)を備えている循環流動層(床)ボイラであることがより好ましい。図1は、循環流動層ボイラ10の構成を示す概略構成図である。以下、図1を参照して循環流動層ボイラ10の構成を説明する。 The fluidized bed boiler is more preferably a circulating fluidized bed boiler equipped with a mechanism (circulation mechanism) for forcibly circulating sand as a fluidized medium. FIG. 1 is a schematic configuration diagram showing the configuration of a circulating fluidized bed boiler 10. As shown in FIG. The configuration of the circulating fluidized bed boiler 10 will be described below with reference to FIG.
 図1に示すように、循環流動層ボイラ10は、炉本体10aと、燃料供給口11と、ベッド材12と、火炉13と、火炉13内に空気を流入する空気流入路14と、火炉13の上部空間側面に連通した火炉出口15と、火炉13内での燃焼により発生した燃焼ガス中に含まれる灰(バイオマス燃焼灰)とそのバイオマス燃焼灰と共に流動してきた一部のベッド材12とを捕集および分離するサイクロン16と、サイクロン16中の燃焼ガスを微粉末(微細なバイオマス燃焼灰)とともに炉本体10aの外部に排気する排気路17と、サイクロン16の底部および火炉13の下部側面に連通した灰戻し管18とを備える。 As shown in FIG. 1, the circulating fluidized bed boiler 10 includes a furnace body 10a, a fuel supply port 11, a bed material 12, a furnace 13, an air inflow path 14 for introducing air into the furnace 13, and a furnace 13. The furnace outlet 15 communicates with the side surface of the upper space of the furnace 13, the ash (biomass combustion ash) contained in the combustion gas generated by combustion in the furnace 13, and some of the bed material 12 that has flowed together with the biomass combustion ash. A cyclone 16 that collects and separates the combustion gas, an exhaust passage 17 that exhausts the combustion gas in the cyclone 16 together with fine powder (fine biomass combustion ash) to the outside of the furnace body 10a, and a bottom of the cyclone 16 and a lower side of the furnace 13. The ash return pipe 18 is connected to the ash return pipe 18.
 燃料供給口(燃料投入部)11は、炉本体10aの内部(火炉13)に連通し、炉本体10aの外部から植物性バイオマス燃料を火炉13に供給するために設けられる。すなわち、燃料供給口11は、炉本体10aの外部空間と火炉13の内部空間とを連通している。 The fuel supply port (fuel input part) 11 communicates with the inside of the furnace body 10a (furnace 13) and is provided to supply vegetable biomass fuel to the furnace 13 from the outside of the furnace body 10a. That is, the fuel supply port 11 communicates the external space of the furnace body 10a and the internal space of the furnace 13.
 ベッド材12は、たとえば主にケイ砂で構成される粒状の部材である。ベッド材12は、火炉13の内部に位置しており、火炉13の内部において燃料供給口11から供給される植物性バイオマス燃料(燃料)と混合された状態となっている。ベッド材12には、ケイ砂に加えて排煙脱硫のための石灰石が含有されていてもよい。 The bed material 12 is, for example, a granular member mainly composed of silica sand. The bed material 12 is located inside the furnace 13 and is mixed with vegetable biomass fuel (fuel) supplied from the fuel supply port 11 inside the furnace 13. The bed material 12 may contain limestone for flue gas desulfurization in addition to silica sand.
 また、図示は省略するが、循環流動層ボイラ10には、火炉13を加熱するための加熱装置が適宜の位置に設けられている。火炉13は、加熱装置によって、植物性バイオマス燃料およびベッド材12の燃焼を行うための温度(燃焼温度)に加熱される。燃焼温度は、十分な熱量の確保と、植物性バイオマス燃料の種類および燃焼灰の発生量等の観点から適宜設定される。循環流動層ボイラ10における燃焼温度の下限は、600℃以上とすることができ、700℃以上とすることが好ましい。燃焼温度の上限は、1100℃以下とすることができ、900℃以下とすることが好ましい。 Although not shown in the drawings, the circulating fluidized bed boiler 10 is provided with a heating device for heating the furnace 13 at an appropriate position. The furnace 13 is heated by a heating device to a temperature (combustion temperature) for burning the vegetable biomass fuel and the bed material 12. The combustion temperature is appropriately set from the viewpoints of securing a sufficient amount of heat, the type of vegetable biomass fuel, the amount of combustion ash, etc. The lower limit of the combustion temperature in the circulating fluidized bed boiler 10 can be 600°C or higher, preferably 700°C or higher. The upper limit of the combustion temperature can be 1100°C or less, preferably 900°C or less.
 空気流入路14は、火炉13の下部に設けられている。空気流入路14を通して火炉13の内部に空気が供給される。空気流入路14から火炉13に供給された空気によって植物性バイオマス燃料およびベッド材12は、火炉13の下部から吹き込まれる空気によって火炉13内で上下に燃焼されながら流動する。植物性バイオマス燃料およびベッド材12が火炉13内を流動することによって、火炉13内の温度が均一化され、燃焼効率を高めることができる。 The air inflow path 14 is provided at the lower part of the furnace 13. Air is supplied into the furnace 13 through the air inflow path 14 . The vegetable biomass fuel and the bed material 12 are combusted and flowed up and down in the furnace 13 by the air supplied from the air inflow path 14 to the furnace 13 from the lower part of the furnace 13 . By flowing the vegetable biomass fuel and the bed material 12 inside the furnace 13, the temperature inside the furnace 13 is made uniform, and combustion efficiency can be improved.
 火炉出口15は、火炉13の上部空間側面に連通するように設けられている。植物性バイオマス燃料およびベッド材12は、火炉13内で燃焼されることによって、燃料時(燃焼前)よりも粒度(粒径)が小さく、かつ重量が軽いバイオマス燃焼灰となる。重量が所定の重量よりも軽くなったバイオマス燃焼灰は、燃焼によって発生した燃焼ガスとともに火炉出口15の高さまで吹き上がり、火炉出口15を通って連通するサイクロン16に移動する。火炉出口15が火炉13に連通する位置(高さ)としては、燃焼前(重量が軽くなる前の)の植物性バイオマス燃料およびベッド材12が火炉13内を流動する範囲の上端部(最高地点)よりも上方に位置することが好ましい。このようにすれば、軽いバイオマス燃焼灰は火炉出口15の高さに到達して火炉出口15に流入し、火炉出口15を通ってサイクロン16に移動するが、バイオマス燃焼灰に比べて重い燃焼前の植物性バイオマス燃料およびベッド材12は火炉出口15の高さに到達しないから火炉出口15に流入しない。すなわち、燃焼してバイオマス燃焼灰となったものを効率的にサイクロン16に移動させ(運搬し)、かつ燃焼前の植物性バイオマス燃料およびベッド材12の火炉出口15からの流出を抑制できる。 The furnace outlet 15 is provided so as to communicate with the side surface of the upper space of the furnace 13. By being burned in the furnace 13, the vegetable biomass fuel and the bed material 12 become biomass combustion ash, which has a smaller particle size (particle diameter) and is lighter in weight than the fuel (before combustion). The biomass combustion ash whose weight has become lighter than a predetermined weight is blown up to the height of the furnace outlet 15 together with the combustion gas generated by combustion, and moves through the furnace outlet 15 to the communicating cyclone 16. The position (height) at which the furnace outlet 15 communicates with the furnace 13 is at the upper end (the highest point) of the range where the vegetable biomass fuel and bed material 12 before combustion (before the weight becomes lighter) flow in the furnace 13. ) is preferably located above. In this way, the light biomass combustion ash reaches the height of the furnace outlet 15 and flows into the furnace outlet 15, and moves through the furnace outlet 15 to the cyclone 16, but the light biomass combustion ash is heavier than the biomass combustion ash. Since the vegetable biomass fuel and bed material 12 do not reach the height of the furnace outlet 15, they do not flow into the furnace outlet 15. That is, it is possible to efficiently move (transport) what has been burned into biomass combustion ash to the cyclone 16, and to suppress the outflow of the unburned vegetable biomass fuel and bed material 12 from the furnace outlet 15.
 サイクロン16は、火炉13から火炉出口15を通して運搬されたバイオマス燃焼灰について、比較的粗粒な(粒度(粒径)が大きく比較的重い)バイオマス燃焼灰を沈降させる(下方に移動させる)ことによって、粗粒な(重い)バイオマス燃焼灰と微細な(軽い)バイオマス燃焼灰とを分離する。粗粒なバイオマス燃焼灰はサイクロン16の底部に連通した灰戻し管18を通して、再び火炉13の底部に戻され、再度燃焼されることによって、微細なバイオマス燃焼灰となってサイクロン16に戻される。一方、微細なバイオマス燃焼灰は、燃焼ガスとともに排気路17に導入される。 The cyclone 16 settles (moves downward) the biomass combustion ash that is relatively coarse-grained (large grain size and relatively heavy) transported from the furnace 13 through the furnace outlet 15. , separating coarse (heavy) biomass combustion ash and fine (light) biomass combustion ash. The coarse biomass combustion ash is returned to the bottom of the furnace 13 through an ash return pipe 18 communicating with the bottom of the cyclone 16, and is combusted again to become fine biomass combustion ash and returned to the cyclone 16. On the other hand, the fine biomass combustion ash is introduced into the exhaust passage 17 together with the combustion gas.
 排気路17に導入された燃焼ガスとバイオマス燃焼灰とは、燃焼ガスの熱から蒸気を発生させその蒸気をタービン発電機(図示省略)に供給するための対流伝熱部を経て適宜の分離機構によって分離される。この分離機構としては、バグフィルターまたは電気集塵機を使用することができる。燃焼ガスは、脱硫処理が施され、硫黄酸化物が除去された後に排煙として大気中に放出される。脱硫処理の方法としては石灰石・石膏法等を用いることができる。ベッド材12に石灰石を含有していた場合は、燃焼段階で脱硫処理と同等の効果が得られる(硫黄酸化物が除去されている)ため、燃焼ガスの脱硫処理を省略することができる。燃焼ガスと分離されたバイオマス燃焼灰は適宜の方法で回収することができる。 The combustion gas and biomass combustion ash introduced into the exhaust passage 17 are separated by an appropriate separation mechanism through a convection heat transfer section that generates steam from the heat of the combustion gas and supplies the steam to a turbine generator (not shown). separated by A bag filter or an electrostatic precipitator can be used as the separation mechanism. The combustion gas is desulfurized to remove sulfur oxides and then released into the atmosphere as flue gas. As a desulfurization treatment method, a limestone/gypsum method or the like can be used. If the bed material 12 contains limestone, the same effect as the desulfurization treatment can be obtained in the combustion stage (sulfur oxides are removed), so the desulfurization treatment of the combustion gas can be omitted. The biomass combustion ash separated from the combustion gas can be recovered by an appropriate method.
 このような循環流動層ボイラ10を備え、植物性バイオマス燃料を燃料とする火力発電設備(火力発電所)から、上記の方法によりバイオマス燃焼灰を取得することができる。 Biomass combustion ash can be obtained by the above method from a thermal power generation facility (thermal power plant) that is equipped with such a circulating fluidized bed boiler 10 and uses vegetable biomass fuel as fuel.
 次に、ストーカ式ボイラについて説明する。図2は、ストーカ式ボイラ20の構成を示す概略構成図である。以下、図2を参照してストーカ式ボイラ20の概略構成を説明する。 Next, the stoker boiler will be explained. FIG. 2 is a schematic configuration diagram showing the configuration of the stoker boiler 20. As shown in FIG. Hereinafter, a schematic configuration of the stoker boiler 20 will be described with reference to FIG. 2.
 図2に示すように、ストーカ式ボイラ20は、炉本体20aと、炉本体20aの内部に連通する燃料投入ホッパ21と、燃料供給部22と、ストーカ部23と、ストーカ下ホッパ24と、灰通路25と、燃焼室26と、廃熱ボイラ27と、空気供給部28と、燃焼灰回収部29と、燃焼灰搬送部30等を備えている。 As shown in FIG. 2, the stoker boiler 20 includes a furnace body 20a, a fuel input hopper 21 communicating with the inside of the furnace body 20a, a fuel supply section 22, a stoker section 23, a stoker lower hopper 24, and an ash It includes a passage 25, a combustion chamber 26, a waste heat boiler 27, an air supply section 28, a combustion ash recovery section 29, a combustion ash conveyance section 30, and the like.
 燃料投入ホッパ(燃料投入部)21は、炉本体20aの内部に連通し、炉本体20aの外部から植物性バイオマス燃料を燃料供給部22に供給するために設けられる。すなわち、燃料投入ホッパ21は、炉本体20aの外部と炉本体20aの内部とを連通している。 The fuel input hopper (fuel input unit) 21 is provided to communicate with the inside of the furnace body 20a and to supply vegetable biomass fuel to the fuel supply unit 22 from the outside of the furnace body 20a. That is, the fuel input hopper 21 communicates the outside of the furnace body 20a with the inside of the furnace body 20a.
 燃料供給部22は、燃料投入ホッパ21の排出口の下部に設けられ、燃料投入ホッパ21から排出された植物性バイオマス燃料をストーカ部23に供給する。また、燃料供給部22は、往復運動を行うプッシャー、プッシャーを作動させる駆動源および駆動源を制御する制御部などを有している。燃料供給部22では、プッシャーのストローク、作動速度、作動間隔が適宜調整されており、ストーカ部23に供給される植物性バイオマス燃料の量(供給量)が制御されている。 The fuel supply section 22 is provided below the outlet of the fuel input hopper 21 and supplies the vegetable biomass fuel discharged from the fuel input hopper 21 to the stoker section 23. Further, the fuel supply section 22 includes a pusher that performs reciprocating motion, a drive source that operates the pusher, a control section that controls the drive source, and the like. In the fuel supply section 22, the stroke, operation speed, and operation interval of the pusher are adjusted as appropriate, and the amount (supply amount) of the vegetable biomass fuel supplied to the stoker section 23 is controlled.
 ストーカ部23は、燃料供給部22側を基端部とし、燃料供給部22から離れる方向に向かって下り勾配となるように傾斜して設けられている。このストーカ部23は、複数の火格子を有しており、複数の火格子は、基端部(燃料供給部22側端部)から先端部(燃料供給部22の反対側端部)に向かうにつれて徐々に低くなるように階段状に並べられている。また、複数の火格子は、ストーカ部23の基端部側と先端部側の間で往復運動を行う可動火格子と、固定された(移動しない)固定火格子とを有している。可動火格子と固定火格子とは、ストーカ部23の基端部側から先端部側に向かって交互に配置されている。 The stoker portion 23 is provided so as to be inclined downward in the direction away from the fuel supply portion 22, with its base end facing toward the fuel supply portion 22. This stoker part 23 has a plurality of grate, and the plurality of grate goes from the base end (the end on the fuel supply part 22 side) to the tip part (the end on the opposite side to the fuel supply part 22). They are arranged in a stair-like manner, gradually getting lower and lower. Further, the plurality of grate includes a movable grate that reciprocates between the base end side and the distal end side of the stoker portion 23, and a fixed grate that is fixed (does not move). The movable grate and the fixed grate are alternately arranged from the base end side to the distal end side of the stoker portion 23.
 ストーカ部23に供給された植物性バイオマス燃料は、階段状に並べられた複数の火格子の上を基端部(上流側)から先端部(下流側)に向かって加熱されながら移動する。 The vegetable biomass fuel supplied to the stoker section 23 moves on the plurality of fire grates arranged in a stepped manner from the base end (upstream side) to the tip end (downstream side) while being heated.
 ストーカ下ホッパ24は、ストーカ部23の下方を覆うように設けられる。ストーカ下ホッパ24には、ストーカ部23の反対側(本実施例ではストーカ下ホッパ24の下側)に設けられたブロワ(押込送風機)等の空気供給部28から送り込まれる空気が流入する。ストーカ下ホッパ24に流入した空気は、ストーカ部23(火格子)を下方から上方に通過する。 The stoker lower hopper 24 is provided to cover the lower part of the stoker part 23. Air flows into the stoker lower hopper 24 from an air supply section 28 such as a blower (forced air blower) provided on the opposite side of the stoker section 23 (in this embodiment, below the stoker lower hopper 24). The air that has flowed into the stoker lower hopper 24 passes through the stoker portion 23 (fire grate) from below to above.
 また、ストーカ部23は、上流側から順に、植物性バイオマス燃料の水分を蒸発させて植物性バイオマス燃料を乾燥させるための乾燥ストーカ23a、乾燥した植物性バイオマス燃料を燃焼(主燃焼)させる燃焼ストーカ23b、燃焼後の植物性バイオマス燃料の燃え残りを完全燃焼させるための後燃焼ストーカ23cを有する。また、ストーカ下ホッパ24は、乾燥ストーカ23aの下方を覆う乾燥ストーカ用ホッパ24a、燃焼ストーカ23bの下方を覆う燃焼ストーカ用ホッパ24b、後燃焼ストーカ23cの下方を覆う後燃焼ストーカ用ホッパ24cを有する。 In addition, the stoker unit 23 includes, in order from the upstream side, a drying stoker 23a for drying the vegetable biomass fuel by evaporating moisture in the vegetable biomass fuel, and a combustion stoker for burning (main combustion) the dried vegetable biomass fuel. 23b, it has an after-combustion stoker 23c for completely burning the unburned remains of the vegetable biomass fuel after combustion. The lower stoker hopper 24 also includes a dry stoker hopper 24a that covers the lower part of the dry stoker 23a, a combustion stoker hopper 24b that covers the lower part of the combustion stoker 23b, and an after-combustion stoker hopper 24c that covers the lower part of the after-combustion stoker 23c. .
 ストーカ部23上で加熱された植物性バイオマス燃料は、ストーカ下ホッパ24から供給される空気によって上方に吹き上げられ、燃焼室26において燃焼する。ストーカ式ボイラ20における燃焼温度の下限は、600℃以上とすることができ、700℃以上とすることが好ましい。燃焼温度の上限は、1100℃以下とすることができ、900℃以下とすることが好ましい。燃焼室26において植物性バイオマス燃料が燃焼することによって発生する燃焼ガスは、燃焼室26の上方に連通する廃熱ボイラ27に流入する。 The vegetable biomass fuel heated on the stoker section 23 is blown upward by air supplied from the lower stoker hopper 24 and burns in the combustion chamber 26. The lower limit of the combustion temperature in the stoker boiler 20 can be 600°C or higher, preferably 700°C or higher. The upper limit of the combustion temperature can be 1100°C or less, preferably 900°C or less. Combustion gas generated by combustion of the vegetable biomass fuel in the combustion chamber 26 flows into a waste heat boiler 27 communicating above the combustion chamber 26 .
 廃熱ボイラ27は、燃焼ガスから熱回収して水を加熱蒸発させ、発生した蒸気を更に過熱して過熱蒸気とし、この過熱蒸気をタービン発電機(図示省略)に供給する。また、廃熱ボイラ27は、燃焼室26を通過した燃焼ガスから放射熱を受けて蒸気を発生させるための放射伝熱面を有する放射伝熱室27aを有する。放射伝熱室27aの内壁は、水管壁により形成されている。この水管壁は、並列状に配置した複数本の水管と、隣接する水管同士を気密状に連結する帯板状の連結部材とを有している。すなわち、放射伝熱室27aの内壁を形成する水管壁の内側面がボイラ放射伝熱面となっており、放射伝熱面を介して燃焼ガスによって水管内部の水が加熱されて過熱蒸気となる。 The waste heat boiler 27 recovers heat from the combustion gas, heats and evaporates water, further superheats the generated steam to become superheated steam, and supplies this superheated steam to a turbine generator (not shown). Further, the waste heat boiler 27 includes a radiant heat transfer chamber 27a having a radiant heat transfer surface for receiving radiant heat from the combustion gas that has passed through the combustion chamber 26 and generating steam. The inner wall of the radiant heat transfer chamber 27a is formed of a water tube wall. This water tube wall has a plurality of water tubes arranged in parallel, and a strip-shaped connecting member that connects adjacent water tubes in an airtight manner. That is, the inner surface of the water tube wall that forms the inner wall of the radiant heat transfer chamber 27a serves as a boiler radiant heat transfer surface, and the water inside the water tube is heated by the combustion gas through the radiant heat transfer surface and becomes superheated steam. Become.
 以上のように、植物性バイオマス燃料は、ストーカ部23で燃焼され、燃料時よりも粒度が小さく、かつ重量が軽いバイオマス燃焼灰となる。また、ストーカ部23の先端部の先には、燃焼灰回収部29に連通し、下方に延びる灰通路25が設けられており、ストーカ部23から排出されるバイオマス燃焼灰は可動火格子の往復運動によって灰通路25に導かれ、灰通路25を通って燃焼灰回収部29に移動(落下)する。すなわち、ストーカ部23で燃焼したバイオマス燃焼灰は燃焼灰回収部29に運搬される。また、一部のバイオマス燃焼灰はストーカ下ホッパ24に落下することもある。灰通路25およびストーカ下ホッパ24の下方には、コンベヤや押出機構等を有し、バイオマス燃焼灰を燃焼灰回収部29に搬送する燃焼灰搬送部30が設けられている。このため、ストーカ下ホッパ24および灰通路25に落下したバイオマス燃焼灰は燃焼灰搬送部30によって燃焼灰回収部29に運搬される。 As described above, the vegetable biomass fuel is burned in the stoker section 23, and becomes biomass combustion ash, which has smaller particle size and lighter weight than the fuel. Furthermore, an ash passage 25 is provided at the tip of the stoker section 23 and communicates with the combustion ash collection section 29 and extends downward, and the biomass combustion ash discharged from the stoker section 23 is transported back and forth between the movable grate. Due to the movement, the ash is guided to the ash passage 25 and moves (falls) through the ash passage 25 to the combustion ash recovery section 29 . That is, the biomass combustion ash burned in the stoker section 23 is transported to the combustion ash recovery section 29. Further, some of the biomass combustion ash may fall into the lower stoker hopper 24. Below the ash passage 25 and the lower stoker hopper 24, there is provided a combustion ash transport section 30 that includes a conveyor, an extrusion mechanism, etc., and transports the biomass combustion ash to the combustion ash recovery section 29. Therefore, the biomass combustion ash that has fallen into the stoker lower hopper 24 and the ash passage 25 is transported to the combustion ash recovery section 29 by the combustion ash transport section 30.
 燃焼灰回収部29に運搬されたバイオマス燃焼灰は適宜の方法で回収することができる。このようなストーカ式ボイラ20を備え、植物性バイオマス燃料を燃料とする火力発電設備(火力発電所)から、上記の方法によりバイオマス燃焼灰を取得することができる。 The biomass combustion ash transported to the combustion ash recovery section 29 can be recovered by an appropriate method. Biomass combustion ash can be obtained by the above method from a thermal power generation facility (thermal power plant) that is equipped with such a stoker boiler 20 and uses vegetable biomass fuel as fuel.
 循環流動層ボイラ10およびストーカ式ボイラ20であれば、植物性バイオマス燃料の種類に応じて適切な燃焼温度を設定し、燃え残りの発生を抑制し、表面積が大きい細かい粒(粒径については後述する)のバイオマス燃焼灰を得ることができる。すなわち、循環流動層ボイラ10およびストーカ式ボイラ20であれば、堆肥の原材料として好適なバイオマス燃焼灰を取得することができる。 In the case of the circulating fluidized bed boiler 10 and the stoker type boiler 20, an appropriate combustion temperature is set according to the type of vegetable biomass fuel, the generation of unburned remains is suppressed, and fine particles with a large surface area (particle size will be described later) are used. biomass combustion ash can be obtained. That is, with the circulating fluidized bed boiler 10 and the stoker boiler 20, biomass combustion ash suitable as a raw material for compost can be obtained.
 図3は、植物性バイオマス燃料由来のバイオマス燃焼灰から堆肥を作製(製造)する本発明の堆肥の作製処理(堆肥の製造方法)のフロー図である。図3に示すように、本発明の堆肥の作製処理では、最初に植物性バイオマス燃料を燃焼させる(ステップS1)。ここでは、バイオマス燃焼ボイラ(上述したような循環流動層ボイラ10またはストーカ式ボイラ20)に火力発電の燃料としての植物性バイオマス燃料が投入され、植物性バイオマス燃料が燃焼される。 FIG. 3 is a flow diagram of the compost production process (compost production method) of the present invention, which produces (manufactures) compost from biomass combustion ash derived from vegetable biomass fuel. As shown in FIG. 3, in the compost production process of the present invention, vegetable biomass fuel is first burned (step S1). Here, vegetable biomass fuel as a fuel for thermal power generation is charged into a biomass combustion boiler (circulating fluidized bed boiler 10 or stoker boiler 20 as described above), and the vegetable biomass fuel is combusted.
 次に、バイオマス燃焼ボイラから排出されたバイオマス燃焼灰を適宜の方法で回収する(ステップS2)。このとき、堆肥に含有させる(堆肥の原材料としての)バイオマス燃焼灰の粒径は、分級機を使用して調整することが好ましい。バイオマス燃焼灰の粒径は、体積平均粒径(MV)、個数平均粒径(MN)、面積平均粒径(MA)または累積平均径(メジアン径、D50)によって定義される。 Next, the biomass combustion ash discharged from the biomass combustion boiler is recovered by an appropriate method (step S2). At this time, it is preferable to adjust the particle size of the biomass combustion ash contained in the compost (as a raw material for the compost) using a classifier. The particle size of biomass combustion ash is defined by volume average particle size (MV), number average particle size (MN), area average particle size (MA), or cumulative average particle size (median size, D50).
 堆肥の原材料としてのバイオマス燃焼灰の体積平均粒径(MV)の上限は、100μm以下が好ましく、40μm以下とすることがより好ましい。また、バイオマス燃焼灰の個数平均粒径(MN)の上限は、20μm以下とすることが好ましく、15μm以下がより好ましく、15μm以下がより好ましい。さらに、バイオマス燃焼灰の面積平均粒径(MA)の上限は、40μm以下が好ましく、30μm以下がより好ましく、20μm以下とすることがさらに好ましい。さらにまた、バイオマス燃焼灰の累積平均径(メジアン径、D50)の上限は、40μm以下が好ましく、30μm以下がより好ましく、20μm以下とすることがさらに好ましい。また、バイオマス燃焼灰の、体積平均粒径(MV)、個数平均粒径(MN)、面積平均粒径(MA)、または累積平均径(メジアン径、D50)における下限は、1μm以上とすることができる。このように、堆肥の原材料として所定の粒径以下のバイオマス燃焼灰を用いることで堆肥およびこれに含有されたバイオマス燃焼灰の比表面積が増大する。 The upper limit of the volume average particle diameter (MV) of biomass combustion ash as a raw material for compost is preferably 100 μm or less, more preferably 40 μm or less. Further, the upper limit of the number average particle diameter (MN) of the biomass combustion ash is preferably 20 μm or less, more preferably 15 μm or less, and even more preferably 15 μm or less. Further, the upper limit of the area average particle size (MA) of the biomass combustion ash is preferably 40 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less. Furthermore, the upper limit of the cumulative average diameter (median diameter, D50) of the biomass combustion ash is preferably 40 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less. In addition, the lower limit of the volume average particle diameter (MV), number average particle diameter (MN), area average particle diameter (MA), or cumulative average diameter (median diameter, D50) of biomass combustion ash shall be 1 μm or more. Can be done. In this way, by using biomass combustion ash having a particle size below a predetermined size as a raw material for compost, the specific surface area of the compost and the biomass combustion ash contained therein increases.
 また、堆肥の原材料としてのバイオマス燃焼灰は、酸化カルシウム成分を15~50重量%含んでいる。バイオマス燃焼灰に含まれる酸化カルシウムは、火力発電の燃料とした植物性バイオマス燃料に元来含まれているカルシウム成分由来の酸化物質である。なお、堆肥を使用する土壌の状態や、燃焼後のバイオマス燃焼灰に含まれているカルシウム成分の量に応じて、上記範囲内に収まるよう適宜酸化カルシウムまたは酸化カルシウムを含有する物質を添加しても良い。酸化カルシウムを含有する物質としては、たとえば脱硫処理の際に使用する石灰石が挙げられる。この場合、脱硫処理に使用された石灰石から放出される酸化カルシウムを適宜収集してバイオマス燃焼灰に添加することができる。バイオマス燃焼ボイラの形式によっては、バイオマス燃焼灰が排出される過程で脱硫処理時に生じた酸化カルシウムが混合されるため、この石灰石由来の酸化カルシウムが混合されたバイオマス燃焼灰をそのまま利用してもよい。 Furthermore, biomass combustion ash as a raw material for compost contains 15 to 50% by weight of calcium oxide components. Calcium oxide contained in biomass combustion ash is an oxidized substance derived from the calcium component originally contained in the vegetable biomass fuel used as fuel for thermal power generation. In addition, depending on the condition of the soil where the compost is used and the amount of calcium contained in the biomass combustion ash after combustion, calcium oxide or a substance containing calcium oxide may be added as appropriate to keep it within the above range. Also good. Examples of substances containing calcium oxide include limestone used in desulfurization treatment. In this case, calcium oxide released from the limestone used in the desulfurization process can be appropriately collected and added to the biomass combustion ash. Depending on the type of biomass combustion boiler, calcium oxide generated during desulfurization treatment is mixed in during the biomass combustion ash discharge process, so biomass combustion ash mixed with limestone-derived calcium oxide may be used as is. .
 また、堆肥の原材料としてのバイオマス燃焼灰は、二酸化ケイ素成分を30~60重量%含んでいる。たとえば、バイオマス燃焼灰に含まれる二酸化ケイ素は、循環流動層ボイラ10を使用した場合の火力発電のベッド材としたケイ砂由来の成分である。そして、バイオマス燃焼灰に含まれる酸化カルシウム成分および二酸化ケイ素成分は、その合計割合がバイオマス燃焼灰全体の90重量%以下とすることができる。 Furthermore, biomass combustion ash as a raw material for compost contains 30 to 60% by weight of silicon dioxide. For example, silicon dioxide contained in the biomass combustion ash is a component derived from silica sand, which is used as a bed material for thermal power generation when the circulating fluidized bed boiler 10 is used. The total proportion of the calcium oxide component and the silicon dioxide component contained in the biomass combustion ash can be 90% by weight or less of the entire biomass combustion ash.
 次に、ステップS2で回収したバイオマス燃焼灰を窒素源材料に添加(バイオマス燃焼灰と窒素源材料とを混合)して改質窒素源材料を生成する(ステップS3:窒素源改質工程)。ステップS3におけるバイオマス燃焼灰の添加量の下限は、窒素源材料100質量%に対して15質量%以上とすることができ、20質量%以上とすることが好ましく、30質量%以上とすることがより好ましい。また、ステップS3におけるバイオマス燃焼灰の添加量の上限は、窒素源材料100質量%に対して45質量%以下とすることができ、40質量%以下とすることが好ましく、30質量%以下とすることがより好ましい。また、この添加においては、窒素源材料とバイオマス燃焼灰をよく混合させて、改質窒素源材料中に窒素源材料とバイオマス燃焼灰の偏りが無いようにすることが好ましい。 Next, the biomass combustion ash collected in step S2 is added to the nitrogen source material (mixing the biomass combustion ash and the nitrogen source material) to generate a modified nitrogen source material (step S3: nitrogen source reforming step). The lower limit of the amount of biomass combustion ash added in step S3 can be 15% by mass or more, preferably 20% by mass or more, and preferably 30% by mass or more with respect to 100% by mass of the nitrogen source material. More preferred. Further, the upper limit of the amount of biomass combustion ash added in step S3 can be 45% by mass or less, preferably 40% by mass or less, and 30% by mass or less based on 100% by mass of the nitrogen source material. It is more preferable. Further, in this addition, it is preferable to thoroughly mix the nitrogen source material and the biomass combustion ash so that there is no imbalance between the nitrogen source material and the biomass combustion ash in the reformed nitrogen source material.
 続いて、ステップS3までに作製した改質窒素源材料と、炭素源材料と、活性材料のそれぞれを適宜の量混合し(ステップS4:混合工程)、各材料を均質(改質窒素源材料と炭素源材料と活性材料とが略均一に分散するように)になるように混合する(ステップS5)。 Next, the modified nitrogen source material, carbon source material, and active material prepared up to step S3 are mixed in appropriate amounts (step S4: mixing step), and each material is homogenized (modified nitrogen source material and The carbon source material and the active material are mixed so that they are substantially uniformly dispersed (step S5).
 次に、ステップS5までに作製した混合物の水分量が許容範囲内かどうかを判断する(ステップS6)。ここで、混合物の水分量の許容範囲の下限は、40%以上とすることができ、50%以上とすることが好ましく、55%以上とすることがより好ましい。また、混合物の水分量の許容範囲の上限は、65%以下とすることができ、60%以下とすることが好ましく、55%以下とすることがより好ましい。 Next, it is determined whether the moisture content of the mixture prepared up to step S5 is within an allowable range (step S6). Here, the lower limit of the permissible moisture content of the mixture can be 40% or more, preferably 50% or more, and more preferably 55% or more. Further, the upper limit of the allowable range of the water content of the mixture can be 65% or less, preferably 60% or less, and more preferably 55% or less.
 混合物の水分量が許容範囲内でない場合、すなわち、混合物の水分量が許容範囲外である場合(ステップS6:NO)、ステップS4に戻り、各材料の混合比を調整し、ステップS5で各材料を均質になるように再度混合する。すなわち、混合物の水分量が許容範囲内でない場合、ステップS4およびステップS5の処理を繰り返す。 If the water content of the mixture is not within the permissible range, that is, if the water content of the mixture is outside the permissible range (step S6: NO), return to step S4, adjust the mixing ratio of each material, and adjust the mixing ratio of each material in step S5. Mix again until homogeneous. That is, if the water content of the mixture is not within the allowable range, the processes of step S4 and step S5 are repeated.
 混合物の水分量が許容範囲内である場合(ステップS6:YES)、ステップS7で混合物を発酵させ(ステップS7)、堆肥の作製処理を終了する。ステップS7(発酵ステップ)では、複数のステップ(工程)に分けて混合物を発酵させることができる。たとえば、1次発酵ステップ(7~10日)、2次発酵ステップ(7~10日)、3次発酵ステップ(7~10日)の順で3つのステップに分けて混合物を発酵させることができる。各発酵ステップの期間については、適宜変更することができる。また、3次発酵ステップが完了した時点で、所定の大きさ以上の塊を1次発酵ステップの最初に戻すようにしてもよい。ここで、塊の大きさ(直径)の基準は、10mm、12mm、15mm、20mmのいずれかとすることができる。 If the moisture content of the mixture is within the allowable range (step S6: YES), the mixture is fermented in step S7 (step S7), and the compost production process is ended. In step S7 (fermentation step), the mixture can be fermented in a plurality of steps (processes). For example, the mixture can be fermented in three steps: a primary fermentation step (7 to 10 days), a secondary fermentation step (7 to 10 days), and a tertiary fermentation step (7 to 10 days). . The period of each fermentation step can be changed as appropriate. Furthermore, when the tertiary fermentation step is completed, the lumps larger than a predetermined size may be returned to the beginning of the primary fermentation step. Here, the standard size (diameter) of the lump can be 10 mm, 12 mm, 15 mm, or 20 mm.
 このようにして、窒素源材料およびバイオマス燃焼ボイラから排出されたバイオマス燃焼灰を含有する改質窒素源材料と、炭素源材料と、活性材料を原料とした混合物が得られ、これを堆肥とすることができる。 In this way, a mixture of the nitrogen source material and the modified nitrogen source material containing the biomass combustion ash discharged from the biomass combustion boiler, the carbon source material, and the active material is obtained, and this is made into compost. be able to.
 本発明の堆肥の製造方法(堆肥製造方法)によれば、窒素源材料にバイオマス燃焼灰を添加して改質窒素源材料とした。この改質窒素源材料は、改質前(従来)の窒素源材料に比べて腐敗しにくく、従来の窒素源材料よりも長い期間(たとえば1週間~10日)貯留することができるようになった。これにより、混合作業の頻度を低減することができ、堆肥製造時の作業性を向上させる(省力化を図る)ことができる。また、本発明の堆肥の製造方法によれば、1回の混合作業における改質窒素源材料の投入量を増大させることができ、大量生産が可能になり、堆肥の製造効率を向上させることができた。また、窒素源材料にバイオマス燃焼灰を添加したことで、水分調整効果が得られて性状が安定し、取り扱いが容易になるとともに、臭気を低減することができ、発酵状態を改善することができた。 According to the compost manufacturing method (compost manufacturing method) of the present invention, biomass combustion ash is added to the nitrogen source material to obtain a modified nitrogen source material. This modified nitrogen source material is less susceptible to decay than the nitrogen source material before modification (conventional), and can be stored for a longer period of time (for example, 1 week to 10 days) than conventional nitrogen source materials. Ta. Thereby, the frequency of mixing operations can be reduced, and workability during compost production can be improved (labor saving can be achieved). Furthermore, according to the method for producing compost of the present invention, the amount of modified nitrogen source material input in one mixing operation can be increased, mass production becomes possible, and the efficiency of producing compost can be improved. did it. In addition, by adding biomass combustion ash to the nitrogen source material, it has a moisture adjustment effect, stabilizes its properties, and makes it easier to handle. It also reduces odor and improves fermentation conditions. Ta.
 また、窒素源材料100質量%に対してバイオマス燃焼灰を20~40質量%混合することによって、改質窒素源材料の腐敗抑制効果をより高めることができ、堆肥製造時の作業性および堆肥の製造効率の向上を図ることができる。 Furthermore, by mixing 20 to 40% by mass of biomass combustion ash with respect to 100% by mass of nitrogen source material, it is possible to further enhance the decomposition suppressing effect of the modified nitrogen source material, improving workability during compost production and improving compost performance. Manufacturing efficiency can be improved.
 さらに、本発明の堆肥は、植物性バイオマス燃料が燃焼することにより生じるバイオマス燃焼灰を原材料としている。植物性バイオマス燃料は火力発電の中でも環境負荷が小さいバイオマス発電の燃料となるものであり、本発明の堆肥の原材料として、バイオマス発電の発電工程で発生する副産物であるバイオマス燃焼灰を使用できる。この構成により、廃棄物削減を実現でき、環境にやさしい堆肥を提供できる。 Furthermore, the compost of the present invention uses biomass combustion ash produced by combustion of vegetable biomass fuel as a raw material. Vegetable biomass fuel is a fuel for biomass power generation, which has a small environmental impact among thermal power generation, and biomass combustion ash, which is a byproduct generated in the power generation process of biomass power generation, can be used as a raw material for the compost of the present invention. This configuration makes it possible to reduce waste and provide environmentally friendly compost.
 また、本発明の堆肥の原材料であるバイオマス燃焼灰には、所定量の酸化カルシウムや二酸化ケイ素が含まれているため、酸化カルシウムや二酸化ケイ素を豊富に含んだ堆肥を製造することができる。 Furthermore, since the biomass combustion ash, which is the raw material for the compost of the present invention, contains a predetermined amount of calcium oxide and silicon dioxide, it is possible to produce compost rich in calcium oxide and silicon dioxide.
 さらに、本発明の堆肥の製造過程では、バイオマス燃焼灰を含む各材料材(窒素源材料および炭素源材料など)が略均一に分散するように混合しているから、堆肥性能のバラつきを抑えることができる。 Furthermore, in the process of manufacturing the compost of the present invention, each material (nitrogen source material, carbon source material, etc.) including biomass combustion ash is mixed so as to be almost uniformly dispersed, so variations in compost performance can be suppressed. Can be done.
 さらにまた、本発明の堆肥の製造過程では、バイオマス燃焼灰の調湿機能によって、堆肥化の過程で塊ができにくくなり、堆肥製品の歩留まりが良くなる。すなわち、塊ができると、その塊を次回堆肥作成における発酵工程の最初に戻して再度処理をする必要が生じるが、このような作業を削減して効率よく堆肥を製造することができる。また、塊ができにくいことにより、取り扱いが容易になる。 Furthermore, in the compost production process of the present invention, the humidity control function of the biomass combustion ash makes it difficult to form lumps during the composting process, improving the yield of the compost product. That is, when a lump is formed, it is necessary to return the lump to the beginning of the fermentation process in the next compost production and process it again, but such work can be reduced and compost can be produced efficiently. In addition, since lumps are less likely to form, handling becomes easier.
 また、以上のようにして生産された堆肥を農業用の土壌に添加あるいは散布することで、水捌けも改善され、植物の発育も良好となった。 Additionally, by adding or spraying the compost produced as described above to agricultural soil, water drainage was improved and plant growth was also improved.
 なお、この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。たとえば、バイオマス燃焼灰を炭素源材料に添加して改質炭素源材料を生成し、炭素源材料に代えて改質炭素源材料を改質窒素源材料や活性材料と混合するようにしても良い。この場合、図4に示すように、ステップS3で改質窒素源材料を生成した後、バイオマス燃焼灰を炭素源材料に添加(バイオマス燃焼灰と炭素源材料とを混合)して改質炭素源材料を生成し(ステップS11:炭素源改質工程)、ステップS11までに作製した改質窒素源材料と、改質炭素源材料と、活性材料を混合し(ステップS12:混合工程)、ステップS5に進む。このようにすれば、バイオマス燃焼灰の調湿機能によって季節や天候によらず改質炭素源材料の水分量を安定させることができ、発酵ステップにおける発酵条件が安定する。これにより、従来熟練の作業者の経験が必要であった堆肥化プロセスをマニュアル化して、作業性および作業効率を向上させることができる。また、改質炭素源材料の製造時におけるバイオマス燃焼灰の添加量の下限は、炭素源材料100質量%に対して20質量%以上とすることができ、25質量%以上とすることが好ましく、30質量%以上とすることがより好ましい。また、改質炭素源材料の製造時におけるバイオマス燃焼灰の添加量の上限は、炭素源材料100質量%に対して40質量%以下とすることができ、35質量%以下とすることが好ましく、30質量%以下とすることがより好ましい。このようにすれば、改質炭素源材料の水分量を適切に安定させ腐敗抑制効果を高め、堆肥製造時の作業性および作業効率を向上させることができる。 Note that the present invention is not limited to the configuration of the above-described embodiments, and many embodiments can be obtained. For example, biomass combustion ash may be added to a carbon source material to produce a modified carbon source material, and the modified carbon source material may be mixed with a modified nitrogen source material or an active material instead of the carbon source material. . In this case, as shown in FIG. 4, after generating the reformed nitrogen source material in step S3, biomass combustion ash is added to the carbon source material (mixing the biomass combustion ash and the carbon source material) to produce the reformed carbon source. Generate a material (step S11: carbon source modification step), mix the modified nitrogen source material produced up to step S11, the modified carbon source material, and the active material (step S12: mixing step), and step S5 Proceed to. In this way, the moisture content of the reformed carbon source material can be stabilized regardless of the season or weather due to the humidity control function of the biomass combustion ash, and the fermentation conditions in the fermentation step are stabilized. As a result, the composting process, which conventionally required the experience of a skilled worker, can be made into a manual, thereby improving workability and efficiency. Further, the lower limit of the amount of biomass combustion ash added during production of the modified carbon source material can be 20% by mass or more, preferably 25% by mass or more, based on 100% by mass of the carbon source material. More preferably, the content is 30% by mass or more. Further, the upper limit of the amount of biomass combustion ash added during production of the modified carbon source material can be 40% by mass or less, preferably 35% by mass or less, based on 100% by mass of the carbon source material, More preferably, the content is 30% by mass or less. In this way, it is possible to appropriately stabilize the moisture content of the modified carbon source material, enhance the rot suppression effect, and improve workability and efficiency during compost production.
 なお、炭素源材料に対するバイオマス燃焼灰の添加においては、炭素源材料とバイオマス燃焼灰をよく混合させて、改質炭素源材料中に炭素源材料とバイオマス燃焼灰の偏りが無いようにすることが好ましい。
 また、炭素源改質工程は、堆肥作成時に行うことに限らず、炭素源材料として回収される前に行っておいても良い。例えば、牛舎において廃菌床を敷料として使用している場合に、この敷料を炭素源材料として堆肥作成が可能である。この敷料にバイオマス燃焼灰を混合した状態で牛舎にて使用しておき、使用後に回収したものをバイオマス燃焼灰の混合済みの炭素源材料(敷料)とし、これを用いて上述した工程により堆肥作成しても良い。この場合も上述と同様の作用効果を奏することができる。
In addition, when adding biomass combustion ash to the carbon source material, it is necessary to mix the carbon source material and the biomass combustion ash well so that there is no imbalance between the carbon source material and the biomass combustion ash in the reformed carbon source material. preferable.
Further, the carbon source modification step is not limited to being performed at the time of compost creation, but may be performed before being recovered as a carbon source material. For example, when a waste bacteria bed is used as bedding in a cowshed, it is possible to create compost using this bedding as a carbon source material. This bedding is mixed with biomass combustion ash and used in the cowshed, and what is collected after use is used as a carbon source material (bedding) with biomass combustion ash already mixed therein, and this is used to make compost using the process described above. You may do so. In this case as well, the same effects as described above can be achieved.
 さらに、本発明を応用して、廃菌床(炭素源材料)にバイオマス燃焼灰を混合したものを畜舎(たとえば牛舎)の敷料として使用することもできる。従来では廃菌床とおが粉を混合したものを敷料としていたが、作成した混合物のうち均質な粉体として使用可能なものが少なく歩留まりが悪かった。これに対し、廃菌床とバイオマス燃焼灰とを混合した敷料では、作成した混合物のうちの大部分が均質な粉体として使用可能なものとなり、歩留まりが大幅に向上した。また、敷料の水分調整効果が向上し、敷料の交換頻度が低減した。また、敷料の交換時のハンドリング(作業性)が改善した。また、敷料交換時の殺菌・消毒消用石灰の使用量を削減できた。また、バイオマス燃焼灰の消(吸)臭作用により、臭気を低減することができた。また、使用後の敷料の堆肥化において、切り返し回数や臭気が低減し、発酵状態が改善した。 Further, by applying the present invention, a mixture of waste bacteria bed (carbon source material) and biomass combustion ash can be used as bedding material for livestock barns (for example, cow barns). Conventionally, a mixture of waste bacteria bed and sawdust was used as bedding, but only a few of the prepared mixtures could be used as a homogeneous powder, resulting in poor yields. On the other hand, in the case of bedding made by mixing waste bacteria bed and biomass combustion ash, most of the mixture was usable as a homogeneous powder, and the yield was significantly improved. Additionally, the moisture control effect of the bedding has been improved, reducing the frequency of bedding replacement. Additionally, handling (workability) when replacing bedding has been improved. Additionally, we were able to reduce the amount of sterilizing and disinfecting slaked lime used when replacing bedding. Additionally, the odor was reduced due to the deodorizing (absorbing) effect of the biomass combustion ash. In addition, when composting the bedding after use, the number of times of turning and odor was reduced, and the fermentation state was improved.
 この発明は、生物系廃棄物を原材料とした堆肥を製造する産業に利用することができる。 This invention can be used in industries that produce compost using biological waste as raw material.
10…循環流動層ボイラ
11…燃料供給口
12…ベッド材
13…火炉
14…空気流入路
15…火炉出口
16…サイクロン
17…排気路
18…灰戻し管
20…ストーカ式ボイラ
21…燃料投入ホッパ
22…燃料供給部
23…ストーカ部
24…ストーカ下ホッパ
25…灰通路
26…燃焼室
27…廃熱ボイラ
28…空気供給部
29…燃焼灰回収部
30…燃焼灰搬送部
10...Circulating fluidized bed boiler 11...Fuel supply port 12...Bed material 13...Furnace 14...Air inflow channel 15...Furnace outlet 16...Cyclone 17...Exhaust channel 18...Ash return pipe 20...Stoker type boiler 21...Fuel input hopper 22 ... Fuel supply section 23 ... Stoker section 24 ... Stoker lower hopper 25 ... Ash passage 26 ... Combustion chamber 27 ... Waste heat boiler 28 ... Air supply section 29 ... Combustion ash collection section 30 ... Combustion ash transport section

Claims (7)

  1.  窒素源材料と炭素源材料を混合する混合工程を経て堆肥を製造する堆肥製造方法であって、
    バイオマス燃焼灰を前記窒素源材料に混合して改質窒素源材料とする窒素源改質工程を行い、
    前記窒素源改質工程の後に前記混合工程として前記改質窒素源材料と前記炭素源材料を混合する
    堆肥製造方法。
    A compost production method for producing compost through a mixing step of mixing a nitrogen source material and a carbon source material, the method comprising:
    performing a nitrogen source reforming step of mixing biomass combustion ash with the nitrogen source material to obtain a reformed nitrogen source material;
    A compost manufacturing method, in which the modified nitrogen source material and the carbon source material are mixed in the mixing step after the nitrogen source reforming step.
  2.  前記窒素源改質工程は、前記窒素源材料100質量%に対して前記バイオマス燃焼灰を20~40質量%混合して前記改質窒素源材料とし、
    前記混合工程で作製した混合物の水分量が許容範囲としての40~60%の範囲内であるかどうかを判断する判断工程を行い、
    前記判断工程において前記混合物の水分量が前記許容範囲の範囲外であると判断した場合には、前記改質窒素源材料と前記炭素源材料との混合比を調整して前記混合工程を繰り返し行い、
    前記判断工程において前記混合物の水分量が前記許容範囲の範囲内であると判断した場合に当該混合物を発酵させる発酵工程を開始する
    請求項1記載の堆肥製造方法。
    In the nitrogen source reforming step, 20 to 40% by mass of the biomass combustion ash is mixed with 100% by mass of the nitrogen source material to obtain the modified nitrogen source material;
    Performing a judgment step of determining whether the moisture content of the mixture prepared in the mixing step is within the allowable range of 40 to 60%,
    If it is determined in the determination step that the water content of the mixture is outside the allowable range, the mixing ratio of the modified nitrogen source material and the carbon source material is adjusted and the mixing step is repeated. ,
    2. The method for producing compost according to claim 1, wherein when it is determined in the determination step that the moisture content of the mixture is within the allowable range, a fermentation step for fermenting the mixture is started.
  3.  前記バイオマス燃焼灰を前記炭素源材料に混合して改質炭素源材料とする炭素源改質工程を行い、
    前記炭素源改質工程の後に前記混合工程として前記改質窒素源材料と前記改質炭素源材料を混合する
    請求項1または2記載の堆肥製造方法。
    performing a carbon source reforming step of mixing the biomass combustion ash with the carbon source material to obtain a reformed carbon source material;
    The compost manufacturing method according to claim 1 or 2, wherein the modified nitrogen source material and the modified carbon source material are mixed in the mixing step after the carbon source modification step.
  4.  前記バイオマス燃焼灰を前記炭素源材料に混合して改質炭素源材料とする炭素源改質工程を行い、
    前記炭素源改質工程の後に前記混合工程として前記改質窒素源材料と前記改質炭素源材料を混合する
    請求項3記載の堆肥製造方法。
    performing a carbon source reforming step of mixing the biomass combustion ash with the carbon source material to obtain a reformed carbon source material;
    The compost manufacturing method according to claim 3, wherein the modified nitrogen source material and the modified carbon source material are mixed in the mixing step after the carbon source modification step.
  5.  前記炭素源改質工程は、
    前記炭素源材料100質量%に対して前記バイオマス燃焼灰を20~40質量%混合する
    請求項4記載の堆肥製造方法。
    The carbon source reforming step includes:
    The method for producing compost according to claim 4, wherein 20 to 40% by mass of the biomass combustion ash is mixed with 100% by mass of the carbon source material.
  6.  前記バイオマス燃焼灰は、火力発電所にて植物系材料が燃焼して得られた燃焼灰である
    請求項5記載の堆肥製造方法。
    6. The method for producing compost according to claim 5, wherein the biomass combustion ash is combustion ash obtained by combustion of plant-based materials in a thermal power plant.
  7.  バイオマス燃焼灰が窒素源材料に混合された改質窒素源材料と、炭素源材料とを含有した
    堆肥。
    A compost containing a modified nitrogen source material in which biomass combustion ash is mixed with a nitrogen source material, and a carbon source material.
PCT/JP2023/031023 2022-08-30 2023-08-28 Compost production method and compost WO2024048531A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022136880A JP7296000B1 (en) 2022-08-30 2022-08-30 Composting method and compost
JP2022-136880 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024048531A1 true WO2024048531A1 (en) 2024-03-07

Family

ID=86772763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031023 WO2024048531A1 (en) 2022-08-30 2023-08-28 Compost production method and compost

Country Status (2)

Country Link
JP (1) JP7296000B1 (en)
WO (1) WO2024048531A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242980A (en) * 1985-04-19 1986-10-29 福田 昌一 Insect repellent gardening fertilizer
JPH06345575A (en) * 1993-06-10 1994-12-20 Masaru Hasaka High-speed composting facility of organic waste and method for recycling organic waste
JPH1034190A (en) * 1996-07-29 1998-02-10 Jiyoumou Ryokusan Kogyo Kk Removable 0f malodor of sludge utilizing obstacle wood and apparatus therefor
JP2001130991A (en) * 1999-10-29 2001-05-15 Kansai Sogo Kankyo Center:Kk Method of manufacturing compost from wood material
JP2003094095A (en) * 2001-09-26 2003-04-02 Someya:Kk Fowl waste fermentation method, fowl waste fermented material, and matter using the same
JP2012176338A (en) * 2011-02-25 2012-09-13 Mori Shoichi Method for disposing of sewage sludge incineration ash used for treatment of excreta of animal
CN103539544A (en) * 2013-10-15 2014-01-29 黄永生 Slow-release composite fertilizer
JP2017226586A (en) * 2016-06-24 2017-12-28 武治 甕 Manufacturing method of organic fertilizer using burned ash

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172967A (en) * 1993-01-19 1995-07-11 Jiyoumou Riyokusan Kogyo Kk Fermentation promoting method of organic sludge
JPH0769765A (en) * 1993-08-27 1995-03-14 Masaru Hasaka Regeneration treatment of excrement or animal feces and treating facility for excrement or animal feces

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242980A (en) * 1985-04-19 1986-10-29 福田 昌一 Insect repellent gardening fertilizer
JPH06345575A (en) * 1993-06-10 1994-12-20 Masaru Hasaka High-speed composting facility of organic waste and method for recycling organic waste
JPH1034190A (en) * 1996-07-29 1998-02-10 Jiyoumou Ryokusan Kogyo Kk Removable 0f malodor of sludge utilizing obstacle wood and apparatus therefor
JP2001130991A (en) * 1999-10-29 2001-05-15 Kansai Sogo Kankyo Center:Kk Method of manufacturing compost from wood material
JP2003094095A (en) * 2001-09-26 2003-04-02 Someya:Kk Fowl waste fermentation method, fowl waste fermented material, and matter using the same
JP2012176338A (en) * 2011-02-25 2012-09-13 Mori Shoichi Method for disposing of sewage sludge incineration ash used for treatment of excreta of animal
CN103539544A (en) * 2013-10-15 2014-01-29 黄永生 Slow-release composite fertilizer
JP2017226586A (en) * 2016-06-24 2017-12-28 武治 甕 Manufacturing method of organic fertilizer using burned ash

Also Published As

Publication number Publication date
JP2024033352A (en) 2024-03-13
JP7296000B1 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
Kelleher et al. Advances in poultry litter disposal technology–a review
US7024796B2 (en) Process and apparatus for manufacture of fertilizer products from manure and sewage
CN1331819C (en) Process for manufacturing granular complex fertilizer from sludge and fly-ash by blending, granulation, and gas purification
US20110113841A1 (en) Process and apparatus for manufacture of fertilizer products from manure and sewage
US20080317657A1 (en) Systems and methods for capturing, isolating and sequestering carbon from CO2 in the atmosphere in the form of char produced from biomass feedstock
US6883444B2 (en) Processes and systems for using biomineral by-products as a fuel and for NOx removal at coal burning power plants
CN102320873B (en) Method for preparing composite slow-release fertilizer by common utilization of biomass and sludge
US6405664B1 (en) Processes and systems for using biomineral by-products as a fuel and for NOx removal at coal burning power plants
CN2910920Y (en) System for drying waste slurry and then incinerating thereof
EP1688475A1 (en) A method of treating manure slurry, a fibrous product produced from manure slurry, uses of such a fibrous product
KR20200081907A (en) Slow-release fertilizer using biochar prepared from biomass
WO2024048531A1 (en) Compost production method and compost
US5558686A (en) Method for making a fuel product
KR20160038140A (en) manuracturing method of livestock manure derived fuel
WO2010070328A1 (en) Fuel product and process
KR102041528B1 (en) The processing method for waste water of food waste and organic acid
CN102329059B (en) Method for manufacturing environmental-friendly renewable energy by sludge
KR102294758B1 (en) Manufacturing method for soil conditioner
CN100582578C (en) Iso-density seaweed biomass circulating fluid bed burn processing method
WO2014053083A1 (en) Process and device for production of compacted fertilizer charcoal
PL240227B1 (en) System and method of producing energy mixtures from post-treatment balneological peloids
EP2955217A1 (en) Method and system for processing biomass
Varnero et al. Power form agripellets
JP2002146360A (en) Method for producing carbonized product from organic waste
Masud et al. Prospect of Chicken litter as a source of sustainable energy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860293

Country of ref document: EP

Kind code of ref document: A1