WO2024048452A1 - Measurement device and selection device - Google Patents

Measurement device and selection device Download PDF

Info

Publication number
WO2024048452A1
WO2024048452A1 PCT/JP2023/030722 JP2023030722W WO2024048452A1 WO 2024048452 A1 WO2024048452 A1 WO 2024048452A1 JP 2023030722 W JP2023030722 W JP 2023030722W WO 2024048452 A1 WO2024048452 A1 WO 2024048452A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
period
electromagnetic wave
source
light source
Prior art date
Application number
PCT/JP2023/030722
Other languages
French (fr)
Japanese (ja)
Inventor
知幸 宮本
光太郎 沖本
Original Assignee
株式会社サタケ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サタケ filed Critical 株式会社サタケ
Publication of WO2024048452A1 publication Critical patent/WO2024048452A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/344Sorting according to other particular properties according to electric or electromagnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids

Definitions

  • the present disclosure relates to optical measurement techniques.
  • An optical sorter uses light information obtained by an optical sensor when the object to be sorted is irradiated with light from a light source to identify and remove foreign objects and defective products contained in the object to be sorted.
  • a sorter uses light information obtained by an optical sensor when the object to be sorted is irradiated with light from a light source to identify and remove foreign objects and defective products contained in the object to be sorted.
  • the light information for example, color gradation value
  • the condition of the object to be sorted is determined. or whether the product is defective
  • the present disclosure has been made to solve at least part of the above-mentioned problems, and can be realized, for example, as the following form.
  • a measuring device for measuring the state of an object.
  • This measurement device includes a transfer section configured to transfer an object, an electromagnetic radiation source configured to irradiate an electromagnetic wave to the object being transferred by the action of the transfer section, and an electromagnetic wave irradiation source configured to irradiate the object being transferred.
  • a sensor configured to detect at least one of a reflected electromagnetic wave reflected by the object and a transmitted electromagnetic wave transmitted through the object, and a sensor configured to identify the state of the object based on a signal acquired by the sensor.
  • an irradiation control section configured to control irradiation of electromagnetic waves from an electromagnetic wave irradiation source.
  • the irradiation control unit controls the electromagnetic waves so that a first irradiation period in which the electromagnetic waves are irradiated with a first intensity and a second irradiation period in which the electromagnetic waves are irradiated with a second intensity greater than the first intensity appear.
  • the radiation source is configured to control the radiation source.
  • the "object being transferred by the action of the transfer section” includes, for example, an object being transferred on the transfer section and an object falling from the transfer section.
  • the irradiation control unit controls an irradiation period in which electromagnetic waves are irradiated at an intensity other than the first intensity and the second intensity, and/or a non-irradiation period in which electromagnetic waves are not irradiated.
  • the electromagnetic wave irradiation source may be controlled so that the period appears. Further, the electromagnetic wave irradiation source may irradiate at least one of visible light, near-infrared light, and X-rays.
  • the irradiation control unit controls the electromagnetic wave irradiation source so that a first irradiation period and a second irradiation period appear for at least part of the plurality of wavelength regions. may be controlled.
  • "Intensity" may be, for example, luminous intensity when the "electromagnetic waves” are light, and may be X-ray intensity when the "electromagnetic waves” are X-rays.
  • this measurement device there is a first irradiation period in which electromagnetic waves are irradiated with a first intensity, and a second irradiation period in which electromagnetic waves are irradiated with a second intensity that is greater than the first intensity. Therefore, compared to a configuration in which the electromagnetic wave irradiation source always irradiates the object with electromagnetic waves at the second intensity, the temperature rise and power consumption due to heat generated by the electromagnetic wave irradiation source can be reduced.
  • the identification accuracy of the state of the object by the identification unit is improved. You can improve. Specifically, in the comparative example, information for identifying the state of the object (reflected electromagnetic waves and transmitted electromagnetic waves at least one) is not obtained. On the other hand, according to the above measurement device, by replacing at least part of the non-irradiation period in the comparative example with the first irradiation period, information for identifying the state of the object can be obtained even during the first irradiation period. can.
  • the irradiation control section determines whether the first irradiation period and the second irradiation period appear within each scanning period of the sensor.
  • the electromagnetic wave irradiation source is configured to be controlled so that the first irradiation period appears, but the second irradiation period does not appear.
  • the second irradiation period does not continue for a long time. Therefore, the temperature rise due to heat generation of the electromagnetic wave irradiation source can be reduced more efficiently.
  • the irradiation control unit is configured to control the electromagnetic wave irradiation source so that there is no non-irradiation period in which the electromagnetic wave irradiation source does not irradiate electromagnetic waves. be done. In other words, there is no non-irradiation period between the first irradiation period and the second irradiation period. In other words, the electromagnetic radiation source always emits electromagnetic waves. According to this form, information for identifying the state of the object can always be obtained. Therefore, minute defects can be detected more reliably, and the identification accuracy by the identification section can be further improved.
  • the electromagnetic wave irradiation source is a first irradiation source that differs in at least one of the wavelength region of the electromagnetic wave to irradiate and the installation position.
  • a second radiation source is included.
  • the second irradiation period includes a third irradiation period during which the first irradiation source irradiates electromagnetic waves at a second intensity, and a fourth irradiation period during which the second irradiation source irradiates electromagnetic waves at a second intensity.
  • the irradiation control unit is configured to control the electromagnetic wave irradiation source so that the third irradiation period and the fourth irradiation period do not overlap and appear alternately.
  • the third irradiation period and the fourth irradiation period “alternately" refer to the third irradiation period and the fourth irradiation period when the third irradiation period and the fourth irradiation period are at least partially focused. Reference is made to the appearance of an irradiation period and a fourth irradiation period. Therefore, another irradiation period may be interposed between the third irradiation period and the fourth irradiation period. For example, an irradiation period may be interposed between the third irradiation period and the fourth irradiation period in which electromagnetic waves are irradiated with a third intensity that is greater than the first intensity and smaller than the second intensity. .
  • the first irradiation period and the non-irradiation period may be interposed between the third irradiation period and the fourth irradiation period.
  • the irradiation period during which the first irradiation source irradiates the electromagnetic wave at the second intensity and the second irradiation source irradiates the electromagnetic wave at the second intensity is the third irradiation period and the fourth irradiation period. There may be an intervention between the two.
  • the second intensity of the first irradiation source and the second intensity of the second irradiation source may be the same or different.
  • At least one of reflected electromagnetic waves and transmitted electromagnetic waves can be detected for each of the electromagnetic waves irradiated from the first irradiation source and the second irradiation source, which have different wavelength ranges and at least one of different installation positions. Therefore, the types of states that can be identified by the identification unit can be increased. Moreover, since the third irradiation period and the fourth irradiation period do not overlap, during these irradiation periods, the electromagnetic waves of the second intensity irradiated from each of the first irradiation source and the second irradiation source interfere with each other. do not.
  • the third irradiation period and the fourth irradiation period appear alternately, at least one of the reflected electromagnetic waves and the transmitted electromagnetic waves with sufficient resolution is transmitted during both the third irradiation period and the fourth irradiation period. Can be obtained. Therefore, it is possible to ensure good accuracy in identifying the state of the object.
  • the irradiation control unit is configured such that the first irradiation source irradiates the electromagnetic wave at the first intensity, and the second irradiation source irradiates the electromagnetic wave at the first intensity.
  • the electromagnetic wave irradiation source is configured to be controlled such that the period in which the electromagnetic wave is irradiated is interposed between the third irradiation period and the fourth irradiation period.
  • the first intensity of the first irradiation source and the first intensity of the second irradiation source may be the same or different.
  • the electromagnetic waves are transmitted to the sensor in a state where the electromagnetic waves irradiated from the first irradiation source at the second intensity and the electromagnetic waves irradiated from the second irradiation source at the second intensity interfere with each other. Detection can be easily suppressed. Therefore, reflected electromagnetic waves and/or transmitted electromagnetic waves can be detected more accurately, and the accuracy of identifying the state of the object can be improved.
  • the first irradiation source is arranged on the first side with respect to the transfer path of the object
  • the second irradiation source is arranged on the first side with respect to the transfer path of the object.
  • the sensor includes a first sensor located on the first side and a second sensor located on the second side. The second intensity in the third irradiation period and the second intensity in the fourth irradiation period are set to the same level.
  • the electromagnetic waves reflected electromagnetic waves and transmitted electromagnetic waves based on the electromagnetic waves irradiated from the first irradiation source, and reflected electromagnetic waves and transmitted electromagnetic waves based on the electromagnetic waves irradiated from the second irradiation source. be. Therefore, the types of states of objects that can be identified can be increased. Moreover, since the second intensity in the third irradiation period and the second intensity in the fourth irradiation period are at the same level, the electromagnetic waves with the same intensity on the first side and the second side information can be obtained and, as a result, equivalent identification performance can be obtained on the first side and the second side. Therefore, defects appearing only on one side of the object can be identified with high accuracy.
  • a sorting device includes a measuring device of any one of the first to sixth forms, and a sorting section configured to sort objects based on the identification result of the identifying section. According to this sorting device, effects similar to those of the first to sixth embodiments can be obtained. For example, sorting accuracy can be improved while reducing temperature rise and power consumption due to heat generated by the electromagnetic wave irradiation source.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a measuring device according to a first embodiment.
  • FIG. 3 is an explanatory diagram showing the relationship between one object and the scan number of a sensor.
  • 5 is a timing chart showing an example of a lighting pattern of a light source according to the first embodiment.
  • 7 is a timing chart showing an example of a lighting pattern of a light source as a comparative example.
  • 7 is a timing chart showing an example of a lighting pattern of a light source according to a second embodiment.
  • 7 is a timing chart showing an example of a lighting pattern of a light source according to a third embodiment.
  • FIG. 3 is a schematic diagram showing a schematic configuration of a sorting device according to a fourth embodiment.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a measuring device 10 according to the first embodiment.
  • the measuring device 10 is a device for measuring the state (in other words, the quality) of the object 90.
  • the quality of rice grains (more specifically, brown rice or polished rice) as an example of the target object 90 (regular grains, immature grains, colored grains, foreign substances (for example, pebbles, mud, glass pieces) is measured by the measuring device 10. etc.)
  • the object 90 is not limited to rice grains, and may be any granular object.
  • the object 90 may be rice, wheat grains, legumes (soybeans, chickpeas, edamame, etc.), resins (pellets, etc.), rubber pieces, or the like.
  • the measuring device 10 includes a first light source unit 20, a second light source unit 30, a first sensor 51, a second sensor 52, a storage tank 71, and a feeder 72. , a chute 73, a discharge gutter 74, and a controller 80.
  • the controller 80 controls the overall operation of the measuring device 10.
  • the controller 80 also functions as an identification section 81 and an irradiation control section 82.
  • the functions of the controller 80 may be realized by the CPU executing a predetermined program, or may be realized by a dedicated circuit.
  • the functions of the identification section 81 and the irradiation control section 82 may be realized by one integrated device, or may be realized by separate devices. Details of the functions of the controller 80 will be described later.
  • the storage tank 71 temporarily stores the object 90.
  • the feeder 72 supplies the object 90 stored in the storage tank 71 onto a chute 73, which is an example of a transfer section for transferring the object.
  • the object 90 supplied onto the chute 73 slides downward on the chute 73, falls from the lower end of the chute 73, and is guided to the discharge gutter 74.
  • the chute 73 has a predetermined width that allows a large number of objects 90 to fall at the same time.
  • a conveyor may be used as the transfer section.
  • Each of the first light source unit 20 and the second light source unit 30 irradiates light onto the object 90 that has slipped off the chute 73 (that is, the object 90 that is falling from the chute 73). This irradiation location is located between the chute 73 and the discharge gutter 74. Note that in an alternative embodiment, the object 90 sliding on the chute 73 may be irradiated with light. Further, when a conveyor is used instead of the chute 73, light may be irradiated onto the object 90 being transferred on the conveyor or the object 90 falling from the conveyor.
  • each of the first light source unit 20 and the second light source unit 30 is a light source unit for emitting visible light.
  • the first light source unit 20 is arranged on one side (also called the front side) with respect to the transport path of the object 90 (in other words, the falling trajectory from the chute 73).
  • the second light source unit 30 is arranged on the other side (also called the rear side) with respect to the transport path of the object 90.
  • the first light source unit 20 disposed on the front side includes a front red light source 21 that emits front red light 24 , a front green light source 22 that emits front green light 25 , and a front blue light 26 .
  • a front-side blue light source 23 that emits light is provided.
  • the second light source unit 30 disposed on the rear side emits light in the same wavelength range as the first light source unit 20.
  • the second light source unit 30 includes a rear red light source 31 that emits rear red light 34 , a rear green light source 32 that emits rear green light 35 , and a rear green light source 32 that emits rear blue light 36 .
  • the rear side blue light source 33 is provided.
  • each of the first light source unit 20 and the second light source unit 30 is a line light source in which a plurality of LEDs are arranged in the width direction of the chute 73.
  • the specifications (for example, number, light emission format, wavelength range, etc.) of the first light source unit 20 and the second light source unit 30 are not particularly limited.
  • the layout of the light sources 21 to 23 is not particularly limited.
  • the light sources 21 to 23 may be arranged so that the LEDs of each color extend parallel to the width direction of the chute 73 (that is, three lines for each color are formed).
  • LEDs of each color may be arranged alternately along the width direction of the chute 73 (that is, three colors of LEDs form one line). The same applies to the light sources 31 to 33.
  • Each of the first sensor 51 and the second sensor 52 is an optical sensor, and can individually detect red light, green light, and blue light.
  • each of the first sensor 51 and the second sensor 52 is a color CCD sensor in this embodiment, it may be another type of color sensor such as a color CMOS sensor.
  • each of the first sensor 51 and the second sensor 52 is a line sensor in which a plurality of light receiving elements are arranged in the width direction of the chute 73, but may be an area sensor.
  • the specifications of the first sensor 51 and the second sensor 52 are not particularly limited, and can be arbitrarily determined according to the specifications of the first light source unit 20 and the second light source unit 30.
  • the first sensor 51 is placed on the front side, and the second sensor 52 is placed on the rear side.
  • the first sensor 51 on the front side receives the front red light 24 and the front green light 25 emitted from the front red light source 21, the front green light source 22, and the front blue light source 23, respectively, and reflected by the object 90. and front side blue light 26 can be detected.
  • the first sensor 51 further detects the rear red light 34, the rear green light 35, and the rear red light 34, the rear green light 35 and the rear Side blue light 36 can be detected.
  • the second sensor 52 on the rear side detects the rear red light 34 and the rear green light 35 emitted from the rear red light source 31, the rear green light source 32, and the rear blue light source 33, respectively, and reflected by the object 90. and rear side blue light 36 can be detected.
  • the second sensor 52 further detects the front red light 24, the front green light 25, and the front Side blue light 26 can be detected.
  • the reflected light reflected by the target object 90 and/or the transmitted light transmitted through the target object 90 detected by the first sensor 51 and/or the second sensor 52 will be associated with the target object 90. It is also called the reflected light.
  • the first sensor 51 and the second sensor 52 perform multiple scans on one object 90.
  • the first sensor 51 and the second sensor 52 detect light associated with one object 90 in each of the plurality of scanning periods.
  • a scanning period is the time from the start to the end of one scan.
  • the optical sensor is a CCD sensor
  • the “scanning period” can be defined as the time from when the light receiving element starts accumulating electric charge until it finishes accumulating electric charge.
  • the optical sensor is a CMOS sensor
  • the “scanning period” can be defined as the time from when the light receiving element starts accumulating charges until outputting the accumulated charges.
  • FIG. 2 is an explanatory diagram showing the relationship between one object 90 and the scan numbers (numbers indicating the number of scans) of the first sensor 51 and the second sensor 52.
  • image data is acquired by scanning one object 90 eight times (in order to simplify the explanation, the number of times is less than the actual number). be done.
  • the numbers 1 to 8 shown in FIG. 2 indicate the scan numbers from which image data of the corresponding area is acquired. For example, an area marked with "1" indicates that image data is acquired by the first scan.
  • the outputs from the first sensor 51 and the second sensor 52 that is, analog signals representing the intensity of the detected light, are converted into digital signals by an AC/DC converter (not shown).
  • This digital signal (in other words, the gradation value corresponding to the analog signal) is input to the controller 80.
  • the controller 80 identifies the state of the target object 90 based on the input light detection result (that is, the image) as a process performed by the identification unit 81 .
  • the identification unit 81 determines whether the object 90 is a good product (sized grain) or a defective product (for example, immature grain, colored grain) by comparing the gradation value of the image and the threshold value. particles) and/or foreign objects. This identification is performed for each object 90.
  • FIG. 3 is a timing chart showing an example of a lighting pattern of the first light source unit 20 and the second light source unit 30.
  • the scanning periods of the first sensor 51 and the second sensor 52 are associated with the lighting patterns of the first light source unit 20 and the second light source unit 30.
  • "R” represents red
  • "G” represents green
  • "B” represents blue.
  • "scan number" corresponds to the scan number shown in FIG.
  • the irradiation control unit 82 is configured to be able to change the intensity (also referred to as luminous intensity, which represents the brightness of the light source) of the light emitted from each of the light sources 21 to 23 and 31 to 33.
  • the irradiation control unit 82 changes the luminous intensity by changing the voltage applied to the LEDs of the light sources 21 to 23 and 31 to 33.
  • the pulse shape shown in FIG. 3 represents the level of the voltage (forward voltage) applied to the LED. Specifically, "OFF” represents the level of voltage zero, “ON (V1)” represents the level of voltage V1, and “ON (V2)” represents the level of voltage V2 (V2>V1). represents.
  • LEDs emit light when a voltage higher than a predetermined value (also called VF) is applied, and when the voltage is higher than a predetermined value, the LED has the characteristic that as the voltage increases, the current increases and the luminous intensity increases. are doing.
  • Voltages V1 and V2 are set to values greater than this predetermined value. That is, each of the voltages V1 and V2 is set so that the LED emits light. Since V2>V1, the luminous intensity of the LED when voltage V2 is applied is greater than the luminous intensity of the LED when voltage V1 is applied.
  • the luminous intensity of the light source when the voltage V1 is applied is referred to as a first luminous intensity
  • the luminous intensity of the light source when the voltage V2 is applied is referred to as a second luminous intensity.
  • a period in which light is irradiated with a first luminous intensity is referred to as a first period
  • a period in which light is irradiated with a second luminous intensity is referred to as a second period.
  • the irradiation control unit 82 controls each of the light sources 21 to 23 and 31 to 33 so that a first irradiation period and a second irradiation period appear.
  • the irradiation control section 82 always applies the voltage V1 or V2 to the light sources 21-23, 31-33. That is, the light sources 21 to 23 and 31 to 33 always emit light (there is no period during which no light is emitted).
  • the irradiation control unit 82 determines whether the first irradiation period and the second irradiation period appear within each scanning period, or the first irradiation period appears but the second irradiation period does not appear.
  • Each of the light sources 21 to 23 and 31 to 33 is controlled so as not to In the example shown in FIG. 3, one application of voltage V2 (one irradiation of light of the second luminous intensity) starts and ends within one scanning period.
  • the second irradiation period may be set to cross the boundaries of a plurality of scanning periods, or may be set to be longer than one scanning period.
  • FIG. 1 in the example shown in FIG.
  • the number of times the voltage V2 is applied within one scanning period (that is, the number of periods in which the voltage V2 is continuously applied) is one, but the voltage V2 is applied multiple times. may be applied.
  • the voltages may be changed in the order of V1, V2, V1, V2, and V1 within one scanning period.
  • the front-side red light source 21 is turned on so that a first irradiation period and a second irradiation period appear in each of all scanning periods.
  • Each of the front green light source 22 and the front blue light source 23 is turned on so that a first irradiation period and a second irradiation period appear in each of all scanning periods.
  • the rear red light source 31 has a first irradiation period and a second irradiation period in each of the scan periods having an odd number of scan numbers, and a first irradiation period and a second irradiation period in each of the scan periods having an even number of scan numbers. The period appears, but the second irradiation period is lit so that it does not appear.
  • Each of the rear green light source 32 and the rear blue light source 33 is turned on so that a first irradiation period and a second irradiation period appear in each of all scanning periods.
  • the second irradiation period for red light is set longer than the second irradiation period for each of green light and blue light.
  • the second irradiation period of each color of light can be set as appropriate depending on the desired brightness of the image to be acquired.
  • the second irradiation period of each color of light may be the same.
  • the second irradiation period starts at a timing delayed from the start of the corresponding scan period (the scan period in which the second irradiation period is set). Moreover, the second irradiation period ends at a timing earlier than the end of the corresponding scanning period. According to one or both of these, the light of the second luminous intensity (relatively high luminous intensity) of any scanning period does not mix into the adjacent scanning period as noise.
  • the first sensor 51 on the front side acquires RGB reflection and transmission images.
  • a reflection-transmission image is an image based on a detection result of light that is a combination of reflected light and transmitted light. For example, regarding red light, there is the front red light 24 emitted from the front red light source 21 and reflected by the object 90, and the rear red light 34 emitted from the rear red light source 31 and transmitted through the object 90. An image is obtained based on the combined light detection results.
  • the second sensor 52 on the rear side also acquires RGB reflection and transmission images.
  • the front-side first sensor 51 detects a red reflected image (more precisely, the light of the first luminous intensity from the rear-side red light source 31 (contains some components that have passed through), and reflection-transmission images of green and blue are obtained.
  • a reflected image is an image based on the detection result of reflected light.
  • the rear second sensor 52 transmits a red transmitted image (more precisely, the light of the first luminous intensity from the rear red light source 31 is transmitted to the target object. 90), green and blue reflection-transmission images are obtained.
  • the transmitted image is an image based on the detection result of transmitted light.
  • the rear red light source 31 is turned off during the scanning periods with even scan numbers. (It is not necessary to apply voltage to the rear red light source 31).
  • the identification unit 81 identifies the state (quality) of the object 90 based on the various red, green, and blue images thus obtained on the front side and the rear side, respectively.
  • the type of image used for identification is determined for each type of state to be identified.
  • the controller 80 may increase the types of images used for the identification process by the identification unit 81 by performing calculation processing based on the images acquired by the first sensor 51 and the second sensor 52. Such a calculation can be performed, for example, based on image data acquired in two adjacent scanning periods.
  • the first sensor 51 in the scanning period with the scanning number 2N-1 (N is a natural number)
  • the first sensor 51 in the scanning period with the scanning number 2N A red transmission image can be obtained by subtracting the tone values of the red reflection image obtained by .
  • the red color acquired by the second sensor 52 in the scanning period with the scanning number 2N By subtracting the tone values of the transmitted image, a red reflected image can be obtained.
  • the object 90 is irradiated with light at a first luminous intensity during the first irradiation period, and the object 90 is irradiated with light at a second luminous intensity greater than the first luminous intensity.
  • temperature rise and power consumption due to heat generated by the light sources 21 to 23 and 31 to 33 can be reduced.
  • the second irradiation period since the first irradiation period and the second irradiation period exist in the scanning period during which the voltage V2 is applied, the second irradiation period does not continue for a long time. Therefore, the temperature rise due to heat generated by the light sources 21 to 23 and 31 to 33 can be reduced more efficiently.
  • one application of voltage V2 starts and ends within one scanning period, so the period during which voltage V2 is continuously applied is shorter, and such an effect is It becomes even more noticeable.
  • the identification accuracy of the state of the target object 90 by the identification unit 81 is improved compared to the configuration (comparative example shown in FIG. 4) in which no light is irradiated except during the second irradiation period in which light is irradiated at the second luminous intensity. can.
  • the Optical information is not acquired.
  • optical information for identifying the state of the object 90 can be acquired not only during the second irradiation period but also during the first irradiation period.
  • optical information for identifying the state of the object 90 can be acquired over a wider range. Therefore, compared to the comparative example, the ability to detect minute defects is improved, and as a result, identification accuracy can be improved.
  • Any one of the light sources 21 to 23 and 31 to 33, or any combination of two or more of them, is a non-limiting example of the "electromagnetic wave irradiation source" in the claims.
  • the light sources 21 to 23 and 31 to 33 always emit light, so that information for identifying the state of the object 90 can always be obtained. Therefore, minute defects can be detected more reliably, and the identification accuracy by the identification section 81 can be further improved.
  • a part of the first irradiation period in which the voltage V1 is applied may be replaced with a non-irradiation period in which no voltage is applied (light is not irradiated).
  • the same level of voltages V1 and V2 are applied to the front side light sources 21 to 23 and the rear side light sources 31 to 33 (irradiation with the same level of luminous intensity is performed). . Therefore, it is possible to obtain the same identification performance on the front side and the rear side. Therefore, defects appearing only on one side of the object 90 can be identified with high accuracy.
  • the front side voltage V1 and/or voltage V2 and the rear side voltage V1 and/or voltage V2 may be set to different levels depending on the characteristics of the image to be obtained. Voltage V1 and/or voltage V2 may be set to different levels for each color of light to be detected.
  • the second embodiment will be described below with reference to FIG.
  • only the lighting pattern of the first light source unit 20 and the second light source unit 30 (more specifically, the lighting pattern of the front side red light source 21 and the rear side red light source 31) is different from that of the first embodiment.
  • the second embodiment is different from the first embodiment, and the other points are the same as the first embodiment.
  • the voltage V2 is applied only to the front red light source 21, and the voltage V2 is applied to the rear red light source 31 in the scanning period having an odd scan number. (voltage V1 is applied throughout the scanning period).
  • the voltage V2 is applied only to the rear red light source 31, and the voltage V2 is not applied to the front red light source 21 (the voltage V1 is applied throughout the scan period). is applied).
  • the second irradiation period of the front red light source 21 and the second irradiation period of the rear red light source 31 do not overlap and appear alternately.
  • a period in which is not applied and a period in which is not applied do not overlap and appear alternately. According to this configuration, the lights of the second luminous intensity emitted from each of the front red light source 21 and the rear red light source 31 do not interfere with each other.
  • the second irradiation period of the front side red light source 21 and the second irradiation period of the rear side red light source 31 appear alternately, in any second irradiation period, a reflected image with sufficient resolution and Transparent images can be obtained. Therefore, the accuracy of identifying the state of the object 90 can be ensured favorably.
  • the front red light source 21 and the rear red light source 21 There is a period in which the voltage V1 is applied to both of the red light sources 31. Therefore, the light emitted from the front red light source 21 at the second luminous intensity and the light emitted from the rear red light source 31 at the second luminous intensity interfere with each other, and the light is transmitted to the first sensor 51. And/or detection by the second sensor 52 can be easily suppressed. Therefore, reflected light and/or transmitted light can be detected more accurately, and the accuracy of identifying the state of the object 90 can be improved.
  • a red reflected image and a transmitted image can be obtained by the front red light source 21 and the rear red light source 31.
  • the controller 80 may increase the types of images used for the identification process by the identification unit 81 by performing calculation processing based on the images acquired by the first sensor 51 and the second sensor 52. For example, the gradation value of the red reflection image acquired by the first sensor 51 in the scan period with the scan number 2N-1 (N is a natural number) and the tone value of the red reflection image acquired by the first sensor 51 in the scan period with the scan number 2N A red reflection-transmission image may be acquired by adding the gradation values of the acquired red transmission image.
  • the front red light source 21 and the rear red light source 31 are non-limiting examples of the "first irradiation source” and the "second irradiation source” in the claims. Further, the second irradiation period of the front side red light source 21 and the second irradiation period of the rear side red light source 31 are non-existences of the "third irradiation period" and the "fourth irradiation period” in the claims. This is a limited example.
  • the third embodiment will be described below with reference to FIG.
  • the third embodiment differs from the second embodiment only in the lighting patterns of the first light source unit 20 and the second light source unit 30, and is otherwise the same as the second embodiment.
  • the voltage V2 is applied only to the front red light source 21 and the rear red light source 31, and the other No voltage V2 is applied to the light source (voltage V1 is applied throughout the scanning period).
  • 3M-In the first scanning period the voltage V2 is applied only to the front green light source 22 and the rear green light source 32, and the voltage V2 is not applied to the other light sources (the voltage is applied throughout the scanning period).
  • V1 is applied).
  • voltage V2 is applied only to the front blue light source 23 and rear blue light source 33, and voltage V2 is not applied to the other light sources (voltage V1 is applied throughout the scanning period). ).
  • the second irradiation period of the red light sources 21 and 31, the second irradiation period of the green light sources 22 and 32, and the second irradiation period of the blue light sources 23 and 33 overlap. No, and they appear alternately. In other words, the second irradiation periods do not overlap and appear alternately between light sources that emit light in different wavelength ranges. For this reason, it is possible to easily prevent the light from being detected by the first sensor 51 and/or the second sensor 52 in a state where the lights in different wavelength ranges (both have the second luminous intensity) interfere with each other. .
  • red light sources 21 and 31 can be a non-limiting example of a "first irradiation source” or a "second irradiation source” in the claims.
  • green light sources 22, 32 can be a non-limiting example of a "first illumination source” or a “second illumination source” in the claims.
  • blue light sources 23, 33 can be a non-limiting example of a "first illumination source” or a "second illumination source” in the claims.
  • a sorting device 110 according to the fourth embodiment differs from the first embodiment only in that it includes a sorting section 160 in addition to the measuring device 10 according to the first embodiment.
  • the sorting section 160 injects air 163 toward the object 90 that has been identified as a defective product (rice grains other than sized rice grains) by the identification section 81 to separate the object 90 .
  • the sorting unit 160 includes a plurality of nozzles 161 and a number of valves 162 corresponding to the number of nozzles 161 (in this embodiment, the number is the same as the number of nozzles 161, but the number may be different from the number of nozzles 161). It is equipped with.
  • the plurality of nozzles 161 are arranged in the width direction of the chute 73.
  • the plurality of nozzles 161 are connected to a compressor (not shown) via a plurality of valves 162, respectively.
  • the plurality of nozzles 161 selectively inject air 163 toward the object 90 that has been identified as a defective product or a foreign object.
  • the object 90 identified as a defective product or a foreign object is blown away by the air 163, deviates from the falling trajectory from the chute 73, and is guided to the defective product discharge gutter 175 (shown as the object 91 in FIG. 7).
  • the air 163 is not injected to the object 90 that has been identified as a good product (sorted). Therefore, the object 90 identified as a good product (sorted) is guided to the good product discharge gutter 174 without changing its falling trajectory (shown as the object 92 in FIG. 7).
  • the air 163 is injected toward the object 90 after falling from the chute 73 to transfer the object 90.
  • You may change the route.
  • a belt conveyor may be used as the transfer means instead of the chute 73.
  • air may be injected from one end of the belt conveyor toward the falling object.
  • air may be injected toward the object being conveyed on the belt conveyor.
  • the irradiation control unit 82 may control the light sources 21 to 23 and 31 to 33 using any of the lighting patterns shown in FIGS. 3, 5, and 6. According to this sorting device 110, the same effects as in the first to third embodiments can be obtained. Therefore, it is possible to improve sorting accuracy while reducing temperature rise and power consumption due to heat generated by the light sources 21 to 23 and 31 to 33.
  • any of the lighting patterns shown in FIGS. 3, 5, and 6 are only non-limiting examples, and the voltage V1 is applied to at least one of the light sources 21 to 23 and 31 to 33 to achieve the first luminous intensity. Any changes are possible as long as a first irradiation period for irradiating light with a second luminous intensity and a second irradiation period for applying light of a second luminous intensity appear.
  • a non-irradiation period may be added in which no voltage is applied and no light is irradiated.
  • an additional irradiation period may be set in which a voltage lower than voltage V2 and different from voltage V1 is applied.
  • other lighting patterns for each light source may be added.
  • voltage V2 is applied to each of the light sources 21 to 23 and 31 to 33 between a scan period with an odd scan number and a scan period with an even scan number.
  • a scanning period having a second irradiation period in which light of a second luminous intensity is irradiated (for example, a scanning period with a scanning number of 1 in FIG. 3) may be interposed.
  • the lighting pattern of the light sources 21 to 23 and 31 to 33 may be set so that only one of the reflected image and the transmitted image is acquired.
  • one of the front light source and the rear light source may be omitted.
  • one of the first sensor 51 on the front side and the second sensor 52 on the rear side may be omitted.
  • any electromagnetic wave source may be installed instead of or in addition to the light source that emits visible light.
  • electromagnetic radiation sources may include, for example, near-infrared sources and/or X-ray sources.
  • the near-infrared source and/or the X-ray source may be placed only on one side of the transport path of the object 90, or may be placed on both sides.
  • a sensor that detects near-infrared rays and/or a sensor that detects X-rays may be placed only on one side of the transfer path of the object 90, or may be placed on both sides.
  • the irradiation control unit 82 has a first irradiation period in which electromagnetic waves are radiated at a first intensity, and a second irradiation period in which electromagnetic waves are irradiated at a second intensity greater than the first intensity.
  • the electromagnetic wave irradiation source may be controlled so that the following irradiation periods appear.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sorting Of Articles (AREA)

Abstract

A measurement device according to the present invention is for measuring the state of an object and comprises a transport unit that transports the object, an electromagnetic wave radiation source that radiates electromagnetic waves at the object as transported by the action of the transport unit, a sensor that detects at least one of reflected electromagnetic waves that have been radiated from the electromagnetic wave radiation source and reflected at the object and transmitted electromagnetic waves that have passed through the object, an identification unit that identifies the state of the object on the basis of a signal acquired by the sensor, and a radiation control unit that controls the radiation of the electromagnetic waves from the electromagnetic wave radiation source. The radiation control unit controls the electromagnetic wave radiation source such that there are a first radiation period during which electromagnetic waves are radiated at a first intensity and a second radiation period during which electromagnetic waves are radiated at a second intensity that is greater than the first intensity.

Description

測定装置および選別装置Measuring equipment and sorting equipment
 本開示は光学式測定技術に関する。 The present disclosure relates to optical measurement techniques.
 選別対象物に光源から光を照射した際に光学センサによって得られる光情報を使用して、選別対象物に含まれる異物や不良品を識別して除去する光学式選別機(以下、単に選別機とも呼ぶ)が従来から知られている(例えば、特開2010-42326号)。この種の選別機では、光学センサによって得られた光情報(例えば、色階調値)は閾値と比較され、その比較結果に基づいて、選別対象物の状態(良品であるか、それとも、異物または不良品であるか)が識別される。 An optical sorter (hereinafter simply referred to as a sorter) uses light information obtained by an optical sensor when the object to be sorted is irradiated with light from a light source to identify and remove foreign objects and defective products contained in the object to be sorted. has been known for some time (for example, Japanese Patent Laid-Open No. 2010-42326). In this type of sorter, the light information (for example, color gradation value) obtained by an optical sensor is compared with a threshold value, and based on the comparison result, the condition of the object to be sorted (whether it is a good item or a foreign object) is determined. or whether the product is defective) is identified.
 この種の選別機では、選別精度を向上するという要望や、光源の発熱による温度上昇や消費電力を低減するという要望が存在する。また、このことは、選別機に限らず、対象物の状態を測定するための測定装置にも共通する。 In this type of sorting machine, there are demands to improve sorting accuracy and to reduce temperature rise and power consumption due to heat generated by the light source. Moreover, this is common not only to sorting machines but also to measuring devices for measuring the state of objects.
 本開示は、上述の課題の少なくとも一部を解決するためになされたものであり、例えば、以下の形態として実現することが可能である。 The present disclosure has been made to solve at least part of the above-mentioned problems, and can be realized, for example, as the following form.
 本開示の第1の形態によれば、対象物の状態を測定するための測定装置が提供される。この測定装置は、対象物を移送するように構成された移送部と、移送部の作用によって移送中の対象物に電磁波を照射するように構成された電磁波照射源と、電磁波照射源から照射され、対象物で反射した反射電磁波、および、対象物を透過した透過電磁波の少なくとも一方を検出するように構成されたセンサと、センサによって取得される信号に基づいて対象物の状態を識別するように構成された識別部と、電磁波照射源からの電磁波の照射を制御するように構成された照射制御部と、を備えている。照射制御部は、第1の強度で電磁波を照射する第1の照射期間と、第1の強度よりも大きい第2の強度で電磁波を照射する第2の照射期間と、が出現するように電磁波照射源を制御するように構成される。 According to the first aspect of the present disclosure, a measuring device for measuring the state of an object is provided. This measurement device includes a transfer section configured to transfer an object, an electromagnetic radiation source configured to irradiate an electromagnetic wave to the object being transferred by the action of the transfer section, and an electromagnetic wave irradiation source configured to irradiate the object being transferred. , a sensor configured to detect at least one of a reflected electromagnetic wave reflected by the object and a transmitted electromagnetic wave transmitted through the object, and a sensor configured to identify the state of the object based on a signal acquired by the sensor. and an irradiation control section configured to control irradiation of electromagnetic waves from an electromagnetic wave irradiation source. The irradiation control unit controls the electromagnetic waves so that a first irradiation period in which the electromagnetic waves are irradiated with a first intensity and a second irradiation period in which the electromagnetic waves are irradiated with a second intensity greater than the first intensity appear. The radiation source is configured to control the radiation source.
 「移送部の作用によって移送中の対象物」には、例えば、移送部上で移送中の対象物や、移送部から落下中の対象物が含まれる。照射制御部は、第1の照射期間および第2の照射期間に加えて、第1の強度および第2の強度以外の強度で電磁波を照射する照射期間、および/または、電磁波が照射されない非照射期間が出現するように電磁波照射源を制御してもよい。また、電磁波照射源は、可視光、近赤外光、X線のうちの少なくとも1つを照射してもよい。電磁波照射源が複数の波長領域の電磁波を照射する場合、照射制御部は、複数の波長領域の少なくとも一部について、第1の照射期間と第2の照射期間とが出現するように電磁波照射源を制御してもよい。「強度」とは、例えば、「電磁波」が光である場合は、光度であってもよく、「電磁波」がX線である場合には、X線強度であってもよい。 The "object being transferred by the action of the transfer section" includes, for example, an object being transferred on the transfer section and an object falling from the transfer section. In addition to the first irradiation period and the second irradiation period, the irradiation control unit controls an irradiation period in which electromagnetic waves are irradiated at an intensity other than the first intensity and the second intensity, and/or a non-irradiation period in which electromagnetic waves are not irradiated. The electromagnetic wave irradiation source may be controlled so that the period appears. Further, the electromagnetic wave irradiation source may irradiate at least one of visible light, near-infrared light, and X-rays. When the electromagnetic wave irradiation source irradiates electromagnetic waves in a plurality of wavelength regions, the irradiation control unit controls the electromagnetic wave irradiation source so that a first irradiation period and a second irradiation period appear for at least part of the plurality of wavelength regions. may be controlled. "Intensity" may be, for example, luminous intensity when the "electromagnetic waves" are light, and may be X-ray intensity when the "electromagnetic waves" are X-rays.
 この測定装置によれば、第1の強度で電磁波を照射する第1の照射期間と、第1の強度よりも大きい第2の強度で電磁波を照射する第2の照射期間と、が存在する。したがって、電磁波照射源が対象物に対して常時、第2の強度で電磁波を照射する構成に比べて、電磁波照射源の発熱による温度上昇および消費電力を低減することができる。また、第2の強度で電磁波を照射する第2の照射期間以外は電磁波照射源が電磁波を照射しない構成(以下、比較例と呼ぶ)と比べて、識別部による対象物の状態の識別精度を向上できる。具体的には、比較例では、対象物のうちの、電磁波が照射されない期間中にセンサの検出領域を通過した部分については、対象物の状態を識別するための情報(反射電磁波および透過電磁波の少なくとも一方)が取得されない。一方、上述の測定装置によれば、比較例における非照射期間の少なくとも一部を第1の照射期間に置き換えることによって、第1の照射期間でも、対象物の状態を識別するための情報を取得できる。つまり、比較例と比べて、対象物の状態を識別するための情報を、対象物のうちの、より広範囲な部分に亘って取得できる。したがって、比較例に比べて、微少な不良の検出能力が向上し、その結果、識別精度を向上できるのである。以上の説明から明らかなように、この測定装置によれば、電磁波照射源の発熱による温度上昇および消費電力の低減と、識別精度の向上と、を両立させることができる。 According to this measurement device, there is a first irradiation period in which electromagnetic waves are irradiated with a first intensity, and a second irradiation period in which electromagnetic waves are irradiated with a second intensity that is greater than the first intensity. Therefore, compared to a configuration in which the electromagnetic wave irradiation source always irradiates the object with electromagnetic waves at the second intensity, the temperature rise and power consumption due to heat generated by the electromagnetic wave irradiation source can be reduced. In addition, compared to a configuration in which the electromagnetic wave irradiation source does not emit electromagnetic waves except during the second irradiation period in which electromagnetic waves are emitted at the second intensity (hereinafter referred to as a comparative example), the identification accuracy of the state of the object by the identification unit is improved. You can improve. Specifically, in the comparative example, information for identifying the state of the object (reflected electromagnetic waves and transmitted electromagnetic waves at least one) is not obtained. On the other hand, according to the above measurement device, by replacing at least part of the non-irradiation period in the comparative example with the first irradiation period, information for identifying the state of the object can be obtained even during the first irradiation period. can. That is, compared to the comparative example, information for identifying the state of the object can be acquired over a wider range of the object. Therefore, compared to the comparative example, the ability to detect minute defects is improved, and as a result, identification accuracy can be improved. As is clear from the above description, with this measuring device, it is possible to simultaneously reduce the temperature rise and power consumption due to heat generated by the electromagnetic wave irradiation source, and improve the identification accuracy.
 本開示の第2の形態によれば、第1の形態において、照射制御部は、センサの各走査期間内で、第1の照射期間と第2の照射期間とが出現するか、または、第1の照射期間は出現するが、第2の照射期間は出現しないように電磁波照射源を制御するように構成される。この形態によれば、第2の照射期間が長い時間に亘って継続することがない。したがって、電磁波照射源の発熱による温度上昇を、より効率的に低減できる。 According to the second aspect of the present disclosure, in the first aspect, the irradiation control section determines whether the first irradiation period and the second irradiation period appear within each scanning period of the sensor. The electromagnetic wave irradiation source is configured to be controlled so that the first irradiation period appears, but the second irradiation period does not appear. According to this embodiment, the second irradiation period does not continue for a long time. Therefore, the temperature rise due to heat generation of the electromagnetic wave irradiation source can be reduced more efficiently.
 本開示の第3の形態によれば、第1または第2の形態において、照射制御部は、電磁波照射源が電磁波を照射しない非照射期間が存在しないように電磁波照射源を制御するように構成される。換言すれば、第1の照射期間と第2の照射期間との間には非照射期間が介在しない。つまり、電磁波照射源は電磁波を常に照射する。この形態によれば、対象物の状態を識別するための情報を常に取得できる。したがって、微少な不良をより確実に検出することができ、識別部による識別精度をいっそう向上できる。 According to the third aspect of the present disclosure, in the first or second aspect, the irradiation control unit is configured to control the electromagnetic wave irradiation source so that there is no non-irradiation period in which the electromagnetic wave irradiation source does not irradiate electromagnetic waves. be done. In other words, there is no non-irradiation period between the first irradiation period and the second irradiation period. In other words, the electromagnetic radiation source always emits electromagnetic waves. According to this form, information for identifying the state of the object can always be obtained. Therefore, minute defects can be detected more reliably, and the identification accuracy by the identification section can be further improved.
 本開示の第4の形態によれば、第1ないし第3のいずれかの形態において、電磁波照射源は、照射する電磁波の波長領域、および、設置位置の少なくとも一方が異なる第1の照射源および第2の照射源を含む。第2の照射期間は、第1の照射源が第2の強度で電磁波を照射する第3の照射期間と、第2の照射源が第2の強度で電磁波を照射する第4の照射期間と、を含む。照射制御部は、第3の照射期間と第4の照射期間とが、重複せず、かつ、交互に出現するように電磁波照射源を制御するように構成される。 According to the fourth aspect of the present disclosure, in any one of the first to third aspects, the electromagnetic wave irradiation source is a first irradiation source that differs in at least one of the wavelength region of the electromagnetic wave to irradiate and the installation position. A second radiation source is included. The second irradiation period includes a third irradiation period during which the first irradiation source irradiates electromagnetic waves at a second intensity, and a fourth irradiation period during which the second irradiation source irradiates electromagnetic waves at a second intensity. ,including. The irradiation control unit is configured to control the electromagnetic wave irradiation source so that the third irradiation period and the fourth irradiation period do not overlap and appear alternately.
 本明細書において、第3の照射期間と第4の照射期間とが「交互に」出現するとは、第3の照射期間と第4の照射期間とに少なくとも部分的に着目した場合の第3の照射期間と第4の照射期間との出現に言及している。したがって、第3の照射期間と第4の照射期間との間に他の照射期間が介在していてもよい。例えば、第3の照射期間と第4の照射期間との間に第1の強度よりも大きく、第2の強度よりも小さい第3の強度で電磁波を照射する照射期間が介在していてもよい。あるいは、第3の照射期間と第4の照射期間との間に、第1の照射期間と非照射期間とが介在していてもよい。あるいは、第1の照射源が第2の強度で電磁波を照射し、かつ、第2の照射源が第2の強度で電磁波を照射する照射期間が第3の照射期間と第4の照射期間との間に介在してもよい。第1の照射源の第2の強度と第2の照射源の第2の強度とは、同一であってもよいし、異なっていてもよい。 In this specification, the third irradiation period and the fourth irradiation period "alternately" refer to the third irradiation period and the fourth irradiation period when the third irradiation period and the fourth irradiation period are at least partially focused. Reference is made to the appearance of an irradiation period and a fourth irradiation period. Therefore, another irradiation period may be interposed between the third irradiation period and the fourth irradiation period. For example, an irradiation period may be interposed between the third irradiation period and the fourth irradiation period in which electromagnetic waves are irradiated with a third intensity that is greater than the first intensity and smaller than the second intensity. . Alternatively, the first irradiation period and the non-irradiation period may be interposed between the third irradiation period and the fourth irradiation period. Alternatively, the irradiation period during which the first irradiation source irradiates the electromagnetic wave at the second intensity and the second irradiation source irradiates the electromagnetic wave at the second intensity is the third irradiation period and the fourth irradiation period. There may be an intervention between the two. The second intensity of the first irradiation source and the second intensity of the second irradiation source may be the same or different.
 第4の形態によれば、波長領域および設置位置の少なくとも一方が異なる第1の照射源および第2の照射源から照射される電磁波のそれぞれについて、反射電磁波および透過電磁波の少なくとも一方を検出できる。したがって、識別部によって識別可能な状態の種類を増やすことができる。しかも、第3の照射期間と第4の照射期間とは重複しないので、これらの照射期間では、第1の照射源および第2の照射源の各々から照射される第2の強度の電磁波が干渉しない。また、第3の照射期間と第4の照射期間とは交互に出現するので、第3の照射期間および第4の照射期間のいずれにおいても、十分な解像度の反射電磁波および透過電磁波の少なくとも一方を取得できる。したがって、対象物の状態の識別精度を良好に確保できる。 According to the fourth embodiment, at least one of reflected electromagnetic waves and transmitted electromagnetic waves can be detected for each of the electromagnetic waves irradiated from the first irradiation source and the second irradiation source, which have different wavelength ranges and at least one of different installation positions. Therefore, the types of states that can be identified by the identification unit can be increased. Moreover, since the third irradiation period and the fourth irradiation period do not overlap, during these irradiation periods, the electromagnetic waves of the second intensity irradiated from each of the first irradiation source and the second irradiation source interfere with each other. do not. Furthermore, since the third irradiation period and the fourth irradiation period appear alternately, at least one of the reflected electromagnetic waves and the transmitted electromagnetic waves with sufficient resolution is transmitted during both the third irradiation period and the fourth irradiation period. Can be obtained. Therefore, it is possible to ensure good accuracy in identifying the state of the object.
 本開示の第5の形態によれば、第4の形態において、照射制御部は、第1の照射源が第1の強度で電磁波を照射し、かつ、第2の照射源が第1の強度で電磁波を照射する期間が、第3の照射期間と第4の照射期間との間に介在するように、電磁波照射源を制御するように構成される。第1の照射源の第1の強度と第2の照射源の第1の強度とは、同一であってもよいし、異なっていてもよい。この形態によれば、第1の照射源から第2の強度で照射された電磁波と、第2の照射源から第2の強度で照射された電磁波と、が干渉した状態で、電磁波がセンサに検出されることを容易に抑制できる。したがって、より正確な反射電磁波および/または透過電磁波を検出でき、ひいては、対象物の状態の識別精度を向上できる。 According to the fifth aspect of the present disclosure, in the fourth aspect, the irradiation control unit is configured such that the first irradiation source irradiates the electromagnetic wave at the first intensity, and the second irradiation source irradiates the electromagnetic wave at the first intensity. The electromagnetic wave irradiation source is configured to be controlled such that the period in which the electromagnetic wave is irradiated is interposed between the third irradiation period and the fourth irradiation period. The first intensity of the first irradiation source and the first intensity of the second irradiation source may be the same or different. According to this form, the electromagnetic waves are transmitted to the sensor in a state where the electromagnetic waves irradiated from the first irradiation source at the second intensity and the electromagnetic waves irradiated from the second irradiation source at the second intensity interfere with each other. Detection can be easily suppressed. Therefore, reflected electromagnetic waves and/or transmitted electromagnetic waves can be detected more accurately, and the accuracy of identifying the state of the object can be improved.
 本開示の第6の形態によれば、第4または第5の形態において、第1の照射源は、対象物の移送経路に対する第1の側に配置され、第2の照射源は、第1の側と反対の第2の側に配置される。センサは、第1の側に配置された第1のセンサと、第2の側に配置された第2のセンサと、を備えている。第3の照射期間における第2の強度と、第4の照射期間における第2の強度と、は同一レベルに設定される。この形態によれば、第1の照射源から照射された電磁波に基づく反射電磁波および透過電磁波、および、第2の照射源から照射された電磁波に基づく反射電磁波および透過電磁波の4種類を取得可能である。このため、識別可能な対象物の状態の種類を増やすことができる。しかも、第3の照射期間における第2の強度と、第4の照射期間における第2の強度と、は同一レベルであるから、第1の側と第2の側とで同程度の強度の電磁波情報を得ることができ、その結果、第1の側と第2の側とで同等の識別性能を得ることができる。したがって、対象物の一方側のみに出現する不良を精度良く識別できる。 According to the sixth aspect of the present disclosure, in the fourth or fifth aspect, the first irradiation source is arranged on the first side with respect to the transfer path of the object, and the second irradiation source is arranged on the first side with respect to the transfer path of the object. is placed on a second side opposite to the side of the . The sensor includes a first sensor located on the first side and a second sensor located on the second side. The second intensity in the third irradiation period and the second intensity in the fourth irradiation period are set to the same level. According to this form, it is possible to obtain four types of electromagnetic waves: reflected electromagnetic waves and transmitted electromagnetic waves based on the electromagnetic waves irradiated from the first irradiation source, and reflected electromagnetic waves and transmitted electromagnetic waves based on the electromagnetic waves irradiated from the second irradiation source. be. Therefore, the types of states of objects that can be identified can be increased. Moreover, since the second intensity in the third irradiation period and the second intensity in the fourth irradiation period are at the same level, the electromagnetic waves with the same intensity on the first side and the second side information can be obtained and, as a result, equivalent identification performance can be obtained on the first side and the second side. Therefore, defects appearing only on one side of the object can be identified with high accuracy.
 本開示の第7の形態によれば、選別装置が提供される。この選別装置は、第1ないし第6のいずれかの形態の測定装置と、識別部の識別結果に基づいて、対象物の選別を行うように構成された選別部と、を備えている。この選別装置によれば、第1ないし第6の形態と同様の効果が得られる。例えば、電磁波照射源の発熱による温度上昇および消費電力を低減しつつ、選別精度を向上できる。 According to a seventh aspect of the present disclosure, a sorting device is provided. This sorting device includes a measuring device of any one of the first to sixth forms, and a sorting section configured to sort objects based on the identification result of the identifying section. According to this sorting device, effects similar to those of the first to sixth embodiments can be obtained. For example, sorting accuracy can be improved while reducing temperature rise and power consumption due to heat generated by the electromagnetic wave irradiation source.
第1実施形態による測定装置の概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a measuring device according to a first embodiment. 一つの対象物と、センサの走査ナンバーと、の関係を示す説明図である。FIG. 3 is an explanatory diagram showing the relationship between one object and the scan number of a sensor. 第1実施形態による、光源の点灯パターンの一例を示すタイミングチャートである。5 is a timing chart showing an example of a lighting pattern of a light source according to the first embodiment. 比較例としての、光源の点灯パターンの一例を示すタイミングチャートである。7 is a timing chart showing an example of a lighting pattern of a light source as a comparative example. 第2実施形態による、光源の点灯パターンの一例を示すタイミングチャートである。7 is a timing chart showing an example of a lighting pattern of a light source according to a second embodiment. 第3実施形態による、光源の点灯パターンの一例を示すタイミングチャートである。7 is a timing chart showing an example of a lighting pattern of a light source according to a third embodiment. 第4実施形態による選別装置の概略構成を示す模式図である。FIG. 3 is a schematic diagram showing a schematic configuration of a sorting device according to a fourth embodiment.
 A.第1実施形態:
 図1は、第1実施形態による測定装置10の概略構成を示す模式図である。測定装置10は、対象物90の状態(換言すれば、品位)を測定するための装置である。以下では、測定装置10によって、対象物90の一例としての米粒(より具体的には、玄米または精白米)の品位(整粒、未熟粒、着色粒、異物(例えば、小石、泥、ガラス片など)など)を測定するものとして説明する。ただし、対象物90は、米粒に限られるものではなく、任意の粒状物であってもよい。例えば、対象物90は、籾、麦粒、豆類(大豆、ひよこ豆、枝豆など)、樹脂(ペレット等)、ゴム片等であってもよい。
A. First embodiment:
FIG. 1 is a schematic diagram showing a schematic configuration of a measuring device 10 according to the first embodiment. The measuring device 10 is a device for measuring the state (in other words, the quality) of the object 90. In the following, the quality of rice grains (more specifically, brown rice or polished rice) as an example of the target object 90 (regular grains, immature grains, colored grains, foreign substances (for example, pebbles, mud, glass pieces) is measured by the measuring device 10. etc.)) will be explained as something to be measured. However, the object 90 is not limited to rice grains, and may be any granular object. For example, the object 90 may be rice, wheat grains, legumes (soybeans, chickpeas, edamame, etc.), resins (pellets, etc.), rubber pieces, or the like.
 図1に示すように、測定装置10は、第1の光源ユニット20と、第2の光源ユニット30と、第1のセンサ51と、第2のセンサ52と、貯留タンク71と、フィーダ72と、シュート73と、排出樋74と、コントローラ80と、を備えている。コントローラ80は、測定装置10の動作全般を制御する。コントローラ80は、識別部81および照射制御部82としても機能する。コントローラ80の機能は、所定のプログラムをCPUが実行することによって実現されてもよいし、専用回路によって実現されてもよい。識別部81および照射制御部82の機能は、一体的な一つの装置によって実現されてもよいし、個別の装置によってそれぞれ実現されてもよい。コントローラ80の機能の詳細については後述する。 As shown in FIG. 1, the measuring device 10 includes a first light source unit 20, a second light source unit 30, a first sensor 51, a second sensor 52, a storage tank 71, and a feeder 72. , a chute 73, a discharge gutter 74, and a controller 80. The controller 80 controls the overall operation of the measuring device 10. The controller 80 also functions as an identification section 81 and an irradiation control section 82. The functions of the controller 80 may be realized by the CPU executing a predetermined program, or may be realized by a dedicated circuit. The functions of the identification section 81 and the irradiation control section 82 may be realized by one integrated device, or may be realized by separate devices. Details of the functions of the controller 80 will be described later.
 貯留タンク71は、対象物90を一時的に貯留する。フィーダ72は、貯留タンク71に貯留された対象物90を、対象物を移送するための移送部の一例としてのシュート73上に供給する。シュート73上に供給された対象物90は、シュート73上を下方に向けて滑走し、シュート73下端から落下して、排出樋74に導かれる。シュート73は、多数の対象物90を同時に落下させることができる所定幅を有している。移送部として、シュート73に代えて、コンベアが使用されてもよい。 The storage tank 71 temporarily stores the object 90. The feeder 72 supplies the object 90 stored in the storage tank 71 onto a chute 73, which is an example of a transfer section for transferring the object. The object 90 supplied onto the chute 73 slides downward on the chute 73, falls from the lower end of the chute 73, and is guided to the discharge gutter 74. The chute 73 has a predetermined width that allows a large number of objects 90 to fall at the same time. Instead of the chute 73, a conveyor may be used as the transfer section.
 第1の光源ユニット20および第2の光源ユニット30の各々は、シュート73から滑り落ちた対象物90(つまり、シュート73から落下中の対象物90)に対して光を照射する。この照射箇所は、シュート73と排出樋74との間に位置する。なお、代替実施形態では、シュート73上を滑走中の対象物90に対して光が照射されてもよい。また、シュート73に代えて、コンベアが使用される場合には、コンベア上で移送中の対象物90、または、コンベアから落下中の対象物90に対して光が照射されてもよい。 Each of the first light source unit 20 and the second light source unit 30 irradiates light onto the object 90 that has slipped off the chute 73 (that is, the object 90 that is falling from the chute 73). This irradiation location is located between the chute 73 and the discharge gutter 74. Note that in an alternative embodiment, the object 90 sliding on the chute 73 may be irradiated with light. Further, when a conveyor is used instead of the chute 73, light may be irradiated onto the object 90 being transferred on the conveyor or the object 90 falling from the conveyor.
 本実施形態では、第1の光源ユニット20および第2の光源ユニット30の各々は、可視光を照射するための光源ユニットである。第1の光源ユニット20は、対象物90の移送経路(換言すれば、シュート73からの落下軌跡)に対して一方側(フロント側とも呼ぶ)に配置されている。一方、第2の光源ユニット30は、対象物90の移送経路に対して他方側(リア側とも呼ぶ)に配置されている。 In this embodiment, each of the first light source unit 20 and the second light source unit 30 is a light source unit for emitting visible light. The first light source unit 20 is arranged on one side (also called the front side) with respect to the transport path of the object 90 (in other words, the falling trajectory from the chute 73). On the other hand, the second light source unit 30 is arranged on the other side (also called the rear side) with respect to the transport path of the object 90.
 フロント側に配置された第1の光源ユニット20は、フロント側赤色光24を放出するフロント側赤色光源21と、フロント側緑色光25を放出するフロント側緑色光源22と、フロント側青色光26を放出するフロント側青色光源23と、を備えている。リア側に配置された第2の光源ユニット30は、第1の光源ユニット20と同一の波長領域の光を放出する。具体的には、第2の光源ユニット30は、リア側赤色光34を放出するリア側赤色光源31と、リア側緑色光35を放出するリア側緑色光源32と、リア側青色光36を放出するリア側青色光源33と、を備えている。本実施形態では、第1の光源ユニット20および第2の光源ユニット30の各々は、複数のLEDがシュート73の幅方向に配列されたライン光源である。第1の光源ユニット20および第2の光源ユニット30の仕様(例えば、数、発光形式、波長領域など)は、特に限定されない。また、光源21~23のレイアウトも特に限定されない。例えば、光源21~23は、各色のLEDがシュート73の幅方向に平行に延在するように(つまり、色ごとの三つのラインが形成されるように)配置されてもよい。あるいは、光源21~23は、各色のLEDが、シュート73の幅方向に沿って交互に(つまり、三色のLEDで一つのラインを形成するように)配置されてもよい。この点は、光源31~33についても同様である。 The first light source unit 20 disposed on the front side includes a front red light source 21 that emits front red light 24 , a front green light source 22 that emits front green light 25 , and a front blue light 26 . A front-side blue light source 23 that emits light is provided. The second light source unit 30 disposed on the rear side emits light in the same wavelength range as the first light source unit 20. Specifically, the second light source unit 30 includes a rear red light source 31 that emits rear red light 34 , a rear green light source 32 that emits rear green light 35 , and a rear green light source 32 that emits rear blue light 36 . The rear side blue light source 33 is provided. In this embodiment, each of the first light source unit 20 and the second light source unit 30 is a line light source in which a plurality of LEDs are arranged in the width direction of the chute 73. The specifications (for example, number, light emission format, wavelength range, etc.) of the first light source unit 20 and the second light source unit 30 are not particularly limited. Furthermore, the layout of the light sources 21 to 23 is not particularly limited. For example, the light sources 21 to 23 may be arranged so that the LEDs of each color extend parallel to the width direction of the chute 73 (that is, three lines for each color are formed). Alternatively, in the light sources 21 to 23, LEDs of each color may be arranged alternately along the width direction of the chute 73 (that is, three colors of LEDs form one line). The same applies to the light sources 31 to 33.
 第1のセンサ51および第2のセンサ52の各々は、光学センサであり、赤色光、緑色光および青色光をそれぞれ個別に検出可能である。第1のセンサ51および第2のセンサ52の各々は、本実施形態ではカラーCCDセンサであるが、カラーCMOSセンサなどの他の形式のカラーセンサであってもよい。本実施形態では、第1のセンサ51および第2のセンサ52の各々は、複数の受光素子がシュート73の幅方向に配列されたラインセンサであるが、エリアセンサであってもよい。第1のセンサ51および第2のセンサ52の仕様は、特に限定されず、第1の光源ユニット20および第2の光源ユニット30の仕様に応じて任意に決定され得る。第1のセンサ51はフロント側に配置され、第2のセンサ52はリア側に配置される。 Each of the first sensor 51 and the second sensor 52 is an optical sensor, and can individually detect red light, green light, and blue light. Although each of the first sensor 51 and the second sensor 52 is a color CCD sensor in this embodiment, it may be another type of color sensor such as a color CMOS sensor. In this embodiment, each of the first sensor 51 and the second sensor 52 is a line sensor in which a plurality of light receiving elements are arranged in the width direction of the chute 73, but may be an area sensor. The specifications of the first sensor 51 and the second sensor 52 are not particularly limited, and can be arbitrarily determined according to the specifications of the first light source unit 20 and the second light source unit 30. The first sensor 51 is placed on the front side, and the second sensor 52 is placed on the rear side.
 フロント側の第1のセンサ51は、フロント側赤色光源21、フロント側緑色光源22およびフロント側青色光源23からそれぞれ放出され、対象物90で反射されたフロント側赤色光24、フロント側緑色光25およびフロント側青色光26を検出可能である。第1のセンサ51は、さらに、リア側赤色光源31、リア側緑色光源32およびリア側青色光源33からそれぞれ放出され、対象物90を透過したリア側赤色光34、リア側緑色光35およびリア側青色光36を検出可能である。 The first sensor 51 on the front side receives the front red light 24 and the front green light 25 emitted from the front red light source 21, the front green light source 22, and the front blue light source 23, respectively, and reflected by the object 90. and front side blue light 26 can be detected. The first sensor 51 further detects the rear red light 34, the rear green light 35, and the rear red light 34, the rear green light 35 and the rear Side blue light 36 can be detected.
 リア側の第2のセンサ52は、リア側赤色光源31、リア側緑色光源32およびリア側青色光源33からそれぞれ放出され、対象物90で反射されたリア側赤色光34、リア側緑色光35およびリア側青色光36を検出可能である。第2のセンサ52は、さらに、フロント側赤色光源21、フロント側緑色光源22およびフロント側青色光源23からそれぞれ放出され、対象物90を透過したフロント側赤色光24、フロント側緑色光25およびフロント側青色光26を検出可能である。 The second sensor 52 on the rear side detects the rear red light 34 and the rear green light 35 emitted from the rear red light source 31, the rear green light source 32, and the rear blue light source 33, respectively, and reflected by the object 90. and rear side blue light 36 can be detected. The second sensor 52 further detects the front red light 24, the front green light 25, and the front Side blue light 26 can be detected.
 以下では、第1のセンサ51および/または第2のセンサ52によって検出される、対象物90で反射された反射光、および/または、対象物90を透過した透過光を、対象物90に関連付けられた光とも呼ぶ。 Below, the reflected light reflected by the target object 90 and/or the transmitted light transmitted through the target object 90 detected by the first sensor 51 and/or the second sensor 52 will be associated with the target object 90. It is also called the reflected light.
 周知のように、第1のセンサ51および第2のセンサ52は、一つの対象物90について複数の走査を行う。換言すれば、第1のセンサ51および第2のセンサ52は、一つの対象物90に関連付けられた光を複数の走査期間の各々で検出する。走査期間とは、一つの走査の開始から終了までの時間である。各走査で得られた画像を合成することにより、当該一つの対象物90の全体画像が取得される。「走査期間」は、光学センサがCCDセンサである場合には、受光素子が電荷の蓄積を開始してから、電荷の蓄積を終了するまでの時間として定義され得る。「走査期間」は、光学センサがCMOSセンサである場合には、受光素子が電荷の蓄積を開始してから、蓄積した電荷を出力するまでの時間として定義され得る。 As is well known, the first sensor 51 and the second sensor 52 perform multiple scans on one object 90. In other words, the first sensor 51 and the second sensor 52 detect light associated with one object 90 in each of the plurality of scanning periods. A scanning period is the time from the start to the end of one scan. By combining the images obtained in each scan, an entire image of the one object 90 is obtained. When the optical sensor is a CCD sensor, the "scanning period" can be defined as the time from when the light receiving element starts accumulating electric charge until it finishes accumulating electric charge. When the optical sensor is a CMOS sensor, the "scanning period" can be defined as the time from when the light receiving element starts accumulating charges until outputting the accumulated charges.
 図2は、一つの対象物90と、第1のセンサ51および第2のセンサ52の走査ナンバー(何回目の走査であるかを表す数字)と、の関係を示す説明図である。図2に示すように、本実施形態では、一つの対象物90について8回(説明を簡素化するために、実際よりも少ない回数であるものとして例示している)の走査によって画像データが取得される。図2に示される1~8の数字は、該当する領域の画像データが取得される走査のナンバーを示している。例えば、「1」が付された領域は、1回目の走査によって画像データが取得されることを示している。 FIG. 2 is an explanatory diagram showing the relationship between one object 90 and the scan numbers (numbers indicating the number of scans) of the first sensor 51 and the second sensor 52. As shown in FIG. 2, in this embodiment, image data is acquired by scanning one object 90 eight times (in order to simplify the explanation, the number of times is less than the actual number). be done. The numbers 1 to 8 shown in FIG. 2 indicate the scan numbers from which image data of the corresponding area is acquired. For example, an area marked with "1" indicates that image data is acquired by the first scan.
 第1のセンサ51および第2のセンサ52からの出力、すなわち、検出された光の強度を表すアナログ信号は、AC/DCコンバータ(図示省略)によってデジタル信号に変換される。このデジタル信号(換言すれば、アナログ信号に対応する階調値)はコントローラ80に入力される。コントローラ80は、入力された光の検出結果(つまり画像)に基づいて、識別部81の処理として、対象物90の状態を識別する。具体的には、識別部81は、画像の階調値と、閾値と、を比較することによって、対象物90が良品(整粒)であるか、それとも、不良品(例えば、未熟粒、着色粒)および/または異物であるかを識別する。この識別は、対象物90の各々について行われる。 The outputs from the first sensor 51 and the second sensor 52, that is, analog signals representing the intensity of the detected light, are converted into digital signals by an AC/DC converter (not shown). This digital signal (in other words, the gradation value corresponding to the analog signal) is input to the controller 80. The controller 80 identifies the state of the target object 90 based on the input light detection result (that is, the image) as a process performed by the identification unit 81 . Specifically, the identification unit 81 determines whether the object 90 is a good product (sized grain) or a defective product (for example, immature grain, colored grain) by comparing the gradation value of the image and the threshold value. particles) and/or foreign objects. This identification is performed for each object 90.
 第1の光源ユニット20および第2の光源ユニット30からの可視光の照射は、コントローラ80の照射制御部82によって制御される。照射制御部82は、予め定められた規則に従って、フロント側赤色光源21、フロント側緑色光源22、フロント側青色光源23、リア側赤色光源31、リア側緑色光源32およびリア側青色光源33の点灯パターンを制御する。図3は、第1の光源ユニット20および第2の光源ユニット30の点灯パターンの一例を示すタイミングチャートである。図3では、第1のセンサ51および第2のセンサ52の走査期間と、第1の光源ユニット20および第2の光源ユニット30の点灯パターンと、が対応付けられている。図3において、「R」は赤色、「G」は緑色、「B」は青色をそれぞれ表している。また、「走査No.」は、図2に示された走査ナンバーに対応している。 Irradiation of visible light from the first light source unit 20 and the second light source unit 30 is controlled by the irradiation control section 82 of the controller 80. The irradiation control unit 82 turns on the front red light source 21, the front green light source 22, the front blue light source 23, the rear red light source 31, the rear green light source 32, and the rear blue light source 33 according to predetermined rules. Control the pattern. FIG. 3 is a timing chart showing an example of a lighting pattern of the first light source unit 20 and the second light source unit 30. In FIG. 3, the scanning periods of the first sensor 51 and the second sensor 52 are associated with the lighting patterns of the first light source unit 20 and the second light source unit 30. In FIG. 3, "R" represents red, "G" represents green, and "B" represents blue. Further, "scan number" corresponds to the scan number shown in FIG.
 照射制御部82は、光源21~23,31~33の各々から照射する光の強度(光度とも称され、光源の明るさを表す)を変更可能に構成される。本実施形態では、照射制御部82は、光源21~23,31~33のLEDに印加する電圧を変更することによって、光度を変更する。図3に示すパルス形状は、LEDに印加される電圧(順方向の電圧)のレベルを表している。具体的には、「OFF」は、電圧ゼロのレベルを表し、「ON(V1)」は、電圧V1のレベルを表し、「ON(V2)」は、電圧V2(V2>V1)のレベルを表している。LEDは、所定値(VFとも称される)以上の電圧が印加されたときに発光し、電圧が所定値以上のときは、電圧が上昇するほど電流が増大し、光度が増大する特性を有している。電圧V1,V2は、この所定値以上の値に設定される。つまり、電圧V1,V2の各々は、LEDが発光するように設定される。V2>V1であるから、電圧V2が印加されたときのLEDの光度は、電圧V1が印加されたときのLEDの光度よりも大きい。以下の説明では、電圧V1が印加されたときの光源の光度を第1の光度と呼び、電圧V2が印加されたときの光源の光度を第2の光度と呼ぶ。また、第1の光度で光が照射される期間を第1の期間と呼び、第2の光度で光が照射される期間を第2の期間と呼ぶ。 The irradiation control unit 82 is configured to be able to change the intensity (also referred to as luminous intensity, which represents the brightness of the light source) of the light emitted from each of the light sources 21 to 23 and 31 to 33. In this embodiment, the irradiation control unit 82 changes the luminous intensity by changing the voltage applied to the LEDs of the light sources 21 to 23 and 31 to 33. The pulse shape shown in FIG. 3 represents the level of the voltage (forward voltage) applied to the LED. Specifically, "OFF" represents the level of voltage zero, "ON (V1)" represents the level of voltage V1, and "ON (V2)" represents the level of voltage V2 (V2>V1). represents. LEDs emit light when a voltage higher than a predetermined value (also called VF) is applied, and when the voltage is higher than a predetermined value, the LED has the characteristic that as the voltage increases, the current increases and the luminous intensity increases. are doing. Voltages V1 and V2 are set to values greater than this predetermined value. That is, each of the voltages V1 and V2 is set so that the LED emits light. Since V2>V1, the luminous intensity of the LED when voltage V2 is applied is greater than the luminous intensity of the LED when voltage V1 is applied. In the following description, the luminous intensity of the light source when the voltage V1 is applied is referred to as a first luminous intensity, and the luminous intensity of the light source when the voltage V2 is applied is referred to as a second luminous intensity. Further, a period in which light is irradiated with a first luminous intensity is referred to as a first period, and a period in which light is irradiated with a second luminous intensity is referred to as a second period.
 図3に示すように、照射制御部82は、第1の照射期間と第2の照射期間とが出現するように光源21~23,31~33の各々を制御する。特に、本実施形態では、照射制御部82は、光源21~23,31~33には、常に、電圧V1またはV2が印加される。つまり、光源21~23,31~33は、常に光の照射を行う(光が照射されない期間は存在しない)。 As shown in FIG. 3, the irradiation control unit 82 controls each of the light sources 21 to 23 and 31 to 33 so that a first irradiation period and a second irradiation period appear. In particular, in this embodiment, the irradiation control section 82 always applies the voltage V1 or V2 to the light sources 21-23, 31-33. That is, the light sources 21 to 23 and 31 to 33 always emit light (there is no period during which no light is emitted).
 また、照射制御部82は、各走査期間内で、第1の照射期間と第2の照射期間とが出現するか、または、第1の照射期間は出現するが、第2の照射期間は出現しないように光源21~23,31~33の各々を制御する。図3に示す例では、電圧V2の1回の印加(第2の光度の光の一回の照射)は、一つの走査期間内で開始され、終了する。ただし、第2の照射期間は、複数の走査期間の境界を横断するように設定されてもよいし、あるいは、一つの走査期間以上に長く設定されてもよい。また、図3に示す例では、一つの走査期間内で電圧V2が印加される回数(つまり、電圧V2が連続的に印加される期間の数)は1回であるが、電圧V2が複数回印加されてもよい。例えば、一つの走査期間内で、電圧がV1,V2,V1,V2,V1の順で変更されてもよい。 Further, the irradiation control unit 82 determines whether the first irradiation period and the second irradiation period appear within each scanning period, or the first irradiation period appears but the second irradiation period does not appear. Each of the light sources 21 to 23 and 31 to 33 is controlled so as not to In the example shown in FIG. 3, one application of voltage V2 (one irradiation of light of the second luminous intensity) starts and ends within one scanning period. However, the second irradiation period may be set to cross the boundaries of a plurality of scanning periods, or may be set to be longer than one scanning period. In addition, in the example shown in FIG. 3, the number of times the voltage V2 is applied within one scanning period (that is, the number of periods in which the voltage V2 is continuously applied) is one, but the voltage V2 is applied multiple times. may be applied. For example, the voltages may be changed in the order of V1, V2, V1, V2, and V1 within one scanning period.
 図3に示すように、フロント側赤色光源21は、全ての走査期間の各々において第1の照射期間と第2の照射期間とが出現するように点灯する。フロント側緑色光源22およびフロント側青色光源23の各々は、全ての走査期間の各々において第1の照射期間と第2の照射期間とが出現するように点灯する。リア側赤色光源31は、奇数の走査ナンバーを有する走査期間の各々において第1の照射期間と第2の照射期間とが出現し、偶数の走査ナンバーを有する走査期間の各々においては第1の照射期間は出現するが、第2の照射期間は出現しないように点灯する。リア側緑色光源32およびリア側青色光源33の各々は、全ての走査期間の各々において第1の照射期間と第2の照射期間とが出現するように点灯する。 As shown in FIG. 3, the front-side red light source 21 is turned on so that a first irradiation period and a second irradiation period appear in each of all scanning periods. Each of the front green light source 22 and the front blue light source 23 is turned on so that a first irradiation period and a second irradiation period appear in each of all scanning periods. The rear red light source 31 has a first irradiation period and a second irradiation period in each of the scan periods having an odd number of scan numbers, and a first irradiation period and a second irradiation period in each of the scan periods having an even number of scan numbers. The period appears, but the second irradiation period is lit so that it does not appear. Each of the rear green light source 32 and the rear blue light source 33 is turned on so that a first irradiation period and a second irradiation period appear in each of all scanning periods.
 本実施形態では、赤色光についての第2の照射期間は、緑色光および青色光の各々の第2の照射期間よりも長く設定されている。ただし、各色の光の第2の照射期間は、取得すべき画像の望ましい輝度に応じて適宜設定され得る。例えば、各色の光の第2の照射期間は同じであってもよい。 In this embodiment, the second irradiation period for red light is set longer than the second irradiation period for each of green light and blue light. However, the second irradiation period of each color of light can be set as appropriate depending on the desired brightness of the image to be acquired. For example, the second irradiation period of each color of light may be the same.
 本実施形態では、第2の照射期間は、対応する走査期間(第2の照射期間が設定された走査期間)の開始から遅れたタイミングで始まる。また、第2の照射期間は、対応する走査期間の終了よりも早いタイミングで終了する。これらの一方、または、両方によれば、いずれかの走査期間の第2の光度(相対的に大きい光度)の光が、隣接する走査期間にノイズとして混入することがない。 In this embodiment, the second irradiation period starts at a timing delayed from the start of the corresponding scan period (the scan period in which the second irradiation period is set). Moreover, the second irradiation period ends at a timing earlier than the end of the corresponding scanning period. According to one or both of these, the light of the second luminous intensity (relatively high luminous intensity) of any scanning period does not mix into the adjacent scanning period as noise.
 図3に示す点灯パターンによれば、奇数の走査ナンバーを有する走査期間においては、フロント側の第1のセンサ51では、RGBそれぞれの反射透過画像が取得される。反射透過画像とは、反射光と透過光とが合成された光の検出結果に基づく画像である。例えば、赤色光に関しては、フロント側赤色光源21から放出され、対象物90で反射されたフロント側赤色光24と、リア側赤色光源31から放出され、対象物90を透過したリア側赤色光34と、が合成された光の検出結果に基づく画像が取得される。同様に、奇数の走査ナンバーを有する走査期間においては、リア側の第2のセンサ52でも、RGBそれぞれの反射透過画像が取得される。 According to the lighting pattern shown in FIG. 3, in the scan period having an odd scan number, the first sensor 51 on the front side acquires RGB reflection and transmission images. A reflection-transmission image is an image based on a detection result of light that is a combination of reflected light and transmitted light. For example, regarding red light, there is the front red light 24 emitted from the front red light source 21 and reflected by the object 90, and the rear red light 34 emitted from the rear red light source 31 and transmitted through the object 90. An image is obtained based on the combined light detection results. Similarly, in the scanning period having an odd scanning number, the second sensor 52 on the rear side also acquires RGB reflection and transmission images.
 一方、偶数の走査ナンバーを有する走査期間においては、フロント側の第1のセンサ51では、赤色の反射画像(より正確には、リア側赤色光源31からの第1の光度の光が対象物90を透過した成分が若干、混入している)と、緑色および青色それぞれの反射透過画像が取得される。反射画像とは、反射光の検出結果に基づく画像である。同様に、偶数の走査ナンバーを有する走査期間においては、リア側の第2のセンサ52では、赤色の透過画像(より正確には、リア側赤色光源31からの第1の光度の光が対象物90で反射された成分が若干、混入している)と、緑色および青色それぞれの反射透過画像が取得される。透過画像とは、透過光の検出結果に基づく画像である。なお、赤色の反射画像への混入成分、および/または、赤色の透過画像への混入成分を除去したい場合には、偶数の走査ナンバーを有する走査期間においては、リア側赤色光源31を消灯してもよい(リア側赤色光源31に電圧を印加しなくてもよい)。 On the other hand, in the scanning period having an even scanning number, the front-side first sensor 51 detects a red reflected image (more precisely, the light of the first luminous intensity from the rear-side red light source 31 (contains some components that have passed through), and reflection-transmission images of green and blue are obtained. A reflected image is an image based on the detection result of reflected light. Similarly, in a scanning period having an even scanning number, the rear second sensor 52 transmits a red transmitted image (more precisely, the light of the first luminous intensity from the rear red light source 31 is transmitted to the target object. 90), green and blue reflection-transmission images are obtained. The transmitted image is an image based on the detection result of transmitted light. Note that if you want to remove the red components mixed into the reflected image and/or the red components mixed into the transmitted image, the rear red light source 31 is turned off during the scanning periods with even scan numbers. (It is not necessary to apply voltage to the rear red light source 31).
 識別部81は、このようにしてフロント側およびリア側の各々で取得される赤色、緑色および青色の各種画像に基づいて、対象物90の状態(品位)を識別する。識別に使用する画像の種類は、識別すべき状態の種類ごとに定められる。コントローラ80は、第1のセンサ51および第2のセンサ52によって取得された画像に基づく演算処理によって、識別部81による識別処理に使用する画像の種類を増やしてもよい。そのような演算は、例えば、隣り合う二つの走査期間で取得された画像データに基づいて行うことができる。例えば、走査ナンバーが2N-1(Nは自然数)の走査期間において第1のセンサ51によって取得される赤色の反射透過画像の階調値から、走査ナンバーが2Nの走査期間において第1のセンサ51によって取得される赤色の反射画像の階調値を減算することによって、赤色の透過画像を取得することができる。また、走査ナンバーが2N-1の走査期間において第2のセンサ52によって取得される赤色の反射透過画像の階調値から、走査ナンバーが2Nの走査期間において第2のセンサ52によって取得される赤色の透過画像の階調値を減算することによって、赤色の反射画像を取得することができる。 The identification unit 81 identifies the state (quality) of the object 90 based on the various red, green, and blue images thus obtained on the front side and the rear side, respectively. The type of image used for identification is determined for each type of state to be identified. The controller 80 may increase the types of images used for the identification process by the identification unit 81 by performing calculation processing based on the images acquired by the first sensor 51 and the second sensor 52. Such a calculation can be performed, for example, based on image data acquired in two adjacent scanning periods. For example, from the gradation value of the red reflection/transmission image acquired by the first sensor 51 in the scanning period with the scanning number 2N-1 (N is a natural number), the first sensor 51 in the scanning period with the scanning number 2N A red transmission image can be obtained by subtracting the tone values of the red reflection image obtained by . Further, from the gradation value of the red reflection/transmission image acquired by the second sensor 52 in the scanning period with the scanning number 2N-1, the red color acquired by the second sensor 52 in the scanning period with the scanning number 2N By subtracting the tone values of the transmitted image, a red reflected image can be obtained.
 上述した測定装置10によれば、対象物90に対して第1の光度で光を照射する第1の照射期間と、対象物90に対して第1の光度よりも大きい第2の光度で光を照射する第2の照射期間と、が存在する。したがって、対象物90に対して常時、第2の光度で光を照射する(常に電圧V2を印加する)構成に比べて、あるいは、対象物90に対して、対応する走査期間の全体に亘って第2の光度で光を照射する構成に比べて、光源21~23,31~33の発熱による温度上昇および消費電力を低減することができる。しかも、電圧V2を印加する走査期間では、第1の照射期間と第2の照射期間とが存在するので、第2の照射期間が長い時間に亘って継続することがない。したがって、光源21~23,31~33の発熱による温度上昇を、より効率的に低減できる。特に、上述の例では、電圧V2の1回の印加は、一つの走査期間内で開始され、終了するので、電圧V2が連続的に印加される期間がより短くなり、そのような効果は、いっそう顕著になる。 According to the measurement device 10 described above, the object 90 is irradiated with light at a first luminous intensity during the first irradiation period, and the object 90 is irradiated with light at a second luminous intensity greater than the first luminous intensity. There is a second irradiation period in which irradiation is performed. Therefore, compared to a configuration in which the object 90 is always irradiated with light at the second luminous intensity (voltage V2 is always applied), or the object 90 is irradiated with light over the entire corresponding scanning period. Compared to a configuration in which light is emitted at the second luminous intensity, temperature rise and power consumption due to heat generated by the light sources 21 to 23 and 31 to 33 can be reduced. Furthermore, since the first irradiation period and the second irradiation period exist in the scanning period during which the voltage V2 is applied, the second irradiation period does not continue for a long time. Therefore, the temperature rise due to heat generated by the light sources 21 to 23 and 31 to 33 can be reduced more efficiently. In particular, in the above example, one application of voltage V2 starts and ends within one scanning period, so the period during which voltage V2 is continuously applied is shorter, and such an effect is It becomes even more noticeable.
 また、第2の光度で光を照射する第2の照射期間以外は、光を照射しない構成(図4に示す比較例)と比べて、識別部81による対象物90の状態の識別精度を向上できる。具体的には、比較例では、対象物90のうちの、光が照射されない(電圧がゼロの)期間中にセンサの検出領域を通過した部分については、対象物90の状態を識別するための光学情報が取得されない。一方、上述の測定装置10によれば、第2の照射期間だけでなく、第1の照射期間でも、対象物90の状態を識別するための光学情報を取得できる。つまり、比較例と比べて、対象物90の状態を識別するための光学情報を、より広範囲な部分に亘って取得できる。したがって、比較例に比べて、微少な不良の検出能力が向上し、その結果、識別精度を向上できる。光源21~23,31~33のいずれか一つ、または、二つ以上の任意の組合せは、請求の範囲の「電磁波照射源」の非限定的な例である。 In addition, the identification accuracy of the state of the target object 90 by the identification unit 81 is improved compared to the configuration (comparative example shown in FIG. 4) in which no light is irradiated except during the second irradiation period in which light is irradiated at the second luminous intensity. can. Specifically, in the comparative example, for the part of the object 90 that passed through the detection area of the sensor during the period when no light was irradiated (the voltage was zero), the Optical information is not acquired. On the other hand, according to the measurement device 10 described above, optical information for identifying the state of the object 90 can be acquired not only during the second irradiation period but also during the first irradiation period. That is, compared to the comparative example, optical information for identifying the state of the object 90 can be acquired over a wider range. Therefore, compared to the comparative example, the ability to detect minute defects is improved, and as a result, identification accuracy can be improved. Any one of the light sources 21 to 23 and 31 to 33, or any combination of two or more of them, is a non-limiting example of the "electromagnetic wave irradiation source" in the claims.
 さらに、測定装置10によれば、光源21~23,31~33は、光を常に照射するので、対象物90の状態を識別するための情報を常に取得できる。したがって、微少な不良をより確実に検出することができ、識別部81による識別精度をいっそう向上できる。ただし、電圧V1を印加する第1の照射期間の一部が、電圧が印加されない(光が照射されない)非照射期間に置き換えられてもよい。 Further, according to the measuring device 10, the light sources 21 to 23 and 31 to 33 always emit light, so that information for identifying the state of the object 90 can always be obtained. Therefore, minute defects can be detected more reliably, and the identification accuracy by the identification section 81 can be further improved. However, a part of the first irradiation period in which the voltage V1 is applied may be replaced with a non-irradiation period in which no voltage is applied (light is not irradiated).
 さらに、測定装置10によれば、フロント側の光源21~23とリア側の光源31~33とで、同一レベルの電圧V1,V2が印加される(同一レベルの光度での照射が行われる)。したがって、フロント側とリア側とで同等の識別性能を得ることができる。したがって、対象物90の一方側のみに出現する不良を精度良く識別できる。ただし、取得したい画像の特徴に応じて、フロント側の電圧V1および/または電圧V2と、リア側の電圧V1および/または電圧V2とは、異なるレベルに設定されてもよい。電圧V1および/または電圧V2は、検出する光の色ごとに異なるレベルに設定されてもよい。 Furthermore, according to the measuring device 10, the same level of voltages V1 and V2 are applied to the front side light sources 21 to 23 and the rear side light sources 31 to 33 (irradiation with the same level of luminous intensity is performed). . Therefore, it is possible to obtain the same identification performance on the front side and the rear side. Therefore, defects appearing only on one side of the object 90 can be identified with high accuracy. However, the front side voltage V1 and/or voltage V2 and the rear side voltage V1 and/or voltage V2 may be set to different levels depending on the characteristics of the image to be obtained. Voltage V1 and/or voltage V2 may be set to different levels for each color of light to be detected.
 B.第2実施形態:
 以下、図5を参照して第2実施形態について説明する。第2実施形態は、第1の光源ユニット20および第2の光源ユニット30の点灯パターン(より具体的には、フロント側赤色光源21およびリア側赤色光源31の点灯パターン)のみが第1実施形態と異なっており、その他の点については第1実施形態と同じである。図5に示すように、第2実施形態では、奇数の走査ナンバーを有する走査期間では、フロント側赤色光源21に対してのみ電圧V2が印加され、リア側赤色光源31には、電圧V2は印加されない(走査期間の全体に亘って電圧V1が印加される)。一方、偶数の走査ナンバーを有する走査期間では、リア側赤色光源31に対してのみ電圧V2が印加され、フロント側赤色光源21には、電圧V2は印加されない(走査期間の全体に亘って電圧V1が印加される)。
B. Second embodiment:
The second embodiment will be described below with reference to FIG. In the second embodiment, only the lighting pattern of the first light source unit 20 and the second light source unit 30 (more specifically, the lighting pattern of the front side red light source 21 and the rear side red light source 31) is different from that of the first embodiment. The second embodiment is different from the first embodiment, and the other points are the same as the first embodiment. As shown in FIG. 5, in the second embodiment, the voltage V2 is applied only to the front red light source 21, and the voltage V2 is applied to the rear red light source 31 in the scanning period having an odd scan number. (voltage V1 is applied throughout the scanning period). On the other hand, in a scan period having an even scan number, the voltage V2 is applied only to the rear red light source 31, and the voltage V2 is not applied to the front red light source 21 (the voltage V1 is applied throughout the scan period). is applied).
 つまり、第2実施形態では、フロント側赤色光源21の第2の照射期間と、リア側赤色光源31の第2の照射期間と、が、重複せず、かつ、交互に出現する。換言すれば、フロント側赤色光源21に電圧V2が印加され、リア側赤色光源31に電圧V2が印加されない期間と、リア側赤色光源31に電圧V2が印加され、フロント側赤色光源21に電圧V2が印加されない期間と、が、重複せず、かつ、交互に出現する。この構成によれば、フロント側赤色光源21およびリア側赤色光源31の各々から照射される第2の光度の光が干渉しない。また、フロント側赤色光源21の第2の照射期間とリア側赤色光源31の第2の照射期間とは交互に出現するので、いずれの第2の照射期間においても、十分な解像度の反射画像および透過画像を取得できる。したがって、対象物90の状態の識別精度を良好に確保できる。 That is, in the second embodiment, the second irradiation period of the front red light source 21 and the second irradiation period of the rear red light source 31 do not overlap and appear alternately. In other words, there is a period in which voltage V2 is applied to the front red light source 21 and voltage V2 is not applied to the rear red light source 31, and a period in which voltage V2 is applied to the rear red light source 31 and voltage V2 is applied to the front red light source 21. A period in which is not applied and a period in which is not applied do not overlap and appear alternately. According to this configuration, the lights of the second luminous intensity emitted from each of the front red light source 21 and the rear red light source 31 do not interfere with each other. In addition, since the second irradiation period of the front side red light source 21 and the second irradiation period of the rear side red light source 31 appear alternately, in any second irradiation period, a reflected image with sufficient resolution and Transparent images can be obtained. Therefore, the accuracy of identifying the state of the object 90 can be ensured favorably.
 また、図5の例では、フロント側赤色光源21に電圧V2が印加される期間と、リア側赤色光源31に電圧V2が印加される期間と、の間に、フロント側赤色光源21およびリア側赤色光源31の両方に電圧V1が印加される期間が介在している。このため、フロント側赤色光源21から第2の光度で照射された光と、リア側赤色光源31から第2の光度で照射された光と、が干渉した状態で、光が第1のセンサ51および/または第2のセンサ52に検出されることを容易に抑制できる。したがって、より正確な反射光および/または透過光を検出でき、ひいては、対象物90の状態の識別精度を向上できる。 In the example of FIG. 5, between the period in which the voltage V2 is applied to the front red light source 21 and the period in which the voltage V2 is applied to the rear red light source 31, the front red light source 21 and the rear red light source 21 There is a period in which the voltage V1 is applied to both of the red light sources 31. Therefore, the light emitted from the front red light source 21 at the second luminous intensity and the light emitted from the rear red light source 31 at the second luminous intensity interfere with each other, and the light is transmitted to the first sensor 51. And/or detection by the second sensor 52 can be easily suppressed. Therefore, reflected light and/or transmitted light can be detected more accurately, and the accuracy of identifying the state of the object 90 can be improved.
 このような点灯パターンによれば、フロント側赤色光源21およびリア側赤色光源31によって、赤色の反射画像および透過画像を取得できる。コントローラ80は、第1のセンサ51および第2のセンサ52によって取得された画像に基づく演算処理によって、識別部81による識別処理に使用する画像の種類を増やしてもよい。例えば、走査ナンバーが2N-1(Nは自然数)の走査期間において第1のセンサ51によって取得される赤色の反射画像の階調値と、走査ナンバーが2Nの走査期間において第1のセンサ51によって取得される赤色の透過画像の階調値と、を加算することによって、赤色の反射透過画像を取得してもよい。 According to such a lighting pattern, a red reflected image and a transmitted image can be obtained by the front red light source 21 and the rear red light source 31. The controller 80 may increase the types of images used for the identification process by the identification unit 81 by performing calculation processing based on the images acquired by the first sensor 51 and the second sensor 52. For example, the gradation value of the red reflection image acquired by the first sensor 51 in the scan period with the scan number 2N-1 (N is a natural number) and the tone value of the red reflection image acquired by the first sensor 51 in the scan period with the scan number 2N A red reflection-transmission image may be acquired by adding the gradation values of the acquired red transmission image.
 フロント側赤色光源21およびリア側赤色光源31は、請求の範囲における「第1の照射源」および「第2の照射源」の非限定的な例である。また、フロント側赤色光源21の第2の照射期間、および、リア側赤色光源31の第2の照射期間は、請求の範囲における「第3の照射期間」および「第4の照射期間」の非限定的な例である。 The front red light source 21 and the rear red light source 31 are non-limiting examples of the "first irradiation source" and the "second irradiation source" in the claims. Further, the second irradiation period of the front side red light source 21 and the second irradiation period of the rear side red light source 31 are non-existences of the "third irradiation period" and the "fourth irradiation period" in the claims. This is a limited example.
 C.第3実施形態:
 以下、図6を参照して第3実施形態について説明する。第3実施形態は、第1の光源ユニット20および第2の光源ユニット30の点灯パターンのみが第2実施形態と異なっており、その他の点については第2実施形態と同じである。図6に示すように、第3実施形態では、3M-2(Mは自然数)回目の走査期間では、フロント側赤色光源21およびリア側赤色光源31に対してのみ電圧V2が印加され、その他の光源には、電圧V2は印加されない(走査期間の全体に亘って電圧V1が印加される)。3M-1回目の走査期間では、フロント側緑色光源22およびリア側緑色光源32に対してのみ電圧V2が印加され、その他の光源には、電圧V2は印加されない(走査期間の全体に亘って電圧V1が印加される)。3Mの走査期間では、フロント側青色光源23およびリア側青色光源33に対してのみ電圧V2が印加され、その他の光源には、電圧V2は印加されない(走査期間の全体に亘って電圧V1が印加される)。
C. Third embodiment:
The third embodiment will be described below with reference to FIG. The third embodiment differs from the second embodiment only in the lighting patterns of the first light source unit 20 and the second light source unit 30, and is otherwise the same as the second embodiment. As shown in FIG. 6, in the third embodiment, during the 3M-2 (M is a natural number) scanning period, the voltage V2 is applied only to the front red light source 21 and the rear red light source 31, and the other No voltage V2 is applied to the light source (voltage V1 is applied throughout the scanning period). 3M-In the first scanning period, the voltage V2 is applied only to the front green light source 22 and the rear green light source 32, and the voltage V2 is not applied to the other light sources (the voltage is applied throughout the scanning period). V1 is applied). During the 3M scanning period, voltage V2 is applied only to the front blue light source 23 and rear blue light source 33, and voltage V2 is not applied to the other light sources (voltage V1 is applied throughout the scanning period). ).
 つまり、第3実施形態では、赤色光源21,31の第2の照射期間と、緑色光源22,32の第2の照射期間と、青色光源23,33の第2の照射期間と、が、重複せず、かつ、交互に出現する。換言すれば、照射する光の波長領域が異なる光源間で、第2の照射期間が重複せず、かつ、交互に出現する。このため、波長領域が異なる光(いずれも、第2の光度の光)が干渉した状態で、光が第1のセンサ51および/または第2のセンサ52に検出されることを容易に抑制できる。 That is, in the third embodiment, the second irradiation period of the red light sources 21 and 31, the second irradiation period of the green light sources 22 and 32, and the second irradiation period of the blue light sources 23 and 33 overlap. No, and they appear alternately. In other words, the second irradiation periods do not overlap and appear alternately between light sources that emit light in different wavelength ranges. For this reason, it is possible to easily prevent the light from being detected by the first sensor 51 and/or the second sensor 52 in a state where the lights in different wavelength ranges (both have the second luminous intensity) interfere with each other. .
 赤色光源21,31の一方または両方は、請求の範囲における「第1の照射源」または「第2の照射源」の非限定的な例になり得る。同様に、緑色光源22,32の一方または両方は、請求の範囲における「第1の照射源」または「第2の照射源」の非限定的な例になり得る。同様に、青色光源23,33の一方または両方は、請求の範囲における「第1の照射源」または「第2の照射源」の非限定的な例になり得る。 One or both of the red light sources 21 and 31 can be a non-limiting example of a "first irradiation source" or a "second irradiation source" in the claims. Similarly, one or both of the green light sources 22, 32 can be a non-limiting example of a "first illumination source" or a "second illumination source" in the claims. Similarly, one or both of the blue light sources 23, 33 can be a non-limiting example of a "first illumination source" or a "second illumination source" in the claims.
 D.第4実施形態:
 以下、図7を参照して第4実施形態について説明する。図7に示すように、第4実施形態による選別装置110は、第1実施形態による測定装置10に加えて、選別部160を備えている点のみが第1実施形態と異なっている。選別部160は、識別部81によって不良品(整粒以外の米粒)と識別された対象物90に向けてエア163を噴射して、対象物90を選別する。具体的には、選別部160は、複数のノズル161と、ノズル161に対応する数(本実施形態では、ノズル161と同数であるが、ノズル161の数と異なっていてもよい)のバルブ162と、を備えている。複数のノズル161は、シュート73の幅方向に配列されている。
D. Fourth embodiment:
The fourth embodiment will be described below with reference to FIG. As shown in FIG. 7, a sorting device 110 according to the fourth embodiment differs from the first embodiment only in that it includes a sorting section 160 in addition to the measuring device 10 according to the first embodiment. The sorting section 160 injects air 163 toward the object 90 that has been identified as a defective product (rice grains other than sized rice grains) by the identification section 81 to separate the object 90 . Specifically, the sorting unit 160 includes a plurality of nozzles 161 and a number of valves 162 corresponding to the number of nozzles 161 (in this embodiment, the number is the same as the number of nozzles 161, but the number may be different from the number of nozzles 161). It is equipped with. The plurality of nozzles 161 are arranged in the width direction of the chute 73.
 複数のノズル161は、複数のバルブ162をそれぞれ介して、コンプレッサ(図示せず)に接続されている。コントローラ80からの制御信号に応じて複数のバルブ162が選択的に開かれることによって、複数のノズル161は、不良品または異物と識別された対象物90に向けてエア163を選択的に噴射する。不良品または異物と識別された対象物90は、エア163によって吹き飛ばされ、シュート73からの落下軌道から逸脱して不良品排出樋175に導かれる(図7に対象物91として示す)。一方、良品(整粒)と識別された対象物90には、エア163は噴射されない。このため、良品(整粒)と識別された対象物90は、落下軌道を変えることなく、良品排出樋174に導かれる(図7に対象物92として示す)。 The plurality of nozzles 161 are connected to a compressor (not shown) via a plurality of valves 162, respectively. By selectively opening the plurality of valves 162 in response to a control signal from the controller 80, the plurality of nozzles 161 selectively inject air 163 toward the object 90 that has been identified as a defective product or a foreign object. . The object 90 identified as a defective product or a foreign object is blown away by the air 163, deviates from the falling trajectory from the chute 73, and is guided to the defective product discharge gutter 175 (shown as the object 91 in FIG. 7). On the other hand, the air 163 is not injected to the object 90 that has been identified as a good product (sorted). Therefore, the object 90 identified as a good product (sorted) is guided to the good product discharge gutter 174 without changing its falling trajectory (shown as the object 92 in FIG. 7).
 なお、シュート73から落下した後の対象物90に向けてエア163を噴射する構成に代えて、シュート73上を滑走中の対象物90に向けてエア163を噴射して、対象物90の移送経路を変更してもよい。また、移送手段として、シュート73に代えて、ベルトコンベヤが使用されてもよい。この場合、ベルトコンベヤの一端から落下する対象物に向けてエアが噴射されてもよい。あるいは、ベルトコンベヤ上で搬送中の対象物に向けてエアが噴射されてもよい。 Note that, instead of the configuration in which the air 163 is injected toward the object 90 after falling from the chute 73, the air 163 is injected toward the object 90 sliding on the chute 73 to transfer the object 90. You may change the route. Moreover, a belt conveyor may be used as the transfer means instead of the chute 73. In this case, air may be injected from one end of the belt conveyor toward the falling object. Alternatively, air may be injected toward the object being conveyed on the belt conveyor.
 照射制御部82は、図3,5,6に示したいずれかの点灯パターンで光源21~23,31~33を制御してもよい。この選別装置110によれば、第1ないし第3実施形態と同様の効果が得られる。したがって、光源21~23,31~33の発熱による温度上昇および消費電力を低減しつつ、選別精度を向上できる。 The irradiation control unit 82 may control the light sources 21 to 23 and 31 to 33 using any of the lighting patterns shown in FIGS. 3, 5, and 6. According to this sorting device 110, the same effects as in the first to third embodiments can be obtained. Therefore, it is possible to improve sorting accuracy while reducing temperature rise and power consumption due to heat generated by the light sources 21 to 23 and 31 to 33.
 以上、実施形態について説明してきたが、上記した実施形態は、本教示の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、任意の省略が可能である。 Although the embodiments have been described above, the embodiments described above are for facilitating understanding of the present teachings, and do not limit the present invention. The present invention may be modified and improved without departing from its spirit, and the present invention includes equivalents thereof. In addition, any combination or omission of each component described in the claims and the specification may be used within the scope of solving at least part of the above-mentioned problems or achieving at least part of the effect. It is possible.
 例えば、図3,5,6に示したいずれかの点灯パターンは非限定的な例に過ぎず、光源21~23,31~33の少なくとも一つにおいて、電圧V1を印加して第1の光度の光を照射する第1の照射期間と、電圧V2を印加して第2の光度の光を照射する第2の照射期間と、が出現する限りにおいて、任意の変更が可能である。例えば、電圧が印加されず、光が照射されない非照射期間が追加されてもよい。あるいは、電圧V2よりも小さく、電圧V1とは異なる電圧が印加される追加的な照射期間が設定されてもよい。あるいは、各光源の他の点灯パターンが追加さてもよい。例えば、図5に示した例において、奇数の走査ナンバーを有する走査期間と、偶数の走査ナンバーを有する走査期間と、の間に、光源21~23,31~33の各々に電圧V2を印加して第2の光度の光を照射する第2の照射期間を有する走査期間(例えば、図3の走査ナンバーが1の走査期間)が介在してもよい。 For example, any of the lighting patterns shown in FIGS. 3, 5, and 6 are only non-limiting examples, and the voltage V1 is applied to at least one of the light sources 21 to 23 and 31 to 33 to achieve the first luminous intensity. Any changes are possible as long as a first irradiation period for irradiating light with a second luminous intensity and a second irradiation period for applying light of a second luminous intensity appear. For example, a non-irradiation period may be added in which no voltage is applied and no light is irradiated. Alternatively, an additional irradiation period may be set in which a voltage lower than voltage V2 and different from voltage V1 is applied. Alternatively, other lighting patterns for each light source may be added. For example, in the example shown in FIG. 5, voltage V2 is applied to each of the light sources 21 to 23 and 31 to 33 between a scan period with an odd scan number and a scan period with an even scan number. A scanning period having a second irradiation period in which light of a second luminous intensity is irradiated (for example, a scanning period with a scanning number of 1 in FIG. 3) may be interposed.
 あるいは、反射画像および透過画像の一方のみが取得されるように、光源21~23,31~33の点灯パターンが設定されてもよい。 Alternatively, the lighting pattern of the light sources 21 to 23 and 31 to 33 may be set so that only one of the reflected image and the transmitted image is acquired.
 あるいは、フロント側の光源およびリア側の光源の一方が省略されてもよい。あるいは、フロント側の第1のセンサ51およびリア側の第2のセンサ52の一方が省略されてもよい。 Alternatively, one of the front light source and the rear light source may be omitted. Alternatively, one of the first sensor 51 on the front side and the second sensor 52 on the rear side may be omitted.
 あるいは、可視光を放出する光源に代えて、または、加えて、任意の電磁波源が設置されてもよい。そのような電磁波源には、例えば、近赤外線源および/またはX線源が含まれ得る。この場合、近赤外線源および/またはX線源は、対象物90の移送経路の一方側のみに配置されてもよいし、両側に配置されてもよい。また、近赤外線を検出するセンサ、および/または、X線を検出するセンサが、対象物90の移送経路の一方側のみに配置されてもよいし、両側に配置されてもよい。照射制御部82は、上述した可視光の点灯パターンと同様に、第1の強度で電磁波を照射する第1の照射期間と、第1の強度よりも大きい第2の強度で電磁波を照射する第2の照射期間と、が出現するように電磁波照射源を制御してもよい。 Alternatively, any electromagnetic wave source may be installed instead of or in addition to the light source that emits visible light. Such electromagnetic radiation sources may include, for example, near-infrared sources and/or X-ray sources. In this case, the near-infrared source and/or the X-ray source may be placed only on one side of the transport path of the object 90, or may be placed on both sides. Furthermore, a sensor that detects near-infrared rays and/or a sensor that detects X-rays may be placed only on one side of the transfer path of the object 90, or may be placed on both sides. Similar to the visible light lighting pattern described above, the irradiation control unit 82 has a first irradiation period in which electromagnetic waves are radiated at a first intensity, and a second irradiation period in which electromagnetic waves are irradiated at a second intensity greater than the first intensity. The electromagnetic wave irradiation source may be controlled so that the following irradiation periods appear.
  10...測定装置
  20...第1の光源ユニット
  21...フロント側赤色光源
  22...フロント側緑色光源
  23...フロント側青色光源
  24...フロント側赤色光
  25...フロント側緑色光
  26...フロント側青色光
  30...第2の光源ユニット
  31...リア側赤色光源
  32...リア側緑色光源
  33...リア側青色光源
  34...リア側赤色光
  35...リア側緑色光
  36...リア側青色光
  51...第1のセンサ
  52...第2のセンサ
  71...貯留タンク
  72...フィーダ
  73...シュート
  74...排出樋
  80...コントローラ
  81...識別部
  82...照射制御部
  90...対象物
  91...対象物
  92...対象物
  110...選別装置
  160...選別部
  161...ノズル
  162...バルブ
  163...エア
  174...良品排出樋
  175...不良品排出樋
10...Measuring device 20...First light source unit 21...Front side red light source 22...Front side green light source 23...Front side blue light source 24...Front side red light 25.. .Front green light 26...Front blue light 30...Second light source unit 31...Rear red light source 32...Rear green light source 33...Rear blue light source 34... Rear red light 35...Rear green light 36...Rear blue light 51...First sensor 52...Second sensor 71...Storage tank 72...Feeder 73.. .Chute 74...Discharge gutter 80...Controller 81...Identification unit 82...Irradiation control unit 90...Target 91...Target 92...Target 110...Sorting device 160... Sorting section 161... Nozzle 162... Valve 163... Air 174... Good product discharge gutter 175... Defective product discharge gutter

Claims (6)

  1.  対象物の状態を測定するための測定装置であって、
     前記対象物を移送するように構成された移送部と、
     前記移送部の作用によって移送中の前記対象物に電磁波を照射するように構成された電磁波照射源と、
     前記電磁波照射源から照射され、前記対象物で反射した反射電磁波、および、前記対象物を透過した透過電磁波の少なくとも一方を検出するように構成されたセンサと、
     前記センサによって取得される信号に基づいて前記対象物の状態を識別するように構成された識別部と、
     前記電磁波照射源からの前記電磁波の照射を制御するように構成された照射制御部と
     を備え、
     前記照射制御部は、第1の強度で前記電磁波を照射する第1の照射期間と、前記第1の強度よりも大きい第2の強度で前記電磁波を照射する第2の照射期間と、が出現するように前記電磁波照射源を制御するように構成された
     測定装置。
    A measuring device for measuring the state of an object,
    a transfer unit configured to transfer the object;
    an electromagnetic wave irradiation source configured to irradiate the object being transferred with electromagnetic waves by the action of the transfer unit;
    a sensor configured to detect at least one of reflected electromagnetic waves irradiated from the electromagnetic wave irradiation source and reflected by the target object, and transmitted electromagnetic waves transmitted through the target object;
    an identification unit configured to identify a state of the object based on a signal acquired by the sensor;
    and an irradiation control unit configured to control irradiation of the electromagnetic waves from the electromagnetic wave irradiation source,
    The irradiation control unit has a first irradiation period in which the electromagnetic wave is irradiated with a first intensity, and a second irradiation period in which the electromagnetic wave is irradiated with a second intensity greater than the first intensity. A measuring device configured to control the electromagnetic radiation source so as to control the electromagnetic radiation source.
  2.  請求項1に記載の測定装置であって、
     前記照射制御部は、前記センサの各走査期間内で、前記第1の照射期間と前記第2の照射期間とが出現するか、または、前記第1の照射期間は出現するが、前記第2の照射期間は出現しないように前記電磁波照射源を制御するように構成された
     測定装置。
    The measuring device according to claim 1,
    The irradiation control unit is configured to control whether the first irradiation period and the second irradiation period appear within each scanning period of the sensor, or the first irradiation period appears but the second irradiation period does not occur. The measuring device is configured to control the electromagnetic wave irradiation source so that the irradiation period does not occur.
  3.  請求項1または請求項2に記載の測定装置であって、
     前記照射制御部は、前記電磁波照射源が前記電磁波を照射しない非照射期間が存在しないように前記電磁波照射源を制御するように構成された
     測定装置。
    The measuring device according to claim 1 or 2,
    The irradiation control unit is configured to control the electromagnetic wave irradiation source so that there is no non-irradiation period in which the electromagnetic wave irradiation source does not irradiate the electromagnetic wave.
  4.  請求項1ないし請求項3のいずれか一項に記載の測定装置であって、
     前記電磁波照射源は、照射する電磁波の波長領域、および、設置位置の少なくとも一方が異なる第1の照射源および第2の照射源を含み、
     前記第2の照射期間は、前記第1の照射源が前記第2の強度で前記電磁波を照射する第3の照射期間と、前記第2の照射源が前記第2の強度で前記電磁波を照射する第4の照射期間と、を含み、
     前記照射制御部は、前記第3の照射期間と前記第4の照射期間とが、重複せず、かつ、交互に出現するように前記電磁波照射源を制御するように構成された
     測定装置。
    The measuring device according to any one of claims 1 to 3,
    The electromagnetic wave irradiation source includes a first irradiation source and a second irradiation source that differ in at least one of the wavelength region of the electromagnetic wave to irradiate and the installation position,
    The second irradiation period includes a third irradiation period in which the first irradiation source irradiates the electromagnetic wave at the second intensity, and a third irradiation period in which the second irradiation source irradiates the electromagnetic wave at the second intensity. a fourth irradiation period,
    The irradiation control unit is configured to control the electromagnetic wave irradiation source so that the third irradiation period and the fourth irradiation period do not overlap and appear alternately.
  5.  請求項4に記載の測定装置であって、
     前記照射制御部は、前記第1の照射源が前記第1の強度で前記電磁波を照射し、かつ、前記第2の照射源が前記第1の強度で前記電磁波を照射する期間が、前記第3の照射期間と前記第4の照射期間との間に介在するように、前記電磁波照射源を制御するように構成された
     測定装置。
    The measuring device according to claim 4,
    The irradiation control unit is configured such that a period during which the first irradiation source irradiates the electromagnetic wave at the first intensity and during which the second irradiation source irradiates the electromagnetic wave at the first intensity is set to The measuring device is configured to control the electromagnetic wave irradiation source so as to intervene between the third irradiation period and the fourth irradiation period.
  6.  選別装置であって、
     請求項1ないし請求項5のいずれか一項に記載の測定装置と、
     前記識別部の識別結果に基づいて、前記対象物の選別を行うように構成された選別部と
     を備える選別装置。
    A sorting device,
    A measuring device according to any one of claims 1 to 5,
    A sorting device comprising: a sorting section configured to sort the object based on the identification result of the identification section.
PCT/JP2023/030722 2022-09-01 2023-08-25 Measurement device and selection device WO2024048452A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022139013A JP2024034634A (en) 2022-09-01 2022-09-01 Measuring apparatus and sorting device
JP2022-139013 2022-09-01

Publications (1)

Publication Number Publication Date
WO2024048452A1 true WO2024048452A1 (en) 2024-03-07

Family

ID=90099896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030722 WO2024048452A1 (en) 2022-09-01 2023-08-25 Measurement device and selection device

Country Status (2)

Country Link
JP (1) JP2024034634A (en)
WO (1) WO2024048452A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019112055A1 (en) * 2017-12-08 2019-06-13 日本製鉄株式会社 Shape inspection device and shape inspection method
JP2021094553A (en) * 2019-12-18 2021-06-24 株式会社サタケ Optical sorting machine
JP2022012629A (en) * 2020-07-02 2022-01-17 日立Astemo株式会社 Inspection device and inspection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019112055A1 (en) * 2017-12-08 2019-06-13 日本製鉄株式会社 Shape inspection device and shape inspection method
JP2021094553A (en) * 2019-12-18 2021-06-24 株式会社サタケ Optical sorting machine
JP2022012629A (en) * 2020-07-02 2022-01-17 日立Astemo株式会社 Inspection device and inspection method

Also Published As

Publication number Publication date
JP2024034634A (en) 2024-03-13

Similar Documents

Publication Publication Date Title
WO2021117544A1 (en) Optical sorting machine
WO2024048452A1 (en) Measurement device and selection device
WO2022045047A1 (en) Optical sorter
JP4076414B2 (en) Defective object detection device and separation device using the same
WO2021106964A1 (en) Optical sorting machine
JP7521570B2 (en) Optical sorting machine
JP2021094553A (en) Optical sorting machine
JP7434889B2 (en) optical sorter
JP4338284B2 (en) Powder inspection equipment
WO2023176751A1 (en) Measuring device and selection device
US20220373472A1 (en) Optical sorter
JP4052911B2 (en) Defective object detection device and separation device using the same
JP2022098183A (en) Color sorting apparatus
JP7074241B2 (en) Optical sorter
WO2021177173A1 (en) Optical sorting machine
JP4454086B2 (en) Powder inspection equipment
WO2022163100A1 (en) Optical sorting machine
WO2024111183A1 (en) Measuring device and sorting machine
JP7282021B2 (en) color sorter
JP4342332B2 (en) Object evaluation device
CN115356345A (en) Food inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860214

Country of ref document: EP

Kind code of ref document: A1