WO2024048409A1 - 複合体及びその製造方法 - Google Patents

複合体及びその製造方法 Download PDF

Info

Publication number
WO2024048409A1
WO2024048409A1 PCT/JP2023/030463 JP2023030463W WO2024048409A1 WO 2024048409 A1 WO2024048409 A1 WO 2024048409A1 JP 2023030463 W JP2023030463 W JP 2023030463W WO 2024048409 A1 WO2024048409 A1 WO 2024048409A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal part
mof
composite
interface
Prior art date
Application number
PCT/JP2023/030463
Other languages
English (en)
French (fr)
Inventor
広充 上原
知美 平井
伸哉 別府
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2024048409A1 publication Critical patent/WO2024048409A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds

Definitions

  • the present invention relates to a composite and a method for producing the same.
  • Metal-organic frameworks (hereinafter also referred to as "MOF") have a crystalline polymer structure with internal pores by combining metal ions and cross-linking organic ligands that connect the metal ions. ) is known.
  • MOF metal ions and organic ligands that make up the MOF
  • the gas adsorption performance of the MOF and the types of molecules to be adsorbed can be adjusted. Therefore, research is underway to apply MOFs to sensors, separation membranes, catalyst carriers, and the like.
  • MOFs In order to use MOF as a member of a device, it is necessary to form a composite body in which the MOF and the support are firmly bonded. If the bonding strength between the MOF and the support is weak, deterioration such as the MOF peeling off occurs.
  • Patent Document 1 describes a composite membrane structure in which a metal oxide layer is formed on a support and a MOF is formed on the metal oxide layer in order to exhibit sufficient adhesion to the support. The body is revealed.
  • an object of the present invention is to provide a composite with high bonding strength between a support and an MOF.
  • the present invention provides a composite including a support having a metal part and a metal-organic structure formed on the surface of the metal part, wherein the metal-organic structure is formed on the metal part without intervening a metal oxide layer.
  • the present invention provides a composite including a support having a metal part and a metal-organic structure formed on the surface of the metal part, in which an amount of oxygen Ox1 at the interface between the metal part and the metal-organic structure, A composite body is proposed in which the oxygen amount ratio Ox1/Ox2 of the oxygen amount Ox2 on the surface of the metal-organic structure that is not in contact with the metal part is less than 1.3.
  • the present invention proposes a method for producing a composite that forms a metal-organic structure containing metal ions and in which a metal oxide layer is not interposed at the interface between the metal part and the metal-organic structure.
  • the present invention can provide a composite in which the metal part of the support and the MOF are bonded with high strength.
  • FIG. 1 is an image diagram showing a composite body according to the present invention. It is an image diagram showing a composite body having a metal oxide layer. Each atom of oxygen, first metal (copper), and second metal (platinum) measured on the cross section of the composite according to Example 1 using a scanning electron microscope-energy dispersive X-ray analyzer (SEM-EDX) It is a figure showing the abundance (atom%) of.
  • 1 is a cross-sectional SEM photograph of a composite according to Example 1.
  • FIG. 2 is a diagram showing the amount of oxygen present in the cross section of the composite according to Example 1 and a diagram obtained by first-order differentiation of the amount of oxygen present.
  • FIG. 1 is an image diagram showing a composite body according to the present invention. It is an image diagram showing a composite body having a metal oxide layer. Each atom of oxygen, first metal (copper), and second metal (platinum) measured on the cross section of the composite according to Example 1 using a scanning electron microscope-energy dispersive X-ray analyzer
  • FIG. 3 is a diagram showing the abundance (atom%) of each atom of oxygen, a first metal (copper), and a second metal (platinum) measured in a cross section of a composite according to Comparative Example 1 using SEM-EDX.
  • 3 is a cross-sectional SEM photograph of a composite according to Comparative Example 1.
  • FIG. 2 is a diagram showing the amount of oxygen present in a cross section of a composite according to Comparative Example 1, and a diagram obtained by first-order differentiation of the amount of oxygen present.
  • FIG. 2 is a diagram showing the abundance (atom %) of each atom of oxygen, a first metal (zinc), and a second metal (platinum) measured on a cross section of a composite according to Example 2 using SEM-EDX.
  • FIG. 3 is a cross-sectional SEM photograph of a composite according to Example 2.
  • FIG. 3 is a diagram obtained by first-order differentiation of the amount of oxygen present and the amount of nitrogen present in the cross section of the composite according to Example 2.
  • FIG. 3 is a diagram obtained by first differentiating the amount of oxygen present and the amount of platinum present in the cross section of the composite according to Example 2.
  • FIG. 3 is a diagram showing the abundance (atom%) of each atom of oxygen, a first metal (zinc), and a second metal (platinum) measured on a cross section of a composite according to Comparative Example 2 using SEM-EDX.
  • 3 is a cross-sectional SEM photograph of a composite according to Comparative Example 2.
  • FIG. 3 is a cross-sectional SEM photograph of a composite according to Comparative Example 2.
  • FIG. 6 is a diagram obtained by first-order differentiation of the amount of oxygen present and the amount of nitrogen present in the cross section of the composite according to Comparative Example 2.
  • FIG. 3 is a diagram obtained by first-order differentiation of the amount of oxygen present and the amount of platinum present in the cross section of the composite according to Comparative Example 2.
  • FIG. 3 is a diagram showing the abundance (atom%) of each atom of oxygen, a first metal (aluminum), and a second metal (platinum) measured in a cross section of a composite according to Example 3 using SEM-EDX.
  • 3 is a cross-sectional SEM photograph of a composite according to Example 3.
  • FIG. 3 is a diagram showing the amount of oxygen present in the cross section of the composite according to Example 3 and the diagram obtained by first-order differentiation of the amount of oxygen present.
  • 3 is a diagram showing the abundance (atom %) of each atom of oxygen, a first metal (aluminum), and a second metal (platinum) measured in a cross section of a composite according to Comparative Example 3 using SEM-EDX.
  • FIG. 3 is a cross-sectional SEM photograph of a composite according to Comparative Example 3.
  • FIG. 3 is a diagram showing the amount of oxygen present in the cross section of the composite according to Comparative Example 3 and the diagram obtained by first-order differentiation of the amount of oxygen present.
  • FIG. 3 is a diagram showing each X-ray diffraction (XRD) spectrum of MOF in Example 1, Comparative Example 1, and calculated values.
  • FIG. 3 is a diagram showing each X-ray diffraction (XRD) spectrum of MOF in Example 2, Comparative Example 2, and calculated values.
  • FIG. 6 is a diagram showing each X-ray diffraction (XRD) spectrum of MOF in Example 3, Comparative Example 3, and calculated values.
  • a first embodiment of the present invention is a composite including a support having a metal part and a metal-organic structure formed on the surface of the metal part, wherein the metal-organic structure is formed without intervening a metal oxide layer. It is a composite formed on the surface of a metal part. In the composite of the present invention, it is preferable that the MOF is formed directly on the surface of the metal part without using a metal oxide layer.
  • FIG. 1 is an image diagram showing a composite according to the present invention.
  • the composite 10 includes a metal part 1 serving as a support, and a MOF 2 formed on the surface of the metal part 1 without interposing a metal oxide layer.
  • the metal ions contained in the surface of the metal part of the support interact with the organic ligands contained in the MOF. It is possible to provide a composite in which the metal portion of the support and the MOF are bonded with high strength through coordination bonding.
  • the metal oxide layer does not act as an insulating layer, and the electrical connection between the MOF and the metal part is maintained. It does not interfere with contact.
  • FIG. 2 is an image diagram of a composite having a metal oxide layer.
  • the composite body 20 includes a metal part 1 serving as a support, and a MOF 2 formed on the surface of the metal part 1 with a metal oxide layer 3 interposed therebetween.
  • MOF 2 oxygen ions (O - ) contained in the metal oxide layer 3 are absorbed by the electrostatic force (Coulomb force) in the MOF 2. Because it binds to metal ions, the bond strength is weaker than that of a coordinate bond.
  • a second embodiment of the present invention is a composite including a support having a metal part and a metal-organic structure formed on the surface of the metal part, wherein the amount of oxygen at the interface between the metal part and the metal-organic structure is The oxygen amount ratio Ox1/Ox2 between Ox1 and oxygen amount Ox2 on the surface of the metal-organic structure that is not in contact with the metal portion is less than 1.3.
  • the oxygen amount ratio Ox1/Ox2 between the oxygen amount Ox1 at the interface where the metal part of the support and the MOF are in contact and the oxygen amount Ox2 at the surface of the MOF that is not in contact with the metal part is less than 1.3, the MOF and the metal It can be considered that there is no metal oxide layer intervening at the interface between the parts.
  • the oxygen amount ratio Ox1/Ox2 is preferably 1.2 or less, more preferably 1.1 or less, even more preferably 1.08 or less, and particularly preferably 1.07 or less.
  • the oxygen amount ratio Ox1/Ox2 may be 0.7 or more, 0.8 or more, or 0.9 or more.
  • the amount of oxygen Ox1 at the interface where the metal part of the support and the MOF are in contact, and the amount of oxygen Ox2 at the surface of the MOF that is not in contact with the metal part, can be determined using, for example, a scanning electron microscope-energy dispersive X-ray analyzer (SEM-EDX). , X-ray photoelectron spectroscopy (XPS), and the like.
  • SEM-EDX scanning electron microscope-energy dispersive X-ray analyzer
  • XPS X-ray photoelectron spectroscopy
  • the interface where the metal part of the support and the MOF are in contact can be defined as follows. First, a SEM image is taken of a cross section of the composite using a SEM-EDX at a magnification of 200,000 times or more. At this time, the SEM image is photographed so that the protective layer, the MOF, and the metal part, which will be described later, are included in this order from the left side to the right side. Oxygen and metals contained in the composite (hereinafter also referred to as "first metal”), and metals contained in the protective layer that protects the surface of the MOF of the composite (hereinafter also referred to as "second metal").
  • the amount was measured using SEM-EDX at a magnification of 200,000 times or more, and a graph was created with the horizontal axis representing the cross-sectional position ( ⁇ m) of the complex and the vertical axis representing the abundance of each atom (atom%). obtain.
  • the position of the left end of the cross section of the composite included in the SEM photograph is set to a reference value of "0.0 ( ⁇ m)".
  • EDX measurement is performed from a panoramic SEM photo taken multiple times at the same magnification. Also good.
  • the above-mentioned "protective layer” is provided for convenience so that the structure of the MOF does not change during cross-section processing of the composite. Examples of metals included in the protective layer include platinum and tungsten.
  • a temporary interface 1 in the interface 1 is extracted. That is, in the graph created above, the abundance (atom %) of the rightmost atom of the first metal is taken as the abundance of the first metal atoms in the metal part not in contact with the MOF. With respect to such abundance, the position where the abundance of the first metal atoms decreases by 25% from the right end to the left end of the graph created above is defined as a temporary interface 1. Then, the actual interface 1 is extracted based on the temporary interface 1. That is, when the organic ligands forming the MOF contain oxygen atoms, a graph is obtained by firstly differentiating the abundance of oxygen atoms obtained from the graph created above.
  • the position of the top of the negative peak of the graph obtained by the first-order differentiation of the oxygen atoms, which exists within a range of ⁇ 0.20 ⁇ m from the position of the temporary interface 1, is defined as the interface 1.
  • the abundance of atoms e.g. nitrogen atoms, sulfur atoms, etc.
  • a graph is obtained by first-order differentiation of the abundance of, for example, nitrogen atoms contained only in the obtained organic ligand.
  • the position of the top of the negative peak of the graph obtained by the first-order differentiation of the nitrogen atom, which exists within a range of ⁇ 0.20 ⁇ m from the position of the temporary interface 1, is defined as the interface 1.
  • multiple negative peaks exist within a range of ⁇ 0.20 from the position of the tentative interface 1, regardless of whether the organic ligands forming the MOF contain oxygen atoms or not.
  • the position of the top of the negative peak closest to the metal part is defined as the interface 1.
  • the surface of the MOF that is not in contact with the metal part (hereinafter also referred to as "MOF surface” or “interface 2”) can be defined as follows. First, a temporary interface 2 in the interface 2 is extracted. That is, the abundance (atom %) of the leftmost atom of the second metal in the graph created above is taken as the abundance of the second metal atoms in the protective layer that is not in contact with the MOF. With respect to such abundance, the position where the abundance of the second metal atoms decreases by 25% from the left end to the right end of the graph created above is defined as a temporary interface 2. Then, the actual interface 2 is extracted based on the temporary interface 2.
  • a graph is obtained by first-order differentiation of the abundance of oxygen atoms obtained from the graph created above.
  • the position of the top of the positive peak of the graph obtained by the first-order differentiation of oxygen atoms, which exists within a range of ⁇ 0.20 ⁇ m from the position of the temporary interface 2, is defined as the interface 2. If there are multiple positive peaks within a range of ⁇ 0.20 from the position of the temporary interface 2, select one of the multiple positive peaks from the surface of the protective layer (the horizontal axis of the graph obtained by the first differentiation).
  • the position of the top of the positive peak closest to 0.0) is defined as interface 2.
  • the abundance of the second metal atoms (platinum when the protective layer is platinum) contained in the protective layer can be measured using SEM- A graph is obtained in which the abundance of second metal atoms obtained by measurement by EDX is first differentiated.
  • the position of the top of the negative peak of the graph obtained by the first-order differentiation of the second metal atoms, which exists within a range of ⁇ 0.20 ⁇ m from the position of the temporary interface 2, is defined as the interface 2. If multiple negative peaks exist within a range of ⁇ 0.20 from the position of the temporary interface 2, select one of the multiple negative peaks from the surface of the protective layer (the horizontal axis of the graph obtained by the first differentiation).
  • the position of the top of the negative peak closest to 0.0) is defined as interface 2.
  • the amount of oxygen atoms present (atom %) at the position of interface 1 measured as described above is defined as the amount of oxygen Ox1 at the interface where the metal part of the composite and the MOF are in contact. Further, the amount of oxygen atoms present (atom %) at the position of the interface 2 measured as described above is defined as the amount of oxygen Ox2 at the surface of the MOF that is not in contact with the metal portion. From these, the oxygen amount ratio Ox1/Ox2 can be calculated.
  • the metal oxide layer between the metal organic structure and the metal part can be formed based on the following (1) to (3). You can check whether it exists. (1) Find the distance ( ⁇ m) from interface 1 to interface 2 from the SEM photograph.
  • the metal ions contained in the MOF are preferably derived from the metal contained in the metal part. At least a part of the metal contained in the metal portion of the support becomes a metal ion and coordinates with an organic ligand, thereby obtaining a composite in which the metal portion and the MOF are firmly bonded. At least one kind of metal ion contained in the MOF is a metal ion of the same type as the metal contained in the metal part, and the metal ion is derived from the metal contained in the metal part.
  • the metal contained in the metal part preferably includes at least one metal selected from the group consisting of copper, zinc, aluminum, iron, chromium, cobalt, zirconium, nickel, titanium, and magnesium.
  • the metal contained in the metal part may be one type of metal or two or more types of metal.
  • the support is made of the same metal material as the metal part, and the support and the metal part may be integrated.
  • the support may be a metal material different in type from the metal contained in the metal part.
  • the support may be a semiconductor material, a quartz crystal, a piezoceramic, and an electrode. Further, the support may be made of paper, nonwoven fabric, ceramics, or resin.
  • the shape of the support is not particularly limited, and may be, for example, plate-like, fibrous-like, cloth-like, film-like, or porous.
  • the metal portion may be attached or vapor deposited on the support.
  • a polydentate ligand can be used as the organic ligand forming the MOF.
  • the organic ligands include oxalic acid, butanedioic acid, (E)-butenedioic acid, benzene-1,4-dicarboxylic acid, benzene-1,3-dicarboxylic acid, benzene-1,3,5-tricarboxylic acid, 2-amino-1,4-benzenedicarboxylic acid, 2-bromo-1,4-benzenedicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, biphenyl-3,3',5,5'-tetracarboxylic acid, Biphenyl-3,4',5-tricarboxylic acid, 2,5-dihydroxy-1,4-benzenedicarboxylic acid, 1,3,5-tris(4-carboxyphenyl)benzene, (2E,4E)-hex-2 ,4-dienedioic acid
  • the surface of the metal part of a support having a metal part is immersed in a solution containing an organic ligand constituting the metal-organic structure, and the metal part is applied to the surface of the metal part.
  • the surface of the metal part of the support having a metal part When at least the surface of the metal part of the support having a metal part is immersed in a solution containing an organic ligand, the surface of the metal part is oxidized by the oxygen contained in the solution, and the metal contained in the metal part is ionized.
  • metal ions come to exist on the surface of the metal part.
  • the metal ions present on the surface of the metal part coordinate with organic ligands in the solution to form an MOF, and the metal part and the MOF are bonded together without intervening a metal oxide layer at the interface between the metal part and the MOF. A complex bound tightly by coordinate bonds can be obtained.
  • the temperature of the solution containing the organic ligand in which the surface of the metal part of the support is immersed is preferably 40°C or higher and 140°C or lower.
  • the temperature of the solution containing the organic ligand in which the surface of the metal part of the support is immersed is more preferably within the range of 45°C or higher and 120°C or lower, and preferably within the range of 50°C or higher and 100°C or lower. It is even more preferable. If the solution containing the organic ligand in which the surface of the metal part of the support is immersed has a temperature range of 40°C or higher and 140°C or lower, the reactivity between the surface of the metal part and the organic ligand in the solution will decrease. This is preferable because it increases the price.
  • the concentration of the organic ligand in the solution is preferably within the range of 0.01 mmol/L or more and 5 mol/L or less, more preferably within the range of 0.1 mmol/L or more and 1 mol/L or less, It is more preferably within the range of 1 mmol/L or more and 500 mmol/L or less. If the concentration of the organic ligand in the solution is within the range of 0.01 mmol/L or more and 5 mol/L or less, the metal ions generated by oxidizing the surface of the metal part and the organic ligand in the solution Easy to combine.
  • the organic ligand the above-mentioned organic ligands contained in the metal-organic structure can be used.
  • the solvent for the solution containing the organic ligand for example, N,N-dimethylformamide (DMF), ethanol, water, etc. can be used.
  • the time for which the surface of the metal part is immersed in the solution containing the organic ligand is preferably 5 minutes or more and less than 24 hours, more preferably 10 minutes or more and less than 8 hours, and 15 minutes or more and 5 hours. It is more preferable that it is within the range.
  • the surface of the metal part When the surface of the metal part is immersed in a solution containing an organic ligand for 5 minutes or more and less than 24 hours, the surface of the metal part has good reactivity with oxygen and the organic ligand in the solution.
  • the metal ions ionized on the surface of the metal part and the organic ligands in the solution form a coordination bond, and the metal part and the MOF are strongly bonded without intervening a metal oxide layer at the interface between the metal part and the MOF. A bound complex can be obtained.
  • the metal part may be washed with an acidic solution, further washed with water and alcohol, and dried with an inert gas before being immersed in a solution containing an organic ligand.
  • an acidic solution for example, dilute nitric acid, dilute sulfuric acid, dilute hydrochloric acid, etc. can be used.
  • Deionized water can be used as water.
  • ethanol can be used as the alcohol.
  • the inert gas used for drying for example, nitrogen gas can be used.
  • the composite after forming the MOF, the composite may be washed using an aprotic polar solvent and alcohol, and dried with an inert gas.
  • an aprotic polar solvent for example, DMF, tetrahydrofuran (THF), etc.
  • the alcohol for example, ethanol, methanol, 1-propanol, 2-propanol, etc. can be used.
  • the inert gas used for drying for example, nitrogen gas can be used.
  • Embodiments of the present invention include the following technical ideas.
  • a composite comprising a support having a metal part and a metal-organic structure formed on the surface of the metal part, wherein the metal-organic structure forms a part of the metal part without intervening a metal oxide layer.
  • the metal contained in the metal portion includes at least one metal selected from the group consisting of copper, zinc, aluminum, iron, chromium, cobalt, zirconium, nickel, titanium, and magnesium, [1] or The complex according to [2].
  • At least the surface of the metal part of the support having a metal part is immersed in a solution containing an organic ligand constituting the metal-organic structure, and the surface of the metal part is coated with the metal contained in the metal part.
  • Example 1 Preparation of a support body having a metal part Cut 80 ⁇ m thick copper foil (copper purity 99.9%) (manufactured by Nilaco Co., Ltd.) into a size of 2 cm x 5 cm, and prepare a support body (the support itself has a metal part). ) was prepared. A support made of copper foil was washed entirely by immersing it in dilute nitric acid with a nitric acid concentration of 1% by mass, then washed with deionized water and ethanol, and dried with nitrogen gas.
  • MOF and composite A support made of copper foil was immersed for 30 minutes in a solution containing an organic ligand maintained at 60°C to form a MOF (HKUST-1) on the surface of the support made of copper foil. . After the composite including the copper foil and MOF as a support was taken out from the solution containing the organic ligand, it was washed with DMF and ethanol, and dried with nitrogen gas. A composite was obtained that included a support having a metal part and an MOF, and in which the MOF was formed on the surface of the metal part without intervening a metal oxide layer.
  • Comparative example 1 A support made of copper foil was prepared, dried with nitrogen gas, and heated for 5 minutes on a hot plate heated to 200° C. to form copper oxide (copper oxide layer) on the surface of the support.
  • a MOF (HKUST-1) was formed on the surface of a support having copper oxide in the same manner as in Example 1 except that a support having copper oxide on the surface was used.
  • Example 2 Preparation of a support body having a metal part Cut 300 ⁇ m thick zinc foil (zinc purity 99.2%) (manufactured by Nilaco Co., Ltd.) into a size of 2 cm x 5 cm to prepare a support body (the support body itself is a metal part). prepared. A support made of zinc foil was washed entirely by immersing it in dilute hydrochloric acid having a hydrochloric acid concentration of 1% by mass, then washed with deionized water and ethanol, and dried with nitrogen gas.
  • dilute hydrochloric acid having a hydrochloric acid concentration of 1% by mass
  • Preparation of a solution containing an organic ligand Prepare a solution containing an organic ligand by dissolving 2-methyl-1H-imidazole, an organic ligand, in a concentration of 125 mmol/L in deionized water, a solvent. did. A solution containing an organic ligand was placed in a beaker and heated to 75°C.
  • MOF and composite A support made of zinc foil was immersed for 30 minutes in a solution containing an organic ligand maintained at 75°C to form a MOF (ZIF-8) on the surface of the support made of zinc foil. . After the composite containing zinc foil and MOF as a support was taken out from the solution containing the organic ligand, it was washed with deionized water and ethanol, and dried with nitrogen gas. A composite was obtained that included a support having a metal part and an MOF, and in which the MOF was formed on the surface of the metal part without intervening a metal oxide layer.
  • the abundance of nitrogen atoms contained only in the organic ligands was measured using SEM-EDX and a graph was created to calculate the abundance.
  • a graph was obtained by first-order differentiation.
  • the position of the top of the negative peak existing within a range of ⁇ 0.20 ⁇ m from the position of temporary interface 1 was defined as interface 1.
  • the amount of platinum contained in the protective layer was measured using SEM-EDX to create a graph, and the amount was first differentiated to obtain a graph.
  • the position of the negative peak top closest to the surface of the protective layer (horizontal axis 0.0) existing within a range of ⁇ 0.20 ⁇ m from the position of temporary interface 2 was defined as interface 2.
  • Comparative example 2 A support made of zinc foil was prepared, and after drying with nitrogen gas, the support made of zinc foil was immersed in a 0.1 mol/L potassium chloride (KCl) aqueous solution, and a zinc plate was used as a counter electrode, and the temperature was 5 mA/cm 2 . Then, electrolytic oxidation was performed for 5 minutes to form zinc oxide (zinc oxide layer) on the surface of the support.
  • MOF ZIF-8 was formed on the surface of the support having zinc oxide in the same manner as in Example 2 except that the support having zinc oxide on the surface was used. A composite including a support having a metal part, an MOF, and a metal oxide layer interposed at the interface between the metal part and the MOF was obtained.
  • the abundance of nitrogen atoms contained only in the organic ligands was measured using SEM-EDX and a graph was created to calculate the abundance.
  • a graph was obtained by first-order differentiation. The position of the top of the negative peak existing within a range of ⁇ 0.20 ⁇ m from the position of temporary interface 1 was defined as interface 1. Next, the amount of platinum contained in the protective layer is measured using SEM-EDX, a graph is created, the amount is first differentiated to obtain a graph, and the range of ⁇ 0.20 ⁇ m from the position of the temporary interface 2 is obtained. The position of the top of the negative peak existing within was defined as interface 2.
  • Example 3 Preparation of a support body having a metal part Cut a 75 ⁇ m thick aluminum foil (aluminum purity 99+%) (manufactured by Nilaco Co., Ltd.) into a size of 2 cm x 5 cm, and prepare a support body (the support body itself is a metal part). Got ready. A support made of aluminum foil was washed entirely by immersing it in dilute hydrochloric acid having a hydrochloric acid concentration of 1% by mass, then washed with deionized water and ethanol, and dried with nitrogen gas.
  • Benzene-1,4-dicarboxylic acid which is an organic ligand
  • a solvent in which DMF and water are mixed at a mass ratio (DMF:H 2 O) of 3:7 a mass ratio (DMF:H 2 O) of 3:7.
  • a solution containing an organic ligand was prepared by dissolving the acid to a concentration of 10 mmol/L.
  • a solution containing an organic ligand was placed in a beaker and heated to 100°C.
  • MOF Metal Organic ligands maintained at 100°C
  • MOF MIL-53 (Al)
  • the composite containing the aluminum foil and MOF as a support was taken out from the solution containing the organic ligand, washed with DMF and ethanol, and dried with nitrogen gas.
  • a composite was obtained that included a support having a metal part and an MOF, and in which the MOF was formed on the surface of the metal part without intervening a metal oxide layer.
  • Comparative example 3 A support made of aluminum foil was prepared, and after drying with nitrogen gas, the support made of aluminum foil was immersed in a 20% by mass sulfuric acid (H 2 SO 4 ) aqueous solution, and the aluminum plate was used as a counter electrode and heated at 15V for 15 minutes. Electrolytic oxidation was performed for 1 minute to form aluminum oxide (aluminum oxide layer) on the surface of the support. MOF (MIL-53(Al)) was formed on the surface of the support having aluminum oxide in the same manner as in Example 3 except that the support having aluminum oxide on the surface was used. A composite including a support having a metal part, an MOF, and a metal oxide layer interposed at the interface between the metal part and the MOF was obtained.
  • H 2 SO 4 20% by mass sulfuric acid
  • MOF MIL-53(Al)
  • the abundance of atoms (atom%) relative to the cross-sectional position ( ⁇ m) of the composite is shown from the left end located in the protective layer that is not in contact with the MOF and the right end located in the metal part that is not in contact with the MOF in the photo. Line elemental analysis was performed.
  • FIGS. 3A to 8A show the abundance of each atom in the cross section of each complex measured by SEM-EDX.
  • FIGS. 3B to 8B show SEM photographs of cross sections of each composite body taken with a scanning electron microscope.
  • the white line shown in FIGS. 3B to 8B indicates the virtual position of the cross section of each composite that connects the left end located in the protective layer not in contact with the MOF and the right end located in the metal part not in contact with the MOF. It is a line.
  • FIG. 3C, FIG. 4C, FIG. 7C, and FIG. 8C show the abundance of oxygen atoms from the left end to the right end of each complex, and graphs obtained by first-order differentiation of the abundance of oxygen atoms.
  • FIGS. 5C and 6C show graphs obtained by first-order differentiation of the abundance of oxygen atoms and the abundance of nitrogen atoms from the left end to the right end of each complex.
  • FIGS. 5D and 6D show graphs obtained by first-order differentiation of the abundance of oxygen atoms and the abundance of second metal atoms from the left end to the right end of each complex. Note that in FIGS. 6C and 6D, oxygen atoms do not originally exist in the composition formula of the MOF, but because a part of the zinc oxide that is the substrate has entered the MOF region, even if it is in the MOF. Oxygen atoms are detected, and it is assumed that oxygen apparently exists in the MOF.
  • Interface 1 and Interface 2 The positions of interface 1 and interface 2 were measured by the method described above. The results are shown in Table 1. In Table 1, the symbol "-" indicates that there is no corresponding item.
  • Oxygen amount Ox1, oxygen amount Ox2, oxygen amount ratio Ox1/Ox2 Oxygen amount Ox1 which is the amount of oxygen atoms present (atom%) at the position of interface 1 measured as described above, oxygen amount Ox2 which is the amount of oxygen atoms present (atom%) at the position of interface 2, oxygen amount ratio Ox1 /Ox2 was calculated. The results are shown in Table 1.
  • Peel strength The peel strength of the MOF of each composite was measured using the following apparatus and conditions. Note that the peel strength was determined by taking the arithmetic average of the measurements taken at the number of measurement points. The higher the peel strength value, the higher the bonding strength between the surface of the metal part and the MOF. The results are shown in Table 1.
  • Evaluation equipment SEM-Indenter system Equipment model number: FT-NMT04 Manufacturer: Femto Tools Equipped with SEM: SUPRA 55VP (Carl Zeiss) Sensor used: FT S20000 (diamond indenter, Cube Corner 35.3°) Usage option: 2-axis stage (FT-SEM-ST04) Measurement mode: Scratch evaluation (peeling load: ramp-up test) Scratch length: 20 ⁇ m Number of measurement points: 5 or more points/sample Hardness calibration: Fused silica (Reduce Modulus: 69.6GPa)
  • X-ray diffraction spectrum of MOF The X-ray diffraction (XRD) spectrum of MOF of each composite was measured using a thin film X-ray diffractometer (light energy: 14.37 keV) at Aichi Synchrotron Optical Center BL8S1.
  • the XRD spectra of each composite are shown in FIGS. 9 to 11 along with the XRD spectra calculated from the crystal structure of the MOF constituting the compound.
  • each of the composites of Examples had an oxygen content ratio Ox1/Ox2 of less than 1.3, and no metal oxide layer was present at the interface between the metal part and the MOF. was confirmed.
  • the peel strength of the MOF of each composite of the example was higher than the peel strength of the MOF of each composite of the comparative example.
  • the MOF is formed on the surface of the metal part without a metal oxide layer, so that the metal ions contained in the surface of the metal part form a coordination bond with the organic ligand contained in the MOF. However, the metal part and MOF were firmly bonded, and the bond strength was increased.
  • each composite of the comparative example had an oxygen content ratio Ox1/Ox2 of 1.3 or more, and a metal oxide layer was present at the interface between the metal part and the MOF.
  • the peel strength of the MOF of each composite of the comparative example was lower than the peel strength of the MOF of each of the composites of the example.
  • oxygen ions (O - ) contained in the metal oxide layer combine with the metal ions in the MOF due to electrostatic force (Coulomb force). , the bond strength was weaker than the coordinate bond;
  • each XRD spectrum of the MOF of Example 1, the MOF of Comparative Example 1, and the calculated value each XRD spectrum of the MOF of Example 2, the MOF of Comparative Example 2, and the calculated value
  • the XRD spectra of MOF No. 3, MOF No. 3 of Comparative Example 3, and the calculated values had peaks at approximately the same diffraction angle (2 ⁇ /deg). From this result, the MOF of Example 1 (HKUST-1), the MOF of Comparative Example 1 (HKUST-1), the MOF of Example 2 (ZIF-8), the MOF of Comparative Example 2 (ZIF-8), and the It was confirmed that the MOF No. 3 (MIL-53(Al)) and the MOF No. 3 (MIL-53(Al)) had the same MOF structure.
  • the composite of the present disclosure can be suitably used for adsorption separation of gases and ions, gas separation, filters, reaction fields such as polymer synthesis, various sensors, especially sensors for gas detection, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)

Abstract

金属部を有する支持体と金属有機構造体(MOF)を高い強度で結合させた複合体を提供する。 金属部を有する支持体と、前記金属部の表面に形成された金属有機構造体を含む複合体であって、前記金属有機構造体が金属酸化物層を介することなく前記金属部の表面に形成されている複合体である。また、金属部を有する支持体と、前記金属部の表面に形成された金属有機構造体を含む複合体であって、前記金属部と前記金属有機構造体の界面における酸素量Ox1と、前記金属有機構造体の前記金属部と接していない表面における酸素量Ox2の酸素量比Ox1/Ox2が1.3未満である、複合体である。

Description

複合体及びその製造方法
 本発明は、複合体及びその製造方法に関する。
 金属イオンと、金属イオンを連結する架橋性の有機配位子を組み合わせて、内部に細孔を有する結晶性の高分子構造を備えた金属有機構造体(metal-organic frameworks、以下「MOF」ともいう。)が知られている。
 MOFは、MOFを構成する金属イオンと有機配位子を適切に選ぶことによって、MOFのガス吸着性能や吸着する分子の種類を調整することができる。そのため、MOFを、センサー、分離膜、触媒担体等に応用する研究が進められている。MOFを装置の部材に使用するためには、MOFと支持体とが強固に結合した複合体とする必要がある。MOFと支持体との結合強度が弱いと、MOFが剥がれ落ちるなどの劣化が生じる。
 このような技術として、例えば特許文献1には、支持体に対する十分な密着性を発揮させるため、支持体上に金属酸化物層を形成し、金属酸化物層上にMOFを形成した複合膜構造体が開示されている。
国際公開第2021/261271号
 しかしながら、係る特許文献1に記載の技術では、金属酸化物層上にMOFを形成したものの未だに十分な結合強度が発揮されるものとは言い難かった。
 そこで本発明は、支持体とMOFとの結合強度の高い複合体を提供することを目的とする。
 本発明は、金属部を有する支持体と、前記金属部の表面に形成された金属有機構造体を含む複合体であって、前記金属有機構造体が金属酸化物層を介することなく前記金属部の表面に形成されている複合体を提案する。
 本発明は、金属部を有する支持体と、前記金属部の表面に形成された金属有機構造体を含む複合体であって、前記金属部と前記金属有機構造体の界面における酸素量Ox1と、前記金属有機構造体の前記金属部と接していない表面における酸素量Ox2の酸素量比Ox1/Ox2が1.3未満である、複合体を提案する。
 本発明は、金属部を有する支持体の少なくとも前記金属部の表面を、金属有機構造体を構成する有機配位子を含む溶液中に浸漬し、前記金属部の表面に前記金属部に含まれる金属イオンを含む金属有機構造体を形成する、前記金属部と前記金属有機構造体の界面に金属酸化物層が介在していない複合体の製造方法を提案する。
 本発明は、支持体の金属部とMOFを高い強度で結合させた複合体を提供することができる。
本発明に係る複合体を示すイメージ図である。 金属酸化物層を有する複合体を示すイメージ図である。 実施例1に係る複合体の断面を走査型電子顕微鏡-エネルギー分散型X線分析装置(SEM-EDX)を用いて測定した酸素、第1金属(銅)、第2金属(白金)の各原子の存在量(atom%)を示す図である。 実施例1に係る複合体の断面SEM写真である。 実施例1に係る複合体の断面における酸素の存在量と、酸素の存在量を一次微分して得られた図である。 比較例1に係る複合体の断面をSEM-EDXを用いて測定した酸素、第1金属(銅)、第2金属(白金)の各原子の存在量(atom%)を示す図である。 比較例1に係る複合体の断面SEM写真である。 比較例1に係る複合体の断面における酸素の存在量と、酸素の存在量を一次微分して得られた図である。 実施例2に係る複合体の断面をSEM-EDXを用いて測定した酸素、第1金属(亜鉛)、第2金属(白金)の各原子の存在量(atom%)を示す図である。 実施例2に係る複合体の断面SEM写真である。 実施例2に係る複合体の断面における酸素の存在量と、窒素の存在量を一次微分して得られた図である。 実施例2に係る複合体の断面における酸素の存在量と、白金の存在量を一次微分して得られた図である。 比較例2に係る複合体の断面をSEM-EDXを用いて測定した酸素、第1金属(亜鉛)、第2金属(白金)の各原子の存在量(atom%)を示す図である。 比較例2に係る複合体の断面SEM写真である。 比較例2に係る複合体の断面における酸素の存在量と、窒素の存在量を一次微分して得られた図である。 比較例2に係る複合体の断面における酸素の存在量と、白金の存在量を一次微分して得られた図である。 実施例3に係る複合体の断面をSEM-EDXを用いて測定した酸素、第1金属(アルミニウム)、第2金属(白金)の各原子の存在量(atom%)を示す図である。 実施例3に係る複合体の断面SEM写真である。 実施例3に係る複合体の断面における酸素の存在量と、酸素の存在量を一次微分して得られた図である。 比較例3に係る複合体の断面をSEM-EDXを用いて測定した酸素、第1金属(アルミニウム)、第2金属(白金)の各原子の存在量(atom%)を示す図である。 比較例3に係る複合体の断面SEM写真である。 比較例3に係る複合体の断面における酸素の存在量と、酸素の存在量を一次微分して得られた図である。 実施例1、比較例1、及び、計算値によるMOFの各X線回折(XRD)スペクトルを示す図である。 実施例2、比較例2、及び、計算値によるMOFの各X線回折(XRD)スペクトルを示す図である。 実施例3、比較例3、及び、計算値によるMOFの各X線回折(XRD)スペクトルを示す図である。
 次に、実施の形態例に基づいて本発明を説明する。但し、本発明は次に説明する実施形態に限定されるものではない。
 本発明の第一実施形態は、金属部を有する支持体と、金属部の表面に形成された金属有機構造体を含む複合体であって、金属有機構造体が金属酸化物層を介することなく金属部の表面に形成されている複合体である。本発明の複合体は、MOFが、金属酸化物層を介することなく、金属部の表面に直接形成されていることが好ましい。
 図1は、本発明に係る複合体を示すイメージ図である。複合体10は、支持体となる金属部1と、金属部1の表面に、金属酸化物層を介することなく、MOF2が形成されている。
 本発明の複合体は、金属酸化物層を介することなくMOFが金属部の表面に形成されているので、支持体の金属部の表面に含まれる金属イオンがMOFに含まれる有機配位子と配位結合し、支持体の金属部とMOFを高い強度で結合させた複合体を提供することができる。
 また、本発明の複合体は、金属酸化物層を介することなくMOFが金属部の表面に形成されているので、金属酸化物層が絶縁層となることなく、MOFと金属部の電気的な接触を妨げることもない。
 図2は、金属酸化物層を有する複合体のイメージ図である。複合体20は、支持体となる金属部1と、金属部1の表面に金属酸化物層3を介して、MOF2が形成されている。MOF2が、金属酸化物層3を介して金属部1の表面に形成されていると、金属酸化物層3中に含まれる酸素イオン(O)が静電気力(クーロン力)によって、MOF2中の金属イオンと結合するため、配位結合よりも結合強度が弱くなる。
 本発明の第二実施形態は、金属部を有する支持体と、金属部の表面に形成された金属有機構造体とを含む複合体であって、金属部と金属有機構造体の界面における酸素量Ox1と、金属有機構造体の金属部と接していない表面における酸素量Ox2の酸素量比Ox1/Ox2が1.3未満である。
 支持体の金属部とMOFが接している界面における酸素量Ox1と、金属部と接していないMOFの表面の酸素量Ox2の酸素量比Ox1/Ox2が1.3未満であれば、MOFと金属部の界面に金属酸化物層が介在していないとみなすことができる。酸素量比Ox1/Ox2は1.2以下であることが好ましく、1.1以下であることがより好ましく、1.08以下であることがさらに好ましく、1.07以下であることが特に好ましい。一方、酸素量比Ox1/Ox2は、0.7以上でもよく、0.8以上でもよく、0.9以上でもよい。
 支持体の金属部とMOFが接している界面における酸素量Ox1、金属部と接していないMOFの表面の酸素量Ox2は、例えば走査型電子顕微鏡-エネルギー分散型X線分析装置(SEM-EDX)、X線光電子分光法(XPS)等を用いて測定することができる。
 支持体の金属部とMOFが接している界面(以下、「界面1」ともいう。)は、次のように定義することができる。
 先ずは、複合体の断面において、倍率20万倍以上の拡大率でSEM-EDXを用いてSEM画像を撮影する。このとき、SEM画像の左側から右側にかけて後述する保護層、MOF及び金属部が順に含まれるように撮影する。複合体に含まれる酸素、金属(以下、「第1金属」ともいう。)、及び複合体のMOFの表面を保護する保護層に含まれる金属(以下、「第2金属」ともいう。)の量を倍率20万倍以上の拡大率でSEM-EDXを用いて測定し、複合体の断面の位置(μm)を横軸とし、各原子の存在量(atom%)を縦軸としたグラフを得る。ここで、SEM写真に含まれる複合体断面の左端の位置を基準値「0.0(μm)」とする。ここで、上記倍率で測定したSEM写真の視野に解析対象となる界面1と界面2が同時に収まらない場合には、同倍率で複数連続撮影してパノラマ状にしたSEM写真からEDX測定をしても良い。また、前述した「保護層」は、前記複合体の断面加工する際に前記MOFの構造が変化しないよう便宜上設けられるものである。保護層に含まれる金属としては、例えば白金、タングステンが挙げられる。
 次いで、界面1における仮の界面1を抽出する。即ち、上述にて作成したグラフにおける、第1金属の右端の原子の存在量(atom%)を、MOFに接していない金属部内における第1金属の原子の存在量とする。係る存在量に対し、上述にて作成したグラフの右端から左端に向かうにつれて第1金属の原子の存在量が25%減少したときの位置を仮の界面1とする。
 そして、仮の界面1を基に実際の界面1を抽出する。
 即ち、MOFを形成している有機配位子中に酸素原子を含む場合は、上述にて作成したグラフから得られた酸素原子の存在量を一次微分してグラフを得る。仮の界面1の位置から±0.20μmの範囲内において存在する、酸素原子の前記一次微分して得たグラフの負のピークトップの位置を界面1とする。
 また、MOFを形成している有機配位子中に酸素原子を含まない場合には、有機配位子中にのみ含まれる原子(例えば、窒素原子、硫黄原子等)の存在量をSEM-EDXにより測定し、得られた有機配位子中にのみ含まれる、例えば窒素原子の存在量を一次微分したグラフを得る。仮の界面1の位置から±0.20μmの範囲内において存在する、例えば窒素原子の前記一次微分して得たグラフの負のピークトップの位置を界面1とする。
 なお、MOFを形成している有機配位子中に酸素原子を含む場合と含まない場合の何れにおいても、仮の界面1の位置から±0.20の範囲に複数の負のピークが存在する場合には、複数の負のピークのうち、金属部に最も近い位置の負のピークトップの位置を界面1とする。
 MOFの金属部と接していない表面(以下、「MOF表面」又は「界面2」ともいう。)は、次のように定義することができる。
 先ずは、界面2における仮の界面2を抽出する。即ち、上述にて作成したグラフにおける、第2金属の左端の原子の存在量(atom%)を、MOFに接していない保護層内における第2金属の原子の存在量とする。係る存在量に対し、上述にて作成したグラフの左端から右端に向かうにつれて第2金属の原子の存在量が25%減少したときの位置を仮の界面2とする。
 そして、仮の界面2を基に実際の界面2を抽出する。
 即ち、MOFを形成している有機配位子中に酸素原子を含む場合は、上述にて作成したグラフから得られた酸素原子の存在量を一次微分してグラフを得る。仮の界面2の位置から±0.20μmの範囲内において存在する、酸素原子の前記一次微分して得たグラフの正のピークトップの位置を界面2とする。仮の界面2の位置から±0.20の範囲に複数の正のピークが存在する場合には、複数の正のピークのうち、保護層の表面(前記一次微分して得たグラフの横軸0.0)に最も近い位置の正のピークトップの位置を界面2とする。
 また、MOFを形成している有機配位子中に酸素原子を含まない場合には、保護層に含まれる第2金属原子(保護層が白金である場合には白金)の存在量をSEM-EDXにより測定し、得られた第2金属原子の存在量を一次微分したグラフを得る。仮の界面2の位置から±0.20μmの範囲内において存在する、第2金属原子の前記一次微分して得たグラフの負のピークトップの位置を界面2とする。仮の界面2の位置から±0.20の範囲に複数の負のピークが存在する場合には、複数の負のピークのうち、保護層の表面(前記一次微分して得たグラフの横軸0.0)に最も近い位置の負のピークトップの位置を界面2とする。
 上述のように測定した界面1の位置における酸素原子の存在量(atom%)を、複合体の金属部とMOFが接している界面における酸素量Ox1とする。また、上述のように測定した界面2の位置における酸素原子の存在量(atom%)を、MOFの金属部と接していない表面における酸素量Ox2とする。これらより酸素量比Ox1/Ox2を算出することができる。
 また、MOFを形成している有機配位子中に酸素原子を含まない場合には、以下の(1)から(3)を基に金属有機構造体と金属部の間の金属酸化物層の存在の有無を確認することができる。
 (1)SEM写真から界面1から界面2までの距離(μm)を求める。
 (2)界面2から界面1に向かって、界面2の位置から界面1から界面2までの距離の1/2までの酸素量の平均値OA1/2と標準偏差σを求める(ここで1/2の距離までとしたのは、界面1の酸化した基板の酸素をMOF中の酸素として算出しないようにするためである)。
 (3)界面1における酸素量Ox1が、上述の酸素量の平均値OA1/2及び3σの合計の数値(OA1/2+3σ)以内(Ox1≦OA1/2+3σ)であれば金属有機構造体と接する金属部の表面は酸化されておらず、金属有機構造体が金属酸化物層を介することなく金属部の表面に形成されているとみなす。
 また、この場合において界面2における酸素量は、上述した界面2の位置から界面1から界面2までの距離の1/2までの酸素量の平均値OA1/2と同じであるとみなす。
 MOFに含まれる金属イオンは、金属部に含まれる金属に由来することが好ましい。支持体の金属部に含まれる金属の少なくとも一部が、金属イオンとなって有機配位子と配位結合することにより、金属部とMOFとが強固に結合された複合体が得られる。MOFに含まれる少なくとも1種の金属イオンは、金属部に含まれる金属と同種の金属イオンであって、該金属イオンは金属部に含まれる金属に由来する。
 金属部に含まれる金属は、銅、亜鉛、アルミニウム、鉄、クロム、コバルト、ジルコニウム、ニッケル、チタン及びマグネシウムからなる群から選択される少なくとも1種の金属を含むことが好ましい。金属部に含まれる金属は1種の金属でもよく、2種以上の金属であってもよい。
 支持体は、金属部の金属材料と同一であり、支持体と金属部が一体のものであってもよい。支持体は、金属部に含まれる金属とは種類が異なる金属材料であってもよい。支持体は、半導体材料、水晶振動子、圧電セラミック、及び電極であってもよい。また、支持体は、紙、不織布、セラミックス、樹脂からなるものであってもよい。
 支持体の形状は特に限定されず、例えば、板状、繊維状、布状、フィルム状、多孔形状であってもよい。支持体上に金属部が付着されていてもよく、蒸着されていてもよい。
 MOFを形成する有機配位子は、多座配位子を用いることができる。有機配位子は、シュウ酸、ブタン二酸、(E)-ブテン二酸、ベンゼン-1,4-ジカルボン酸、ベンゼン-1,3-ジカルボン酸、ベンゼン-1,3,5-トリカルボン酸、2-アミノ-1,4-ベンゼンジカルボン酸、2-ブロモ-1,4-ベンゼンジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ビフェニル-3,3’,5,5’-テトラカルボン酸、ビフェニル-3,4’,5-トリカルボン酸、2,5-ジヒドロキシ-1,4-ベンゼンジカルボン酸、1,3,5-トリス(4-カルボキシフェニル)ベンゼン、(2E,4E)-ヘキサ-2,4-ジエン二酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、1,4-アントラセンジカルボン酸、9,10-アントラセンジカルボン酸、ピレン-2,7-ジカルボン酸、4,5,9,10-テトラヒドロピレン-2,7-ジカルボン酸、1H-ピラゾール-3,5-ジカルボン酸、アスパラギン酸、グルタミン酸、アデニン、4,4’-ビピリジン、ピリミジン、ピラジン、ピペラジン、1,2,4-トリアゾール、1,3,5-トリアジン、1,4-ジアザビシクロ[2.2.2]オクタン、ピリジン-4-カルボン酸、ピリジン-3-カルボン酸、イミダゾール、1H-ベンゾイミダゾール、2-メチル-1H-イミダゾール、及びそれらの誘導体、並びにそれらの混合物からなる群から選択される少なくとも1種の有機配位子を用いることができる。
 本発明の第三実施形態は、金属部を有する支持体の少なくとも金属部の表面を、金属有機構造体を構成する有機配位子を含む溶液中に浸漬し、金属部の表面に金属部に含まれる金属イオンを含む金属有機構造体を形成する、金属部と金属有機構造体の界面に金属酸化物層が介在していない複合体の製造方法である。
 金属部を有する支持体の少なくとも金属部の表面を、有機配位子を含む溶液中に浸漬すると、溶液中に含まれる酸素によって、金属部の表面が酸化されて金属部に含まれる金属がイオン化し、金属部の表面に金属イオンが存在するようになる。金属部の表面に存在する金属イオンが溶液中の有機配位子と配位結合してMOFが形成され、金属部とMOFの界面に金属酸化物層を介在させることなく、金属部とMOFが配位結合によって強固に結合された複合体を得ることができる。
 支持体の金属部の表面を浸漬している有機配位子を含む溶液は、40℃以上140℃以下の温度範囲とすることが好ましい。支持体の金属部の表面を浸漬している有機配位子を含む溶液の温度は、45℃以上120℃以下の範囲内とすることがより好ましく、50℃以上100℃以下の範囲内とすることがさらに好ましい。支持体の金属部の表面を浸漬している有機配位子を含む溶液が、40℃以上140℃以下の温度範囲であると、金属部の表面と溶液中の有機配位子の反応性が高くなるため好ましい。
 溶液中の有機配位子の濃度は、0.01mmol/L以上5mol/L以下の範囲内であることが好ましく、0.1mmol/L以上1mol/L以下の範囲内であることがより好ましく、1mmol/L以上500mmol/L以下の範囲内であることがさらに好ましい。溶液中の有機配位子の濃度が0.01mmol/L以上5mol/L以下の範囲内であれば、金属部の表面が酸化して生成される金属イオンと、溶液中の有機配位子が結合しやすい。有機配位子は、金属有機構造体に含まれる、前述の有機配位子を用いることができる。有機配位子を含む溶液の溶媒は、例えばN,N-ジメチルホルムアミド(DMF)、エタノール、水等を用いることができる。
 金属部の表面を、有機配位子を含む溶液中に浸漬する時間は、5分間以上24時間以内であることが好ましく、10分間以上8時間以内であることがより好ましく、15分間以上5時間以内であることがさらに好ましい。金属部の表面を、有機配位子を含む溶液中に浸漬する時間が5分間以上24時間以内であれば、金属部の表面と、溶液中の酸素及び有機配位子の反応性がよく、金属部の表面がイオン化された金属イオンと溶液中の有機配位子とが配位結合して、金属部とMOFの界面に金属酸化物層を介在させることなく、金属部とMOFを強固に結合させた複合体を得ることができる。
 複合体の製造方法において、有機配位子を含む溶液に浸漬する前に、金属部を酸性溶液で洗浄し、さらに水、アルコールで洗浄し、不活性ガスで乾燥してもよい。酸性溶液としては、例えば希硝酸、希硫酸、希塩酸等を用いることができる。水は、脱イオン水を用いることができる。アルコールは、例えばエタノールを用いることができる。乾燥に用いる不活性ガスは、例えば窒素ガスを用いることができる。
 複合体の製造方法において、MOFを形成した後に、複合体を、非プロトン性極性溶媒、アルコールを用いて洗浄し、不活性ガスで乾燥してもよい。非プロトン性極性溶媒は、例えばDMF、テトラヒドロフラン(THF)等を用いることができる。アルコールは、例えばエタノール、メタノール、1-プロパノール、2-プロパノール等を用いることができる。乾燥に用いる不活性ガスは、例えば窒素ガスを用いることができる。
 本発明の実施形態は以下の技術思想を包含するものである。
 〔1〕金属部を有する支持体と、前記金属部の表面に形成された金属有機構造体を含む複合体であって、前記金属有機構造体が金属酸化物層を介することなく前記金属部の表面に形成されている複合体。
 〔2〕金属部を有する支持体と、前記金属部の表面に形成された金属有機構造体を含む複合体であって、前記金属部と前記金属有機構造体の界面における酸素量Ox1と、前記金属有機構造体の前記金属部と接していない表面における酸素量Ox2の酸素量比Ox1/Ox2が1.3未満である、複合体。
 〔3〕前記金属部に含まれる金属が、銅、亜鉛、アルミニウム、鉄、クロム、コバルト、ジルコニウム、ニッケル、チタン及びマグネシウムからなる群から選択される少なくとも1種の金属を含む、〔1〕又は〔2〕に記載の複合体。
 〔4〕前記金属有機構造体に含まれる金属イオンが、前記金属部に含まれる金属に由来する、〔1〕ないし〔3〕のいずれか1項に記載の複合体。
 〔5〕金属部を有する支持体の少なくとも前記金属部の表面を、金属有機構造体を構成する有機配位子を含む溶液中に浸漬し、前記金属部の表面に前記金属部に含まれる金属イオンを含む金属有機構造体を形成する、前記金属部と前記金属有機構造体の界面に金属酸化物層が介在していない複合体の製造方法。
 〔6〕前記金属部の表面を浸漬している前記有機配位子を含む溶液を、40℃以上140℃以下の温度範囲とする、〔5〕に記載の複合体の製造方法。
 以下、本発明を実施例及び比較例に基づいてさらに詳述する。本発明は、これらの実施例に限定されるものではない。
 実施例1
 金属部を有する支持体の準備
 厚さ80μmの銅箔(銅純度が99.9%)(株式会社ニラコ製)を2cm×5cmの大きさに切断して、支持体(支持体自体が金属部)を準備した。銅箔からなる支持体を、硝酸の濃度が1質量%の希硝酸に浸漬して全体を洗浄し、その後、脱イオン水、エタノールで洗浄し、窒素ガスで乾燥した。
 有機配位子を含む溶液の準備
 溶媒であるDMF中に、有機配位子であるベンゼン-1,3,5-トリカルボン酸が20mmol/Lとなるよう溶解して、有機配位子を含む溶液を準備した。ビーカーに有機配位子を含む溶液を入れ、60℃に加熱した。
 MOF及び複合体の製造
 60℃に維持した有機配位子を含む溶液中に銅箔からなる支持体を30分間浸漬し、銅箔からなる支持体の表面にMOF(HKUST-1)を形成した。支持体である銅箔とMOFを含む複合体を、有機配位子を含む溶液から取り出した後、DMF、エタノールで洗浄し、窒素ガスで乾燥した。金属部を有する支持体と、MOFとを含み、MOFが金属酸化物層を介することなく金属部の表面に形成されている複合体を得た。
 比較例1
 銅箔からなる支持体を準備し、窒素ガスで乾燥後、200℃に加熱したホットプレート上で5分間加熱して、支持体の表面に酸化銅(銅酸化物層)を形成した。表面に酸化銅を有する支持体を用いたこと以外は、実施例1と同様にして、酸化銅を有する支持体の表面にMOF(HKUST-1)を形成した。金属部を有する支持体と、MOFと、金属部とMOFの界面に介在する金属酸化物層と、を含む複合体を得た。
 実施例2
 金属部を有する支持体の準備
 厚さ300μm亜鉛箔(亜鉛純度が99.2%)(株式会社ニラコ製)を2cm×5cmの大きさに切断して、支持体(支持体自体が金属部)を準備した。亜鉛箔からなる支持体を、塩酸の濃度が1質量%の希塩酸に浸漬して全体を洗浄し、その後、脱イオン水、エタノールで洗浄し、窒素ガスで乾燥した。
 有機配位子を含む溶液の準備
 溶媒である脱イオン水中に、有機配位子である2-メチル-1H-イミダゾールが125mmol/Lとなるよう溶解して、有機配位子を含む溶液を準備した。ビーカーに有機配位子を含む溶液を入れ、75℃に加熱した。
 MOF及び複合体の製造
 75℃に維持した有機配位子を含む溶液中に亜鉛箔からなる支持体を30分間浸漬し、亜鉛箔からなる支持体の表面にMOF(ZIF-8)を形成した。支持体である亜鉛箔とMOFを含む複合体を、有機配位子を含む溶液から取り出した後、脱イオン水、エタノールで洗浄し、窒素ガスで乾燥した。金属部を有する支持体と、MOFとを含み、MOFが金属酸化物層を介することなく金属部の表面に形成されている複合体を得た。
 MOFを形成している有機配位子中に酸素原子を含んでいないため、有機配位子中にのみ含まれる窒素原子の存在量をSEM-EDXから測定してグラフを作成し、係る存在量を一次微分してグラフを得た。仮の界面1の位置から±0.20μmの範囲内に存在する負のピークトップの位置を界面1とした。次いで、保護層に含まれる白金の存在量をSEM-EDXから測定してグラフを作成し、係る存在量を一次微分してグラフを得た。仮の界面2の位置から±0.20μmの範囲内に存在する保護層の表面(横軸0.0)に最も近い位置の負のピークトップの位置を界面2とした。
 (1)複合体の断面SEM写真から求めた界面1から界面2までの距離は0.66μmであった。
 (2)界面2から界面1に向かって、0.66μmから、0.66μmの距離の1/2である0.33μmを足した0.99μmまでの酸素量の平均値OA1/2は2.43であり、標準偏差σは0.75であった。なお、Ox2は上述のとおりOA1/2と同様であるものとみなす。
 (3)界面1の酸素量Ox1は2.43であり、平均値OA1/2及び3σの合計値は4.68であり、Ox1≦OA1/2+3σ(2.43≦4.68)であり、Ox1≦OA1/2+3σを満たしているため、金属有機構造体と接する金属部の表面には金属酸化物層が形成されていないとみなす。
 比較例2
 亜鉛箔からなる支持体を準備し、窒素ガスで乾燥後、0.1mol/Lの塩化カリウム(KCl)水溶液中に亜鉛箔からなる支持体を浸漬し、対極を亜鉛板として、5mA/cmで、5分間、電解酸化して、支持体の表面に酸化亜鉛(亜鉛酸化物層)を形成した。表面に酸化亜鉛を有する支持体を用いたこと以外は、実施例2と同様にして、酸化亜鉛を有する支持体の表面にMOF(ZIF-8)を形成した。金属部を有する支持体と、MOFと、金属部とMOFの界面に介在する金属酸化物層と、を含む複合体を得た。
 MOFを形成している有機配位子中に酸素原子を含んでいないため、有機配位子中にのみ含まれる窒素原子の存在量をSEM-EDXから測定してグラフを作成し、係る存在量を一次微分してグラフを得た。仮の界面1の位置から±0.20μmの範囲内に存在する負のピークトップの位置を界面1とした。次いで、保護層に含まれる白金の存在量をSEM-EDXから測定してグラフを作成し、係る存在量を一次微分してグラフを得て、仮の界面2の位置から±0.20μmの範囲内に存在する負のピークトップの位置を界面2とした。
 (1)複合体の断面SEM写真から求めた界面1から界面2までの距離は0.80μmであった。
 (2)界面2から界面1に向かって、0.44μmから、0.80μmの距離の1/2である0.40μmを足した0.84μmまでの酸素量の平均値OA1/2は14.14であり、標準偏差σは1.079であった。なお、Ox2は上述のとおりOA1/2と同様であるものとみなす。
 (3)界面1の酸素量Ox1は31.98であり、平均値OA1/2及び3σの合計値は17.46であり、31.98>17.46で、Ox1≦OA1/2+3σを満たしていないため、金属有機構造体と接する金属部の表面には金属酸化物層が形成されているとみなす。
 実施例3
 金属部を有する支持体の準備
 厚さ75μmのアルミニウム箔(アルミニウム純度が99+%)(株式会社ニラコ製)を2cm×5cmの大きさに切断して、支持体(支持体自体が金属部)を準備した。アルミニウム箔からなる支持体を、塩酸の濃度が1質量%の希塩酸に浸漬して全体を洗浄し、その後、脱イオン水、エタノールで洗浄し、窒素ガスで乾燥した。
 有機配位子を含む溶液の準備
 DMFと水との質量比(DMF:HO)が3:7となるように混合した溶媒中に、有機配位子であるベンゼン-1,4-ジカルボン酸が10mmol/Lとなるよう溶解して、有機配位子を含む溶液を準備した。ビーカーに有機配位子を含む溶液を入れ、100℃に加熱した。
 MOF及び複合体の製造
 100℃に維持した有機配位子を含む溶液中にアルミニウム箔からなる支持体を8時間浸漬し、アルミニウム箔からなる支持体の表面にMOF(MIL-53(Al))を形成した。支持体であるアルミニウム箔とMOFを含む複合体を、有機配位子を含む溶液から取り出した後、DMF、エタノールで洗浄し、窒素ガスで乾燥した。金属部を有する支持体と、MOFとを含み、MOFが金属酸化物層を介することなく金属部の表面に形成されている複合体を得た。
 比較例3
 アルミニウム箔からなる支持体を準備し、窒素ガスで乾燥後、20質量%の硫酸(HSO)水溶液中にアルミニウム箔からなる支持体を浸漬し、対極をアルミニウム板として、15Vで、15分間、電解酸化して、支持体の表面に酸化アルミニウム(アルミニウム酸化物層)を形成した。表面に酸化アルミニウムを有する支持体を用いたこと以外は、実施例3と同様にして、酸化アルミニウムを有する支持体の表面にMOF(MIL-53(Al))を形成した。金属部を有する支持体と、MOFと、金属部とMOFの界面に介在する金属酸化物層と、を含む複合体を得た。
 実施例及び比較例の各複合体について、以下の評価を行った。結果を表1及び図3A~図8Cに示す。
 サンプルの作成及びSEM-EDXによる各原子量の測定
 実施例及び比較例の各複合体のMOFの表面に、オックスフォード・インスツルメンツ社製のEDX検出器を搭載したFIB-SEM(カールツァイス社製Crossbeam540)を用いて白金を保護層(第2金属)として形成した。白金の保護層が形成された複合体を、同装置を用いて断面が露出するように切片とし、断面を走査型電子顕微鏡-エネルギー分散型X線分析装置(SEM-EDX)を用いて、SEM写真中における、MOFと接していない保護層内に位置付ける左端と、MOFと接していない金属部内に位置付ける右端とから、複合体の断面の位置(μm)に対する原子の存在量(atom%)を示すライン元素分析を行った。
 図3A~図8Aに、SEM-EDXにより測定した各複合体の断面における各原子の存在量を示す。また、図3B~図8Bに、各複合体の断面の走査型電子顕微鏡で撮影したSEM写真を示す。図3B~図8Bに示す白線は、各複合体の断面におけるMOFと接していない保護層内に位置付ける左端とMOFと接していない金属部内に位置付ける右端とを結ぶ複合体の断面の位置を示す仮想線である。
 また、図3C、図4C、図7C及び図8Cは、各複合体の左端から右端の酸素原子の存在量と、酸素原子の存在量を一次微分して得られたグラフを示す。図5C及び図6Cは、各複合体の左端から右端の酸素原子の存在量と、窒素原子の存在量を一次微分して得られたグラフを示す。図5D及び図6Dは、各複合体の左端から右端の酸素原子の存在量と、第2金属原子の存在量を一次微分して得られたグラフを示す。
 なお、図6C及び図6Dにおいては、本来MOFの組成式中に酸素原子が存在しないのであるが、基板となる酸化亜鉛の一部がMOFの領域に入り込んでいるためにMOF中であっても酸素原子を検出してしまい、見かけ上MOF中に酸素が存在しているものと想定される。
 界面1及び界面2
 上述した方法により、界面1及び界面2の位置を測定した。結果を表1に示す。表1中、「-」の記号は、該当する項目がないことを表す。
 酸素量Ox1、酸素量Ox2、酸素量比Ox1/Ox2
 上述のように測定した界面1の位置における酸素原子の存在量(atom%)である酸素量Ox1、界面2の位置における酸素原子の存在量(atom%)である酸素量Ox2、酸素量比Ox1/Ox2を算出した。結果を表1に示す。
 剥離強度(結合強度)
 以下の装置及び条件にて、各複合体のMOFの剥離強度を測定した。なお、剥離強度は測定点数分測定したものを算術平均して求めた。剥離強度の数値が高いほど、金属部の表面とMOFの結合強度が高いことを表す。結果を表1に示す。
 評価設備装置:SEM-Indenterシステム
 装置型番  :FT-NMT04
 メーカー  :Femto Tools社
 搭載SEM :SUPRA 55VP(Carl Zeiss社)
 使用Sensor:FT S20000(ダイヤモンド圧子、Cube Corner 35.3°)
 使用オプション:2軸ステージ(FT-SEM-ST04)
 測定モード  :スクラッチ評価(剥離荷重:ランプアップ試験)
 スクラッチ長さ:20μm
 測定点数   :5点以上/試料
 硬さ校正   :熔融石英(Reduce Modulus:69.6GPa)
 MOFのX線回折スペクトル
 あいちシンクロトロン光センターBL8S1の薄膜X線回折装置(光エネルギーは14.37keV)を用いて、各複合体のMOFのX線回折(XRD)スペクトルを測定し、各複合体を構成するMOFの結晶構造から計算されたXRDスペクトルとともに、図9から図11に各複合体のXRDスペクトルを示した。
Figure JPOXMLDOC01-appb-T000001
 表1及び各図に示すように、実施例の各複合体は、酸素量比Ox1/Ox2が1.3未満であり、金属部とMOFの界面には金属酸化物層が介在していないことが確認できた。実施例の各複合体のMOFの剥離強度は、いずれも比較例の各複合体のMOFの剥離強度よりも数値が高かった。実施例の各複合体は、金属酸化物層を介することなくMOFが金属部の表面に形成されているので、金属部表面に含まれる金属イオンがMOFに含まれる有機配位子と配位結合し、金属部とMOFが強固に結合し、結合強度が高くなった。
 表1及び各図に示すように、比較例の各複合体は、酸素量比Ox1/Ox2が1.3以上であり、金属部とMOFの界面に金属酸化物層が介在していた。比較例の各複合体のMOFの剥離強度は、いずれも実施例の各複合体のMOFの剥離強度よりも数値が低くなった。金属部とMOFの界面に金属酸化物層が介在していると、金属酸化物層中に含まれる酸素イオン(O)が静電気力(クーロン力)によって、MOF中の金属イオンと結合するため、配位結合よりも結合強度が弱くなり、結合強度が低くなった。
 図9から図11に示すように、実施例1のMOFと比較例1のMOFと計算値の各XRDスペクトル、実施例2のMOFと比較例2のMOFと計算値の各XRDスペクトル、実施例3のMOFと比較例3のMOFと計算値の各XRDスペクトルは、それぞれほぼ同じ回折角度(2θ/deg)の位置にピークが存在していた。この結果から、実施例1のMOF(HKUST-1)と比較例1のMOF(HKUST-1)、実施例2のMOF(ZIF-8)と比較例2のMOF(ZIF-8)、実施例3のMOF(MIL-53(Al))と比較例3のMOF(MIL-53(Al))は、それぞれ同じMOFの構造を有していることが確認できた。
 本開示の複合体は、ガスやイオンの吸着分離、ガスの分離、フィルター、高分子合成等の反応場、各種センサー、特にガス検出用のセンサー等に好適に用いることができる。
 1:支持体となる金属部、2:MOF、3:金属酸化物層、10、20:複合体
 

Claims (6)

  1.  金属部を有する支持体と、前記金属部の表面に形成された金属有機構造体を含む複合体であって、前記金属有機構造体が金属酸化物層を介することなく前記金属部の表面に形成されている複合体。
  2.  金属部を有する支持体と、前記金属部の表面に形成された金属有機構造体を含む複合体であって、前記金属部と前記金属有機構造体の界面における酸素量Ox1と、前記金属有機構造体の前記金属部と接していない表面における酸素量Ox2の酸素量比Ox1/Ox2が1.3未満である、複合体。
  3.  前記金属部に含まれる金属が、銅、亜鉛、アルミニウム、鉄、クロム、コバルト、ジルコニウム、ニッケル、チタン及びマグネシウムからなる群から選択される少なくとも1種の金属を含む、請求項1又は2に記載の複合体。
  4.  前記金属有機構造体に含まれる金属イオンが、前記金属部に含まれる金属に由来する、請求項1又は2に記載の複合体。
  5.  金属部を有する支持体の少なくとも前記金属部の表面を、金属有機構造体を構成する有機配位子を含む溶液中に浸漬し、前記金属部の表面に前記金属部に含まれる金属イオンを含む金属有機構造体を形成する、前記金属部と前記金属有機構造体の界面に金属酸化物層が介在していない複合体の製造方法。
  6.  前記金属部の表面を浸漬している前記有機配位子を含む溶液を、40℃以上140℃以下の温度範囲とする、請求項5に記載の複合体の製造方法。
     
PCT/JP2023/030463 2022-09-02 2023-08-24 複合体及びその製造方法 WO2024048409A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-139816 2022-09-02
JP2022139816 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024048409A1 true WO2024048409A1 (ja) 2024-03-07

Family

ID=90099737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030463 WO2024048409A1 (ja) 2022-09-02 2023-08-24 複合体及びその製造方法

Country Status (2)

Country Link
TW (1) TW202423538A (ja)
WO (1) WO2024048409A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057439A (ja) * 2015-09-14 2017-03-23 新日鐵住金株式会社 金属−多孔性高分子金属錯体複合材料の製造方法および金属−多孔性高分子金属錯体複合材料
WO2019189788A1 (ja) * 2018-03-30 2019-10-03 ダイキン工業株式会社 積層体の製造方法
JP2023093300A (ja) * 2021-12-22 2023-07-04 国立大学法人東北大学 成形体とその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057439A (ja) * 2015-09-14 2017-03-23 新日鐵住金株式会社 金属−多孔性高分子金属錯体複合材料の製造方法および金属−多孔性高分子金属錯体複合材料
WO2019189788A1 (ja) * 2018-03-30 2019-10-03 ダイキン工業株式会社 積層体の製造方法
JP2023093300A (ja) * 2021-12-22 2023-07-04 国立大学法人東北大学 成形体とその製造方法

Also Published As

Publication number Publication date
TW202423538A (zh) 2024-06-16

Similar Documents

Publication Publication Date Title
Lamagni et al. Restructuring metal–organic frameworks to nanoscale bismuth electrocatalysts for highly active and selective CO2 reduction to formate
TWI709215B (zh) 附載體之銅箔、以及附配線層之無芯支撐體及印刷配線板之製造方法
Zhao et al. An in situ self-assembled Cu 4 I 4–MOF-based mixed matrix membrane: a highly sensitive and selective naked-eye sensor for gaseous HCl
CN107072072B (zh) 处理铜表面以增强对印刷电路板中使用的有机衬底的粘着力的方法
EP2762450B1 (en) Cuprous oxide powder and method of producing same
Hou et al. (110)‐Oriented ZIF‐8 Thin Films on ITO with Controllable Thickness
WO2009110364A1 (ja) 銅の表面処理剤および表面処理方法
Achari et al. Electrochemical atomic layer deposition of Pd ultrathin films by surface limited redox replacement of underpotentially deposited H in a single cell
TW201216546A (en) Copper foil for lithium ion battery current collector
KR102534673B1 (ko) 표면-처리된 구리 호일
WO2024048409A1 (ja) 複合体及びその製造方法
US9565776B2 (en) Method for treating substrate that support catalyst particles for plating processing
JP2009511906A (ja) 電子部品および電子組立品における6価クロムを測定する方法
Liu et al. Phthalocyanine-based two-dimensional conductive metal–organic framework as electrochemical sensor for highly sensitive detection of nifedipine
Shao et al. Preparation and characterization of new anodes based on Ti mesh for direct methanol fuel cells
Benedet et al. g-C3N4-based materials functionalized with Au, Ag, and Au-Ag: An XPS study
Haugsrud On the effects of surface coatings on the high-temperature oxidation of nickel
JP2007061752A (ja) 化学物質識別膜の製造方法
Hu et al. Facile galvanic replacement deposition of nickel on copper substrate in deep eutectic solvent and its activation ability for electroless Ni–P plating
Schmauss et al. Atomic layer deposition for surface area determination of solid oxide electrodes
JP6714440B2 (ja) 複合銅粒子
Zhao et al. An efficient method to functionalize soybean protein fiber for fuse wire application
Ludwig et al. Surface Complexation on TiO2: II. Ternary Surface Complexes: Coadsorption of Cu (II) and Organic Ligands (2, 2′-Bipyridyl, 8-Aminoquinoline, and o-Phenylenediamine) onto TiO2 (Anatase)
Chen et al. Anodization of tantalum films for the enhancement of monolayer seeding and electroless copper plating
KR100717336B1 (ko) 갈바니 치환을 이용한 금속층의 무전해 도금방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860172

Country of ref document: EP

Kind code of ref document: A1