WO2024048372A1 - Device for manufacturing metal base material for exhaust gas purification - Google Patents

Device for manufacturing metal base material for exhaust gas purification Download PDF

Info

Publication number
WO2024048372A1
WO2024048372A1 PCT/JP2023/030192 JP2023030192W WO2024048372A1 WO 2024048372 A1 WO2024048372 A1 WO 2024048372A1 JP 2023030192 W JP2023030192 W JP 2023030192W WO 2024048372 A1 WO2024048372 A1 WO 2024048372A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat plate
winding shaft
pair
winding
piece
Prior art date
Application number
PCT/JP2023/030192
Other languages
French (fr)
Japanese (ja)
Inventor
親志 原田
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Priority to JP2023574723A priority Critical patent/JP7439346B1/en
Publication of WO2024048372A1 publication Critical patent/WO2024048372A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01J35/57
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D47/00Making rigid structural elements or units, e.g. honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • B65H23/18Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web
    • B65H23/195Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in winding mechanisms or in connection with winding operations

Definitions

  • the present invention relates to an apparatus for manufacturing a metal base material for exhaust gas purification.
  • Japanese Patent Application Laid-Open No. 6-198198 discloses an apparatus for manufacturing an exhaust gas purifying metal base material for winding a honeycomb-shaped metal base material (honeycomb body) with a corrugated plate arranged on a flat plate. has been done.
  • a corrugated sheet placed on a flat plate, the flat plate is placed from the widthwise end of the flat plate into a slit along the length of one winding shaft (shaft), and then the winding shaft is rotated around that shaft.
  • a substantially cylindrical metal base material wound body
  • the inner diameter of the center of the metal base material may depend on the outer diameter of the winding shaft (core metal). It has been found that the inner diameter of the center of the metal base material has an appropriate effect on the exhaust gas purification performance. For example, when comparing metal base materials with a predetermined outer diameter, the smaller the inner diameter of the center of the metal base material, the smaller the contact area between the metal catalyst supported on the metal base material and the exhaust gas. It is assumed that it can be manufactured in large quantities and has good exhaust gas purification performance.
  • An object of the present invention is to provide an apparatus for manufacturing a metal base material for exhaust gas purification, which can make the inner diameter of the center part of the metal base material as small as possible.
  • An apparatus for manufacturing a metal base material for exhaust gas purification which is formed by winding a flat plate and a corrugated plate provided on the flat plate, according to one aspect of the present invention, has first and second winding shafts, a rotating It has a mechanism and a movement mechanism.
  • the first winding shaft is supported in a cantilever manner and has a first pair of opposing pieces that define a first slit on the free end side.
  • the second winding shaft is supported in a cantilever manner and has a second pair of opposing pieces that define a second slit on the free end side.
  • the rotation mechanism arranges the rotating shafts of the first winding shaft and the second winding shaft coaxially, the free ends of the first winding shaft and the second winding shaft are opposed to each other, and the rotating mechanism has at least a flat plate and a second winding shaft. Or the corrugated plate is arranged to be able to be inserted into the first slit and the second slit, and the first winding shaft and the second winding shaft are rotated in the same direction in synchronization.
  • the moving mechanism causes the free ends of the first winding shaft and the second winding shaft to approach or separate from each other while arranging the rotating shafts of the first winding shaft and the second winding shaft coaxially.
  • FIG. 2 is a schematic top view showing a manufacturing device for a rolled body and a first conveyance device according to the first embodiment.
  • FIG. 3 is a schematic view of a pair of winding shafts with their free ends separated from each other in the manufacturing device shown by solid lines in FIG. 2 and a flange that holds the pair of winding shafts.
  • FIG. 3B is a schematic diagram showing a pair of winding shafts and flanges of the manufacturing device as seen from the direction indicated by reference numeral 3B in FIG. 3A.
  • FIG. 4 is a schematic diagram showing a state in which the free ends and flanges of a pair of winding shafts of the manufacturing apparatus shown in FIG. 3A are brought close to each other.
  • FIG. 3C is a schematic diagram showing a pair of winding shafts and flanges of the manufacturing device as seen from the direction indicated by reference numeral 3D in FIG. 3C.
  • FIG. 1 is a schematic block diagram of a manufacturing apparatus for a rolled body according to a first embodiment. Schematic diagrams showing the manufacturing process of the wound body according to the first embodiment.
  • FIG. 1 is a schematic block diagram of a manufacturing apparatus for a rolled body according to a first embodiment. Schematic diagrams showing the manufacturing process of the wound body according to the first embodiment.
  • FIG. 1 is a schematic block diagram of a manufacturing apparatus for
  • FIG. 6 is a schematic diagram showing the manufacturing process of the wound body following FIG. 5 .
  • FIG. 7 is a schematic diagram showing the manufacturing process of the wound body following FIG. 6 .
  • FIG. 8 is a schematic diagram showing the manufacturing process of the wound body following FIG. 7 .
  • FIG. 9 is a schematic diagram showing the manufacturing process of the wound body following FIG. 8 .
  • 1 is a schematic flowchart showing a manufacturing process of a wound body according to a first embodiment.
  • FIG. 7 is a schematic diagram of a moving mechanism of a winding device according to a modification.
  • FIG. 12B is a schematic diagram of the moving mechanism seen from the direction indicated by arrow 12B in FIG. 12A.
  • FIG. 7 is a schematic diagram showing a state in which the free ends of a core metal (a pair of winding shafts) are brought close to each other in an apparatus for manufacturing an exhaust gas purifying catalytic converter according to a second embodiment.
  • FIG. 3 is a schematic view of a pair of winding shafts with their free ends separated from each other in the manufacturing device shown by solid lines in FIG. 2 and a flange that holds the pair of winding shafts.
  • 13B is a schematic diagram showing a pair of winding shafts and flanges of the manufacturing device as seen from the direction indicated by reference numeral 13B in FIG. 13A.
  • FIG. 13A is a schematic diagram showing a state in which the free ends of a pair of winding shafts and flanges of the manufacturing apparatus shown in FIG. 13A are brought close to each other.
  • 13C is a schematic diagram showing a pair of winding shafts and flanges of the manufacturing device as seen from the direction indicated by reference numeral 13D in FIG. 13C.
  • FIG. FIG. 7 is a schematic diagram showing a state in which a flat plate having a through hole is sandwiched between a slit of a core metal of an apparatus for manufacturing an exhaust gas purifying catalytic converter according to a second embodiment.
  • the band-shaped flat plate 150 and the corrugated plate 140 arranged overlapping the flat plate 150 are rolled around an axis (core metal 16) orthogonal to the conveying direction of the flat plate 150 and the corrugated plate 140.
  • An apparatus 10 for manufacturing a wound body (metal base material) 120 to be wound will be explained using FIGS. 1 to 11.
  • a wound body 120 according to the present embodiment shown in FIG. 1 is used as a component housed in a cylindrical outer cylinder 110 of a catalytic converter 100 for purifying exhaust gas.
  • FIG. 1 shows an outline of the manufacturing process of an exhaust gas purifying catalytic converter 100.
  • a flat plate 130 for forming the corrugated plate 140 is prepared.
  • the flat plate 130 for forming the corrugated plate 140 is preferably formed into a metal foil shape by rolling.
  • a metal band-shaped flat plate 130 is sent between the pair of rollers 131 and 132, and the unevenness formed on the outer periphery of the pair of rollers 131 and 132 is transferred to form a metal band-shaped corrugated plate 140. That is, corrugation is performed to form a band-shaped metal flat plate 130 into a corrugated shape, thereby forming a band-shaped corrugated metal plate 140.
  • the corrugated plate 140 is corrugated along the conveyance direction.
  • a band-shaped flat plate 150 made of metal is stacked on the lower side of the corrugated sheet 140 to form an assembly 160. That is, the corrugated plate 140 is provided on the flat plate 150.
  • the flat plate 150 is preferably formed into a metal foil shape by rolling.
  • the control unit 200 of the manufacturing device 10 controls the first transport device 170 to transport the assembly body 160 toward the manufacturing device 10 of the rolled body 120.
  • the feed chucks 171 and 172 (see FIGS. 1 and 5 to 7), which move the assembly body 160 along, for example, the rail 170a (see FIG. 2) of the first conveyance device 170 on the upstream side,
  • the apparatus 10 for manufacturing the rolled body 120 forms the rolled body 120 by winding the flat plate 150 of the assembly body 160 and the metal corrugated plate 140 together in an overlapping state.
  • the flat plate 150 is placed on the outside and the corrugated plate 140 is placed on the inside.
  • a cylindrical outer tube 110 is arranged around the outer periphery of the wound body 120, and the shape of the wound body 120 is maintained by the outer tube 110.
  • the wound body 120 is formed, for example, as a honeycomb body having a large number of through holes through which exhaust gas passes in the axial direction.
  • a catalytic metal for purifying exhaust gas is supported on the surface of the honeycomb body that is in contact with a large number of through holes.
  • the exhaust gas purifying catalytic converter 100 is disposed in front of or within the muffler in order to decompose, purify, and discharge harmful substances contained in the gas exhausted from the engine.
  • Both the flat plate 150 and the corrugated plate 140 of the assembly body 160 are formed of, for example, a magnetic metal material.
  • the flat plate 150 and the corrugated plate 140 may be formed as a ferromagnetic metal material, an example in which they are formed as a soft magnetic metal material will be described here.
  • the flat plate 150 and the corrugated plate 140 are made of a material that has a low heat capacity and is excellent in heat resistance, pressure resistance, and the like.
  • the flat plate 150 and the corrugated plate 140 are preferably made of stainless steel or heat-resistant steel, for example.
  • martensitic stainless steel which is a soft magnetic material
  • ferritic stainless steel which is a soft magnetic material
  • austenitic stainless steel may be used as a soft magnetic material for the flat plate 150 and the corrugated plate 140 depending on the processing state.
  • the corrugated plate 140 and the flat plate 150 of the assembly 160 have the same or substantially the same width.
  • the width of the corrugated plate 140 and the flat plate 150 is, for example, about 60 mm.
  • the thickness of the corrugated plate 140 and the flat plate 150 is, for example, about 50 ⁇ m.
  • the tip 150a of the flat plate 150 of the assembly body 160 protrudes in the conveying direction with respect to the tip 140a of the corrugated plate 140.
  • the amount of protrusion of the tip 150a of the flat plate 150 with respect to the tip 140a of the corrugated plate 140 of the assembly body 160 varies depending on the outer diameter (size) of the wound body 120 to be formed, and can be set as appropriate.
  • the amount of protrusion of the tip 150a of the flat plate 150 with respect to the tip 140a of the corrugated plate 140 of the assembly body 160 is larger than the distance between the winding shafts 16a, 16b and the second magnets 18c, 18d.
  • the region of the flat plate 150 between the tip 140a of the corrugated plate 140 of the assembly body 160 and the tip 150a of the flat plate 150 is referred to as a tip portion 150b.
  • the amount of protrusion of the tip 150a of the flat plate 150 with respect to the tip 140a of the corrugated plate 140 of the assembly body 160 is preferably about 5 cm or more, for example.
  • the base end (not shown) of the corrugated plate 140 of the assembly body 160 may be located at a position on the downstream side of the base end (not shown) of the flat plate 150 along the conveyance direction, or may be located at a position on the upstream side. It's okay.
  • the base end of the corrugated plate 140 and the base end of the flat plate 150 of the assembly body 160 are located close to each other in the circumferential direction of the wound body 120.
  • one end of the corrugated plate 140 in the width direction is designated by a reference numeral 141a, and the other end is designated by a reference numeral 141b.
  • one end of the flat plate 150 in the width direction is designated by a reference numeral 151a, and the other end is designated by a reference numeral 151b.
  • through holes 150c may be formed in the flat plate 150 at appropriate intervals. That is, as long as the flat plate 150 is transported to the manufacturing apparatus 10 as a flat plate, the degree of solidity, that is, the density may be different at appropriate positions. Furthermore, through holes may be formed in the corrugated plate 140 at appropriate intervals. When a through hole is formed in the corrugated sheet 140, it is preferable that the through hole is formed at the time of the flat plate 130 for the corrugated sheet 140, and then formed as the corrugated sheet 140. The sizes of the through holes in the flat plate 150 and the corrugated plate 140 may be the same or different.
  • the presence of the through holes in the flat plate 150 and the corrugated plate 140 allows the exhaust gas to flow through the exhaust gas purification catalytic converter 100 and come into contact with the catalyst metal more, promoting purification of the exhaust gas. can do.
  • the first conveyance device 170 conveys the assembly body 160 along a predetermined conveyance direction while holding the side surfaces of the assembly body 160 with the above-mentioned feed chucks 171 and 172. It is preferable that the conveyance path of the first conveyance device 170 is straight.
  • FIG. 2 shows a schematic top view of the manufacturing device 10 of the rolled body 120 and the first conveyance device 170.
  • FIG. 3 is a schematic diagram showing the free ends of the core bar 16 (take-up shafts 16a, 16b), which will be described later, facing each other and close to each other.
  • FIG. 3A shows a schematic diagram of the winding shafts 16a, 16b with their free ends separated from each other of the manufacturing apparatus 10 shown by solid lines in FIG. 2, and the flanges 16a1, 16b1 that hold the winding shafts 16a, 16b.
  • FIG. 3B is a schematic diagram showing the winding shafts 16a, 16b and flanges 16a1, 16b1 of the manufacturing apparatus 10 as seen from the direction indicated by the reference numeral 3B in FIG. 3A.
  • FIG. 3C the free ends of the manufacturing apparatus 10 shown by broken lines in FIG.
  • FIG. 3D shows a schematic diagram of the winding shafts 16a, 16b and flanges 16a1, 16b1 of the manufacturing apparatus 10 as seen from the direction indicated by the symbol 3D in FIG. 3
  • FIG. 4 shows a schematic block diagram of the manufacturing device 10 for the rolled body 120, the first conveyance device 170, and the second conveyance device 180.
  • FIGS. 5 to 10 a series of manufacturing steps of the wound body 120 using the manufacturing apparatus 10 will be described. Note that FIGS. 5 to 10 are shown as views seen in the direction along the ⁇ - ⁇ line in FIG. 2.
  • FIG. 11 is a flowchart illustrating a series of manufacturing steps for the rolled body 120 using the manufacturing apparatus 10.
  • the manufacturing device 10 for the rolled body 120 according to the present embodiment is used together with the above-described first conveying device 170 (see FIG. 2) that conveys the assembly 160 toward the manufacturing device 10 for the rolled body 120. Moreover, the manufacturing device 10 for the wound body 120 according to the present embodiment is used together with a downstream second conveying device 180 (see FIGS. 9 and 10), which will be described later, and conveys the created wound body 120 in a predetermined direction. used.
  • the manufacturing apparatus 10 of the wound body 120 includes a base 12, a support body 14 (rollers 14a to 14d) supported by the base 12, and a core metal 16 that grips a flat plate 150 of an assembly body 160 and rotates around its axis. (take-up shafts (straight shafts) 16a, 16b), and tension members 18 (magnets 18a- 18d) and an adjusting member 20 that adjusts the outer diameter of the wound body 120.
  • the base 12 is formed into a block shape, for example.
  • the base 12 is formed into a substantially rectangular parallelepiped shape.
  • the base 12 is formed to be movable up and down by controlling an air cylinder 214 by a first operating section 210 shown in FIG.
  • the first actuator 210 includes a first pump (compressed air supply source) 212 and a first solenoid valve 214a of the air cylinder 214.
  • the first pump 212 supplies compressed air to an air cylinder 214 provided on the base 12.
  • the first solenoid valve 214a switches the operating direction of the rod of the air cylinder 214 under the control of the control unit 200.
  • the control section 200 controls the first electromagnetic valve 214a, so that the position of the rod of the air cylinder 214 provided on the base 12 is adjusted, and the height of the base 12 is adjusted.
  • the base 12 has a guide portion 13 for the assembly body 160 at the upstream end.
  • the guide portion 13 guides the assembly body 160 toward the upper surface of the base 12 so that the assembly body 160 is placed on first rollers 14a and 14b (support bodies) described later.
  • the base 12 detects that the tip end 150b of the flat plate 150 of the assembly body 160 is placed on the base 12, and also detects that the rear end of the assembly body 160 (the base end of the flat plate 150 or the base of the corrugated plate 140) is placed on the base 12.
  • a first sensor 220 is provided that detects the upstream end along the conveyance direction among the ends.
  • the first sensor 220 is provided, for example, on the first transport device 170 side of the base 12.
  • a photointerrupter light-shielding sensor
  • a photoreflector that detects reflection of LED light or laser light may be used.
  • the first sensor 220 is a photointerrupter, for example, a light source that emits an LED light or a laser beam is placed above the base 12, and the first sensor 220 has light blocked by at least one of the flat plate 150 and the corrugated plate 140. It is possible to output whether or not the When the first sensor 220 is a photoreflector, the first sensor 220 determines whether the light emitted from the LED light source or the laser light source is reflected by at least one of the flat plate 150 and the corrugated plate 140 and is received by the light receiving element. It is possible to output.
  • a photointerrupter for example, a light source that emits an LED light or a laser beam is placed above the base 12, and the first sensor 220 has light blocked by at least one of the flat plate 150 and the corrugated plate 140. It is possible to output whether or not the When the first sensor 220 is a photoreflector, the first sensor 220 determines whether the light emitted from the LED light source or the laser light source is reflected by at least one
  • a support body 14 is supported on the base 12.
  • the support body 14 includes a pair of first rollers 14a, 14b on the upstream side and a pair of second rollers 14c, 14d on the downstream side, along the conveyance direction of the assembly body 160.
  • the rotation axes of the pair of first rollers 14a, 14b and the pair of second rollers 14c, 14d are parallel to each other and perpendicular to the conveying direction of the first conveying device 170.
  • a portion above the rotation axis protrudes with respect to the upper surface of the base 12.
  • the base 12 is formed with openings for protruding a pair of first rollers 14a, 14b and a pair of second rollers 14c, 14d. Parts of 14c and 14d respectively protrude upwardly from the upper surface of the base 12 through the openings.
  • first rollers 14a and 14b are spaced apart in a direction that is preferably perpendicular to, or intersects with, the conveyance direction of the assembly body 160.
  • the pair of second rollers 14c, 14d are preferably spaced apart in a direction that intersects, such as perpendicularly, to the transport direction of the assembly 160.
  • the width between the pair of first rollers 14a and 14b and between the pair of second rollers 14c and 14d is smaller than the width of the flat plate 150 of the assembly body 160. Therefore, the assembly body 160 conveyed by the first conveyance device 170 is placed on the pair of first rollers 14a, 14b, and also placed on the pair of second rollers 14c, 14d.
  • first rollers 14a, 14b and the second rollers 14c, 14d are used for positioning the tip 150b of the flat plate 150 in relation to the core metal 16.
  • the support body 14, that is, the rollers 14a to 14d are supported by the base 12 in this embodiment, and therefore move up and down together with the base 12.
  • first rollers 14a, 14b and the pair of second rollers 14c, 14d may be formed to be actively rotated by, for example, a motor (not shown), and the assembly 160 may be configured to rotate passively by contact with the flat plate 150.
  • the core metal 16 has a pair of winding shafts 16a and 16b facing each other so that their axial directions match.
  • the axial direction of the winding shafts 16a, 16b is parallel to the pair of first rollers 14a, 14b and the pair of second rollers 14c, 14d. That is, the rotation axes of the pair of take-up shafts 16a and 16b are perpendicular to the transport direction of the first transport device 170.
  • the fixed end sides of the pair of winding shafts 16a and 16b are supported by flanges 16a1 and 16b1, respectively.
  • the flange 16a1 is provided with a shaft 17a having a rotation axis coaxial with the rotation axis of the first winding shaft 16a.
  • the flange 16b1 is provided with a shaft 17b having a rotation axis coaxial with the rotation axis of the second winding shaft 16b.
  • the shaft 17a is supported by the casing of the manufacturing apparatus 10 via a bearing 17a1 provided on the shaft 17a, and similarly, the shaft 17b is supported by the casing of the manufacturing apparatus 10 via a bearing 17b1 provided on the shaft 17b. Ru.
  • These shafts 17a, 17b are moved in the same direction by, for example, controlling motors (for example, servo motors) 230a, 230b shown in FIG. Adjusted to rotate at the same speed and the same rotation angle. Note that when the shaft 17a rotates, the flange 16a1 and the first winding shaft 16a rotate in the same direction, at the same speed, and at the same rotation angle as the shaft 17a. Further, when the shaft 17b rotates, the flange 16b1 and the second winding shaft 16b rotate in the same direction, at the same speed, and at the same rotation angle as the shaft 17b.
  • controlling motors for example, servo motors
  • the rotation angles of the rotation shafts of the motors 230a and 230b, or the positions (rotation angles), speeds, and rotational forces of the pair of take-up shafts 16a and 16b via gears are acquired by encoders 232a and 232b.
  • stepping motors can also be used instead of servo motors. If stepping motors are used as the motors 230a, 230b, the encoders 232a, 232b may be unnecessary. Alternatively, one of the motors 230a, 230b may be used to rotate the two winding shafts 16a, 16b in the same direction, at the same speed, and at the same rotation angle via a gear.
  • the motors 230a and 230b cooperate with the control unit 200 to rotate the first winding shaft 16a and the second winding shaft 16b with the rotation shaft of the first winding shaft 16a and the second winding shaft 16b arranged coaxially.
  • a rotation mechanism (200, 230a, 230b) is configured to synchronize and rotate the winding shaft 16a and the second winding shaft 16b in the same direction.
  • the free ends of the pair of take-up shafts 16a, 16b are retracted from above the base 12 and can be moved to separate positions, as shown by solid lines in FIG. 2 or as shown in FIGS. 3A and 3B. . Further, the free ends of the pair of winding shafts 16a and 16b are movable to adjacent positions above the base 12, as shown by broken lines in FIG. 2 or as shown in FIGS. 3C and 3D. . The free ends of the pair of winding shafts 16a and 16b may not only be close to each other above the base 12, but also may be in contact with each other.
  • the pair of take-up shafts 16a, 16b are moved in the axial direction by, for example, controlling an air cylinder 244 or the like.
  • the second actuator (moving mechanism) 240 includes a second pump (compressed air supply source) 242 and a second solenoid valve 244a of the air cylinder 244.
  • the second pump 242 supplies compressed air to air cylinders 244 provided on the pair of winding shafts 16a and 16b, respectively.
  • the second electromagnetic valve 244a switches the operating direction of the rod of the air cylinder 244 under the control of the control unit 200.
  • the air cylinder 244 having the second pump 242 and the second solenoid valve 244a cooperates with the control unit 200 to control the rotation axis of the first winding shaft 16a and the second winding shaft 16b.
  • a moving mechanism is configured to move the free end of the first winding shaft 16a and the free end of the second winding shaft 16b in directions toward and away from each other while coaxially disposing the rotating shafts of the winding shaft 16a and the second winding shaft 16b.
  • the air cylinder 244 By controlling the second pump (compressed air supply source) 242 of the second operating unit 240 that operates the pair of winding shafts 16a, 16b shown in FIG. 4 and the second solenoid valve 244a of the air cylinder 244, the air cylinder 244 are respectively driven, and the pair of winding shafts 16a, 16b are preferably moved in the axial direction in conjunction with each other. Note that the pair of winding shafts 16a and 16b are movable between the solid line position in FIG. 2 (see FIGS. 3A and 3B) and the broken line position (see FIGS. 3C and 3D). A disk-shaped flange 16a1 is provided on the winding shaft 16a. A disk-shaped flange 16b1 is provided on the winding shaft 16b.
  • the maximum proximity position of the winding shafts 16a, 16b is defined by the flanges 16a1, 16b1 coming close to the side surface of the base 12 at a predetermined distance or coming into contact with the side surface of the base 12.
  • the distance between the flanges 16a1 and 16b1 is formed to substantially match the width of the flat plate 150, or to be slightly larger than the width of the flat plate 150, so that meandering of the flat plate 150 is suppressed.
  • the outer diameters of the flanges 16a1 and 16b1 are smaller than the outer diameter of the wound body 120 of the exhaust gas purifying catalytic converter 100 to be manufactured.
  • the outer peripheral surfaces of the flanges 16a1 and 16b1 are prevented from interfering with, for example, the adjustment member 20. Note that, since the flanges 16a1 and 16b1 rotate together with the pair of winding shafts 16a and 16b, it is preferable that they do not actually come into contact with the side surfaces of the base 12.
  • the pair of winding shafts 16a and 16b are preferably formed to have the same length and the same shape.
  • the pair of winding shafts 16a and 16b are preferably formed as metal rods having a diameter of, for example, about 5 mm by processing a steel material having high rigidity and high toughness such as SUS440C or SKD11.
  • the pair of winding shafts 16a, 16b are formed to have a first pair of opposing pieces 22a, 22b and a second pair of opposing pieces 24a, 24b as described below, and then are hardened, for example. It is preferable to use it after processing.
  • One of the pair of winding shafts 16a, 16b (hereinafter referred to as the first winding shaft 16a) is supported by a flange 16a1 in a cantilever manner, and has first winding shafts facing each other defining a first slit 22 on the free end side. It has a pair of opposing pieces 22a and 22b. Among the first pair of opposing pieces 22a and 22b, one is designated as the 1-1 piece 22a, and the other is designated as the 1-2 piece 22b.
  • the first winding shaft 16a has a free end divided into two parts, a 1-1 piece 22a and a 1-2 piece 22b.
  • the 1-1 piece 22a and the 1-2 piece 22b be formed symmetrically with respect to the rotation axis of the first winding shaft 16a.
  • the 1-1 piece 22a and the 1-2 piece 22b are spaced apart from each other by at least the thickness of the flat plate 150, and the position including the free end of the first winding shaft 16a is in the 1-1 piece.
  • the first slit 22 is formed to penetrate in a direction intersecting (orthogonal to) the direction of separation between the first and second pieces 22a and 22b.
  • At least the flat plate 150 is arranged in the first slit 22 defined between the 1-1 piece 22a and the 1-2 piece 22b.
  • the axial length of the first slit 22 along the first winding shaft 16a is equal to or slightly larger than half the width of the flat plate 150. That is, the distance between the branching part of the 1-1 piece 22a and the 1-2 piece 22b and the free end of the 1-1 piece 22a and the 1-2 piece 22b is determined by the distance of the flat plate 150. It is formed to be equal to or slightly larger than half the width. Therefore, it is preferable that the length of the first slit 22 along the axial direction of the first winding shaft 16a is, for example, approximately half the width of the flat plate 150.
  • the distance between the 1-1 piece 22a and the 1-2 piece 22b, that is, the size of the first slit 22, be the same from the branch part to the vicinity of the free end. be.
  • the size of the first slit 22 is preferably increased toward the free end in order to guide the flat plate 150 to be received in the first slit 22 near the free end.
  • the other of the pair of winding shafts 16a and 16b (hereinafter referred to as the second winding shaft 16b) is cantilevered by the flange 16b1, and faces each other to define a second slit 24 on the free end side. It has a second pair of opposing pieces 24a and 24b. Of the second pair of opposing pieces 24a, 24b, one is designated as the 2-1 piece 24a, and the other is designated as the 2-2 piece 24b.
  • the second winding shaft 16b has a free end divided into two parts, a 2-1 piece 24a and a 2-2 piece 24b.
  • the 2-1 piece 24a and the 2-2 piece 24b be formed symmetrically with respect to the rotation axis of the second winding shaft 16b.
  • the 2-1 piece 24a and the 2-2 piece 24b are spaced apart from each other by at least the thickness of the flat plate 150, and the position including the free end of the second winding shaft 16b is in the 2-1 piece. It is formed as a second slit 24 that penetrates in a direction intersecting (orthogonal to) the direction of separation between the 24a and the 2-2 piece 24b. At least the flat plate 150 is arranged in the second slit 24 defined between the 2-1 piece 24a and the 2-2 piece 24b.
  • the axial length of the second slit 24 along the second winding shaft 16b is formed to be equal to or slightly larger than half the width of the flat plate 150. That is, the distance between the branching part of the 2-1 piece 24a and the 2-2 piece 24b and the free end of the 2-1 piece 24a and the 2-2 piece 24b is determined by the distance of the flat plate 150. It is formed to be equal to or slightly larger than half the width. Therefore, it is preferable that the length of the second slit 24 along the axial direction of the second winding shaft 16b be approximately half the width of the flat plate 150, for example.
  • the distance between the 2-1 piece 24a and the 2-2 piece 24b, that is, the size of the second slit 24, be the same from the branch part to the vicinity of the free end. be.
  • the size of the second slit 24 is preferably larger toward the free end in order to guide the flat plate 150 to be received in the second slit 24 near the free end.
  • the pair of winding shafts 16a and 16b have free ends of the 1-1 piece 22a and the 2-1 piece 24a facing each other in the horizontal direction, and the 1-1 piece 22a and the 2-1 piece 24a.
  • the extension direction of the 2-1 piece 24a is adjusted so that it remains coaxially arranged.
  • the pair of winding shafts 16a, 16b have free ends of the first-second piece 22b and the second-second piece 24b facing each other in the horizontal direction, and the first-second piece 22b and the second-second piece 24b.
  • the extension direction of the 2-2 piece 24b is adjusted so that it remains coaxially arranged.
  • the orientation of the first slit 22 and the orientation of the second slit 24 are aligned regardless of the rotational positions of the pair of winding shafts 16a, 16b. Therefore, the tip 150b of the flat plate 150 is inserted through the first slit 22 between the first pair of opposing pieces 22a, 22b and the second slit 24 between the second pair of opposing pieces 24a, 24b. .
  • the pair of winding shafts 16a and 16b are moved from the position shown in FIG. 3B to a position where they grip the flat plate 150, and as shown in FIG. 3D, the 1-1st piece 22a and the 2-1st piece 24a are moved. is arranged on the upper side, and the 1-2nd piece 22b and the 2-2nd piece 24b are arranged on the lower side. At this time, the first slit 22 and the second slit 24 are connected to the upper 1-1 piece 22a and the 2-1 piece 24a, and the lower 1-2 piece 22b and the 2-2 piece. It is located horizontally between the piece 24b.
  • the manufacturing apparatus 10 does not know whether the first slit 22 and the second slit 24 are located horizontally, and whether the tip 150b of the flat plate 150 is inserted into the first slit 22 and the second slit 24. It is preferable to have sensors 250a and 250b for detecting whether or not the user has performed the operation.
  • the sensor 250a is provided, for example, on the flange 16a1
  • the sensor 250b is provided, for example, on the flange 16b1.
  • an optical sensor, an image sensor, or the like is used. If the sensors 250a, 250b are optical sensors, one is a laser oscillator and the other is a photodetector. If the sensors 250a and 250b are image sensors, the control unit 200 processes the images acquired by the image sensors and outputs whether the flat plate 150 is inserted into the first slit 22 and the second slit 24. It is possible.
  • the core metal 16 that is, the pair of winding shafts 16a, 16b, the flanges 16a1, 16b1, the shafts 17a, 17b, and the bearings 17a1, 17b1 are separated from the base 12 and the support body 14, and the adjustment member 20, and preferably does not move up and down.
  • the base 12 is provided with tension members 18 that pull the assembly 160 toward the support 14 on the upstream and downstream sides of the pair of take-up shafts 16a and 16b along the conveyance direction.
  • the tension member 18 uses permanent magnets 18a, 18b, 18c, and 18d such as neodymium magnets.
  • a pair of first magnets 18a, 18b are provided in the base 12 on the upstream side of the pair of winding shafts 16a, 16b.
  • a pair of second magnets 18c and 18d are provided in the base 12 on the downstream side of the pair of winding shafts 16a and 16b.
  • the pair of first magnets 18a, 18b are provided adjacent to the upstream side of the pair of first rollers 14a, 14b.
  • the tensioning position of the flat plate 150 or the assembly body 160 in the tensioning member 18 is further upstream of the upstream support 14 (first rollers 14a, 14b) among the supports 14. Further, the pair of second magnets 18c and 18d are provided downstream and adjacent to the pair of second rollers 14c and 14d. Therefore, the tensioning position of the flat plate 150 in the tensioning member 18 is further downstream of the downstream support 14 (second rollers 14c, 14d) among the supports 14.
  • a pair of first magnets 18a, 18b are provided as the tension member 18 at a corner of the base 12 on the upstream side with respect to the pair of winding shafts 16a, 16b. It is also suitable that one first magnet is provided at the center of the width direction of the first conveyance device 170 along the horizontal direction orthogonal to the conveyance direction. It is also preferable that three or more magnets be provided in the base 12 on the upstream side with respect to the pair of winding shafts 16a and 16b.
  • a pair of second magnets 18c and 18d are provided as the tension member 18 at the corners of the base 12 on the downstream side with respect to the pair of winding shafts 16a and 16b.
  • one second magnet is provided at the center in the width direction.
  • three or more magnets be provided in the base 12 on the downstream side with respect to the pair of winding shafts 16a and 16b.
  • An adjustment member 20 for adjusting the outer diameter of the wound body 120 is provided above the base 12 so as to be movable up and down above the winding shafts 16a and 16b.
  • the adjusting member 20 cooperates with the support body 14 provided on the base 12 to adjust the outer diameter of the wound body 120.
  • the adjusting member 20 is adjusted to move at the same speed in a direction opposite to the base 12 with respect to the winding shafts 16a and 16b.
  • the third operating section 260 includes a third pump (compressed air supply source) 262 and a third solenoid valve 264a of the air cylinder 264.
  • the third electromagnetic valve 264a switches the operating direction of the rod of the air cylinder 264 provided in the adjustment member 20 under the control of the control unit 200.
  • the adjustment member 20 is adjusted by driving the air cylinder 264 under the control of the third pump (compressed air supply source) 262 of the third operating unit 260 and the third solenoid valve 264a of the air cylinder 264 shown in FIG.
  • the member 20 moves up and down.
  • the third pump 262 and the third electromagnetic valve 264a By controlling the third pump 262 and the third electromagnetic valve 264a by the control unit 200, the position of the rod of the air cylinder 264 provided in the adjustment member 20 is adjusted, and the height of the adjustment member 20 is adjusted.
  • the adjustment member 20 is provided with a pressure sensor 266.
  • the pressure sensor 266 can detect the contact pressure with the wound body 120.
  • the control unit 200 can adjust the height of the adjustment member 20, that is, the outer diameter of the wound body 120, based on the detection data of the pressure sensor 266.
  • the second conveying device 180 on the downstream side is formed to sandwich and hold the wound body 120 from the upper side and the lower side, respectively, and convey it to the downstream side, for example.
  • the control unit 200 includes a first operating unit 210, a first sensor 220, motors 230a, 230b, encoders 232a, 232b, a second operating unit 240, and a 2-1st sensor 250a.
  • the 2-2nd sensor 250b, the third operating section 260, and the pressure sensor 266 are connected by wire or wirelessly, and are controlled by the control section 200.
  • the control unit 200 is connected to the first transport device 170 and the second transport device 180 by wire or wirelessly, and the first transport device 170 and the second transport device 180 are controlled by the control unit 200.
  • the control unit 200 is connected to the first transport device 170 and the second transport device 180 by wire or wirelessly, and the first transport device 170 and the second transport device 180 are controlled by the control unit 200.
  • the control unit 200 is composed of, for example, a computer, and includes a processor (processing circuit) and a storage medium.
  • the processor includes any one of a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), a microcomputer, an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), and the like.
  • main storage such as memory
  • the storage medium may include non-temporary auxiliary storage. Storage media include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, optical disk (CD-ROM, CD-R, DVD, etc.), magneto-optical disk (MO etc.), semiconductor memory, etc. Examples include non-volatile memory that can be written and read at any time.
  • control unit 200 only one processor and storage medium may be provided, or a plurality of processors and a plurality of storage media may be provided.
  • a processor performs processing by executing a program or the like stored in a storage medium or the like.
  • the program executed by the processor of the control unit 200 may be stored in a computer (server) connected to the control unit 200 via a network such as the Internet, or a server in a cloud environment. In this case, the processor downloads the program via the network.
  • the manufacturing apparatus 10 operates based on instructions from the control section 200.
  • the manufacturing apparatus 10 for the wound body 120 including the above-mentioned air cylinders 214, 244, 264, various motors, etc., is controlled by the control unit 200.
  • the pair of winding shafts 16a and 16b are retracted from the upper surface of the base 12 to the sides perpendicular to the conveying direction, as shown by solid lines in FIG. be.
  • the free ends of the pair of winding shafts 16a and 16b are retracted to a position away from the upper surface of the base 12.
  • the first slit 22 and the second slit 24 of the pair of winding shafts 16a and 16b are oriented in the horizontal direction.
  • the vertical center position of the first slit 22 and the second slit 24 of the pair of winding shafts 16a, 16b and the height of the upper surface of the support body 14 (rollers 14a to 14d) substantially match. .
  • the assembly body 160 is placed on the base 12 along a predetermined transport direction by transport by the first transport device 170 under the control of the control unit 200 (see FIGS. 5 and 6).
  • the flat plate 150 and the corrugated plate 140 of the assembly body 160 are conveyed by the feed chucks 171 and 172 with a predetermined length protruding from the feed chucks 171 and 172.
  • the feed chucks 171 and 172 stop at predetermined positions, and the first sensor 220 detects that the tip end 150b of the flat plate 150 is placed on the base 12 (step S1).
  • the control unit 200 proceeds to the next step (S2). Note that if the first sensor 220 cannot detect that the tip end 150b of the flat plate 150 of the assembly body 160 is placed on the base 12 (S1-No), the control unit 200 moves the tip end 150b of the flat plate 150 to the The detection operation with the sensor 220 of No. 1 is repeated.
  • the amount of protrusion of the tip 150a of the flat plate 150 with respect to the tip 140a of the corrugated plate 140 of the assembly body 160 is greater than the distance between the winding shafts 16a, 16b and the second magnets 18c, 18d. big.
  • the tip 150a of the flat plate 150 exceeds the position of the first magnets 18a, 18b and is above the second magnets 18c, 18d, the tip 140a of the corrugated plate 140 is connected to the pair of winding shafts 16a, 16b. The position has not yet been reached.
  • the edge of the tip 150b of the flat plate 150 faces the branch of the first slit 22 and the branch of the second slit 24 of the pair of winding shafts 16a, 16b, respectively.
  • the assembly body 160 is separated upward from the base 12 by the support body 14 (rollers 14a to 14d). Furthermore, even if the tip 150a of the flat plate 150 of the assembly body 160 is bent upward, for example, the flat plate 150 of the assembly body 160 is attached to the support body 14 by the tension member 18 (magnets 18a to 18d). Being pulled. The flat plate 150 may or may not be in contact with the base 12 by the tension member 18 . At this time, the tip portion 150b of the flat plate 150 is stretched between the first rollers 14a, 14b on the upstream side and the first rollers 14a, 14b on the downstream side.
  • Step S2 controls the second pump 242 and the second solenoid valve 244a of the second operating unit 240, and moves the pair of winding shafts 16a, 16b from the solid line position to the broken line position in FIG. (Step S2). That is, the free ends of the pair of winding shafts 16a, 16b are close to or in contact with each other.
  • the first slit 22 and second slit 24 of the pair of winding shafts 16a, 16b are oriented in the horizontal direction. Therefore, the tip portion 150b of the flat plate 150 of the assembly body 160 is inserted into the first slit 22 and the second slit 24 of the pair of winding shafts 16a, 16b. Therefore, the movement of the tip end 150b of the flat plate 150 in the vertical direction from the end of the flat plate 150 in the width direction to the center (near the middle) in the width direction is restricted by the pair of winding shafts 16a and 16b.
  • a sensor 250a disposed in the housing of the manufacturing apparatus 10 determines whether the tip end 150b of the flat plate 150 is inserted into the first slit 22 and second slit 24 of the pair of winding shafts 16a, 16b. , 250b (step S3).
  • the control unit 200 determines that the tip end 150b of the flat plate 150 is not inserted into the first slit 22 and the second slit 24 based on the signals from the sensors 250a and 250b (S3-No)
  • the control unit 200 performs control.
  • the unit 200 controls the second pump (compressed air supply source) 242 and second electromagnetic valve 244a of the second operating unit 240, and moves the pair of winding shafts 16a, 16b from the broken line position to the solid line position in FIG.
  • control unit 200 determines multiple times based on the signals from the sensors 250a and 250b that the tip end 150b of the flat plate 150 is not inserted into the first slit 22 and the second slit 24 (S3-No) , outputs an error, terminates processing, and returns to the initial position.
  • control unit 200 determines that the tip end 150b of the flat plate 150 has been inserted into the first slit 22 and the second slit 24 of the pair of winding shafts 16a and 16b based on the signals from the sensors 250a and 250b. (S3-Yes), the control unit 200 controls the third pump 262 and the third solenoid valve 264a of the third operating unit 260, and The outer diameter adjustment member 20 of the body 120 is lowered to the vicinity of the pair of winding shafts 16a and 16b (step S4).
  • control unit 200 controls the motors 230a and 230b to rotate the pair of winding shafts 16a and 16b simultaneously in the same direction and at the same speed via gears, for example, to rotate the tip portion 150b including the tip 150a of the flat plate 150. , and separate them against the magnetic force of the magnets 18c and 18d. Therefore, the two pairs of opposing pieces 22a, 22b, 24a, 24b of the pair of winding shafts 16a, 16b support the flat plate 150 placed on the support body 14 so as to sandwich it therebetween. Then, the tip 140a of the corrugated plate 140 is sandwiched between the tip 150b of the flat plate 150.
  • the pair of winding shafts 16a and 16b are rotated from the position shown in FIG. 6 to the position shown in FIG. 7. Therefore, the direction of rotation of the pair of winding shafts 16a, 16b is the direction in which the tip 150a of the flat plate 150 is separated from the magnets 18c, 18d.
  • the magnetic force of the upstream magnets 18a and 18b is acting on the flat plate 150 and the corrugated plate 140. Therefore, on the base 12 on the upstream side of the pair of winding shafts 16a, 16b, the assembly body 160 is pulled (pressed) against the first rollers 14a, 14b by the magnetic force of the upstream magnets 18a, 18b. Power is at work.
  • the pair of winding shafts 16a and 16b are further rotated to wind the assembly body 160, thereby creating the wound body 120 (step S5).
  • the assembly 160 is wound on the base 12 on the upstream side of the pair of winding shafts 16a, 16b, the assembly 160 continues to be pulled toward the base 12 by the magnetic force of the magnets 18a, 18b.
  • the feed chuck 171, 172 may be moved in a predetermined conveyance direction, and the flat plate 150 and the corrugated plate 140 may be pushed onto the pair of winding shafts 16a and 16b. By doing so, it is possible to suppress the initial wrapping failure of the tip 140a of the corrugated plate 140 at the tip 150b of the flat plate 150.
  • the magnetic force of the magnets 18a and 18b also acts on the corrugated plate 140 on the flat plate 150. Therefore, by drawing the corrugated sheet 140 with magnets 18a, 18b on the upstream side of the pair of winding shafts 16a, 16b, warping of the corrugated sheet 140 is suppressed.
  • the flat plate 150 and corrugated plate 140 of the assembly body 160 are suppressed from swinging, for example, vertically in the vicinity of the rollers 14a, 14b. Therefore, the behavior of the assembly body 160 when the assembly body 160 is rolled up as the wound body 120 on the upstream side of the base 12 can be stabilized.
  • the free ends of the pair of winding shafts 16a and 16b are close to or in contact with each other. Therefore, the tip portion 150b of the flat plate 150 is held over substantially the entire width direction.
  • the pair of winding shafts 16a and 16b continuously hold the flat plate 150 from the pair of ends 151a and 151b in the width direction to near the middle. Therefore, when the flat plate 150 and the corrugated plate 140 placed on the flat plate 150 are wound, the flat plate 150 can be wound while suppressing twisting.
  • a pair of winding shafts 16a and 16b of the same size one end and the other end of the winding body 120 can be more closely spaced than when winding the winding body 120 using one winding shaft. dimensional stability can be ensured.
  • the inner diameter of the center of one end of the wound body 120 and the inner diameter of the center of the other end can be kept substantially constant. Further, the free ends of the pair of winding shafts 16a and 16b hold the tip portion 150b of the flat plate 150 up to the vicinity of the center in the width direction. Therefore, by using the pair of winding shafts 16a and 16b, in addition to the inner diameter of the center between one end and the other end of the wound body 120, the inner diameter of the center of the area between the one end and the other end can be increased. It can be kept approximately constant.
  • the flat plate 150 is wound using two winding shafts 16a and 16b with their free ends close to each other. Therefore, the total length of each of the two winding shafts 16a and 16b can be made shorter than when using one winding shaft. Therefore, when using the two winding shafts 16a and 16b according to this embodiment, the amount of deflection of the free end can be reduced compared to when winding the flat plate 150 using one winding shaft. Therefore, when using the two winding shafts 16a, 16b according to this embodiment, the outer diameters of the two winding shafts 16a, 16b can be made smaller than when using one winding shaft.
  • the inner diameter of the center of the wound body 120 can be made as small as possible compared to the case where one winding shaft is used. Therefore, the wound body 120 manufactured by the manufacturing apparatus 10 according to the present embodiment can have a large contact area between the metal catalyst supported on the wound body 120 and the exhaust gas, and can improve the exhaust gas purification performance. can.
  • the control unit 200 controls the first pump 212 and the first electromagnetic valve 214a of the first operating unit 210, and the second operating unit. 240, the second pump 242 and the second solenoid valve 244a are controlled, and the base 12 and the adjustment member 20 are adjusted to the rotation angle of the pair of take-up shafts 16a, 16b. evacuate to a distance from At this time, the base 12 is retracted downward relative to the pair of winding shafts 16a, 16b, and the adjustment member 20 is retracted upward relative to the pair of winding shafts 16a, 16b. Therefore, the support body 14 (rollers 14a to 14d) and the adjusting member 20 that protrude above the base 12 adjust the outer diameter of the wound body 120.
  • the opposing surfaces of the pair of flanges 16a1 and 16b1 are formed, for example, as flat surfaces, and are spaced apart from each other by a distance greater than the width of the wound body 120 when the wound body 120 is wound.
  • the mutually opposing surfaces of the pair of flanges 16a1 and 16b1 are arranged in parallel so that the ends of the flat plate 150 and the ends of the corrugated sheet 140 can be aligned.
  • the widthwise end 141a of the corrugated sheet 140 is along the side of the flange 16a1 that faces the flange 16b1, and the widthwise end 141b of the corrugated sheet 140 is along the side of the flange 16b1 that faces the flange 16b1. Among them, it is along the side facing the flange 16a1.
  • the distance between the pair of flanges 16a1 and 16b1, which are spaced apart from each other by a distance greater than the width of the wound body 120 is set to a distance that is approximately the same as the width of the wound body 120. controlled.
  • the distance between the width direction ends 151a, 141a and the opposing surface of the flange 16a1 is set to 0.5 mm
  • the separation distance between the width direction ends 151b, 141b and the opposing surface of the flange 16b1 is set to 0.5 mm. It is set. Therefore, the rolled body 120 is formed while the overlapping position of the corrugated sheet 140 and the flat plate 150 is corrected when the corrugated sheet 140 and the flat plate 150 are wound up.
  • One end surface of the wound body 120 is formed such that the end 151a of the flat plate 150 and the end 141a of the corrugated sheet 140 are aligned, and the other end surface of the wound body 120 is formed such that the end 151a of the flat plate 150 and the end 141a of the corrugated sheet 140 are aligned.
  • the portion 151b and the end portion 141b of the corrugated plate 140 are formed in alignment. Note that the distance between the widthwise ends 151a, 141a and the opposing surface of the flange 16a1 and the distance between the widthwise ends 151b, 141b and the opposing surface of the flange 16b1 are determined by the distance between the holes formed in the corrugated plate 140.
  • the thickness is adjusted to about 0 mm to 1.0 mm depending on the presence or absence of holes formed in the flat plate 150 or the thickness of the foil material.
  • the thickness of the flat plate 150 or the corrugated plate 140 is 30 ⁇ m to 50 ⁇ m
  • the flat plate 150 or the corrugated sheet 140 is conveyed onto the base 12
  • the corner between the tip 150a and the end 151a or 151b of the flat plate 150 and the corner between the tip 140a and the end 141a or 141b of the corrugated plate 140 contact the flange 16a1 and the flange 16b1, and the flat plate 150 Problems such as not being able to be inserted into the first slit 22 and second slit 24 of the winding shafts 16a and 16b, and being unable to wind up the tip 140a of the corrugated sheet 140 with the tip 150b of the flat plate 150 may occur.
  • the foil material is thin, until the pair of winding shafts 16a and 16b are rotated and the tip 140a of the corrugated sheet 140 is sandwiched between the tip 150b of the flat plate 150, the widthwise ends of the flat plate 150 and the corrugated sheet 140 are It is preferable that the facing surfaces of the portions 151a and 141a and the flange 16a1 and the facing surfaces of the width direction ends 151b and 141b of the flat plate 150 and the corrugated sheet 140 and the flange 16b1 are spaced apart from each other.
  • the flat plate 150 and the corrugated sheet 140 are inserted.
  • the foil flat plate 150 or the corrugated sheet 140
  • the foil are formed so that the end portion 151a of the flat plate 150 and the end portion 141a of the corrugated sheet 140 are aligned, and the end portion 151b of the flat plate 150 and the end portion of the corrugated sheet 140 are aligned.
  • 141b can be formed in a uniform state.
  • the control unit 200 determines whether or not the winding body 120 has been wound (step S6). If the control unit 200 determines that the winding body 120 has not finished winding (S6-No), the control unit 200 continues winding the winding body 120.
  • the control unit 200 determines that the winding of the wound body 120 has been completed.
  • the control unit 200 controls the winding body 120 when, for example, the amount of rotation (rotation angle) of the motors 230a, 230b of the pair of winding shafts 16a, 16b obtained by the encoders 232a, 232b exceeds a predetermined amount. It is determined that the winding has been completed.
  • the control unit 200 determines that the winding body 120 has finished winding (S6-Yes)
  • the control unit 200 controls the motors 230a and 230b to stop the rotation of the pair of winding shafts 16a and 16b.
  • the control section 200 controls the first operating section 210 to stop the base 12 from lowering, and controls the third operating section 260 to stop the adjusting member 20 from rising. Therefore, the shape of the wound body 120 is maintained at the top and bottom by the support body 14 (rollers 14a to 14d) and the adjustment member 20, and the outer diameter of the wound body 120 is adjusted against the elastic force of the wound body 120. maintained.
  • the adjustment member 20 is The pressure sensor 266 detects a reaction force based on the elastic deformation of the wound body 120. If the value detected by the pressure sensor 266 is within a predetermined pressure range, the control unit 200 can ignore the influence of the load on the pair of take-up shafts 16a, 16b. If the value detected by the pressure sensor 266 is out of the predetermined pressure range, the control unit 200 operates the third actuating unit 260 to move the adjustment member 20 upward, for example, so that the value detected by the pressure sensor 266 is Adjust so that the detected value falls within a predetermined range. Therefore, unintentional loading of a predetermined load or more on the pair of winding shafts 16a, 16b is suppressed.
  • control unit 200 controls the second conveyance device 180 disposed on the downstream side in the conveyance direction with respect to the manufacturing apparatus 10, and transfers the rolled body 120 to the gripping members 181, 182 of the second conveyance device 180. (step S7).
  • a groove 12a is formed on the upper surface of the base 12 with an appropriate length from the base end toward the distal end. Therefore, as shown in FIG. 9, the gripping member 182 is prevented from interfering with the base 12.
  • the control unit 200 controls the motors 230a, 230b to slightly return the rotation angle of the pair of take-up shafts 16a, 16b, so that the outer circumferential surface of the pair of take-up shafts 16a, 16b (the 1-1 piece 22a , the outer peripheral surfaces of the 1-2nd piece 22b, the 2-1st piece 24a, and the 2-2nd piece 24b).
  • the wound body 120 is supported by the adjustment member 20 and held between the gripping members 181 and 182 of the second conveyance device 180, so that the outer diameter is maintained. Therefore, the amount of change in the surface area of the inner diameter at the center of the wound body 120 is negligible.
  • control unit 200 controls the second operating unit 240 to retract the pair of take-up shafts 16a, 16b from the broken line position shown in FIG. 2 to the solid line position (step S8). Subsequently, the control unit 200 controls the third operating unit 260 to retract the adjustment member 20 upward (step S9). At this time, the control section 200 controls the first operating section 210 to retract the base 12 and the support body 14 downward as necessary.
  • the operation of reversing the rotation of the pair of winding shafts 16a, 16b and relaxing the winding force of the winding body 120 on the pair of winding shafts 16a, 16b is, for example, reversing the rotation of the pair of winding shafts 16a, 16b. After that, the reverse rotation and the normal rotation may be repeated several times, such as by causing the rotation to occur again in the normal direction.
  • control unit 200 transports the rolled body 120 held between the gripping members 181 and 182 of the second transport device 180 to the downstream side (step S10), and also transports the base 12 and the support body 14 as shown in FIG. 5, for example. Raise it so that it matches the position.
  • the manufacturing apparatus 10 does not use one winding shaft, but uses two winding shafts 16a and 16b with their free ends facing each other while aligning their rotational axes.
  • the manufacturing apparatus 10 according to the present embodiment has each of the winding shafts 16a and 16b shorter than the case where one winding shaft is used to exhibit appropriate rigidity, and compared to the case where one winding shaft is used. Therefore, the outer diameter of each winding shaft 16a, 16b can be reduced. Therefore, according to the present embodiment, it is possible to provide an apparatus 10 for manufacturing a metal base material for exhaust gas purification in which the inner diameter of the central portion of the wound body 120 can be made as small as possible. Therefore, when manufacturing the wound body 120, the manufacturing apparatus 10 is provided which can make the inner diameter of the central portion of the wound body 120 smaller, thereby improving the exhaust gas purification performance.
  • the assembly body 160 when manufacturing the wound body 120 using the assembly body 160 using the manufacturing apparatus 10, the assembly body 160 can be placed in a predetermined position by the tension member 18, and the flat plate 150 of the assembly body 160 can be stably wound.
  • the flat plate 150 when moving the pair of winding shafts 16a and 16b from the retracted position shown by the solid line in FIG. 2 to the gripping position shown by the broken line, the flat plate 150 can be placed in a stable position. Therefore, the flat plate 150 can be gripped more reliably by the pair of winding shafts 16a and 16b. Therefore, failure in manufacturing the wound body 120 due to a gripping error between the pair of winding shafts 16a and 16b can be suppressed.
  • the first magnets 18a and 18b continue to pull the flat plate 150 and the corrugated plate 140 toward the upstream end of the base 12. .
  • the vertical vibration of the assembly body 160 that is, the flat plate 150 and the corrugated plate 140, can be suppressed, and the wound body 120 can be wound stably.
  • first magnets 18a and 18b of the tension member 18 are provided on the base 12 .
  • the first magnets 18a and 18b may be placed upstream of the base 12.
  • the tension member 18 has been described as a permanent magnet such as a neodymium magnet.
  • An electromagnet controlled by the control unit 200 may be used instead of a permanent magnet.
  • the tension member 18 may be a suction part that has a negative pressure inside, such as a suction pad connected to a vacuum suction device.
  • the suction section can pull the flat plate 150 to the base 12, the first rollers 14a, 14b, and the second rollers 14c, 14d.
  • the vacuum suction device at this time may be controlled by the control unit 200, and a solenoid valve (not shown) connected to the vacuum suction device may be controlled by the control unit 200.
  • the suction force of the suction unit is applied to the flat plate 150, but normally does not apply to the corrugated plate 140.
  • the flat plate 150 can be stably transported toward the manufacturing apparatus 10 for the rolled body 120, and therefore the corrugated sheet 140 on the flat plate 150 can be stably transported on the flat plate 150. It can be transported in a number of ways. Therefore, even when a suction part is used as the tension member 18, the wound body 120 can be stably manufactured.
  • the flat plate 150 and the corrugated plate 140 of the assembly body 160 may be made of an appropriate material such as martensitic stainless steel, ferritic stainless steel, or austenitic stainless steel, regardless of whether it is a soft magnetic material or not. can be used. Further, as described above, the flat plate 150 has a through hole (opening) as appropriate. Therefore, depending on the location, suction force may act not only on the flat plate 150 but also on the corrugated plate 140.
  • the magnets 18a and 18b are arranged upstream of the winding shafts 16a and 16b, and the suction part instead of the magnet is arranged upstream of the winding shafts 16a and 16b. Good too.
  • rollers 14a to 14d are used as the support body 14 .
  • a spherical body may be used instead of the rollers 14a to 14d.
  • the base 12 is not necessarily necessary as long as the support body 14 and the tension member 18 can maintain the above-mentioned relative positions.
  • an example has been described in which an assembly body 160 in which a metal flat plate 150 is stacked on the lower side of a corrugated metal corrugated plate 140 is conveyed toward the manufacturing apparatus 10 for the wound body 120.
  • An assembly body 160 in which a metal flat plate 150 is stacked on top of a corrugated metal corrugated sheet 140 may be transported toward the manufacturing apparatus 10 for the rolled body 120 to form the rolled body 120.
  • the rotation direction of the pair of winding shafts 16a and 16b is opposite to that of the assembly 160 in which the corrugated sheet 140 is stacked on the flat plate 150 described above.
  • the force of the tension member 18 acts on the upper flat plate 150 in addition to the lower corrugated plate 140. Therefore, when manufacturing the wound body 120 by rotating the pair of winding shafts 16a and 16b using the assembly body 160 in which the corrugated plate 140 is arranged on the lower side and the flat plate 150 is arranged on the upper side, the first The magnets 18a and 18b continue to pull the lower corrugated plate 140 and the upper flat plate 150 toward the upstream end of the base 12. For this reason, the vertical vibration of the assembly body 160, that is, the flat plate 150 and the corrugated plate 140, can be suppressed, and the wound body 120 can be wound stably.
  • the rolled body 120 is formed using the manufacturing apparatus 10 for the rolled body 120 according to the present embodiment.
  • the adjustment member 20 is provided with a pressure sensor 266, and the third operating section 260 is operated based on the output value of the pressure sensor 266 to suppress the load on the pair of winding shafts 16a and 16b.
  • a strain gauge is attached to the pair of take-up shafts 16a, 16b to measure the strain in real time, and based on the measured value, the third operating section 260 is operated to apply pressure to the pair of take-up shafts 16a, 16b.
  • the load may be suppressed. That is, there may be various means for suppressing the load on the pair of winding shafts 16a, 16b during manufacturing of the wound body 120.
  • the tip of the corrugated plate 140 may be inserted through the first slit 22 and the second slit 24.
  • the tip of the corrugated plate 140 may be inserted through the first slit 22 and the second slit 24. That is, the tip of the corrugated plate 140 may protrude further in the conveyance direction than the tip 150a of the flat plate 150.
  • At least the flat plate 150 and/or the corrugated plate 140 are arranged in the first slit 22 and the second slit 24 such that they can be inserted into the first slit 22 and the second slit 24 .
  • the tip of the corrugated plate 140 may be formed as a flat surface like the tip 150b of the flat plate 150, or may be formed as a corrugated portion.
  • the pair of winding shafts 16a and 16b are controlled by the control unit 200 controlling the second actuating unit (moving mechanism) 240 having the second pump 242 and the air cylinder 244 as the moving mechanism.
  • the manufacturing apparatus 10 has a pair of racks 272a, 272b, a pinion gear 274 meshed between the pair of racks 272a, 272b, and a motor 276 as a moving mechanism. It's okay.
  • These pair of racks 272a, 272b, pinion gear 274, and motor 276 are provided at positions where they do not interfere with, for example, the vertical movement of the base 12 and the vertical movement of the adjustment member 20.
  • These pair of racks 272a, 272b, pinion gear 274, and motor 276 are preferably provided below the base 12.
  • the motor 276 may have a structure in which the pinion gear 274 is rotated by a desired angle using a stepping motor or the like.
  • the flange 16a1 is rotatably supported around the first winding shaft 16a by a support member 278a provided on one of the racks 272a of the pair of racks 272a and 272b.
  • the flange 16b1 may be rotatably supported around the second winding shaft 16b by a support member 278b provided on the other rack 272b.
  • the extending direction of the pair of racks 272a and 272b is parallel to the width direction of the flat plate 150 and the corrugated plate 140.
  • the control unit 200 rotates the motor 276, the pair of racks 272a and 272b move in conjunction with the rotation of the pinion gear 274, and the support members 278a and 278b and the flanges 16a1 and 16b1 move closer to each other or farther apart. That is, the free ends of the winding shafts 16a and 16b are brought close to each other or separated from each other.
  • the moving mechanism may be formed in this way.
  • FIGS. 13 to 13D An apparatus 10 for manufacturing a wound body (metal base material) 120 according to a second embodiment will be described using FIGS. 13 to 13D.
  • This embodiment is a modification of the first embodiment, and the same members or members having the same functions as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 13 shows a schematic diagram in which the free ends of the core bar 16 (take-up shafts 16a, 16b) are brought close to each other.
  • FIG. 13A shows a schematic diagram of the winding shafts 16a, 16b with their free ends separated from each other of the manufacturing apparatus 10 shown by solid lines in FIG. 2, and the flanges 16a1, 16b1 that hold the winding shafts 16a, 16b.
  • FIG. 13B is a schematic diagram showing the winding shafts 16a, 16b and flanges 16a1, 16b1 of the manufacturing apparatus 10 as seen from the direction indicated by the reference numeral 13B in FIG. 13A.
  • FIG. 13C shows a schematic diagram of the manufacturing apparatus 10 shown in FIG.
  • FIG. 13A shows a schematic diagram of the winding shafts 16a, 16b and flanges 16a1, 16b1 of the manufacturing apparatus 10 as seen from the direction indicated by the reference numeral 13D in FIG. 13C.
  • the pair of winding shafts 16a, 16b are formed in the same shape.
  • the pair of winding shafts 16a and 16b are preferably formed as metal rods having a diameter of about 4 mm, for example, by processing a steel material such as SUS440C or SKD11. Note that the pair of winding shafts 16a and 16b are preferably used after forming the first slit 22 and the second slit 24 and then, for example, being hardened.
  • the 1-1 piece 22a and the 1-2 piece 22b of the first winding shaft 16a described in the first embodiment are formed asymmetrically.
  • the 1-1 piece 22a will be referred to as the first short piece 22a
  • the 1-2 piece 22b will be referred to as the first long piece 22b, which is longer than the first short piece 22a.
  • the length from the branch part to the free end of the first short piece 22a is shorter than half the width of the flat plate 150, and the length from the branch part to the free end of the first long piece 22b is shorter than the width of the flat plate 150. Formed longer than half.
  • the space between the first short piece 22a and the first long piece 22b is formed as a first slit 22 that is spaced apart by at least the thickness of the flat plate 150. Therefore, the axial length of the first slit 22 along the first winding shaft 16a is defined as the length from the branching part of the first short piece 22a to the free end. Further, the distance between the first short piece 22a and the first long piece 22b, that is, the size of the first slit 22, must be the same from the branch part to the vicinity of the free end of the first short piece 22a. is suitable.
  • the size of the first slit 22 is preferably increased toward the free end in order to guide the flat plate 150 to be received in the first slit 22 near the free end of the first short piece 22a. It is.
  • the free end of the first long piece 22b is closer to the free end of the first long piece 22b than the free end of the first short piece 22a, and guides the flat plate 150 to be received in the first slit 22. Therefore, it is preferable that the size increases toward the free end side of the first long piece 22b.
  • At least the flat plate 150 is arranged in the first slit 22 defined between the first short piece 22a and the first long piece 22b.
  • the 2-1 piece 24a and the 2-2 piece 24b of the second winding shaft 16b described in the first embodiment are formed asymmetrically.
  • the 2-1 piece 24a will be referred to as the second long piece 24a
  • the 2-2 piece 24b will be referred to as the second short piece 24b shorter than the second long piece 24a.
  • the length from the branch to the free end of the second long piece 24a is longer than half the width of the flat plate 150, and the length from the branch to the free end of the second short piece 24b is longer than the width of the flat plate 150. Formed shorter than half.
  • the second long piece 24a and the second short piece 24b are spaced apart from each other by at least the thickness of the flat plate 150, and are formed as a second slit 24. Therefore, the axial length of the second slit 24 along the second winding shaft 16b is defined as the length from the branching part of the second short piece 24b to the free end.
  • the distance between the second long piece 24a and the second short piece 24b that is, the size of the second slit 24, must be the same from the branch part to the vicinity of the free end of the second short piece 24b. is suitable.
  • the size of the second slit 24 is preferably increased toward the free end in order to guide the flat plate 150 to be received in the second slit 24 near the free end of the second short piece 24b. It is. Further, the free end of the second long piece 24a is closer to the free end of the second long piece 24a than the free end of the second short piece 24b, and guides the flat plate 150 to be received in the second slit 24. Therefore, it is preferable that the size increases toward the free end side of the second long piece 24a.
  • At least the flat plate 150 is arranged in the second slit 24 defined between the second long piece 24a and the second short piece 24b.
  • the pair of winding shafts 16a and 16b have free ends of the first short piece 22a and the second long piece 24a facing each other in the horizontal direction, and the first short piece 22a and the second long piece 24a facing each other in the horizontal direction. Adjustments are made so that the extending direction of the cylindrical member 24a is maintained coaxially. Further, in the pair of winding shafts 16a, 16b, the free ends of the first long piece 22b and the second short piece 24b are horizontally opposed to each other, and the first long piece 22b and the second short piece 24b are opposite to each other in the horizontal direction. Adjustments are made so that the extending direction of 24b remains coaxially arranged. Therefore, the orientation of the first slit 22 and the orientation of the second slit 24 are aligned. Therefore, the flat plate 150 is inserted through the first slit 22 between the first pair of opposing pieces 22a, 22b and the second slit 24 between the second pair of opposing pieces 24a, 24b.
  • the first short piece 22a and the second long piece 24a are on the upper side
  • the first long piece 22b and the second short piece 24b are on the lower side.
  • the length from the branch to the free end of the first short piece 22a of the first winding shaft 16a is relatively short, less than half the width of the flat plate 150, so the rigidity is relatively high. Therefore, even if the outer diameter of the first winding shaft 16a according to the present embodiment is thinner than the outer diameter of the first winding shaft 16a described in the first embodiment, the first short piece 22a can be freely moved. It is understood that the deflection at the end is smaller than the deflection at the free end of the first short piece 22a described in the first embodiment. Further, the first short piece 22a cooperates with the first long piece 22b facing the first short piece 22a to hold one end 151a side of the flat plate 150 along the width direction.
  • the length of the second short piece 24b of the second winding shaft 16b from the branch to the free end is relatively short, less than half the width of the flat plate 150, and therefore has relatively high rigidity. Therefore, even if the outer diameter of the second winding shaft 16b according to the present embodiment is thinner than the outer diameter of the second winding shaft 16b explained in the first embodiment, the second short piece 24b can be freely moved. It is understood that the deflection at the end is smaller than the deflection at the free end of the second short piece 24b described in the first embodiment. Further, the second short piece 24b cooperates with the second long piece 24a facing the second short piece 24b to hold the other end 151b side of the flat plate 150 along the width direction.
  • the ends 151a and 151b in the width direction of the flat plate 150 are connected to the first long piece 22b and the second winding shaft of the first winding shaft 16a, respectively, which are longer than half the width of the flat plate 150. It is held by the second long piece 24a of the shaft 16b.
  • the free end of the first winding shaft 16a and the free end of the second winding shaft 16b are brought close to each other or in contact with each other, the free end of the first short piece 22a and the free end of the second long piece 24a are free.
  • the end is shifted from the center of the flat plate 150 in the width direction toward the first width direction end portion 151a.
  • the free end of the first long piece 22b and the free end of the second short piece 24b are located at a second width opposite to the first widthwise end 151a side from the widthwise center of the flat plate 150. It is shifted toward the direction end portion 151b.
  • the protrusion length along the axial direction of the first winding shaft 16a of the first long piece 22b with respect to the first short piece 22a is the protrusion length of the second winding shaft 16b of the second long piece 24a with respect to the second short piece 24b. It is the same distance as the protrusion length along the axial direction.
  • the tip end 150b of the flat plate 150 is held by the first winding shaft 16a and the second winding shaft 16b over almost the entire width direction.
  • the pair of winding shafts 16a and 16b continuously hold the flat plate 150 from the pair of ends 151a and 151b in the width direction to near the middle. Therefore, when the manufacturing apparatus 10 rotates the pair of winding shafts 16a and 16b in the same direction at the same speed and winds the flat plate 150 and the corrugated sheet 140 placed on the flat plate 150, the flat plate 150 mm can be wound while suppressing twisting.
  • one end and the other end of the winding body 120 can be more closely spaced than when winding the winding body 120 using one winding shaft.
  • dimensional stability can be ensured. That is, by using a pair of winding shafts 16a and 16b of the same size, the inner diameter of the center of one end of the wound body 120 and the inner diameter of the center of the other end can be kept substantially constant. Further, the pair of winding shafts 16a and 16b hold the tip portion 150b of the flat plate 150 near the center in the width direction by the first long piece 22b and the second long piece 24a.
  • the inner diameter of the center of the area between the one end and the other end can be increased. It can be kept approximately constant.
  • the flat plate 150 is wound using two winding shafts 16a and 16b with their free ends horizontally close to each other. Therefore, the total length of each of the two winding shafts 16a and 16b can be made shorter than when using one winding shaft. Therefore, when using the two winding shafts 16a and 16b according to this embodiment, the amount of deflection of the free end can be reduced compared to when the flat plate 150 is wound using one winding shaft. Therefore, when using the two winding shafts 16a, 16b according to this embodiment, the outer diameters of the two winding shafts 16a, 16b can be made smaller than when using one winding shaft.
  • the winding body 120 is manufactured using a single winding shaft.
  • the inner diameter of the center portion of 120 can be made as small as possible. Therefore, the wound body 120 manufactured by the manufacturing apparatus 10 according to the present embodiment can have a large contact area between the metal catalyst supported on the wound body 120 and the exhaust gas, and can improve the exhaust gas purification performance. can.
  • FIG. 14 is a schematic diagram showing a state in which a flat plate 150 having a through hole 150c is sandwiched between the slits 22 and 24 of the core bar 16 of the apparatus 10 for manufacturing an exhaust gas purifying catalytic converter according to the present embodiment. That is, through holes 150c of appropriate sizes are formed in the flat plate 150 at appropriate intervals. Although further through holes may be formed in the corrugated plate 140 similarly to the through holes 150c, illustration thereof is omitted.
  • the through hole 150c of the flat plate 150 may be located directly above the opposing position. Even in this case, the tip portion 150b of the flat plate 150 is held by the first winding shaft 16a and the second winding shaft 16b over substantially the entire widthwise direction.
  • the pair of winding shafts 16a and 16b continuously hold the flat plate 150 from the pair of ends 151a and 151b in the width direction to near the middle.
  • the manufacturing apparatus 10 rotates the pair of winding shafts 16a and 16b in the same direction at the same speed and winds the flat plate 150 and the corrugated sheet 140 placed on the flat plate 150, the flat plate 150 mm can be wound while suppressing twisting.
  • one end and the other end of the winding body 120 can be more closely spaced than when winding the winding body 120 using one winding shaft.
  • dimensional stability can be ensured. That is, by using a pair of winding shafts 16a and 16b of the same size, the inner diameter of the center of one end of the wound body 120 and the inner diameter of the center of the other end can be kept substantially constant. Further, the pair of winding shafts 16a and 16b hold the tip portion 150b of the flat plate 150 near the center in the width direction by the first long piece 22b and the second long piece 24a.
  • the inner diameter of the center of the wound body 120 can be increased. It can be kept approximately constant. Furthermore, as described above, when manufacturing the wound body 120 using the two winding shafts 16a and 16b according to this embodiment, compared to the case where the winding body 120 is manufactured using one winding shaft. Thus, the inner diameter of the center of the wound body 120 can be made as small as possible.
  • the rolled body 120 manufactured by the manufacturing apparatus 10 according to the present embodiment has the through hole 150c in the flat plate 150, the amount of metal supported on the rolled body 120 is higher than in the case where the flat plate 150 does not have the through hole 150c.
  • the contact area between the catalyst and exhaust gas can be increased, and the exhaust gas purification performance can be improved.
  • the mating portion of the core metal 16 (the position where the first short piece 22a and the first piece 22b are close to each other or in contact with each other and face each other, And, the positions where the second long piece 24a and the second short piece 24b are close to each other or in contact with each other and face each other) are set at two positions shifted from the center in the width direction of the flat plate 150. Therefore, when the flat plate 150 is wound up by the core metal 16, the tensile force that may be exerted on the flat plate 150 from the mating portion of the core metal 16 can be dispersed and reduced, and the flat plate 150 can be prevented from twisting.
  • the central part of the flat plate 150 Since there is no through hole 150c, the central part of the flat plate 150 has relatively higher strength than the area of the flat plate 150 where the through hole 150c is present, and the reaction force on the core bar 16 when the wound body 120 is wound is reduced. is assumed to be higher than the region where the through hole 150c is formed.
  • the mating portion of the core metal 16 does not overlap the widthwise central portion of the flat plate 150 where the through hole 150c is not provided. That is, the position of the mating portion of the core metal 16 is shifted with respect to the center portion of the flat plate 150 where the core metal 16 is assumed to receive the largest load when the flat plate 150 is wound up. Therefore, when the flat plate 150 is wound up by the core metal 16, the amount of deformation of the core metal 16, especially the first long piece 22b and the second long piece 24a, is reduced, and the flat plate 150 is prevented from twisting. can do.
  • the length of the first long piece 22b protruding from the first short piece 22a and the length of the second long piece 24a protruding from the second short piece 24b are set as appropriate.
  • the length of the first long piece 22b that protrudes from the first short piece 22a and the length of the second long piece 24a that protrudes from the second short piece 24b may be the same. , may not be the same.
  • Such a length may vary depending on, for example, the position of the through hole 150c provided in the flat plate 150.
  • the present invention is not limited to the above-described embodiments, and can be variously modified at the implementation stage without departing from the gist thereof.
  • each embodiment may be implemented in combination as appropriate, and in that case, the combined effect can be obtained.
  • the embodiments described above include various inventions, and various inventions can be extracted by combinations selected from the plurality of constituent features disclosed. For example, if a problem can be solved and an effect can be obtained even if some constituent features are deleted from all the constituent features shown in the embodiment, the configuration from which these constituent features are deleted can be extracted as an invention.

Abstract

This device for manufacturing a metal base material for exhaust gas purification, which is formed by winding a planar plate and a corrugated plate provided on the planar plate, comprises first and second wind-up shafts, a rotation mechanism, and a movement mechanism. The first wind-up shaft is cantilevered, and has, on the free end side thereof, a first pair of facing pieces defining a first slit and facing each other. The second wind-up shaft is cantilevered, and has, on the free end side thereof, a second pair of facing pieces defining a second slit and facing each other. The rotation mechanism coaxially arranges the rotation axes of the first wind-up shaft and the second wind-up shaft, causes the free ends of the first wind-up shaft and the second wind-up shaft to face each other, arranges at least the planar plate and/or the corrugated plate so as to be insertable into the first slit and the second slit, and rotates the first wind-up shaft and the second wind-up shaft in the same direction in synchronization with each other. The movement mechanism causes the free ends of the first wind-up shaft and the second wind-up shaft to move closer to or away from each other while coaxially arranging the rotation axes of the first wind-up shaft and the second wind-up shaft.

Description

排ガス浄化用メタル基材の製造装置Manufacturing equipment for metal base materials for exhaust gas purification
 本発明は、排ガス浄化用メタル基材の製造装置に関する。 The present invention relates to an apparatus for manufacturing a metal base material for exhaust gas purification.
 例えば日本国特開平6-198198号公報には、平板上に波板を配置した状態でハニカム状のメタル基材(ハニカム体)を巻回するための排ガス浄化用メタル基材の製造装置が開示されている。例えば平板に波板を載置した状態で平板を平板の幅方向端部側から、1つの巻取軸(シャフト)の長手方向に沿うスリットに配置した後、巻取軸をその軸回りに回転させることで、略円柱状のメタル基材(巻回体)が形成される。 For example, Japanese Patent Application Laid-Open No. 6-198198 discloses an apparatus for manufacturing an exhaust gas purifying metal base material for winding a honeycomb-shaped metal base material (honeycomb body) with a corrugated plate arranged on a flat plate. has been done. For example, with a corrugated sheet placed on a flat plate, the flat plate is placed from the widthwise end of the flat plate into a slit along the length of one winding shaft (shaft), and then the winding shaft is rotated around that shaft. By doing so, a substantially cylindrical metal base material (wound body) is formed.
 メタル基材の中心部の内径は、巻取軸(芯金)の外径に依存し得る。そして、メタル基材の中心部の内径が排ガスの浄化性能に適宜の影響を及ぼすことが分かってきている。例えば、外径が所定の大きさのメタル基材同士を比べると、メタル基材の中心部の内径が小さいほど、メタル基材は、メタル基材に担持する金属触媒と排ガスとの接触面積を大きく製造でき、排ガスの浄化性能が良好になる、と想定される。 The inner diameter of the center of the metal base material may depend on the outer diameter of the winding shaft (core metal). It has been found that the inner diameter of the center of the metal base material has an appropriate effect on the exhaust gas purification performance. For example, when comparing metal base materials with a predetermined outer diameter, the smaller the inner diameter of the center of the metal base material, the smaller the contact area between the metal catalyst supported on the metal base material and the exhaust gas. It is assumed that it can be manufactured in large quantities and has good exhaust gas purification performance.
 1つの巻取軸をその軸周りに回転させてメタル基材を製造するとき、巻取軸の剛性の問題に起因して、巻取軸は、固定端側に比べて自由端側での静止時、回転時のたわみが大きくなると想定される。このため、波板と平板とが重ねられたアセンブリ体を巻取軸を用いて巻くとき、自由端側でのたわみの抑制のため、適宜の外径の巻取軸を使用する必要があり、メタル基材の中心部の内径を小さくすることに限界がある。 When manufacturing a metal substrate by rotating one winding shaft around its axis, due to the problem of the rigidity of the winding shaft, the winding shaft is stationary at the free end side compared to the fixed end side. It is assumed that the deflection during rotation will increase. Therefore, when winding an assembly in which a corrugated plate and a flat plate are stacked using a winding shaft, it is necessary to use a winding shaft with an appropriate outer diameter in order to suppress deflection at the free end side. There is a limit to reducing the inner diameter of the center of the metal base material.
 本発明は、メタル基材の中心部の内径をできるだけ小さくし得る排ガス浄化用メタル基材の製造装置を提供することを目的とする。 An object of the present invention is to provide an apparatus for manufacturing a metal base material for exhaust gas purification, which can make the inner diameter of the center part of the metal base material as small as possible.
 本発明の一態様に係る、平板と、平板上に設けられる波板とが巻回されて形成される排ガス浄化用メタル基材の製造装置は、第1及び第2の巻取軸と、回転機構と、移動機構とを有する。第1の巻取軸は、片持ち支持され、自由端側に第1のスリットを規定する互いに対向する第1の一対の対向片を有する。第2の巻取軸は、片持ち支持され、自由端側に第2のスリットを規定する互いに対向する第2の一対の対向片を有する。回転機構は、第1の巻取軸及び第2の巻取軸の回転軸を同軸上に配置し、第1の巻取軸及び第2の巻取軸の自由端を対向させ、少なくとも平板及び/又は波板が第1のスリットと第2のスリットとに挿通可能に配置し、第1の巻取軸及び第2の巻取軸を同期させて同一方向に回転させる。移動機構は、第1の巻取軸及び第2の巻取軸の回転軸を同軸上に配置しながら第1の巻取軸及び第2の巻取軸の自由端同士を近接又は離隔させる。 An apparatus for manufacturing a metal base material for exhaust gas purification, which is formed by winding a flat plate and a corrugated plate provided on the flat plate, according to one aspect of the present invention, has first and second winding shafts, a rotating It has a mechanism and a movement mechanism. The first winding shaft is supported in a cantilever manner and has a first pair of opposing pieces that define a first slit on the free end side. The second winding shaft is supported in a cantilever manner and has a second pair of opposing pieces that define a second slit on the free end side. The rotation mechanism arranges the rotating shafts of the first winding shaft and the second winding shaft coaxially, the free ends of the first winding shaft and the second winding shaft are opposed to each other, and the rotating mechanism has at least a flat plate and a second winding shaft. Or the corrugated plate is arranged to be able to be inserted into the first slit and the second slit, and the first winding shaft and the second winding shaft are rotated in the same direction in synchronization. The moving mechanism causes the free ends of the first winding shaft and the second winding shaft to approach or separate from each other while arranging the rotating shafts of the first winding shaft and the second winding shaft coaxially.
平板と波板とを重ねつつ巻取軸の周りに渦巻き状に巻き取って形成されたハニカム体の巻回体と、巻回体の形状を保持する外筒とを含む排ガス浄化用触媒コンバータの製造工程を示す概略図。A catalytic converter for exhaust gas purification comprising a honeycomb body formed by stacking a flat plate and a corrugated plate and winding them in a spiral around a winding shaft, and an outer cylinder that maintains the shape of the body. Schematic diagram showing the manufacturing process. 第1実施形態に係る巻回体の製造装置、及び、第1の搬送装置を示す概略的な上面図。FIG. 2 is a schematic top view showing a manufacturing device for a rolled body and a first conveyance device according to the first embodiment. 芯金(一対の巻取軸)の自由端同士を近接させた状態を示す概略図。A schematic diagram showing a state in which the free ends of the core metal (a pair of winding shafts) are brought close to each other. 図2中に実線で示す製造装置の自由端同士を離間させた一対の巻取軸及び一対の巻取軸を保持するフランジの概略図。FIG. 3 is a schematic view of a pair of winding shafts with their free ends separated from each other in the manufacturing device shown by solid lines in FIG. 2 and a flange that holds the pair of winding shafts. 図3A中の符号3Bで示す方向から見た製造装置の一対の巻取軸及びフランジを示す概略図。FIG. 3B is a schematic diagram showing a pair of winding shafts and flanges of the manufacturing device as seen from the direction indicated by reference numeral 3B in FIG. 3A. 図3Aに示す製造装置の一対の巻取軸の自由端同士及びフランジを近接させた状態を示す概略図。FIG. 4 is a schematic diagram showing a state in which the free ends and flanges of a pair of winding shafts of the manufacturing apparatus shown in FIG. 3A are brought close to each other. 図3C中の符号3Dで示す方向から見た製造装置の一対の巻取軸及びフランジを示す概略図。FIG. 3C is a schematic diagram showing a pair of winding shafts and flanges of the manufacturing device as seen from the direction indicated by reference numeral 3D in FIG. 3C. 第1実施形態に係る巻回体の製造装置の概略的なブロック図。FIG. 1 is a schematic block diagram of a manufacturing apparatus for a rolled body according to a first embodiment. 第1実施形態に係る巻回体の製造工程を示す概略図。Schematic diagrams showing the manufacturing process of the wound body according to the first embodiment. 図5に続く巻回体の製造工程を示す概略図。FIG. 6 is a schematic diagram showing the manufacturing process of the wound body following FIG. 5 . 図6に続く巻回体の製造工程を示す概略図。FIG. 7 is a schematic diagram showing the manufacturing process of the wound body following FIG. 6 . 図7に続く巻回体の製造工程を示す概略図。FIG. 8 is a schematic diagram showing the manufacturing process of the wound body following FIG. 7 . 図8に続く巻回体の製造工程を示す概略図。FIG. 9 is a schematic diagram showing the manufacturing process of the wound body following FIG. 8 . 図9に続く巻回体の製造工程を示す概略図。Schematic diagram showing the manufacturing process of the wound body following FIG. 9 . 第1実施形態に係る巻回体の製造工程を示す概略的なフローチャート。1 is a schematic flowchart showing a manufacturing process of a wound body according to a first embodiment. 変形例に係る巻回装置の移動機構の概略図。FIG. 7 is a schematic diagram of a moving mechanism of a winding device according to a modification. 図12A中の矢印12Bで示す方向から見た移動機構の概略図。FIG. 12B is a schematic diagram of the moving mechanism seen from the direction indicated by arrow 12B in FIG. 12A. 第2実施形態に係る排ガス浄化用触媒コンバータの製造装置の芯金(一対の巻取軸)の自由端同士を近接させた状態を示す概略図。FIG. 7 is a schematic diagram showing a state in which the free ends of a core metal (a pair of winding shafts) are brought close to each other in an apparatus for manufacturing an exhaust gas purifying catalytic converter according to a second embodiment. 図2中に実線で示す製造装置の自由端同士を離間させた一対の巻取軸及び一対の巻取軸を保持するフランジの概略図。FIG. 3 is a schematic view of a pair of winding shafts with their free ends separated from each other in the manufacturing device shown by solid lines in FIG. 2 and a flange that holds the pair of winding shafts. 図13A中の符号13Bで示す方向から見た製造装置の一対の巻取軸及びフランジを示す概略図。13B is a schematic diagram showing a pair of winding shafts and flanges of the manufacturing device as seen from the direction indicated by reference numeral 13B in FIG. 13A. FIG. 図13Aに示す製造装置の一対の巻取軸の自由端同士及びフランジを近接させた状態を示す概略図。FIG. 13A is a schematic diagram showing a state in which the free ends of a pair of winding shafts and flanges of the manufacturing apparatus shown in FIG. 13A are brought close to each other. 図13C中の符号13Dで示す方向から見た製造装置の一対の巻取軸及びフランジを示す概略図。13C is a schematic diagram showing a pair of winding shafts and flanges of the manufacturing device as seen from the direction indicated by reference numeral 13D in FIG. 13C. FIG. 第2実施形態に係る排ガス浄化用触媒コンバータの製造装置の芯金のスリットに、貫通孔を有する平板を挟んだ状態を示す概略図。FIG. 7 is a schematic diagram showing a state in which a flat plate having a through hole is sandwiched between a slit of a core metal of an apparatus for manufacturing an exhaust gas purifying catalytic converter according to a second embodiment.
 以下、図面を参照しながらこの発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 (第1実施形態)
 第1実施形態に係る、帯状の平板150と平板150に重ねて配置される波板140とを平板150及び波板140の搬送方向に直交する軸(芯金16)の軸回りにロール状に巻回する巻回体(メタル基材)120の製造装置10について、図1から図11を用いて説明する。
(First embodiment)
According to the first embodiment, the band-shaped flat plate 150 and the corrugated plate 140 arranged overlapping the flat plate 150 are rolled around an axis (core metal 16) orthogonal to the conveying direction of the flat plate 150 and the corrugated plate 140. An apparatus 10 for manufacturing a wound body (metal base material) 120 to be wound will be explained using FIGS. 1 to 11.
 まず、巻回体120について説明する。図1に示す本実施形態に係る巻回体120は、排ガス浄化用触媒コンバータ100の円筒状の外筒110内に収容される部品として用いられる。図1には、排ガス浄化用触媒コンバータ100の製造過程の概略を示す。 First, the wound body 120 will be explained. A wound body 120 according to the present embodiment shown in FIG. 1 is used as a component housed in a cylindrical outer cylinder 110 of a catalytic converter 100 for purifying exhaust gas. FIG. 1 shows an outline of the manufacturing process of an exhaust gas purifying catalytic converter 100.
 排ガス浄化用触媒コンバータ100の巻回体120を製造する場合、まず、波板140を形成するための平板130を準備する。波板140を形成するための平板130は、圧延により金属箔状に形成されていることが好適である。そして、一対のローラ131,132間に金属製で帯状の平板130を送り、一対のローラ131,132の外周に付された凹凸を転写して、金属製で帯状の波板140を形成する。すなわち、金属製で帯状の平板130を波形に成形する波付けを行い、金属製で帯状の波板140を形成する。波板140は、搬送方向に沿って波付けられている。 When manufacturing the rolled body 120 of the exhaust gas purifying catalytic converter 100, first, a flat plate 130 for forming the corrugated plate 140 is prepared. The flat plate 130 for forming the corrugated plate 140 is preferably formed into a metal foil shape by rolling. Then, a metal band-shaped flat plate 130 is sent between the pair of rollers 131 and 132, and the unevenness formed on the outer periphery of the pair of rollers 131 and 132 is transferred to form a metal band-shaped corrugated plate 140. That is, corrugation is performed to form a band-shaped metal flat plate 130 into a corrugated shape, thereby forming a band-shaped corrugated metal plate 140. The corrugated plate 140 is corrugated along the conveyance direction.
 次に、波付けした波板140の例えば下側に金属製で帯状の平板150を重ねてアセンブリ体160とする。すなわち、平板150上には、波板140が設けられる。平板150は、圧延により金属箔状に形成されていることが好適である。 Next, for example, a band-shaped flat plate 150 made of metal is stacked on the lower side of the corrugated sheet 140 to form an assembly 160. That is, the corrugated plate 140 is provided on the flat plate 150. The flat plate 150 is preferably formed into a metal foil shape by rolling.
 そして、製造装置10の制御部200は、第1の搬送装置170を制御し、アセンブリ体160を、巻回体120の製造装置10に向けて搬送する。このとき、アセンブリ体160を上流側の第1の搬送装置170の例えばレール170a(図2参照)に沿って移動する送りチャック171,172(図1、図5-図7参照)が、アセンブリ体160の側面を保持することで、アセンブリ体160が巻回体120の製造装置10に向けて搬送される。そして、巻回体120の製造装置10は、アセンブリ体160の平板150と金属製の波板140とを重ねた状態で一緒に巻回し、巻回体120を形成する。このとき、本実施形態では、平板150を外側に、波板140を内側とする。 Then, the control unit 200 of the manufacturing device 10 controls the first transport device 170 to transport the assembly body 160 toward the manufacturing device 10 of the rolled body 120. At this time, the feed chucks 171 and 172 (see FIGS. 1 and 5 to 7), which move the assembly body 160 along, for example, the rail 170a (see FIG. 2) of the first conveyance device 170 on the upstream side, By holding the side surface of the assembly body 160, the assembly body 160 is conveyed toward the manufacturing apparatus 10 for the rolled body 120. Then, the apparatus 10 for manufacturing the rolled body 120 forms the rolled body 120 by winding the flat plate 150 of the assembly body 160 and the metal corrugated plate 140 together in an overlapping state. At this time, in this embodiment, the flat plate 150 is placed on the outside and the corrugated plate 140 is placed on the inside.
 そして、巻回体120の外周に円筒状の外筒110が配置され、巻回体120は外筒110により形が保持される。 A cylindrical outer tube 110 is arranged around the outer periphery of the wound body 120, and the shape of the wound body 120 is maintained by the outer tube 110.
 巻回体120は、例えば排ガスが軸方向に通過する多数の通孔を有するハニカム体として形成される。多数の通孔に接するハニカム体の表面には排ガスを浄化する触媒金属が担持されている。この排ガス浄化用触媒コンバータ100は、エンジンから排気されるガスに含まれる有害物質を分解、浄化して排出するため、マフラーの前や、マフラー内に配置される。 The wound body 120 is formed, for example, as a honeycomb body having a large number of through holes through which exhaust gas passes in the axial direction. A catalytic metal for purifying exhaust gas is supported on the surface of the honeycomb body that is in contact with a large number of through holes. The exhaust gas purifying catalytic converter 100 is disposed in front of or within the muffler in order to decompose, purify, and discharge harmful substances contained in the gas exhausted from the engine.
 本実施形態で用いられるアセンブリ体160について説明する。
 アセンブリ体160の平板150及び波板140は、ともに、例えば磁性体の金属材として形成される。平板150及び波板140は、強磁性体の金属材として形成されてもよいが、ここでは、軟磁性体の金属材として形成される例について説明する。平板150及び波板140は、熱容量が低く、耐熱性、耐圧性等に優れている素材が用いられる。平板150及び波板140は、一例としてステンレス鋼材、耐熱鋼が用いられることが好適である。本実施形態では、軟磁性体のマルテンサイト系ステンレス、軟磁性体のフェライト系ステンレスが用いられることが好適である。なお、オーステナイト系ステンレスであっても、加工状態により、軟磁性体として平板150及び波板140に用いることができ得る。
The assembly body 160 used in this embodiment will be explained.
Both the flat plate 150 and the corrugated plate 140 of the assembly body 160 are formed of, for example, a magnetic metal material. Although the flat plate 150 and the corrugated plate 140 may be formed as a ferromagnetic metal material, an example in which they are formed as a soft magnetic metal material will be described here. The flat plate 150 and the corrugated plate 140 are made of a material that has a low heat capacity and is excellent in heat resistance, pressure resistance, and the like. The flat plate 150 and the corrugated plate 140 are preferably made of stainless steel or heat-resistant steel, for example. In this embodiment, it is preferable to use martensitic stainless steel, which is a soft magnetic material, and ferritic stainless steel, which is a soft magnetic material. Note that even austenitic stainless steel may be used as a soft magnetic material for the flat plate 150 and the corrugated plate 140 depending on the processing state.
 アセンブリ体160の波板140及び平板150の幅は同一か略同一に形成される。波板140及び平板150の幅は、一例として60mm程度である。波板140及び平板150の厚さは、例えば50μm程度である。アセンブリ体160の平板150の先端150aは、波板140の先端140aに対して、搬送方向に突出する。アセンブリ体160の波板140の先端140aに対する平板150の先端150aの突出量は、形成する巻回体120の外径(大きさ)等により異なり、適宜に設定可能である。アセンブリ体160の波板140の先端140aに対する平板150の先端150aの突出量は、巻取軸16a,16bと第2の磁石18c,18dとの間の距離よりも大きい。なお、アセンブリ体160の波板140の先端140aと、平板150の先端150aとの間の平板150の領域を先端部150bと称することとする。
 なお、アセンブリ体160の波板140の先端140aに対する平板150の先端150aの突出量は、一例として、5cm程度以上であることが好適である。アセンブリ体160の波板140の基端(図示せず)は、平板150の基端(図示せず)よりも搬送方向に沿って下流側の位置にあってもよく、上流側の位置にあってもよい。巻回体120として形成されたときに、アセンブリ体160の波板140の基端と平板150の基端とが巻回体120の周方向に近接した位置にあることが好適である。
The corrugated plate 140 and the flat plate 150 of the assembly 160 have the same or substantially the same width. The width of the corrugated plate 140 and the flat plate 150 is, for example, about 60 mm. The thickness of the corrugated plate 140 and the flat plate 150 is, for example, about 50 μm. The tip 150a of the flat plate 150 of the assembly body 160 protrudes in the conveying direction with respect to the tip 140a of the corrugated plate 140. The amount of protrusion of the tip 150a of the flat plate 150 with respect to the tip 140a of the corrugated plate 140 of the assembly body 160 varies depending on the outer diameter (size) of the wound body 120 to be formed, and can be set as appropriate. The amount of protrusion of the tip 150a of the flat plate 150 with respect to the tip 140a of the corrugated plate 140 of the assembly body 160 is larger than the distance between the winding shafts 16a, 16b and the second magnets 18c, 18d. Note that the region of the flat plate 150 between the tip 140a of the corrugated plate 140 of the assembly body 160 and the tip 150a of the flat plate 150 is referred to as a tip portion 150b.
Note that the amount of protrusion of the tip 150a of the flat plate 150 with respect to the tip 140a of the corrugated plate 140 of the assembly body 160 is preferably about 5 cm or more, for example. The base end (not shown) of the corrugated plate 140 of the assembly body 160 may be located at a position on the downstream side of the base end (not shown) of the flat plate 150 along the conveyance direction, or may be located at a position on the upstream side. It's okay. When formed as the wound body 120, it is preferable that the base end of the corrugated plate 140 and the base end of the flat plate 150 of the assembly body 160 are located close to each other in the circumferential direction of the wound body 120.
 また、波板140の幅方向の一方の端部に符号141aを付し、他方の端部に符号141bを付す。同様に、平板150の幅方向の一方の端部に符号151aを付し、他方の端部に符号151bを付す。 Further, one end of the corrugated plate 140 in the width direction is designated by a reference numeral 141a, and the other end is designated by a reference numeral 141b. Similarly, one end of the flat plate 150 in the width direction is designated by a reference numeral 151a, and the other end is designated by a reference numeral 151b.
 例えば軽量化のため、平板150には、適宜の間隔ごとなどに貫通孔150c(図14参照)が形成されていてもよい。すなわち、平板150は、平面板として製造装置10に搬送されるのであれば、中実度、すなわち、密度が適宜の位置で異なっていてもよい。また、波板140にも、適宜の間隔ごとなどに貫通孔が形成されていてもよい。波板140に貫通孔が形成される場合、波板140のための平板130の時点で貫通孔が形成され、その後、波板140として形成されることが好適である。平板150及び波板140の貫通孔の大きさは、同じであっても異なっていてもよい。排ガス浄化用触媒コンバータ100を使用するとき、これら平板150及び波板140の貫通孔の存在により、排ガスを排ガス浄化用触媒コンバータ100内で流通させて触媒金属により多く接触させ、排ガスの浄化を促進することができる。 For example, to reduce weight, through holes 150c (see FIG. 14) may be formed in the flat plate 150 at appropriate intervals. That is, as long as the flat plate 150 is transported to the manufacturing apparatus 10 as a flat plate, the degree of solidity, that is, the density may be different at appropriate positions. Furthermore, through holes may be formed in the corrugated plate 140 at appropriate intervals. When a through hole is formed in the corrugated sheet 140, it is preferable that the through hole is formed at the time of the flat plate 130 for the corrugated sheet 140, and then formed as the corrugated sheet 140. The sizes of the through holes in the flat plate 150 and the corrugated plate 140 may be the same or different. When using the exhaust gas purification catalytic converter 100, the presence of the through holes in the flat plate 150 and the corrugated plate 140 allows the exhaust gas to flow through the exhaust gas purification catalytic converter 100 and come into contact with the catalyst metal more, promoting purification of the exhaust gas. can do.
 第1の搬送装置170は、上述した送りチャック171,172でアセンブリ体160の側面を保持しながら、所定の搬送方向に沿って、アセンブリ体160を搬送する。第1の搬送装置170の搬送路は、真っ直ぐであることが好適である。 The first conveyance device 170 conveys the assembly body 160 along a predetermined conveyance direction while holding the side surfaces of the assembly body 160 with the above-mentioned feed chucks 171 and 172. It is preferable that the conveyance path of the first conveyance device 170 is straight.
 次に、巻回体120の製造装置10について、図2から図11を用いて説明する。図2には、巻回体120の製造装置10及び第1の搬送装置170の概略的な上面図を示す。 Next, the manufacturing apparatus 10 for the wound body 120 will be explained using FIGS. 2 to 11. FIG. 2 shows a schematic top view of the manufacturing device 10 of the rolled body 120 and the first conveyance device 170.
 図3には、後述する芯金16(巻取軸16a,16b)の自由端同士を対向させながら近接させた概略図を示す。図3Aには、図2中に実線で示す製造装置10の自由端同士を離間させた巻取軸16a,16b及び巻取軸16a,16bを保持するフランジ16a1,16b1の概略図を示す。図3Bには、図3A中の符号3Bで示す方向から見た製造装置10の巻取軸16a,16b及びフランジ16a1,16b1を示す概略図を示す。図3Cには、図2中に破線で示す製造装置10の自由端同士を近接させ、すなわち、図3Aに示す製造装置10の巻取軸16a,16bの自由端同士及びフランジ16a1,16b1を近接させた状態の概略図を示す。図3Dには、図3C中の符号3Dで示す方向から見た製造装置10の巻取軸16a,16b及びフランジ16a1,16b1の概略図を示す。 FIG. 3 is a schematic diagram showing the free ends of the core bar 16 (take-up shafts 16a, 16b), which will be described later, facing each other and close to each other. FIG. 3A shows a schematic diagram of the winding shafts 16a, 16b with their free ends separated from each other of the manufacturing apparatus 10 shown by solid lines in FIG. 2, and the flanges 16a1, 16b1 that hold the winding shafts 16a, 16b. FIG. 3B is a schematic diagram showing the winding shafts 16a, 16b and flanges 16a1, 16b1 of the manufacturing apparatus 10 as seen from the direction indicated by the reference numeral 3B in FIG. 3A. In FIG. 3C, the free ends of the manufacturing apparatus 10 shown by broken lines in FIG. A schematic diagram of the state shown in FIG. FIG. 3D shows a schematic diagram of the winding shafts 16a, 16b and flanges 16a1, 16b1 of the manufacturing apparatus 10 as seen from the direction indicated by the symbol 3D in FIG. 3C.
 図4は、巻回体120の製造装置10、第1の搬送装置170、及び、第2の搬送装置180の概略的なブロック図を示す。 FIG. 4 shows a schematic block diagram of the manufacturing device 10 for the rolled body 120, the first conveyance device 170, and the second conveyance device 180.
 図5から図10では、製造装置10を用いた巻回体120の一連の製造工程を説明する。なお、図5から図10では、図2中のα-α線に沿う方向を見た図として示す。図11は、製造装置10を用いた巻回体120の一連の製造工程を説明するフローチャートである。 5 to 10, a series of manufacturing steps of the wound body 120 using the manufacturing apparatus 10 will be described. Note that FIGS. 5 to 10 are shown as views seen in the direction along the α-α line in FIG. 2. FIG. 11 is a flowchart illustrating a series of manufacturing steps for the rolled body 120 using the manufacturing apparatus 10.
 本実施形態に係る巻回体120の製造装置10は、アセンブリ体160を巻回体120の製造装置10に向けて搬送する、上述した第1の搬送装置170(図2参照)とともに用いられる。また、本実施形態に係る巻回体120の製造装置10は、作成した巻回体120を所定方向に搬送する、後述する下流側の第2の搬送装置180(図9及び図10参照)とともに用いられる。 The manufacturing device 10 for the rolled body 120 according to the present embodiment is used together with the above-described first conveying device 170 (see FIG. 2) that conveys the assembly 160 toward the manufacturing device 10 for the rolled body 120. Moreover, the manufacturing device 10 for the wound body 120 according to the present embodiment is used together with a downstream second conveying device 180 (see FIGS. 9 and 10), which will be described later, and conveys the created wound body 120 in a predetermined direction. used.
 巻回体120の製造装置10は、ベース12と、ベース12に支持される支持体14(ローラ14a-14d)と、アセンブリ体160の平板150を把持し、その軸回りに回転する芯金16(巻取軸(ストレートシャフト)16a,16b)と、搬送方向に沿って巻取軸16a,16bの上流側及び下流側でアセンブリ体160を支持体14に向けて引っ張る引張部材18(磁石18a-18d)と、巻回体120の外径を調整する調整部材20とを有する。 The manufacturing apparatus 10 of the wound body 120 includes a base 12, a support body 14 (rollers 14a to 14d) supported by the base 12, and a core metal 16 that grips a flat plate 150 of an assembly body 160 and rotates around its axis. (take-up shafts (straight shafts) 16a, 16b), and tension members 18 (magnets 18a- 18d) and an adjusting member 20 that adjusts the outer diameter of the wound body 120.
 ベース12は、例えばブロック状に形成される。本実施形態では、ベース12は、略直方体状に形成される。ベース12は、図4に示す第1の動作部210によりエアシリンダー214を制御することにより、上下に移動可能に形成される。具体的には、第1の作動部210は、第1のポンプ(圧縮空気供給源)212及びエアシリンダー214の第1の電磁弁214aを有する。第1のポンプ212はベース12に設けられるエアシリンダー214に圧縮空気を供給する。第1の電磁弁214aは、制御部200の制御により、エアシリンダー214のロッドの動作方向を切り替える。このため、制御部200により第1の動作部210の第1のポンプ212及び第1の電磁弁214aが制御されると、エアシリンダー214のロッドが駆動され、ベース12が上下に移動する。そして、制御部200が第1の電磁弁214aを制御することで、ベース12に設けられるエアシリンダー214のロッドの位置が調整され、ベース12の高さが調整される。 The base 12 is formed into a block shape, for example. In this embodiment, the base 12 is formed into a substantially rectangular parallelepiped shape. The base 12 is formed to be movable up and down by controlling an air cylinder 214 by a first operating section 210 shown in FIG. Specifically, the first actuator 210 includes a first pump (compressed air supply source) 212 and a first solenoid valve 214a of the air cylinder 214. The first pump 212 supplies compressed air to an air cylinder 214 provided on the base 12. The first solenoid valve 214a switches the operating direction of the rod of the air cylinder 214 under the control of the control unit 200. Therefore, when the first pump 212 and the first electromagnetic valve 214a of the first operating section 210 are controlled by the control section 200, the rod of the air cylinder 214 is driven, and the base 12 is moved up and down. Then, the control unit 200 controls the first electromagnetic valve 214a, so that the position of the rod of the air cylinder 214 provided on the base 12 is adjusted, and the height of the base 12 is adjusted.
 ベース12は、上流側端部に、アセンブリ体160の案内部13を有する。案内部13は、アセンブリ体160が後述する第1のローラ14a,14b(支持体)上に載るように、アセンブリ体160をベース12の上面側に案内する。 The base 12 has a guide portion 13 for the assembly body 160 at the upstream end. The guide portion 13 guides the assembly body 160 toward the upper surface of the base 12 so that the assembly body 160 is placed on first rollers 14a and 14b (support bodies) described later.
 なお、ベース12には、アセンブリ体160の平板150の先端部150bがベース12上に載置されたことを検知するとともに、アセンブリ体160の後端(平板150の基端又は波板140の基端のうち、搬送方向に沿って上流側の端)を検知する、第1のセンサ220が設けられる。第1のセンサ220は、例えば、ベース12の第1の搬送装置170側に設けられる。第1のセンサ220は、例えば、フォトインタラプタ(遮光センサ)が用いられ得る。また、第1のセンサ220は、例えば、LED光やレーザ光の反射を検知するフォトリフレクタが用いられ得る。第1のセンサ220がフォトインタラプタの場合、例えばベース12の上方にLED光やレーザ光を発する光源を配置し、第1のセンサ220は、平板150及び波板140の少なくとも一方により光が遮光されるか否かを出力可能である。第1のセンサ220がフォトリフレクタの場合、第1のセンサ220は、LED光源やレーザ光源から発する光が平板150及び波板140の少なくとも一方により反射され、受光素子で受光されるか否かを出力可能である。 Note that the base 12 detects that the tip end 150b of the flat plate 150 of the assembly body 160 is placed on the base 12, and also detects that the rear end of the assembly body 160 (the base end of the flat plate 150 or the base of the corrugated plate 140) is placed on the base 12. A first sensor 220 is provided that detects the upstream end along the conveyance direction among the ends. The first sensor 220 is provided, for example, on the first transport device 170 side of the base 12. For example, a photointerrupter (light-shielding sensor) may be used as the first sensor 220. Further, as the first sensor 220, for example, a photoreflector that detects reflection of LED light or laser light may be used. When the first sensor 220 is a photointerrupter, for example, a light source that emits an LED light or a laser beam is placed above the base 12, and the first sensor 220 has light blocked by at least one of the flat plate 150 and the corrugated plate 140. It is possible to output whether or not the When the first sensor 220 is a photoreflector, the first sensor 220 determines whether the light emitted from the LED light source or the laser light source is reflected by at least one of the flat plate 150 and the corrugated plate 140 and is received by the light receiving element. It is possible to output.
 ベース12には、支持体14が支持される。支持体14は、アセンブリ体160の搬送方向に沿って、上流側の一対の第1のローラ14a,14bと、下流側の一対の第2のローラ14c,14dとを有する。一対の第1のローラ14a,14b及び一対の第2のローラ14c,14dの回転軸は互いに平行で、第1の搬送装置170の搬送方向に直交する。一対の第1のローラ14a,14b及び一対の第2のローラ14c,14dのうち、回転軸よりも上側の一部は、ベース12の上面に対して突出する。ベース12には、一対の第1のローラ14a,14b及び一対の第2のローラ14c,14dを突出させるための開口が形成され、一対の第1のローラ14a,14b及び一対の第2のローラ14c,14dの一部はそれぞれ開口を通してベース12の上面に対して上側に突出する。 A support body 14 is supported on the base 12. The support body 14 includes a pair of first rollers 14a, 14b on the upstream side and a pair of second rollers 14c, 14d on the downstream side, along the conveyance direction of the assembly body 160. The rotation axes of the pair of first rollers 14a, 14b and the pair of second rollers 14c, 14d are parallel to each other and perpendicular to the conveying direction of the first conveying device 170. Of the pair of first rollers 14a, 14b and the pair of second rollers 14c, 14d, a portion above the rotation axis protrudes with respect to the upper surface of the base 12. The base 12 is formed with openings for protruding a pair of first rollers 14a, 14b and a pair of second rollers 14c, 14d. Parts of 14c and 14d respectively protrude upwardly from the upper surface of the base 12 through the openings.
 なお、一対の第1のローラ14a,14bは、アセンブリ体160の搬送方向に好ましくは直交するなど、交差する方向に離間する。同様に、一対の第2のローラ14c,14dは、アセンブリ体160の搬送方向に好ましくは直交するなど、交差する方向に離間する。なお、一対の第1のローラ14a,14b間、一対の第2のローラ14c,14d間は、アセンブリ体160の平板150の幅よりも小さい。このため、第1の搬送装置170により搬送されるアセンブリ体160は、一対の第1のローラ14a,14bに載せられ、また、一対の第2のローラ14c,14dに載せられる。 Note that the pair of first rollers 14a and 14b are spaced apart in a direction that is preferably perpendicular to, or intersects with, the conveyance direction of the assembly body 160. Similarly, the pair of second rollers 14c, 14d are preferably spaced apart in a direction that intersects, such as perpendicularly, to the transport direction of the assembly 160. Note that the width between the pair of first rollers 14a and 14b and between the pair of second rollers 14c and 14d is smaller than the width of the flat plate 150 of the assembly body 160. Therefore, the assembly body 160 conveyed by the first conveyance device 170 is placed on the pair of first rollers 14a, 14b, and also placed on the pair of second rollers 14c, 14d.
 なお、第1のローラ14a,14b、及び、第2のローラ14c,14dは、芯金16との関係で、平板150の先端部150bの位置決めに用いられる。 Note that the first rollers 14a, 14b and the second rollers 14c, 14d are used for positioning the tip 150b of the flat plate 150 in relation to the core metal 16.
 支持体14、すなわち、ローラ14a-14dは、本実施形態ではベース12に支持されるため、ベース12とともに上下に移動する。 The support body 14, that is, the rollers 14a to 14d are supported by the base 12 in this embodiment, and therefore move up and down together with the base 12.
 また、一対の第1のローラ14a,14b、及び、一対の第2のローラ14c,14dは、例えばモータ(図示せず)等により能動的に回転するように形成されていてもよく、アセンブリ体160の平板150の接触により受動的に回転するように形成されていてもよい。 Further, the pair of first rollers 14a, 14b and the pair of second rollers 14c, 14d may be formed to be actively rotated by, for example, a motor (not shown), and the assembly 160 may be configured to rotate passively by contact with the flat plate 150.
 芯金16は、軸方向が一致する状態に対向する一対の巻取軸16a,16bを有する。巻取軸16a,16bの軸方向は、一対の第1のローラ14a,14b及び一対の第2のローラ14c,14dに平行である。すなわち、一対の巻取軸16a,16bの回転軸は第1の搬送装置170の搬送方向に直交する。 The core metal 16 has a pair of winding shafts 16a and 16b facing each other so that their axial directions match. The axial direction of the winding shafts 16a, 16b is parallel to the pair of first rollers 14a, 14b and the pair of second rollers 14c, 14d. That is, the rotation axes of the pair of take-up shafts 16a and 16b are perpendicular to the transport direction of the first transport device 170.
 一対の巻取軸16a,16bは、これらの固定端側がフランジ16a1,16b1にそれぞれ支持される。図3Aから図3Dに示すように、フランジ16a1には、第1の巻取軸16aの回転軸と同軸の回転軸を有するシャフト17aが設けられる。フランジ16b1には、第2の巻取軸16bの回転軸と同軸の回転軸を有するシャフト17bが設けられる。シャフト17aは、シャフト17aに設けられる軸受17a1を介して製造装置10の筐体に支持され、同様に、シャフト17bは、シャフト17bに設けられる軸受17b1を介して製造装置10の筐体に支持される。そして、これらシャフト17a,17bは、例えば図4に示すモータ(例えばサーボモータ)230a,230b及びそのモータ230a,230bの回転軸に噛み合わせられるギヤ(図示せず)等の制御により、同一方向に同一速度で同一の回転角度に回転するように調整される。なお、シャフト17aが回転すると、フランジ16a1及び第1の巻取軸16aがシャフト17aと同一方向に同一速度で同一の回転角度に回転する。また、シャフト17bが回転すると、フランジ16b1及び第2の巻取軸16bがシャフト17bと同一方向に同一速度で同一の回転角度に回転する。 The fixed end sides of the pair of winding shafts 16a and 16b are supported by flanges 16a1 and 16b1, respectively. As shown in FIGS. 3A to 3D, the flange 16a1 is provided with a shaft 17a having a rotation axis coaxial with the rotation axis of the first winding shaft 16a. The flange 16b1 is provided with a shaft 17b having a rotation axis coaxial with the rotation axis of the second winding shaft 16b. The shaft 17a is supported by the casing of the manufacturing apparatus 10 via a bearing 17a1 provided on the shaft 17a, and similarly, the shaft 17b is supported by the casing of the manufacturing apparatus 10 via a bearing 17b1 provided on the shaft 17b. Ru. These shafts 17a, 17b are moved in the same direction by, for example, controlling motors (for example, servo motors) 230a, 230b shown in FIG. Adjusted to rotate at the same speed and the same rotation angle. Note that when the shaft 17a rotates, the flange 16a1 and the first winding shaft 16a rotate in the same direction, at the same speed, and at the same rotation angle as the shaft 17a. Further, when the shaft 17b rotates, the flange 16b1 and the second winding shaft 16b rotate in the same direction, at the same speed, and at the same rotation angle as the shaft 17b.
 モータ230a,230bの回転軸の回転角度、又は、ギヤを介した一対の巻取軸16a,16bの位置(回転角度)、速度、回転力は、エンコーダ232a,232bにより取得される。 The rotation angles of the rotation shafts of the motors 230a and 230b, or the positions (rotation angles), speeds, and rotational forces of the pair of take-up shafts 16a and 16b via gears are acquired by encoders 232a and 232b.
 モータ230a,230bとしては、サーボモータに代えて、ステッピングモータを用いることもできる。モータ230a,230bとしてステッピングモータを用いる場合、エンコーダ232a,232bは不要となり得る。また、モータ230a,230bのうちの1つを用い、ギヤを介して2つの巻取軸16a,16bを同方向に同一速度で同一の回転角度に回転させるようにしてもよい。 As the motors 230a and 230b, stepping motors can also be used instead of servo motors. If stepping motors are used as the motors 230a, 230b, the encoders 232a, 232b may be unnecessary. Alternatively, one of the motors 230a, 230b may be used to rotate the two winding shafts 16a, 16b in the same direction, at the same speed, and at the same rotation angle via a gear.
 すなわち、モータ230a,230bは、制御部200と協働して、第1の巻取軸16aの回転軸及び第2の巻取軸16bの回転軸を同軸上に配置した状態で、第1の巻取軸16a及び第2の巻取軸16bを同期させて同一方向に回転させる回転機構(200,230a,230b)を構成する。 That is, the motors 230a and 230b cooperate with the control unit 200 to rotate the first winding shaft 16a and the second winding shaft 16b with the rotation shaft of the first winding shaft 16a and the second winding shaft 16b arranged coaxially. A rotation mechanism (200, 230a, 230b) is configured to synchronize and rotate the winding shaft 16a and the second winding shaft 16b in the same direction.
 一対の巻取軸16a,16bの自由端は、図2中に実線で示す、又は、図3A及び図3Bに示すように、ベース12の上方から退避し、離間する離間位置に移動可能である。また、一対の巻取軸16a,16bの自由端は、図2中に破線で示す、又は、図3C及び図3Dに示すように、ベース12の上方において互いに近接する近接位置に移動可能である。一対の巻取軸16a,16bの自由端は、ベース12の上方において互いに近接するだけでなく、互いに当接してもよい。 The free ends of the pair of take-up shafts 16a, 16b are retracted from above the base 12 and can be moved to separate positions, as shown by solid lines in FIG. 2 or as shown in FIGS. 3A and 3B. . Further, the free ends of the pair of winding shafts 16a and 16b are movable to adjacent positions above the base 12, as shown by broken lines in FIG. 2 or as shown in FIGS. 3C and 3D. . The free ends of the pair of winding shafts 16a and 16b may not only be close to each other above the base 12, but also may be in contact with each other.
 一対の巻取軸16a,16bの軸方向の移動は、例えばエアシリンダー244等の制御により行われる。具体的には、第2の作動部(移動機構)240は、第2のポンプ(圧縮空気供給源)242及びエアシリンダー244の第2の電磁弁244aを有する。第2のポンプ242は一対の巻取軸16a,16bにそれぞれ設けられるエアシリンダー244に圧縮空気を供給する。第2の電磁弁244aは、制御部200の制御により、エアシリンダー244のロッドの動作方向を切り替える。このため、制御部200により第2の動作部240の第2のポンプ242及び第2の電磁弁244aが制御されると、エアシリンダー244のロッドが駆動され、一対の巻取軸16a,16bが相対的に近接又は離隔する。なお、一対の巻取軸16a,16bの自由端同士は互いに対する負荷がかからない程度に当接してもよい。したがって、ベース12に対する一対の巻取軸16a,16bのそれぞれのロッドの位置は調整される。 The pair of take-up shafts 16a, 16b are moved in the axial direction by, for example, controlling an air cylinder 244 or the like. Specifically, the second actuator (moving mechanism) 240 includes a second pump (compressed air supply source) 242 and a second solenoid valve 244a of the air cylinder 244. The second pump 242 supplies compressed air to air cylinders 244 provided on the pair of winding shafts 16a and 16b, respectively. The second electromagnetic valve 244a switches the operating direction of the rod of the air cylinder 244 under the control of the control unit 200. Therefore, when the second pump 242 and second solenoid valve 244a of the second operating section 240 are controlled by the control section 200, the rod of the air cylinder 244 is driven, and the pair of winding shafts 16a and 16b are driven. Relatively close together or far apart. Note that the free ends of the pair of winding shafts 16a and 16b may be in contact with each other to the extent that no load is applied to each other. Therefore, the position of each rod of the pair of winding shafts 16a, 16b with respect to the base 12 is adjusted.
 すなわち、第2のポンプ242、及び、第2の電磁弁244aを有するエアシリンダー244は、制御部200と協働して、第1の巻取軸16aの回転軸及び第2の巻取軸16bの回転軸を同軸上に配置しながら第1の巻取軸16aの自由端と第2の巻取軸16bの自由端とを近接及び離隔させる方向に移動させる移動機構を構成する。 That is, the air cylinder 244 having the second pump 242 and the second solenoid valve 244a cooperates with the control unit 200 to control the rotation axis of the first winding shaft 16a and the second winding shaft 16b. A moving mechanism is configured to move the free end of the first winding shaft 16a and the free end of the second winding shaft 16b in directions toward and away from each other while coaxially disposing the rotating shafts of the winding shaft 16a and the second winding shaft 16b.
 図4に示す一対の巻取軸16a,16bを動作させる第2の動作部240の第2のポンプ(圧縮空気供給源)242及びエアシリンダー244の第2の電磁弁244aの制御により、エアシリンダー244がそれぞれ駆動されて、一対の巻取軸16a,16bの軸方向の移動は連動して行われることが好適である。なお、一対の巻取軸16a,16bは、図2中の実線位置(図3A及び図3B参照)と破線位置(図3C及び図3D参照)との間を移動可能である。巻取軸16aには、円盤状のフランジ16a1が設けられる。巻取軸16bには、円盤状のフランジ16b1が設けられる。このため、フランジ16a1,16b1がベース12の側面に対して所定距離に近接又はベース12の側面に当接されることで、巻取軸16a,16bの最大近接位置が規定される。このとき、フランジ16a1,16b1間の距離は、平板150の幅と略一致し、又は、平板150の幅よりも僅かに大きく形成され、平板150の蛇行が抑制される。また、フランジ16a1,16b1の外径は、製造される排ガス浄化用触媒コンバータ100の巻回体120の外径よりも小さく形成される。このため、フランジ16a1,16b1の外周面が例えば調整部材20と干渉することが防止される。
 なお、フランジ16a1,16b1は、一対の巻取軸16a,16bとともに回転するため、実際にはベース12の側面には当接しないことが好適である。
By controlling the second pump (compressed air supply source) 242 of the second operating unit 240 that operates the pair of winding shafts 16a, 16b shown in FIG. 4 and the second solenoid valve 244a of the air cylinder 244, the air cylinder 244 are respectively driven, and the pair of winding shafts 16a, 16b are preferably moved in the axial direction in conjunction with each other. Note that the pair of winding shafts 16a and 16b are movable between the solid line position in FIG. 2 (see FIGS. 3A and 3B) and the broken line position (see FIGS. 3C and 3D). A disk-shaped flange 16a1 is provided on the winding shaft 16a. A disk-shaped flange 16b1 is provided on the winding shaft 16b. Therefore, the maximum proximity position of the winding shafts 16a, 16b is defined by the flanges 16a1, 16b1 coming close to the side surface of the base 12 at a predetermined distance or coming into contact with the side surface of the base 12. At this time, the distance between the flanges 16a1 and 16b1 is formed to substantially match the width of the flat plate 150, or to be slightly larger than the width of the flat plate 150, so that meandering of the flat plate 150 is suppressed. Further, the outer diameters of the flanges 16a1 and 16b1 are smaller than the outer diameter of the wound body 120 of the exhaust gas purifying catalytic converter 100 to be manufactured. Therefore, the outer peripheral surfaces of the flanges 16a1 and 16b1 are prevented from interfering with, for example, the adjustment member 20.
Note that, since the flanges 16a1 and 16b1 rotate together with the pair of winding shafts 16a and 16b, it is preferable that they do not actually come into contact with the side surfaces of the base 12.
 図3から図3Dに示すように、一対の巻取軸16a,16bは、同一長さで同一形状に形成されていることが好適である。一対の巻取軸16a,16bは、直径が例えば5mm程度の金属ロッドとして、SUS440CやSKD11など高剛性かつ高靭性である鋼材を加工して形成されることが好適である。なお、一対の巻取軸16a,16bは、以下のように、第1の一対の対向片22a,22b及び第2の一対の対向片24a,24bを有するように形成された後、例えば焼き入れ処理して用いられることが好適である。 As shown in FIGS. 3 to 3D, the pair of winding shafts 16a and 16b are preferably formed to have the same length and the same shape. The pair of winding shafts 16a and 16b are preferably formed as metal rods having a diameter of, for example, about 5 mm by processing a steel material having high rigidity and high toughness such as SUS440C or SKD11. Note that the pair of winding shafts 16a, 16b are formed to have a first pair of opposing pieces 22a, 22b and a second pair of opposing pieces 24a, 24b as described below, and then are hardened, for example. It is preferable to use it after processing.
 一対の巻取軸16a,16bの一方(以下、第1の巻取軸16aという)は、フランジ16a1に片持ち支持され、自由端側に第1のスリット22を規定する互いに対向する第1の一対の対向片22a,22bを有する。第1の一対の対向片22a,22bのうち、一方を第1-1の片22aとし、他方を第1-2の片22bとする。第1の巻取軸16aは、自由端側が第1-1の片22aと第1-2の片22bとの二股に分かれている。第1-1の片22aと第1-2の片22bとは第1の巻取軸16aの回転軸に対して対称に形成されることが好適である。第1-1の片22aと第1-2の片22bとの間は、少なくとも平板150の厚さよりも離間し、第1の巻取軸16aの自由端を含む位置が第1-1の片22aと第1-2の片22bとの離間方向に交差(直交)する方向に貫通する第1のスリット22として形成される。そして、少なくとも平板150が第1-1の片22aと第1-2の片22bとの間に規定される第1のスリット22に配置される。 One of the pair of winding shafts 16a, 16b (hereinafter referred to as the first winding shaft 16a) is supported by a flange 16a1 in a cantilever manner, and has first winding shafts facing each other defining a first slit 22 on the free end side. It has a pair of opposing pieces 22a and 22b. Among the first pair of opposing pieces 22a and 22b, one is designated as the 1-1 piece 22a, and the other is designated as the 1-2 piece 22b. The first winding shaft 16a has a free end divided into two parts, a 1-1 piece 22a and a 1-2 piece 22b. It is preferable that the 1-1 piece 22a and the 1-2 piece 22b be formed symmetrically with respect to the rotation axis of the first winding shaft 16a. The 1-1 piece 22a and the 1-2 piece 22b are spaced apart from each other by at least the thickness of the flat plate 150, and the position including the free end of the first winding shaft 16a is in the 1-1 piece. The first slit 22 is formed to penetrate in a direction intersecting (orthogonal to) the direction of separation between the first and second pieces 22a and 22b. At least the flat plate 150 is arranged in the first slit 22 defined between the 1-1 piece 22a and the 1-2 piece 22b.
 なお、第1の巻取軸16aに沿う第1のスリット22の軸方向長さは、平板150の幅の半分と同じかそれよりも僅かに大きく形成される。すなわち、第1-1の片22aと第1-2の片22bとの分岐部と、第1-1の片22aと第1-2の片22bとの自由端との距離は、平板150の幅の半分と同じかそれよりも僅かに大きく形成される。このため、第1のスリット22の第1の巻取軸16aの軸方向に沿う長さは、例えば平板150の幅の半分程度に形成されることが好適である。 Note that the axial length of the first slit 22 along the first winding shaft 16a is equal to or slightly larger than half the width of the flat plate 150. That is, the distance between the branching part of the 1-1 piece 22a and the 1-2 piece 22b and the free end of the 1-1 piece 22a and the 1-2 piece 22b is determined by the distance of the flat plate 150. It is formed to be equal to or slightly larger than half the width. Therefore, it is preferable that the length of the first slit 22 along the axial direction of the first winding shaft 16a is, for example, approximately half the width of the flat plate 150.
 また、第1-1の片22aと第1-2の片22bとの間の距離、すなわち、第1のスリット22の大きさは、分岐部から自由端の近傍まで同一であることが好適である。第1のスリット22の大きさは、自由端の近傍で、平板150を第1のスリット22内に受け入れるように案内するため、自由端側に向かうにつれて大きくなることが好適である。 Further, it is preferable that the distance between the 1-1 piece 22a and the 1-2 piece 22b, that is, the size of the first slit 22, be the same from the branch part to the vicinity of the free end. be. The size of the first slit 22 is preferably increased toward the free end in order to guide the flat plate 150 to be received in the first slit 22 near the free end.
 同様に、一対の巻取軸16a,16bの他方(以下、第2の巻取軸16bという)は、フランジ16b1に片持ち支持され、自由端側に第2のスリット24を規定する互いに対向する第2の一対の対向片24a,24bを有する。第2の一対の対向片24a,24bのうち、一方を第2-1の片24aとし、他方を第2-2の片24bとする。第2の巻取軸16bは、自由端側が第2-1の片24aと第2-2の片24bとの二股に分かれている。第2-1の片24aと第2-2の片24bとは第2の巻取軸16bの回転軸に対して対称に形成されることが好適である。第2-1の片24aと第2-2の片24bとの間は、少なくとも平板150の厚さよりも離間し、第2の巻取軸16bの自由端を含む位置が第2-1の片24aと第2-2の片24bとの離間方向に交差(直交)する方向に貫通する第2のスリット24として形成される。そして、少なくとも平板150が第2-1の片24aと第2-2の片24bとの間に規定される第2のスリット24に配置される。 Similarly, the other of the pair of winding shafts 16a and 16b (hereinafter referred to as the second winding shaft 16b) is cantilevered by the flange 16b1, and faces each other to define a second slit 24 on the free end side. It has a second pair of opposing pieces 24a and 24b. Of the second pair of opposing pieces 24a, 24b, one is designated as the 2-1 piece 24a, and the other is designated as the 2-2 piece 24b. The second winding shaft 16b has a free end divided into two parts, a 2-1 piece 24a and a 2-2 piece 24b. It is preferable that the 2-1 piece 24a and the 2-2 piece 24b be formed symmetrically with respect to the rotation axis of the second winding shaft 16b. The 2-1 piece 24a and the 2-2 piece 24b are spaced apart from each other by at least the thickness of the flat plate 150, and the position including the free end of the second winding shaft 16b is in the 2-1 piece. It is formed as a second slit 24 that penetrates in a direction intersecting (orthogonal to) the direction of separation between the 24a and the 2-2 piece 24b. At least the flat plate 150 is arranged in the second slit 24 defined between the 2-1 piece 24a and the 2-2 piece 24b.
 なお、第2の巻取軸16bに沿う第2のスリット24の軸方向長さは、平板150の幅の半分と同じかそれよりも僅かに大きく形成される。すなわち、第2-1の片24aと第2-2の片24bとの分岐部と、第2-1の片24aと第2-2の片24bとの自由端との距離は、平板150の幅の半分と同じかそれよりも僅かに大きく形成される。このため、第2のスリット24の第2の巻取軸16bの軸方向に沿う長さは、例えば平板150の幅の半分程度に形成されることが好適である。 Note that the axial length of the second slit 24 along the second winding shaft 16b is formed to be equal to or slightly larger than half the width of the flat plate 150. That is, the distance between the branching part of the 2-1 piece 24a and the 2-2 piece 24b and the free end of the 2-1 piece 24a and the 2-2 piece 24b is determined by the distance of the flat plate 150. It is formed to be equal to or slightly larger than half the width. Therefore, it is preferable that the length of the second slit 24 along the axial direction of the second winding shaft 16b be approximately half the width of the flat plate 150, for example.
 また、第2-1の片24aと第2-2の片24bとの間の距離、すなわち、第2のスリット24の大きさは、分岐部から自由端の近傍まで同一であることが好適である。第2のスリット24の大きさは、自由端の近傍で、平板150を第2のスリット24内に受け入れるように案内するため、自由端側に向かうにつれて大きくなることが好適である。 Further, it is preferable that the distance between the 2-1 piece 24a and the 2-2 piece 24b, that is, the size of the second slit 24, be the same from the branch part to the vicinity of the free end. be. The size of the second slit 24 is preferably larger toward the free end in order to guide the flat plate 150 to be received in the second slit 24 near the free end.
 そして、一対の巻取軸16a,16bは、第1-1の片22aと第2-1の片24aとのそれぞれの自由端が水平方向に対向し、かつ、第1-1の片22a及び第2-1の片24aの延出方向が同軸上に配置された状態が維持されるように調整されている。また、一対の巻取軸16a,16bは、第1-2の片22bと第2-2の片24bとのそれぞれの自由端が水平方向に対向し、かつ、第1-2の片22b及び第2-2の片24bの延出方向が同軸上に配置された状態が維持されるように調整されている。このため、一対の巻取軸16a,16bの回転位置によらず、第1のスリット22の向きと、第2のスリット24の向きとが揃えられている。したがって、第1の一対の対向片22a,22b間の第1のスリット22と、第2の一対の対向片24a,24b間の第2のスリット24とに平板150の先端部150bが挿通される。 The pair of winding shafts 16a and 16b have free ends of the 1-1 piece 22a and the 2-1 piece 24a facing each other in the horizontal direction, and the 1-1 piece 22a and the 2-1 piece 24a. The extension direction of the 2-1 piece 24a is adjusted so that it remains coaxially arranged. Further, the pair of winding shafts 16a, 16b have free ends of the first-second piece 22b and the second-second piece 24b facing each other in the horizontal direction, and the first-second piece 22b and the second-second piece 24b. The extension direction of the 2-2 piece 24b is adjusted so that it remains coaxially arranged. Therefore, the orientation of the first slit 22 and the orientation of the second slit 24 are aligned regardless of the rotational positions of the pair of winding shafts 16a, 16b. Therefore, the tip 150b of the flat plate 150 is inserted through the first slit 22 between the first pair of opposing pieces 22a, 22b and the second slit 24 between the second pair of opposing pieces 24a, 24b. .
 なお、一対の巻取軸16a,16bは、図3Bに示す位置から平板150を把持する位置に移動させ、図3Dに示すように、第1-1の片22aと第2-1の片24aとが上側に、第1-2の片22bと第2-2の片24bとが下側に配置される。このとき、第1のスリット22及び第2のスリット24は、上側の第1-1の片22a及び第2-1の片24aと、下側の第1-2の片22b及び第2-2の片24bとの間に水平に位置する。また、対向する一対の巻取軸16a,16bの回転は同期し、一対の巻取軸16a,16bの回転速度及び回転角度が同じであるため、平板150に捻じれが生じることが抑制される。 The pair of winding shafts 16a and 16b are moved from the position shown in FIG. 3B to a position where they grip the flat plate 150, and as shown in FIG. 3D, the 1-1st piece 22a and the 2-1st piece 24a are moved. is arranged on the upper side, and the 1-2nd piece 22b and the 2-2nd piece 24b are arranged on the lower side. At this time, the first slit 22 and the second slit 24 are connected to the upper 1-1 piece 22a and the 2-1 piece 24a, and the lower 1-2 piece 22b and the 2-2 piece. It is located horizontally between the piece 24b. Furthermore, since the opposing pair of winding shafts 16a, 16b are rotated in synchronization, and the rotational speed and rotation angle of the pair of winding shafts 16a, 16b are the same, twisting of the flat plate 150 is suppressed. .
 なお、製造装置10には、第1のスリット22及び第2のスリット24が水平に位置するか否か、また、第1のスリット22及び第2のスリット24に平板150の先端部150bが挿通されたか否かを検知するセンサ250a,250bを有することが好適である。センサ250aは、例えば、フランジ16a1に設けられ、センサ250bは、例えば、フランジ16b1に設けられる。これらのセンサ250a,250bは、例えば光学センサやイメージセンサ等が用いられる。センサ250a,250bが光学センサであれば、一方はレーザ発振器であり、他方はフォトディテクタである。センサ250a,250bがイメージセンサであれば、制御部200は、イメージセンサで取得する像を画像処理して、第1のスリット22及び第2のスリット24に平板150が挿通されたか否かを出力し得る。 Note that the manufacturing apparatus 10 does not know whether the first slit 22 and the second slit 24 are located horizontally, and whether the tip 150b of the flat plate 150 is inserted into the first slit 22 and the second slit 24. It is preferable to have sensors 250a and 250b for detecting whether or not the user has performed the operation. The sensor 250a is provided, for example, on the flange 16a1, and the sensor 250b is provided, for example, on the flange 16b1. For these sensors 250a and 250b, for example, an optical sensor, an image sensor, or the like is used. If the sensors 250a, 250b are optical sensors, one is a laser oscillator and the other is a photodetector. If the sensors 250a and 250b are image sensors, the control unit 200 processes the images acquired by the image sensors and outputs whether the flat plate 150 is inserted into the first slit 22 and the second slit 24. It is possible.
 なお、芯金16、すなわち、一対の巻取軸16a,16b、フランジ16a1,16b1、シャフト17a,17b、軸受17a1,17b1は、ベース12及び支持体14とは分離しており、また、調整部材20とは分離しており、上下に移動しないことが好適である。 Note that the core metal 16, that is, the pair of winding shafts 16a, 16b, the flanges 16a1, 16b1, the shafts 17a, 17b, and the bearings 17a1, 17b1 are separated from the base 12 and the support body 14, and the adjustment member 20, and preferably does not move up and down.
 ベース12には、搬送方向に沿って一対の巻取軸16a,16bの上流側及び下流側でアセンブリ体160を支持体14に向けて引っ張る引張部材18が設けられる。引張部材18は、本実施形態では、ネオジム磁石などの永久磁石18a,18b,18c,18dを用いる。ベース12のうち、一対の巻取軸16a,16bの上流側には、一対の第1の磁石18a,18bが設けられる。ベース12のうち、一対の巻取軸16a,16bの下流側には、一対の第2の磁石18c,18dが設けられる。本実施形態では、一対の第1の磁石18a,18bは、一対の第1のローラ14a,14bの上流側に隣接して設けられる。このため、引張部材18における平板150又はアセンブリ体160の引張位置は、支持体14のうち、上流側の支持体14(第1のローラ14a,14b)のさらに上流側にある。また、一対の第2の磁石18c,18dは、一対の第2のローラ14c,14dの下流側に隣接して設けられる。このため、引張部材18における平板150の引張位置は、支持体14のうち、下流側の支持体14(第2のローラ14c,14d)のさらに下流側にある。 The base 12 is provided with tension members 18 that pull the assembly 160 toward the support 14 on the upstream and downstream sides of the pair of take-up shafts 16a and 16b along the conveyance direction. In this embodiment, the tension member 18 uses permanent magnets 18a, 18b, 18c, and 18d such as neodymium magnets. A pair of first magnets 18a, 18b are provided in the base 12 on the upstream side of the pair of winding shafts 16a, 16b. A pair of second magnets 18c and 18d are provided in the base 12 on the downstream side of the pair of winding shafts 16a and 16b. In this embodiment, the pair of first magnets 18a, 18b are provided adjacent to the upstream side of the pair of first rollers 14a, 14b. Therefore, the tensioning position of the flat plate 150 or the assembly body 160 in the tensioning member 18 is further upstream of the upstream support 14 ( first rollers 14a, 14b) among the supports 14. Further, the pair of second magnets 18c and 18d are provided downstream and adjacent to the pair of second rollers 14c and 14d. Therefore, the tensioning position of the flat plate 150 in the tensioning member 18 is further downstream of the downstream support 14 ( second rollers 14c, 14d) among the supports 14.
 本実施形態では、引張部材18として、ベース12のうち、一対の巻取軸16a,16bに対して上流側の隅部に一対の第1の磁石18a,18bが設けられる例について説明するが、第1の搬送装置170の搬送方向に直交する水平方向に沿う幅方向の中央に1つの第1の磁石が設けられることも好適である。また、3つ以上の磁石がベース12のうち、一対の巻取軸16a,16bに対して上流側に設けられることも好適である。 In this embodiment, an example will be described in which a pair of first magnets 18a, 18b are provided as the tension member 18 at a corner of the base 12 on the upstream side with respect to the pair of winding shafts 16a, 16b. It is also suitable that one first magnet is provided at the center of the width direction of the first conveyance device 170 along the horizontal direction orthogonal to the conveyance direction. It is also preferable that three or more magnets be provided in the base 12 on the upstream side with respect to the pair of winding shafts 16a and 16b.
 同様に、本実施形態では、引張部材18として、ベース12のうち、一対の巻取軸16a,16bに対して下流側の隅部に一対の第2の磁石18c,18dが設けられる例について説明するが、幅方向の中央に1つの第2の磁石が設けられることも好適である。また、3つ以上の磁石がベース12のうち、一対の巻取軸16a,16bに対して下流側に設けられることも好適である。 Similarly, in this embodiment, an example will be described in which a pair of second magnets 18c and 18d are provided as the tension member 18 at the corners of the base 12 on the downstream side with respect to the pair of winding shafts 16a and 16b. However, it is also preferable that one second magnet is provided at the center in the width direction. It is also preferable that three or more magnets be provided in the base 12 on the downstream side with respect to the pair of winding shafts 16a and 16b.
 巻回体120の外径を調整する調整部材20は、ベース12の上方で、巻取軸16a,16bの上方を上下に移動可能に設けられる。調整部材20は、ベース12に設けられる支持体14と協働して、巻回体120の外径を調整する。調整部材20は、巻取軸16a,16bに対してベース12と反対方向にそれぞれ同一速度で動くように調整されることが好適である。
 第3の作動部260は、第3のポンプ(圧縮空気供給源)262及びエアシリンダー264の第3の電磁弁264aを有する。第3の電磁弁264aは、制御部200の制御により、調整部材20に設けられるエアシリンダー264のロッドの動作方向が切り替えられる。調整部材20は、図4に示す第3の動作部260の第3のポンプ(圧縮空気供給源)262及びエアシリンダー264の第3の電磁弁264aの制御により、エアシリンダー264が駆動され、調整部材20が上下に移動する。制御部200が第3のポンプ262及び第3の電磁弁264aを制御することで、調整部材20に設けられるエアシリンダー264のロッドの位置が調整され、調整部材20の高さが調整される。
An adjustment member 20 for adjusting the outer diameter of the wound body 120 is provided above the base 12 so as to be movable up and down above the winding shafts 16a and 16b. The adjusting member 20 cooperates with the support body 14 provided on the base 12 to adjust the outer diameter of the wound body 120. Preferably, the adjusting member 20 is adjusted to move at the same speed in a direction opposite to the base 12 with respect to the winding shafts 16a and 16b.
The third operating section 260 includes a third pump (compressed air supply source) 262 and a third solenoid valve 264a of the air cylinder 264. The third electromagnetic valve 264a switches the operating direction of the rod of the air cylinder 264 provided in the adjustment member 20 under the control of the control unit 200. The adjustment member 20 is adjusted by driving the air cylinder 264 under the control of the third pump (compressed air supply source) 262 of the third operating unit 260 and the third solenoid valve 264a of the air cylinder 264 shown in FIG. The member 20 moves up and down. By controlling the third pump 262 and the third electromagnetic valve 264a by the control unit 200, the position of the rod of the air cylinder 264 provided in the adjustment member 20 is adjusted, and the height of the adjustment member 20 is adjusted.
 なお、調整部材20には、圧力センサ266が設けられる。圧力センサ266は、巻回体120との接触圧力を検出可能である。制御部200は、圧力センサ266の検出データに基づいて調整部材20の高さ、すなわち、巻回体120の外径を調整可能である。 Note that the adjustment member 20 is provided with a pressure sensor 266. The pressure sensor 266 can detect the contact pressure with the wound body 120. The control unit 200 can adjust the height of the adjustment member 20, that is, the outer diameter of the wound body 120, based on the detection data of the pressure sensor 266.
 下流側の第2の搬送装置180は、上側及び下側からそれぞれ巻回体120を挟んで保持し、例えば下流側に搬送するように形成される。 The second conveying device 180 on the downstream side is formed to sandwich and hold the wound body 120 from the upper side and the lower side, respectively, and convey it to the downstream side, for example.
 図4に示すように、制御部200には、第1の動作部210、第1のセンサ220、モータ230a,230b、エンコーダ232a,232b、第2の動作部240、第2-1のセンサ250a、第2-2のセンサ250b、第3の動作部260、圧力センサ266がそれぞれ有線又は無線により接続され、制御部200により制御される。また、ここでは、制御部200は、第1の搬送装置170及び第2の搬送装置180と有線又は無線により接続され、第1の搬送装置170及び第2の搬送装置180を制御部200により制御可能であるとする。 As shown in FIG. 4, the control unit 200 includes a first operating unit 210, a first sensor 220, motors 230a, 230b, encoders 232a, 232b, a second operating unit 240, and a 2-1st sensor 250a. , the 2-2nd sensor 250b, the third operating section 260, and the pressure sensor 266 are connected by wire or wirelessly, and are controlled by the control section 200. Further, here, the control unit 200 is connected to the first transport device 170 and the second transport device 180 by wire or wirelessly, and the first transport device 170 and the second transport device 180 are controlled by the control unit 200. Suppose it is possible.
 制御部200は、例えば、コンピュータ等から構成され、プロセッサ(処理回路)及び記憶媒体を備える。プロセッサは、CPU(Central Processing Unit)、ASIC(Application Specific Integrated Circuit)、マイコン、FPGA(Field Programmable Gate Array)及びDSP(Digital Signal Processor)等のいずれかを含む。記憶媒体には、メモリ等の主記憶装置に加え、非一時的な補助記憶装置が含まれ得る。記憶媒体としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光ディスク(CD-ROM、CD-R、DVD等)、光磁気ディスク(MO等)、及び、半導体メモリ等の書き込み及び読み出しが随時に可能な不揮発性メモリが挙げられる。 The control unit 200 is composed of, for example, a computer, and includes a processor (processing circuit) and a storage medium. The processor includes any one of a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), a microcomputer, an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), and the like. In addition to main storage such as memory, the storage medium may include non-temporary auxiliary storage. Storage media include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, optical disk (CD-ROM, CD-R, DVD, etc.), magneto-optical disk (MO etc.), semiconductor memory, etc. Examples include non-volatile memory that can be written and read at any time.
 制御部200では、プロセッサ及び記憶媒体のそれぞれは、1つのみ設けられてもよく、複数設けられてもよい。制御部200では、プロセッサは、記憶媒体等に記憶されるプログラム等を実行することにより、処理を行う。また、制御部200のプロセッサによって実行されるプログラムは、インターネット等のネットワークを介して制御部200に接続されたコンピュータ(サーバ)、又は、クラウド環境のサーバ等に格納されてもよい。この場合、プロセッサは、ネットワーク経由でプログラムをダウンロードする。 In the control unit 200, only one processor and storage medium may be provided, or a plurality of processors and a plurality of storage media may be provided. In the control unit 200, a processor performs processing by executing a program or the like stored in a storage medium or the like. Further, the program executed by the processor of the control unit 200 may be stored in a computer (server) connected to the control unit 200 via a network such as the Internet, or a server in a cloud environment. In this case, the processor downloads the program via the network.
 巻回体120の製造装置10を用いた、巻回体120の製造工程について説明する。製造装置10は、制御部200の指令に基づいて動作する。巻回体120の製造装置10は、上述したエアシリンダー214,244,264、各種モータ等を含めて、制御部200により制御される。 A manufacturing process of the rolled body 120 using the manufacturing apparatus 10 for the rolled body 120 will be described. The manufacturing apparatus 10 operates based on instructions from the control section 200. The manufacturing apparatus 10 for the wound body 120, including the above-mentioned air cylinders 214, 244, 264, various motors, etc., is controlled by the control unit 200.
 巻回体120の製造装置10の初期位置では、一対の巻取軸16a,16bが図2中に実線で示すように、ベース12の上面から搬送方向に直交する側方にそれぞれ退避した位置にある。ここでは、一対の巻取軸16a,16bの自由端は、ベース12の上面から外れた位置に退避する。また、一対の巻取軸16a,16bの第1のスリット22及び第2のスリット24が水平方向に向けられている。また、一対の巻取軸16a,16bの第1のスリット22及び第2のスリット24の上下方向の中央位置と、支持体14(ローラ14a-14d)の上面の高さとが略一致している。 At the initial position of the apparatus 10 for manufacturing the wound body 120, the pair of winding shafts 16a and 16b are retracted from the upper surface of the base 12 to the sides perpendicular to the conveying direction, as shown by solid lines in FIG. be. Here, the free ends of the pair of winding shafts 16a and 16b are retracted to a position away from the upper surface of the base 12. Further, the first slit 22 and the second slit 24 of the pair of winding shafts 16a and 16b are oriented in the horizontal direction. Further, the vertical center position of the first slit 22 and the second slit 24 of the pair of winding shafts 16a, 16b and the height of the upper surface of the support body 14 (rollers 14a to 14d) substantially match. .
 この状態で、制御部200の制御に基づく第1の搬送装置170による搬送により、所定の搬送方向に沿ってアセンブリ体160がベース12上に載置される(図5及び図6参照)。アセンブリ体160の平板150および波板140は、送りチャック171、172から所定の長さが突き出た状態で、送りチャック171、172によって搬送される。送りチャック171、172が所定の位置で停止し、平板150の先端部150bがベース12上に載置されたことを第1のセンサ220で検知する(ステップS1)。アセンブリ体160の平板150の先端部150bがベース12上に載置されたことを第1のセンサ220で検知した場合(S1-Yes)、制御部200は、次の工程(S2)へ進む。なお、アセンブリ体160の平板150の先端部150bがベース12上に載置されたことを第1のセンサ220で検知できない場合(S1-No)、制御部200は平板150の先端部150bを第1のセンサ220で検知する作業を繰り返す。 In this state, the assembly body 160 is placed on the base 12 along a predetermined transport direction by transport by the first transport device 170 under the control of the control unit 200 (see FIGS. 5 and 6). The flat plate 150 and the corrugated plate 140 of the assembly body 160 are conveyed by the feed chucks 171 and 172 with a predetermined length protruding from the feed chucks 171 and 172. The feed chucks 171 and 172 stop at predetermined positions, and the first sensor 220 detects that the tip end 150b of the flat plate 150 is placed on the base 12 (step S1). When the first sensor 220 detects that the tip end 150b of the flat plate 150 of the assembly body 160 is placed on the base 12 (S1-Yes), the control unit 200 proceeds to the next step (S2). Note that if the first sensor 220 cannot detect that the tip end 150b of the flat plate 150 of the assembly body 160 is placed on the base 12 (S1-No), the control unit 200 moves the tip end 150b of the flat plate 150 to the The detection operation with the sensor 220 of No. 1 is repeated.
 このとき、上述したように、アセンブリ体160の波板140の先端140aに対する平板150の先端150aの突出量は、巻取軸16a,16bと第2の磁石18c,18dとの間の距離よりも大きい。そして、平板150の先端150aが第1の磁石18a,18bの位置を超え、第2の磁石18c,18dの上にあるとき、波板140の先端140aは、一対の巻取軸16a,16bの位置まで未到達である。平板150の先端部150bの縁部が、一対の巻取軸16a,16bの第1のスリット22の分岐部、及び、第2のスリット24の分岐部にそれぞれ対向する。 At this time, as described above, the amount of protrusion of the tip 150a of the flat plate 150 with respect to the tip 140a of the corrugated plate 140 of the assembly body 160 is greater than the distance between the winding shafts 16a, 16b and the second magnets 18c, 18d. big. When the tip 150a of the flat plate 150 exceeds the position of the first magnets 18a, 18b and is above the second magnets 18c, 18d, the tip 140a of the corrugated plate 140 is connected to the pair of winding shafts 16a, 16b. The position has not yet been reached. The edge of the tip 150b of the flat plate 150 faces the branch of the first slit 22 and the branch of the second slit 24 of the pair of winding shafts 16a, 16b, respectively.
 また、このとき、アセンブリ体160は、支持体14(ローラ14a-14d)により、ベース12に対して上側に離間する。また、アセンブリ体160は、アセンブリ体160の平板150の先端150aが例えば上側に癖付けられているとしても、引張部材18(磁石18a-18d)により、アセンブリ体160の平板150が支持体14に引っ張られる。平板150は、引張部材18により、ベース12に接触してもよく、接触しなくてもよい。このとき、平板150の先端部150bは、上流側の第1のローラ14a,14bと、下流側の第1のローラ14a,14bとの間に張った状態となる。 Also, at this time, the assembly body 160 is separated upward from the base 12 by the support body 14 (rollers 14a to 14d). Furthermore, even if the tip 150a of the flat plate 150 of the assembly body 160 is bent upward, for example, the flat plate 150 of the assembly body 160 is attached to the support body 14 by the tension member 18 (magnets 18a to 18d). Being pulled. The flat plate 150 may or may not be in contact with the base 12 by the tension member 18 . At this time, the tip portion 150b of the flat plate 150 is stretched between the first rollers 14a, 14b on the upstream side and the first rollers 14a, 14b on the downstream side.
 そして、制御部200は第2の動作部240の第2のポンプ242及び第2の電磁弁244aを制御し、一対の巻取軸16a,16bを、図2中の実線位置から破線位置に移動させる(ステップS2)。すなわち、一対の巻取軸16a,16bの自由端が近接又は当接する。 Then, the control unit 200 controls the second pump 242 and the second solenoid valve 244a of the second operating unit 240, and moves the pair of winding shafts 16a, 16b from the solid line position to the broken line position in FIG. (Step S2). That is, the free ends of the pair of winding shafts 16a, 16b are close to or in contact with each other.
 ここで、一対の巻取軸16a,16bの第1のスリット22及び第2のスリット24が水平方向に向けられている。このため、一対の巻取軸16a,16bの第1のスリット22及び第2のスリット24内に、アセンブリ体160の平板150の先端部150bが挿通される。このため、平板150の先端部150bは、平板150の幅方向の端部から幅方向の中央(真ん中付近)まで、一対の巻取軸16a,16bにより上下方向の移動が規制される。 Here, the first slit 22 and second slit 24 of the pair of winding shafts 16a, 16b are oriented in the horizontal direction. Therefore, the tip portion 150b of the flat plate 150 of the assembly body 160 is inserted into the first slit 22 and the second slit 24 of the pair of winding shafts 16a, 16b. Therefore, the movement of the tip end 150b of the flat plate 150 in the vertical direction from the end of the flat plate 150 in the width direction to the center (near the middle) in the width direction is restricted by the pair of winding shafts 16a and 16b.
 そして、一対の巻取軸16a,16bの第1のスリット22及び第2のスリット24内に、平板150の先端部150bが挿通されたか否か、例えば製造装置10の筐体に配置したセンサ250a,250bで検知する(ステップS3)。センサ250a,250bによる信号に基づいて制御部200が第1のスリット22及び第2のスリット24内に、平板150の先端部150bが挿通されていないと判断された場合(S3-No)、制御部200は、第2の動作部240の第2のポンプ(圧縮空気供給源)242及び第2の電磁弁244aを制御し、一対の巻取軸16a,16bを図2の破線位置から実線位置に退避させ、再び破線位置に移動させる。第1のスリット22及び第2のスリット24内に、平板150の先端部150bが挿通されていないと、センサ250a,250bによる信号に基づいて制御部200が複数回判断した場合(S3-No)、エラーを出力し、処理を終了させ、初期位置に戻す。 For example, a sensor 250a disposed in the housing of the manufacturing apparatus 10 determines whether the tip end 150b of the flat plate 150 is inserted into the first slit 22 and second slit 24 of the pair of winding shafts 16a, 16b. , 250b (step S3). When the control unit 200 determines that the tip end 150b of the flat plate 150 is not inserted into the first slit 22 and the second slit 24 based on the signals from the sensors 250a and 250b (S3-No), the control unit 200 performs control. The unit 200 controls the second pump (compressed air supply source) 242 and second electromagnetic valve 244a of the second operating unit 240, and moves the pair of winding shafts 16a, 16b from the broken line position to the solid line position in FIG. and then move it again to the position shown by the broken line. When the control unit 200 determines multiple times based on the signals from the sensors 250a and 250b that the tip end 150b of the flat plate 150 is not inserted into the first slit 22 and the second slit 24 (S3-No) , outputs an error, terminates processing, and returns to the initial position.
 センサ250a,250bによる信号に基づいて、一対の巻取軸16a,16bの第1のスリット22及び第2のスリット24内に、平板150の先端部150bが挿通されたと制御部200が判断した場合(S3-Yes)、制御部200は、第3の動作部260の第3のポンプ262及び第3の電磁弁264aを制御し、一対の巻取軸16a,16bの上方に配置された巻回体120の外径の調整部材20を、一対の巻取軸16a,16bの近傍まで降下させる(ステップS4)。 When the control unit 200 determines that the tip end 150b of the flat plate 150 has been inserted into the first slit 22 and the second slit 24 of the pair of winding shafts 16a and 16b based on the signals from the sensors 250a and 250b. (S3-Yes), the control unit 200 controls the third pump 262 and the third solenoid valve 264a of the third operating unit 260, and The outer diameter adjustment member 20 of the body 120 is lowered to the vicinity of the pair of winding shafts 16a and 16b (step S4).
 そして、制御部200は、モータ230a,230bを制御し、例えばギヤを介して一対の巻取軸16a,16bを同時に同方向に同じ速度で回転させ、平板150の先端150aを含む先端部150bを、磁石18c,18dの磁力に抗して離す。このため、一対の巻取軸16a,16bの2対の対向片22a,22b,24a,24bは、支持体14に載置された平板150を挟むように支持する。そして、平板150の先端部150bで波板140の先端140aを挟む。このときの一対の巻取軸16a,16bの回転方向は、図6に示す位置から図7に示す位置のように回転させる方向である。このため、一対の巻取軸16a,16bの回転方向は、平板150の先端150aを磁石18c,18dに対して離隔させる方向である。このとき、平板150及び波板140に対する上流側の磁石18a,18bの磁力は働いている。このため、一対の巻取軸16a,16bの上流側のベース12上において、上流側の磁石18a,18bの磁力により、アセンブリ体160を第1のローラ14a,14bに対して引っ張る(押圧する)力は働いている。この状態で、一対の巻取軸16a,16bをさらに回転させてアセンブリ体160を巻回し、巻回体120を作成する(ステップS5)。一対の巻取軸16a,16bの上流側のベース12上において、アセンブリ体160が巻回される際に、磁石18a,18bによる磁力により、アセンブリ体160は、ベース12に向かって引っ張られ続ける。なお、一対の巻取軸16a,16bを回転させて平板150の先端部150bで波板140の先端140aを挟む際、一対の巻取り軸16a,16bの回転速度と同期させて送りチャック171,172を所定の搬送方向に移動させ、平板150および波板140を一対の巻取軸16a,16bに押し込んでも良い。こうすることで、平板150の先端部150bで波板140の先端140aの初期の巻き込み不良を抑制できる。 Then, the control unit 200 controls the motors 230a and 230b to rotate the pair of winding shafts 16a and 16b simultaneously in the same direction and at the same speed via gears, for example, to rotate the tip portion 150b including the tip 150a of the flat plate 150. , and separate them against the magnetic force of the magnets 18c and 18d. Therefore, the two pairs of opposing pieces 22a, 22b, 24a, 24b of the pair of winding shafts 16a, 16b support the flat plate 150 placed on the support body 14 so as to sandwich it therebetween. Then, the tip 140a of the corrugated plate 140 is sandwiched between the tip 150b of the flat plate 150. At this time, the pair of winding shafts 16a and 16b are rotated from the position shown in FIG. 6 to the position shown in FIG. 7. Therefore, the direction of rotation of the pair of winding shafts 16a, 16b is the direction in which the tip 150a of the flat plate 150 is separated from the magnets 18c, 18d. At this time, the magnetic force of the upstream magnets 18a and 18b is acting on the flat plate 150 and the corrugated plate 140. Therefore, on the base 12 on the upstream side of the pair of winding shafts 16a, 16b, the assembly body 160 is pulled (pressed) against the first rollers 14a, 14b by the magnetic force of the upstream magnets 18a, 18b. Power is at work. In this state, the pair of winding shafts 16a and 16b are further rotated to wind the assembly body 160, thereby creating the wound body 120 (step S5). When the assembly 160 is wound on the base 12 on the upstream side of the pair of winding shafts 16a, 16b, the assembly 160 continues to be pulled toward the base 12 by the magnetic force of the magnets 18a, 18b. Note that when rotating the pair of winding shafts 16a, 16b to sandwich the tip 140a of the corrugated sheet 140 between the tip 150b of the flat plate 150, the feed chuck 171, 172 may be moved in a predetermined conveyance direction, and the flat plate 150 and the corrugated plate 140 may be pushed onto the pair of winding shafts 16a and 16b. By doing so, it is possible to suppress the initial wrapping failure of the tip 140a of the corrugated plate 140 at the tip 150b of the flat plate 150.
 このとき、磁石18a,18bの磁力は、平板150の上の波板140にも作用する。このため、一対の巻取軸16a,16bの上流側で波板140を磁石18a,18bで引き寄せることにより、波板140の反りあがりを抑制する。 At this time, the magnetic force of the magnets 18a and 18b also acts on the corrugated plate 140 on the flat plate 150. Therefore, by drawing the corrugated sheet 140 with magnets 18a, 18b on the upstream side of the pair of winding shafts 16a, 16b, warping of the corrugated sheet 140 is suppressed.
 このため、一対の巻取軸16a,16bの上流側のベース12上において、アセンブリ体160の平板150及び波板140がローラ14a,14bの近傍で例えば上下に振れることが抑制される。したがって、ベース12の上流側において、アセンブリ体160を巻回体120として巻き込む際のアセンブリ体160の挙動を安定化させることができる。 Therefore, on the base 12 on the upstream side of the pair of winding shafts 16a, 16b, the flat plate 150 and corrugated plate 140 of the assembly body 160 are suppressed from swinging, for example, vertically in the vicinity of the rollers 14a, 14b. Therefore, the behavior of the assembly body 160 when the assembly body 160 is rolled up as the wound body 120 on the upstream side of the base 12 can be stabilized.
 また、一対の巻取軸16a,16bの自由端は、近接又は当接する。したがって、平板150の先端部150bは、幅方向の略全体にわたって保持される。そして、一対の巻取軸16a,16bは、平板150の幅方向の一対の端部151a,151bから真ん中付近までを連続的に保持する。このため、平板150及び平板150に載置した波板140を巻回したときに、平板150のヨレを抑制しながら巻回することができる。また、同一の大きさの一対の巻取軸16a,16bを用いることにより、1つの巻取軸を用いて巻回体120を巻回するときよりも、巻回体120の一端と他端との寸法安定性を確保することができる。すなわち、同一の大きさの一対の巻取軸16a,16bを用いることにより、巻回体120の一端の中心部の内径と他端の中心部の内径とを略一定に保つことができる。また、一対の巻取軸16a,16bの自由端は、平板150の先端部150bの幅方向の真ん中付近までを保持する。このため、一対の巻取軸16a,16bを用いることにより、巻回体120の一端と他端との中心部の内径に加えて、一端と他端との間の領域の中心部の内径を略一定に保つことができる。 Furthermore, the free ends of the pair of winding shafts 16a and 16b are close to or in contact with each other. Therefore, the tip portion 150b of the flat plate 150 is held over substantially the entire width direction. The pair of winding shafts 16a and 16b continuously hold the flat plate 150 from the pair of ends 151a and 151b in the width direction to near the middle. Therefore, when the flat plate 150 and the corrugated plate 140 placed on the flat plate 150 are wound, the flat plate 150 can be wound while suppressing twisting. Moreover, by using a pair of winding shafts 16a and 16b of the same size, one end and the other end of the winding body 120 can be more closely spaced than when winding the winding body 120 using one winding shaft. dimensional stability can be ensured. That is, by using a pair of winding shafts 16a and 16b of the same size, the inner diameter of the center of one end of the wound body 120 and the inner diameter of the center of the other end can be kept substantially constant. Further, the free ends of the pair of winding shafts 16a and 16b hold the tip portion 150b of the flat plate 150 up to the vicinity of the center in the width direction. Therefore, by using the pair of winding shafts 16a and 16b, in addition to the inner diameter of the center between one end and the other end of the wound body 120, the inner diameter of the center of the area between the one end and the other end can be increased. It can be kept approximately constant.
 また、1つの巻取軸を用いて平板150を巻くのではなく、2つの巻取軸16a,16bの自由端を近接させた状態で用いて平板150を巻く。このため、2つの巻取軸16a,16bそれぞれの全長を1つの巻取軸を用いる場合に比べて短くすることができる。したがって、本実施形態に係る2つの巻取軸16a,16bを用いる場合、1つの巻取軸を用いて平板150を巻く場合に比べて、自由端のたわみ量を少なくすることができる。したがって、本実施形態に係る2つの巻取軸16a,16bを用いる場合、1つの巻取軸を用いる場合に比べて2つの巻取軸16a,16bの外径を小さくすることができる。このため、本実施形態に係る2つの巻取軸16a,16bを用いる場合、1つの巻取軸を用いる場合に比べて巻回体120の中心部の内径を極力小さく形成することができる。したがって、本実施形態に係る製造装置10により製造された巻回体120は、巻回体120に担持する金属触媒と排ガスとの接触面積を大きく製造でき、排ガスの浄化性能を良好にすることができる。 Furthermore, instead of winding the flat plate 150 using one winding shaft, the flat plate 150 is wound using two winding shafts 16a and 16b with their free ends close to each other. Therefore, the total length of each of the two winding shafts 16a and 16b can be made shorter than when using one winding shaft. Therefore, when using the two winding shafts 16a and 16b according to this embodiment, the amount of deflection of the free end can be reduced compared to when winding the flat plate 150 using one winding shaft. Therefore, when using the two winding shafts 16a, 16b according to this embodiment, the outer diameters of the two winding shafts 16a, 16b can be made smaller than when using one winding shaft. Therefore, when using the two winding shafts 16a and 16b according to the present embodiment, the inner diameter of the center of the wound body 120 can be made as small as possible compared to the case where one winding shaft is used. Therefore, the wound body 120 manufactured by the manufacturing apparatus 10 according to the present embodiment can have a large contact area between the metal catalyst supported on the wound body 120 and the exhaust gas, and can improve the exhaust gas purification performance. can.
 このとき、モータ230a,230bのエンコーダ232a,232bで取得した情報に基づいて、制御部200が第1の動作部210の第1のポンプ212及び第1の電磁弁214aと、第2の動作部240の第2のポンプ242及び第2の電磁弁244aとを制御し、ベース12及び調整部材20を、一対の巻取軸16a,16bの回転角度に合わせて、一対の巻取軸16a,16bから離間するように退避させる。このとき、ベース12は一対の巻取軸16a,16bに対して下方に退避し、調整部材20は一対の巻取軸16a,16bに対して上方に退避する。このため、ベース12上に突出する支持体14(ローラ14a-14d)及び調整部材20は、巻回体120の外径を調整する。 At this time, based on the information acquired by the encoders 232a and 232b of the motors 230a and 230b, the control unit 200 controls the first pump 212 and the first electromagnetic valve 214a of the first operating unit 210, and the second operating unit. 240, the second pump 242 and the second solenoid valve 244a are controlled, and the base 12 and the adjustment member 20 are adjusted to the rotation angle of the pair of take-up shafts 16a, 16b. evacuate to a distance from At this time, the base 12 is retracted downward relative to the pair of winding shafts 16a, 16b, and the adjustment member 20 is retracted upward relative to the pair of winding shafts 16a, 16b. Therefore, the support body 14 (rollers 14a to 14d) and the adjusting member 20 that protrude above the base 12 adjust the outer diameter of the wound body 120.
 また、一対のフランジ16a1,16b1の互いに対向する面は、例えば平面として形成され、巻回体120を巻回する際に、巻回体120の幅よりも大きく離間させて配置する。一対のフランジ16a1,16b1の互いに対向する面は、平板150の端部と波板140の端部とを揃えることができるように、平行に配置される。巻回体120を巻回するとき、平板150の幅方向端部151aがフランジ16a1のうち、フランジ16b1に対向する面側に沿い、平板150の幅方向端部151bがフランジ16b1のうち、フランジ16a1に対向する面側に沿う。また、巻回体120を巻回するとき、波板140の幅方向端部141aがフランジ16a1のうち、フランジ16b1に対向する面側に沿い、波板140の幅方向端部141bがフランジ16b1のうち、フランジ16a1に対向する面側に沿う。波板140および平板150が巻回され始めると、巻回体120の幅よりも大きく離間させて配置された一対のフランジ16a1,16b1の離間距離を巻回体120の幅とほぼ同じ離間距離に制御される。ここでは幅方向端部151a,141aとフランジ16a1の対向面との離間距離は0.5mmに設定され、幅方向端部151b,141bと、フランジ16b1の対向面との離間距離は0.5mmに設定されている。このため、巻回体120は、波板140と平板150との巻き取り時に、波板140と平板150との重なり位置が矯正されながら巻回体120として形成される。そして、巻回体120の一方の端面は、平板150の端部151aと、波板140の端部141aとが揃った状態に形成され、巻回体120の他方の端面は、平板150の端部151bと、波板140の端部141bとが揃った状態に形成される。なお、幅方向端部151a,141aとフランジ16a1の対向面との離間距離、及び、幅方向端部151b,141bとフランジ16b1の対向面との離間距離は、波板140に形成される孔の有無、または平板150に形成される孔の有無、または箔材の厚さに応じて、0mm~1.0mm程度に調整される。特に箔材としての平板150または波板140が薄い、例えば、平板150または波板140の厚みが30μm~50μmである場合には、平板150または波板140がベース12上に搬送される際、平板150の先端150aと端部151a又は端部151bとの角や波板140の先端140aと端部141a又は端部141bとの角がフランジ16a1とフランジ16b1とに接触し、平板150が一対の巻取軸16a,16bの第1のスリット22及び第2のスリット24内に挿通されない不具合や、平板150の先端部150bで波板140の先端140aを巻き込むことができない等の不具合が発生する可能性がある。このため、箔材が薄い場合は、一対の巻取軸16a,16bを回転させて平板150の先端部150bで波板140の先端140aを挟み込むまでは、平板150および波板140の幅方向端部151a,141aとフランジ16a1の対向面と、平板150および波板140の幅方向端部151b,141bとフランジ16b1の対向面とをそれぞれ離間させておくのが好ましい。平板150が一1対の巻取軸16a,16bの第1のスリット22及び第2のスリット24内に挿通され、巻取軸16a、16bが180度回転した後、平板150および波板140の幅方向端部151a,141aとフランジ16a1の対向面と、平板150および波板140の幅方向端部151b,141bとフランジ16b1の対向面とを当接させて卷回することで、箔(平板150又は波板140)が折れることを防ぎつつ、平板150の端部151aと、波板140の端部141aとを揃った状態に形成し、平板150の端部151bと、波板140の端部141bとを揃った状態に形成することができる。 Further, the opposing surfaces of the pair of flanges 16a1 and 16b1 are formed, for example, as flat surfaces, and are spaced apart from each other by a distance greater than the width of the wound body 120 when the wound body 120 is wound. The mutually opposing surfaces of the pair of flanges 16a1 and 16b1 are arranged in parallel so that the ends of the flat plate 150 and the ends of the corrugated sheet 140 can be aligned. When winding the winding body 120, the widthwise end 151a of the flat plate 150 is along the side of the flange 16a1 facing the flange 16b1, and the widthwise end 151b of the flat plate 150 is along the flange 16a1 of the flange 16b1. Along the side opposite to. When winding the winding body 120, the widthwise end 141a of the corrugated sheet 140 is along the side of the flange 16a1 that faces the flange 16b1, and the widthwise end 141b of the corrugated sheet 140 is along the side of the flange 16b1 that faces the flange 16b1. Among them, it is along the side facing the flange 16a1. When the corrugated plate 140 and the flat plate 150 begin to be wound, the distance between the pair of flanges 16a1 and 16b1, which are spaced apart from each other by a distance greater than the width of the wound body 120, is set to a distance that is approximately the same as the width of the wound body 120. controlled. Here, the distance between the width direction ends 151a, 141a and the opposing surface of the flange 16a1 is set to 0.5 mm, and the separation distance between the width direction ends 151b, 141b and the opposing surface of the flange 16b1 is set to 0.5 mm. It is set. Therefore, the rolled body 120 is formed while the overlapping position of the corrugated sheet 140 and the flat plate 150 is corrected when the corrugated sheet 140 and the flat plate 150 are wound up. One end surface of the wound body 120 is formed such that the end 151a of the flat plate 150 and the end 141a of the corrugated sheet 140 are aligned, and the other end surface of the wound body 120 is formed such that the end 151a of the flat plate 150 and the end 141a of the corrugated sheet 140 are aligned. The portion 151b and the end portion 141b of the corrugated plate 140 are formed in alignment. Note that the distance between the widthwise ends 151a, 141a and the opposing surface of the flange 16a1 and the distance between the widthwise ends 151b, 141b and the opposing surface of the flange 16b1 are determined by the distance between the holes formed in the corrugated plate 140. The thickness is adjusted to about 0 mm to 1.0 mm depending on the presence or absence of holes formed in the flat plate 150 or the thickness of the foil material. In particular, when the flat plate 150 or the corrugated plate 140 as a foil material is thin, for example, the thickness of the flat plate 150 or the corrugated plate 140 is 30 μm to 50 μm, when the flat plate 150 or the corrugated sheet 140 is conveyed onto the base 12, The corner between the tip 150a and the end 151a or 151b of the flat plate 150 and the corner between the tip 140a and the end 141a or 141b of the corrugated plate 140 contact the flange 16a1 and the flange 16b1, and the flat plate 150 Problems such as not being able to be inserted into the first slit 22 and second slit 24 of the winding shafts 16a and 16b, and being unable to wind up the tip 140a of the corrugated sheet 140 with the tip 150b of the flat plate 150 may occur. There is sex. Therefore, when the foil material is thin, until the pair of winding shafts 16a and 16b are rotated and the tip 140a of the corrugated sheet 140 is sandwiched between the tip 150b of the flat plate 150, the widthwise ends of the flat plate 150 and the corrugated sheet 140 are It is preferable that the facing surfaces of the portions 151a and 141a and the flange 16a1 and the facing surfaces of the width direction ends 151b and 141b of the flat plate 150 and the corrugated sheet 140 and the flange 16b1 are spaced apart from each other. After the flat plate 150 is inserted into the first slit 22 and the second slit 24 of the eleven pairs of winding shafts 16a, 16b and the winding shafts 16a, 16b are rotated 180 degrees, the flat plate 150 and the corrugated sheet 140 are inserted. The foil (flat plate 150 or the corrugated sheet 140) are formed so that the end portion 151a of the flat plate 150 and the end portion 141a of the corrugated sheet 140 are aligned, and the end portion 151b of the flat plate 150 and the end portion of the corrugated sheet 140 are aligned. 141b can be formed in a uniform state.
 制御部200は、巻回体120を巻回し終えたか否か、判断する(ステップS6)。制御部200が巻回体120が巻回をし終えていないと判断した場合(S6-No)、制御部200は、巻回体120を巻回させ続ける。 The control unit 200 determines whether or not the winding body 120 has been wound (step S6). If the control unit 200 determines that the winding body 120 has not finished winding (S6-No), the control unit 200 continues winding the winding body 120.
 例えばベース12に設けた第1のセンサ220により、アセンブリ体160の後端(平板150の基端又は波板140の基端のうち、搬送方向に沿って上流側の端)を検知したときに、制御部200は、巻回体120の巻回を終えたと判断する。又は、制御部200は、例えば、エンコーダ232a,232bにより取得される一対の巻取軸16a,16bのモータ230a,230bの回転量(回転角度)が所定量を超えたときに、巻回体120の巻回を終えたと判断する。 For example, when the first sensor 220 provided on the base 12 detects the rear end of the assembly body 160 (the upstream end of the base end of the flat plate 150 or the base end of the corrugated plate 140 along the conveyance direction). , the control unit 200 determines that the winding of the wound body 120 has been completed. Alternatively, the control unit 200 controls the winding body 120 when, for example, the amount of rotation (rotation angle) of the motors 230a, 230b of the pair of winding shafts 16a, 16b obtained by the encoders 232a, 232b exceeds a predetermined amount. It is determined that the winding has been completed.
 そして、制御部200は、巻回体120が巻回をし終えたと判断した場合(S6-Yes)、モータ230a,230bを制御し、一対の巻取軸16a,16bの回転を停止する。このとき、制御部200は、第1の動作部210を制御してベース12の下降を停止させるとともに、第3の動作部260を制御して調整部材20の上昇を停止させる。このため、支持体14(ローラ14a-14d)及び調整部材20によって、上下で巻回体120の形状を保持し、巻回体120の弾性力に抗して、巻回体120の外径が維持される。なお、調整部材20により、巻回体120の外径が維持されるが、巻回体120の中心軸となっている一対の巻取軸16a,16bに対する負荷をできるだけ抑制するため、調整部材20の圧力センサ266は、巻回体120の弾性変形に基づく反力を検出する。圧力センサ266による検出値が所定の圧力範囲内であれば、制御部200は、一対の巻取軸16a,16bに対する負荷による影響を無視し得る。圧力センサ266による検出値が所定の圧力範囲から外れている場合、制御部200は、第3の作動部260を動作させて、調整部材20を例えば上方に移動させて、圧力センサ266で検出される検出値が所定範囲内となるように調整する。したがって、一対の巻取軸16a,16bに対して意図せず所定以上の負荷がかかることが抑制されている。 Then, when the control unit 200 determines that the winding body 120 has finished winding (S6-Yes), the control unit 200 controls the motors 230a and 230b to stop the rotation of the pair of winding shafts 16a and 16b. At this time, the control section 200 controls the first operating section 210 to stop the base 12 from lowering, and controls the third operating section 260 to stop the adjusting member 20 from rising. Therefore, the shape of the wound body 120 is maintained at the top and bottom by the support body 14 (rollers 14a to 14d) and the adjustment member 20, and the outer diameter of the wound body 120 is adjusted against the elastic force of the wound body 120. maintained. Although the outer diameter of the wound body 120 is maintained by the adjustment member 20, the adjustment member 20 is The pressure sensor 266 detects a reaction force based on the elastic deformation of the wound body 120. If the value detected by the pressure sensor 266 is within a predetermined pressure range, the control unit 200 can ignore the influence of the load on the pair of take-up shafts 16a, 16b. If the value detected by the pressure sensor 266 is out of the predetermined pressure range, the control unit 200 operates the third actuating unit 260 to move the adjustment member 20 upward, for example, so that the value detected by the pressure sensor 266 is Adjust so that the detected value falls within a predetermined range. Therefore, unintentional loading of a predetermined load or more on the pair of winding shafts 16a, 16b is suppressed.
 そして、制御部200は、例えば製造装置10に対して搬送方向下流側に配置された第2の搬送装置180を制御して、巻回体120を第2の搬送装置180の把持部材181,182で挟持(把持)する(ステップS7)。なお、図2に示すように、ベース12の上面には、基端から先端側に向かって、適宜の長さに、凹溝12aが形成されている。このため、図9に示すように、把持部材182がベース12に干渉することを防止する。 Then, the control unit 200 controls the second conveyance device 180 disposed on the downstream side in the conveyance direction with respect to the manufacturing apparatus 10, and transfers the rolled body 120 to the gripping members 181, 182 of the second conveyance device 180. (step S7). As shown in FIG. 2, a groove 12a is formed on the upper surface of the base 12 with an appropriate length from the base end toward the distal end. Therefore, as shown in FIG. 9, the gripping member 182 is prevented from interfering with the base 12.
 その後、制御部200は、モータ230a,230bを制御して、一対の巻取軸16a,16bの回転角度を少し戻し、一対の巻取軸16a,16bの外周面(第1-1の片22a、第1-2の片22b、第2-1の片24a、第2-2の片24bの外周面)に対する平板150の先端部150bの巻き付き力を緩和する。このとき、巻回体120は、調整部材20で支持され、かつ、第2の搬送装置180の把持部材181,182で挟持されて外径が維持されている。このため、巻回体120の中心部の内径の表面積の変化量は無視できる程度である。この状態で、制御部200は、第2の動作部240を制御して、一対の巻取軸16a,16bを図2に示す破線位置から実線位置に退避させる(ステップS8)。続いて、制御部200は、第3の動作部260を制御して、調整部材20を上方に退避させる(ステップS9)。このとき、必要に応じて制御部200は、第1の動作部210を制御して、ベース12及び支持体14を下方に退避させる。なお、一対の巻取軸16a,16bの回転を逆転させ、巻回体120の一対の巻取軸16a,16bへの巻き付け力を緩和させる動作は、例えば一対の巻取軸16a,16bの逆転後、再度正転させるなど、逆転および正転を何度か繰り返しても良い。 After that, the control unit 200 controls the motors 230a, 230b to slightly return the rotation angle of the pair of take-up shafts 16a, 16b, so that the outer circumferential surface of the pair of take-up shafts 16a, 16b (the 1-1 piece 22a , the outer peripheral surfaces of the 1-2nd piece 22b, the 2-1st piece 24a, and the 2-2nd piece 24b). At this time, the wound body 120 is supported by the adjustment member 20 and held between the gripping members 181 and 182 of the second conveyance device 180, so that the outer diameter is maintained. Therefore, the amount of change in the surface area of the inner diameter at the center of the wound body 120 is negligible. In this state, the control unit 200 controls the second operating unit 240 to retract the pair of take-up shafts 16a, 16b from the broken line position shown in FIG. 2 to the solid line position (step S8). Subsequently, the control unit 200 controls the third operating unit 260 to retract the adjustment member 20 upward (step S9). At this time, the control section 200 controls the first operating section 210 to retract the base 12 and the support body 14 downward as necessary. Note that the operation of reversing the rotation of the pair of winding shafts 16a, 16b and relaxing the winding force of the winding body 120 on the pair of winding shafts 16a, 16b is, for example, reversing the rotation of the pair of winding shafts 16a, 16b. After that, the reverse rotation and the normal rotation may be repeated several times, such as by causing the rotation to occur again in the normal direction.
 そして、制御部200は、第2の搬送装置180の把持部材181,182で挟持した巻回体120を下流側に搬送する(ステップS10)とともに、ベース12及び支持体14を例えば図5に示す位置関係となるように上昇させる。 Then, the control unit 200 transports the rolled body 120 held between the gripping members 181 and 182 of the second transport device 180 to the downstream side (step S10), and also transports the base 12 and the support body 14 as shown in FIG. 5, for example. Raise it so that it matches the position.
 本実施形態によれば、製造装置10は、1つの巻取軸を用いるのではなく、2つの巻取軸16a,16bの回転軸を一致させながら、自由端を対向させて用いる。本実施形態に係る製造装置10は、1つの巻取軸を用いる場合に比べて、各巻取軸16a,16bを短く形成して適宜の剛性を発揮させ、1つの巻取軸を用いる場合に比べて、各巻取軸16a,16bの外径を小さくすることができる。したがって、本実施形態によれば、巻回体120の中心部の内径をできるだけ小さくし得る排ガス浄化用メタル基材の製造装置10を提供することができる。このため、巻回体120を製造するとき、巻回体120の中心部の内径をより小さく形成し、排ガスの浄化性能をより良好にし得る製造装置10が提供される。 According to the present embodiment, the manufacturing apparatus 10 does not use one winding shaft, but uses two winding shafts 16a and 16b with their free ends facing each other while aligning their rotational axes. The manufacturing apparatus 10 according to the present embodiment has each of the winding shafts 16a and 16b shorter than the case where one winding shaft is used to exhibit appropriate rigidity, and compared to the case where one winding shaft is used. Therefore, the outer diameter of each winding shaft 16a, 16b can be reduced. Therefore, according to the present embodiment, it is possible to provide an apparatus 10 for manufacturing a metal base material for exhaust gas purification in which the inner diameter of the central portion of the wound body 120 can be made as small as possible. Therefore, when manufacturing the wound body 120, the manufacturing apparatus 10 is provided which can make the inner diameter of the central portion of the wound body 120 smaller, thereby improving the exhaust gas purification performance.
 また、アセンブリ体160で巻回体120を製造装置10により製造するとき、引張部材18によりアセンブリ体160を所定位置に配置し、アセンブリ体160の平板150を安定的に巻回させることができる。 Furthermore, when manufacturing the wound body 120 using the assembly body 160 using the manufacturing apparatus 10, the assembly body 160 can be placed in a predetermined position by the tension member 18, and the flat plate 150 of the assembly body 160 can be stably wound.
 本実施形態では、一対の巻取軸16a,16bを図2に実線で示す退避位置から、破線で示す把持位置に移動させるときに、平板150の位置を安定した位置に配置することができる。したがって、一対の巻取軸16a,16bで平板150をより確実に把持することができる。このため、一対の巻取軸16a,16bでの把持エラーによる巻回体120の製造の失敗を抑制することができる。 In this embodiment, when moving the pair of winding shafts 16a and 16b from the retracted position shown by the solid line in FIG. 2 to the gripping position shown by the broken line, the flat plate 150 can be placed in a stable position. Therefore, the flat plate 150 can be gripped more reliably by the pair of winding shafts 16a and 16b. Therefore, failure in manufacturing the wound body 120 due to a gripping error between the pair of winding shafts 16a and 16b can be suppressed.
 また、一対の巻取軸16a,16bを回転させ、巻回体120を製造するとき、第1の磁石18a,18bで平板150及び波板140をベース12の上流側端部に向かって引っ張り続ける。このため、アセンブリ体160すなわち平板150及び波板140が、上下に振れる大きさを抑制でき、巻回体120の巻回を安定して行うことができる。 Further, when manufacturing the wound body 120 by rotating the pair of winding shafts 16a and 16b, the first magnets 18a and 18b continue to pull the flat plate 150 and the corrugated plate 140 toward the upstream end of the base 12. . For this reason, the vertical vibration of the assembly body 160, that is, the flat plate 150 and the corrugated plate 140, can be suppressed, and the wound body 120 can be wound stably.
 本実施形態では、引張部材18の第1の磁石18a,18bをベース12に設ける例について説明した。第1の磁石18a,18bは、ベース12よりも上流側に配置されていてもよい。 In this embodiment, an example in which the first magnets 18a and 18b of the tension member 18 are provided on the base 12 has been described. The first magnets 18a and 18b may be placed upstream of the base 12.
 本実施形態では、引張部材18をネオジム磁石などの永久磁石として説明した。永久磁石の代わりに、制御部200で制御される電磁石を用いてもよい。また、引張部材18は、例えば真空吸引装置に接続された吸着パッドなど、内部を負圧とする吸着部を用いてもよい。この場合、吸着部により、平板150をベース12、第1のローラ14a,14b及び第2のローラ14c,14dに引っ張ることができる。このときの真空吸引装置は、制御部200により制御されてもよく、真空吸引装置に接続される電磁弁(図示せず)が制御部200により制御されてもよい。
 吸引部の吸引力は平板150に及ぶが、通常は波板140には及ばない。しかしながら、平板150に吸引力を安定的に及ぼすことにより、平板150を安定的に巻回体120の製造装置10に向けて搬送でき、したがって、平板150上の波板140を平板150上で安定的に搬送することができる。したがって、引張部材18として吸引部を用いる場合であっても、安定的に巻回体120を製造することができる。この場合、アセンブリ体160の平板150及び波板140には、軟磁性体であるか否かに無関係に、マルテンサイト系ステンレス、フェライト系ステンレスの他、オーステナイト系ステンレス等のステンレスなど、適宜の素材を用いることができる。
 また、上述したように、平板150は、適宜に貫通孔(開口)を有する。このため、場所によっては、平板150だけでなく、波板140にも、吸引力が作用し得る。
In this embodiment, the tension member 18 has been described as a permanent magnet such as a neodymium magnet. An electromagnet controlled by the control unit 200 may be used instead of a permanent magnet. Further, the tension member 18 may be a suction part that has a negative pressure inside, such as a suction pad connected to a vacuum suction device. In this case, the suction section can pull the flat plate 150 to the base 12, the first rollers 14a, 14b, and the second rollers 14c, 14d. The vacuum suction device at this time may be controlled by the control unit 200, and a solenoid valve (not shown) connected to the vacuum suction device may be controlled by the control unit 200.
The suction force of the suction unit is applied to the flat plate 150, but normally does not apply to the corrugated plate 140. However, by stably applying a suction force to the flat plate 150, the flat plate 150 can be stably transported toward the manufacturing apparatus 10 for the rolled body 120, and therefore the corrugated sheet 140 on the flat plate 150 can be stably transported on the flat plate 150. It can be transported in a number of ways. Therefore, even when a suction part is used as the tension member 18, the wound body 120 can be stably manufactured. In this case, the flat plate 150 and the corrugated plate 140 of the assembly body 160 may be made of an appropriate material such as martensitic stainless steel, ferritic stainless steel, or austenitic stainless steel, regardless of whether it is a soft magnetic material or not. can be used.
Further, as described above, the flat plate 150 has a through hole (opening) as appropriate. Therefore, depending on the location, suction force may act not only on the flat plate 150 but also on the corrugated plate 140.
 本実施形態で説明した引張部材18のうち、巻取軸16a,16bの上流側に磁石18a,18bを配置し、巻取軸16a,16bの上流側に磁石ではなく、吸引部を配置してもよい。 In the tension member 18 described in this embodiment, the magnets 18a and 18b are arranged upstream of the winding shafts 16a and 16b, and the suction part instead of the magnet is arranged upstream of the winding shafts 16a and 16b. Good too.
 本実施形態では、支持体14として、4つのローラ14a-14dを用いる例について説明した。支持体14は、ローラ14a-14dの代わりに、例えば球状体を用いてもよい。 In this embodiment, an example in which four rollers 14a to 14d are used as the support body 14 has been described. For the support body 14, for example, a spherical body may be used instead of the rollers 14a to 14d.
 本実施形態では、製造装置10は、ベース12を用いる例について説明したが、支持体14及び引張部材18が相対的に上述した位置を維持できれば、ベース12は必ずしも必要ではない。 In this embodiment, an example in which the base 12 is used in the manufacturing apparatus 10 has been described, but the base 12 is not necessarily necessary as long as the support body 14 and the tension member 18 can maintain the above-mentioned relative positions.
 本実施形態では、波付けした金属製の波板140の下側に金属製の平板150を重ねたアセンブリ体160を、巻回体120の製造装置10に向けて搬送する例について説明した。波付けした金属製の波板140の上側に金属製の平板150を重ねたアセンブリ体160を、巻回体120の製造装置10に向けて搬送し、巻回体120を形成してもよい。この場合、一対の巻取軸16a,16bの回転方向は、上述した平板150の上側に波板140を重ねたアセンブリ体160とは反対方向である。引張部材18として磁石18a-18dを用いる場合、下側の波板140に加えて、上側の平板150にも引張部材18の力が作用する。
 このため、下側に波板140を配置し上側に平板150を配置したアセンブリ体160を用いて、一対の巻取軸16a,16bを回転させ、巻回体120を製造するとき、第1の磁石18a,18bで下側の波板140及び上側の平板150をベース12の上流側端部に向かって引っ張り続ける。このため、アセンブリ体160すなわち平板150及び波板140が、上下に振れる大きさを抑制でき、巻回体120の巻回を安定して行うことができる。
In the present embodiment, an example has been described in which an assembly body 160 in which a metal flat plate 150 is stacked on the lower side of a corrugated metal corrugated plate 140 is conveyed toward the manufacturing apparatus 10 for the wound body 120. An assembly body 160 in which a metal flat plate 150 is stacked on top of a corrugated metal corrugated sheet 140 may be transported toward the manufacturing apparatus 10 for the rolled body 120 to form the rolled body 120. In this case, the rotation direction of the pair of winding shafts 16a and 16b is opposite to that of the assembly 160 in which the corrugated sheet 140 is stacked on the flat plate 150 described above. When magnets 18a to 18d are used as the tension member 18, the force of the tension member 18 acts on the upper flat plate 150 in addition to the lower corrugated plate 140.
Therefore, when manufacturing the wound body 120 by rotating the pair of winding shafts 16a and 16b using the assembly body 160 in which the corrugated plate 140 is arranged on the lower side and the flat plate 150 is arranged on the upper side, the first The magnets 18a and 18b continue to pull the lower corrugated plate 140 and the upper flat plate 150 toward the upstream end of the base 12. For this reason, the vertical vibration of the assembly body 160, that is, the flat plate 150 and the corrugated plate 140, can be suppressed, and the wound body 120 can be wound stably.
 したがって、アセンブリ体160の波板140及び平板150の重ね方向は、上下どちらであっても、本実施形態に係る巻回体120の製造装置10を用いて巻回体120が形成される。 Therefore, regardless of whether the corrugated plate 140 and the flat plate 150 of the assembly body 160 are stacked up or down, the rolled body 120 is formed using the manufacturing apparatus 10 for the rolled body 120 according to the present embodiment.
 本実施形態では、調整部材20に圧力センサ266を設け、圧力センサ266の出力値に基づいて第3の作動部260を動作させて、一対の巻取軸16a,16bへの負荷を抑制するようにした。例えば、一対の巻取軸16a,16b自体に歪ゲージを取り付けて歪をリアルタイム測定し、その測定値に基づいて第3の作動部260を動作させて、一対の巻取軸16a,16bへの負荷を抑制するようにしてもよい。すなわち、巻回体120の製造時に一対の巻取軸16a,16bへの負荷を抑制する手段は、種々が存在し得る。 In this embodiment, the adjustment member 20 is provided with a pressure sensor 266, and the third operating section 260 is operated based on the output value of the pressure sensor 266 to suppress the load on the pair of winding shafts 16a and 16b. I made it. For example, a strain gauge is attached to the pair of take-up shafts 16a, 16b to measure the strain in real time, and based on the measured value, the third operating section 260 is operated to apply pressure to the pair of take-up shafts 16a, 16b. The load may be suppressed. That is, there may be various means for suppressing the load on the pair of winding shafts 16a, 16b during manufacturing of the wound body 120.
 本実施形態では、平板150を第1のスリット22及び第2のスリット24に挿通させる例について説明した。例えば、平板150に加えて波板140の先端部を第1のスリット22及び第2のスリット24に挿通させるようにしてもよい。また、平板150に代えて、波板140の先端部を第1のスリット22及び第2のスリット24に挿通させるようにしてもよい。すなわち、平板150の先端150aよりも搬送方向に波板140の先端部が突出していてもよい。このため、第1のスリット22及び第2のスリット24には、少なくとも平板150及び/又は波板140が、第1のスリット22と第2のスリット24とに挿通可能に配置される。なお、波板140の先端部は、平板150の先端部150bと同様に平面として形成されていてもよく、波型に成形された部分として形成されていてもよい。 In this embodiment, an example in which the flat plate 150 is inserted through the first slit 22 and the second slit 24 has been described. For example, in addition to the flat plate 150, the tip of the corrugated plate 140 may be inserted through the first slit 22 and the second slit 24. Further, instead of the flat plate 150, the tip of the corrugated plate 140 may be inserted through the first slit 22 and the second slit 24. That is, the tip of the corrugated plate 140 may protrude further in the conveyance direction than the tip 150a of the flat plate 150. Therefore, at least the flat plate 150 and/or the corrugated plate 140 are arranged in the first slit 22 and the second slit 24 such that they can be inserted into the first slit 22 and the second slit 24 . Note that the tip of the corrugated plate 140 may be formed as a flat surface like the tip 150b of the flat plate 150, or may be formed as a corrugated portion.
 (変形例)
 上述した第1実施形態では、移動機構として、第2のポンプ242及びエアシリンダー244を有する第2の作動部(移動機構)240を制御部200で制御することにより一対の巻取軸16a,16bを相対的に近接又は離隔させる例について説明した。図12A及び図12Bに示すように、製造装置10は、移動機構として、一対のラック272a,272bと、一対のラック272a,272b間に噛み合わせられるピニオンギヤ274と、モータ276とを有するものであってもよい。これら一対のラック272a,272b、ピニオンギヤ274、及び、モータ276は、例えばベース12の上下の移動、調整部材20の上下の移動に干渉しない位置に設けられる。これら一対のラック272a,272b、ピニオンギヤ274、及び、モータ276は、ベース12の下側に設けられることが好適である。モータ276は、ピニオンギヤ274をステッピングモータ等により所望の角度回転させる構造としてもよい。
(Modified example)
In the first embodiment described above, the pair of winding shafts 16a and 16b are controlled by the control unit 200 controlling the second actuating unit (moving mechanism) 240 having the second pump 242 and the air cylinder 244 as the moving mechanism. An example in which the two are relatively close to each other or separated from each other has been described. As shown in FIGS. 12A and 12B, the manufacturing apparatus 10 has a pair of racks 272a, 272b, a pinion gear 274 meshed between the pair of racks 272a, 272b, and a motor 276 as a moving mechanism. It's okay. These pair of racks 272a, 272b, pinion gear 274, and motor 276 are provided at positions where they do not interfere with, for example, the vertical movement of the base 12 and the vertical movement of the adjustment member 20. These pair of racks 272a, 272b, pinion gear 274, and motor 276 are preferably provided below the base 12. The motor 276 may have a structure in which the pinion gear 274 is rotated by a desired angle using a stepping motor or the like.
 そして、一対のラック272a,272bのうちの一方のラック272aに設けた支持部材278aでフランジ16a1を第1の巻取軸16aの軸回りに回転可能に支持し、一対のラック272a,272bのうちの他方のラック272bに設けた支持部材278bでフランジ16b1を第2の巻取軸16bの軸回りに回転可能に支持してもよい。 Then, the flange 16a1 is rotatably supported around the first winding shaft 16a by a support member 278a provided on one of the racks 272a of the pair of racks 272a and 272b. The flange 16b1 may be rotatably supported around the second winding shaft 16b by a support member 278b provided on the other rack 272b.
 なお、一対のラック272a,272bの延出方向は、平板150及び波板140の幅方向に平行な方向である。 Note that the extending direction of the pair of racks 272a and 272b is parallel to the width direction of the flat plate 150 and the corrugated plate 140.
 例えば、制御部200でモータ276を回転させると、ピニオンギヤ274の回転に伴って一対のラック272a,272bが連動して移動し、支持部材278a,278b及びフランジ16a1,16b1が近接又は離隔する。すなわち、巻取軸16a,16bの自由端が近接又は離隔する。
 移動機構は、このように形成されてもよい。
For example, when the control unit 200 rotates the motor 276, the pair of racks 272a and 272b move in conjunction with the rotation of the pinion gear 274, and the support members 278a and 278b and the flanges 16a1 and 16b1 move closer to each other or farther apart. That is, the free ends of the winding shafts 16a and 16b are brought close to each other or separated from each other.
The moving mechanism may be formed in this way.
 (第2実施形態)
 第2実施形態に係る巻回体(メタル基材)120の製造装置10について、図13から図13Dを用いて説明する。本実施形態は第1実施形態の変形例であって、第1実施形態で説明した部材と同一の部材又は同一の機能を有する部材には同一の符号を付し、詳しい説明を省略する。
(Second embodiment)
An apparatus 10 for manufacturing a wound body (metal base material) 120 according to a second embodiment will be described using FIGS. 13 to 13D. This embodiment is a modification of the first embodiment, and the same members or members having the same functions as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
 図13には、芯金16(巻取軸16a,16b)の自由端同士を近接させた概略図を示す。図13Aには、図2中に実線で示す製造装置10の自由端同士を離間させた巻取軸16a,16b及び巻取軸16a,16bを保持するフランジ16a1,16b1の概略図を示す。図13Bには、図13A中の符号13Bで示す方向から見た製造装置10の巻取軸16a,16b及びフランジ16a1,16b1を示す概略図を示す。図13Cには、図13Aに示す製造装置10の巻取軸16a,16bの自由端同士及びフランジ16a1,16b1を近接させた状態の概略図を示す。図13Dには、図13C中の符号13Dで示す方向から見た製造装置10の巻取軸16a,16b及びフランジ16a1,16b1の概略図を示す。 FIG. 13 shows a schematic diagram in which the free ends of the core bar 16 (take-up shafts 16a, 16b) are brought close to each other. FIG. 13A shows a schematic diagram of the winding shafts 16a, 16b with their free ends separated from each other of the manufacturing apparatus 10 shown by solid lines in FIG. 2, and the flanges 16a1, 16b1 that hold the winding shafts 16a, 16b. FIG. 13B is a schematic diagram showing the winding shafts 16a, 16b and flanges 16a1, 16b1 of the manufacturing apparatus 10 as seen from the direction indicated by the reference numeral 13B in FIG. 13A. FIG. 13C shows a schematic diagram of the manufacturing apparatus 10 shown in FIG. 13A in which the free ends of the winding shafts 16a and 16b and the flanges 16a1 and 16b1 are brought close to each other. FIG. 13D shows a schematic diagram of the winding shafts 16a, 16b and flanges 16a1, 16b1 of the manufacturing apparatus 10 as seen from the direction indicated by the reference numeral 13D in FIG. 13C.
 本実施形態に係る一対の巻取軸16a,16bは、同一形状に形成されていることが好適である。一対の巻取軸16a,16bは、直径が例えば4mm程度の金属ロッドとして、SUS440CやSKD11などの鋼材を加工して形成されることが好適である。なお、一対の巻取軸16a,16bは、第1のスリット22及び第2のスリット24を形成した後、例えば焼き入れ処理して用いられることが好適である。 It is preferable that the pair of winding shafts 16a, 16b according to this embodiment are formed in the same shape. The pair of winding shafts 16a and 16b are preferably formed as metal rods having a diameter of about 4 mm, for example, by processing a steel material such as SUS440C or SKD11. Note that the pair of winding shafts 16a and 16b are preferably used after forming the first slit 22 and the second slit 24 and then, for example, being hardened.
 本実施形態では、第1実施形態で説明した第1の巻取軸16aの第1-1の片22aと第1-2の片22bとは非対称に形成されることが好適である。以後、第1-1の片22aを第1の短片22aとし、第1-2の片22bを第1の短片22aよりも長い第1の長片22bとする。 In this embodiment, it is preferable that the 1-1 piece 22a and the 1-2 piece 22b of the first winding shaft 16a described in the first embodiment are formed asymmetrically. Hereinafter, the 1-1 piece 22a will be referred to as the first short piece 22a, and the 1-2 piece 22b will be referred to as the first long piece 22b, which is longer than the first short piece 22a.
 第1の短片22aの分岐部から自由端までの長さは、平板150の幅の半分よりも短く、第1の長片22bの分岐部から自由端までの長さは、平板150の幅の半分よりも長く形成される。 The length from the branch part to the free end of the first short piece 22a is shorter than half the width of the flat plate 150, and the length from the branch part to the free end of the first long piece 22b is shorter than the width of the flat plate 150. Formed longer than half.
 第1の短片22aと第1の長片22bとの間は、少なくとも平板150の厚さよりも離間する第1のスリット22として形成される。このため、第1の巻取軸16aに沿う第1のスリット22の軸方向長さは、第1の短片22aの分岐部から自由端までの長さとして規定される。また、第1の短片22aと第1の長片22bとの間の距離、すなわち、第1のスリット22の大きさは、分岐部から第1の短片22aの自由端の近傍まで同一であることが好適である。第1のスリット22の大きさは、第1の短片22aの自由端の近傍で、平板150を第1のスリット22内に受け入れるように案内するため、自由端側に向かうにつれて大きくなることが好適である。また、第1の長片22bの自由端は、第1の短片22aの自由端よりも第1の長片22bの自由端側で、平板150を第1のスリット22内に受け入れるように案内するため、第1の長片22bの自由端側に向かうにつれて大きくなることが好適である。 The space between the first short piece 22a and the first long piece 22b is formed as a first slit 22 that is spaced apart by at least the thickness of the flat plate 150. Therefore, the axial length of the first slit 22 along the first winding shaft 16a is defined as the length from the branching part of the first short piece 22a to the free end. Further, the distance between the first short piece 22a and the first long piece 22b, that is, the size of the first slit 22, must be the same from the branch part to the vicinity of the free end of the first short piece 22a. is suitable. The size of the first slit 22 is preferably increased toward the free end in order to guide the flat plate 150 to be received in the first slit 22 near the free end of the first short piece 22a. It is. Further, the free end of the first long piece 22b is closer to the free end of the first long piece 22b than the free end of the first short piece 22a, and guides the flat plate 150 to be received in the first slit 22. Therefore, it is preferable that the size increases toward the free end side of the first long piece 22b.
 このため、少なくとも平板150が第1の短片22aと第1の長片22bとの間に規定される第1のスリット22に配置される。 Therefore, at least the flat plate 150 is arranged in the first slit 22 defined between the first short piece 22a and the first long piece 22b.
 同様に、第1実施形態で説明した第2の巻取軸16bの第2-1の片24aと第2-2の片24bとは非対称に形成されることが好適である。以後、第2-1の片24aを第2の長片24aとし、第2-2の片24bを第2の長片24aよりも短い第2の短片24bとする。 Similarly, it is preferable that the 2-1 piece 24a and the 2-2 piece 24b of the second winding shaft 16b described in the first embodiment are formed asymmetrically. Hereinafter, the 2-1 piece 24a will be referred to as the second long piece 24a, and the 2-2 piece 24b will be referred to as the second short piece 24b shorter than the second long piece 24a.
 第2の長片24aの分岐部から自由端までの長さは、平板150の幅の半分よりも長く、第2の短片24bの分岐部から自由端までの長さは、平板150の幅の半分よりも短く形成される。 The length from the branch to the free end of the second long piece 24a is longer than half the width of the flat plate 150, and the length from the branch to the free end of the second short piece 24b is longer than the width of the flat plate 150. Formed shorter than half.
 第2の長片24aと第2の短片24bとの間は、少なくとも平板150の厚さよりも離間し、第2のスリット24として形成される。このため、第2の巻取軸16bに沿う第2のスリット24の軸方向長さは、第2の短片24bの分岐部から自由端までの長さとして規定される。 The second long piece 24a and the second short piece 24b are spaced apart from each other by at least the thickness of the flat plate 150, and are formed as a second slit 24. Therefore, the axial length of the second slit 24 along the second winding shaft 16b is defined as the length from the branching part of the second short piece 24b to the free end.
 また、第2の長片24aと第2の短片24bとの間の距離、すなわち、第2のスリット24の大きさは、分岐部から第2の短片24bの自由端の近傍まで同一であることが好適である。第2のスリット24の大きさは、第2の短片24bの自由端の近傍で、平板150を第2のスリット24内に受け入れるように案内するため、自由端側に向かうにつれて大きくなることが好適である。また、第2の長片24aの自由端は、第2の短片24bの自由端よりも第2の長片24aの自由端側で、平板150を第2のスリット24内に受け入れるように案内するため、第2の長片24aの自由端側に向かうにつれて大きくなることが好適である。 Further, the distance between the second long piece 24a and the second short piece 24b, that is, the size of the second slit 24, must be the same from the branch part to the vicinity of the free end of the second short piece 24b. is suitable. The size of the second slit 24 is preferably increased toward the free end in order to guide the flat plate 150 to be received in the second slit 24 near the free end of the second short piece 24b. It is. Further, the free end of the second long piece 24a is closer to the free end of the second long piece 24a than the free end of the second short piece 24b, and guides the flat plate 150 to be received in the second slit 24. Therefore, it is preferable that the size increases toward the free end side of the second long piece 24a.
 このため、少なくとも平板150が第2の長片24aと第2の短片24bとの間に規定される第2のスリット24に配置される。 Therefore, at least the flat plate 150 is arranged in the second slit 24 defined between the second long piece 24a and the second short piece 24b.
 そして、一対の巻取軸16a,16bは、第1の短片22aと第2の長片24aとのそれぞれの自由端が水平方向に対向し、かつ、第1の短片22a及び第2の長片24aの延出方向が同軸上に配置された状態が維持されるように調整されている。また、一対の巻取軸16a,16bは、第1の長片22bと第2の短片24bとのそれぞれの自由端が水平方向に対向し、かつ、第1の長片22b及び第2の短片24bの延出方向が同軸上に配置された状態が維持されるように調整されている。このため、第1のスリット22の向きと、第2のスリット24の向きとが揃えられている。したがって、第1の一対の対向片22a,22b間の第1のスリット22と、第2の一対の対向片24a,24b間の第2のスリット24とに平板150が挿通される。 The pair of winding shafts 16a and 16b have free ends of the first short piece 22a and the second long piece 24a facing each other in the horizontal direction, and the first short piece 22a and the second long piece 24a facing each other in the horizontal direction. Adjustments are made so that the extending direction of the cylindrical member 24a is maintained coaxially. Further, in the pair of winding shafts 16a, 16b, the free ends of the first long piece 22b and the second short piece 24b are horizontally opposed to each other, and the first long piece 22b and the second short piece 24b are opposite to each other in the horizontal direction. Adjustments are made so that the extending direction of 24b remains coaxially arranged. Therefore, the orientation of the first slit 22 and the orientation of the second slit 24 are aligned. Therefore, the flat plate 150 is inserted through the first slit 22 between the first pair of opposing pieces 22a, 22b and the second slit 24 between the second pair of opposing pieces 24a, 24b.
 なお、一対の巻取軸16a,16bは、初期位置において、例えば第1の短片22aと第2の長片24aとが上側に、第1の長片22bと第2の短片24bとが下側に配置される。このとき、第1のスリット22及び第2のスリット24は水平に位置する。 In addition, in the initial position of the pair of winding shafts 16a and 16b, for example, the first short piece 22a and the second long piece 24a are on the upper side, and the first long piece 22b and the second short piece 24b are on the lower side. will be placed in At this time, the first slit 22 and the second slit 24 are located horizontally.
 また、対向する一対の巻取軸16a,16bの回転は同期し、一対の巻取軸16a,16bの回転速度及び回転角度が同じである。 Further, the rotations of the pair of opposing winding shafts 16a, 16b are synchronized, and the rotational speed and rotation angle of the pair of winding shafts 16a, 16b are the same.
 図13に示すように、第1の巻取軸16aの第1の短片22aの分岐部から自由端までの長さは平板150の幅の半分以下で比較的短いため、比較的剛性が高い。このため、本実施形態に係る第1の巻取軸16aの外径が第1実施形態で説明した第1の巻取軸16aの外径よりも細くなっても、第1の短片22aの自由端のたわみは、第1実施形態で説明した第1の短片22aの自由端のたわみに比べて小さくなると解される。また、第1の短片22aは、第1の短片22aに対向する第1の長片22bと協働して平板150の一方の端部151a側を幅方向に沿って保持する。 As shown in FIG. 13, the length from the branch to the free end of the first short piece 22a of the first winding shaft 16a is relatively short, less than half the width of the flat plate 150, so the rigidity is relatively high. Therefore, even if the outer diameter of the first winding shaft 16a according to the present embodiment is thinner than the outer diameter of the first winding shaft 16a described in the first embodiment, the first short piece 22a can be freely moved. It is understood that the deflection at the end is smaller than the deflection at the free end of the first short piece 22a described in the first embodiment. Further, the first short piece 22a cooperates with the first long piece 22b facing the first short piece 22a to hold one end 151a side of the flat plate 150 along the width direction.
 同様に、第2の巻取軸16bの第2の短片24bの分岐部から自由端までの長さは平板150の幅の半分以下で比較的短いため、比較的剛性が高い。このため、本実施形態に係る第2の巻取軸16bの外径が第1実施形態で説明した第2の巻取軸16bの外径よりも細くなっても、第2の短片24bの自由端のたわみは、第1実施形態で説明した第2の短片24bの自由端のたわみに比べて小さくなると解される。また、第2の短片24bは、第2の短片24bに対向する第2の長片24aと協働して平板150の他方の端部151b側を幅方向に沿って保持する。 Similarly, the length of the second short piece 24b of the second winding shaft 16b from the branch to the free end is relatively short, less than half the width of the flat plate 150, and therefore has relatively high rigidity. Therefore, even if the outer diameter of the second winding shaft 16b according to the present embodiment is thinner than the outer diameter of the second winding shaft 16b explained in the first embodiment, the second short piece 24b can be freely moved. It is understood that the deflection at the end is smaller than the deflection at the free end of the second short piece 24b described in the first embodiment. Further, the second short piece 24b cooperates with the second long piece 24a facing the second short piece 24b to hold the other end 151b side of the flat plate 150 along the width direction.
 また、平板150の幅方向の端部151a,151bの略中央は、それぞれ平板150の幅の半分よりも長尺の、第1の巻取軸16aの第1の長片22bと第2の巻取軸16bの長尺の第2の長片24aとにより保持される。 Further, approximately the center of the ends 151a and 151b in the width direction of the flat plate 150 are connected to the first long piece 22b and the second winding shaft of the first winding shaft 16a, respectively, which are longer than half the width of the flat plate 150. It is held by the second long piece 24a of the shaft 16b.
 したがって、第1の巻取軸16aの自由端と第2の巻取軸16bの自由端とを近接又は当接させたとき、第1の短片22aの自由端及び第2の長片24aの自由端は、平板150の幅方向の中央よりも第1の幅方向端部151a側にずれている。また、第1の長片22bの自由端及び第2の短片24bの自由端は、平板150の幅方向の中央よりも、第1の幅方向端部151a側とは反対側の第2の幅方向端部151b側にずれている。第1の短片22aに対する第1の長片22bの第1の巻取軸16aの軸方向に沿う突出長は、第2の短片24bに対する第2の長片24aの第2の巻取軸16bの軸方向に沿う突出長と等距離である。 Therefore, when the free end of the first winding shaft 16a and the free end of the second winding shaft 16b are brought close to each other or in contact with each other, the free end of the first short piece 22a and the free end of the second long piece 24a are free. The end is shifted from the center of the flat plate 150 in the width direction toward the first width direction end portion 151a. Further, the free end of the first long piece 22b and the free end of the second short piece 24b are located at a second width opposite to the first widthwise end 151a side from the widthwise center of the flat plate 150. It is shifted toward the direction end portion 151b. The protrusion length along the axial direction of the first winding shaft 16a of the first long piece 22b with respect to the first short piece 22a is the protrusion length of the second winding shaft 16b of the second long piece 24a with respect to the second short piece 24b. It is the same distance as the protrusion length along the axial direction.
 このとき、平板150の先端部150bは、幅方向の略全体にわたって第1の巻取軸16a及び第2の巻取軸16bに保持される。一対の巻取軸16a,16bは、平板150の幅方向の一対の端部151a,151bから真ん中付近までを連続的に保持する。このため、製造装置10は、一対の巻取軸16a,16bを同一方向に同一速度でその軸回りに回転させ、平板150及び平板150に載置した波板140を巻回したときに、平板150のヨレを抑制しながら巻回することができる。また、同一の大きさの一対の巻取軸16a,16bを用いることにより、1つの巻取軸を用いて巻回体120を巻回するときよりも、巻回体120の一端と他端との寸法安定性を確保することができる。すなわち、同一の大きさの一対の巻取軸16a,16bを用いることにより、巻回体120の一端の中心部の内径と他端の中心部の内径とを略一定に保つことができる。また、一対の巻取軸16a,16bは、第1の長片22bと第2の長片24aとにより、平板150の先端部150bの幅方向の真ん中付近を保持する。このため、一対の巻取軸16a,16bを用いることにより、巻回体120の一端と他端との中心部の内径に加えて、一端と他端との間の領域の中心部の内径を略一定に保つことができる。 At this time, the tip end 150b of the flat plate 150 is held by the first winding shaft 16a and the second winding shaft 16b over almost the entire width direction. The pair of winding shafts 16a and 16b continuously hold the flat plate 150 from the pair of ends 151a and 151b in the width direction to near the middle. Therefore, when the manufacturing apparatus 10 rotates the pair of winding shafts 16a and 16b in the same direction at the same speed and winds the flat plate 150 and the corrugated sheet 140 placed on the flat plate 150, the flat plate 150 mm can be wound while suppressing twisting. Moreover, by using a pair of winding shafts 16a and 16b of the same size, one end and the other end of the winding body 120 can be more closely spaced than when winding the winding body 120 using one winding shaft. dimensional stability can be ensured. That is, by using a pair of winding shafts 16a and 16b of the same size, the inner diameter of the center of one end of the wound body 120 and the inner diameter of the center of the other end can be kept substantially constant. Further, the pair of winding shafts 16a and 16b hold the tip portion 150b of the flat plate 150 near the center in the width direction by the first long piece 22b and the second long piece 24a. Therefore, by using the pair of winding shafts 16a and 16b, in addition to the inner diameter of the center between one end and the other end of the wound body 120, the inner diameter of the center of the area between the one end and the other end can be increased. It can be kept approximately constant.
 また、1つの巻取軸を用いて平板150を巻くのではなく、2つの巻取軸16a,16bの自由端を水平方向に近接させた状態で用いて平板150を巻く。このため、2つの巻取軸16a,16bそれぞれの全長を1つの巻取軸を用いる場合に比べて短くすることができる。したがって、本実施形態に係る2つの巻取軸16a,16bを用いる場合、1つの巻取軸を用いて平板150を巻く場合に比べて、自由端のたわみ量を少なくすることができる。したがって、本実施形態に係る2つの巻取軸16a,16bを用いる場合、1つの巻取軸を用いる場合に比べて2つの巻取軸16a,16bの外径を小さくすることができる。このため、本実施形態に係る2つの巻取軸16a,16bを用いて巻回体120を製造する場合、1つの巻取軸を用いて巻回体120を製造する場合に比べて巻回体120の中心部の内径を極力小さく形成することができる。したがって、本実施形態に係る製造装置10により製造された巻回体120は、巻回体120に担持する金属触媒と排ガスとの接触面積を大きく製造でき、排ガスの浄化性能を良好にすることができる。 Moreover, instead of winding the flat plate 150 using one winding shaft, the flat plate 150 is wound using two winding shafts 16a and 16b with their free ends horizontally close to each other. Therefore, the total length of each of the two winding shafts 16a and 16b can be made shorter than when using one winding shaft. Therefore, when using the two winding shafts 16a and 16b according to this embodiment, the amount of deflection of the free end can be reduced compared to when the flat plate 150 is wound using one winding shaft. Therefore, when using the two winding shafts 16a, 16b according to this embodiment, the outer diameters of the two winding shafts 16a, 16b can be made smaller than when using one winding shaft. Therefore, when manufacturing the wound body 120 using the two winding shafts 16a and 16b according to the present embodiment, the winding body 120 is manufactured using a single winding shaft. The inner diameter of the center portion of 120 can be made as small as possible. Therefore, the wound body 120 manufactured by the manufacturing apparatus 10 according to the present embodiment can have a large contact area between the metal catalyst supported on the wound body 120 and the exhaust gas, and can improve the exhaust gas purification performance. can.
 なお、図14には、本実施形態に係る排ガス浄化用触媒コンバータの製造装置10の芯金16のスリット22,24に、貫通孔150cを有する平板150を挟んだ状態を示す概略図を示す。すなわち、平板150には、適宜の間隔に適宜の大きさの貫通孔150cが形成されている。波板140に貫通孔150cと同様にさらに貫通孔が形成されていてもよいが、こちらの図示は省略する。 Note that FIG. 14 is a schematic diagram showing a state in which a flat plate 150 having a through hole 150c is sandwiched between the slits 22 and 24 of the core bar 16 of the apparatus 10 for manufacturing an exhaust gas purifying catalytic converter according to the present embodiment. That is, through holes 150c of appropriate sizes are formed in the flat plate 150 at appropriate intervals. Although further through holes may be formed in the corrugated plate 140 similarly to the through holes 150c, illustration thereof is omitted.
 例えば図14に示すように、第1の短片22aと第2の長片24aとの対向位置の直下に平板150の貫通孔150cがあり、第1-2の片22bと第2の短片24bとの対向位置の直上に平板150の貫通孔150cがあってもよい。この場合であっても、平板150の先端部150bは、幅方向の略全体にわたって第1の巻取軸16a及び第2の巻取軸16bに保持される。一対の巻取軸16a,16bは、平板150の幅方向の一対の端部151a,151bから真ん中付近までを連続的に保持する。このため、製造装置10は、一対の巻取軸16a,16bを同一方向に同一速度でその軸回りに回転させ、平板150及び平板150に載置した波板140を巻回したときに、平板150のヨレを抑制しながら巻回することができる。 For example, as shown in FIG. 14, there is a through hole 150c in the flat plate 150 directly below the position where the first short piece 22a and the second long piece 24a face each other, and the first short piece 22b and the second long piece 24b The through hole 150c of the flat plate 150 may be located directly above the opposing position. Even in this case, the tip portion 150b of the flat plate 150 is held by the first winding shaft 16a and the second winding shaft 16b over substantially the entire widthwise direction. The pair of winding shafts 16a and 16b continuously hold the flat plate 150 from the pair of ends 151a and 151b in the width direction to near the middle. Therefore, when the manufacturing apparatus 10 rotates the pair of winding shafts 16a and 16b in the same direction at the same speed and winds the flat plate 150 and the corrugated sheet 140 placed on the flat plate 150, the flat plate 150 mm can be wound while suppressing twisting.
 また、同一の大きさの一対の巻取軸16a,16bを用いることにより、1つの巻取軸を用いて巻回体120を巻回するときよりも、巻回体120の一端と他端との寸法安定性を確保することができる。すなわち、同一の大きさの一対の巻取軸16a,16bを用いることにより、巻回体120の一端の中心部の内径と他端の中心部の内径とを略一定に保つことができる。また、一対の巻取軸16a,16bは、第1の長片22bと第2の長片24aとにより、平板150の先端部150bの幅方向の真ん中付近を保持する。このため、一対の巻取軸16a,16bを用いることにより、巻回体120の一端と他端との中心部の内径に加えて、一端と他端との間の領域の中心部の内径を略一定に保つことができる。また、上述したように、本実施形態に係る2つの巻取軸16a,16bを用いて巻回体120を製造する場合、1つの巻取軸を用いて巻回体120を製造する場合に比べて巻回体120の中心部の内径を極力小さく形成することができる。したがって、本実施形態に係る製造装置10により製造された巻回体120は、平板150に貫通孔150cを有するため、平板150に貫通孔150cがない場合に比べて巻回体120に担持する金属触媒と排ガスとの接触面積を大きく製造でき、排ガスの浄化性能を良好にすることができる。 Moreover, by using a pair of winding shafts 16a and 16b of the same size, one end and the other end of the winding body 120 can be more closely spaced than when winding the winding body 120 using one winding shaft. dimensional stability can be ensured. That is, by using a pair of winding shafts 16a and 16b of the same size, the inner diameter of the center of one end of the wound body 120 and the inner diameter of the center of the other end can be kept substantially constant. Further, the pair of winding shafts 16a and 16b hold the tip portion 150b of the flat plate 150 near the center in the width direction by the first long piece 22b and the second long piece 24a. Therefore, by using the pair of winding shafts 16a and 16b, in addition to the inner diameter of the center between one end and the other end of the wound body 120, the inner diameter of the center of the area between the one end and the other end can be increased. It can be kept approximately constant. Furthermore, as described above, when manufacturing the wound body 120 using the two winding shafts 16a and 16b according to this embodiment, compared to the case where the winding body 120 is manufactured using one winding shaft. Thus, the inner diameter of the center of the wound body 120 can be made as small as possible. Therefore, since the rolled body 120 manufactured by the manufacturing apparatus 10 according to the present embodiment has the through hole 150c in the flat plate 150, the amount of metal supported on the rolled body 120 is higher than in the case where the flat plate 150 does not have the through hole 150c. The contact area between the catalyst and exhaust gas can be increased, and the exhaust gas purification performance can be improved.
 このように、本実施形態では、第1実施形態の製造装置10とは異なり、芯金16の合わせ部(第1の短片22aと第1の片22bとが近接又は当接して対向する位置、及び、第2の長片24aと第2の短片24bとが近接又は当接して対向する位置)を平板150の幅方向中央からずらした2箇所とした。このため、芯金16による平板150の巻き取り時に、芯金16の合わせ部から平板150に及ぼし得る引張力を分散して低減し、平板150にヨレが生じることを抑制することができる。 As described above, in this embodiment, unlike the manufacturing apparatus 10 of the first embodiment, the mating portion of the core metal 16 (the position where the first short piece 22a and the first piece 22b are close to each other or in contact with each other and face each other, And, the positions where the second long piece 24a and the second short piece 24b are close to each other or in contact with each other and face each other) are set at two positions shifted from the center in the width direction of the flat plate 150. Therefore, when the flat plate 150 is wound up by the core metal 16, the tensile force that may be exerted on the flat plate 150 from the mating portion of the core metal 16 can be dispersed and reduced, and the flat plate 150 can be prevented from twisting.
 平板150のうち貫通孔150cが存在する領域よりも、平板150の中央部は、貫通孔150cがないため、比較的強度が高く、巻回体120の巻き取り時の芯金16への反力が、貫通孔150cが形成される領域よりも高いと想定される。本実施形態に係る製造装置10は、平板150の貫通孔150cがない幅方向の中央部に芯金16の合わせ部がかからないようにしている。すなわち、平板150の巻き取り時に芯金16が最も大きな負荷を受けると想定される平板150の中央部に対して、芯金16の合わせ部の位置をずらす。このため、芯金16による平板150の巻き取り時に、芯金16の、特に、第1の長片22b及び第2の長片24aの変形量を低減し、平板150にヨレが生じることを抑制することができる。 Since there is no through hole 150c, the central part of the flat plate 150 has relatively higher strength than the area of the flat plate 150 where the through hole 150c is present, and the reaction force on the core bar 16 when the wound body 120 is wound is reduced. is assumed to be higher than the region where the through hole 150c is formed. In the manufacturing apparatus 10 according to the present embodiment, the mating portion of the core metal 16 does not overlap the widthwise central portion of the flat plate 150 where the through hole 150c is not provided. That is, the position of the mating portion of the core metal 16 is shifted with respect to the center portion of the flat plate 150 where the core metal 16 is assumed to receive the largest load when the flat plate 150 is wound up. Therefore, when the flat plate 150 is wound up by the core metal 16, the amount of deformation of the core metal 16, especially the first long piece 22b and the second long piece 24a, is reduced, and the flat plate 150 is prevented from twisting. can do.
 なお、第1の短片22aに対して突出する第1の長片22bの長さ、第2の短片24bに対して突出する第2の長片24aの長さは、適宜に設定される。例えば、必ずしも、第1の短片22aに対して突出する第1の長片22bの長さ、第2の短片24bに対して突出する第2の長片24aの長さは、同じであっても、同じでなくてもよい。このような長さは、例えば、平板150に設けられる貫通孔150cの位置等により、変化し得る。 Note that the length of the first long piece 22b protruding from the first short piece 22a and the length of the second long piece 24a protruding from the second short piece 24b are set as appropriate. For example, the length of the first long piece 22b that protrudes from the first short piece 22a and the length of the second long piece 24a that protrudes from the second short piece 24b may be the same. , may not be the same. Such a length may vary depending on, for example, the position of the through hole 150c provided in the flat plate 150.
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 Note that the present invention is not limited to the above-described embodiments, and can be variously modified at the implementation stage without departing from the gist thereof. Moreover, each embodiment may be implemented in combination as appropriate, and in that case, the combined effect can be obtained. Furthermore, the embodiments described above include various inventions, and various inventions can be extracted by combinations selected from the plurality of constituent features disclosed. For example, if a problem can be solved and an effect can be obtained even if some constituent features are deleted from all the constituent features shown in the embodiment, the configuration from which these constituent features are deleted can be extracted as an invention.

Claims (3)

  1.  平板と、前記平板上に設けられる波板とが巻回されて形成される排ガス浄化用メタル基材の製造装置であって、
     片持ち支持され、自由端側に第1のスリットを規定する互いに対向する第1の一対の対向片を有する第1の巻取軸と、
     片持ち支持され、自由端側に第2のスリットを規定する互いに対向する第2の一対の対向片を有する第2の巻取軸と、
     前記第1の巻取軸の回転軸と前記第2の巻取軸の回転軸を同軸上に配置し、当該第1の巻取軸の自由端と当該第2の巻取軸の自由端とを対向させ、少なくとも前記平板及び/又は前記波板を、前記第1のスリットと前記第2のスリットとに挿通可能に配置し、前記第1の巻取軸及び前記第2の巻取軸を同期させて同一方向に回転させる回転機構と、
     前記第1の巻取軸の回転軸及び前記第2の巻取軸の回転軸を同軸上に配置しながら前記第1の巻取軸の前記自由端と前記第2の巻取軸の前記自由端とを近接又は離隔させる方向に移動させる移動機構と
     を有する、排ガス浄化用メタル基材の製造装置。
    An apparatus for manufacturing a metal base material for exhaust gas purification formed by winding a flat plate and a corrugated plate provided on the flat plate,
    a first winding shaft that is supported in a cantilever manner and has a first pair of opposing pieces that define a first slit on the free end side;
    a second winding shaft supported in a cantilever manner and having a second pair of opposing pieces that define a second slit on the free end side;
    The rotating shaft of the first winding shaft and the rotating shaft of the second winding shaft are arranged coaxially, and the free end of the first winding shaft and the free end of the second winding shaft are arranged coaxially. are arranged to face each other, at least the flat plate and/or the corrugated plate are arranged so as to be able to be inserted into the first slit and the second slit, and the first winding shaft and the second winding shaft A rotation mechanism that synchronizes and rotates in the same direction,
    The free end of the first winding shaft and the free end of the second winding shaft are arranged coaxially, and the rotation shaft of the first winding shaft and the second winding shaft are arranged coaxially. and a moving mechanism for moving the end toward or away from the end, a manufacturing device for a metal substrate for exhaust gas purification.
  2.  前記第1の巻取軸の前記第1の一対の対向片は、前記第1の巻取軸の固定端側から前記第2の巻取軸の前記自由端に向かって延びる第1の短片と、前記第1の巻取軸の前記固定端側から前記第2の巻取軸の前記自由端に向かって延び、前記第1の短片よりも長い第1の長片とを有し、
     前記第2の巻取軸の前記第2の一対の対向片は、前記第2の巻取軸の固定端側から前記第1の巻取軸の前記自由端に向かって延びる第2の長片と、前記第2の巻取軸の前記固定端側から前記第1の巻取軸の前記自由端側に向かって延び、前記第2の長片よりも短い第2の短片とを有し、
     前記第1の短片と前記第2の長片とは前記第1の巻取軸の回転軸及び前記第2の巻取軸の回転軸に沿って対向し、
     前記第1の長片と前記第2の短片とは前記第1の巻取軸の回転軸及び前記第2の巻取軸の回転軸に沿って対向して配置される、
     請求項1に記載の製造装置。
    The first pair of opposing pieces of the first winding shaft include a first short piece extending from the fixed end side of the first winding shaft toward the free end of the second winding shaft. , a first long piece extending from the fixed end side of the first winding shaft toward the free end of the second winding shaft and longer than the first short piece,
    The second pair of opposing pieces of the second winding shaft are second long pieces extending from the fixed end side of the second winding shaft toward the free end of the first winding shaft. and a second short piece that extends from the fixed end side of the second winding shaft toward the free end side of the first winding shaft and is shorter than the second long piece,
    The first short piece and the second long piece face each other along the rotation axis of the first winding shaft and the rotation axis of the second winding shaft,
    The first long piece and the second short piece are arranged to face each other along the rotation axis of the first winding shaft and the rotation axis of the second winding shaft,
    The manufacturing apparatus according to claim 1.
  3.  前記第1の短片に対する前記第1の長片の前記第1の巻取軸の軸方向に沿う突出長は、前記第2の短片に対する前記第2の長片の前記第2の巻取軸の軸方向に沿う突出長と等距離である、請求項2に記載の製造装置。

     
    The protrusion length of the first long piece in the axial direction of the first winding shaft with respect to the first short piece is the length of the projection of the second long piece of the second winding shaft with respect to the second short piece. The manufacturing device according to claim 2, wherein the distance is equal to the protrusion length along the axial direction.

PCT/JP2023/030192 2022-09-02 2023-08-22 Device for manufacturing metal base material for exhaust gas purification WO2024048372A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023574723A JP7439346B1 (en) 2022-09-02 2023-08-22 Manufacturing equipment for metal base materials for exhaust gas purification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-139986 2022-09-02
JP2022139986 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024048372A1 true WO2024048372A1 (en) 2024-03-07

Family

ID=90099674

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2023/030193 WO2024048373A1 (en) 2022-09-02 2023-08-22 Wound body manufacturing device, and wound body manufacturing method
PCT/JP2023/030192 WO2024048372A1 (en) 2022-09-02 2023-08-22 Device for manufacturing metal base material for exhaust gas purification

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030193 WO2024048373A1 (en) 2022-09-02 2023-08-22 Wound body manufacturing device, and wound body manufacturing method

Country Status (2)

Country Link
JP (1) JP7447367B1 (en)
WO (2) WO2024048373A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163437U (en) * 1988-04-26 1989-11-14
JPH07265978A (en) * 1994-03-25 1995-10-17 Toyota Motor Corp Winding device for honeycomb body for metallic carrier
JPH08103665A (en) * 1994-10-06 1996-04-23 Nippondenso Co Ltd Production of catalytic converter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328261A (en) * 1993-05-19 1994-11-29 Mitsubishi Heavy Ind Ltd Manufacture of sandwich panel
JPH10337481A (en) * 1997-06-05 1998-12-22 Nippon Steel Corp Metal carrier for catalyst converter and production thereof
JP2008062160A (en) * 2006-09-06 2008-03-21 Calsonic Kansei Corp Metal carrier and production method of metal carrier
US9679054B2 (en) 2014-03-05 2017-06-13 Sonos, Inc. Webpage media playback
JP7265978B2 (en) 2019-12-09 2023-04-27 株式会社Fuji Attached work machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163437U (en) * 1988-04-26 1989-11-14
JPH07265978A (en) * 1994-03-25 1995-10-17 Toyota Motor Corp Winding device for honeycomb body for metallic carrier
JPH08103665A (en) * 1994-10-06 1996-04-23 Nippondenso Co Ltd Production of catalytic converter

Also Published As

Publication number Publication date
JP7447367B1 (en) 2024-03-11
WO2024048373A1 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
JP5485388B2 (en) Paper sheet storage and operation device, paper sheet processing device, and paper sheet storage method
JP4831644B1 (en) CAM MECHANISM AND ITS OPERATION METHOD, LONG OBJECT CONVEYING METHOD AND DEVICE AND COIL WINDING METHOD AND DEVICE
JP6220261B2 (en) Paper sheet transport device
EP2684825A2 (en) Sheet material supplying device
JP2013520379A5 (en)
JP7439346B1 (en) Manufacturing equipment for metal base materials for exhaust gas purification
WO2024048372A1 (en) Device for manufacturing metal base material for exhaust gas purification
JP7023761B2 (en) Transport system and dancer unit
JP2012166896A (en) Web winder
JP2010143707A5 (en)
JP2008028049A (en) Apparatus, machine and method for bending rectangular wire
JP2007254155A (en) Horizontal offset control device for material web, system using the device, and horizontal offset control method
JP2015532628A (en) Glass plate guiding apparatus and method for guiding glass plate
JP2008264878A (en) Winder assembly for rolling mill
JP2011020151A (en) Workpiece holding device
JP2018166172A (en) Transport device of lead frame base material
TW201731753A (en) Band body conveyance device
JP3808545B2 (en) Element alignment method and roll transfer apparatus using the method
JP6705216B2 (en) Belt carrier
US11639280B2 (en) Medium discharging device, medium processing device, and recording system
JP5573717B2 (en) Web transport device
JP7303348B1 (en) centering device for metal strips
JP2005280941A (en) Wire winding device
JP2019102531A (en) Substrate transfer apparatus and substrate processing apparatus
WO2023067904A1 (en) Conveying device and meandering correction method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860135

Country of ref document: EP

Kind code of ref document: A1