WO2024048157A1 - Silicon carbide substrate, method for producing silicon carbide substrate, method for producing silicon carbide single crystal, epitaxial substrate, and method for producing semiconductor device - Google Patents

Silicon carbide substrate, method for producing silicon carbide substrate, method for producing silicon carbide single crystal, epitaxial substrate, and method for producing semiconductor device Download PDF

Info

Publication number
WO2024048157A1
WO2024048157A1 PCT/JP2023/027730 JP2023027730W WO2024048157A1 WO 2024048157 A1 WO2024048157 A1 WO 2024048157A1 JP 2023027730 W JP2023027730 W JP 2023027730W WO 2024048157 A1 WO2024048157 A1 WO 2024048157A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
main surface
region
outer peripheral
substrate
Prior art date
Application number
PCT/JP2023/027730
Other languages
French (fr)
Japanese (ja)
Inventor
将 佐々木
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2024048157A1 publication Critical patent/WO2024048157A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Definitions

  • the present disclosure relates to a silicon carbide substrate, a method for manufacturing a silicon carbide substrate, a method for manufacturing a silicon carbide single crystal, an epitaxial substrate, and a method for manufacturing a semiconductor device.
  • This application claims priority based on Japanese Patent Application No. 2022-138114, which is a Japanese patent application filed on August 31, 2022. All contents described in the Japanese patent application are incorporated herein by reference.
  • Patent Document 1 JP 2015-13761 A (Patent Document 1) describes a silicon carbide single crystal substrate in which the ⁇ 0001 ⁇ plane orientation difference between two arbitrary points 1 cm apart in the main surface is 35 seconds or less. .
  • a silicon carbide substrate according to the present disclosure includes a main surface.
  • the main surface is composed of an outer peripheral part within 5 mm from the outer peripheral edge of the main surface, and a central part surrounded by the outer peripheral part.
  • the central portion includes a central region having a diameter that is half the maximum diameter of the main surface and centered on the center of the main surface, and an outer peripheral region surrounding the central region.
  • the average value of nitrogen concentration in the central region is higher than the average value of nitrogen concentration in the peripheral region.
  • the average value of the nitrogen concentration in the central region is 1 ⁇ 10 16 cm ⁇ 3 or less.
  • the electrical resistivity at any position is 1 ⁇ 10 6 ⁇ cm or more.
  • the ⁇ 0001 ⁇ plane orientation difference between any two points 1 cm apart is 35 seconds or less.
  • FIG. 1 is a schematic plan view showing the configuration of a silicon carbide substrate according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a schematic plan view showing measurement points of X-ray diffraction.
  • FIG. 4 is an enlarged view of region IV in FIG.
  • FIG. 5 is a schematic cross-sectional view for explaining the ⁇ 0001 ⁇ plane orientation difference.
  • FIG. 6 is a flow diagram outlining the method for manufacturing a silicon carbide substrate according to this embodiment.
  • FIG. 7 is a schematic plan view showing the configuration of the third main surface of the seed substrate.
  • FIG. 8 is a schematic cross-sectional view taken along line VIII-VIII in FIG. 7.
  • FIG. 9 is a partially cross-sectional schematic diagram showing the structure of the crucible.
  • FIG. 10 is a schematic cross-sectional view showing a silicon carbide crystal growth process.
  • FIG. 11 is a schematic plan view showing the configuration of a growth surface of silicon carbide crystal.
  • FIG. 12 is a schematic cross-sectional view showing a step of heating silicon carbide crystal.
  • FIG. 13 is a schematic cross-sectional view showing a step of cutting a silicon carbide crystal.
  • FIG. 14 is a flowchart schematically showing a method for manufacturing a semiconductor device according to this embodiment.
  • FIG. 15 is a schematic cross-sectional view showing a step of forming a buffer layer on a silicon carbide substrate.
  • FIG. 16 is a schematic cross-sectional view showing a step of forming an electron transit layer and an electron supply layer.
  • FIG. 17 is a schematic cross-sectional view showing the configuration of the semiconductor device according to this embodiment.
  • An object of the present disclosure is to reduce variations in characteristics of semiconductor devices. [Effects of this disclosure]
  • Silicon carbide substrate 100 includes main surface 1.
  • the main surface 1 includes an outer peripheral part 20 within 5 mm from the outer peripheral edge of the main surface 1, and a central part 10 surrounded by the outer peripheral part 20.
  • the central portion 10 includes a central region 11 having a diameter half the maximum diameter of the main surface 1 and centered on the center of the main surface 1, and an outer peripheral region 12 surrounding the central region 11.
  • the average value of the nitrogen concentration in the central region 11 is higher than the average value of the nitrogen concentration in the outer peripheral region 12.
  • the average value of the nitrogen concentration in the central region 11 is 1 ⁇ 10 16 cm ⁇ 3 or less.
  • the electrical resistivity at any position is 1 ⁇ 10 6 ⁇ cm or more.
  • the ⁇ 0001 ⁇ plane orientation difference between any two points 1 cm apart is 35 seconds or less.
  • the p-type impurity and the compensation impurity do not need to be doped.
  • the value obtained by dividing the average value of the nitrogen concentration in the outer peripheral region 12 by the average value of the nitrogen concentration in the central region 11 is 0.7 or more. It may be 0.9 or less.
  • the average value of the nitrogen concentration in the outer peripheral region 12 is 1 ⁇ 10 15 cm ⁇ 3 or more and less than 1 ⁇ 10 16 cm ⁇ 3 . It's okay.
  • the maximum diameter may be 100 mm or more.
  • the angle between main surface 1 and ⁇ 0001 ⁇ plane may be 1° or less.
  • the polytype of silicon carbide that constitutes silicon carbide substrate 100 may be 4H.
  • Epitaxial substrate 200 includes silicon carbide substrate 100 according to any one of (1) to (7) above, nitride epitaxial layer 30 provided on silicon carbide substrate 100, It is equipped with
  • a method for manufacturing a semiconductor device 400 according to the present disclosure includes the following steps.
  • the epitaxial substrate 200 described in (8) above is prepared. Electrodes are formed on epitaxial substrate 200.
  • the method for manufacturing silicon carbide single crystal 59 includes the following steps. Seed substrate 150 having main surface 1 and silicon carbide raw material 156 are prepared. By sublimating silicon carbide raw material 156, silicon carbide crystal 57 grows on main surface 151. After the process of growing silicon carbide crystals 57 on main surface 151 by sublimating silicon carbide raw material 156, the electrical resistivity of silicon carbide crystals 57 is increased by heating silicon carbide crystals 57 at a temperature of 2000° C. or higher. do.
  • the main surface 151 includes an outer peripheral part 120 within 5 mm from the outer peripheral edge of the main surface 151 and a central part 110 surrounded by the outer peripheral part 120.
  • the ⁇ 0001 ⁇ plane orientation difference between any two points 1 cm apart is 35 seconds or less.
  • Growth surface 50 of silicon carbide crystal 57 includes a first region 51 having a diameter half the maximum diameter of silicon carbide crystal 57 and centered at the center of the growth surface, and a second region 52 surrounding first region 51. It is made up of.
  • the ⁇ 0001 ⁇ facet is exposed to first region 51 and not exposed to second region 52.
  • the angle between main surface 151 and the ⁇ 0001 ⁇ plane may be 1° or less.
  • silicon carbide single crystal 59 is prepared using the method for manufacturing silicon carbide single crystal 59 described in (10) or (11) above. Silicon carbide single crystal 59 is cut. The angle between cut surface 58 of silicon carbide single crystal 59 and the ⁇ 0001 ⁇ plane is 1° or less. [Details of embodiments of the present disclosure]
  • FIG. 1 is a schematic plan view showing the configuration of silicon carbide substrate 100 according to the first embodiment.
  • silicon carbide substrate 100 has main surface 1 (first main surface 1).
  • the first main surface 1 extends along each of a first direction 101 and a second direction 102.
  • the first direction 101 is, for example, the ⁇ 11-20> direction, although it is not particularly limited.
  • the second direction 102 is, for example, the ⁇ 1-100> direction, although it is not particularly limited.
  • the polytype of silicon carbide constituting silicon carbide substrate 100 may be 4H.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. 1.
  • the cross section shown in FIG. 2 is perpendicular to the first main surface 1 and parallel to the first direction 101.
  • silicon carbide substrate 100 according to this embodiment has second main surface 2 and first outer circumferential side surface 3. As shown in FIG. The first main surface 1 is on the opposite side of the second main surface 2. The first outer peripheral side surface 3 is continuous with each of the first main surface 1 and the second main surface 2.
  • the thickness of silicon carbide substrate 100 is, for example, 300 ⁇ m or more and 700 ⁇ m or less.
  • the third direction 103 is a direction perpendicular to each of the first direction 101 and the second direction 102.
  • the thickness direction of silicon carbide substrate 100 is third direction 103 .
  • the first principal surface 1 is a ⁇ 0001 ⁇ plane or a plane inclined in the off direction with respect to the ⁇ 0001 ⁇ plane.
  • the first principal surface 1 is, for example, a (0001) plane or a plane inclined in the off direction with respect to the (0001) plane.
  • the second principal surface 2 (see FIG. 2) is, for example, a (000-1) plane or a plane inclined in the off direction with respect to the (000-1) plane.
  • the first main surface 1 may be, for example, a (000-1) plane or a plane inclined in the off direction with respect to the (000-1) plane.
  • the second principal surface 2 (see FIG. 2) is, for example, a (0001) plane or a plane inclined in the off direction with respect to the (0001) plane.
  • the off direction is, for example, the first direction 101, although it is not particularly limited.
  • the angle between the first principal surface 1 and the ⁇ 0001 ⁇ plane is a third angle ⁇ 3.
  • the third angle ⁇ 3 is, for example, 1° or less.
  • the third angle ⁇ 3 is not particularly limited, but may be, for example, 0.8° or less, 0.6° or less, or 0.4° or less.
  • the third angle ⁇ 3 is not particularly limited, but may be, for example, 0.1° or more.
  • the maximum diameter of the first main surface 1 is the first diameter W1.
  • the first diameter W1 is, for example, 100 mm or more.
  • the first diameter W1 may be, for example, 150 mm or more, or 200 mm or more.
  • the first diameter W1 is not particularly limited, but may be, for example, 300 mm or less.
  • the first main surface 1 has a first outer peripheral edge 4 . When viewed in a direction perpendicular to the first main surface 1, the first diameter W1 is the longest straight distance between two different points on the first outer peripheral edge 4.
  • the first main surface 1 is composed of a first outer peripheral portion 20 and a first central portion 10.
  • the first outer circumferential portion 20 is a portion within 5 mm from the first outer circumferential edge 4 of the first main surface 1 . From another perspective, when viewed in a direction perpendicular to the first main surface 1, the first outer peripheral edge 4, the first outer peripheral part 20, and the first central part 10 in the radial direction of the first main surface 1 The distance from the boundary (third distance W3) is 5 mm.
  • the first central portion 10 is surrounded by a first outer peripheral portion 20.
  • the first central portion 10 is continuous with the first outer peripheral portion 20.
  • the first central portion 10 is composed of a first central region 11 and a first outer peripheral region 12.
  • the first outer peripheral region 12 surrounds the first central region 11 .
  • the first outer peripheral region 12 is continuous with the first central region 11 .
  • the first outer peripheral region 12 is annular.
  • the first central region 11 is circular.
  • the first central region 11 has a diameter that is half the maximum diameter (first diameter W1) of the first main surface 1.
  • the diameter of the first central region 11 is the second diameter W2.
  • the second diameter W2 is half the first diameter W1.
  • the first central region 11 is a circle centered on the center 13 of the first main surface 1 . From another perspective, the center 13 of the first central region 11 coincides with the center 13 of the first main surface 1.
  • Silicon carbide substrate 100 contains nitrogen as an n-type impurity.
  • the average value of the nitrogen concentration in the first central region 11 is higher than the average value of the nitrogen concentration in the first peripheral region 12.
  • the average value of the nitrogen concentration in the first central region 11 is 1 ⁇ 10 16 cm ⁇ 3 or less.
  • the average value of the nitrogen concentration in the first central region 11 is not particularly limited, but may be, for example, 1 ⁇ 10 15 cm ⁇ 3 or more, or 2 ⁇ 10 15 cm ⁇ 3 or more. In any region of the first central region 11, the nitrogen concentration may be 1 ⁇ 10 16 cm ⁇ 3 or less. In any region of the first central region 11, the nitrogen concentration may be 1 ⁇ 10 15 cm ⁇ 3 or more.
  • the average value of the nitrogen concentration in the first outer peripheral region 12 may be 1 ⁇ 10 15 cm ⁇ 3 or more and less than 1 ⁇ 10 16 cm ⁇ 3 .
  • the average value of the nitrogen concentration in the first outer peripheral region 12 is not particularly limited, but may be, for example, 1.5 ⁇ 10 15 cm ⁇ 3 or more, or 2 ⁇ 10 15 cm ⁇ 3 or more.
  • the average value of the nitrogen concentration in the first outer peripheral region 12 is not particularly limited, but may be, for example, 9 ⁇ 10 15 cm ⁇ 3 or less, or 8 ⁇ 10 15 cm ⁇ 3 or less.
  • the value obtained by dividing the average value of the nitrogen concentration in the first outer peripheral region 12 by the average value of the nitrogen concentration in the first central region 11 may be, for example, 0.7 or more and 0.9 or less.
  • the value obtained by dividing the average value of the nitrogen concentration in the first peripheral region 12 by the average value of the nitrogen concentration in the first central region 11 is not particularly limited, but may be, for example, 0.72 or more, or 0.74 or more. It may be.
  • the value obtained by dividing the average value of the nitrogen concentration in the first peripheral region 12 by the average value of the nitrogen concentration in the first central region 11 is not particularly limited, but may be, for example, 0.88 or less, or 0.86 or less. It may be.
  • Silicon carbide substrate 100 does not need to be doped with p-type impurities and compensation impurities. Specifically, silicon carbide substrate 100 is not actively doped with p-type impurities and compensation impurities during the manufacturing process. P-type impurities and compensation impurities may be incorporated into silicon carbide substrate 100 as unintended impurities during the manufacturing process. If the concentration of each of the p-type impurity and the compensation impurity is 1 ⁇ 10 16 cm ⁇ 3 or less, it is determined that the p-type impurity and the compensation impurity are not doped.
  • the p-type impurity is, for example, aluminum (Al) or boron (B).
  • a compensation impurity is an impurity having a deep level. Specifically, the compensation impurity is vanadium (V) or titanium (Ti).
  • the concentration of impurities is measured, for example, by secondary ion mass spectrometry (SIMS).
  • SIMS for example, IMS7f, which is a secondary ion mass spectrometer manufactured by Cameca, can be used.
  • the primary ion is O 2 + and the primary ion energy is 8 keV.
  • the electrical resistivity at any position is 1 ⁇ 10 6 ⁇ cm or more.
  • the electrical resistivity in the first central portion 10 is not particularly limited, but may be, for example, 1 ⁇ 10 8 ⁇ cm or more, 1 ⁇ 10 10 ⁇ cm or more, or 1 ⁇ 10 12 ⁇ cm or more. There may be.
  • the electrical resistivity in the first central portion 10 is not particularly limited, but may be, for example, 1 ⁇ 10 14 ⁇ cm or less, or 1 ⁇ 10 13 ⁇ cm or less.
  • the electrical resistivity of the first central portion 10 is measured using, for example, COREMA-WT, which is an electrical resistivity measuring device manufactured by Semimap.
  • the voltage applied to the object to be measured is, for example, 5.0V.
  • the surface orientation difference at any position within the first principal surface 1 can be measured by, for example, X-ray diffraction.
  • X-ray diffraction For example, Cu-K ⁇ 1 is used as an X-ray source, and the (0004) peak is measured.
  • the wavelength is 1.5405 angstroms (monochromatic).
  • FIG. 3 is a schematic plan view showing measurement points for X-ray diffraction.
  • the ⁇ 0001 ⁇ plane orientation difference is measured at 49 (7 points x 7 points) measurement points 5 on the first principal surface 1.
  • seven X-ray diffraction measurement points 5 are arranged at 1 cm intervals.
  • seven X-ray diffraction measurement points 5 are arranged at 1 cm intervals.
  • One of the measurement points 5 may be located at the center of the first main surface 1.
  • FIG. 4 is an enlarged view of region IV in FIG. 3.
  • the measurement point 5 has a first measurement position 61 and a second measurement position 62.
  • the ⁇ 0001 ⁇ plane orientation is measured using X-rays.
  • the X-ray spot diameter D is, for example, 3 mm.
  • the center of the X-ray spot is adjusted to be located at the first measurement position 61.
  • the X-ray spot is adjusted so that the center of the X-ray spot coincides with the second measurement position 62.
  • the position of is adjusted. In other words, the center of the first X-ray spot S1 and the center of the second X-ray spot S2 are 1 cm apart.
  • FIG. 5 is a schematic cross-sectional view for explaining the ⁇ 0001 ⁇ plane orientation difference.
  • the diagram shown in FIG. 5 is a cross-sectional view taken along line VV in FIG. 4.
  • silicon carbide substrate 100 is composed of a large number of domains with slightly different plane orientations.
  • first principal surface 1 of silicon carbide substrate 100 is a ⁇ 0001 ⁇ plane on average
  • the ⁇ 0001 ⁇ plane orientation at each position within the plane of first principal surface 1 is It is slightly shifted from the normal direction n of surface 1.
  • the ⁇ 0001 ⁇ plane orientation c1 at the first measurement position 61 of the first principal surface 1 is shifted in a certain direction by a first angle ⁇ 1 from the normal direction n of the first principal surface 1.
  • the ⁇ 0001 ⁇ plane orientation c2 at the second measurement position 62 which is 1 cm away from the first measurement position 61, is shifted in a certain direction by a second angle ⁇ 2 from the normal direction n of the first principal surface 1.
  • the ⁇ 0001 ⁇ plane orientation difference is the absolute value of the difference between the first angle ⁇ 1 and the second angle ⁇ 2. That is, the ⁇ 0001 ⁇ plane orientation is measured at two arbitrary points separated by 1 cm, and the ⁇ 0001 ⁇ plane orientation difference between the two points is calculated.
  • the ⁇ 0001 ⁇ plane orientation difference between any two points 1 cm apart in the first central portion 10 is 35 seconds or less.
  • the ⁇ 0001 ⁇ plane orientation difference between any two points separated by 1 cm is not particularly limited, but may be, for example, 33 seconds or less, or 31 seconds or less.
  • the ⁇ 0001 ⁇ plane orientation difference between any two points 1 cm apart is not particularly limited, but may be, for example, 10 seconds or more, 15 seconds or more, or 20 seconds or more. It may be 25 seconds or more.
  • FIG. 6 is a flow diagram showing an overview of the method for manufacturing silicon carbide substrate 100 according to this embodiment.
  • the method for manufacturing silicon carbide substrate 100 according to the present embodiment includes a step of preparing a seed substrate and a silicon carbide raw material (S10), a step of growing a silicon carbide crystal (S20), The method mainly includes a step of heating the silicon carbide crystal (S30) and a step of cutting the silicon carbide crystal (S40).
  • FIG. 7 is a schematic plan view showing the configuration of the third main surface 151 of the seed substrate 150. As shown in FIG. 7, the third main surface 151 extends along each of the first direction 101 and the second direction 102.
  • the first direction 101 is, for example, the ⁇ 11-20> direction, although it is not particularly limited.
  • the second direction 102 is, for example, the ⁇ 1-100> direction, although it is not particularly limited.
  • the polytype of silicon carbide constituting seed substrate 150 may be 4H.
  • FIG. 8 is a schematic cross-sectional view taken along line VIII-VIII in FIG. 7.
  • the cross section shown in FIG. 8 is perpendicular to the third main surface 151 and parallel to the first direction 101.
  • the seed substrate 150 has a fourth main surface 152 and a second outer peripheral side surface 153.
  • the fourth main surface 152 is on the opposite side of the third main surface 151.
  • the second outer peripheral side surface 153 is continuous with each of the third main surface 151 and the fourth main surface 152.
  • the third direction 103 is a direction perpendicular to each of the first direction 101 and the second direction 102.
  • the third principal surface 151 is a ⁇ 0001 ⁇ plane or a plane inclined in the off direction with respect to the ⁇ 0001 ⁇ plane.
  • the first principal surface 1 is, for example, a (0001) plane or a plane inclined in the off direction with respect to the (0001) plane.
  • the fourth principal surface 152 is, for example, a (000-1) plane or a plane inclined in the off direction with respect to the (000-1) plane.
  • the third principal surface 151 may be, for example, a (000-1) plane or a plane inclined in the off direction with respect to the (000-1) plane.
  • the fourth principal surface 152 (see FIG. 8) is, for example, a (0001) plane or a plane inclined in the off direction with respect to the (0001) plane.
  • the off direction is, for example, the first direction 101, although it is not particularly limited.
  • the angle between the third principal surface 151 and the ⁇ 0001 ⁇ plane is a fourth angle ⁇ 4.
  • the fourth angle ⁇ 4 is, for example, 1° or less.
  • the fourth angle ⁇ 4 is not particularly limited, but may be, for example, 0.8° or less, 0.6° or less, or 0.4° or less.
  • the fourth angle ⁇ 4 is not particularly limited, but may be, for example, 0.1° or more.
  • the maximum diameter of the third main surface 151 is a fourth diameter W4.
  • the fourth diameter W4 is, for example, 100 mm or more.
  • the fourth diameter W4 may be, for example, 150 mm or more, or 200 mm or more.
  • the fourth diameter W4 is not particularly limited, but may be, for example, 300 mm or less.
  • the third main surface 151 has a second outer peripheral edge 154. When viewed in a direction perpendicular to the third main surface 151, the fourth diameter W4 is the longest straight distance between two different points on the second outer peripheral edge 154.
  • the third main surface 151 is composed of a second outer peripheral portion 120 and a second central portion 110.
  • the second outer peripheral portion 120 is a portion within 5 mm from the second outer peripheral edge 154 of the third main surface 151. From another perspective, when viewed in a direction perpendicular to the third main surface 151, the second outer peripheral edge 154, the second outer peripheral portion 120, and the second central portion 110 in the radial direction of the third main surface 151 The distance from the boundary (sixth distance W6) is 5 mm.
  • the second central portion 110 is surrounded by a second outer peripheral portion 120.
  • the second central portion 110 is continuous with the second outer peripheral portion 120.
  • the second central portion 110 is composed of a second central region 111 and a second outer peripheral region 112.
  • the second outer peripheral region 112 surrounds the second central region 111 .
  • the second outer peripheral region 112 is continuous with the second central region 111.
  • the second outer peripheral region 112 is annular.
  • the second central region 111 is circular.
  • the second central region 111 has a diameter that is half the maximum diameter of the third main surface 151.
  • the diameter of the second central region 111 is a fifth diameter W5.
  • the fifth diameter W5 is half the fourth diameter W4.
  • the second central region 111 is a circle centered on the center 113 of the third main surface 151. From another perspective, the center 113 of the second central region 111 coincides with the center 113 of the third main surface 151.
  • the ⁇ 0001 ⁇ plane orientation difference between any two points 1 cm apart is 35 seconds or less.
  • the ⁇ 0001 ⁇ plane orientation difference between any two points separated by 1 cm is not particularly limited, but may be, for example, 33 seconds or less, or 31 seconds or less.
  • the ⁇ 0001 ⁇ plane orientation difference between any two points 1 cm apart is not particularly limited, but may be, for example, 8 seconds or more, 12 seconds or more, or 20 seconds or more. It may be 25 seconds or more.
  • FIG. 9 is a schematic partial cross-sectional view showing the structure of the crucible.
  • the crucible 130 is made of graphite.
  • the crucible 130 has a housing section 132 and a lid section 131.
  • the lid part 131 is arranged on the accommodating part 132.
  • An induction heating coil (not shown) is arranged helically around the outer periphery of crucible 130. By applying electric power to the induction heating coil, the crucible 130 is heated by electromagnetic induction.
  • silicon carbide raw material 156 is placed in storage portion 132.
  • Silicon carbide raw material 156 is, for example, polycrystalline silicon carbide powder.
  • Seed substrate 150 is fixed to lid 131 using, for example, an adhesive (not shown).
  • Seed substrate 150 has a third main surface 151 and a fourth main surface 152.
  • Third main surface 151 faces silicon carbide raw material 156.
  • the fourth main surface 152 faces the lid portion 131.
  • Third main surface 151 of seed substrate 150 is arranged to face the surface of silicon carbide raw material 156.
  • seed substrate 150 and silicon carbide raw material 156 are placed in crucible 130.
  • FIG. 10 is a schematic cross-sectional view showing the growth process of silicon carbide crystal 57.
  • the pressure in crucible 130 is reduced while the temperature of third main surface 151 of seed substrate 150 is lower than the temperature of silicon carbide raw material 156.
  • the pressure of the atmospheric gas in the crucible 130 is reduced to, for example, 1.0 kPa.
  • silicon carbide raw material 156 starts to sublimate, and the sublimated silicon carbide gas recrystallizes on third main surface 151 of seed substrate 150 .
  • silicon carbide crystal 57 grows as a single crystal. While silicon carbide crystal 57 is growing, the pressure within crucible 130 is maintained at, for example, approximately 0.1 kPa or more and 3 kPa or less.
  • silicon carbide crystal 57 grows on third main surface 151.
  • the temperature of silicon carbide crystal 57 is, for example, 2100° C. or more and 2300° C. or less.
  • the temperature of silicon carbide crystal 57 is not particularly limited, and may be, for example, 2125° C. or higher, or 2150° C. or higher.
  • the temperature of silicon carbide crystal 57 is not particularly limited, and may be, for example, 2250° C. or lower, or 2275° C. or lower.
  • silicon carbide crystal 57 has a growth surface 50 facing silicon carbide raw material 156. As silicon carbide crystal 57 grows, growth surface 50 approaches silicon carbide raw material 156. From another perspective, from the start of crystal growth to the end of crystal growth, growth surface 50 of silicon carbide crystal 57 moves toward silicon carbide raw material 156. As silicon carbide crystal 57 grows, the diameter of silicon carbide crystal 57 increases. Silicon carbide crystal 57 has a third central region 55 and a third outer peripheral region 56.
  • the third central region 55 is a region formed by stacking ⁇ 0001 ⁇ facet surfaces.
  • the third outer peripheral region 56 surrounds the third central region 55.
  • the third outer peripheral region 56 is a region formed by stacking non-facet surfaces.
  • FIG. 11 is a schematic plan view showing the configuration of a growth surface 50 of silicon carbide crystal 57.
  • growth surface 50 of silicon carbide crystal 57 is composed of a first region 51 and a second region 52.
  • First region 51 has a diameter that is half the maximum diameter of silicon carbide crystal 57 .
  • the maximum diameter of silicon carbide crystal 57 is seventh diameter W7.
  • the diameter of the first region 51 is the eighth diameter W8.
  • the eighth diameter W8 is half the seventh diameter W7.
  • the center of the first region 51 coincides with the center of the growth surface 50.
  • the second region 52 surrounds the first region 51.
  • the second region 52 is continuous with the first region 51.
  • ⁇ 0001 ⁇ facet surface 60 is exposed to first region 51 and exposed to second region 52. do not. As shown in FIG. 11, the ⁇ 0001 ⁇ facet surface 60 is exposed in at least a portion of the first region 51.
  • the ⁇ 0001 ⁇ facet surface 60 may include the center 53 of the growth surface 50.
  • the ⁇ 0001 ⁇ facet surface 60 may be a (0001) facet surface or a (000-1) facet surface.
  • steps may be formed in a spiral shape around the dislocation line of the screw dislocation.
  • Silicon carbide crystal 57 may be grown in a spiral step flow manner using screw dislocation as a step source.
  • the region other than the facet surface is a non-facet surface.
  • the non-faceted surface is exposed in the second region 52.
  • a portion of the non-facet surface may be exposed to the first region 51.
  • the nitrogen concentration on the facet surface is higher than the nitrogen concentration on the non-facet surface.
  • the nitrogen concentration in the first region 51 may be higher than the nitrogen concentration in the second region 52.
  • the maximum diameter of the ⁇ 0001 ⁇ facet surface 60 when viewed in the direction perpendicular to the third principal surface 151 is the ninth diameter W9.
  • the ninth diameter W9 is smaller than the eighth diameter W8.
  • the ninth diameter W9 is not particularly limited, but may be, for example, 0.1 times or more, or 0.2 times or more the seventh diameter W7.
  • FIG. 12 is a schematic cross-sectional view showing a step of heating silicon carbide crystal 57.
  • silicon carbide crystal 57 is removed from crucible 130 , it is placed inside heating device 301 . As shown in FIG. 12, silicon carbide crystal 57 is annealed with silicon carbide crystal 57 disposed inside heating device 301. As shown in FIG. Silicon carbide crystal 57 is heated, for example, at a temperature of 2000° C. or higher. Silicon carbide crystal 57 is heated, for example, in an argon atmosphere at a temperature of 2500° C. or higher for about one hour.
  • silicon carbide crystal 57 is rapidly cooled. As a result, point defects are formed in silicon carbide crystal 57. As a result, the electrical resistivity of silicon carbide crystal 57 increases.
  • the electrical resistivity of silicon carbide crystal 57 is, for example, 1 ⁇ 10 12 ⁇ cm or more.
  • FIG. 13 is a schematic cross-sectional view showing a step of cutting a silicon carbide single crystal.
  • silicon carbide single crystal 59 is sliced along a plane perpendicular to the central axis of silicon carbide single crystal 59 using a saw wire.
  • the angle between the cut surface 58 of the silicon carbide single crystal 59 and the ⁇ 0001 ⁇ plane is 1° or less.
  • silicon carbide single crystal 59 is cut such that the angle between first principal surface 1 of silicon carbide substrate 100 and the ⁇ 0001 ⁇ plane is 1° or less.
  • a plurality of silicon carbide substrates 100 according to this embodiment are obtained (see FIG. 1).
  • FIG. 14 is a flowchart schematically showing a method for manufacturing the semiconductor device 400 according to this embodiment.
  • the method for manufacturing a semiconductor device 400 according to this embodiment mainly includes a step of preparing an epitaxial substrate 200 (S1) and a step of forming an electrode on the epitaxial substrate 200 (S2). have.
  • a step (S1) of preparing the epitaxial substrate 200 is performed.
  • silicon carbide substrate 100 according to this embodiment is prepared (see FIG. 1).
  • FIG. 15 is a schematic cross-sectional view showing a step of forming buffer layer 31 on silicon carbide substrate 100.
  • Buffer layer 31 is formed on first main surface 1 of silicon carbide substrate 100 by epitaxial growth.
  • the buffer layer 31 is formed by, for example, MOCVD (Metal Organic Chemical Vapor Deposition).
  • the buffer layer 31 is made of aluminum gallium nitride (AlGaN), for example.
  • the thickness of the buffer layer 31 is, for example, 150 nm.
  • TMA trimethylaluminum
  • Al aluminum
  • TMG trimethyl gallium
  • Ga gallium
  • N nitrogen
  • FIG. 16 is a schematic cross-sectional view showing the process of forming the electron transit layer 32 and the electron supply layer 33.
  • the electron transit layer 32 is formed on the buffer layer 31 by MOCVD.
  • the electron transit layer 32 is made of, for example, gallium nitride (GaN).
  • the thickness of the electron transit layer 32 is, for example, 1 ⁇ m.
  • an electron supply layer 33 is formed on the electron transit layer 32.
  • the electron supply layer 33 is formed, for example, by MOCVD.
  • the electron supply layer 33 is made of, for example, AlGaN.
  • the thickness of the electron supply layer 33 is, for example, 20 ⁇ m.
  • a two-dimensional electron gas is generated in a portion of the electron transit layer 32 near the interface between the electron transit layer 32 and the electron supply layer 33.
  • epitaxial substrate 200 is prepared. As shown in FIG. 16, epitaxial substrate 200 includes silicon carbide substrate 100 and nitride epitaxial layer 30.
  • the nitride epitaxial layer 30 includes a buffer layer 31, an electron transit layer 32, and an electron supply layer 33. Buffer layer 31 is provided on silicon carbide substrate 100.
  • the electron transit layer 32 is provided on the buffer layer 31.
  • the electron supply layer 33 is provided on the electron transit layer 32.
  • a step of forming electrodes is performed.
  • source electrode 41 and drain electrode 42 are formed.
  • a first resist pattern (not shown) is formed on the electron supply layer 33.
  • openings are formed in regions where the source electrode 41 and the drain electrode 42 are each formed.
  • a first metal laminated film is formed on the first resist pattern using, for example, a vacuum evaporation method.
  • the first metal laminated film includes, for example, a titanium (Ti) film and an aluminum (Al) film.
  • the first metal laminated film formed on the first resist pattern is removed by lift-off. As a result, a source electrode 41 and a drain electrode 42 made of the first metal laminated film are formed on the electron supply layer 33.
  • alloying annealing may be performed. Specifically, source electrode 41 and drain electrode 42 are annealed.
  • the annealing temperature is, for example, 600°C. Thereby, each of the source electrode 41 and the drain electrode 42 may be in ohmic contact with the electron supply layer 33.
  • a gate electrode 43 is formed. Specifically, a second resist pattern (not shown) is formed on the electron supply layer 33. In the second resist pattern, an opening is formed in the region where the gate electrode 43 is to be formed.
  • a second metal laminated film is formed on the second resist pattern using, for example, a vacuum evaporation method.
  • the second metal laminated film includes, for example, a nickel (Ni) film and a gold (Au) film.
  • the second metal laminated film formed on the second resist pattern is removed by lift-off. As a result, a gate electrode 43 made of the second metal laminated film is formed on the electron supply layer 33.
  • FIG. 17 is a schematic cross-sectional view showing the configuration of a semiconductor device 400 according to this embodiment.
  • the semiconductor device 400 is, for example, a field effect transistor, more specifically a high electron mobility transistor (HEMT).
  • the semiconductor device 400 mainly includes an epitaxial substrate 200, a gate electrode 43, a source electrode 41, and a drain electrode 42.
  • HEMT high electron mobility transistor
  • each of the gate electrode 43, source electrode 41, and drain electrode 42 is provided on the epitaxial substrate 200. Specifically, each of the gate electrode 43, the source electrode 41, and the drain electrode 42 is in contact with the electron supply layer 33. Gate electrode 43 may be located between source electrode 41 and drain electrode 42.
  • heat treatment may be performed at a temperature of 2000° C. or higher while nitrogen taken into silicon carbide crystal 57 is reduced as much as possible. In this case, it was difficult to reduce the ⁇ 0001 ⁇ plane orientation difference in the main surface of silicon carbide substrate 100 obtained from silicon carbide crystal 57.
  • the inventor conducted extensive research into the cause of the large ⁇ 0001 ⁇ plane orientation difference on the principal surface of semi-insulating silicon carbide substrate 100, and as a result, obtained the following knowledge. Normally, when silicon carbide crystal 57 is grown using a sublimation method, temperature is controlled so that a ⁇ 0001 ⁇ facet is formed over a wide range of growth surface 50 of silicon carbide crystal 57.
  • the nitrogen concentration on the facet surface is higher than that on the non-facet surface.
  • Nitrogen taken into silicon carbide crystal 57 on the facet plane causes a difference in lattice constant, which causes distortion and curves the crystal plane.
  • the ⁇ 0001 ⁇ plane orientation difference becomes large on the main surface of silicon carbide substrate 100. Therefore, in order to reduce the ⁇ 0001 ⁇ plane orientation difference on the main surface of silicon carbide substrate 100, it is desirable to reduce the area of the facet plane.
  • the ⁇ 0001 ⁇ plane orientation difference in the main surface of seed substrate 150 is large, the large ⁇ 0001 ⁇ plane orientation difference will also be inherited in silicon carbide crystal 57 formed on seed substrate 150. Therefore, in order to reduce the ⁇ 0001 ⁇ plane orientation difference on the main surface of silicon carbide substrate 100, it is desirable to reduce the ⁇ 0001 ⁇ plane orientation difference on the main surface of seed substrate 150.
  • the ⁇ 0001 ⁇ plane orientation difference between any two points 1 cm apart in central portion 110 of main surface 151 of seed substrate 150 is 35 seconds or less.
  • Growth surface 50 of silicon carbide crystal 57 includes a first region 51 having a diameter half the maximum diameter of silicon carbide crystal 57 and centered on the center of growth surface 50, and a second region 52 surrounding first region 51. It is composed of.
  • ⁇ 0001 ⁇ facet surface 60 is exposed to first region 51 and not exposed to second region 52.
  • the area of ⁇ 0001 ⁇ facet surface 60 can be reduced. Therefore, the area of the growth surface 50 into which nitrogen is taken can be reduced. As a result, the occurrence of curvature in the growth surface 50 can be suppressed. Therefore, a semi-insulating silicon carbide substrate 100 with reduced ⁇ 0001 ⁇ plane orientation difference can be obtained.
  • the first main surface 1 of the silicon carbide substrate 100 includes a first outer peripheral part 20 within 5 mm from the outer peripheral edge of the first main surface 1, and a first central part 10 surrounded by the first outer peripheral part 20. It is made up of.
  • the first central portion 10 includes a first central region 11 having a diameter half the maximum diameter of the first main surface 1 and centered on the center of the first main surface 1, and a first central region 11 surrounding the first central region 11.
  • the outer circumferential region 12 is composed of an outer circumferential region 12.
  • the average value of the nitrogen concentration in the first central region 11 is higher than the average value of the nitrogen concentration in the first peripheral region 12.
  • the average value of the nitrogen concentration in the first central region 11 is 1 ⁇ 10 16 cm ⁇ 3 or less.
  • the electrical resistivity at any position is 1 ⁇ 10 6 ⁇ cm or more.
  • the ⁇ 0001 ⁇ plane orientation difference between any two points 1 cm apart is 35 seconds or less.
  • silicon carbide substrate 100 in which the ⁇ 0001 ⁇ plane orientation difference in first principal surface 1 is reduced is obtained.
  • the morphology of the surface of the epitaxial layer may become rough, and the nitrogen concentration of the epitaxial layer may vary within the plane of silicon carbide substrate 100. In this case, there is a possibility that variations in the characteristics of the semiconductor device 400 will increase. According to silicon carbide substrate 100 according to the present disclosure, variations in characteristics of semiconductor device 400 can be reduced.
  • silicon carbide crystal 57 having a polytype of 4H was produced using the manufacturing conditions related to Samples 1 to 7.
  • a seed substrate 150 and a silicon carbide raw material 156 were placed in a crucible 130 .
  • the diameter of the third main surface 151 of the seed substrate 150 was 120 mm.
  • the third principal surface 151 was a (000-1) plane.
  • the thickness of the seed substrate 150 was 1 mm.
  • silicon carbide crystal 57 was formed on third main surface 151 of seed substrate 150 using a sublimation method. After silicon carbide crystal 57 was removed from crucible 130 , it was placed inside heating device 301 . Silicon carbide crystal 57 was heated at a temperature of 2500° C. in heating device 301.
  • silicon carbide crystal 57 was rapidly cooled. As a result, point defects were formed in silicon carbide crystal 57. As a result, the electrical resistivity of silicon carbide crystal 57 increased.
  • the electrical resistivity of silicon carbide crystal 57 was, for example, 1 ⁇ 10 12 ⁇ cm or more.
  • the silicon carbide single crystal was sliced using a saw wire, thereby obtaining silicon carbide substrates 100 according to samples 1 to 7.
  • the ⁇ 0001 ⁇ plane orientation difference on the third main surface 151 of the seed substrate 150 was 58 seconds.
  • the diameter of the ⁇ 0001 ⁇ facet surface 60 on the growth surface 50 was 38 mm.
  • the ⁇ 0001 ⁇ plane orientation difference on the third main surface 151 of the seed substrate 150 was 57 seconds.
  • the diameter of the ⁇ 0001 ⁇ facet surface 60 on the growth surface 50 was 66 mm.
  • the ⁇ 0001 ⁇ plane orientation difference on the third main surface 151 of the seed substrate 150 was 27 seconds.
  • the diameter of the ⁇ 0001 ⁇ facet surface 60 on the growth surface 50 was 36 mm.
  • the ⁇ 0001 ⁇ plane orientation difference on the third main surface 151 of the seed substrate 150 was 20 seconds.
  • the diameter of the ⁇ 0001 ⁇ facet surface 60 on the growth surface 50 was 34 mm.
  • the ⁇ 0001 ⁇ plane orientation difference on the third main surface 151 of the seed substrate 150 was 8 seconds.
  • the diameter of the ⁇ 0001 ⁇ facet surface 60 on the growth surface 50 was 30 mm.
  • the ⁇ 0001 ⁇ plane orientation difference on the third main surface 151 of the seed substrate 150 was 12 seconds.
  • the diameter of the ⁇ 0001 ⁇ facet surface 60 on the growth surface 50 was 32 mm.
  • the ⁇ 0001 ⁇ plane orientation difference on the third main surface 151 of the seed substrate 150 was 24 seconds.
  • the diameter of the ⁇ 0001 ⁇ facet surface 60 on the growth surface 50 was 64 mm.
  • ⁇ 0001 ⁇ plane orientation difference was measured in first central portion 10 of each silicon carbide substrate 100 of Samples 1 to 7.
  • the plane orientation difference was measured by X-ray diffraction.
  • Cu-K ⁇ 1 was used as an X-ray source, and the (0004) peak was measured.
  • the wavelength was 1.5405 angstroms.
  • the ⁇ 0001 ⁇ plane orientation was measured at 49 (7 points x 7 points) measurement points 5 in the first central portion 10. Among the 49 measurement points 5 that were measured, the maximum value of the ⁇ 0001 ⁇ plane orientation difference between two points 1 cm apart was determined.
  • Table 1 shows the maximum value of the ⁇ 0001 ⁇ plane orientation difference in the first central portion 10 of each of the silicon carbide substrates 100 of Samples 1 to 7. As shown in Table 1, the maximum values of the ⁇ 0001 ⁇ plane orientation differences at the first central portion 10 of the first main surface 1 of the silicon carbide substrates 100 of Samples 1 to 7 are 60 seconds, 74 seconds, and 35 seconds, respectively. seconds, 22 seconds, 10 seconds, 15 seconds and 45 seconds.
  • the present disclosure includes the embodiments described below.
  • (Additional note 1) having a main surface;
  • the main surface is composed of an outer peripheral part within 5 mm from the outer peripheral edge of the main surface, and a central part surrounded by the outer peripheral part,
  • the central portion has a diameter that is half the maximum diameter of the main surface and is composed of a central region centered on the center of the main surface, and an outer peripheral region surrounding the central region,
  • the average value of nitrogen concentration in the central region is higher than the average value of nitrogen concentration in the peripheral region,
  • the average value of the nitrogen concentration in the central region is 1 ⁇ 10 16 cm ⁇ 3 or less
  • the electrical resistivity at any position is 1 ⁇ 10 6 ⁇ cm or more
  • a silicon carbide substrate, wherein the ⁇ 0001 ⁇ plane orientation difference between any two points 1 cm apart in the central portion is 35 seconds or less.
  • (Appendix 6) The silicon carbide substrate according to Supplementary Note 1 or 2, wherein the angle between the main surface and the ⁇ 0001 ⁇ plane is 1° or less.
  • (Appendix 7) The silicon carbide substrate according to appendix 1 or 2, wherein the polytype of silicon carbide constituting the silicon carbide substrate is 4H.
  • (Appendix 8) A silicon carbide substrate according to any one of Supplementary Note 1 or 2, An epitaxial substrate comprising: a nitride epitaxial layer provided on the silicon carbide substrate. (Appendix 9) A step of preparing the epitaxial substrate described in Appendix 8; A method for manufacturing a semiconductor device, comprising the step of forming an electrode on the epitaxial substrate.
  • the main surface is composed of an outer peripheral part within 5 mm from the outer peripheral edge of the main surface, and a central part surrounded by the outer peripheral part, In the central part, the ⁇ 0001 ⁇ plane orientation difference between any two points separated by 1 cm is 35 seconds or less,
  • the growth surface of the silicon carbide crystal includes a first region having a diameter that is half the maximum diameter of the silicon carbide crystal and centered on the center of the growth surface, and a second region surrounding the first region. has been In the step of growing a silicon carbide crystal on the main surface by sublimating the silicon carbide raw material, the ⁇ 0001 ⁇ facet surface is exposed to the first region and not exposed to the second region. Method for producing single crystals.
  • (Appendix 11) The method for producing a silicon carbide single crystal according to appendix 10, wherein the angle between the main surface and the ⁇ 0001 ⁇ plane is 1° or less.
  • (Appendix 12) a step of preparing a silicon carbide single crystal using the method for producing a silicon carbide single crystal according to Appendix 10 or Appendix 11; cutting the silicon carbide single crystal, The method for manufacturing a silicon carbide substrate, wherein the angle between the cut surface of the silicon carbide single crystal and the ⁇ 0001 ⁇ plane is 1° or less.

Abstract

A silicon carbide substrate according to the present invention has a main surface. The main surface is composed of an outer peripheral part which is a portion within 5 mm from the outer peripheral edge of the main surface, and a central part which is surrounded by the outer peripheral part. The central part is composed of a central region which has a diameter that is equal to a half of the maximum diameter of the main surface, and which is centered on the center of the main surface, and an outer peripheral region which surrounds the central region. The average nitrogen concentration in the central region is higher than the average nitrogen concentration in the outer peripheral region. The average nitrogen concentration in the central region is 1 × 1016 cm-3 or less. The electrical resistance at any given position in the central part is 1 × 106 Ωcm or more. The (0001) misorientation between any given two points, which are 1 cm away from each other, in the central part is 35 seconds or less.

Description

炭化珪素基板、炭化珪素基板の製造方法、炭化珪素単結晶の製造方法、エピタキシャル基板および半導体装置の製造方法Silicon carbide substrate, method for manufacturing silicon carbide substrate, method for manufacturing silicon carbide single crystal, method for manufacturing epitaxial substrate and semiconductor device
 本開示は、炭化珪素基板、炭化珪素基板の製造方法、炭化珪素単結晶の製造方法、エピタキシャル基板および半導体装置の製造方法に関する。本出願は、2022年8月31日に出願した日本特許出願である特願2022-138114号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to a silicon carbide substrate, a method for manufacturing a silicon carbide substrate, a method for manufacturing a silicon carbide single crystal, an epitaxial substrate, and a method for manufacturing a semiconductor device. This application claims priority based on Japanese Patent Application No. 2022-138114, which is a Japanese patent application filed on August 31, 2022. All contents described in the Japanese patent application are incorporated herein by reference.
 特開2015-13761号公報(特許文献1)には、主面内の任意の1cm離れた2点間における{0001}面方位差が35秒以下である炭化珪素単結晶基板が記載されている。 JP 2015-13761 A (Patent Document 1) describes a silicon carbide single crystal substrate in which the {0001} plane orientation difference between two arbitrary points 1 cm apart in the main surface is 35 seconds or less. .
特開2015-13761号公報Japanese Patent Application Publication No. 2015-13761
 本開示に係る炭化珪素基板は、主面を備えている。主面は、主面の外周縁から5mm以内の外周部と、外周部に囲まれた中央部とにより構成されている。中央部は、主面の最大径の半分の直径を有しかつ主面の中心を中心とする中央領域と、中央領域を取り囲む外周領域とにより構成されている。中央領域の窒素濃度の平均値は、外周領域の窒素濃度の平均値よりも高い。中央領域の窒素濃度の平均値は、1×1016cm-3以下である。中央部において、任意の位置における電気抵抗率は、1×106Ωcm以上である。中央部において、任意の1cm離れた2点間における{0001}面方位差は、35秒以下である。 A silicon carbide substrate according to the present disclosure includes a main surface. The main surface is composed of an outer peripheral part within 5 mm from the outer peripheral edge of the main surface, and a central part surrounded by the outer peripheral part. The central portion includes a central region having a diameter that is half the maximum diameter of the main surface and centered on the center of the main surface, and an outer peripheral region surrounding the central region. The average value of nitrogen concentration in the central region is higher than the average value of nitrogen concentration in the peripheral region. The average value of the nitrogen concentration in the central region is 1×10 16 cm −3 or less. In the central portion, the electrical resistivity at any position is 1×10 6 Ωcm or more. In the center, the {0001} plane orientation difference between any two points 1 cm apart is 35 seconds or less.
図1は、第1実施形態に係る炭化珪素基板の構成を示す平面模式図である。FIG. 1 is a schematic plan view showing the configuration of a silicon carbide substrate according to the first embodiment. 図2は、図1のII-II線に沿った断面模式図である。FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. 図3は、X線回折の測定点を示す平面模式図である。FIG. 3 is a schematic plan view showing measurement points of X-ray diffraction. 図4は、図3の領域IVの拡大図である。FIG. 4 is an enlarged view of region IV in FIG. 図5は、{0001}面方位差を説明するための断面模式図である。FIG. 5 is a schematic cross-sectional view for explaining the {0001} plane orientation difference. 図6は、本実施形態に係る炭化珪素基板の製造方法の概要を示すフロー図である。FIG. 6 is a flow diagram outlining the method for manufacturing a silicon carbide substrate according to this embodiment. 図7は、種基板の第3主面の構成を示す平面模式図である。FIG. 7 is a schematic plan view showing the configuration of the third main surface of the seed substrate. 図8は、図7のVIII-VIII線に沿った断面模式図である。FIG. 8 is a schematic cross-sectional view taken along line VIII-VIII in FIG. 7. 図9は、坩堝の構成を示す一部断面模式図である。FIG. 9 is a partially cross-sectional schematic diagram showing the structure of the crucible. 図10は、炭化珪素結晶の成長工程を示す断面模式図である。FIG. 10 is a schematic cross-sectional view showing a silicon carbide crystal growth process. 図11は、炭化珪素結晶の成長面の構成を示す平面模式図である。FIG. 11 is a schematic plan view showing the configuration of a growth surface of silicon carbide crystal. 図12は、炭化珪素結晶を加熱する工程を示す断面模式図である。FIG. 12 is a schematic cross-sectional view showing a step of heating silicon carbide crystal. 図13は、炭化珪素結晶を切断する工程を示す断面模式図である。FIG. 13 is a schematic cross-sectional view showing a step of cutting a silicon carbide crystal. 図14は、本実施形態に係る半導体装置の製造方法を概略的に示すフローチャートである。FIG. 14 is a flowchart schematically showing a method for manufacturing a semiconductor device according to this embodiment. 図15は、炭化珪素基板上にバッファ層を形成する工程を示す断面模式図である。FIG. 15 is a schematic cross-sectional view showing a step of forming a buffer layer on a silicon carbide substrate. 図16は、電子走行層および電子供給層を形成する工程を示す断面模式図である。FIG. 16 is a schematic cross-sectional view showing a step of forming an electron transit layer and an electron supply layer. 図17は、本実施形態に係る半導体装置の構成を示す断面模式図である。FIG. 17 is a schematic cross-sectional view showing the configuration of the semiconductor device according to this embodiment.
[本開示が解決しようとする課題] [Problems to be solved by this disclosure]
 本開示の目的は、半導体装置の特性のばらつきを低減することである。
[本開示の効果]
An object of the present disclosure is to reduce variations in characteristics of semiconductor devices.
[Effects of this disclosure]
 本開示によれば、半導体装置の特性のばらつきを低減することができる。
[本開示の実施形態の説明]
According to the present disclosure, variations in characteristics of semiconductor devices can be reduced.
[Description of embodiments of the present disclosure]
 最初に本開示の実施形態を列記して説明する。 First, embodiments of the present disclosure will be listed and described.
 (1)本開示に係る炭化珪素基板100は、主面1を備えている。主面1は、主面1の外周縁から5mm以内の外周部20と、外周部20に囲まれた中央部10とにより構成されている。中央部10は、主面1の最大径の半分の直径を有しかつ主面1の中心を中心とする中央領域11と、中央領域11を取り囲む外周領域12とにより構成されている。中央領域11の窒素濃度の平均値は、外周領域12の窒素濃度の平均値よりも高い。中央領域11の窒素濃度の平均値は、1×1016cm-3以下である。中央部10において、任意の位置における電気抵抗率は、1×106Ωcm以上である。中央部10において、任意の1cm離れた2点間における{0001}面方位差は、35秒以下である。 (1) Silicon carbide substrate 100 according to the present disclosure includes main surface 1. The main surface 1 includes an outer peripheral part 20 within 5 mm from the outer peripheral edge of the main surface 1, and a central part 10 surrounded by the outer peripheral part 20. The central portion 10 includes a central region 11 having a diameter half the maximum diameter of the main surface 1 and centered on the center of the main surface 1, and an outer peripheral region 12 surrounding the central region 11. The average value of the nitrogen concentration in the central region 11 is higher than the average value of the nitrogen concentration in the outer peripheral region 12. The average value of the nitrogen concentration in the central region 11 is 1×10 16 cm −3 or less. In the central portion 10, the electrical resistivity at any position is 1×10 6 Ωcm or more. In the central portion 10, the {0001} plane orientation difference between any two points 1 cm apart is 35 seconds or less.
 (2)上記(1)に係る炭化珪素基板100によれば、p型不純物および補償不純物が、ドーピングされていなくてもよい。 (2) According to the silicon carbide substrate 100 according to (1) above, the p-type impurity and the compensation impurity do not need to be doped.
 (3)上記(1)または(2)に係る炭化珪素基板100によれば、外周領域12の窒素濃度の平均値を中央領域11の窒素濃度の平均値で割った値は、0.7以上0.9以下であってもよい。 (3) According to the silicon carbide substrate 100 according to (1) or (2) above, the value obtained by dividing the average value of the nitrogen concentration in the outer peripheral region 12 by the average value of the nitrogen concentration in the central region 11 is 0.7 or more. It may be 0.9 or less.
 (4)上記(1)または(2)に係る炭化珪素基板100によれば、外周領域12の窒素濃度の平均値は、1×1015cm-3以上1×1016cm-3未満であってもよい。 (4) According to the silicon carbide substrate 100 according to (1) or (2) above, the average value of the nitrogen concentration in the outer peripheral region 12 is 1×10 15 cm −3 or more and less than 1×10 16 cm −3 . It's okay.
 (5)上記(1)から(4)のいずれかに係る炭化珪素基板100によれば、最大径は、100mm以上であってもよい。 (5) According to the silicon carbide substrate 100 according to any one of (1) to (4) above, the maximum diameter may be 100 mm or more.
 (6)上記(1)から(5)のいずれかに係る炭化珪素基板100によれば、主面1と、{0001}面とがなす角度は、1°以下であってもよい。 (6) According to silicon carbide substrate 100 according to any one of (1) to (5) above, the angle between main surface 1 and {0001} plane may be 1° or less.
 (7)上記(1)から(6)のいずれかに係る炭化珪素基板100によれば、炭化珪素基板100を構成する炭化珪素のポリタイプは、4Hであってもよい。 (7) According to silicon carbide substrate 100 according to any one of (1) to (6) above, the polytype of silicon carbide that constitutes silicon carbide substrate 100 may be 4H.
 (8)本開示に係るエピタキシャル基板200は、上記(1)から(7)のいずれか1項に記載の炭化珪素基板100と、炭化珪素基板100上に設けられた窒化物エピタキシャル層30と、を備えている。 (8) Epitaxial substrate 200 according to the present disclosure includes silicon carbide substrate 100 according to any one of (1) to (7) above, nitride epitaxial layer 30 provided on silicon carbide substrate 100, It is equipped with
 (9)本開示に係る半導体装置400の製造方法は以下の工程を備えている。上記(8)に記載のエピタキシャル基板200が準備される。エピタキシャル基板200上に電極が形成される。 (9) A method for manufacturing a semiconductor device 400 according to the present disclosure includes the following steps. The epitaxial substrate 200 described in (8) above is prepared. Electrodes are formed on epitaxial substrate 200.
 (10)本開示に係る炭化珪素単結晶59の製造方法は以下の工程を備えている。主面1を有する種基板150と、炭化珪素原料156とが準備される。炭化珪素原料156を昇華させることにより、主面151において炭化珪素結晶57が成長する。炭化珪素原料156を昇華させることにより、主面151において炭化珪素結晶57を成長させる工程後、炭化珪素結晶57を2000℃以上の温度で加熱することにより、炭化珪素結晶57の電気抵抗率が上昇する。主面151は、主面151の外周縁から5mm以内の外周部120と、外周部120に囲まれた中央部110とにより構成されている。中央部110において、任意の1cm離れた2点間における{0001}面方位差は、35秒以下である。炭化珪素結晶57の成長面50は、炭化珪素結晶57の最大径の半分の直径を有しかつ成長面の中心を中心とする第1領域51と、第1領域51を取り囲む第2領域52とにより構成されている。炭化珪素原料156を昇華させることにより、主面151において炭化珪素結晶57を成長させる工程において、{0001}ファセット面は、第1領域51に露出し、かつ、第2領域52に露出しない。 (10) The method for manufacturing silicon carbide single crystal 59 according to the present disclosure includes the following steps. Seed substrate 150 having main surface 1 and silicon carbide raw material 156 are prepared. By sublimating silicon carbide raw material 156, silicon carbide crystal 57 grows on main surface 151. After the process of growing silicon carbide crystals 57 on main surface 151 by sublimating silicon carbide raw material 156, the electrical resistivity of silicon carbide crystals 57 is increased by heating silicon carbide crystals 57 at a temperature of 2000° C. or higher. do. The main surface 151 includes an outer peripheral part 120 within 5 mm from the outer peripheral edge of the main surface 151 and a central part 110 surrounded by the outer peripheral part 120. In the central portion 110, the {0001} plane orientation difference between any two points 1 cm apart is 35 seconds or less. Growth surface 50 of silicon carbide crystal 57 includes a first region 51 having a diameter half the maximum diameter of silicon carbide crystal 57 and centered at the center of the growth surface, and a second region 52 surrounding first region 51. It is made up of. In the step of growing silicon carbide crystal 57 on main surface 151 by sublimating silicon carbide raw material 156, the {0001} facet is exposed to first region 51 and not exposed to second region 52.
 (11)上記(10)に記載の炭化珪素単結晶59の製造方法によれば、主面151と、{0001}面とがなす角度は、1°以下であってもよい。 (11) According to the method for manufacturing silicon carbide single crystal 59 described in (10) above, the angle between main surface 151 and the {0001} plane may be 1° or less.
 (12)本開示に係る炭化珪素基板100の製造方法は、上記(10)または(11)に記載の炭化珪素単結晶59の製造方法を用いて炭化珪素単結晶59が準備される。炭化珪素単結晶59が切断される。炭化珪素単結晶59の切断面58と、{0001}面とがなす角度は、1°以下である。
[本開示の実施形態の詳細]
(12) In the method for manufacturing silicon carbide substrate 100 according to the present disclosure, silicon carbide single crystal 59 is prepared using the method for manufacturing silicon carbide single crystal 59 described in (10) or (11) above. Silicon carbide single crystal 59 is cut. The angle between cut surface 58 of silicon carbide single crystal 59 and the {0001} plane is 1° or less.
[Details of embodiments of the present disclosure]
 以下、図面に基づいて、本開示の実施形態の詳細について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。 Hereinafter, details of embodiments of the present disclosure will be described based on the drawings. In the following drawings, the same or corresponding parts are given the same reference numerals, and the description thereof will not be repeated. In the crystallographic descriptions in this specification, individual orientations are indicated by [], collective orientations are indicated by <>, individual planes are indicated by (), and collective planes are indicated by {}, respectively. Regarding negative indexes, a "-" (bar) is supposed to be placed above the number in terms of crystallography, but in this specification, a negative sign is placed in front of the number.
 まず、第1実施形態に係る炭化珪素基板100の構成について説明する。図1は、第1実施形態に係る炭化珪素基板100の構成を示す平面模式図である。 First, the configuration of silicon carbide substrate 100 according to the first embodiment will be described. FIG. 1 is a schematic plan view showing the configuration of silicon carbide substrate 100 according to the first embodiment.
 図1に示されるように、第1実施形態に係る炭化珪素基板100は、主面1(第1主面1)を有している。第1主面1は、第1方向101および第2方向102の各々に沿って拡がっている。第1方向101は、特に限定されないが、たとえば<11-20>方向である。第2方向102は、特に限定されないが、たとえば<1-100>方向である。炭化珪素基板100を構成する炭化珪素のポリタイプは、4Hであってもよい。 As shown in FIG. 1, silicon carbide substrate 100 according to the first embodiment has main surface 1 (first main surface 1). The first main surface 1 extends along each of a first direction 101 and a second direction 102. The first direction 101 is, for example, the <11-20> direction, although it is not particularly limited. The second direction 102 is, for example, the <1-100> direction, although it is not particularly limited. The polytype of silicon carbide constituting silicon carbide substrate 100 may be 4H.
 図2は、図1のII-II線に沿った断面模式図である。図2に示される断面は、第1主面1に対して垂直であり、かつ第1方向101に平行である。図2に示されるように、本実施形態に係る炭化珪素基板100は、第2主面2と、第1外周側面3とを有している。第1主面1は、第2主面2の反対側にある。第1外周側面3は、第1主面1および第2主面2の各々に連なっている。炭化珪素基板100の厚みは、たとえば300μm以上700μm以下である。第3方向103は、第1方向101および第2方向102の各々に対して垂直な方向である。炭化珪素基板100の厚み方向は、第3方向103である。 FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. 1. The cross section shown in FIG. 2 is perpendicular to the first main surface 1 and parallel to the first direction 101. As shown in FIG. 2, silicon carbide substrate 100 according to this embodiment has second main surface 2 and first outer circumferential side surface 3. As shown in FIG. The first main surface 1 is on the opposite side of the second main surface 2. The first outer peripheral side surface 3 is continuous with each of the first main surface 1 and the second main surface 2. The thickness of silicon carbide substrate 100 is, for example, 300 μm or more and 700 μm or less. The third direction 103 is a direction perpendicular to each of the first direction 101 and the second direction 102. The thickness direction of silicon carbide substrate 100 is third direction 103 .
 第1主面1は、{0001}面または{0001}面に対してオフ方向に傾斜した面である。第1主面1は、たとえば(0001)面または(0001)面に対してオフ方向に傾斜した面である。この場合、第2主面2(図2参照)は、たとえば(000-1)面または(000-1)面に対してオフ方向に傾斜した面である。 The first principal surface 1 is a {0001} plane or a plane inclined in the off direction with respect to the {0001} plane. The first principal surface 1 is, for example, a (0001) plane or a plane inclined in the off direction with respect to the (0001) plane. In this case, the second principal surface 2 (see FIG. 2) is, for example, a (000-1) plane or a plane inclined in the off direction with respect to the (000-1) plane.
 第1主面1は、たとえば(000-1)面または(000-1)面に対してオフ方向に傾斜した面であってもよい。この場合、第2主面2(図2参照)は、たとえば(0001)面または(0001)面に対してオフ方向に傾斜した面である。オフ方向は、特に限定されないが、たとえば第1方向101である。 The first main surface 1 may be, for example, a (000-1) plane or a plane inclined in the off direction with respect to the (000-1) plane. In this case, the second principal surface 2 (see FIG. 2) is, for example, a (0001) plane or a plane inclined in the off direction with respect to the (0001) plane. The off direction is, for example, the first direction 101, although it is not particularly limited.
 図2に示されるように、第1主面1と、{0001}面とがなす角度は、第3角度θ3とする。第3角度θ3は、たとえば1°以下である。第3角度θ3は、特に限定されないが、たとえば0.8°以下であってもよいし、0.6°以下であってもよいし、0.4°以下であってもよい。第3角度θ3は、特に限定されないが、たとえば0.1°以上であってもよい。 As shown in FIG. 2, the angle between the first principal surface 1 and the {0001} plane is a third angle θ3. The third angle θ3 is, for example, 1° or less. The third angle θ3 is not particularly limited, but may be, for example, 0.8° or less, 0.6° or less, or 0.4° or less. The third angle θ3 is not particularly limited, but may be, for example, 0.1° or more.
 図1を参照して、第1主面1の最大径は、第1直径W1とする。第1直径W1は、たとえば100mm以上である。第1直径W1は、たとえば150mm以上でもよいし、200mm以上でもよい。第1直径W1は、特に限定されないが、たとえば300mm以下であってもよい。第1主面1は、第1外周縁4を有している。第1主面1に対して垂直な方向に見て、第1直径W1は、第1外周縁4上の異なる2点間の最長直線距離である。 Referring to FIG. 1, the maximum diameter of the first main surface 1 is the first diameter W1. The first diameter W1 is, for example, 100 mm or more. The first diameter W1 may be, for example, 150 mm or more, or 200 mm or more. The first diameter W1 is not particularly limited, but may be, for example, 300 mm or less. The first main surface 1 has a first outer peripheral edge 4 . When viewed in a direction perpendicular to the first main surface 1, the first diameter W1 is the longest straight distance between two different points on the first outer peripheral edge 4.
 第1主面1は、第1外周部20と、第1中央部10とにより構成されている。第1外周部20は、第1主面1の第1外周縁4から5mm以内の部分である。別の観点から言えば、第1主面1に対して垂直な方向に見て、第1主面1の径方向における第1外周縁4と、第1外周部20と第1中央部10との境界との距離(第3距離W3)は、5mmである。第1中央部10は、第1外周部20に囲まれている。第1中央部10は、第1外周部20に連なっている。 The first main surface 1 is composed of a first outer peripheral portion 20 and a first central portion 10. The first outer circumferential portion 20 is a portion within 5 mm from the first outer circumferential edge 4 of the first main surface 1 . From another perspective, when viewed in a direction perpendicular to the first main surface 1, the first outer peripheral edge 4, the first outer peripheral part 20, and the first central part 10 in the radial direction of the first main surface 1 The distance from the boundary (third distance W3) is 5 mm. The first central portion 10 is surrounded by a first outer peripheral portion 20. The first central portion 10 is continuous with the first outer peripheral portion 20.
 第1中央部10は、第1中央領域11と、第1外周領域12とにより構成されている。第1外周領域12は、第1中央領域11を取り囲んでいる。第1外周領域12は、第1中央領域11に連なっている。第1外周領域12は、環状である。第1主面1に対して垂直な方向に見て、第1中央領域11は、円形である。第1中央領域11は、第1主面1の最大径(第1直径W1)の半分の直径を有している。第1中央領域11の直径は、第2直径W2とする。第2直径W2は、第1直径W1の半分である。第1中央領域11は、第1主面1の中心13を中心とする円である。別の観点から言えば、第1中央領域11の中心13は、第1主面1の中心13と一致する。 The first central portion 10 is composed of a first central region 11 and a first outer peripheral region 12. The first outer peripheral region 12 surrounds the first central region 11 . The first outer peripheral region 12 is continuous with the first central region 11 . The first outer peripheral region 12 is annular. When viewed in a direction perpendicular to the first main surface 1, the first central region 11 is circular. The first central region 11 has a diameter that is half the maximum diameter (first diameter W1) of the first main surface 1. The diameter of the first central region 11 is the second diameter W2. The second diameter W2 is half the first diameter W1. The first central region 11 is a circle centered on the center 13 of the first main surface 1 . From another perspective, the center 13 of the first central region 11 coincides with the center 13 of the first main surface 1.
 炭化珪素基板100は、n型不純物として窒素を含んでいる。第1中央領域11の窒素濃度の平均値は、第1外周領域12の窒素濃度の平均値よりも高い。第1中央領域11の窒素濃度の平均値は、1×1016cm-3以下である。第1中央領域11の窒素濃度の平均値は、特に限定されないが、たとえば1×1015cm-3以上であってもよいし、2×1015cm-3以上であってもよい。第1中央領域11の任意の領域において、窒素濃度は、1×1016cm-3以下であってもよい。第1中央領域11の任意の領域において、窒素濃度は、1×1015cm-3以上であってもよい。 Silicon carbide substrate 100 contains nitrogen as an n-type impurity. The average value of the nitrogen concentration in the first central region 11 is higher than the average value of the nitrogen concentration in the first peripheral region 12. The average value of the nitrogen concentration in the first central region 11 is 1×10 16 cm −3 or less. The average value of the nitrogen concentration in the first central region 11 is not particularly limited, but may be, for example, 1×10 15 cm −3 or more, or 2×10 15 cm −3 or more. In any region of the first central region 11, the nitrogen concentration may be 1×10 16 cm −3 or less. In any region of the first central region 11, the nitrogen concentration may be 1×10 15 cm −3 or more.
 第1外周領域12の窒素濃度の平均値は、1×1015cm-3以上1×1016cm-3未満であってもよい。第1外周領域12の窒素濃度の平均値は、特に限定されないが、たとえば1.5×1015cm-3以上であってもよいし、2×1015cm-3以上であってもよい。第1外周領域12の窒素濃度の平均値は、特に限定されないが、たとえば9×1015cm-3以下であってもよいし、8×1015cm-3以下であってもよい。 The average value of the nitrogen concentration in the first outer peripheral region 12 may be 1×10 15 cm −3 or more and less than 1×10 16 cm −3 . The average value of the nitrogen concentration in the first outer peripheral region 12 is not particularly limited, but may be, for example, 1.5×10 15 cm −3 or more, or 2×10 15 cm −3 or more. The average value of the nitrogen concentration in the first outer peripheral region 12 is not particularly limited, but may be, for example, 9×10 15 cm −3 or less, or 8×10 15 cm −3 or less.
 第1外周領域12の窒素濃度の平均値を第1中央領域11の窒素濃度の平均値で割った値は、たとえば0.7以上0.9以下であってもよい。第1外周領域12の窒素濃度の平均値を第1中央領域11の窒素濃度の平均値で割った値は、特に限定されないが、たとえば0.72以上であってもよいし、0.74以上であってもよい。第1外周領域12の窒素濃度の平均値を第1中央領域11の窒素濃度の平均値で割った値は、特に限定されないが、たとえば0.88以下であってもよいし、0.86以下であってもよい。 The value obtained by dividing the average value of the nitrogen concentration in the first outer peripheral region 12 by the average value of the nitrogen concentration in the first central region 11 may be, for example, 0.7 or more and 0.9 or less. The value obtained by dividing the average value of the nitrogen concentration in the first peripheral region 12 by the average value of the nitrogen concentration in the first central region 11 is not particularly limited, but may be, for example, 0.72 or more, or 0.74 or more. It may be. The value obtained by dividing the average value of the nitrogen concentration in the first peripheral region 12 by the average value of the nitrogen concentration in the first central region 11 is not particularly limited, but may be, for example, 0.88 or less, or 0.86 or less. It may be.
 炭化珪素基板100には、p型不純物および補償不純物は、ドーピングされていなくてもよい。具体的には、炭化珪素基板100には、製造過程においてp型不純物および補償不純物が積極的にドーピングされていない。炭化珪素基板100には、製造過程において意図しない不純物として、p型不純物および補償不純物が取り込まれていてもよい。p型不純物および補償不純物の各々の濃度が1×1016cm-3以下であれば、p型不純物および補償不純物の各々がドーピングされていないと判断される。 Silicon carbide substrate 100 does not need to be doped with p-type impurities and compensation impurities. Specifically, silicon carbide substrate 100 is not actively doped with p-type impurities and compensation impurities during the manufacturing process. P-type impurities and compensation impurities may be incorporated into silicon carbide substrate 100 as unintended impurities during the manufacturing process. If the concentration of each of the p-type impurity and the compensation impurity is 1×10 16 cm −3 or less, it is determined that the p-type impurity and the compensation impurity are not doped.
 p型不純物は、たとえばアルミニウム(Al)またはホウ素(B)などである。補償不純物は、深い準位を有する不純物である。補償不純物は、具体的には、バナジウム(V)またはチタン(Ti)などである。 The p-type impurity is, for example, aluminum (Al) or boron (B). A compensation impurity is an impurity having a deep level. Specifically, the compensation impurity is vanadium (V) or titanium (Ti).
 不純物の濃度は、たとえば二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)によって測定される。SIMSにおいては、たとえばCameca社製の二次イオン質量分析装置であるIMS7fを使用することができる。SIMSにおける測定条件は、たとえば、一次イオンがO 、一次イオンエネルギーが8keVという測定条件を用いることができる。 The concentration of impurities is measured, for example, by secondary ion mass spectrometry (SIMS). In SIMS, for example, IMS7f, which is a secondary ion mass spectrometer manufactured by Cameca, can be used. As the measurement conditions in SIMS, for example, the primary ion is O 2 + and the primary ion energy is 8 keV.
 第1中央部10において、任意の位置における電気抵抗率は、1×106Ωcm以上である。第1中央部10における電気抵抗率は、特に限定されないが、たとえば1×108Ωcm以上であってもよいし、1×1010Ωcm以上であってもよいし、1×1012Ωcm以上であってもよい。第1中央部10における電気抵抗率は、特に限定されないが、たとえば1×1014Ωcm以下であってもよいし、1×1013Ωcm以下であってもよい。 In the first central portion 10, the electrical resistivity at any position is 1×10 6 Ωcm or more. The electrical resistivity in the first central portion 10 is not particularly limited, but may be, for example, 1×10 8 Ωcm or more, 1×10 10 Ωcm or more, or 1×10 12 Ωcm or more. There may be. The electrical resistivity in the first central portion 10 is not particularly limited, but may be, for example, 1×10 14 Ωcm or less, or 1×10 13 Ωcm or less.
 第1中央部10の電気抵抗率は、たとえばSemimap社製の電気抵抗率測定装置であるCOREMA-WTを用いて測定される。被測定物に印加する電圧は、たとえば5.0Vである。 The electrical resistivity of the first central portion 10 is measured using, for example, COREMA-WT, which is an electrical resistivity measuring device manufactured by Semimap. The voltage applied to the object to be measured is, for example, 5.0V.
 次に、{0001}面方位差の測定方法について説明する。第1主面1内における任意の位置における面方位差は、たとえばX線回折により測定可能である。X線源として、たとえばCu-Kα1を使用し、(0004)ピークが測定される。波長は1.5405オングストローム(単色化)である。 Next, a method for measuring the {0001} plane orientation difference will be explained. The surface orientation difference at any position within the first principal surface 1 can be measured by, for example, X-ray diffraction. For example, Cu-Kα1 is used as an X-ray source, and the (0004) peak is measured. The wavelength is 1.5405 angstroms (monochromatic).
 図3は、X線回折の測定点を示す平面模式図である。図3に示されるように、第1主面1上における49点(7点×7点)の測定点5において、{0001}面方位差が測定される。第1方向101に沿って、X線回折の測定点5の位置は、1cm間隔で7点配置されている。同様に、第2方向102に沿って、X線回折の測定点5の位置は、1cm間隔で7点配置されている。測定点5の一つは、第1主面1の中心に位置していてもよい。 FIG. 3 is a schematic plan view showing measurement points for X-ray diffraction. As shown in FIG. 3, the {0001} plane orientation difference is measured at 49 (7 points x 7 points) measurement points 5 on the first principal surface 1. Along the first direction 101, seven X-ray diffraction measurement points 5 are arranged at 1 cm intervals. Similarly, along the second direction 102, seven X-ray diffraction measurement points 5 are arranged at 1 cm intervals. One of the measurement points 5 may be located at the center of the first main surface 1.
 図4は、図3の領域IVの拡大図である。測定点5は、第1測定位置61と、第2測定位置62とを有している。たとえば、第1主面1内の第1測定位置61において、{0001}面方位がX線により測定される。X線のスポット径Dは、たとえば3mmである。第1測定位置61において{0001}面方位を測定する場合、X線のスポットの中心が第1測定位置61に位置するように調整される。同様に、第1測定位置61から1cm離れた第2測定位置62において、{0001}面方位を測定する場合、X線のスポットの中心が第2測定位置62と一致するようにX線のスポットの位置が調整される。言い換えれば、X線の第1スポットS1の中心と、X線の第2スポットS2の中心とは、1cm離れている。 FIG. 4 is an enlarged view of region IV in FIG. 3. The measurement point 5 has a first measurement position 61 and a second measurement position 62. For example, at the first measurement position 61 within the first principal surface 1, the {0001} plane orientation is measured using X-rays. The X-ray spot diameter D is, for example, 3 mm. When measuring the {0001} plane orientation at the first measurement position 61, the center of the X-ray spot is adjusted to be located at the first measurement position 61. Similarly, when measuring the {0001} plane orientation at a second measurement position 62 1 cm away from the first measurement position 61, the X-ray spot is adjusted so that the center of the X-ray spot coincides with the second measurement position 62. The position of is adjusted. In other words, the center of the first X-ray spot S1 and the center of the second X-ray spot S2 are 1 cm apart.
 次に、{0001}面方位差について説明する。図5は、{0001}面方位差を説明するための断面模式図である。図5に示される図は、図4のV-V線に沿った断面図である。炭化珪素基板100の第1主面1付近を詳細に観察すると、炭化珪素基板100は、微小に面方位の異なる多数のドメインから構成されている。つまり、炭化珪素基板100の第1主面1が平均的に見て{0001}面である場合においても、第1主面1の面内における各位置の{0001}面方位は、第1主面1の法線方向nから微小にずれている。 Next, the {0001} plane orientation difference will be explained. FIG. 5 is a schematic cross-sectional view for explaining the {0001} plane orientation difference. The diagram shown in FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. When observing the vicinity of first main surface 1 of silicon carbide substrate 100 in detail, silicon carbide substrate 100 is composed of a large number of domains with slightly different plane orientations. In other words, even when first principal surface 1 of silicon carbide substrate 100 is a {0001} plane on average, the {0001} plane orientation at each position within the plane of first principal surface 1 is It is slightly shifted from the normal direction n of surface 1.
 図5に示されるように、第1主面1の第1測定位置61における{0001}面方位c1は、第1主面1の法線方向nから第1角度θ1だけ、ある方向にずれている。同様に、第1測定位置61から1cmだけ離れた第2測定位置62における{0001}面方位c2は、第1主面1の法線方向nから第2角度θ2だけ、ある方向にずれている。 As shown in FIG. 5, the {0001} plane orientation c1 at the first measurement position 61 of the first principal surface 1 is shifted in a certain direction by a first angle θ1 from the normal direction n of the first principal surface 1. There is. Similarly, the {0001} plane orientation c2 at the second measurement position 62, which is 1 cm away from the first measurement position 61, is shifted in a certain direction by a second angle θ2 from the normal direction n of the first principal surface 1. .
 本実施形態において、{0001}面方位差とは、第1角度θ1と第2角度θ2との差の絶対値である。つまり、任意の1cm離れた2点において{0001}面方位が測定され、当該2点間における{0001}面方位差が計算される。 In this embodiment, the {0001} plane orientation difference is the absolute value of the difference between the first angle θ1 and the second angle θ2. That is, the {0001} plane orientation is measured at two arbitrary points separated by 1 cm, and the {0001} plane orientation difference between the two points is calculated.
 本実施形態に係る炭化珪素基板100によれば、第1中央部10において、任意の1cm離れた2点間における{0001}面方位差は、35秒以下である。任意の1cm離れた2点間における{0001}面方位差は、特に限定されないが、たとえば33秒以下であってもよいし、31秒以下であってもよい。任意の1cm離れた2点間における{0001}面方位差は、特に限定されないが、たとえば10秒以上であってもよいし、15秒以上であってもよいし、20秒以上であってもよいし、25秒以上であってもよい。 According to the silicon carbide substrate 100 according to the present embodiment, the {0001} plane orientation difference between any two points 1 cm apart in the first central portion 10 is 35 seconds or less. The {0001} plane orientation difference between any two points separated by 1 cm is not particularly limited, but may be, for example, 33 seconds or less, or 31 seconds or less. The {0001} plane orientation difference between any two points 1 cm apart is not particularly limited, but may be, for example, 10 seconds or more, 15 seconds or more, or 20 seconds or more. It may be 25 seconds or more.
 <炭化珪素基板の製造方法> <Method for manufacturing silicon carbide substrate>
 次に、本実施形態に係る炭化珪素基板100の製造方法について説明する。図6は、本実施形態に係る炭化珪素基板100の製造方法の概要を示すフロー図である。図6に示されるように、本実施形態に係る炭化珪素基板100の製造方法は、種基板と炭化珪素原料とを準備する工程(S10)と、炭化珪素結晶を成長させる工程(S20)と、炭化珪素結晶を加熱する工程(S30)と、炭化珪素結晶を切断する工程(S40)とを主に有している。 Next, a method for manufacturing silicon carbide substrate 100 according to this embodiment will be described. FIG. 6 is a flow diagram showing an overview of the method for manufacturing silicon carbide substrate 100 according to this embodiment. As shown in FIG. 6, the method for manufacturing silicon carbide substrate 100 according to the present embodiment includes a step of preparing a seed substrate and a silicon carbide raw material (S10), a step of growing a silicon carbide crystal (S20), The method mainly includes a step of heating the silicon carbide crystal (S30) and a step of cutting the silicon carbide crystal (S40).
 まず、種基板150が準備される。種基板150は、第3主面151を有している。図7は、種基板150の第3主面151の構成を示す平面模式図である。図7に示されるように、第3主面151は、第1方向101および第2方向102の各々に沿って拡がっている。第1方向101は、特に限定されないが、たとえば<11-20>方向である。第2方向102は、特に限定されないが、たとえば<1-100>方向である。種基板150を構成する炭化珪素のポリタイプは、4Hであってもよい。 First, a seed substrate 150 is prepared. Seed substrate 150 has a third main surface 151. FIG. 7 is a schematic plan view showing the configuration of the third main surface 151 of the seed substrate 150. As shown in FIG. 7, the third main surface 151 extends along each of the first direction 101 and the second direction 102. The first direction 101 is, for example, the <11-20> direction, although it is not particularly limited. The second direction 102 is, for example, the <1-100> direction, although it is not particularly limited. The polytype of silicon carbide constituting seed substrate 150 may be 4H.
 図8は、図7のVIII-VIII線に沿った断面模式図である。図8に示される断面は、第3主面151に対して垂直であり、かつ第1方向101に平行である。図8に示されるように、種基板150は、第4主面152と、第2外周側面153とを有している。第4主面152は、第3主面151の反対側にある。第2外周側面153は、第3主面151および第4主面152の各々に連なっている。第3方向103は、第1方向101および第2方向102の各々に対して垂直な方向である。 FIG. 8 is a schematic cross-sectional view taken along line VIII-VIII in FIG. 7. The cross section shown in FIG. 8 is perpendicular to the third main surface 151 and parallel to the first direction 101. As shown in FIG. 8, the seed substrate 150 has a fourth main surface 152 and a second outer peripheral side surface 153. The fourth main surface 152 is on the opposite side of the third main surface 151. The second outer peripheral side surface 153 is continuous with each of the third main surface 151 and the fourth main surface 152. The third direction 103 is a direction perpendicular to each of the first direction 101 and the second direction 102.
 第3主面151は、{0001}面または{0001}面に対してオフ方向に傾斜した面である。第1主面1は、たとえば(0001)面または(0001)面に対してオフ方向に傾斜した面である。この場合、第4主面152(図8参照)は、たとえば(000-1)面または(000-1)面に対してオフ方向に傾斜した面である。 The third principal surface 151 is a {0001} plane or a plane inclined in the off direction with respect to the {0001} plane. The first principal surface 1 is, for example, a (0001) plane or a plane inclined in the off direction with respect to the (0001) plane. In this case, the fourth principal surface 152 (see FIG. 8) is, for example, a (000-1) plane or a plane inclined in the off direction with respect to the (000-1) plane.
 第3主面151は、たとえば(000-1)面または(000-1)面に対してオフ方向に傾斜した面であってもよい。この場合、第4主面152(図8参照)は、たとえば(0001)面または(0001)面に対してオフ方向に傾斜した面である。オフ方向は、特に限定されないが、たとえば第1方向101である。 The third principal surface 151 may be, for example, a (000-1) plane or a plane inclined in the off direction with respect to the (000-1) plane. In this case, the fourth principal surface 152 (see FIG. 8) is, for example, a (0001) plane or a plane inclined in the off direction with respect to the (0001) plane. The off direction is, for example, the first direction 101, although it is not particularly limited.
 第3主面151と、{0001}面とがなす角度は、第4角度θ4とする。第4角度θ4は、たとえば1°以下である。第4角度θ4は、特に限定されないが、たとえば0.8°以下であってもよいし、0.6°以下であってもよいし、0.4°以下であってもよい。第4角度θ4は、特に限定されないが、たとえば0.1°以上であってもよい。 The angle between the third principal surface 151 and the {0001} plane is a fourth angle θ4. The fourth angle θ4 is, for example, 1° or less. The fourth angle θ4 is not particularly limited, but may be, for example, 0.8° or less, 0.6° or less, or 0.4° or less. The fourth angle θ4 is not particularly limited, but may be, for example, 0.1° or more.
 図7を参照して、第3主面151の最大径は、第4直径W4とする。第4直径W4は、たとえば100mm以上である。第4直径W4は、たとえば150mm以上でもよいし、200mm以上でもよい。第4直径W4は、特に限定されないが、たとえば300mm以下であってもよい。第3主面151は、第2外周縁154を有している。第3主面151に対して垂直な方向に見て、第4直径W4は、第2外周縁154上の異なる2点間の最長直線距離である。 Referring to FIG. 7, the maximum diameter of the third main surface 151 is a fourth diameter W4. The fourth diameter W4 is, for example, 100 mm or more. The fourth diameter W4 may be, for example, 150 mm or more, or 200 mm or more. The fourth diameter W4 is not particularly limited, but may be, for example, 300 mm or less. The third main surface 151 has a second outer peripheral edge 154. When viewed in a direction perpendicular to the third main surface 151, the fourth diameter W4 is the longest straight distance between two different points on the second outer peripheral edge 154.
 図7に示されるように、第3主面151は、第2外周部120と、第2中央部110とにより構成されている。第2外周部120は、第3主面151の第2外周縁154から5mm以内の部分である。別の観点から言えば、第3主面151に対して垂直な方向に見て、第3主面151の径方向における第2外周縁154と、第2外周部120と第2中央部110との境界との距離(第6距離W6)は、5mmである。第2中央部110は、第2外周部120に囲まれている。第2中央部110は、第2外周部120に連なっている。 As shown in FIG. 7, the third main surface 151 is composed of a second outer peripheral portion 120 and a second central portion 110. The second outer peripheral portion 120 is a portion within 5 mm from the second outer peripheral edge 154 of the third main surface 151. From another perspective, when viewed in a direction perpendicular to the third main surface 151, the second outer peripheral edge 154, the second outer peripheral portion 120, and the second central portion 110 in the radial direction of the third main surface 151 The distance from the boundary (sixth distance W6) is 5 mm. The second central portion 110 is surrounded by a second outer peripheral portion 120. The second central portion 110 is continuous with the second outer peripheral portion 120.
 第2中央部110は、第2中央領域111と、第2外周領域112とにより構成されている。第2外周領域112は、第2中央領域111を取り囲んでいる。第2外周領域112は、第2中央領域111に連なっている。第2外周領域112は、環状である。第3主面151に対して垂直な方向に見て、第2中央領域111は、円形である。第2中央領域111は、第3主面151の最大径の半分の直径を有している。第2中央領域111の直径は、第5直径W5とする。第5直径W5は、第4直径W4の半分である。第2中央領域111は、第3主面151の中心113を中心とする円である。別の観点から言えば、第2中央領域111の中心113は、第3主面151の中心113と一致する。 The second central portion 110 is composed of a second central region 111 and a second outer peripheral region 112. The second outer peripheral region 112 surrounds the second central region 111 . The second outer peripheral region 112 is continuous with the second central region 111. The second outer peripheral region 112 is annular. When viewed in a direction perpendicular to the third main surface 151, the second central region 111 is circular. The second central region 111 has a diameter that is half the maximum diameter of the third main surface 151. The diameter of the second central region 111 is a fifth diameter W5. The fifth diameter W5 is half the fourth diameter W4. The second central region 111 is a circle centered on the center 113 of the third main surface 151. From another perspective, the center 113 of the second central region 111 coincides with the center 113 of the third main surface 151.
 第2中央部110において、任意の1cm離れた2点間における{0001}面方位差は、35秒以下である。任意の1cm離れた2点間における{0001}面方位差は、特に限定されないが、たとえば33秒以下であってもよいし、31秒以下であってもよい。任意の1cm離れた2点間における{0001}面方位差は、特に限定されないが、たとえば8秒以上であってもよいし、12秒以上であってもよいし、20秒以上であってもよいし、25秒以上であってもよい。 In the second central portion 110, the {0001} plane orientation difference between any two points 1 cm apart is 35 seconds or less. The {0001} plane orientation difference between any two points separated by 1 cm is not particularly limited, but may be, for example, 33 seconds or less, or 31 seconds or less. The {0001} plane orientation difference between any two points 1 cm apart is not particularly limited, but may be, for example, 8 seconds or more, 12 seconds or more, or 20 seconds or more. It may be 25 seconds or more.
 次に、炭化珪素結晶を成長させる工程(S20)が実施される。図9は、坩堝の構成を示す一部断面模式図である。坩堝130は、黒鉛製である。坩堝130は、収容部132と、蓋部131とを有している。蓋部131は、収容部132上に配置される。誘導加熱コイル(図示せず)は、坩堝130の外周の周りにおいて螺旋状に配置されている。誘導加熱コイルに対して電力が印加されることにより、坩堝130が電磁誘導により加熱される。 Next, a step (S20) of growing silicon carbide crystals is performed. FIG. 9 is a schematic partial cross-sectional view showing the structure of the crucible. The crucible 130 is made of graphite. The crucible 130 has a housing section 132 and a lid section 131. The lid part 131 is arranged on the accommodating part 132. An induction heating coil (not shown) is arranged helically around the outer periphery of crucible 130. By applying electric power to the induction heating coil, the crucible 130 is heated by electromagnetic induction.
 図9に示されるように、炭化珪素原料156が収容部132に配置される。炭化珪素原料156は、たとえば多結晶炭化珪素の粉末である。種基板150は、たとえば接着剤(図示せず)を用いて蓋部131に固定される。種基板150は、第3主面151と、第4主面152とを有している。第3主面151は、炭化珪素原料156に対向する。第4主面152は、蓋部131に対向する。種基板150の第3主面151は、炭化珪素原料156の表面に対向するように配置される。以上のように、種基板150と炭化珪素原料156とは、坩堝130に配置される。 As shown in FIG. 9, silicon carbide raw material 156 is placed in storage portion 132. Silicon carbide raw material 156 is, for example, polycrystalline silicon carbide powder. Seed substrate 150 is fixed to lid 131 using, for example, an adhesive (not shown). Seed substrate 150 has a third main surface 151 and a fourth main surface 152. Third main surface 151 faces silicon carbide raw material 156. The fourth main surface 152 faces the lid portion 131. Third main surface 151 of seed substrate 150 is arranged to face the surface of silicon carbide raw material 156. As described above, seed substrate 150 and silicon carbide raw material 156 are placed in crucible 130.
 図10は、炭化珪素結晶57の成長工程を示す断面模式図である。まず、種基板150の第3主面151の温度が炭化珪素原料156の温度よりも低い状態で、坩堝130内の圧力が低減される。坩堝130内の雰囲気ガスの圧力が、たとえば1.0kPaまで減圧される。これにより、炭化珪素原料156が昇華を開始し、昇華した炭化珪素ガスが種基板150の第3主面151において再結晶化する。第3主面151上において、炭化珪素結晶57が単結晶成長する。炭化珪素結晶57が成長している間、坩堝130内の圧力は、たとえば0.1kPa以上3kPa以下程度に維持される。 FIG. 10 is a schematic cross-sectional view showing the growth process of silicon carbide crystal 57. First, the pressure in crucible 130 is reduced while the temperature of third main surface 151 of seed substrate 150 is lower than the temperature of silicon carbide raw material 156. The pressure of the atmospheric gas in the crucible 130 is reduced to, for example, 1.0 kPa. As a result, silicon carbide raw material 156 starts to sublimate, and the sublimated silicon carbide gas recrystallizes on third main surface 151 of seed substrate 150 . On third principal surface 151, silicon carbide crystal 57 grows as a single crystal. While silicon carbide crystal 57 is growing, the pressure within crucible 130 is maintained at, for example, approximately 0.1 kPa or more and 3 kPa or less.
 以上のように、炭化珪素原料156を昇華させることにより、第3主面151において炭化珪素結晶57が成長する。炭化珪素結晶57を成長させる工程において、炭化珪素結晶57の温度は、たとえば2100℃以上2300℃以下である。炭化珪素結晶57の温度は、特に限定されないが、たとえば2125℃以上であってもよいし、2150℃以上であってもよい。炭化珪素結晶57の温度は、特に限定されないが、たとえば2250℃以下であってもよいし、2275℃以下であってもよい。 As described above, by sublimating silicon carbide raw material 156, silicon carbide crystal 57 grows on third main surface 151. In the step of growing silicon carbide crystal 57, the temperature of silicon carbide crystal 57 is, for example, 2100° C. or more and 2300° C. or less. The temperature of silicon carbide crystal 57 is not particularly limited, and may be, for example, 2125° C. or higher, or 2150° C. or higher. The temperature of silicon carbide crystal 57 is not particularly limited, and may be, for example, 2250° C. or lower, or 2275° C. or lower.
 図10に示されるように、炭化珪素結晶57は、炭化珪素原料156に対向する成長面50を有している。炭化珪素結晶57が成長するにつれて、成長面50は炭化珪素原料156に近づく。別の観点から言えば、結晶成長開始から結晶成長終了までの間、炭化珪素結晶57の成長面50は、炭化珪素原料156に向かって移動する。炭化珪素結晶57が成長するにつれて、炭化珪素結晶57の直径は大きくなっている。炭化珪素結晶57は、第3中央領域55と、第3外周領域56とを有している。第3中央領域55は、{0001}ファセット面が積み重なって形成された領域である。第3外周領域56は、第3中央領域55を取り囲んでいる。第3外周領域56は、非ファセット面が積み重なって形成された領域である。 As shown in FIG. 10, silicon carbide crystal 57 has a growth surface 50 facing silicon carbide raw material 156. As silicon carbide crystal 57 grows, growth surface 50 approaches silicon carbide raw material 156. From another perspective, from the start of crystal growth to the end of crystal growth, growth surface 50 of silicon carbide crystal 57 moves toward silicon carbide raw material 156. As silicon carbide crystal 57 grows, the diameter of silicon carbide crystal 57 increases. Silicon carbide crystal 57 has a third central region 55 and a third outer peripheral region 56. The third central region 55 is a region formed by stacking {0001} facet surfaces. The third outer peripheral region 56 surrounds the third central region 55. The third outer peripheral region 56 is a region formed by stacking non-facet surfaces.
 図11は、炭化珪素結晶57の成長面50の構成を示す平面模式図である。図11に示されるように、炭化珪素結晶57の成長面50は、第1領域51と、第2領域52とにより構成されている。第1領域51は、炭化珪素結晶57の最大径の半分の直径を有している。炭化珪素結晶57の最大径は、第7直径W7である。第1領域51の直径は、第8直径W8である。第8直径W8は、第7直径W7の半分である。第1領域51の中心は、成長面50の中心と一致する。第2領域52は、第1領域51を取り囲んでいる。第2領域52は、第1領域51に連なっている。 FIG. 11 is a schematic plan view showing the configuration of a growth surface 50 of silicon carbide crystal 57. As shown in FIG. 11, growth surface 50 of silicon carbide crystal 57 is composed of a first region 51 and a second region 52. First region 51 has a diameter that is half the maximum diameter of silicon carbide crystal 57 . The maximum diameter of silicon carbide crystal 57 is seventh diameter W7. The diameter of the first region 51 is the eighth diameter W8. The eighth diameter W8 is half the seventh diameter W7. The center of the first region 51 coincides with the center of the growth surface 50. The second region 52 surrounds the first region 51. The second region 52 is continuous with the first region 51.
 炭化珪素原料156を昇華させることにより、第3主面151において炭化珪素結晶57を成長させる工程において、{0001}ファセット面60は、第1領域51に露出し、かつ、第2領域52に露出しない。図11に示されるように、{0001}ファセット面60は、第1領域51の少なくとも一部に露出している。{0001}ファセット面60は、成長面50の中心53を含んでいてもよい。{0001}ファセット面60は、(0001)ファセット面であってもよいし、(000-1)面ファセット面であってもよい。 In the step of growing silicon carbide crystal 57 on third principal surface 151 by sublimating silicon carbide raw material 156, {0001} facet surface 60 is exposed to first region 51 and exposed to second region 52. do not. As shown in FIG. 11, the {0001} facet surface 60 is exposed in at least a portion of the first region 51. The {0001} facet surface 60 may include the center 53 of the growth surface 50. The {0001} facet surface 60 may be a (0001) facet surface or a (000-1) facet surface.
 ファセット面60においては、螺旋転位の転位線を中心として、螺旋状にステップ(図示せず)が形成されていてもよい。炭化珪素結晶57は、螺旋転位をステップの供給源として螺旋状にステップフロー成長してもよい。成長面50において、ファセット面以外の領域は、非ファセット面である。非ファセット面は、第2領域52に露出している。非ファセット面の一部は、第1領域51に露出していてもよい。 On the facet surface 60, steps (not shown) may be formed in a spiral shape around the dislocation line of the screw dislocation. Silicon carbide crystal 57 may be grown in a spiral step flow manner using screw dislocation as a step source. In the growth surface 50, the region other than the facet surface is a non-facet surface. The non-faceted surface is exposed in the second region 52. A portion of the non-facet surface may be exposed to the first region 51.
 非ファセット面と比較して、ファセット面においては窒素が取り込まれやすい。そのため、ファセット面の窒素濃度は、非ファセット面の窒素濃度よりも高くなる。第1領域51の窒素濃度は、第2領域52の窒素濃度よりも高くてもよい。 Compared to non-facet surfaces, nitrogen is more likely to be taken in on facet surfaces. Therefore, the nitrogen concentration on the facet surface is higher than the nitrogen concentration on the non-facet surface. The nitrogen concentration in the first region 51 may be higher than the nitrogen concentration in the second region 52.
 図11に示されるように、第3主面151に対して垂直な方向に見て、{0001}ファセット面60の最大径は、第9直径W9である。第9直径W9は、第8直径W8よりも小さい。第9直径W9は、特に限定されないが、たとえば第7直径W7の0.1倍以上であってもよいし、0.2倍以上であってもよい。 As shown in FIG. 11, the maximum diameter of the {0001} facet surface 60 when viewed in the direction perpendicular to the third principal surface 151 is the ninth diameter W9. The ninth diameter W9 is smaller than the eighth diameter W8. The ninth diameter W9 is not particularly limited, but may be, for example, 0.1 times or more, or 0.2 times or more the seventh diameter W7.
 次に、炭化珪素結晶を加熱する工程(S30)が実施される。図12は、炭化珪素結晶57を加熱する工程を示す断面模式図である。 Next, a step (S30) of heating the silicon carbide crystal is performed. FIG. 12 is a schematic cross-sectional view showing a step of heating silicon carbide crystal 57.
 炭化珪素結晶57は、坩堝130から取り外された後、加熱装置301の内部に配置される。図12に示されるように、炭化珪素結晶57が加熱装置301の内部に配置された状態で、炭化珪素結晶57がアニールされる。炭化珪素結晶57は、たとえば2000℃以上の温度で加熱される。炭化珪素結晶57は、たとえばアルゴン雰囲気中において、2500℃以上の温度で1時間程度加熱される。 After silicon carbide crystal 57 is removed from crucible 130 , it is placed inside heating device 301 . As shown in FIG. 12, silicon carbide crystal 57 is annealed with silicon carbide crystal 57 disposed inside heating device 301. As shown in FIG. Silicon carbide crystal 57 is heated, for example, at a temperature of 2000° C. or higher. Silicon carbide crystal 57 is heated, for example, in an argon atmosphere at a temperature of 2500° C. or higher for about one hour.
 次に、炭化珪素結晶57が急冷される。これにより、炭化珪素結晶57において点欠陥が形成される。結果として、炭化珪素結晶57の電気抵抗率が上昇する。炭化珪素結晶57の電気抵抗率は、たとえば1×1012Ωcm以上である。以上により、本実施形態に係る炭化珪素単結晶59が製造される(図13参照)。 Next, silicon carbide crystal 57 is rapidly cooled. As a result, point defects are formed in silicon carbide crystal 57. As a result, the electrical resistivity of silicon carbide crystal 57 increases. The electrical resistivity of silicon carbide crystal 57 is, for example, 1×10 12 Ωcm or more. Through the above steps, silicon carbide single crystal 59 according to this embodiment is manufactured (see FIG. 13).
 次に、炭化珪素単結晶を切断する工程(S40)が実施される。図13は、炭化珪素単結晶を切断する工程を示す断面模式図である。たとえばソーワイヤーを用いて、炭化珪素単結晶59の中心軸に垂直な平面に沿って、炭化珪素単結晶59がスライスされる。炭化珪素単結晶を切断する工程(S40)において、炭化珪素単結晶59の切断面58と、{0001}面とがなす角度(第5角度θ5)は、1°以下である。言い換えれば、炭化珪素基板100の第1主面1と、{0001}面とがなす角度が1°以下となるように、炭化珪素単結晶59が切断される。これにより、本実施形態に係る複数の炭化珪素基板100が得られる(図1参照)。 Next, a step (S40) of cutting the silicon carbide single crystal is performed. FIG. 13 is a schematic cross-sectional view showing a step of cutting a silicon carbide single crystal. For example, silicon carbide single crystal 59 is sliced along a plane perpendicular to the central axis of silicon carbide single crystal 59 using a saw wire. In the step of cutting the silicon carbide single crystal (S40), the angle between the cut surface 58 of the silicon carbide single crystal 59 and the {0001} plane (fifth angle θ5) is 1° or less. In other words, silicon carbide single crystal 59 is cut such that the angle between first principal surface 1 of silicon carbide substrate 100 and the {0001} plane is 1° or less. Thereby, a plurality of silicon carbide substrates 100 according to this embodiment are obtained (see FIG. 1).
 <半導体装置の製造方法> <Method for manufacturing semiconductor devices>
 次に、本実施形態に係る半導体装置400の製造方法について説明する。図14は、本実施形態に係る半導体装置400の製造方法を概略的に示すフローチャートである。図14に示されるように、本実施形態に係る半導体装置400の製造方法は、エピタキシャル基板200を準備する工程(S1)と、エピタキシャル基板200上に電極を形成する工程(S2)とを主に有している。 Next, a method for manufacturing the semiconductor device 400 according to this embodiment will be described. FIG. 14 is a flowchart schematically showing a method for manufacturing the semiconductor device 400 according to this embodiment. As shown in FIG. 14, the method for manufacturing a semiconductor device 400 according to this embodiment mainly includes a step of preparing an epitaxial substrate 200 (S1) and a step of forming an electrode on the epitaxial substrate 200 (S2). have.
 まず、エピタキシャル基板200を準備する工程(S1)が実施される。エピタキシャル基板200を準備する工程(S1)においては、まず、本実施形態に係る炭化珪素基板100が準備される(図1参照)。 First, a step (S1) of preparing the epitaxial substrate 200 is performed. In the step (S1) of preparing epitaxial substrate 200, first, silicon carbide substrate 100 according to this embodiment is prepared (see FIG. 1).
 次に、炭化珪素基板100上にバッファ層31が形成される。図15は、炭化珪素基板100上にバッファ層31を形成する工程を示す断面模式図である。炭化珪素基板100の第1主面1上にバッファ層31がエピタキシャル成長により形成される。バッファ層31は、たとえばMOCVD(Metal Organic Chemical Vapor Deposition)により形成される。 Next, buffer layer 31 is formed on silicon carbide substrate 100. FIG. 15 is a schematic cross-sectional view showing a step of forming buffer layer 31 on silicon carbide substrate 100. Buffer layer 31 is formed on first main surface 1 of silicon carbide substrate 100 by epitaxial growth. The buffer layer 31 is formed by, for example, MOCVD (Metal Organic Chemical Vapor Deposition).
 バッファ層31は、たとえば窒化アルミニウムガリウム(AlGaN)により構成されている。バッファ層31の厚みは、たとえば150nmである。アルミニウム(Al)の原料ガスとして、たとえばTMA(トリメチルアルミニウム)が用いられる。ガリウム(Ga)の原料として、たとえばTMG(トリメチルガリウム)が用いられる。窒素(N)の原料として、たとえばアンモニアが用いられる。 The buffer layer 31 is made of aluminum gallium nitride (AlGaN), for example. The thickness of the buffer layer 31 is, for example, 150 nm. For example, TMA (trimethylaluminum) is used as a raw material gas for aluminum (Al). For example, TMG (trimethyl gallium) is used as a raw material for gallium (Ga). For example, ammonia is used as a raw material for nitrogen (N).
 次に、電子走行層32および電子供給層33が形成される。図16は、電子走行層32および電子供給層33を形成する工程を示す断面模式図である。まず、バッファ層31上において電子走行層32がMOCVDにより形成される。電子走行層32は、たとえば窒化ガリウム(GaN)により構成されている。電子走行層32の厚みは、たとえば1μmである。 Next, an electron transit layer 32 and an electron supply layer 33 are formed. FIG. 16 is a schematic cross-sectional view showing the process of forming the electron transit layer 32 and the electron supply layer 33. First, the electron transit layer 32 is formed on the buffer layer 31 by MOCVD. The electron transit layer 32 is made of, for example, gallium nitride (GaN). The thickness of the electron transit layer 32 is, for example, 1 μm.
 次に、電子走行層32上に電子供給層33が形成される。電子供給層33は、たとえばMOCVDにより形成される。電子供給層33は、たとえばAlGaNにより構成されている。電子供給層33の厚みは、たとえば20μmである。電子走行層32と電子供給層33との界面付近における電子走行層32の部分には、2次元電子ガスが生成される。 Next, an electron supply layer 33 is formed on the electron transit layer 32. The electron supply layer 33 is formed, for example, by MOCVD. The electron supply layer 33 is made of, for example, AlGaN. The thickness of the electron supply layer 33 is, for example, 20 μm. A two-dimensional electron gas is generated in a portion of the electron transit layer 32 near the interface between the electron transit layer 32 and the electron supply layer 33.
 以上にように、エピタキシャル基板200が準備される。図16に示されるように、エピタキシャル基板200は、炭化珪素基板100と、窒化物エピタキシャル層30とを有している。窒化物エピタキシャル層30は、バッファ層31と、電子走行層32と、電子供給層33とを有している。バッファ層31は、炭化珪素基板100上に設けられている。電子走行層32は、バッファ層31上に設けられている。電子供給層33は、電子走行層32上に設けられている。 As described above, the epitaxial substrate 200 is prepared. As shown in FIG. 16, epitaxial substrate 200 includes silicon carbide substrate 100 and nitride epitaxial layer 30. The nitride epitaxial layer 30 includes a buffer layer 31, an electron transit layer 32, and an electron supply layer 33. Buffer layer 31 is provided on silicon carbide substrate 100. The electron transit layer 32 is provided on the buffer layer 31. The electron supply layer 33 is provided on the electron transit layer 32.
 次に、電極を形成する工程が実施される。まず、ソース電極41およびドレイン電極42が形成される。具体的は、電子供給層33上において第1レジストパターン(図示せず)が形成される。第1レジストパターンにおいては、ソース電極41およびドレイン電極42の各々が形成される領域において開口部が形成されている。 Next, a step of forming electrodes is performed. First, source electrode 41 and drain electrode 42 are formed. Specifically, a first resist pattern (not shown) is formed on the electron supply layer 33. In the first resist pattern, openings are formed in regions where the source electrode 41 and the drain electrode 42 are each formed.
 次に、たとえば真空蒸着法を用いて、第1レジストパターン上に第1金属積層膜が形成される。第1金属積層膜は、たとえばチタン(Ti)膜と、アルミニウム(Al)膜とを有している。次に、第1レジストパターン上に形成された第1金属積層膜がリフトオフにより除去される。これにより、第1金属積層膜により構成されたソース電極41およびドレイン電極42が電子供給層33上に形成される。 Next, a first metal laminated film is formed on the first resist pattern using, for example, a vacuum evaporation method. The first metal laminated film includes, for example, a titanium (Ti) film and an aluminum (Al) film. Next, the first metal laminated film formed on the first resist pattern is removed by lift-off. As a result, a source electrode 41 and a drain electrode 42 made of the first metal laminated film are formed on the electron supply layer 33.
 次に、合金化アニールが実施されてもよい。具体的には、ソース電極41およびドレイン電極42がアニールされる。アニール温度は、たとえば600℃である。これにより、ソース電極41およびドレイン電極42の各々が、電子供給層33とオーミックコンタクトしてもよい。 Next, alloying annealing may be performed. Specifically, source electrode 41 and drain electrode 42 are annealed. The annealing temperature is, for example, 600°C. Thereby, each of the source electrode 41 and the drain electrode 42 may be in ohmic contact with the electron supply layer 33.
 次に、ゲート電極43が形成される。具体的は、電子供給層33上において第2レジストパターン(図示せず)が形成される。第2レジストパターンにおいては、ゲート電極43が形成される領域において開口部が形成されている。 Next, a gate electrode 43 is formed. Specifically, a second resist pattern (not shown) is formed on the electron supply layer 33. In the second resist pattern, an opening is formed in the region where the gate electrode 43 is to be formed.
 次に、たとえば真空蒸着法を用いて、第2レジストパターン上に第2金属積層膜が形成される。第2金属積層膜は、たとえばニッケル(Ni)膜と、金(Au)膜とを有している。次に、第2レジストパターン上に形成された第2金属積層膜がリフトオフにより除去される。これにより、第2金属積層膜により構成されたゲート電極43が電子供給層33上に形成される。 Next, a second metal laminated film is formed on the second resist pattern using, for example, a vacuum evaporation method. The second metal laminated film includes, for example, a nickel (Ni) film and a gold (Au) film. Next, the second metal laminated film formed on the second resist pattern is removed by lift-off. As a result, a gate electrode 43 made of the second metal laminated film is formed on the electron supply layer 33.
 図17は、本実施形態に係る半導体装置400の構成を示す断面模式図である。半導体装置400は、たとえば電界効果型トランジスタであり、より特定的には、高電子移動度トランジスタ(HEMT)である。半導体装置400は、エピタキシャル基板200と、ゲート電極43と、ソース電極41と、ドレイン電極42とを主に有している。 FIG. 17 is a schematic cross-sectional view showing the configuration of a semiconductor device 400 according to this embodiment. The semiconductor device 400 is, for example, a field effect transistor, more specifically a high electron mobility transistor (HEMT). The semiconductor device 400 mainly includes an epitaxial substrate 200, a gate electrode 43, a source electrode 41, and a drain electrode 42.
 図17に示されるように、ゲート電極43、ソース電極41およびドレイン電極42の各々は、エピタキシャル基板200上に設けられている。具体的には、ゲート電極43、ソース電極41およびドレイン電極42の各々は、電子供給層33に接している。ゲート電極43は、ソース電極41とドレイン電極42との間に位置していてもよい。 As shown in FIG. 17, each of the gate electrode 43, source electrode 41, and drain electrode 42 is provided on the epitaxial substrate 200. Specifically, each of the gate electrode 43, the source electrode 41, and the drain electrode 42 is in contact with the electron supply layer 33. Gate electrode 43 may be located between source electrode 41 and drain electrode 42.
 次に、本実施形態に係る炭化珪素基板、炭化珪素基板の製造方法、炭化珪素単結晶の製造方法、エピタキシャル基板および半導体装置の製造方法の作用効果について説明する。 Next, the effects of the silicon carbide substrate, the method of manufacturing a silicon carbide substrate, the method of manufacturing a silicon carbide single crystal, the epitaxial substrate, and the method of manufacturing a semiconductor device according to the present embodiment will be described.
 半絶縁性を有する炭化珪素結晶57を作製する際、炭化珪素結晶57に取り込まれる窒素が極力低減された状態で、2000℃以上の温度で熱処理を実施することがある。この場合、炭化珪素結晶57から得られる炭化珪素基板100の主面において、{0001}面方位差を低減することが困難であった。 When producing silicon carbide crystal 57 having semi-insulating properties, heat treatment may be performed at a temperature of 2000° C. or higher while nitrogen taken into silicon carbide crystal 57 is reduced as much as possible. In this case, it was difficult to reduce the {0001} plane orientation difference in the main surface of silicon carbide substrate 100 obtained from silicon carbide crystal 57.
 発明者は、半絶縁性を有する炭化珪素基板100の主面において{0001}面方位差が大きくなる原因について鋭意検討を行った結果、以下の知見を得た。通常、昇華法を用いて炭化珪素結晶57の結晶成長を行う場合、炭化珪素結晶57の成長面50の広い範囲において{0001}ファセット面を形成するように温度制御がなされている。 The inventor conducted extensive research into the cause of the large {0001} plane orientation difference on the principal surface of semi-insulating silicon carbide substrate 100, and as a result, obtained the following knowledge. Normally, when silicon carbide crystal 57 is grown using a sublimation method, temperature is controlled so that a {0001} facet is formed over a wide range of growth surface 50 of silicon carbide crystal 57.
 しかしながら、ファセット面は、非ファセット面と比較して、窒素濃度が高くなる。ファセット面において炭化珪素結晶57に取り込まれる窒素によって格子定数の差が生じることで歪みが発生し、結晶面が湾曲する。結果として、炭化珪素基板100の主面において{0001}面方位差が大きくなる。そのため、炭化珪素基板100の主面における{0001}面方位差を低減するためには、ファセット面の面積を低減することが望ましい。 However, the nitrogen concentration on the facet surface is higher than that on the non-facet surface. Nitrogen taken into silicon carbide crystal 57 on the facet plane causes a difference in lattice constant, which causes distortion and curves the crystal plane. As a result, the {0001} plane orientation difference becomes large on the main surface of silicon carbide substrate 100. Therefore, in order to reduce the {0001} plane orientation difference on the main surface of silicon carbide substrate 100, it is desirable to reduce the area of the facet plane.
 さらに、種基板150の主面における{0001}面方位差が大きいと、種基板150上に形成される炭化珪素結晶57においても大きい{0001}面方位差が引き継がれる。そのため、炭化珪素基板100の主面における{0001}面方位差を低減するためには、種基板150の主面における{0001}面方位差を小さくすることが望ましい。 Furthermore, if the {0001} plane orientation difference in the main surface of seed substrate 150 is large, the large {0001} plane orientation difference will also be inherited in silicon carbide crystal 57 formed on seed substrate 150. Therefore, in order to reduce the {0001} plane orientation difference on the main surface of silicon carbide substrate 100, it is desirable to reduce the {0001} plane orientation difference on the main surface of seed substrate 150.
 本開示に係る炭化珪素単結晶59の製造方法においては、種基板150の主面151の中央部110において、任意の1cm離れた2点間における{0001}面方位差は、35秒以下である。炭化珪素結晶57の成長面50は、炭化珪素結晶57の最大径の半分の直径を有しかつ成長面50の中心を中心とする第1領域51と、第1領域51を取り囲む第2領域52とにより構成されている。炭化珪素原料156を昇華させることにより、主面151において炭化珪素結晶57を成長させる工程において、{0001}ファセット面60は、第1領域51に露出し、かつ、第2領域52に露出しない。 In the method for manufacturing silicon carbide single crystal 59 according to the present disclosure, the {0001} plane orientation difference between any two points 1 cm apart in central portion 110 of main surface 151 of seed substrate 150 is 35 seconds or less. . Growth surface 50 of silicon carbide crystal 57 includes a first region 51 having a diameter half the maximum diameter of silicon carbide crystal 57 and centered on the center of growth surface 50, and a second region 52 surrounding first region 51. It is composed of. In the step of growing silicon carbide crystal 57 on main surface 151 by sublimating silicon carbide raw material 156, {0001} facet surface 60 is exposed to first region 51 and not exposed to second region 52.
 本開示に係る炭化珪素単結晶59の製造方法によれば、{0001}ファセット面60の面積を低減することができる。そのため、窒素が取り込まれる成長面50の面積を低減することができる。結果として、成長面50において湾曲が発生することを抑制することができる。従って、{0001}面方位差が低減された半絶縁性の炭化珪素基板100を得ることができる。 According to the method for manufacturing silicon carbide single crystal 59 according to the present disclosure, the area of {0001} facet surface 60 can be reduced. Therefore, the area of the growth surface 50 into which nitrogen is taken can be reduced. As a result, the occurrence of curvature in the growth surface 50 can be suppressed. Therefore, a semi-insulating silicon carbide substrate 100 with reduced {0001} plane orientation difference can be obtained.
 本開示に係る炭化珪素基板100の第1主面1は、第1主面1の外周縁から5mm以内の第1外周部20と、第1外周部20に囲まれた第1中央部10とにより構成されている。第1中央部10は、第1主面1の最大径の半分の直径を有しかつ第1主面1の中心を中心とする第1中央領域11と、第1中央領域11を取り囲む第1外周領域12とにより構成されている。第1中央領域11の窒素濃度の平均値は、第1外周領域12の窒素濃度の平均値よりも高い。第1中央領域11の窒素濃度の平均値は、1×1016cm-3以下である。第1中央部10において、任意の位置における電気抵抗率は、1×106Ωcm以上である。第1中央部10において、任意の1cm離れた2点間における{0001}面方位差は、35秒以下である。これにより、第1主面1において{0001}面方位差が低減された炭化珪素基板100が得られる。一般的に、炭化珪素基板100のオフ角のばらつきに起因して、エピタキシャル層の表面のモフォロジが荒れたり、炭化珪素基板100の面内においてエピタキシャル層の窒素濃度がばらつくことがある。この場合、半導体装置400の特性のばらつきが大きくなるおそれがある。本開示に係る炭化珪素基板100によれば、半導体装置400の特性のばらつきを低減することができる。 The first main surface 1 of the silicon carbide substrate 100 according to the present disclosure includes a first outer peripheral part 20 within 5 mm from the outer peripheral edge of the first main surface 1, and a first central part 10 surrounded by the first outer peripheral part 20. It is made up of. The first central portion 10 includes a first central region 11 having a diameter half the maximum diameter of the first main surface 1 and centered on the center of the first main surface 1, and a first central region 11 surrounding the first central region 11. The outer circumferential region 12 is composed of an outer circumferential region 12. The average value of the nitrogen concentration in the first central region 11 is higher than the average value of the nitrogen concentration in the first peripheral region 12. The average value of the nitrogen concentration in the first central region 11 is 1×10 16 cm −3 or less. In the first central portion 10, the electrical resistivity at any position is 1×10 6 Ωcm or more. In the first central portion 10, the {0001} plane orientation difference between any two points 1 cm apart is 35 seconds or less. Thereby, silicon carbide substrate 100 in which the {0001} plane orientation difference in first principal surface 1 is reduced is obtained. Generally, due to variations in the off-angle of silicon carbide substrate 100, the morphology of the surface of the epitaxial layer may become rough, and the nitrogen concentration of the epitaxial layer may vary within the plane of silicon carbide substrate 100. In this case, there is a possibility that variations in the characteristics of the semiconductor device 400 will increase. According to silicon carbide substrate 100 according to the present disclosure, variations in characteristics of semiconductor device 400 can be reduced.
 (サンプル準備) (Sample preparation)
 まず、サンプル1から7に係る製造条件を用いてポリタイプが4Hである炭化珪素結晶57を作製した。サンプル1から7に係る製造条件においては、まず坩堝130において、種基板150と、炭化珪素原料156を配置した。種基板150の第3主面151の直径は、120mmとした。第3主面151は、(000-1)面とした。種基板150の厚みは、1mmとした。次に、昇華法を用いて、種基板150の第3主面151において炭化珪素結晶57を形成した。炭化珪素結晶57は、坩堝130から取り外された後、加熱装置301の内部に配置された。炭化珪素結晶57は、加熱装置301において、2500℃の温度で加熱された。 First, silicon carbide crystal 57 having a polytype of 4H was produced using the manufacturing conditions related to Samples 1 to 7. In the manufacturing conditions for Samples 1 to 7, first, a seed substrate 150 and a silicon carbide raw material 156 were placed in a crucible 130 . The diameter of the third main surface 151 of the seed substrate 150 was 120 mm. The third principal surface 151 was a (000-1) plane. The thickness of the seed substrate 150 was 1 mm. Next, silicon carbide crystal 57 was formed on third main surface 151 of seed substrate 150 using a sublimation method. After silicon carbide crystal 57 was removed from crucible 130 , it was placed inside heating device 301 . Silicon carbide crystal 57 was heated at a temperature of 2500° C. in heating device 301.
 次に、炭化珪素結晶57が急冷された。これにより、炭化珪素結晶57において点欠陥が形成された。結果として、炭化珪素結晶57の電気抵抗率が上昇した。炭化珪素結晶57の電気抵抗率は、たとえば1×1012Ωcm以上であった。次に、ソーワイヤーを用いて、炭化珪素単結晶がスライスされることにより、サンプル1から7に係る炭化珪素基板100が得られた。 Next, silicon carbide crystal 57 was rapidly cooled. As a result, point defects were formed in silicon carbide crystal 57. As a result, the electrical resistivity of silicon carbide crystal 57 increased. The electrical resistivity of silicon carbide crystal 57 was, for example, 1×10 12 Ωcm or more. Next, the silicon carbide single crystal was sliced using a saw wire, thereby obtaining silicon carbide substrates 100 according to samples 1 to 7.
 サンプル1に係る製造条件においては、種基板150の第3主面151における{0001}面方位差は、58秒とした。昇華法を用いた結晶成長において、成長面50における{0001}ファセット面60の直径は、38mmとした。 Under the manufacturing conditions for Sample 1, the {0001} plane orientation difference on the third main surface 151 of the seed substrate 150 was 58 seconds. In the crystal growth using the sublimation method, the diameter of the {0001} facet surface 60 on the growth surface 50 was 38 mm.
 サンプル2に係る製造条件においては、種基板150の第3主面151における{0001}面方位差は、57秒とした。昇華法を用いた結晶成長において、成長面50における{0001}ファセット面60の直径は、66mmとした。 Under the manufacturing conditions for Sample 2, the {0001} plane orientation difference on the third main surface 151 of the seed substrate 150 was 57 seconds. In crystal growth using the sublimation method, the diameter of the {0001} facet surface 60 on the growth surface 50 was 66 mm.
 サンプル3に係る製造条件においては、種基板150の第3主面151における{0001}面方位差は、27秒とした。昇華法を用いた結晶成長において、成長面50における{0001}ファセット面60の直径は、36mmとした。 Under the manufacturing conditions for Sample 3, the {0001} plane orientation difference on the third main surface 151 of the seed substrate 150 was 27 seconds. In the crystal growth using the sublimation method, the diameter of the {0001} facet surface 60 on the growth surface 50 was 36 mm.
 サンプル4に係る製造条件においては、種基板150の第3主面151における{0001}面方位差は、20秒とした。昇華法を用いた結晶成長において、成長面50における{0001}ファセット面60の直径は、34mmとした。 Under the manufacturing conditions for Sample 4, the {0001} plane orientation difference on the third main surface 151 of the seed substrate 150 was 20 seconds. In the crystal growth using the sublimation method, the diameter of the {0001} facet surface 60 on the growth surface 50 was 34 mm.
 サンプル5に係る製造条件においては、種基板150の第3主面151における{0001}面方位差は、8秒とした。昇華法を用いた結晶成長において、成長面50における{0001}ファセット面60の直径は、30mmとした。 Under the manufacturing conditions for Sample 5, the {0001} plane orientation difference on the third main surface 151 of the seed substrate 150 was 8 seconds. In the crystal growth using the sublimation method, the diameter of the {0001} facet surface 60 on the growth surface 50 was 30 mm.
 サンプル6に係る製造条件においては、種基板150の第3主面151における{0001}面方位差は、12秒とした。昇華法を用いた結晶成長において、成長面50における{0001}ファセット面60の直径は、32mmとした。 Under the manufacturing conditions for Sample 6, the {0001} plane orientation difference on the third main surface 151 of the seed substrate 150 was 12 seconds. In crystal growth using the sublimation method, the diameter of the {0001} facet surface 60 on the growth surface 50 was 32 mm.
 サンプル7に係る製造条件においては、種基板150の第3主面151における{0001}面方位差は、24秒とした。昇華法を用いた結晶成長において、成長面50における{0001}ファセット面60の直径は、64mmとした。 Under the manufacturing conditions for Sample 7, the {0001} plane orientation difference on the third main surface 151 of the seed substrate 150 was 24 seconds. In the crystal growth using the sublimation method, the diameter of the {0001} facet surface 60 on the growth surface 50 was 64 mm.
 (測定方法) (Measuring method)
 サンプル1から7の各々の炭化珪素基板100の第1中央部10において、{0001}面方位差を測定した。面方位差は、X線回折により測定した。X線源として、Cu-Kα1を使用し、(0004)ピークが測定された。波長は1.5405オングストロームとした。図3に示されるように、第1中央部10における49点(7点×7点)の測定点5において、{0001}面方位を測定した。測定された49点の測定点5の内、1cm離れた2点間における{0001}面方位差の最大値が求められた。 {0001} plane orientation difference was measured in first central portion 10 of each silicon carbide substrate 100 of Samples 1 to 7. The plane orientation difference was measured by X-ray diffraction. Cu-Kα1 was used as an X-ray source, and the (0004) peak was measured. The wavelength was 1.5405 angstroms. As shown in FIG. 3, the {0001} plane orientation was measured at 49 (7 points x 7 points) measurement points 5 in the first central portion 10. Among the 49 measurement points 5 that were measured, the maximum value of the {0001} plane orientation difference between two points 1 cm apart was determined.
 (測定結果)
Figure JPOXMLDOC01-appb-T000001

 表1は、サンプル1から7の各々の炭化珪素基板100の第1中央部10における{0001}面方位差の最大値を示している。表1に示されるように、サンプル1から7の炭化珪素基板100の第1主面1の第1中央部10における{0001}面方位差の最大値は、それぞれ、60秒、74秒、35秒、22秒、10秒、15秒および45秒であった。以上の結果により、種基板150の第3主面151における{0001}面方位差の最大値を低減し、かつ、炭化珪素結晶57の成長面50におけるファセット面60の直径を低減することにより、第1主面1における{0001}面方位差の最大値が低減された炭化珪素基板100が得られることが確認された。
(Measurement result)
Figure JPOXMLDOC01-appb-T000001

Table 1 shows the maximum value of the {0001} plane orientation difference in the first central portion 10 of each of the silicon carbide substrates 100 of Samples 1 to 7. As shown in Table 1, the maximum values of the {0001} plane orientation differences at the first central portion 10 of the first main surface 1 of the silicon carbide substrates 100 of Samples 1 to 7 are 60 seconds, 74 seconds, and 35 seconds, respectively. seconds, 22 seconds, 10 seconds, 15 seconds and 45 seconds. According to the above results, by reducing the maximum value of the {0001} plane orientation difference in third principal surface 151 of seed substrate 150 and reducing the diameter of facet surface 60 in growth surface 50 of silicon carbide crystal 57, It was confirmed that silicon carbide substrate 100 in which the maximum value of the {0001} plane orientation difference on first principal surface 1 was reduced could be obtained.
 本開示は以下に示す実施形態を含む。
(付記1)
 主面を備え、
 前記主面は、前記主面の外周縁から5mm以内の外周部と、前記外周部に囲まれた中央部とにより構成されており、
 前記中央部は、前記主面の最大径の半分の直径を有しかつ前記主面の中心を中心とする中央領域と、前記中央領域を取り囲む外周領域とにより構成されており、
 前記中央領域の窒素濃度の平均値は、前記外周領域の窒素濃度の平均値よりも高く、
 前記中央領域の窒素濃度の平均値は、1×1016cm-3以下であり、
 前記中央部において、任意の位置における電気抵抗率は、1×106Ωcm以上であり、
 前記中央部において、任意の1cm離れた2点間における{0001}面方位差は、35秒以下である、炭化珪素基板。
(付記2)
 p型不純物および補償不純物が、ドーピングされていない、付記1に記載の炭化珪素基板。
(付記3)
 前記外周領域の窒素濃度の平均値を前記中央領域の窒素濃度の平均値で割った値は、0.7以上0.9以下である、付記1または付記2に記載の炭化珪素基板。
(付記4)
 前記外周領域の窒素濃度の平均値は、1×1015cm-3以上1×1016cm-3未満である、付記1または付記2に記載の炭化珪素基板。
(付記5)
 前記最大径は、100mm以上である、付記1または付記2に記載の炭化珪素基板。
(付記6)
 前記主面と、{0001}面とがなす角度は、1°以下である、付記1または付記2に記載の炭化珪素基板。
(付記7)
 前記炭化珪素基板を構成する炭化珪素のポリタイプは、4Hである、付記1または付記2に記載の炭化珪素基板。
(付記8)
 付記1または付記2のいずれか1項に記載の炭化珪素基板と、
 前記炭化珪素基板上に設けられた窒化物エピタキシャル層と、を備えた、エピタキシャル基板。
(付記9)
 付記8に記載のエピタキシャル基板を準備する工程と、
 前記エピタキシャル基板上に電極を形成する工程と、を備えた、半導体装置の製造方法。
(付記10)
 主面を有する種基板と、炭化珪素原料とを準備する工程と、
 前記炭化珪素原料を昇華させることにより、前記主面において炭化珪素結晶を成長させる工程と、
 前記炭化珪素原料を昇華させることにより、前記主面において炭化珪素結晶を成長させる工程後、前記炭化珪素結晶を2000℃以上の温度で加熱することにより、前記炭化珪素結晶の電気抵抗率を上昇させる工程と、を備え、
 前記主面は、前記主面の外周縁から5mm以内の外周部と、前記外周部に囲まれた中央部とにより構成されており、
 前記中央部において、任意の1cm離れた2点間における{0001}面方位差は、35秒以下であり、
 前記炭化珪素結晶の成長面は、前記炭化珪素結晶の最大径の半分の直径を有しかつ前記成長面の中心を中心とする第1領域と、前記第1領域を取り囲む第2領域とにより構成されており、
 前記炭化珪素原料を昇華させることにより、前記主面において炭化珪素結晶を成長させる工程において、{0001}ファセット面は、前記第1領域に露出し、かつ、前記第2領域に露出しない、炭化珪素単結晶の製造方法。
(付記11)
 前記主面と、{0001}面とがなす角度は、1°以下である、付記10に記載の炭化珪素単結晶の製造方法。
(付記12)
 付記10または付記11に記載の炭化珪素単結晶の製造方法を用いて炭化珪素単結晶を準備する工程と、
 前記炭化珪素単結晶を切断する工程と、を備え、
 前記炭化珪素単結晶の切断面と、{0001}面とがなす角度は、1°以下である、炭化珪素基板の製造方法。
The present disclosure includes the embodiments described below.
(Additional note 1)
having a main surface;
The main surface is composed of an outer peripheral part within 5 mm from the outer peripheral edge of the main surface, and a central part surrounded by the outer peripheral part,
The central portion has a diameter that is half the maximum diameter of the main surface and is composed of a central region centered on the center of the main surface, and an outer peripheral region surrounding the central region,
The average value of nitrogen concentration in the central region is higher than the average value of nitrogen concentration in the peripheral region,
The average value of the nitrogen concentration in the central region is 1×10 16 cm −3 or less,
In the central portion, the electrical resistivity at any position is 1×10 6 Ωcm or more,
A silicon carbide substrate, wherein the {0001} plane orientation difference between any two points 1 cm apart in the central portion is 35 seconds or less.
(Additional note 2)
The silicon carbide substrate according to Supplementary Note 1, wherein the p-type impurity and the compensation impurity are not doped.
(Additional note 3)
The silicon carbide substrate according to Supplementary Note 1 or 2, wherein a value obtained by dividing the average value of the nitrogen concentration in the outer peripheral region by the average value of the nitrogen concentration in the central region is 0.7 or more and 0.9 or less.
(Additional note 4)
The silicon carbide substrate according to appendix 1 or 2, wherein the average value of nitrogen concentration in the outer peripheral region is 1×10 15 cm −3 or more and less than 1×10 16 cm −3 .
(Appendix 5)
The silicon carbide substrate according to Appendix 1 or 2, wherein the maximum diameter is 100 mm or more.
(Appendix 6)
The silicon carbide substrate according to Supplementary Note 1 or 2, wherein the angle between the main surface and the {0001} plane is 1° or less.
(Appendix 7)
The silicon carbide substrate according to appendix 1 or 2, wherein the polytype of silicon carbide constituting the silicon carbide substrate is 4H.
(Appendix 8)
A silicon carbide substrate according to any one of Supplementary Note 1 or 2,
An epitaxial substrate comprising: a nitride epitaxial layer provided on the silicon carbide substrate.
(Appendix 9)
A step of preparing the epitaxial substrate described in Appendix 8;
A method for manufacturing a semiconductor device, comprising the step of forming an electrode on the epitaxial substrate.
(Appendix 10)
A step of preparing a seed substrate having a main surface and a silicon carbide raw material;
growing silicon carbide crystals on the main surface by subliming the silicon carbide raw material;
After the step of growing silicon carbide crystals on the main surface by sublimating the silicon carbide raw material, increasing the electrical resistivity of the silicon carbide crystals by heating the silicon carbide crystals at a temperature of 2000° C. or higher. comprising a process and,
The main surface is composed of an outer peripheral part within 5 mm from the outer peripheral edge of the main surface, and a central part surrounded by the outer peripheral part,
In the central part, the {0001} plane orientation difference between any two points separated by 1 cm is 35 seconds or less,
The growth surface of the silicon carbide crystal includes a first region having a diameter that is half the maximum diameter of the silicon carbide crystal and centered on the center of the growth surface, and a second region surrounding the first region. has been
In the step of growing a silicon carbide crystal on the main surface by sublimating the silicon carbide raw material, the {0001} facet surface is exposed to the first region and not exposed to the second region. Method for producing single crystals.
(Appendix 11)
The method for producing a silicon carbide single crystal according to appendix 10, wherein the angle between the main surface and the {0001} plane is 1° or less.
(Appendix 12)
a step of preparing a silicon carbide single crystal using the method for producing a silicon carbide single crystal according to Appendix 10 or Appendix 11;
cutting the silicon carbide single crystal,
The method for manufacturing a silicon carbide substrate, wherein the angle between the cut surface of the silicon carbide single crystal and the {0001} plane is 1° or less.
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed herein are illustrative in all respects and should not be considered restrictive. The scope of the present invention is indicated by the claims rather than the above description, and it is intended that equivalent meanings to the claims and all changes within the range be included.
1 第1主面(主面)、2 第2主面、3 第1外周側面、4 第1外周縁、5 測定点、10 第1中央部(中央部)、11 第1中央領域(中央領域)、12 第1外周領域(外周領域)、13,53,113 中心、20 第1外周部(外周部)、30 窒化物エピタキシャル層、31 バッファ層、32 電子走行層、33 電子供給層、41 ソース電極、42 ドレイン電極、43 ゲート電極、50 成長面、51 第1領域、52 第2領域、55 第3中央領域、56 第3外周領域、57 炭化珪素結晶、58 切断面、59 炭化珪素単結晶、60 ファセット面、61 第1測定位置、62 第2測定位置、100 炭化珪素基板、101 第1方向、102 第2方向、103 第3方向、110 第2中央部(中央部)、111 第2中央領域(中央領域)、112 第2外周領域(外周領域)、120 第2外周部(外周部)、130 坩堝、131 蓋部、132 収容部、150 種基板、151 第3主面(主面)、152 第4主面、153 第2外周側面、154 第2外周縁、156 炭化珪素原料、200 エピタキシャル基板、301 加熱装置、400 半導体装置、D スポット径、S1 第1スポット、S2 第2スポット、W1 第1直径、W2 第2直径、W3 第3距離、W4 第4直径、W5 第5直径、W6 第6距離、W7 第7直径、W8 第8直径、W9 第9直径、c1,c2 {0001}面方位、n 法線方向 。 1 First main surface (principal surface), 2 Second main surface, 3 First outer peripheral side, 4 First outer peripheral edge, 5 Measurement point, 10 First central part (central part), 11 First central region (central region ), 12 first outer peripheral region (outer peripheral region), 13, 53, 113 center, 20 first outer peripheral part (outer peripheral part), 30 nitride epitaxial layer, 31 buffer layer, 32 electron transit layer, 33 electron supply layer, 41 Source electrode, 42 Drain electrode, 43 Gate electrode, 50 Growth surface, 51 First region, 52 Second region, 55 Third central region, 56 Third outer region, 57 Silicon carbide crystal, 58 Cut surface, 59 Single silicon carbide Crystal, 60 facet surface, 61 first measurement position, 62 second measurement position, 100 silicon carbide substrate, 101 first direction, 102 second direction, 103 third direction, 110 second central part (center part), 111 second 2 central area (central area), 112 second outer peripheral area (outer peripheral area), 120 second outer peripheral part (outer peripheral part), 130 crucible, 131 lid part, 132 accommodating part, 150 seed substrate, 151 third main surface (main surface), 152 fourth principal surface, 153 second outer peripheral side surface, 154 second outer peripheral edge, 156 silicon carbide raw material, 200 epitaxial substrate, 301 heating device, 400 semiconductor device, D spot diameter, S1 first spot, S2 second Spot, W1 first diameter, W2 second diameter, W3 third distance, W4 fourth diameter, W5 fifth diameter, W6 sixth distance, W7 seventh diameter, W8 eighth diameter, W9 ninth diameter, c1, c2 {0001} plane orientation, n normal direction.

Claims (12)

  1.  主面を備え、
     前記主面は、前記主面の外周縁から5mm以内の外周部と、前記外周部に囲まれた中央部とにより構成されており、
     前記中央部は、前記主面の最大径の半分の直径を有しかつ前記主面の中心を中心とする中央領域と、前記中央領域を取り囲む外周領域とにより構成されており、
     前記中央領域の窒素濃度の平均値は、前記外周領域の窒素濃度の平均値よりも高く、
     前記中央領域の窒素濃度の平均値は、1×1016cm-3以下であり、
     前記中央部において、任意の位置における電気抵抗率は、1×106Ωcm以上であり、
     前記中央部において、任意の1cm離れた2点間における{0001}面方位差は、35秒以下である、炭化珪素基板。
    having a main surface;
    The main surface is composed of an outer peripheral part within 5 mm from the outer peripheral edge of the main surface, and a central part surrounded by the outer peripheral part,
    The central portion has a diameter that is half the maximum diameter of the main surface and is composed of a central region centered on the center of the main surface, and an outer peripheral region surrounding the central region,
    The average value of nitrogen concentration in the central region is higher than the average value of nitrogen concentration in the peripheral region,
    The average value of the nitrogen concentration in the central region is 1×10 16 cm −3 or less,
    In the central portion, the electrical resistivity at any position is 1×10 6 Ωcm or more,
    A silicon carbide substrate, wherein the {0001} plane orientation difference between any two points 1 cm apart in the central portion is 35 seconds or less.
  2.  p型不純物および補償不純物が、ドーピングされていない、請求項1に記載の炭化珪素基板。 The silicon carbide substrate according to claim 1, wherein the p-type impurity and the compensation impurity are not doped.
  3.  前記外周領域の窒素濃度の平均値を前記中央領域の窒素濃度の平均値で割った値は、0.7以上0.9以下である、請求項1または請求項2に記載の炭化珪素基板。 The silicon carbide substrate according to claim 1 or 2, wherein a value obtained by dividing the average value of the nitrogen concentration in the outer peripheral region by the average value of the nitrogen concentration in the central region is 0.7 or more and 0.9 or less.
  4.  前記外周領域の窒素濃度の平均値は、1×1015cm-3以上1×1016cm-3未満である、請求項1または請求項2に記載の炭化珪素基板。 The silicon carbide substrate according to claim 1 or 2, wherein the average value of nitrogen concentration in the outer peripheral region is 1×10 15 cm -3 or more and less than 1×10 16 cm -3 .
  5.  前記最大径は、100mm以上である、請求項1から請求項4のいずれか1項に記載の炭化珪素基板。 The silicon carbide substrate according to any one of claims 1 to 4, wherein the maximum diameter is 100 mm or more.
  6.  前記主面と、{0001}面とがなす角度は、1°以下である、請求項1から請求項5のいずれか1項に記載の炭化珪素基板。 The silicon carbide substrate according to any one of claims 1 to 5, wherein the angle between the main surface and the {0001} plane is 1° or less.
  7.  前記炭化珪素基板を構成する炭化珪素のポリタイプは、4Hである、請求項1から請求項6のいずれか1項に記載の炭化珪素基板。 The silicon carbide substrate according to any one of claims 1 to 6, wherein the polytype of silicon carbide constituting the silicon carbide substrate is 4H.
  8.  請求項1から請求項7のいずれか1項に記載の炭化珪素基板と、
     前記炭化珪素基板上に設けられた窒化物エピタキシャル層と、を備えた、エピタキシャル基板。
    The silicon carbide substrate according to any one of claims 1 to 7,
    An epitaxial substrate comprising: a nitride epitaxial layer provided on the silicon carbide substrate.
  9.  請求項8に記載のエピタキシャル基板を準備する工程と、
     前記エピタキシャル基板上に電極を形成する工程と、を備えた、半導体装置の製造方法。
    preparing an epitaxial substrate according to claim 8;
    A method for manufacturing a semiconductor device, comprising the step of forming an electrode on the epitaxial substrate.
  10.  主面を有する種基板と、炭化珪素原料とを準備する工程と、
     前記炭化珪素原料を昇華させることにより、前記主面において炭化珪素結晶を成長させる工程と、
     前記炭化珪素原料を昇華させることにより、前記主面において炭化珪素結晶を成長させる工程後、前記炭化珪素結晶を2000℃以上の温度で加熱することにより、前記炭化珪素結晶の電気抵抗率を上昇させる工程と、を備え、
     前記主面は、前記主面の外周縁から5mm以内の外周部と、前記外周部に囲まれた中央部とにより構成されており、
     前記中央部において、任意の1cm離れた2点間における{0001}面方位差は、35秒以下であり、
     前記炭化珪素結晶の成長面は、前記炭化珪素結晶の最大径の半分の直径を有しかつ前記成長面の中心を中心とする第1領域と、前記第1領域を取り囲む第2領域とにより構成されており、
     前記炭化珪素原料を昇華させることにより、前記主面において炭化珪素結晶を成長させる工程において、{0001}ファセット面は、前記第1領域に露出し、かつ、前記第2領域に露出しない、炭化珪素単結晶の製造方法。
    A step of preparing a seed substrate having a main surface and a silicon carbide raw material;
    growing silicon carbide crystals on the main surface by subliming the silicon carbide raw material;
    After the step of growing silicon carbide crystals on the main surface by sublimating the silicon carbide raw material, increasing the electrical resistivity of the silicon carbide crystals by heating the silicon carbide crystals at a temperature of 2000° C. or higher. comprising a process and,
    The main surface is composed of an outer peripheral part within 5 mm from the outer peripheral edge of the main surface, and a central part surrounded by the outer peripheral part,
    In the central part, the {0001} plane orientation difference between any two points separated by 1 cm is 35 seconds or less,
    The growth surface of the silicon carbide crystal includes a first region having a diameter that is half the maximum diameter of the silicon carbide crystal and centered on the center of the growth surface, and a second region surrounding the first region. has been
    In the step of growing a silicon carbide crystal on the main surface by sublimating the silicon carbide raw material, the {0001} facet surface is exposed to the first region and not exposed to the second region. Method for producing single crystals.
  11.  前記主面と、{0001}面とがなす角度は、1°以下である、請求項10に記載の炭化珪素単結晶の製造方法。 The method for manufacturing a silicon carbide single crystal according to claim 10, wherein the angle between the main surface and the {0001} plane is 1° or less.
  12.  請求項10または請求項11に記載の炭化珪素単結晶の製造方法を用いて炭化珪素単結晶を準備する工程と、
     前記炭化珪素単結晶を切断する工程と、を備え、
     前記炭化珪素単結晶の切断面と、{0001}面とがなす角度は、1°以下である、炭化珪素基板の製造方法。
    preparing a silicon carbide single crystal using the method for producing a silicon carbide single crystal according to claim 10 or 11;
    a step of cutting the silicon carbide single crystal,
    The method for manufacturing a silicon carbide substrate, wherein the angle between the cut plane of the silicon carbide single crystal and the {0001} plane is 1° or less.
PCT/JP2023/027730 2022-08-31 2023-07-28 Silicon carbide substrate, method for producing silicon carbide substrate, method for producing silicon carbide single crystal, epitaxial substrate, and method for producing semiconductor device WO2024048157A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-138114 2022-08-31
JP2022138114 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048157A1 true WO2024048157A1 (en) 2024-03-07

Family

ID=90099159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027730 WO2024048157A1 (en) 2022-08-31 2023-07-28 Silicon carbide substrate, method for producing silicon carbide substrate, method for producing silicon carbide single crystal, epitaxial substrate, and method for producing semiconductor device

Country Status (1)

Country Link
WO (1) WO2024048157A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015013761A (en) * 2013-07-03 2015-01-22 住友電気工業株式会社 Silicon carbide single crystal substrate and method of manufacturing the same
JP2018140903A (en) * 2017-02-28 2018-09-13 昭和電工株式会社 Method for manufacturing silicon carbide single crystal ingot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015013761A (en) * 2013-07-03 2015-01-22 住友電気工業株式会社 Silicon carbide single crystal substrate and method of manufacturing the same
JP2018140903A (en) * 2017-02-28 2018-09-13 昭和電工株式会社 Method for manufacturing silicon carbide single crystal ingot

Similar Documents

Publication Publication Date Title
JP4185215B2 (en) SiC wafer, SiC semiconductor device, and method of manufacturing SiC wafer
US7972704B2 (en) Single-crystal silicon carbide ingot, and substrate and epitaxial wafer obtained therefrom
EP1215730B9 (en) SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION METHOD OF SiC WAFER
JP6508050B2 (en) Method of manufacturing silicon carbide ingot, method of manufacturing silicon carbide substrate, and method of manufacturing semiconductor device
JP6706767B2 (en) Semiconductor device
JP3692076B2 (en) SiC single crystal and growth method thereof
EP2075356B1 (en) Method for growing group III nitride semiconductor crystal
US20070134897A1 (en) Process for producing schottky junction type semiconductor device
CN110731002B (en) Nitride semiconductor laminate, semiconductor device, method for producing nitride semiconductor laminate, method for producing nitride semiconductor self-supporting substrate, and method for producing semiconductor device
KR20090052288A (en) Group iii nitride semiconductor crystal substrate and semiconductor device
WO2017138247A1 (en) Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
EP2055811A2 (en) Nitride semiconductor substrate and method of manufacturing the same and field-effect transistor
US10707310B2 (en) Semiconductor device
US20190148496A1 (en) Sic epitaxial wafer
US20210384336A1 (en) Gan crystal and substrate
WO2018221055A1 (en) Nitride crystal substrate, semiconductor laminate, production method for semiconductor laminate, and production method for semiconductor device
WO2017090285A9 (en) Method for manufacturing silicon carbide epitaxial substrate and silicon carbide semiconductor device
US11094539B2 (en) Method for manufacturing nitride semiconductor substrate and nitride semiconductor substrate
CN109791879B (en) Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
WO2024048157A1 (en) Silicon carbide substrate, method for producing silicon carbide substrate, method for producing silicon carbide single crystal, epitaxial substrate, and method for producing semiconductor device
WO2017043165A1 (en) Silicon carbide epitaxial substrate, and method for manufacturing silicon carbide semiconductor device
JP6748613B2 (en) Silicon carbide single crystal substrate
JP7415558B2 (en) Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
JP6658257B2 (en) Silicon carbide semiconductor device
WO2024080071A1 (en) Silicon carbide crystal substrate, epitaxial substrate, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859926

Country of ref document: EP

Kind code of ref document: A1