WO2024047922A1 - 低温耐性硝化細菌の培養方法、窒素含有水を処理する方法、および窒素含有水の処理装置 - Google Patents

低温耐性硝化細菌の培養方法、窒素含有水を処理する方法、および窒素含有水の処理装置 Download PDF

Info

Publication number
WO2024047922A1
WO2024047922A1 PCT/JP2023/014416 JP2023014416W WO2024047922A1 WO 2024047922 A1 WO2024047922 A1 WO 2024047922A1 JP 2023014416 W JP2023014416 W JP 2023014416W WO 2024047922 A1 WO2024047922 A1 WO 2024047922A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
containing water
tank
nitrification
nitrifying bacteria
Prior art date
Application number
PCT/JP2023/014416
Other languages
English (en)
French (fr)
Inventor
慎一郎 若原
敏宏 小松
立夫 角野
沁潼 李
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2024047922A1 publication Critical patent/WO2024047922A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method for culturing low-temperature-resistant nitrifying bacteria, a method for treating nitrogen-containing water, and an apparatus for treating nitrogen-containing water.
  • a biological treatment method using nitrifying bacteria is used to treat ammonia nitrogen and/or organic nitrogen contained in sewage, industrial wastewater, etc.
  • Biological treatment is an inexpensive method, but it is difficult to process at low temperatures. That is, since the reaction does not proceed when the temperature of treated water such as sewage is 15° C. or lower, there is a problem that treatment in winter is difficult.
  • Patent Document 1 uses Ammonia oxidizing bacteria detected by MPN method using High ammonium media (MPN method: most probable number method), which is a low temperature resistant nitrifying bacteria, to oxidize water containing ammonia nitrogen at a low temperature of 15°C or less. This is a method of processing.
  • MPN method most probable number method
  • Patent Document 1 The method described in Patent Document 1 has already been put into practical use. However, for culturing AH bacteria, it is necessary to use a large amount of a highly concentrated ammonia-containing medium. Therefore, the cultivation equipment also becomes enormous.
  • One aspect of the present invention provides a simple method for culturing low-temperature-tolerant nitrifying bacteria, a method for treating nitrogen-containing water using the low-temperature-tolerant nitrifying bacteria, and a method for culturing the low-temperature-tolerant nitrifying bacteria and treating nitrogen-containing water.
  • the purpose is to realize a device capable of processing.
  • a method for culturing cold-resistant nitrifying bacteria includes adjusting the pH of nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen to 6.0 or less.
  • the method includes a step of obtaining nitrogen-containing water b in which the dominant species of microorganisms are low temperature resistant nitrifying bacteria.
  • a nitrogen-containing water treatment device is a nitrogen-containing water treatment device including a culture tank and a nitrification tank,
  • the culture tank and the nitrification tank are capable of circulating contents between the culture tank and the nitrification tank,
  • the culture tank can store nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen and return sludge obtained from the nitrification tank, and adjusts the pH of the nitrogen-containing water a to 6.
  • nitrogen-containing water b is produced in which the dominant species of microorganisms contained in the nitrogen-containing water a are low-temperature-resistant nitrifying bacteria
  • the nitrification tank can store the nitrogen-containing water a and the nitrogen-containing water b, and uses low-temperature-resistant nitrifying bacteria contained in the nitrogen-containing water b to remove the nitrogen at a water temperature of 0°C to 15°C. nitrifying ammonia contained in the containing water a and/or the nitrogen-containing water b to produce a nitrified solution; This is a nitrogen-containing water treatment device.
  • a nitrogen-containing water treatment device is a nitrogen-containing water treatment device including a treatment system A and a treatment system B,
  • the treatment system A includes a nitrification tank I,
  • the nitrification tank I can store nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen and sludge returned from the treatment system B, and adjusts the pH of the nitrogen-containing water a to 6.
  • the dominant species of microorganisms contained in the nitrogen-containing water a are low temperature tolerant nitrifying bacteria, and the low temperature tolerant nitrifying bacteria contained in the low temperature tolerant nitrifying bacteria and the low temperature tolerant nitrifying bacteria contained in the returned sludge are adjusted to 0.
  • the treatment system B includes a nitrification tank II and a denitrification tank II,
  • the nitrification tank II and the denitrification tank II are capable of circulating contents between the nitrification tank II and the denitrification tank II,
  • the denitrification tank II can store nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen, the nitrification solution obtained in the nitrification tank I, and the nitrification solution obtained in the nitrification tank II.
  • the nitrification tank II adjusts the pH of the nitrogen-containing water a sent from the denitrification tank II to 6.0 or less, thereby performing low-temperature-resistant nitrification of the dominant species of microorganisms contained in the nitrogen-containing water a. nitrification by the low-temperature-resistant nitrifying bacteria in an aerobic atmosphere at 0° C. or higher and 15° C. or lower to produce a nitrified solution, and send the nitrified solution to the denitrification tank II; This is a nitrogen-containing water treatment device.
  • a nitrogen-containing water treatment apparatus is a nitrogen-containing water treatment apparatus comprising a treatment system A and a treatment system B,
  • the treatment system A includes a nitrification tank I and a denitrification tank I,
  • the nitrification tank I can store nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen and sludge returned from the treatment system B, and adjusts the pH of the nitrogen-containing water a to 6.
  • the dominant species of microorganisms contained in the nitrogen-containing water a are low temperature tolerant nitrifying bacteria, and the low temperature tolerant nitrifying bacteria contained in the low temperature tolerant nitrifying bacteria and the low temperature tolerant nitrifying bacteria contained in the returned sludge are adjusted to 0.
  • the denitrification tank I denitrifies nitric acid contained in the nitrified liquid obtained in the nitrification tank I, and sends the obtained return sludge to the treatment system B;
  • the treatment system B includes a nitrification tank II and a denitrification tank II, The nitrification tank II and the denitrification tank II are capable of circulating contents between the nitrification tank II and the denitrification tank II,
  • the denitrification tank II can store nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen, the sludge returned from the denitrification tank I, and the nitrified liquid obtained in the nitrification tank II, and denitrifying nitric acid contained in the nitrification solution, and sending the nitrogen-containing water a and the return sludge to the nitrification tank II;
  • the bacteria, the low-temperature-resistant nitrifying bacteria and the low-temperature-resistant nitrifying bacteria contained in the returned sludge perform nitrification at 0° C. or higher and 15° C. or lower to produce a nitrified solution, and send the nitrified solution to the denitrifying tank II;
  • This is a water treatment device.
  • low temperature resistant nitrifying bacteria can be easily obtained in large quantities.
  • the dominant species of microorganisms in nitrogen-containing water can be subjected to low-temperature-resistant nitrification.
  • the low temperature tolerant nitrifying bacteria have sufficient low temperature tolerance, according to one aspect of the present invention, even if the temperature of nitrogen-containing water is as low as 15° C. or lower, nitrification can be performed smoothly. Can be done.
  • a nitrogen-containing water treatment device that has a simple structure and is capable of culturing the low-temperature-resistant nitrifying bacteria and treating nitrogen-containing water.
  • FIG. 2 is a diagram showing the results of adjusting the pH of nitrogen-containing water to 5 and nitrifying ammonia contained in nitrogen-containing water at 5 to 6° C. in an aerobic atmosphere in Example 1.
  • ammonia contained in nitrogen-containing water is nitrified at 5°C by a method of supporting Comammox Nitrospira on a carrier (carrier method)
  • a nitrification rate of 0.05 kg-N/m 3 /day is satisfied. It is a figure showing that a bacterial count of 3 ⁇ 10 6 copies/g is required for this.
  • FIG. 4 is a diagram showing the results of examining the growth characteristics of Comammox Nitrospira at 25° C.
  • FIG. 3 is a diagram showing the structure of a culture device used in Example 5 and the like to adjust the pH of nitrogen-containing water and make the dominant microorganism species Comammox Nitrospira.
  • FIG. 5 is a diagram showing the results of checking changes in water quality over time for inorganic synthetic wastewater at 25° C. in an acidic environment in Example 5.
  • FIG. 5 is a diagram showing the results of real-time PCR of bacterial flora supported on a carrier in 25° C. inorganic synthetic wastewater whose pH was adjusted to 6, 5.5, and 5 in Example 5.
  • FIG. 3 is a diagram showing the structure of a culture device used in Example 5 and the like to adjust the pH of nitrogen-containing water and make the dominant microorganism species Comammox Nitrospira.
  • FIG. 5 is a diagram showing the results of checking changes in water quality over time for inorganic synthetic wastewater at 25° C. in an acidic environment in Example 5.
  • FIG. 5 is a diagram showing the results of real-time PCR of
  • Example 6 is a diagram showing the results of checking the change in water quality over time for nitrogen-containing water at 5 to 6° C. whose pH was adjusted to 6 in Example 6.
  • 5 is a diagram showing the relationship between volumetric load and nitrification rate in the apparatus shown in FIG. 4 in Example 6.
  • FIG. FIG. 3 is a diagram showing the results of a batch test at 5 to 20° C. taken out of the carrier used in Example 6.
  • 1 is a diagram showing an example of the structure of a nitrogen-containing water treatment apparatus according to an embodiment of the present invention. It is a figure showing an example of the structure of the treatment device of nitrogen-containing water concerning other embodiments of the present invention.
  • a method for cultivating low-temperature-resistant nitrifying bacteria comprises adjusting the pH of nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen to 6.0 or less, so that microorganisms can dominate. This method includes the step of obtaining nitrogen-containing water b whose seeds are cold-resistant nitrifying bacteria.
  • low-temperature-resistant nitrifying bacteria refers to bacteria that can nitrify ammonia nitrogen and/or organic nitrogen in nitrogen-containing water in an environment where the water temperature is 15° C. or lower.
  • “Cultivation method for low temperature tolerant nitrifying bacteria” does not mean cultivating only low temperature tolerant nitrifying bacteria, but if low temperature tolerant nitrifying bacteria can be cultivated, the cultured bacterial flora can contain other types of bacteria other than low temperature tolerant nitrifying bacteria. May contain bacteria. In fact, it is known that it is currently difficult to isolate cold-resistant nitrifying bacteria.
  • the cold-resistant nitrifying bacterium is not particularly limited, but Comammox Nitrospira is preferable.
  • Other bacteria included in the cold-resistant nitrifying bacteria include, for example, Nitrosomonas.
  • Comammox Nitrospira is a bacterium belonging to the genus Nitrospira that can directly produce nitric acid from ammonia and/or urea contained in nitrogen-containing water. Comammox Nitrospira can efficiently nitrify ammonia because it does not need to go through the production of nitrous acid.
  • ammonia nitrogen and/or organic nitrogen-containing water that is not subjected to the method for culturing low temperature tolerant nitrifying bacteria according to an embodiment of the present invention is referred to as "ammonia nitrogen and/or organic nitrogen-containing water”. / or nitrogen-containing water containing organic nitrogen.
  • Examples of the nitrogen-containing water a include, but are not limited to, domestic wastewater, human waste, factory wastewater, wastewater derived from livestock barns, and the like. Moreover, it is not necessarily limited to sewage water, and may be tap water.
  • Ammonia nitrogen (NH 4 --N) is a nitrogen compound formed by decomposing nitrogen-containing organic substances such as proteins. Organic nitrogen is converted to ammonia nitrogen by the catabolic metabolism of BOD-oxidizing bacteria. It is preferable that activated sludge is contained in the nitrogen-containing water a.
  • Patent Document 1 As a method for culturing low-temperature-resistant nitrifying bacteria such as Comammox Nitrospira, the method described in Patent Document 1, for example, has been known. However, since this method uses a large amount of a highly concentrated ammonia-containing medium, it cannot be said to be a simple method and requires a huge amount of equipment.
  • the present inventors have conducted extensive studies on a method for culturing low-temperature-resistant nitrifying bacteria using a simpler method and using simple equipment. As a result, by a simple method of adjusting the pH of nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen to 6.0 or less, it was possible to make cold-tolerant nitrifying bacteria the dominant species among the microorganisms in nitrogen-containing water. I found out that it can be done.
  • a method for adjusting the pH of the nitrogen-containing water a to 6.0 or less for example, a method of aerating the nitrogen-containing water a in a tank can be mentioned.
  • oxygen is supplied to the nitrogen-containing water a, ammonia in the nitrogen-containing water a changes to nitric acid, and the pH of the nitrogen-containing water a decreases, so that the pH can be adjusted to 6.0 or less.
  • the pH of the nitrogen-containing water a can be adjusted to 6.0 or less.
  • the cold-resistant nitrifying bacteria are aerobic bacteria.
  • the method for culturing low-temperature-tolerant nitrifying bacteria can create an aerobic atmosphere by aerating the nitrogen-containing water a, and set the pH of the nitrogen-containing water a to a value suitable for the growth of the low-temperature-tolerant nitrifying bacteria. This can be said to be an efficient method.
  • this is not limited to the method of aerating the nitrogen-containing water a; for example, an acid storage tank and/or an alkali storage tank may be connected to the tank, and the pH of the nitrogen-containing water a may be adjusted using acid and/or alkali. You may. Further, even when aerating the nitrogen-containing water a, fine adjustment of the pH can be easily performed by connecting an acid storage tank and/or an alkali storage tank to the tank.
  • the tank is not particularly limited, for example, a culture tank for carrying out the process may be provided, or an existing nitrification tank may be used.
  • the pH of the nitrogen-containing water a should be 6.0 or less, but is more preferably 5.5 or less. By adjusting the pH to 5.5 or less, it is possible to shorten the time it takes for low-temperature-tolerant nitrifying bacteria to become the dominant species in nitrogen-containing water a, and to make them become the dominant species more stably. be able to. Therefore, the treatment of nitrogen-containing water a can be made more efficient.
  • the pH is preferably greater than 3.0.
  • the lower the pH the more likely low-temperature-tolerant nitrifying bacteria become a dominant species in the nitrogen-containing water a.
  • the higher the pH the higher the nitrification activity of the cultured cold-resistant nitrifying bacteria tends to be. Therefore, it is preferable that the pH is a pH that can achieve both efficient growth of low-temperature-tolerant nitrifying bacteria and high nitrification activity. From this point of view, the pH is preferably greater than 3.0, more preferably greater than or equal to 5.0.
  • the nitrogen-containing water a contains a carrier. Since the carrier can retain bacteria, the inclusion of the carrier facilitates the growth and recovery of cold-resistant nitrifying bacteria.
  • the carrier is not particularly limited, and ordinary adhesion immobilization carriers, entrapping immobilization carriers, etc. can be used.
  • adhering and immobilizing carrier for example, spherical, cylindrical, gel-like carriers, string-like materials, nonwoven fabric materials, etc. can be used. Since these have many surface irregularities, they are preferable for attaching bacteria.
  • the entrapping immobilization carrier comprehensively immobilizes the bacteria inside the resulting gel by mixing bacteria and an immobilization material and polymerizing the immobilization material.
  • the immobilization material include monomer materials, prepolymer materials, and the like.
  • monomer materials include acrylamide, methylenebisacrylamide, triacryl formal, and the like.
  • the prepolymer material include polyvinyl alcohol (PVA), polyethylene glycol diacrylate, polyethylene glycol methacrylate, and derivatives thereof.
  • PVA carriers can be preferably used because they have a network structure of 20 ⁇ m or less and can hold bacteria at high density.
  • the filling rate of the carrier in the nitrogen-containing water a is preferably 1 to 60% by volume with respect to the volume of the nitrogen-containing water a in the tank, from the viewpoint of culturing efficiency of low-temperature-resistant nitrifying bacteria, It is more preferably 5 to 20% by volume, and particularly preferably 8 to 15% by volume.
  • the time required to make the dominant species of microorganisms contained in the nitrogen-containing water a low-temperature-resistant nitrifying bacteria varies depending on the amount of the nitrogen-containing water a, the specific value of pH, etc. It takes about 20 days from the day when the pH of a becomes 6.0 or less.
  • the temperature of the nitrogen-containing water a is not particularly limited, but from the viewpoint of improving the growth rate of low-temperature-tolerant nitrifying bacteria, room temperature ( 20 to 25°C).
  • the concentration of ammonia nitrogen and/or organic nitrogen in the nitrogen-containing water a is preferably 2000 mg-N/L or less, more preferably 100 mg-N/L or less, and 40 mg-N/L or less. It is particularly preferable that
  • the load applied to the low temperature resistant nitrifying bacteria becomes appropriate when culturing the low temperature tolerant nitrifying bacteria, so that the low temperature tolerant nitrifying bacteria can be efficiently cultured.
  • the concentration exceeds 0, preferably 5 mg-N/L or more, and more preferably 30 mg-N/L or more.
  • nitrogen-containing water b is nitrogen-containing water in which the predominant species of microorganisms included in nitrogen-containing water a are low temperature-resistant nitrifying bacteria.
  • the ratio of the amount of low temperature resistant nitrifying bacteria to the amount of ammonia oxidizing bacteria exceeds 1.
  • ammonia-oxidizing bacteria are the dominant species in nitrogen-containing water b, ammonia nitrification at low temperatures will be delayed. According to the above configuration, since the low temperature tolerant nitrifying bacteria are more dominant than the ammonia oxidizing bacteria in the nitrogen-containing water b, it is possible to efficiently nitrify ammonia at low temperatures. Note that the ratio can be confirmed by, for example, analyzing the bacterial flora supported on the carrier using real-time PCR and calculating the ratio.
  • the nitrogen-containing water b has a ratio of the amount of low temperature resistant nitrifying bacteria to the amount of ammonia oxidizing bacteria of 5 or more and 100 or less. According to the above configuration, since low temperature tolerant nitrifying bacteria are significantly more dominant than ammonia oxidizing bacteria in the nitrogen-containing water b, ammonia nitrification can be performed more efficiently at low temperatures.
  • the nitrogen-containing water b in which low-temperature-resistant nitrifying bacteria are the dominant species can be suitably used for ammonia nitrification at low temperatures. Therefore, according to the method for culturing low-temperature-tolerant nitrifying bacteria according to an embodiment of the present invention, it is possible to make low-temperature-tolerant nitrifying bacteria the dominant species by a simple method, thereby contributing to improving the efficiency of nitrification at low temperatures.
  • a method for treating nitrogen-containing water according to an embodiment of the present invention uses low-temperature-tolerant nitrifying bacteria obtained by a method for culturing low-temperature-tolerant nitrifying bacteria according to an embodiment of the present invention, under an aerobic atmosphere, at a water temperature of The method includes a step of nitrifying ammonia contained in the nitrogen-containing water a and/or the nitrogen-containing water b at a temperature of 0° C. or higher and 15° C. or lower.
  • Examples of the steps include, for example, the following steps: - A step of introducing nitrogen-containing water b or the carrier filled in nitrogen-containing water b into a nitrification tank that stores nitrogen-containing water a, and performing nitrification at a water temperature of 0°C or more and 15°C or less in an aerobic atmosphere. ; - A method for culturing low temperature resistant nitrifying bacteria according to an embodiment of the present invention is carried out in a nitrification tank storing nitrogen-containing water a, nitrogen-containing water b is obtained, and in the nitrification tank under an aerobic atmosphere, A step of nitrifying nitrogen-containing water b at a temperature of 15°C or higher.
  • the aerobic atmosphere can be created, for example, by aerating the nitrogen-containing water a and/or the nitrogen-containing water b.
  • Water temperature of 0°C or higher and 15°C or lower means that the water temperature of the nitrogen-containing water a and/or the nitrogen-containing water b to be nitrified is 0°C or higher and 15°C or lower.
  • the low temperature tolerant nitrifying bacteria used in the method for treating nitrogen-containing water have high nitrification activity at low temperatures. Therefore, the water temperature is more preferably 0°C or more and 10°C or less, particularly preferably 0°C or more and 5°C or less.
  • the pH of the nitrogen-containing water a and/or the nitrogen-containing water b to be nitrified is not particularly limited, and may be directly subjected to nitrification without being particularly adjusted. Because nitrification is carried out at low temperatures, bacteria other than low-temperature-tolerant nitrifying bacteria cannot grow. Therefore, regardless of the pH, the low-temperature-tolerant nitrifying bacteria can perform nitrification and convert ammonia into nitric acid while remaining the dominant species.
  • the water temperature is artificially set between 0°C and 15°C. If the water temperature is high, it is sufficient to use a conventionally known nitrification method. However, until now, there has been no method that can easily and efficiently perform nitrification when the water temperature is 0° C. or higher and 15° C. or lower.
  • a method for treating nitrogen-containing water according to an embodiment of the present invention is a method using low-temperature-tolerant nitrifying bacteria contained in nitrogen-containing water b obtained by the method for culturing low-temperature-tolerant nitrifying bacteria described above.
  • low temperature tolerant nitrifying bacteria are the dominant species. Therefore, by using the method for treating nitrogen-containing water when the water temperature is low, it is possible to avoid complications such as heating the nitrogen-containing water to be nitrified, and to perform nitrification efficiently.
  • a nitrogen-containing water treatment device is a nitrogen-containing water treatment device having a culture tank and a nitrification tank, The culture tank and the nitrification tank are capable of circulating contents between the culture tank and the nitrification tank, The culture tank can store nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen and return sludge obtained from the nitrification tank, and adjusts the pH of the nitrogen-containing water a to 6.
  • nitrogen-containing water b is produced in which the dominant species of microorganisms contained in the nitrogen-containing water a are low-temperature-resistant nitrifying bacteria
  • the nitrification tank can store the nitrogen-containing water a and the nitrogen-containing water b, and uses low-temperature-resistant nitrifying bacteria contained in the nitrogen-containing water b to remove the nitrogen at a water temperature of 0°C to 15°C.
  • Ammonia contained in the containing water a and/or the nitrogen-containing water b is nitrified to produce a nitrified solution.
  • the nitrogen-containing water treatment device can implement the method for culturing low-temperature-resistant nitrifying bacteria and the method for treating nitrogen-containing water according to one embodiment of the present invention.
  • FIG. 10 is a diagram showing an example of the structure of the nitrogen-containing water treatment apparatus according to the present embodiment.
  • 100 is a nitrogen-containing water treatment device
  • 1 is a denitrification tank
  • 2 is a nitrification tank
  • 3 is a culture tank
  • 4 is an acid storage tank
  • 5 is an alkali storage tank
  • P is the pump
  • ORP is the oxidation-reduction potential meter
  • B is the aeration device
  • M is the stirring motor
  • *1 is the introduction of return sludge from nitrification tank 2 to culture tank 3
  • *2 is nitrification tank 2 represents the introduction of the nitrifying solution from 2 into the denitrification tank 1, respectively.
  • Raw water indicates that nitrogen-containing water a is introduced into denitrification tank 1 and culture tank 3, and the arrow from culture tank 3 to nitrification tank 2 indicates that nitrogen-containing water b produced in culture tank 3 is introduced. It shows that it is introduced into the nitrification tank 2.
  • introductions may be performed via introduction parts connected to the denitrification tank 1, nitrification tank 2, and culture tank 3, respectively. Examples of the introduction part include piping.
  • the materials and volumes of the denitrification tank 1, nitrification tank 2, and culture tank 3 are not particularly limited. Although the denitrification tank 1 is shown in FIG. 10, the denitrification tank 1 in the processing apparatus 100 may have any configuration.
  • the culture tank 3 can carry out the method described in Embodiment 1, and by adjusting the pH of the introduced nitrogen-containing water a to 6.0 or less, the microorganisms contained in the nitrogen-containing water a can be removed.
  • Nitrogen-containing water b is produced in which the dominant species is low temperature resistant nitrifying bacteria.
  • the method for adjusting the pH is as described in Embodiment 1.
  • the culture tank 3 introduces nitrogen-containing water b into the nitrification tank 2. If carriers on which low-temperature-resistant nitrifying bacteria are predominantly propagated are present in the nitrogen-containing water b, the carriers may be removed from the culture tank 3 and only the carriers may be introduced into the nitrification tank 2.
  • low-temperature-resistant nitrifying bacteria contained in the nitrogen-containing water b are used to treat the nitrogen-containing water a and/or the nitrogen-containing water b under an aerobic atmosphere at a water temperature of 0°C or higher and 15°C or lower. Ammonia is nitrified to produce nitrified liquid. Nitrification is as described in Embodiment 2.
  • the denitrification tank 1 can store the nitrogen-containing water a and the nitrification liquid produced in the nitrification tank 2, and denitrifies the nitric acid contained in the nitrification liquid in an anaerobic atmosphere to generate nitrogen gas.
  • the culture tank 3 and the nitrification tank 2 are such that the culture tank 3 introduces the nitrogen-containing water b and/or the carrier contained in the nitrogen-containing water b into the nitrification tank 2, and the nitrification tank 2 introduces the carrier obtained in the nitrification tank 2.
  • the returned sludge is introduced into the culture tank 3.
  • the contents of the culture tank 3 and the nitrification tank 2 can be circulated between the culture tank 3 and the nitrification tank 2. Since the returned sludge is acidic, it can be used to adjust the pH of the nitrogen-containing water a introduced into the culture tank 3 to 6.0. In addition, since the returned sludge contains low-temperature-resistant nitrifying bacteria, it is once returned to the culture tank 3 and then introduced to the nitrification tank 2 together with the nitrogen-containing water b newly generated in the culture tank 3 for nitrification.
  • nitrification can proceed efficiently in the nitrification tank 2 in an environment where the water temperature is 0° C. or more and 15° C. or less. In this manner, in the processing device 100, by circulating the contents between the culture tank 3 and the nitrification tank 2, it is possible to continuously culture the low temperature resistant nitrifying bacteria and perform nitrification at low temperatures. .
  • a nitrogen-containing water treatment apparatus is a nitrogen-containing water treatment apparatus comprising a treatment system A and a treatment system B,
  • the treatment system A includes a nitrification tank I,
  • the nitrification tank I can store nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen and sludge returned from the treatment system B, and adjusts the pH of the nitrogen-containing water a to 6.
  • the dominant species of microorganisms contained in the nitrogen-containing water a are low temperature tolerant nitrifying bacteria, and the low temperature tolerant nitrifying bacteria contained in the low temperature tolerant nitrifying bacteria and the low temperature tolerant nitrifying bacteria contained in the returned sludge are adjusted to 0.
  • the treatment system B includes a nitrification tank II and a denitrification tank II,
  • the nitrification tank II and the denitrification tank II are capable of circulating contents between the nitrification tank II and the denitrification tank II,
  • the denitrification tank II can store nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen, the nitrification solution obtained in the nitrification tank I, and the nitrification solution obtained in the nitrification tank II.
  • the nitrification tank II adjusts the pH of the nitrogen-containing water a sent from the denitrification tank II to 6.0 or less, thereby performing low-temperature-resistant nitrification of the dominant species of microorganisms contained in the nitrogen-containing water a. nitrification by the low-temperature-resistant nitrifying bacteria in an aerobic atmosphere at 0° C. or higher and 15° C. or lower to produce a nitrified solution, and send the nitrified solution to the denitrification tank II; This is a nitrogen-containing water treatment device.
  • the treatment apparatus can carry out the method for culturing low-temperature-resistant nitrifying bacteria and the method for treating nitrogen-containing water according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing an example of the structure of the processing device according to this embodiment. Further explanation of the symbols already explained will be omitted.
  • 101 is a nitrogen-containing water treatment device
  • A is treatment system A
  • B is treatment system B
  • 1 and 1' are denitrification tanks
  • 2 and 2' are nitrification tanks
  • 6 and 6' are settling tanks
  • * a represents the introduction of nitrification liquid from the settling tank 6 to the denitrification tank 1'
  • *b represents the introduction of return sludge from the settling tank 6' to the nitrification tank 2.
  • "Raw water” indicates that nitrogen-containing water a is introduced into the denitrification tank 1, nitrification tank 2, and denitrification tank 1'.
  • the processing apparatus does not include the denitrification tank 1. Therefore, in FIG. 11, the treatment liquid is introduced from the denitrification tank 1 to the sedimentation tank 6, but in this embodiment, the nitrification liquid is introduced from the nitrification tank 2 to the sedimentation tank 6. Note that an aspect including the denitrification tank 1 will be described in Embodiment 5.
  • the nitrification tank 2 (corresponding to the nitrification tank I) adjusts the pH of the introduced nitrogen-containing water a to 6.0 or less in the same way as the culture tank 3.
  • the predominant species of microorganisms included in a is cold-resistant nitrifying bacteria.
  • nitrogen-containing water b is obtained in the nitrification tank 2.
  • ammonia contained in the nitrogen-containing water b is nitrified in an aerobic atmosphere at a temperature of 0°C or more and 15°C or less, and the obtained nitrified liquid passes through the settling tank 6 and is sent to the treatment system B is introduced into the denitrification tank 1' (corresponding to the denitrification tank II).
  • a denitrification tank 1' and a nitrification tank 2' (corresponding to the nitrification tank II) circulate the contents between the denitrification tank 1' and the nitrification tank 2'. That is, nitrification liquid circulation is performed between the denitrification tank 1' and the nitrification tank 2'.
  • the denitrification tank 1' contains the nitrification liquid generated in the nitrification tank 2 ("*a" in the figure), and the nitrification liquid generated in the nitrification tank 2' (arrow from nitrification tank 2' to denitrification tank 1'). ) is introduced.
  • the denitrification tank 1' denitrifies nitric acid contained in these nitrified solutions in an anaerobic atmosphere to generate nitrogen gas. Then, the nitrogen-containing water a ("raw water” in the figure) introduced into the denitrification tank 1' is sent to the nitrification tank 2'.
  • the nitrification tank 2' adjusts the pH of the introduced nitrogen-containing water a to 6.0 or less, thereby eliminating the dominant species of microorganisms contained in the nitrogen-containing water a at a low temperature. Resistant nitrifying bacteria. As a result, nitrogen-containing water b is obtained in the nitrification tank 2'. Subsequently, in the nitrification tank 2', ammonia contained in the nitrogen-containing water b is nitrified at a temperature of 0°C or more and 15°C or less in an aerobic atmosphere, and the obtained nitrified liquid is transferred to the denitrification tank as described above. 1'. The treated liquid that has been denitrified in the denitrification tank 1' is introduced into the settling tank 6'. The returned sludge 6' is then introduced into the nitrification tank 2 (*b in the figure).
  • the nitrification tank 2 and the nitrification tank 2' play the role of the culture tank 3, and also perform nitrification using the low-temperature-resistant nitrifying bacteria that have become the dominant species.
  • the returned sludge obtained in treatment system B contains low temperature resistant nitrifying bacteria, and by introducing this into nitrification tank 2, the low temperature resistant nitrifying bacteria can be reused in nitrification tank 2. .
  • the nitrified solution obtained in the treatment system A is introduced into the denitrification tank 1', and denitrified at once together with the nitrified solution introduced from the nitrification tank 2'.
  • the processing device 101 can continuously perform the cultivation of low temperature-resistant nitrifying bacteria and the nitrification at low temperatures by circulating the products of the processing system A and the products of the processing system B. can.
  • a nitrogen-containing water treatment apparatus is a nitrogen-containing water treatment apparatus comprising a treatment system A and a treatment system B,
  • the treatment system A includes a nitrification tank I and a denitrification tank I,
  • the nitrification tank I can store nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen and sludge returned from the treatment system B, and adjusts the pH of the nitrogen-containing water a to 6.
  • the dominant species of microorganisms contained in the nitrogen-containing water a are low temperature tolerant nitrifying bacteria, and the low temperature tolerant nitrifying bacteria contained in the low temperature tolerant nitrifying bacteria and the low temperature tolerant nitrifying bacteria contained in the returned sludge are adjusted to 0.
  • the denitrification tank I denitrifies nitric acid contained in the nitrified liquid obtained in the nitrification tank I, and sends the obtained return sludge to the treatment system B;
  • the treatment system B includes a nitrification tank II and a denitrification tank II, The nitrification tank II and the denitrification tank II are capable of circulating contents between the nitrification tank II and the denitrification tank II,
  • the denitrification tank II can store nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen, the sludge returned from the denitrification tank I, and the nitrified liquid obtained in the nitrification tank II, and denitrifying nitric acid contained in the nitrification solution, and sending the nitrogen-containing water a and the return sludge to the nitrification tank II;
  • nitrification at a temperature of 0° C. or higher and 15° C. or lower using the low-temperature-resistant nitrifying bacteria and the low-temperature-resistant nitrifying bacteria contained in the returned sludge to produce a nitrified solution, and send the nitrified solution to the denitrification tank II;
  • This is a nitrogen-containing water treatment device.
  • FIG. 11 An example of the configuration of the processing device of this embodiment is shown in FIG. 11.
  • This treatment device differs from the second nitrogen-containing water treatment device in that it includes a denitrification tank 1. Therefore, in the second nitrogen-containing water treatment device, the nitrified liquid obtained in the nitrification tank 2 was introduced into the denitrification tank 1' of the treatment system B, but in this embodiment, the nitrification liquid obtained in the denitrification tank 1 Returned sludge is introduced into denitrification tank 1'.
  • This embodiment differs from the second nitrogen-containing water treatment device in that the low temperature resistant nitrifying bacteria contained in the returned sludge obtained in the denitrification tank 1 is reused in the nitrification tank 2'.
  • the second nitrogen-containing water treatment device it is similar to the second nitrogen-containing water treatment device, and similarly to the treatment device, by circulating the products of treatment system A and treatment system B, low-temperature-resistant nitrifying bacteria Cultivation and nitrification at low temperatures can be performed continuously.
  • the present invention includes the following aspects. ⁇ 1> By adjusting the pH of nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen to 6.0 or less, obtain nitrogen-containing water b in which the dominant species of microorganisms are low temperature tolerant nitrifying bacteria. A method for culturing low-temperature-resistant nitrifying bacteria, including a process. ⁇ 2> The method for culturing low-temperature-resistant nitrifying bacteria according to ⁇ 1>, wherein the pH of the nitrogen-containing water a is adjusted to more than 3.0 and 6.0 or less.
  • ⁇ 3> The method for culturing low temperature tolerant nitrifying bacteria according to ⁇ 1> or ⁇ 2>, wherein the concentration of ammonia nitrogen and/or organic nitrogen in the nitrogen-containing water a is 2000 mg-N/L or less.
  • Culture method. ⁇ 5> The method for culturing low temperature resistant nitrifying bacteria according to ⁇ 4>, wherein the ratio is 5 or more and 100 or less.
  • ⁇ 6> The method for culturing low temperature tolerant nitrifying bacteria according to any one of ⁇ 1> to ⁇ 5>, wherein the low temperature resistant nitrifying bacteria is Comammox Nitrospira.
  • the nitrogen-containing water a is produced in an aerobic atmosphere at a water temperature of 0°C or higher and 15°C or lower. and/or a method for treating nitrogen-containing water, including the step of nitrifying ammonia contained in the nitrogen-containing water b.
  • a nitrogen-containing water treatment device having a culture tank and a nitrification tank,
  • the culture tank and the nitrification tank are capable of circulating contents between the culture tank and the nitrification tank,
  • the culture tank can store nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen and return sludge obtained from the nitrification tank, and adjusts the pH of the nitrogen-containing water a to 6.
  • nitrogen-containing water b is produced in which the dominant species of microorganisms contained in the nitrogen-containing water a are low-temperature-resistant nitrifying bacteria
  • the nitrification tank can store the nitrogen-containing water a and the nitrogen-containing water b, and uses low-temperature-resistant nitrifying bacteria contained in the nitrogen-containing water b to remove the nitrogen at a water temperature of 0°C to 15°C. nitrifying ammonia contained in the containing water a and/or the nitrogen-containing water b to produce a nitrified solution; Nitrogen-containing water treatment equipment.
  • a nitrogen-containing water treatment device comprising a treatment system A and a treatment system B
  • the treatment system A includes a nitrification tank I
  • the nitrification tank I can store nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen and sludge returned from the treatment system B, and adjusts the pH of the nitrogen-containing water a to 6.
  • the dominant species of microorganisms contained in the nitrogen-containing water a are low temperature tolerant nitrifying bacteria, and the low temperature tolerant nitrifying bacteria contained in the low temperature tolerant nitrifying bacteria and the low temperature tolerant nitrifying bacteria contained in the returned sludge are adjusted to 0.
  • the treatment system B includes a nitrification tank II and a denitrification tank II,
  • the nitrification tank II and the denitrification tank II are capable of circulating contents between the nitrification tank II and the denitrification tank II,
  • the denitrification tank II can store nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen, the nitrification solution obtained in the nitrification tank I, and the nitrification solution obtained in the nitrification tank II.
  • the nitrification tank II adjusts the pH of the nitrogen-containing water a sent from the denitrification tank II to 6.0 or less, thereby performing low-temperature-resistant nitrification of the dominant species of microorganisms contained in the nitrogen-containing water a. nitrification by the low-temperature-resistant nitrifying bacteria in an aerobic atmosphere at 0° C. or higher and 15° C. or lower to produce a nitrified solution, and send the nitrified solution to the denitrification tank II; Nitrogen-containing water treatment equipment.
  • a nitrogen-containing water treatment device comprising a treatment system A and a treatment system B
  • the treatment system A includes a nitrification tank I and a denitrification tank I
  • the nitrification tank I can store nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen and sludge returned from the treatment system B, and adjusts the pH of the nitrogen-containing water a to 6.
  • the dominant species of microorganisms contained in the nitrogen-containing water a are low-temperature-tolerant nitrifying bacteria, and the low-temperature-tolerant nitrifying bacteria and the low-temperature-tolerant nitrifying bacteria contained in the returned sludge reduce the temperature to 0.
  • the denitrification tank I denitrifies nitric acid contained in the nitrified liquid obtained in the nitrification tank I, and sends the obtained return sludge to the treatment system B;
  • the treatment system B includes a nitrification tank II and a denitrification tank II, The nitrification tank II and the denitrification tank II are capable of circulating contents between the nitrification tank II and the denitrification tank II,
  • the denitrification tank II can store nitrogen-containing water a containing ammonia nitrogen and/or organic nitrogen, the sludge returned from the denitrification tank I, and the nitrification liquid obtained in the nitrification tank II, and denitrifying nitric acid contained in the nitrification solution, and sending the nitrogen-containing water a and the return sludge to the nitrification tank II;
  • Example 1 In Example 1, the pH of nitrogen-containing water containing ammonia nitrogen and organic nitrogen was set to 5, and it was determined whether the dominant species of microorganisms contained in the nitrogen-containing water could be low-temperature-resistant nitrifying bacteria. We considered this.
  • the nitrogen-containing water containing nitrifying bacteria As the nitrogen-containing water containing nitrifying bacteria, sewage from a sewage treatment plant (located in Gunma Prefecture) that uses a general activated sludge method was used. The concentration of ammonia nitrogen contained in the nitrogen-containing water to be treated was about 48 mg/L.
  • the returned sludge from the sewage treatment plant is put in 90% of the water tank volume and the carrier 10 is put in 10% of the water tank volume into the continuous operation device 102 shown in FIG. Water was passed at a flow rate that would replace the original amount in one day.
  • the effective volume of the water tank of the continuous operation device 102 is 1.1L.
  • 4 is an acid storage tank
  • 5 is an alkali storage tank
  • 7 is a thermocouple
  • 8 is a heater
  • 10 is a carrier
  • B is an aeration device
  • P is a pump
  • pH controller is a pH controller.
  • the pH of the nitrogen-containing water was lowered to 5 by blowing air into the nitrogen-containing water from an aeration device.
  • the acid storage tank 4 stores 0.5N hydrochloric acid
  • the alkali storage tank stores 5% (W/V) NaHCO 3 .
  • the pH controller controlled the acid storage tank and the alkali storage tank, and added the hydrochloric acid or the NaHCO 3 into the tank as necessary to maintain the pH of the nitrogen-containing water at 5 and the water temperature at 20 to 25°C. .
  • a polyvinyl alcohol (PVA) sponge carrier manufactured by Aion Co., Ltd., 4 mm square was used.
  • FIG. 1 shows the results of nitrifying ammonia contained in nitrogen-containing water under an aerobic atmosphere.
  • raw water NH 4 -N refers to ammonia nitrogen contained in the nitrogen-containing water
  • treated water NH 4 -N refers to ammonia nitrogen contained in the treated water (nitrification liquid)
  • treated water NO 2 -N refers to nitrite nitrogen in treated water
  • treated water NO 3 -N refers to nitrate nitrogen in treated water.
  • the concentrations of "raw water NH 4 -N”, “treated water NH 4 -N”, “treated water NO 2 -N”, and “treated water NO 3 -N” are measured using the sewage test method (Japan Sewage Works Association 2012 edition). ).
  • the nitrification rate at 6°C was 0.12 kg-N/m 3 /day.
  • the nitrification rate was determined by the sewage test method described above.
  • the bacterial flora of the carrier after low temperature-tolerant nitrifying bacteria became the dominant species in nitrogen-containing water was analyzed by real-time PCR.
  • the primers shown in Table 1 were used.
  • DNA extraction from the carrier was performed using DNeasy PowerBiofilm Kit (Qiagen).
  • Real-time PCR used an environmental sample and a purified product of each target gene as a standard.
  • TB Green (registered trademark) Premix Ex Taq (trademark) II (Tli RNaseH Plus) (Takara Bio) was used for the measurement, and StepOnePlus (trademark) Real-time PCR (Applied Biosystems) was used as a real-time PCR device.
  • Beta-AOB refers to general ammonia-oxidizing bacteria
  • AOA refers to ammonia-oxidizing archaea
  • comammox refers to Comammox Nitrospira
  • Bacteria refers to all bacteria.
  • Comammox Nitrospira was detected in greater numbers than ammonia-oxidizing bacteria. Therefore, in this example, it is thought that by setting the pH of the nitrogen-containing water to 5, Comammox Nitrospira became the dominant species in the nitrogen-containing water. It is thought that because Comammox Nitrospira became the dominant species, stable nitrification could be achieved even at low temperatures of 5 to 6 degrees Celsius.
  • low temperature tolerant nitrifying bacteria can be made the dominant species by a simple method, and nitrite can be produced in a low temperature environment. It can be seen that nitrification can be carried out while inhibiting the production of .
  • Example 2 In this example, the amount of low temperature resistant nitrifying bacteria required to perform nitrification at 5°C was investigated.
  • a carrier was added to a nitrification tank having an MLSS of 2000 mg/L (suspended sludge) in an amount of 10% by volume based on the volume of the nitrification tank, and cultured continuously.
  • the amount of Comammox Nitrospira that could be cultured was 1 ⁇ 10 4 to 1 ⁇ 10 9 copies/g per gram of carrier.
  • the amount of supported bacteria is shown on the horizontal axis of FIG.
  • the composition of the wastewater used is shown in Table 4.
  • the carrier used was the same as in Example 1, a PVA sponge carrier.
  • Example 3 In this example, sewage treatment was performed using a modified activated sludge circulation method, and the superiority of using Comammox Nitrospira in the floating method was confirmed.
  • the modified activated sludge circulation method uses a nitrification tank and a denitrification tank, and circulates nitrified liquid between the nitrification tank and the denitrification tank. The operating conditions are shown in Table 2.
  • the removal rate of TN was 75% or more. Further, as a conventional method, operation was carried out under the same conditions as in Example 3 except that Comammox Nitrospira was not added. The TN removal rate at this time was 40% or less.
  • Example 4 the growth characteristics of Comammox Nitrospira were investigated using a carrier dominated by Comammox Nitrospira. In other words, we investigated conditions for increasing the number of seed carriers.
  • a continuous operation device 102 shown in FIG. 4 was used as the device.
  • the operating conditions are shown in Table 3.
  • FIG. 3 is a diagram showing the results of examining the growth characteristics of Comammox Nitrospira at 25°C using the carrier as the seed fungus.
  • comammox refers to the number of Comammox Nitrospira
  • bacteria16S refers to the total number of eubacteria
  • beta-AOB refers to the number of ammonia-oxidizing bacteria
  • AOA refers to the number of ammonia-oxidizing archaea.
  • the specific growth rate ⁇ of Comammox Nitrospira was 0.124/day, and the doubling time was 5.58 days.
  • the specific growth rate of Comammox Nitrospira was 1/30 that of ammonia-oxidizing bacteria, and it was found that ammonia-oxidizing bacteria became the dominant species under conditions of a water temperature of 25°C.
  • SRT sludge retention time
  • Example 5 In this example, appropriate culture conditions for low temperature resistant nitrifying bacteria were investigated. As the device, a continuous operation device 102 shown in FIG. 4 was used. The composition of the inorganic synthetic wastewater used is shown in Table 4, and the operating conditions are shown in Table 5.
  • the carriers as seed bacteria shown in Table 5 (Einohi et al. (2021), Journal of Water Treatment Biology, 57, 35-41) and the new sponge carriers were introduced into the continuous operation device 102 having the inorganic synthetic wastewater shown in Table 4. .
  • the pH of the inorganic synthetic wastewater was adjusted to 6 by blowing air from an aeration device.
  • the time when the pH of the inorganic synthetic wastewater reached 6 was defined as the 0th day of operation, and the pH was maintained at 6 until the 149th day for acclimatization.
  • FIG. 5 is a diagram showing the results of checking changes in water quality over time for the inorganic synthetic wastewater in an acidic environment.
  • "raw water NH 4 -N” represents ammonia nitrogen contained in the inorganic synthetic wastewater
  • “raw water NO 2 -N” represents nitrite nitrogen contained in the inorganic synthetic wastewater
  • “raw water NO 3 -N”” is nitrate nitrogen contained in the inorganic synthetic wastewater
  • “treated water NH 4 -N” is ammonia nitrogen in the treated water (nitrification solution)
  • treated water NO 2 -N is nitrate nitrogen contained in the treated water.
  • Nitrate nitrogen and “treated water NO 3 -N” refer to nitrate nitrogen in treated water, respectively.
  • the method for measuring the concentration of the "raw water NH 4 -N" and the like is the sewage test method (Japan Sewage Works Association 2012 edition).
  • the pH of the inorganic synthetic wastewater was changed to 5.5 and then to 5 at the elapsed days shown in FIG. 5, and the operation was continued for about 60 days in each case.
  • the water temperature was maintained at 25°C and dissolved oxygen was maintained at 7-8 mg/L, and water quality analysis was conducted twice a week.
  • FIG. 6 is a diagram showing the results of real-time PCR of the bacterial flora supported on the carrier in the inorganic synthetic wastewater whose pH was adjusted to 6, 5.5, and 5.
  • the horizontal axis shows the number of days from the start of operation, and the vertical axis shows the amount of gene present per 1 g of carrier.
  • beta-AOB refers to common ammonia-oxidizing bacteria
  • comammox refers to Comammox Nitrospira.
  • Comammox Nitrospira and ammonia-oxidizing bacteria in the carrier were quantified by real-time PCR for each amoA gene using specific primers. DNA was extracted from the carriers collected on the days indicated on the horizontal axis of FIG. 6 using DNeasy PowerBiofilm Kit (Qiagen). Real-time PCR used an environmental sample and a purified product of each target gene as a standard. TB Green (registered trademark) Premix Ex Taq (trademark) II (Tli RNaseH Plus) (Takara Bio) was used for the measurement, and StepOnePlus (trademark) Real-time PCR (Applied Biosystems) was used as a real-time PCR device. Note that the specific primers are the same as those shown in "Beta-AOB" and "comammox" in Table 1.
  • Example 6 In this example, the involvement of Comammox Nitrospira in low-temperature nitrification was investigated using an apparatus that performs nitrification at 5° C. for a long period of time.
  • a continuous operation device 102 shown in FIG. 4 was used as the device.
  • the composition of the inorganic synthetic wastewater used is shown in Table 6, and the operating conditions are shown in Table 7.
  • the inorganic synthetic wastewater shown in Table 6 was charged into the continuous operation device 102, and the carriers shown in Table 7 were charged.
  • the pH of the inorganic synthetic wastewater was adjusted to 6 by blowing air from an aeration device, and the time when the pH of the inorganic synthetic wastewater reached 6 was defined as the 0th day of operation.
  • FIG. 7 is a diagram showing the results of checking the change in water quality of the inorganic synthetic wastewater over time from the start of operation to the 2892nd day.
  • the horizontal axis of FIG. 7 is the number of days that have passed since the start of operation, and the vertical axis is the nitrogen concentration shown in the legend.
  • the methods for measuring the concentrations of "raw water NH 4 -N", “treated water NH 4 -N”, “treated water NO 2 -N”, and “treated water NO 3 -N" were the same as the method explained in Example 1. It's the same.
  • FIG. 8 is a diagram showing the relationship between volumetric load and nitrification rate in the apparatus shown in FIG. 4. A maximum nitrification rate of 0.34 kg-N/m 3 /day was obtained, and the nitrification rate was approximately 100%.
  • the bacterial flora was collected from the carrier on the 2779th day after the start of operation, and real-time PCR was performed. As a result, total eubacteria were 5.85 ⁇ 10 10 copies/g-carrier, ammonia oxidizing bacteria were below the detection limit, and Comammox Nitrospira (Comammox Nitrospira) was 7.49 x 10 6 copies/g-carrier.
  • the real-time PCR method was the same as that shown in Example 1, and the primers shown in Table 1 were used. From this result, it is thought that stable nitrification is performed even at water temperatures of 5 to 6 degrees Celsius because Comammox Nitrospira is the dominant species.
  • FIG. 9 is a diagram showing the results of a batch test. It can be seen that stable nitrification is possible at any temperature.
  • the dominant species in the inorganic synthetic wastewater can be Comammox Nitrospira. Furthermore, it can be seen that by using a bacterial flora in which Comammox Nitrospira is the dominant species, stable nitrification can be performed at a wide range of temperatures from 5°C to 20°C.
  • the present invention can be effectively utilized in sewage treatment plants and the like where nitrification needs to be performed under low temperature conditions.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

簡便な方法で低温耐性硝化細菌を培養する方法、当該低温耐性硝化細菌を用いて窒素含有水を処理する方法、並びに、当該低温耐性硝化細菌の培養および窒素含有水の処理が可能な装置を実現する。アンモニア態窒素および/または有機態窒素を含有する窒素含有水aのpHを6.0以下に調整することにより、微生物の優占種が低温耐性硝化細菌である窒素含有水bを得る工程を含む、低温耐性硝化細菌の培養方法。

Description

低温耐性硝化細菌の培養方法、窒素含有水を処理する方法、および窒素含有水の処理装置
 本発明は、低温耐性硝化細菌の培養方法、窒素含有水を処理する方法、および窒素含有水の処理装置に関する。
 下水、産業廃水等に含まれるアンモニア態窒素および/または有機態窒素の処理には、硝化細菌を用いた生物処理法が用いられている。生物処理法は安価な方法であるが、低温での処理が難しい。すなわち、下水等の処理水の水温が15℃以下では反応が進まないため、冬季における処理が困難であるという問題があった。
 そのため、従来、加温設備(蒸気吹き込み)を用い、処理水を加温した後に生物処理に供する方法が取られていたが、非常に手間がかかるため、代替法が求められていた。
 前記代替法としては、特許文献1に記載の方法を挙げることができる。当該方法は、低温耐性硝化細菌であるAH菌群(Ammonia oxidizing bacteria detected by MPN method using High ammonium media)(MPN method: most probable number method)を用いて、15℃以下の低温でアンモニア態窒素含有水を処理する方法である。
国際公開2014/017429号
 特許文献1に記載された方法は、既に実用化されている。しかしながら、AH菌群の培養には、高濃度のアンモニア含有培地を多量に用いる必要がある。それゆえに、培養設備も膨大な設備となる。
 そのため、より簡便な方法で、かつ、簡易な設備によって低温耐性硝化細菌を培養する方法の実現が求められていた。
 本発明の一態様は、簡便な方法で低温耐性硝化細菌を培養する方法、当該低温耐性硝化細菌を用いて窒素含有水を処理する方法、並びに、当該低温耐性硝化細菌の培養および窒素含有水の処理が可能な装置を実現することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る低温耐性硝化細菌の培養方法は、アンモニア態窒素および/または有機態窒素を含有する窒素含有水aのpHを6.0以下に調整することにより、微生物の優占種が低温耐性硝化細菌である窒素含有水bを得る工程を含む。
 本発明の一態様に係る窒素含有水の処理装置は、培養槽と、硝化槽とを有する窒素含有水の処理装置であって、
 前記培養槽と前記硝化槽とは、前記培養槽と前記硝化槽との間で内容物を循環させることが可能であり、
 前記培養槽は、アンモニア態窒素および/または有機態窒素を含有する窒素含有水aと、前記硝化槽から得られた返送汚泥とを貯留することができ、前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とした窒素含有水bを生成し、
 前記硝化槽は、前記窒素含有水aおよび前記窒素含有水bを貯留することができ、前記窒素含有水bに含まれる低温耐性硝化細菌を用いて、水温0℃以上15℃以下で、前記窒素含有水aおよび/または前記窒素含有水bに含まれるアンモニアを硝化して硝化液を生成する、
窒素含有水の処理装置である。
 本発明の一態様に係る窒素含有水の処理装置は、処理系Aと、処理系Bとを備える窒素含有水の処理装置であって、
 前記処理系Aは、硝化槽Iを備え、
 前記硝化槽Iは、アンモニア態窒素および/または有機態窒素を含有する窒素含有水aと、前記処理系Bからの返送汚泥とを貯留することができ、前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とし、かつ、前記低温耐性硝化細菌および前記返送汚泥に含まれる低温耐性硝化細菌により、0℃以上15℃以下で硝化を行い、硝化液を生成し;
 前記処理系Bは、硝化槽IIと脱窒槽IIとを備え、
 前記硝化槽IIと前記脱窒槽IIとは、前記硝化槽IIと前記脱窒槽IIとの間で、内容物を循環させることが可能であり、
 前記脱窒槽IIは、アンモニア態窒素および/または有機態窒素を含有する窒素含有水a、前記硝化槽Iで得られた硝化液、および前記硝化槽IIで得られる硝化液を貯留することができ、これらの硝化液に含まれる硝酸を脱窒すると共に、前記窒素含有水aを前記硝化槽IIに送り、
 前記硝化槽IIは、前記脱窒槽IIから送られた前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とし、前記低温耐性硝化細菌により、好気性雰囲気下、0℃以上15℃以下で硝化を行って硝化液を生成し、前記硝化液を前記脱窒槽IIに送る;
 窒素含有水の処理装置である。
 さらに、本発明の一態様に係る窒素含有水の処理装置は、処理系Aと、処理系Bとを備える窒素含有水の処理装置であって、
 前記処理系Aは、硝化槽Iおよび脱窒槽Iを備え、
 前記硝化槽Iは、アンモニア態窒素および/または有機態窒素を含有する窒素含有水aと、前記処理系Bからの返送汚泥とを貯留することができ、前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とし、かつ、前記低温耐性硝化細菌および前記返送汚泥に含まれる低温耐性硝化細菌により、0℃以上15℃以下で硝化を行って硝化液を生成し;
 前記脱窒槽Iは、前記硝化槽Iで得られた前記硝化液に含まれる硝酸を脱窒し、得られた返送汚泥を前記処理系Bに送り;
 前記処理系Bは、硝化槽IIと脱窒槽IIとを備え、
 前記硝化槽IIと前記脱窒槽IIとは、前記硝化槽IIと前記脱窒槽IIとの間で、内容物を循環させることが可能であり、
 前記脱窒槽IIは、アンモニア態窒素および/または有機態窒素を含有する窒素含有水a、前記脱窒槽Iからの返送汚泥、および前記硝化槽IIで得られる硝化液を貯留することができ、前記硝化液に含まれる硝酸を脱窒すると共に、前記窒素含有水aおよび前記返送汚泥を前記硝化槽IIに送り、
 前記硝化槽IIは、前記脱窒槽IIから送られた前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とし、前記低温耐性硝化細菌および前記返送汚泥に含まれる低温耐性硝化細菌により、0℃以上15℃以下で硝化を行って硝化液を生成し、前記硝化液を前記脱窒槽IIに送る;窒素含有水の処理装置である。
 本発明の一態様によれば、低温耐性硝化細菌を容易に、かつ大量に取得することができる。つまり、本発明の一態様によれば、多量の高濃度アンモニア培地を使用することなく、窒素含有水のpHを調整するという簡易な方法により、窒素含有水における微生物の優占種を低温耐性硝化細菌とすることができる。
 また、前記低温耐性硝化細菌は、十分な低温耐性を備えているため、本発明の一態様によれば、窒素含有水の温度が15℃以下の低温であっても、円滑に硝化を行うことができる。
 さらに、本発明の一態様によれば、簡易な構造で、前記低温耐性硝化細菌の培養および窒素含有水の処理を行うことができる窒素含有水の処理装置を提供することができる。
実施例1において、窒素含有水のpHを5に調整し、好気性雰囲気下、5~6℃で、窒素含有水に含まれるアンモニアを硝化した結果を示す図である。 コマモックス ニトロスピラ(Comammox Nitrospira)を担体に担持させる方法(担体法)により、窒素含有水に含まれるアンモニアを5℃で硝化する場合、0.05kg-N/m/dayの硝化速度を満足するためには、3×10copy/gの菌数が必要であることを示す図である。 実施例4において、コマモックス ニトロスピラ(Comammox Nitrospira)を担体に担持し、当該担体を種菌として、コマモックス ニトロスピラ(Comammox Nitrospira)の25℃における増殖特性を検討した結果を示す図である。 実施例5等において、窒素含有水のpHを調整し、微生物の優占種をコマモックス ニトロスピラ(Comammox Nitrospira)にするために用いた培養装置の構造を示す図である。 実施例5において、酸性環境下での25℃の無機合成廃水につき、水質の経時変化を確認した結果を示す図である。 実施例5において、pHを6、5.5、および5に調整した25℃の無機合成廃水中の担体に担持された菌叢のリアルタイムPCRの結果をそれぞれ示す図である。 実施例6において、pHを6に調整した5~6℃の窒素含有水につき、水質の経時変化を確認した結果を示す図である。 実施例6において、図4に示す装置における容積負荷と、硝化速度との関係を示す図である。 実施例6において用いた担体を取り出し、5~20℃での回分試験を行った結果を示す図である。 本発明の一実施形態に係る窒素含有水の処理装置の、構造の一例を示す図である。 本発明の他の実施形態に係る窒素含有水の処理装置の、構造の一例を示す図である。
 〔実施形態1:低温耐性硝化細菌の培養方法〕
 本発明の一実施形態に係る低温耐性硝化細菌の培養方法は、アンモニア態窒素および/または有機態窒素を含有する窒素含有水aのpHを6.0以下に調整することにより、微生物の優占種が低温耐性硝化細菌である窒素含有水bを得る工程を含む方法である。
 本明細書において、「低温耐性硝化細菌」とは、水温が15℃以下の環境下において窒素含有水中のアンモニア態窒素および/または有機態窒素を硝化することができる細菌をいう。「低温耐性硝化細菌の培養方法」とは、低温耐性硝化細菌のみを培養することを意味するものではなく、低温耐性硝化細菌を培養することができれば、培養した菌叢に低温耐性硝化細菌以外の細菌が含まれていてもよい。実際、低温耐性硝化細菌は、現状では単離することが困難であることが知られている。
 低温耐性硝化細菌としては、特に限定されるものではないが、コマモックス ニトロスピラ(Comammox Nitrospira)であることが好ましい。低温耐性硝化細菌に含まれる他の細菌としては、例えばNitrosomonas等が挙げられる。
 本明細書においてコマモックス ニトロスピラ(Comammox Nitrospira)とは、ニトロスピラ属に属する細菌であって、窒素含有水に含まれるアンモニアおよび/または尿素から直接硝酸を生成することができる細菌である。コマモックス ニトロスピラ(Comammox Nitrospira)は、アンモニアの硝化に際して亜硝酸の生成を経由する必要がないため、効率よく硝化を行うことができる。
 本明細書では、アンモニア態窒素および/または有機態窒素を含有する窒素含有水のうち、本発明の一実施形態に係る低温耐性硝化細菌の培養方法に供されていないものを「アンモニア態窒素および/または有機態窒素を含有する窒素含有水a」と称する。
 窒素含有水aとしては、生活排水、し尿、工場排水、畜舎由来の廃水等が挙げられるが、これらに限定されるものではない。また、必ずしも下水に限られるものではなく、上水であってもよい。アンモニア態窒素(NH-N)は、タンパク質のような窒素を含む有機物が分解してなる窒素化合物である。有機態窒素は、BOD酸化菌の異化代謝によってアンモニア態窒素に転換される。窒素含有水aには、活性汚泥が含まれていることが好ましい。
 コマモックス ニトロスピラ(Comammox Nitrospira)等の低温耐性硝化細菌を培養する方法としては、従来、例えば特許文献1に記載されている方法が知られていた。しかし、当該方法は、高濃度のアンモニア含有培地を多量に用いる方法であるため、簡便な方法とは言い難く、設備も膨大なものであった。
 本発明者は、より簡便な方法で、かつ、簡易な設備によって低温耐性硝化細菌を培養する方法について鋭意検討した。その結果、アンモニア態窒素および/または有機態窒素を含有する窒素含有水aのpHを6.0以下に調整するという簡便な方法によって、窒素含有水中の微生物において低温耐性硝化細菌を優占種とすることができることを見出した。
 窒素含有水aのpHを6.0以下に調整する方法としては、例えば、槽中の窒素含有水aを曝気する方法を挙げることができる。これにより、窒素含有水aに酸素が供給され、窒素含有水a中のアンモニアが硝酸に変化し、窒素含有水aのpHが低下するため、pHを6.0以下に調整することができる。
 このように、窒素含有水aを曝気することによって窒素含有水aのpHを6.0以下に調整することができる。前記低温耐性硝化細菌は好気性細菌である。前記低温耐性硝化細菌の培養方法は、窒素含有水aを曝気することによって好気性雰囲気を作り出すと共に、窒素含有水aのpHを低温耐性硝化細菌の増殖に好適な値とすることができるため、効率的な方法であると言える。
 ただし、窒素含有水aを曝気する方法に限定されるものではなく、例えば前記槽に酸貯留タンクおよび/またはアルカリ貯留タンクを接続し、酸および/またはアルカリによって、窒素含有水aのpHを調整してもよい。また、窒素含有水aを曝気する場合でも、前記槽に酸貯留タンクおよび/またはアルカリ貯留タンクを接続することにより、pHの微調整を容易に行うことができる。
 前記槽としては、特に限定されるものではないが、例えば、前記工程を行うための培養槽を設けてもよいし、既存の硝化槽を用いてもよい。
 窒素含有水aのpHは、6.0以下であればよいが、5.5以下であることがより好ましい。前記pHを5.5以下に調整することにより、窒素含有水aにおいて低温耐性硝化細菌が優占種になるまでの時間をより短くすることができ、かつ、より安定的に優占種とすることができる。そのため、窒素含有水aの処理をより効率化することができる。
 前記pHは、3.0超であることが好ましい。前記pHが低いほど、窒素含有水aにおいて低温耐性硝化細菌が優占種になりやすい傾向がある。一方、前記pHが高いほど、培養された低温耐性硝化細菌の硝化活性は高くなる傾向がある。よって、前記pHは、低温耐性硝化細菌の効率的な増殖と、高い硝化活性とを両立し得るpHであることが好ましい。この観点から、前記pHは、3.0超であることが好ましく、5.0以上であることがより好ましい。
 前記窒素含有水aは、担体を含むことが好ましい。担体は細菌を保持することができるため、担体を含むことにより、低温耐性硝化細菌の増殖および回収が容易となる。担体としては、特に限定されるものではなく、通常の付着固定化担体、包括固定化担体等を用いることができる。
 付着固定化担体としては、例えば、球状、筒状、ゲル状等の担体、ひも状材料、不織布材料等を用いることができる。これらは表面の凹凸が多いため、細菌を付着させる上で好ましい。
 包括固定化担体は、細菌と固定化材料とを混合し、固定化材料を重合させることにより、得られたゲルの内部に細菌を包括的に固定化する。前記固定化材料としてはモノマー材料、プレポリマー材料等が挙げられる。モノマー材料としてはアクリルアミド、メチレンビスアクリルアミド、トリアクリルホルマール等が挙げられる。また、プレポリマー材料としては、ポリビニルアルコール(PVA)、ポリエチレングリコールジアクリレート、ポリエチレングリコールメタアクリレート、およびそれらの誘導体等を挙げることができる。中でも、20μm以下の網目構造を取り、細菌を高密度に保持することができるため、PVA担体を好ましく用いることができる。
 前記窒素含有水aにおける前記担体の充填率は、低温耐性硝化細菌の培養効率の観点から、前記槽内の前記窒素含有水aの体積に対して、1~60体積%であることが好ましく、5~20体積%であることがより好ましく、8~15体積%であることが特に好ましい。
 前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とするまでに要する時間は、前記窒素含有水aの量、pHの具体的な値等によって異なるが、前記窒素含有水aのpHが6.0以下になった日から概ね20日程度である。
 前記窒素含有水aのpHを6.0以下に調整する際、前記窒素含有水aの温度は、特に限定されるものではないが、低温耐性硝化細菌の増殖速度を向上させる観点から、常温(20~25℃)であることが好ましい。
 前記窒素含有水aにおけるアンモニア態窒素および/または有機態窒素の濃度は、2000mg-N/L以下であることが好ましく、100mg-N/L以下であることがより好ましく、40mg-N/L以下であることが特に好ましい。
 前記構成によれば、低温耐性硝化細菌の培養時に、低温耐性硝化細菌に加わる負荷が適切なものとなるため、低温耐性硝化細菌の培養を効率よく行うことができる。かかる観点から、前記濃度は0を超え、5mg-N/L以上であることが好ましく、30mg-N/L以上であることがより好ましい。
 本明細書では、本発明の一実施形態に係る低温耐性硝化細菌の培養方法によって得られた窒素含有水を、窒素含有水bと称する。窒素含有水bは、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とした窒素含有水である。
 窒素含有水bは、低温耐性硝化細菌の量の、アンモニア酸化細菌の量に対する比が1を超えることが好ましい。
 窒素含有水bにおいてアンモニア酸化細菌が優占種であると、低温におけるアンモニアの硝化が滞ってしまう。前記構成によれば、窒素含有水bにおいて低温耐性硝化細菌がアンモニア酸化細菌よりも優占種であるため、低温におけるアンモニアの硝化を効率的に行うことができる。なお、前記比は、例えば、前記担体に担持された菌叢をリアルタイムPCRを用いて解析し、前記比を算出することによって確認することができる。
 窒素含有水bは、低温耐性硝化細菌の量の、アンモニア酸化細菌の量に対する比が5以上100以下であることがより好ましい。前記構成によれば、窒素含有水bにおいて低温耐性硝化細菌がアンモニア酸化細菌よりも大幅に優占種となっているため、低温におけるアンモニアの硝化を一層効率的に行うことができる。
 低温耐性硝化細菌が優占種とされた前記窒素含有水bは、低温下におけるアンモニアの硝化に好適に用いることができる。したがって、本発明の一実施形態に係る低温耐性硝化細菌の培養方法によれば、簡便な方法によって低温耐性硝化細菌を優占種とし、低温時の硝化の効率化に資することができる。
 〔実施形態2:窒素含有水を処理する方法〕
 本発明の一実施形態に係る窒素含有水を処理する方法は、本発明の一実施形態に係る低温耐性硝化細菌の培養方法によって得られた低温耐性硝化細菌を用いて、好気性雰囲気下、水温0℃以上15℃以下で、前記窒素含有水aおよび/または前記窒素含有水bに含まれるアンモニアを硝化する工程を含む。
 前記工程の例としては、例えば、以下の工程が挙げられる:
・窒素含有水b、もしくは窒素含有水b中に充填されていた担体を、窒素含有水aを貯留する硝化槽に導入し、好気性雰囲気下、水温0℃以上15℃以下で硝化を行う工程;
・窒素含有水aを貯留する硝化槽中で本発明の一実施形態に係る低温耐性硝化細菌の培養方法を行い、窒素含有水bを得て、好気性雰囲気下、前記硝化槽中で、0℃以上15℃以下の窒素含有水bに対し硝化を行う工程。
 前記好気性雰囲気は、例えば、窒素含有水aおよび/または窒素含有水bを曝気することによって作成することができる。
 「水温0℃以上15℃以下」とは、硝化の対象となる前記窒素含有水aおよび/または前記窒素含有水bの水温が0℃以上15℃以下であることを意味する。前記窒素含有水を処理する方法に供される低温耐性硝化細菌は、低温での高い硝化活性を有する。そのため、前記水温は、0℃以上10℃以下であることがより好ましく、0℃以上5℃以下であることが特に好ましい。
 硝化の対象となる前記窒素含有水aおよび/または前記窒素含有水bのpHは特に限定されるものではなく、特に調整せず、そのまま硝化に供してもよい。低温下での硝化を行うため、低温耐性硝化細菌以外の細菌は増殖できない。そのため、前記pHに関わらず、低温耐性硝化細菌は、優占種である状態を保ったまま、硝化を行い、アンモニアを硝酸とすることができる。
 水温は、人為的に0℃以上15℃以下とする必要はない。水温が高い場合は、従来公知の硝化方法を用いれば足りる。しかし、水温が0℃以上15℃以下である場合に、簡便かつ効率的に硝化を行い得る方法は、これまで存在していなかった。
 本発明の一実施形態に係る窒素含有水を処理する方法は、前述した低温耐性硝化細菌の培養方法によって得られた、窒素含有水bに含まれる低温耐性硝化細菌を用いる方法である。窒素含有水bでは、前述したように低温耐性硝化細菌が優占種となっている。そのため、前記窒素含有水を処理する方法は、水温が低い時期に用いることにより、硝化対象の窒素含有水を加熱すること等の煩雑さを回避し、効率的に硝化を行うことができる。
 〔実施形態3:第一の窒素含有水の処理装置〕
 本発明の一実施形態に係る窒素含有水の処理装置は、培養槽と、硝化槽とを有する窒素含有水の処理装置であって、
 前記培養槽と前記硝化槽とは、前記培養槽と前記硝化槽との間で内容物を循環させることが可能であり、
 前記培養槽は、アンモニア態窒素および/または有機態窒素を含有する窒素含有水aと、前記硝化槽から得られた返送汚泥とを貯留することができ、前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とした窒素含有水bを生成し、
 前記硝化槽は、前記窒素含有水aおよび前記窒素含有水bを貯留することができ、前記窒素含有水bに含まれる低温耐性硝化細菌を用いて、水温0℃以上15℃以下で、前記窒素含有水aおよび/または前記窒素含有水bに含まれるアンモニアを硝化して硝化液を生成する。
 前記窒素含有水の処理装置は、本発明の一実施形態に係る低温耐性硝化細菌の培養方法および窒素含有水を処理する方法を実施することができる。図10は、本実施形態に係る窒素含有水の処理装置の、構造の一例を示す図である。
 図10において、100は窒素含有水の処理装置、1は脱窒槽、2は硝化槽、3は培養槽、4は酸貯留タンク、5はアルカリ貯留タンク、「pH」はpHメーター、「P」はポンプ、「ORP」は酸化還元電位測定計、「B」は曝気装置、「M」は撹拌用モーター、※1は硝化槽2から培養槽3への返送汚泥の導入、※2は硝化槽2からの硝化液の脱窒槽1への導入をそれぞれ表す。
 「原水」は、窒素含有水aを脱窒槽1および培養槽3へ導入することを示しており、培養槽3から硝化槽2への矢印は、培養槽3で生成された窒素含有水bを硝化槽2へ導入することを示している。これらの導入は、脱窒槽1、硝化槽2、培養槽3にそれぞれ接続された導入部を介して行われてもよい。前記導入部としては、例えば配管を挙げることができる。
 脱窒槽1、硝化槽2、培養槽3の材質および体積は、特に限定されるものではない。なお、図10には脱窒槽1が記載されているが、処理装置100において脱窒槽1は任意の構成である。
 培養槽3は、実施形態1で説明した方法を実施することができ、導入された窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とした窒素含有水bを生成する。前記pHを調整する方法は、実施形態1で述べたとおりである。
 培養槽3は、窒素含有水bを硝化槽2へ導入する。窒素含有水b中に、低温耐性硝化細菌を優占的に繁殖させた担体が存在する場合は、当該担体を培養槽3から取り出し、当該担体のみを硝化槽2へ導入してもよい。硝化槽2では、窒素含有水bに含まれる低温耐性硝化細菌を用いて、好気性雰囲気下、水温0℃以上15℃以下で、前記窒素含有水aおよび/または前記窒素含有水bに含まれるアンモニアを硝化して硝化液を生成する。硝化については、実施形態2で説明したとおりである。
 脱窒槽1は、窒素含有水aと、硝化槽2で生成した硝化液とを貯留することができ、前記硝化液に含まれる硝酸を嫌気性雰囲気下で脱窒し、窒素ガスを生成する。
 培養槽3と硝化槽2とは、培養槽3が窒素含有水bおよび/または窒素含有水b中に含まれる担体を硝化槽2へ導入し、硝化槽2は、硝化槽2で得られた返送汚泥を培養槽3へ導入する。
 すなわち、培養槽3と硝化槽2とは、培養槽3と硝化槽2との間で内容物を循環させることができる。前記返送汚泥は酸性であるため、培養槽3に導入された窒素含有水aのpHを6.0に調整するために使用することができる。また、前記返送汚泥には低温耐性硝化細菌が含有されているため、一旦培養槽3に戻した後、培養槽3で新たに生成した窒素含有水bと共に、再度硝化槽2へ導入し、硝化に供することができる。窒素含有水bでは低温耐性硝化細菌が優占種となっているため、硝化槽2において、水温0℃以上15℃以下の環境下で硝化を効率的に進めることができる。このように、処理装置100では、培養槽3と硝化槽2との間で内容物を循環させることにより、低温耐性硝化細菌の培養と、低温下での硝化とを連続的に行うことができる。
 〔実施形態4:第二の窒素含有水の処理装置〕
 本発明の一実施形態に係る窒素含有水の処理装置は、処理系Aと、処理系Bとを備える窒素含有水の処理装置であって、
 前記処理系Aは、硝化槽Iを備え、
 前記硝化槽Iは、アンモニア態窒素および/または有機態窒素を含有する窒素含有水aと、前記処理系Bからの返送汚泥とを貯留することができ、前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とし、かつ、前記低温耐性硝化細菌および前記返送汚泥に含まれる低温耐性硝化細菌により、0℃以上15℃以下で硝化を行い、硝化液を生成し;
 前記処理系Bは、硝化槽IIと脱窒槽IIとを備え、
 前記硝化槽IIと前記脱窒槽IIとは、前記硝化槽IIと前記脱窒槽IIとの間で、内容物を循環させることが可能であり、
 前記脱窒槽IIは、アンモニア態窒素および/または有機態窒素を含有する窒素含有水a、前記硝化槽Iで得られた硝化液、および前記硝化槽IIで得られる硝化液を貯留することができ、これらの硝化液に含まれる硝酸を脱窒すると共に、前記窒素含有水aを前記硝化槽IIに送り、
 前記硝化槽IIは、前記脱窒槽IIから送られた前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とし、前記低温耐性硝化細菌により、好気性雰囲気下、0℃以上15℃以下で硝化を行って硝化液を生成し、前記硝化液を前記脱窒槽IIに送る;
 窒素含有水の処理装置である。
 前記処理装置は、本発明の一実施形態に係る低温耐性硝化細菌の培養方法および窒素含有水を処理する方法を実施することができる。図11は、本実施形態に係る処理装置の、構造の一例を示す図である。既に説明した符号については更なる説明を省略する。
 図11において、101は窒素含有水の処理装置、Aは処理系A、Bは処理系B、1および1’は脱窒槽、2および2’は硝化槽、6および6’は沈殿池、※aは沈殿池6から脱窒槽1’への硝化液の導入、※bは沈殿池6’から硝化槽2への返送汚泥の導入を表す。「原水」は、窒素含有水aを脱窒槽1、硝化槽2、脱窒槽1’へ導入することを示している。
 図11には脱窒槽1が示されているが、本実施形態に係る処理装置は、脱窒槽1を備えない。そのため、図11では脱窒槽1から沈殿池6へ処理液が導入されているが、本実施形態では、硝化槽2から沈殿池6へ硝化液が導入される。なお、脱窒槽1を備える態様については、実施形態5で説明する。
 処理系Aでは、硝化槽2(前記硝化槽Iに該当)が、前記培養槽3と同様に、導入された窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とする。その結果、硝化槽2では、窒素含有水bが得られる。続いて、硝化槽2では、好気性雰囲気下、0℃以上15℃以下で、窒素含有水bに含まれるアンモニアの硝化が行われ、得られた硝化液は沈殿池6を経て、処理系Bの脱窒槽1’(前記脱窒槽IIに対応)に導入される。
 一方、処理系Bでは、脱窒槽1’と硝化槽2’(前記硝化槽IIに対応)とが、脱窒槽1’と硝化槽2’との間で内容物を循環させる。すなわち、脱窒槽1’と硝化槽2’との間では硝化液循環が行われる。
 脱窒槽1’には、硝化槽2で生成された硝化液(図中「※a」)、および、硝化槽2’で生成された硝化液(硝化槽2’から脱窒槽1’への矢印)が導入される。脱窒槽1’は、これらの硝化液に含まれる硝酸を嫌気性雰囲気下で脱窒して窒素ガスを生成する。そして、脱窒槽1’に導入された窒素含有水a(図中「原水」)を硝化槽2’に送る。
 硝化槽2’は、前記培養槽3と同様に、導入された窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とする。その結果、硝化槽2’では、窒素含有水bが得られる。続いて、硝化槽2’では、好気性雰囲気下、0℃以上15℃以下で、窒素含有水bに含まれるアンモニアの硝化が行われ、得られた硝化液は、前述のように、脱窒槽1’に導入される。脱窒槽1’で脱窒された後の処理液は、沈殿池6’に導入される。そして、返送汚泥6’が硝化槽2へ導入される(図中の※b)。
 以上述べたように、処理装置101では、硝化槽2および硝化槽2’が、前記培養槽3の役割を果たすと共に、優占種となった低温耐性硝化細菌を用いて硝化も行う。そして、処理系Bで得られた返送汚泥中には低温耐性硝化細菌が含まれており、これを硝化槽2に導入することにより、硝化槽2において低温耐性硝化細菌を再利用することができる。また、処理系Aで得られた硝化液は脱窒槽1’に導入され、硝化槽2’から導入された硝化液と共に、一度に脱窒がなされる。
 このように、処理装置101は、処理系Aの生成物と処理系Bの生成物とを循環させることにより、低温耐性硝化細菌の培養と、低温下での硝化とを連続的に行うことができる。
 〔実施形態5:第三の窒素含有水の処理装置〕
 本発明の一実施形態に係る窒素含有水の処理装置は、処理系Aと、処理系Bとを備える窒素含有水の処理装置であって、
 前記処理系Aは、硝化槽Iおよび脱窒槽Iを備え、
 前記硝化槽Iは、アンモニア態窒素および/または有機態窒素を含有する窒素含有水aと、前記処理系Bからの返送汚泥とを貯留することができ、前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とし、かつ、前記低温耐性硝化細菌および前記返送汚泥に含まれる低温耐性硝化細菌により、0℃以上15℃以下で硝化を行って硝化液を生成し;
 前記脱窒槽Iは、前記硝化槽Iで得られた前記硝化液に含まれる硝酸を脱窒し、得られた返送汚泥を前記処理系Bに送り;
 前記処理系Bは、硝化槽IIと脱窒槽IIとを備え、
 前記硝化槽IIと前記脱窒槽IIとは、前記硝化槽IIと前記脱窒槽IIとの間で、内容物を循環させることが可能であり、
 前記脱窒槽IIは、アンモニア態窒素および/または有機態窒素を含有する窒素含有水a、前記脱窒槽Iからの返送汚泥、および前記硝化槽IIで得られる硝化液を貯留することができ、前記硝化液に含まれる硝酸を脱窒すると共に、前記窒素含有水aおよび前記返送汚泥を前記硝化槽IIに送り、
 前記硝化槽IIは、前記脱窒槽IIから送られた前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とし、前記低温耐性硝化細菌および前記返送汚泥に含まれる低温耐性硝化細菌により、0℃以上15℃以下で硝化を行って硝化液を生成し、前記硝化液を前記脱窒槽IIに送る;
 窒素含有水の処理装置である。
 本実施形態の処理装置の構成の一例を、図11に示す。当該処理装置は、脱窒槽1を備える点が第二の窒素含有水の処理装置とは異なる。そのため、第二の窒素含有水の処理装置では、硝化槽2で得られた硝化液を処理系Bの脱窒槽1’に導入していたが、本実施形態では、脱窒槽1で得られた返送汚泥を脱窒槽1’に導入している。本実施形態では、脱窒槽1で得られた返送汚泥に含まれている低温耐性硝化細菌を、硝化槽2’で再利用する点で、第二の窒素含有水の処理装置とは異なる。他の点については第二の窒素含有水の処理装置と同様であり、当該処理装置と同様に、処理系Aの生成物と処理系Bの生成物とを循環させることにより、低温耐性硝化細菌の培養と、低温下での硝化とを連続的に行うことができる。
 〔まとめ〕
 本発明には、以下の態様が含まれる。
〈1〉アンモニア態窒素および/または有機態窒素を含有する窒素含有水aのpHを6.0以下に調整することにより、微生物の優占種が低温耐性硝化細菌である窒素含有水bを得る工程を含む、低温耐性硝化細菌の培養方法。
〈2〉前記窒素含有水aのpHを3.0超6.0以下に調整する、〈1〉に記載の低温耐性硝化細菌の培養方法。
〈3〉前記窒素含有水aにおけるアンモニア態窒素および/または有機態窒素の濃度が2000mg-N/L以下である、〈1〉または〈2〉に記載の低温耐性硝化細菌の培養方法。
〈4〉前記窒素含有水bでは、低温耐性硝化細菌の量の、アンモニア酸化細菌の量に対する比が1を超える、〈1〉から〈3〉のいずれか1つに記載の低温耐性硝化細菌の培養方法。
〈5〉前記比が5以上100以下である、〈4〉に記載の低温耐性硝化細菌の培養方法。
〈6〉前記低温耐性硝化細菌が、コマモックス ニトロスピラ(Comammox Nitrospira)である、〈1〉から〈5〉のいずれか1つに記載の低温耐性硝化細菌の培養方法。
〈7〉〈1〉から〈6〉のいずれか1つに記載の方法によって得られた低温耐性硝化細菌を用いて、好気性雰囲気下、水温0℃以上15℃以下で、前記窒素含有水aおよび/または前記窒素含有水bに含まれるアンモニアを硝化する工程を含む、窒素含有水を処理する方法。
〈8〉培養槽と、硝化槽とを有する窒素含有水の処理装置であって、
 前記培養槽と前記硝化槽とは、前記培養槽と前記硝化槽との間で内容物を循環させることが可能であり、
 前記培養槽は、アンモニア態窒素および/または有機態窒素を含有する窒素含有水aと、前記硝化槽から得られた返送汚泥とを貯留することができ、前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とした窒素含有水bを生成し、
 前記硝化槽は、前記窒素含有水aおよび前記窒素含有水bを貯留することができ、前記窒素含有水bに含まれる低温耐性硝化細菌を用いて、水温0℃以上15℃以下で、前記窒素含有水aおよび/または前記窒素含有水bに含まれるアンモニアを硝化して硝化液を生成する、
 窒素含有水の処理装置。
〈9〉処理系Aと、処理系Bとを備える窒素含有水の処理装置であって、
 前記処理系Aは、硝化槽Iを備え、
 前記硝化槽Iは、アンモニア態窒素および/または有機態窒素を含有する窒素含有水aと、前記処理系Bからの返送汚泥とを貯留することができ、前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とし、かつ、前記低温耐性硝化細菌および前記返送汚泥に含まれる低温耐性硝化細菌により、0℃以上15℃以下で硝化を行い、硝化液を生成し;
 前記処理系Bは、硝化槽IIと脱窒槽IIとを備え、
 前記硝化槽IIと前記脱窒槽IIとは、前記硝化槽IIと前記脱窒槽IIとの間で、内容物を循環させることが可能であり、
 前記脱窒槽IIは、アンモニア態窒素および/または有機態窒素を含有する窒素含有水a、前記硝化槽Iで得られた硝化液、および前記硝化槽IIで得られる硝化液を貯留することができ、これらの硝化液に含まれる硝酸を脱窒すると共に、前記窒素含有水aを前記硝化槽IIに送り、
 前記硝化槽IIは、前記脱窒槽IIから送られた前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とし、前記低温耐性硝化細菌により、好気性雰囲気下、0℃以上15℃以下で硝化を行って硝化液を生成し、前記硝化液を前記脱窒槽IIに送る;
 窒素含有水の処理装置。
〈10〉処理系Aと、処理系Bとを備える窒素含有水の処理装置であって、
 前記処理系Aは、硝化槽Iおよび脱窒槽Iを備え、
 前記硝化槽Iは、アンモニア態窒素および/または有機態窒素を含有する窒素含有水aと、前記処理系Bからの返送汚泥とを貯留することができ、前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とし、かつ、前記低温耐性硝化細菌および前記返送汚泥に含まれる低温耐性硝化細菌により、0℃以上15℃以下で硝化を行って硝化液を生成し;
 前記脱窒槽Iは、前記硝化槽Iで得られた前記硝化液に含まれる硝酸を脱窒し、得られた返送汚泥を前記処理系Bに送り;
 前記処理系Bは、硝化槽IIと脱窒槽IIとを備え、
 前記硝化槽IIと前記脱窒槽IIとは、前記硝化槽IIと前記脱窒槽IIとの間で、内容物を循環させることが可能であり、
 前記脱窒槽IIは、アンモニア態窒素および/または有機態窒素を含有する窒素含有水a、前記脱窒槽Iからの返送汚泥、および前記硝化槽IIで得られる硝化液を貯留することができ、前記硝化液に含まれる硝酸を脱窒すると共に、前記窒素含有水aおよび前記返送汚泥を前記硝化槽IIに送り、
 前記硝化槽IIは、前記脱窒槽IIから送られた前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とし、前記低温耐性硝化細菌および前記返送汚泥に含まれる低温耐性硝化細菌により、0℃以上15℃以下で硝化を行って硝化液を生成し、前記硝化液を前記脱窒槽IIに送る;
 窒素含有水の処理装置。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明の一実施例について以下に説明する。
 〔実施例1〕
 実施例1では、アンモニア態窒素および有機態窒素を含有する窒素含有水のpHを5とし、前記窒素含有水に包含される微生物の優占種を低温耐性硝化細菌とすることができるか否かについて検討した。
 硝化細菌含有の前記窒素含有水としては、一般的な活性汚泥法を行っている下水処理場(所在地:群馬県)の下水を用いた。処理対象の前記窒素含有水に含まれるアンモニア態窒素の濃度は、約48mg/Lであった。
 図4に示す連続運転装置102に、前記下水処理場の返送汚泥を水槽容積の90%、および担体10を水槽容積の10%投入し、処理対象の前記窒素含有水を、水槽容積の100%が1日で置き換わる流量で通水した。連続運転装置102の水槽の有効容積は1.1Lである。図4において、4は酸貯留タンク、5はアルカリ貯留タンク、7は熱電対、8はヒータ、10は担体、「B」は曝気装置、「P」はポンプ、「pH」はpHコントローラを示す。連続運転装置102では、前記窒素含有水に曝気装置からエアを吹き込むことにより、前記窒素含有水のpHを5まで低下させた。酸貯留タンク4には0.5Nの塩酸が貯留されており、アルカリ貯留タンクには5%(W/V)のNaHCOが貯留されている。pHコントローラは、酸貯留タンクおよびアルカリ貯留タンクを制御し、必要に応じて前記塩酸または前記NaHCOを槽内に投入し、前記窒素含有水のpHを5、水温を20~25℃に保持した。
 担体10としては、ポリビニルアルコール(PVA)スポンジ担体(アイオン社製、4mm角)を用いた。
 次に、図1に示すように、水温を運転開始から448日目に5℃まで低下させた。その後、水温は概ね5~6℃に保持された。図1は、好気性雰囲気下、窒素含有水に含まれるアンモニアを硝化した結果を示す。図1において、「原水NH-N」は、前記窒素含有水に含まれるアンモニア態窒素、「処理水NH-N」は、処理水(硝化液)中のアンモニア態窒素、「処理水NO-N」は、処理水中の亜硝酸性窒素、「処理水NO-N」は、処理水中の硝酸性窒素をそれぞれ指す。
 「原水NH-N」、「処理水NH-N」、「処理水NO-N」、および「処理水NO-N」の濃度の測定は、下水試験方法(日本下水道協会 2012年版)によって行った。
 図1に示すように、水温を5~6℃に保持した状態では、650日目付近から処理水(硝化液)中のNO-N(硝酸由来の窒素)濃度が増加し、770日目付近でプラトーに達し、以降、1100日目まで安定してNO-Nが得られている。この結果から、窒素含有水のpHを5としたことにより、窒素含有水中で低温耐性硝化細菌が優占種となったと考えられる。そのため、その後、水温が5~6℃に低下した場合でも、安定した硝化を達成することができたと考えられる。
 6℃における硝化速度は、0.12kg-N/m/dayであった。当該硝化速度は、前記下水試験方法によって求めた。
 また、窒素含有水中で低温耐性硝化細菌が優占種となった後の担体の菌叢を、リアルタイムPCRによって解析した。プライマーとしては表1に示すものを用いた。
 担体からのDNA抽出はDNeasy PowerBiofilm Kit(Qiagen)を用いて行った。リアルタイムPCRは、環境試料を用い、それぞれ標的遺伝子の精製産物をスタンダードとして使用した。測定にはTB Green(登録商標)Premix Ex Taq(商標)II(Tli RNaseH Plus)(タカラバイオ)を用い、リアルタイムPCR装置としては、StepOnePlus(商標)Real-time PCR(Applied Biosystems)を用いた。
 表中、Beta-AOBは一般的なアンモニア酸化細菌、AOAはアンモニア酸化古細菌、comammoxはコマモックス ニトロスピラ(Comammox Nitrospira)、Bacteriaは細菌全体を指す。
 リアルタイムPCRによる解析の結果、コマモックス ニトロスピラ(Comammox Nitrospira)が、アンモニア酸化細菌より多く検出された。よって、本実施例では、窒素含有水のpHを5としたことにより、窒素含有水中でコマモックス ニトロスピラ(Comammox Nitrospira)が優占種となったと考えられる。そして、コマモックス ニトロスピラ(Comammox Nitrospira)が優占種となったことにより、5~6℃という低温でも安定した硝化を達成することができたと考えられる。
 通常の廃水処理における硝化の場合、亜硝酸の蓄積および亜硝酸による硝化の阻害による硝化不良を防止するため、窒素含有水のpHは高く保たれる。今回、窒素含有水のpHを6.0以下とすることにより、通常の亜硝酸生成型の硝化が阻害され、窒素含有水中の微生物において低温耐性硝化細菌を優占種とすることができることが初めて見出された。低温耐性硝化細菌は、低温環境下でも硝化を行うことができ、かつ、アンモニアから亜硝酸を経ずに硝酸まで酸化を行うことができる。本実施例の結果から、本発明の一実施形態に係る低温耐性硝化細菌の培養方法によれば、簡便な方法によって低温耐性硝化細菌を優占種とすることができ、低温環境下で亜硝酸の生成を阻害しつつ、硝化を行うことができることが分かる。
 〔実施例2〕
 本実施例では、5℃で硝化を行うために必要な低温耐性硝化細菌の量について検討した。
 MLSSが2000mg/L(浮遊汚泥)である硝化槽に、硝化槽の容量に対して10体積%の担体を添加し、連続的に培養した。培養できたコマモックス ニトロスピラ(Comammox Nitrospira)は、担体1g当たり1×10copy/g~1×10copy/g担持であった。担持させた菌の量は、図2の横軸に示されている。用いた廃水の組成は表4に示す。用いた担体は実施例1と同じく、PVAスポンジ担体である。
 図2に結果を示す。担体投入率0.1L/L-水槽でコマモックス ニトロスピラ(Comammox Nitrospira)の担持量が1×10~1×10copy/gの場合、硝化速度は低かったが、3×10copy/gで0.05kg-N/m/dayの硝化速度を示した。さらに、8×10copy/gでは0.1kg-N/m/dayを超える硝化速度を示し、以降、1×10copy/gまで、0.1kg-N/m/dayを超える硝化速度を示した。
 このように、コマモックス ニトロスピラ(Comammox Nitrospira)を担体に担持させる方法(担体法)による硝化の場合、0.05kg-N/m/dayの硝化速度を満足するためには、3×10copy/gの菌数が必要であることが分かった。
 このとき、担体1g当たり3×10copyのコマモックス ニトロスピラ(Comammox Nitrospira)を担持した担体を、硝化槽の容量に対して10体積%添加している。そのため、活性汚泥方式で硝化を行う場合、0.05kg-N/m/dayと同程度の性能を得るためには、硝化槽の容積1ml当たり3×10copyのコマモックス ニトロスピラ(Comammox Nitrospira)を使用することが必要となることが分かる。
 〔実施例3〕
 本実施例では、活性汚泥循環変法を用いて下水処理を行い、浮遊法におけるコマモックス ニトロスピラ(Comammox Nitrospira)使用の優位性について確認した。活性汚泥循環変法は、硝化槽と脱窒槽とを用い、硝化槽と脱窒槽との間で硝化液循環を行う方法である。運転条件を表2に示す。
 T-Nの除去率は75%以上であった。また、従来法として、コマモックス ニトロスピラ(Comammox Nitrospira)を添加しないこと以外は実施例3と同じ条件で運転した。このときのT-N除去率は40%以下であった。
 〔実施例4〕
 本実施例では、コマモックス ニトロスピラ(Comammox Nitrospira)が優占した担体を用いて、コマモックス ニトロスピラ(Comammox Nitrospira)の増殖特性について検討した。つまり、種担体を増加させるための条件について検討した。
 装置としては、図4に示す連続運転装置102を用いた。運転条件を表3に示す。
 表3に示す種菌としての担体(栄野比ら(2021)、水処理生物学会誌、57、35-41)、および新品スポンジ担体を、連続運転装置102に投入し、Run1からRun4まで、各Runを2週間ずつ、合計8週間運転した。各Runの最終日に、PVAスポンジ担体を採取し、実施例1と同様の方法により、リアルタイムPCRを用いて菌叢の解析を行った。結果を図3に示す。
 図3は、前記種菌としての担体を用い、コマモックス ニトロスピラ(Comammox Nitrospira)の25℃における増殖特性を検討した結果を示す図である。図中、comammoxはコマモックス ニトロスピラ(Comammox Nitrospira)の数、bacteria16Sは全真正細菌数、beta-AOBはアンモニア酸化細菌数、AOAはアンモニア酸化古細菌数を指す。
 コマモックス ニトロスピラ(Comammox Nitrospira)の比増殖速度μは0.124/日、倍加時間は5.58日であった。コマモックス ニトロスピラ(Comammox Nitrospira)の比増殖速度はアンモニア酸化細菌の1/30であり、水温25℃の条件下ではアンモニア酸化細菌が優占種となることが分かった。しかし、コマモックス ニトロスピラ(Comammox Nitrospira)の倍加時間は5.58日であるため、前記条件下でも、SRT(汚泥滞留時間)を5.58日以上として運転することにより、コマモックス ニトロスピラ(Comammox Nitrospira)を増殖させることができる。
 〔実施例5〕
 本実施例では、低温耐性硝化細菌の適切な培養条件の検討を行った。装置としては、図4に示す連続運転装置102を用いた。用いた無機合成廃水の組成を表4に示し、運転条件を表5に示す。
 表5に示す種菌としての担体(栄野比ら(2021)、水処理生物学会誌、57、35-41)、および新品スポンジ担体を、表4に示す無機合成廃水を有する連続運転装置102に投入した。前記無機合成廃水は、曝気装置からエアを吹き込むことにより、pHを6とした。前記無機合成廃水のpHが6となった時を運転開始0日目とし、149日目までpHを6に保ち、馴養した。
 図5は、酸性環境下での前記無機合成廃水につき、水質の経時変化を確認した結果を示す図である。図中、「原水NH-N」は、前記無機合成廃水に含まれるアンモニア態窒素、「原水NO-N」は、前記無機合成廃水に含まれる亜硝酸性窒素、「原水NO-N」は、前記無機合成廃水に含まれる硝酸性窒素、「処理水NH-N」は、処理水(硝化液)中のアンモニア態窒素、「処理水NO-N」は、処理水中の亜硝酸性窒素、「処理水NO-N」は、処理水中の硝酸性窒素をそれぞれ指す。
 また、前記「原水NH-N」等の濃度の測定方法は、下水試験方法(日本下水道協会 2012年版)である。
 その後、図5に示す経過日数で前記無機合成廃水のpHを5.5、さらに5に変更し、それぞれ約60日間運転した。運転期間中は、水温を25℃、溶存酸素を7-8mg/Lに維持し、週2回水質分析を行った。
 図5に示すように、馴養の最初段階(100日まで)では硝酸の生成と共にアンモニアの除去が見られたが、硝化率は約54.19%であった(硝化率は図示せず)。100日目から149日目まで(pH6.0)は、水質の安定が見られ、硝化率が95.44%に達した。pH5.5(150日目~176日目)では、硝化率が100%となり、後述するようにコマモックス ニトロスピラ(Comammox Nitrospira)の現存量がアンモニア酸化細菌を上回った。pH5.0での運転(177日目以降)は、条件を変えた直後に若干亜硝酸の発生が見られたが、長期運転(225日目以降)に、より安定な水質(硝化率平均98.66%)を得ることができた。
 図6は、pHを6、5.5、および5に調整した前記無機合成廃水中の担体に担持された菌叢のリアルタイムPCRの結果をそれぞれ示す図である。横軸は運転開始からの日数、縦軸は担体1g当たりの遺伝子の存在量を示す。また、beta-AOBは一般的なアンモニア酸化細菌、comammoxはコマモックス ニトロスピラ(Comammox Nitrospira)を指す。
 担体中のコマモックス ニトロスピラ(Comammox Nitrospira)およびアンモニア酸化細菌は、特異的プライマーを用いて、各amoA遺伝子をリアルタイムPCR法で定量した。図6の横軸に示す日に採取した担体から、DNeasy PowerBiofilm Kit(Qiagen)を用いてDNA抽出を行った。リアルタイムPCRは、環境試料を用い、それぞれ標的遺伝子の精製産物をスタンダードとして使用した。測定にはTB Green(登録商標)Premix Ex Taq(商標)II(Tli RNaseH Plus)(タカラバイオ)を用い、リアルタイムPCR装置としては、StepOnePlus(商標)Real-time PCR(Applied Biosystems)を用いた。なお、前記特異的プライマーは、表1の「Beta-AOB」および「comammox」に示すものと同じである。
 図6に示すように、運転開始から80日目付近までは、コマモックス ニトロスピラ(Comammox Nitrospira)の集積は弱いものであった。しかし、pHを5.5に調整した運転開始150日目以降は、コマモックス ニトロスピラ(Comammox Nitrospira)が優占種となっていることが確認された。図5に示す結果と、図6に示す結果とから、pHが6の条件下で、徐々にコマモックス ニトロスピラ(Comammox Nitrospira)の集積が進み、運転開始120日目では優占種になっているものと考えられる。
 また、pH5.0では、pH5.5よりコマモックス ニトロスピラ(Comammox Nitrospira)の大幅な増殖が確認された。
 これらの結果より、本発明の一実施形態に係る低温耐性硝化細菌の培養方法によって集積培養された硝化菌群を用いることにより、酸性条件下においても良好な処理水質が得られることが分かった。また、酸性環境が、担体中のコマモックス ニトロスピラ(Comammox Nitrospira)の増殖に有利な条件であることが示唆された。
 〔実施例6〕
 本実施例では、5℃での硝化を長期間行っている装置を用い、低温硝化に対するコマモックス ニトロスピラ(Comammox Nitrospira)の関与について検討した。
 装置としては、図4に示す連続運転装置102を用いた。用いた無機合成廃水の組成を表6に示し、運転条件を表7に示す。
 表6に示す無機合成廃水を連続運転装置102に投入し、表7に示すように担体を投入した。前記無機合成廃水は、曝気装置からエアを吹き込むことにより、pHを6とし、前記無機合成廃水のpHが6となった時を運転開始0日目とした。
 図7は、前記無機合成廃水の水質の経時変化を確認した結果を、運転開始から2892日目まで示す図である。図7の横軸は運転開始からの経過日数であり、縦軸は凡例に示した窒素の濃度である。「原水NH-N」、「処理水NH-N」、「処理水NO-N」、および「処理水NO-N」の濃度の測定方法は、実施例1で説明した方法と同じである。
 図7より、処理水NO-Nの濃度が安定して高く、処理水NH-Nおよび処理水NO-Nの濃度は安定して低いことが分かる。このように、前記無機合成廃水のpHを6とすることにより、水温が5~6℃であっても安定した硝化が行われていることが分かる。
 図8は、図4に示す装置における容積負荷と、硝化速度との関係を示す図である。最大0.34kg-N/m/dayの硝化速度が得られ、硝化率はほぼ100%を示した。
 運転開始から2779日目に担体から菌叢を採取し、リアルタイムPCRを行った結果、全真正細菌は5.85×1010copy/g-担体、アンモニア酸化細菌は検出限界以下、コマモックス ニトロスピラ(Comammox Nitrospira)は7.49×10copy/g-担体であった。リアルタイムPCRの方法は実施例1に示した方法と同じであり、プライマーは表1に示したものを用いた。この結果から、コマモックス ニトロスピラ(Comammox Nitrospira)が優占種となっていることにより、水温が5~6℃であっても安定した硝化が行われていると考えられる。
 窒素含有水の温度を5℃、10℃、15℃、および20℃と変化させて回分処理を行った。図9は回分試験の結果を示す図である。いずれの温度でも、安定した硝化が可能であることが分かる。
 以上の結果から、前記無機合成廃水のpHを6とすることにより、前記無機合成廃水における優占種をコマモックス ニトロスピラ(Comammox Nitrospira)とすることができることが分かる。また、コマモックス ニトロスピラ(Comammox Nitrospira)が優占種となった菌叢を用いることにより、5℃から20℃までの幅広い温度で安定した硝化を行うことができることが分かる。
 本発明は、低温条件下で硝化を行う必要がある下水処理場等において、有効に利用することができる。
 1、1’ 脱窒槽
 2、2’ 硝化槽
 3 培養槽
 4 酸貯留タンク
 5 アルカリ貯留タンク
 ※1 硝化槽2から培養槽3への返送汚泥の導入
 ※2 硝化槽2からの硝化液の脱窒槽1への導入
 6 沈殿池
 ※a 沈殿池6から脱窒槽1’への硝化液の導入
 ※b 沈殿池6’から硝化槽2への返送汚泥の導入
 100 窒素含有水の処理装置
 101 窒素含有水の処理装置
 A 処理系A
 B 処理系B

Claims (10)

  1.  アンモニア態窒素および/または有機態窒素を含有する窒素含有水aのpHを6.0以下に調整することにより、微生物の優占種が低温耐性硝化細菌である窒素含有水bを得る工程を含む、低温耐性硝化細菌の培養方法。
  2.  前記窒素含有水aのpHを3.0超6.0以下に調整する、請求項1に記載の低温耐性硝化細菌の培養方法。
  3.  前記窒素含有水aにおけるアンモニア態窒素および/または有機態窒素の濃度が2000mg-N/L以下である、請求項1に記載の低温耐性硝化細菌の培養方法。
  4.  前記窒素含有水bでは、低温耐性硝化細菌の量の、アンモニア酸化細菌の量に対する比が1を超える、請求項1に記載の低温耐性硝化細菌の培養方法。
  5.  前記比が5以上100以下である、請求項4に記載の低温耐性硝化細菌の培養方法。
  6.  前記低温耐性硝化細菌が、コマモックス ニトロスピラ(Comammox Nitrospira)である、請求項1に記載の低温耐性硝化細菌の培養方法。
  7.  請求項1から6のいずれか1項に記載の方法によって得られた低温耐性硝化細菌を用いて、好気性雰囲気下、水温0℃以上15℃以下で、前記窒素含有水aおよび/または前記窒素含有水bに含まれるアンモニアを硝化する工程を含む、窒素含有水を処理する方法。
  8.  培養槽と、硝化槽とを有する窒素含有水の処理装置であって、
     前記培養槽と前記硝化槽とは、前記培養槽と前記硝化槽との間で内容物を循環させることが可能であり、
     前記培養槽は、アンモニア態窒素および/または有機態窒素を含有する窒素含有水aと、前記硝化槽から得られた返送汚泥とを貯留することができ、前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とした窒素含有水bを生成し、
     前記硝化槽は、前記窒素含有水aおよび前記窒素含有水bを貯留することができ、前記窒素含有水bに含まれる低温耐性硝化細菌を用いて、水温0℃以上15℃以下で、前記窒素含有水aおよび/または前記窒素含有水bに含まれるアンモニアを硝化して硝化液を生成する、
     窒素含有水の処理装置。
  9.  処理系Aと、処理系Bとを備える窒素含有水の処理装置であって、
     前記処理系Aは、硝化槽Iを備え、
     前記硝化槽Iは、アンモニア態窒素および/または有機態窒素を含有する窒素含有水aと、前記処理系Bからの返送汚泥とを貯留することができ、前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とし、かつ、前記低温耐性硝化細菌および前記返送汚泥に含まれる低温耐性硝化細菌により、0℃以上15℃以下で硝化を行い、硝化液を生成し;
     前記処理系Bは、硝化槽IIと脱窒槽IIとを備え、
     前記硝化槽IIと前記脱窒槽IIとは、前記硝化槽IIと前記脱窒槽IIとの間で、内容物を循環させることが可能であり、
     前記脱窒槽IIは、アンモニア態窒素および/または有機態窒素を含有する窒素含有水a、前記硝化槽Iで得られた硝化液、および前記硝化槽IIで得られる硝化液を貯留することができ、これらの硝化液に含まれる硝酸を脱窒すると共に、前記窒素含有水aを前記硝化槽IIに送り、
     前記硝化槽IIは、前記脱窒槽IIから送られた前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とし、前記低温耐性硝化細菌により、好気性雰囲気下、0℃以上15℃以下で硝化を行って硝化液を生成し、前記硝化液を前記脱窒槽IIに送る;
     窒素含有水の処理装置。
  10.  処理系Aと、処理系Bとを備える窒素含有水の処理装置であって、
     前記処理系Aは、硝化槽Iおよび脱窒槽Iを備え、
     前記硝化槽Iは、アンモニア態窒素および/または有機態窒素を含有する窒素含有水aと、前記処理系Bからの返送汚泥とを貯留することができ、前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とし、かつ、前記低温耐性硝化細菌および前記返送汚泥に含まれる低温耐性硝化細菌により、0℃以上15℃以下で硝化を行って硝化液を生成し;
     前記脱窒槽Iは、前記硝化槽Iで得られた前記硝化液に含まれる硝酸を脱窒し、得られた返送汚泥を前記処理系Bに送り;
     前記処理系Bは、硝化槽IIと脱窒槽IIとを備え、
     前記硝化槽IIと前記脱窒槽IIとは、前記硝化槽IIと前記脱窒槽IIとの間で、内容物を循環させることが可能であり、
     前記脱窒槽IIは、アンモニア態窒素および/または有機態窒素を含有する窒素含有水a、前記脱窒槽Iからの返送汚泥、および前記硝化槽IIで得られる硝化液を貯留することができ、前記硝化液に含まれる硝酸を脱窒すると共に、前記窒素含有水aおよび前記返送汚泥を前記硝化槽IIに送り、
     前記硝化槽IIは、前記脱窒槽IIから送られた前記窒素含有水aのpHを6.0以下に調整することにより、前記窒素含有水aに包含される微生物の優占種を低温耐性硝化細菌とし、前記低温耐性硝化細菌および前記返送汚泥に含まれる低温耐性硝化細菌により、0℃以上15℃以下で硝化を行って硝化液を生成し、前記硝化液を前記脱窒槽IIに送る;
     窒素含有水の処理装置。
PCT/JP2023/014416 2022-08-29 2023-04-07 低温耐性硝化細菌の培養方法、窒素含有水を処理する方法、および窒素含有水の処理装置 WO2024047922A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-136167 2022-08-29
JP2022136167A JP2024032490A (ja) 2022-08-29 2022-08-29 低温耐性硝化細菌の培養方法、窒素含有水を処理する方法、および窒素含有水の処理装置

Publications (1)

Publication Number Publication Date
WO2024047922A1 true WO2024047922A1 (ja) 2024-03-07

Family

ID=90099125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014416 WO2024047922A1 (ja) 2022-08-29 2023-04-07 低温耐性硝化細菌の培養方法、窒素含有水を処理する方法、および窒素含有水の処理装置

Country Status (2)

Country Link
JP (1) JP2024032490A (ja)
WO (1) WO2024047922A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017429A1 (ja) * 2012-07-26 2014-01-30 学校法人 東洋大学 アンモニア性窒素含有水の低温処理方法および装置
JP2022102884A (ja) * 2020-12-25 2022-07-07 株式会社クボタ 有機性排水の処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017429A1 (ja) * 2012-07-26 2014-01-30 学校法人 東洋大学 アンモニア性窒素含有水の低温処理方法および装置
JP2022102884A (ja) * 2020-12-25 2022-07-07 株式会社クボタ 有機性排水の処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OSAKO KOSUKE, SUZUKI TOMONORI, DEGUCHI HIROSHI: "The inner structure of nitrifying bacteria in biofilm fixed inside porous medium", ENVIRONMENTAL ENGINEERING RESEARCH, vol. 41, 1 January 2004 (2004-01-01), pages 347 - 358, XP093145700, ISSN: 1884-829X, DOI: 10.11532/proes1992.41.347 *

Also Published As

Publication number Publication date
JP2024032490A (ja) 2024-03-12

Similar Documents

Publication Publication Date Title
JP6941347B2 (ja) 微生物の培養方法並びに廃水処理方法及び装置
CN101691569B (zh) 蜡状芽孢杆菌微生物制剂和该制剂处理含氮废水的方法
JP5324269B2 (ja) 廃水処理方法及び廃水処理装置
KR101935093B1 (ko) 선택적 미생물 고정화 담체
JP6161210B2 (ja) アンモニア性窒素含有水の低温処理方法および装置
JP5098183B2 (ja) 廃水処理方法及び装置
CN111117914B (zh) 一种耐盐异养好氧硝化细菌菌株、培养方法、菌液及应用
CN1834231B (zh) 厌氧性氨氧化细菌的培养方法和装置
US7960171B2 (en) Method and equipment for cultivating anaerobic ammonium-oxidizing bacteria
CN101348772B (zh) 水生丛毛单胞菌属菌株及其在废水生物脱氮中的应用
Zhang et al. Assessment of plants radial oxygen loss for nutrients and organic matter removal in full-scale constructed wetlands treating municipal effluents
Choi et al. Aerobic denitrification by a heterotrophic nitrifying-aerobic denitrifying (HN-AD) culture enriched activated sludge
CN106701632B (zh) 一株耐冷草假单胞菌及其在污水处理中的应用
CN113414232A (zh) 钙强化微生物矿化治理高浓度镉污染及联合植物修复的方法
WO2024047922A1 (ja) 低温耐性硝化細菌の培養方法、窒素含有水を処理する方法、および窒素含有水の処理装置
JP4632025B2 (ja) 包括固定化微生物担体の製造方法及び包括固定化微生物担体並びに廃水処理装置
JP4978841B2 (ja) 液肥の製造方法及び装置
JP4817056B2 (ja) 窒素含有水の処理方法及び装置
JP4655954B2 (ja) 嫌気性アンモニア酸化細菌の培養方法及び装置
CN113233614A (zh) 用于好氧培养生物法在线再生活性炭类吸附载体的复合功能菌剂及其应用
CN113149212A (zh) 一种放射状碳酸钙生物填料、制备方法及其污水处理中的应用
Prayitno et al. Biodegradation of BOD and ammonia-free using bacterial consortium in aerated fixed film bioreactor (AF2B)
CN114940957B (zh) 一株具有兼性反硝化同步脱氮除磷性能的泛养副球菌
Zeng et al. Nitrogen removal and functional bacteria distribution of ANAMMOX at ambient temperature
Aris et al. Identification of Facultative Anaerobic Bacteria for Low-Cost Nutrient Removal in Treating Domestic Wastewater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859694

Country of ref document: EP

Kind code of ref document: A1