WO2024047873A1 - Control device, gas laser oscillator system, and control method - Google Patents

Control device, gas laser oscillator system, and control method Download PDF

Info

Publication number
WO2024047873A1
WO2024047873A1 PCT/JP2022/033152 JP2022033152W WO2024047873A1 WO 2024047873 A1 WO2024047873 A1 WO 2024047873A1 JP 2022033152 W JP2022033152 W JP 2022033152W WO 2024047873 A1 WO2024047873 A1 WO 2024047873A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
gas
aging
control device
discharge current
Prior art date
Application number
PCT/JP2022/033152
Other languages
French (fr)
Japanese (ja)
Inventor
泰純 柴
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/033152 priority Critical patent/WO2024047873A1/en
Publication of WO2024047873A1 publication Critical patent/WO2024047873A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/032Constructional details of gas laser discharge tubes for confinement of the discharge, e.g. by special features of the discharge constricting tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Definitions

  • the present disclosure relates to a control device, a gas laser oscillator system, and a control method.
  • a gas laser oscillator generates laser light by exciting and discharging a laser gas sealed inside a gas container. For example, if a gas laser oscillator has not been used for a long period of time, foreign matter such as moisture may adhere to the inner wall of the gas container. If discharge occurs in the gas laser oscillator under such conditions, the discharge phenomenon will not be stable. As a result, the output of the laser light from the gas laser oscillator may become unstable.
  • aging discharge is performed at startup to remove foreign matter inside the gas container (for example, Patent Document 1).
  • aging discharge is an operation in which foreign matter is removed by performing discharge before using the gas laser oscillator to increase the temperature inside the gas container and vaporizing the foreign matter.
  • the aging discharge is performed using a large amount of power when the purity of the laser gas is low due to the presence of foreign matter in the gas container, there is a risk that an overcurrent will occur. In this case, the power supply for the gas laser oscillator may fail.
  • the control device of the present disclosure adjusts the discharge current when aging discharge is performed in the gas laser oscillator based on the time required to vacuum the circulatory system of the gas laser oscillator and the power of the blower that circulates the laser gas in the circulatory system.
  • a determining unit that determines the gas pressure inside the circulatory system; and a determining unit that adjusts the internal pressure of the circulatory system to the gas pressure determined by the determining unit and executes aging discharge at the discharge current determined by the determining unit.
  • a command unit that outputs an execution command.
  • the gas laser oscillator system of the present disclosure has a circulation system in which laser gas is circulated by a blower, a discharge current when aging discharge is performed, and a change in the circulation system based on the time required to vacuum the circulation system and the power of the blower.
  • a determining unit that determines the internal gas pressure; and an execution command for adjusting the internal pressure of the circulatory system to the gas pressure determined by the determining unit and executing aging discharge at the discharge current determined by the determining unit.
  • a control device having a command unit that outputs an output.
  • the control method of the present disclosure is based on the time required to vacuum the circulatory system of the gas laser oscillator and the power of the blower that circulates the laser gas in the circulatory system, and the discharge current when aging discharge is executed in the gas laser oscillator. and adjusting the pressure inside the circulation system to the determined gas pressure and performing aging discharge at the determined discharge current.
  • FIG. 2 is a block diagram showing an example of a hardware configuration of a control device.
  • FIG. 2 is a schematic diagram for explaining the configuration of a gas laser oscillator. It is a block diagram showing an example of the function of a control device.
  • FIG. 3 is a diagram showing an example of data stored in a storage unit. 3 is a flowchart illustrating an example of the flow of processing executed by the control device. It is a schematic diagram showing the flow of operation of a gas laser oscillator. It is a schematic diagram showing the flow of operation of a gas laser oscillator. It is a schematic diagram showing the flow of operation of a gas laser oscillator. It is a schematic diagram showing the flow of operation of a gas laser oscillator. It is a schematic diagram showing the flow of operation of a gas laser oscillator. It is a schematic diagram showing the flow of operation of a gas laser oscillator. It is a schematic diagram showing the flow of operation of a gas laser oscillator.
  • FIG. 3 is a
  • XX is an arbitrary element (for example, arbitrary information).
  • the gas laser oscillator system includes a control device and a gas laser oscillator.
  • the control device is a device that controls the gas laser oscillator.
  • the control device is, for example, a numerical control device.
  • the control device may be implemented in, for example, a PC (Personal Computer) or a server. An example in which the control device is implemented in a numerical control device will be described below.
  • FIG. 1 is a block diagram showing an example of the hardware configuration of the control device.
  • the control device 1 is connected to the gas laser oscillator 2.
  • the control device 1 includes a hardware processor 11 , a bus 12 , a ROM (Read Only Memory) 13 , a RAM (Random Access Memory) 14 , a nonvolatile memory 15 , and an interface 16 .
  • the hardware processor 11 is a processor that controls the entire control device 1 according to a system program.
  • the hardware processor 11 reads out a system program stored in the ROM 13 via the bus 12, and performs various processes based on the system program.
  • the hardware processor 11 is, for example, a CPU (Central Processing Unit) or an electronic circuit.
  • the bus 12 is a communication path that connects each piece of hardware within the control device 1 to each other. Each piece of hardware within the control device 1 exchanges data via a bus 12.
  • the ROM 13 is a storage device that stores system programs and the like for controlling the entire control device 1.
  • ROM 13 is a computer-readable storage medium.
  • the RAM 14 is a storage device that temporarily stores various data.
  • the RAM 14 functions as a work area for the hardware processor 11 to process various data.
  • the nonvolatile memory 15 is a storage device that retains data even when the control device 1 is powered off and power is not supplied to the control device 1.
  • Non-volatile memory 15 is a computer readable storage medium.
  • the nonvolatile memory 15 includes, for example, battery-backed memory or an SSD (Solid State Drive).
  • the interface 16 is a communication path that connects the bus 12 and the gas laser oscillator 2.
  • the hardware processor 11 sends various signals to the gas laser oscillator 2 via the interface 16.
  • the gas laser oscillator 2 sends various signals to the hardware processor 11 via the interface 16.
  • FIG. 2 is a schematic diagram for explaining the configuration of the gas laser oscillator 2.
  • the gas laser oscillator 2 includes a circulation system 21, a laser power source 22, an exhaust valve 23, and an intake valve 24.
  • the circulation system 21 is a system that circulates laser gas.
  • the circulation system 21 is also called a vacuum system or a gas container.
  • the laser gas circulating in the circulation system 21 is, for example, CO 2 gas (carbon dioxide gas).
  • the circulation system 21 includes a discharge tube 211, a gas pipe 212, a first heat exchanger 213, a blower 214, a second heat exchanger 215, and a pressure sensor 216.
  • the discharge tube 211 is an electron tube that excites the laser gas by performing discharge from a pair of electrodes (not shown) toward the laser gas sealed inside. By exciting the laser gas, the discharge tube 211 emits laser light.
  • the gas pipe 212 is a passage through which laser gas is circulated in the circulation system 21.
  • the gas pipe 212 is a pipe that connects a part of the discharge tube 211 and the first heat exchanger 213, a pipe that connects the first heat exchanger 213 and the blower 214, and a pipe that connects the blower 214 and the second heat exchanger. 215 , and a tube that connects the second heat exchanger 215 and another part of the discharge tube 211 .
  • the first heat exchanger 213 is a device that cools the laser gas sealed in the circulation system.
  • the first heat exchanger 213 cools the laser gas taken in from the tube connecting the discharge tube 211 and the first heat exchanger 213.
  • the laser gas cooled by the first heat exchanger 213 is sent to a tube connecting the first heat exchanger 213 and the blower 214.
  • the blower 214 is a device that increases the pressure of laser gas and sends it out.
  • Blower 214 is, for example, a turbo blower.
  • the blower 214 gives energy to the laser gas sucked from the pipe connecting the heat exchanger and the blower 214 to increase the pressure, increases the speed of the laser gas, and sends out the laser gas.
  • Laser gas is sent to gas pipe 212 that connects blower 214 and second heat exchanger 215.
  • the second heat exchanger 215 is a device that cools the laser gas.
  • the second heat exchanger 215 cools the laser gas taken in from the tube connecting the blower 214 and the second heat exchanger 215.
  • the laser gas cooled by the second heat exchanger 215 is sent into a tube connecting the second heat exchanger 215 and the discharge tube 211.
  • the pressure sensor 216 is a sensor that measures the gas pressure inside the circulation system 21.
  • the pressure sensor 216 is attached to a tube connecting the discharge tube 211 and the first heat exchanger 213, for example.
  • the laser power source 22 is a power source that supplies power to the discharge tube 211.
  • the laser power source 22 is connected to the control device 1 and supplies power to the discharge tube 211 based on a command received from the control device 1.
  • the exhaust valve 23 is an on-off valve arranged between the gas pipe 212 and the exhaust pump 3.
  • the exhaust valve 23 is opened when the exhaust pump 3 evacuates the circulation system 21 .
  • the exhaust valve 23 is closed when the exhaust pump 3 does not perform evacuation.
  • the intake valve 24 is an on-off valve disposed between the gas pipe 212 and the laser gas supply source 4.
  • the intake valve 24 is opened when laser gas is supplied from the laser gas supply source 4 to the circulation system 21 .
  • the intake valve 24 is closed when laser gas is not supplied from the laser gas supply source 4 to the circulation system 21 .
  • the laser gas supply source 4 is, for example, a gas cylinder containing laser gas.
  • FIG. 3 is a block diagram showing an example of the functions of the control device 1.
  • the control device 1 includes a data acquisition section 101, a determination section 102, a storage section 103, a command section 104, and a determination section 105.
  • the data acquisition unit 101, the determination unit 102, the command unit 104, and the determination unit 105 are configured such that the hardware processor 11 uses a system program stored in the ROM 13 and various data stored in the nonvolatile memory 15. This is realized by performing arithmetic processing using The storage unit 103 is realized, for example, by storing data input from an external device in at least one of the RAM 14 and the nonvolatile memory 15.
  • the data acquisition unit 101 acquires data indicating the time required to vacuum the circulatory system 21 of the gas laser oscillator 2.
  • the time required for evacuation is the time from when evacuation of the circulation system 21 is started by the exhaust pump 3 until the evacuation ends. Evacuation ends when the pressure inside the circulation system 21 reaches a predetermined pressure. Note that whether or not the internal pressure of the circulation system 21 has reached a predetermined pressure may be determined based on the pressure measured by the pressure sensor 216.
  • the time required for vacuuming is measured by, for example, a timer (not shown).
  • the data acquisition unit 101 acquires data indicating the time required for vacuuming based on time data acquired from the timer.
  • the data acquisition unit 101 acquires data indicating the power of the blower 214 that circulates the laser gas in the circulation system 21.
  • the data acquisition unit 101 acquires data indicating power consumed by the blower 214 when the blower 214 circulates the laser gas.
  • the data acquisition unit 101 may acquire data indicating the power of the blower 214 from a wattmeter (not shown) that measures the power consumed by the blower 214.
  • blower 214 starts circulating the gas inside the circulation system 21 based on a command from the command unit 104 between the start of evacuation and the end of evacuation.
  • the command unit 104 starts driving the blower 214 from the start of evacuation until the end of evacuation.
  • the blower 214 may start circulating the gas inside the circulation system 21 based on a command from the command unit 104 after the circulation system 21 has been evacuated. That is, the command unit 104 may start driving the blower 214 after evacuation is completed.
  • the determining unit 102 determines the aging discharge from the electrodes of the discharge tube 211 based on the time required to vacuum the circulation system 21 and the power of the blower 214 that circulates the laser gas in the circulation system 21, which are acquired by the data acquisition unit 101. Determine the discharge current and the gas pressure inside the circulatory system 21 when this is performed.
  • the time required for evacuation becomes relatively long.
  • the purity of the laser gas sealed inside the circulation system 21 and the time required for evacuation are correlated. Note that when the purity of the laser gas is relatively low, the evacuation time becomes longer due to vaporization of moisture adhering to the inner wall of the discharge tube 211, etc., or due to the influence of outgas. This is because the volume of gas increases.
  • the purity of the laser gas sealed inside the circulation system 21 is relatively low, a relatively high load is applied to the blower 214. Therefore, when the purity of the laser gas sealed inside the circulation system 21 is relatively low, the power consumed by the blower 214 increases. In other words, the purity of the laser gas sealed inside the circulation system 21 and the power consumed by the blower 214 are correlated.
  • the determining unit 102 determines the discharge current and gas pressure according to the purity of the laser gas sealed in the circulation system 21. Note that the determining unit 102 may or may not actually calculate the purity of the laser gas sealed in the circulation system 21 based on the time required for evacuation and the power of the blower 214. When the determination unit 102 calculates the purity, it may use a formula for calculating the purity of the laser gas determined in advance through experiments or the like.
  • the determining unit 102 determines, for example, the relationship between the time required to vacuum the circulatory system 21 and the power of the blower 214, and the optimal discharge current and optimal gas pressure inside the circulatory system 21 when aging discharge is performed. Based on the data shown, the discharge current and gas pressure are determined. Data indicating such a relationship may be created based on the experience of a skilled engineer, for example. Alternatively, data indicating the relationship may be created based on experiments conducted in advance.
  • the storage unit 103 stores the relationship between the time required to vacuum the circulation system 21 and the power of the blower 214, and the optimum discharge current and the optimum gas pressure inside the circulation system 21 when the aging discharge is executed, as described above. Store the data shown.
  • FIG. 4 is a diagram showing an example of data stored in the storage unit 103.
  • the storage unit 103 stores a plurality of data sets in which one data set includes the time required for evacuation, the electric power of the blower 214, the discharge current, and the gas pressure.
  • the storage unit 103 stores a plurality of data sets, and each data set includes data indicating discharge current and data indicating gas pressure.
  • the determining unit 102 selects one data set from the plurality of data sets and determines the discharge current and gas pressure based on the time required to vacuum the circulatory system 21 and the power of the blower 214. Note that the determining unit 102 selects one data set based on the time required for evacuation and the power of the blower 214 that are respectively approximate to the time required for evacuation and the power of the blower 214 acquired by the data acquisition unit 101. Bye.
  • the command unit 104 issues an execution command to the exhaust valve 23 to adjust the internal pressure of the circulation system 21 to the gas pressure determined by the determination unit 102 and execute aging discharge with the discharge current determined by the determination unit 102. Alternatively, it is output to the intake valve 24. Before executing the aging discharge, the command unit 104 controls the exhaust valve 23 or the intake valve 24 to bring the internal pressure of the circulation system 21 to the gas pressure determined by the determining unit 102.
  • the command unit 104 closes both the exhaust valve 23 and the intake valve 24. Thereafter, the command unit 104 controls the laser power source 22 to perform aging discharge with the discharge current determined by the determination unit 102.
  • the data acquisition unit 101 acquires data indicating the discharge current, gas pressure, and discharge voltage when aging discharge is performed.
  • the data indicating the discharge current and gas pressure acquired by the data acquisition unit 101 may be the data indicating the discharge current and gas pressure determined by the determination unit 102. That is, the data indicating the discharge current and gas pressure acquired by the data acquisition unit 101 are the values of the execution command when the command unit 104 commands adjustment of the internal pressure of the circulatory system 21 and the execution command for aging discharge. It may be a current value of an execution command to be executed.
  • the data indicating the discharge current and gas pressure acquired by the data acquisition unit 101 may be data detected by an ammeter (not shown) and the pressure sensor 216 during aging discharge.
  • the discharge voltage when the aging discharge is performed is data measured by a voltmeter (not shown). Note that the discharge voltage is the voltage applied between the electrodes of the discharge tube 211 during aging discharge.
  • the determining unit 105 determines whether to perform another aging discharge following the aging discharge, based on the discharge current, gas pressure, and discharge voltage acquired by the data acquisition unit 101 during the aging discharge. That is, the determination unit 105 determines whether or not to perform the second aging discharge following the first aging discharge performed.
  • the voltage measured when the aging discharge is performed under the gas pressure determined by the determining unit 102 and the discharge current determined by the determining unit 102 is determined by the purity of the laser gas inside the circulatory system 21 after the aging discharge. There is a correlation. For example, if the purity of the laser gas inside the circulation system 21 is relatively low, the voltage measured when the aging discharge is performed will be relatively high. On the other hand, if the purity of the laser gas inside the circulation system 21 is relatively high, the voltage measured when the aging discharge is performed will be relatively low.
  • the determination unit 105 determines not to perform another aging discharge.
  • the determination unit 105 determines to perform another aging discharge.
  • the determining unit 102 determines that another aging discharge is to be performed based on the discharge current, gas pressure, and discharge voltage when the aging discharge was performed. Determine the discharge current and gas pressure at the time.
  • the determining unit 102 indicates the relationship between the discharge current, gas pressure, and discharge voltage when an aging discharge is performed and the optimal discharge current and optimal gas pressure when another aging discharge is performed. Based on the data, the discharge current and gas pressure when performing another aging discharge may be determined.
  • Data showing such a relationship may be created based on the experience of a skilled engineer, for example. Alternatively, data indicating the relationship may be created based on experiments conducted in advance. Furthermore, the storage unit 103 indicates the relationship between the discharge current, gas pressure, and discharge voltage when the aging discharge is executed, and the optimal discharge current and optimal gas pressure when other aging discharges are executed. Data may also be stored.
  • the command unit 104 outputs an execution command for adjusting the internal pressure of the circulation system 21 to the gas pressure determined by the determining unit 102 and executing another aging discharge with the discharge current determined by the determining unit 102. . Furthermore, the determination unit 105 determines whether or not to perform another aging discharge following the other aging discharge, based on the discharge current, gas pressure, and discharge voltage when the other aging discharge is performed. do. In other words, the determination unit 105 determines whether or not to perform the third aging discharge.
  • the control device 1 executes such processing, and if the determining unit 105 further determines that aging discharge is not to be performed, the aging discharge at startup ends.
  • FIG. 5 is a flowchart showing an example of the flow of processing executed by the control device 1.
  • 6A to 6E are schematic diagrams showing the operation of the gas laser oscillator 2 and the flow of signals.
  • step S1 the circulation system 21 is evacuated (step S1) (see FIG. 6A). That is, the command unit 104 outputs a command for evacuation to the exhaust valve 23. The exhaust valve 23 is opened based on a command from the command unit 104. As a result, the circulation system 21 is evacuated by the exhaust pump 3.
  • step S2 driving of the blower 214 is started (step S2) (see FIG. 6B). That is, the command unit 104 outputs a drive command to the blower 214 while vacuuming is being performed. As a result, the blower 214 starts to be driven.
  • the command unit 104 When the pressure sensor 216 detects that the internal pressure of the circulation system 21 has reached a predetermined gas pressure, the command unit 104 outputs a closing command to the exhaust valve 23. As a result, the exhaust valve 23 becomes closed. This completes the evacuation.
  • step S3 data is acquired.
  • the data acquisition unit 101 acquires data indicating the time required for evacuation and data indicating the power of the blower 214 being driven.
  • the data acquisition unit 101 may acquire data indicating the power of the blower 214 from the time when the blower 214 starts being driven.
  • the determining unit 102 determines the discharge current and gas pressure inside the circulation system 21 when the aging discharge is executed based on the time required for evacuation and the power of the blower 214.
  • step S5 the gas pressure is adjusted (step S5) (see FIG. 6C).
  • the command unit 104 outputs an opening command to the intake valve 24, for example. Furthermore, when the internal pressure of the circulation system 21 reaches a predetermined gas pressure, the command unit 104 outputs a closing command to the intake valve 24. Thereby, the internal pressure of the circulation system 21 is adjusted to the gas pressure determined by the determination unit 102.
  • step S6 aging discharge is performed (step S6) (see FIG. 6D).
  • the command unit 104 outputs an execution command to the laser power supply 22 to cause the aging discharge to be performed with the discharge current determined by the determination unit 102.
  • the laser power supply 22 Based on the execution command received from the command unit 104, the laser power supply 22 causes a current of a value indicated by the execution command to flow through the electrodes of the discharge tube 211. As a result, aging discharge is performed.
  • step S7 it is determined whether to perform another aging discharge.
  • the other aging discharge is the second aging discharge.
  • the determination unit 105 determines whether to perform another aging discharge based on the discharge current, gas pressure, and discharge voltage when the first aging discharge was performed.
  • the determination unit 105 determines not to perform another aging discharge (No in step S7), the purity of the laser gas sealed in the circulation system 21 is suitable for use in the gas laser oscillator 2. Therefore, the processing related to aging discharge at the time of startup ends.
  • step S7 determines the determining unit 102 determines the aging discharge based on the discharge current, gas pressure, and discharge voltage when the aging discharge was performed. Then, the discharge current and gas pressure when another aging discharge is executed are determined (step S4). Then, the gas pressure is adjusted again (step S5) (see FIG. 6E), and another aging discharge is performed (step S6).
  • step S4 determines that aging discharge is not to be performed.
  • the gas laser oscillator 2 includes a vacuum container 5
  • FIG. 7 is a schematic diagram of a gas laser oscillator 2 in another embodiment.
  • the gas laser oscillator 2 includes a vacuum container 5 and a switching valve 25.
  • the capacity of the vacuum container 5 is smaller than the capacity inside the circulation system 21.
  • the switching valve 25 switches the connection destination of the exhaust pump 3 that performs evacuation between the circulation system 21 and the vacuum container 5.
  • the exhaust pump 3 can evacuate the circulation system 21.
  • the exhaust pump 3 can evacuate the vacuum container 5.
  • the determining unit 102 compares the time required to evacuate the circulation system 21 and the time required to evacuate the vacuum container 5. For example, if the capacity of the vacuum container 5 is 1/10 of the internal capacity of the circulation system 21 and there is no abnormality in the exhaust pump 3, the time required to evacuate the vacuum container 5 is equal to the time required to evacuate the circulation system 21. It should be 1/10 of the time it takes.
  • the determining unit 102 can notify the user that an abnormality has occurred in the exhaust pump 3 using, for example, a display device (not shown).
  • control device 1 controls the aging discharge in the gas laser oscillator 2 based on the time required to vacuum the circulation system 21 of the gas laser oscillator 2 and the electric power of the blower 214 that circulates the laser gas in the circulation system 21.
  • a determining unit 102 determines the discharge current and the gas pressure inside the circulatory system 21 when the is executed, and the determining unit 102 adjusts the internal pressure of the circulatory system 21 to the pressure determined by the determining unit 102. It includes a command unit 104 that outputs an execution command for performing aging discharge with the determined discharge current.
  • control device 1 can perform aging discharge with a discharge current and gas pressure depending on the purity of the laser gas inside the circulation system 21. As a result, the gas laser oscillator 2 can be activated in a short time.
  • the control device 1 also includes a determination unit 105 that determines whether to perform another aging discharge subsequent to the aging discharge based on the discharge current, gas pressure, and discharge voltage when the aging discharge is performed. Furthermore, it is equipped with the following. Therefore, the control device 1 can perform aging discharge as necessary. Therefore, the number of aging discharges performed when the gas laser oscillator 2 is started can be reduced.
  • the determining unit 102 determines the discharge current when the other aging discharge is performed based on the discharge current, gas pressure, and discharge voltage when the aging discharge is performed. and the gas pressure inside the circulation system 21. Therefore, the control device 1 can set the discharge current and gas pressure to optimal values when another aging discharge is executed.
  • the device further includes a storage unit 103 that stores a plurality of data sets, each data set including data indicating discharge current and data indicating gas pressure, and determining unit 102 selects one data from among the plurality of data sets. Select the set and determine the discharge current and gas pressure. In this case, when aging discharge is executed, the processing load on the control device 1 can be reduced compared to calculating the discharge current and gas pressure each time based on a calculation formula or the like.
  • the command unit 104 starts driving the blower 214 from the start of evacuation until the end of evacuation. In this case, part of the gas inside the circulation system 21 is compressed during evacuation, and the temperature of the gas changes. Further, by driving the blower 214, the temperature inside the circulation system 21 increases, and foreign substances such as moisture inside the circulation system 21 are vaporized.
  • the control device 1 starts driving the blower 214 during evacuation, and determines the discharge current and gas pressure when the aging discharge is performed based on the time required for evacuation, thereby adjusting these values. can be set to the optimal value.
  • the gas laser oscillator 2 also includes a vacuum container 5 whose capacity is smaller than the internal capacity of the circulation system 21, and a switching valve 25 that switches the connection destination of the exhaust pump 3 that performs evacuation between the circulation system 21 and the vacuum container 5.
  • the determining unit 102 compares the time required to evacuate the circulation system 21 and the time required to evacuate the vacuum container 5. Thereby, the control device 1 can easily detect an abnormality in the exhaust pump 3.
  • Additional notes related to embodiments of the present disclosure are shown below. Additional note [1] Based on the time required to vacuum the circulatory system of the gas laser oscillator and the power of the blower that circulates the laser gas in the circulatory system, the discharge current and the inside of the circulatory system when aging discharge is executed in the gas laser oscillator are determined. a determining unit that determines the gas pressure of the circulatory system; and adjusting the internal pressure of the circulatory system to the gas pressure determined by the determining unit and performing the aging discharge with the discharge current determined by the determining unit.
  • a control device comprising: a command unit that outputs an execution command to perform the operations; Additional note [2]
  • the method further includes a determination unit that determines whether to perform another aging discharge subsequent to the aging discharge based on the discharge current, the gas pressure, and the discharge voltage when the aging discharge is performed.
  • the control device according to supplementary note [1].
  • Additional note [3] When the other aging discharge is executed, the determining unit executes the other aging discharge based on the discharge current, the gas pressure, and the discharge voltage when the aging discharge is executed.
  • the control device according to supplementary note [2], which determines the discharge current and the gas pressure inside the circulation system.
  • the determination unit further includes a storage unit that stores a plurality of data sets, each data set including data indicating the discharge current and data indicating the gas pressure, and the determining unit selects one data set from the plurality of data sets.
  • the control device according to any one of appendices [1] to [3], which selects the discharge current and the gas pressure to determine the discharge current and the gas pressure.
  • Additional note [5] The control device according to any one of appendices [1] to [4], wherein the command unit starts driving the blower between the start of the evacuation and the end of the evacuation.
  • the gas laser oscillator includes a vacuum container having a smaller capacity than the internal capacity of the circulation system, and a switching valve that switches the connection destination of the exhaust pump that performs evacuation between the circulation system and the vacuum container.
  • the control device according to any one of appendices [1] to [5], wherein the determining unit compares the time required to evacuate the circulation system and the time required to evacuate the vacuum container.
  • a discharge current and a gas pressure inside the circulation system when aging discharge is executed based on a circulation system in which the laser gas is circulated by a blower, the time required to vacuum the circulation system, and the electric power of the blower.
  • a determining unit for determining the internal pressure of the circulatory system to the gas pressure determined by the determining unit and executing the aging discharge at the discharge current determined by the determining unit.
  • a gas laser oscillator system comprising: a command unit that outputs commands; and a control device. Additional note [8] Based on the time required to vacuum the circulatory system of the gas laser oscillator and the power of the blower that circulates the laser gas in the circulatory system, the discharge current and the inside of the circulatory system when aging discharge is executed in the gas laser oscillator are determined. and adjusting the internal pressure of the circulation system to the determined gas pressure and performing the aging discharge at the determined discharge current.
  • Gas laser oscillator system 1 Control device 11 Hardware processor 12 Bus 13 ROM 14 RAM 15 Non-volatile memory 16 Interface 101 Data acquisition section 102 Determination section 103 Storage section 104 Command section 105 Judgment section 2 Gas laser oscillator 21 Circulation system 211 Discharge tube 212 Gas pipe 213 First heat exchanger 214 Blower 215 Second heat exchanger 216 Pressure sensor 22 Laser power supply 23 Exhaust valve 24 Intake valve 25 Switching valve 3 Exhaust pump 4 Laser gas supply source 5 Vacuum container

Abstract

This control device comprises: a determination unit that, on the basis of the time required to vacuum a circulating system of a gas laser oscillator and the electrical power of a blower that circulates laser gas in the circulating system, determines the discharge current and gas pressure inside the circulating system when aging discharge is implemented in the gas laser oscillator; and a command unit that outputs an execution command for adjusting the pressure inside the circulating system to the gas pressure determined by the determination unit and implementing aging discharge at the discharge current determined by the determination unit.

Description

制御装置、ガスレーザ発振器システムおよび制御方法Control device, gas laser oscillator system and control method
 本開示は、制御装置、ガスレーザ発振器システムおよび制御方法に関する。 The present disclosure relates to a control device, a gas laser oscillator system, and a control method.
 ガスレーザ発振器は、ガス容器の内部に封入されたレーザガスを励起して放電させることによってレーザ光を発生させる。例えば、ガスレーザ発振器が長期間使用されていない場合、ガス容器の内壁に水分などの異物が付着する場合がある。このような状態でガスレーザ発振器において放電が行われると、放電現象が安定しない。その結果、ガスレーザ発振器のレーザ光の出力が安定しないおそれがある。 A gas laser oscillator generates laser light by exciting and discharging a laser gas sealed inside a gas container. For example, if a gas laser oscillator has not been used for a long period of time, foreign matter such as moisture may adhere to the inner wall of the gas container. If discharge occurs in the gas laser oscillator under such conditions, the discharge phenomenon will not be stable. As a result, the output of the laser light from the gas laser oscillator may become unstable.
 したがって、ガスレーザ発振器が長期間使用されていない場合などは、ガス容器の内部の異物を除去するために、起動時にエージング放電が行われる(例えば、特許文献1)。なお、エージング放電とは、ガスレーザ発振器を使用する前に放電を行って、ガス容器の内部の温度を高めて異物を気化などさせることにより、異物を除去する動作である。 Therefore, if the gas laser oscillator has not been used for a long period of time, aging discharge is performed at startup to remove foreign matter inside the gas container (for example, Patent Document 1). Note that aging discharge is an operation in which foreign matter is removed by performing discharge before using the gas laser oscillator to increase the temperature inside the gas container and vaporizing the foreign matter.
特開2016-139767号公報Japanese Patent Application Publication No. 2016-139767
 エージング放電では、使用される電力が大きいほどガス容器の内部の温度がより高まる。そのため、大きな電力を用いてエージング放電を行った方がガス容器の内部の異物を除去しやすい。しかし、ガス容器の内部に異物が混入しており、レーザガスの純度が低い状態で大きな電力を用いてエージング放電を行うと、過電流が生じてしまうおそれがある。この場合、ガスレーザ発振器の電源が故障する可能性がある。 In aging discharge, the greater the power used, the higher the temperature inside the gas container. Therefore, it is easier to remove foreign substances inside the gas container by performing aging discharge using a large amount of electric power. However, if the aging discharge is performed using a large amount of power when the purity of the laser gas is low due to the presence of foreign matter in the gas container, there is a risk that an overcurrent will occur. In this case, the power supply for the gas laser oscillator may fail.
 そのため、従来、ガス容器に封入されたレーザガスの純度が高いか低いかに関わらず、エージング放電では、まずは、小さな電力を用いて放電が実行され、徐々に電力を増加させて複数回放電が実行される。その結果、ガスレーザ発振器の起動時に多くの時間が掛かる。そのため、ガスレーザ発振器を短時間で起動させることが可能な技術が求められている。 Therefore, regardless of whether the purity of the laser gas sealed in the gas container is high or low, in aging discharge, discharge is first performed using a small electric power, and then the electric power is gradually increased and discharge is performed multiple times. Ru. As a result, it takes a lot of time to start up the gas laser oscillator. Therefore, there is a need for a technology that can start up a gas laser oscillator in a short time.
 本開示の制御装置は、ガスレーザ発振器が有する循環系の真空引きに掛かる時間と、循環系においてレーザガスを循環させるブロワの電力とに基づいて、ガスレーザ発振器においてエージング放電が実行されるときの放電電流と循環系の内部のガス圧とを決定する決定部と、循環系の内部の圧力を決定部によって決定されたガス圧に調整して決定部によって決定された放電電流でエージング放電を実行させるための実行指令を出力する指令部と、を備える。 The control device of the present disclosure adjusts the discharge current when aging discharge is performed in the gas laser oscillator based on the time required to vacuum the circulatory system of the gas laser oscillator and the power of the blower that circulates the laser gas in the circulatory system. a determining unit that determines the gas pressure inside the circulatory system; and a determining unit that adjusts the internal pressure of the circulatory system to the gas pressure determined by the determining unit and executes aging discharge at the discharge current determined by the determining unit. and a command unit that outputs an execution command.
 本開示のガスレーザ発振器システムは、レーザガスをブロワによって循環させる循環系と、循環系の真空引きに掛かる時間と、ブロワの電力とに基づいて、エージング放電が実行されるときの放電電流と循環系の内部のガス圧とを決定する決定部と、循環系の内部の圧力を決定部によって決定されたガス圧に調整して決定部によって決定された放電電流でエージング放電を実行させるための実行指令を出力する指令部と、を有する制御装置と、を備える。 The gas laser oscillator system of the present disclosure has a circulation system in which laser gas is circulated by a blower, a discharge current when aging discharge is performed, and a change in the circulation system based on the time required to vacuum the circulation system and the power of the blower. a determining unit that determines the internal gas pressure; and an execution command for adjusting the internal pressure of the circulatory system to the gas pressure determined by the determining unit and executing aging discharge at the discharge current determined by the determining unit. A control device having a command unit that outputs an output.
 本開示の制御方法は、ガスレーザ発振器が有する循環系の真空引きに掛かる時間と、循環系においてレーザガスを循環させるブロワの電力とに基づいて、ガスレーザ発振器においてエージング放電が実行されるときの放電電流と循環系の内部のガス圧とを決定することと、循環系の内部の圧力を決定されたガス圧に調整して決定された放電電流でエージング放電を実行することと、を含む。 The control method of the present disclosure is based on the time required to vacuum the circulatory system of the gas laser oscillator and the power of the blower that circulates the laser gas in the circulatory system, and the discharge current when aging discharge is executed in the gas laser oscillator. and adjusting the pressure inside the circulation system to the determined gas pressure and performing aging discharge at the determined discharge current.
制御装置のハードウェア構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a hardware configuration of a control device. ガスレーザ発振器の構成を説明するための概略図である。FIG. 2 is a schematic diagram for explaining the configuration of a gas laser oscillator. 制御装置の機能の一例を示すブロック図である。It is a block diagram showing an example of the function of a control device. 記憶部が記憶するデータの一例を示す図である。FIG. 3 is a diagram showing an example of data stored in a storage unit. 制御装置で実行される処理の流れの一例を示すフローチャートである。3 is a flowchart illustrating an example of the flow of processing executed by the control device. ガスレーザ発振器の動作の流れを示す概略図である。It is a schematic diagram showing the flow of operation of a gas laser oscillator. ガスレーザ発振器の動作の流れを示す概略図である。It is a schematic diagram showing the flow of operation of a gas laser oscillator. ガスレーザ発振器の動作の流れを示す概略図である。It is a schematic diagram showing the flow of operation of a gas laser oscillator. ガスレーザ発振器の動作の流れを示す概略図である。It is a schematic diagram showing the flow of operation of a gas laser oscillator. ガスレーザ発振器の動作の流れを示す概略図である。It is a schematic diagram showing the flow of operation of a gas laser oscillator. 他の実施形態におけるガスレーザ発振器の概略図である。FIG. 3 is a schematic diagram of a gas laser oscillator in another embodiment.
 以下、本開示の一の実施形態に係る制御装置、ガスレーザ発振器システム、及び制御方法について図面を参照して説明する。なお、以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は、省略する場合がある。 Hereinafter, a control device, a gas laser oscillator system, and a control method according to one embodiment of the present disclosure will be described with reference to the drawings. In addition, in the following description, the same code|symbol is attached to the structure which has the same or similar function. Redundant explanations of these configurations may be omitted.
 本願でいう「XXに基づく」とは、「少なくともXXに基づく」ことを意味し、XXに加えて別の要素に基づく場合も含む。また、「XXに基づく」とは、XXを直接に用いる場合に限定されず、XXに対して演算や加工が行われたものに基づく場合も含む。「XX」は、任意の要素(例えば、任意の情報)である。
〈一の実施形態〉
"Based on XX" as used herein means "based on at least XX" and includes cases where it is based on another element in addition to XX. Furthermore, "based on XX" is not limited to the case where XX is used directly, but also includes the case where it is based on calculations and processing performed on XX. "XX" is an arbitrary element (for example, arbitrary information).
<First embodiment>
 ガスレーザ発振器システムは、制御装置と、ガスレーザ発振器とを備える。制御装置は、ガスレーザ発振器を制御する装置である。制御装置は、例えば、数値制御装置である。制御装置は、例えば、PC(Personal Computer)、またはサーバに実装されてもよい。以下では、制御装置が数値制御装置に実装された例について説明する。 The gas laser oscillator system includes a control device and a gas laser oscillator. The control device is a device that controls the gas laser oscillator. The control device is, for example, a numerical control device. The control device may be implemented in, for example, a PC (Personal Computer) or a server. An example in which the control device is implemented in a numerical control device will be described below.
 図1は、制御装置のハードウェア構成の一例を示すブロック図である。ガスレーザ発振器システム100において、制御装置1は、ガスレーザ発振器2に接続される。制御装置1は、ハードウェアプロセッサ11と、バス12と、ROM(Read Only Memory)13と、RAM(Random Access Memory)14と、不揮発性メモリ15と、インタフェース16とを備える。 FIG. 1 is a block diagram showing an example of the hardware configuration of the control device. In the gas laser oscillator system 100, the control device 1 is connected to the gas laser oscillator 2. The control device 1 includes a hardware processor 11 , a bus 12 , a ROM (Read Only Memory) 13 , a RAM (Random Access Memory) 14 , a nonvolatile memory 15 , and an interface 16 .
 ハードウェアプロセッサ11は、システムプログラムに従って制御装置1全体を制御するプロセッサである。ハードウェアプロセッサ11は、バス12を介してROM13に格納されたシステムプログラムなどを読み出し、システムプログラムに基づいて各種処理を行う。ハードウェアプロセッサ11は、例えば、CPU(Central Processing Unit)、または電子回路である。 The hardware processor 11 is a processor that controls the entire control device 1 according to a system program. The hardware processor 11 reads out a system program stored in the ROM 13 via the bus 12, and performs various processes based on the system program. The hardware processor 11 is, for example, a CPU (Central Processing Unit) or an electronic circuit.
 バス12は、制御装置1内の各ハードウェアを互いに接続する通信路である。制御装置1内の各ハードウェアはバス12を介してデータをやり取りする。 The bus 12 is a communication path that connects each piece of hardware within the control device 1 to each other. Each piece of hardware within the control device 1 exchanges data via a bus 12.
 ROM13は、制御装置1全体を制御するためのシステムプログラムなどを記憶する記憶装置である。ROM13は、コンピュータ読み取り可能な記憶媒体である。 The ROM 13 is a storage device that stores system programs and the like for controlling the entire control device 1. ROM 13 is a computer-readable storage medium.
 RAM14は、各種データを一時的に格納する記憶装置である。RAM14は、ハードウェアプロセッサ11が各種データを処理するための作業領域として機能する。 The RAM 14 is a storage device that temporarily stores various data. The RAM 14 functions as a work area for the hardware processor 11 to process various data.
 不揮発性メモリ15は、制御装置1の電源が切られ、制御装置1に電力が供給されていない状態でもデータを保持する記憶装置である。不揮発性メモリ15は、コンピュータ読み取り可能な記憶媒体である。不揮発性メモリ15は、例えば、バッテリでバックアップされたメモリ、または、SSD(Solid State Drive)で構成される。 The nonvolatile memory 15 is a storage device that retains data even when the control device 1 is powered off and power is not supplied to the control device 1. Non-volatile memory 15 is a computer readable storage medium. The nonvolatile memory 15 includes, for example, battery-backed memory or an SSD (Solid State Drive).
 インタフェース16は、バス12とガスレーザ発振器2とを接続する通信路である。例えば、ハードウェアプロセッサ11は、インタフェース16を介して各種信号をガスレーザ発振器2に送る。また、ガスレーザ発振器2は、インタフェース16を介して各種信号をハードウェアプロセッサ11に送る。 The interface 16 is a communication path that connects the bus 12 and the gas laser oscillator 2. For example, the hardware processor 11 sends various signals to the gas laser oscillator 2 via the interface 16. Further, the gas laser oscillator 2 sends various signals to the hardware processor 11 via the interface 16.
 図2は、ガスレーザ発振器2の構成を説明するための概略図である。ガスレーザ発振器2は、循環系21と、レーザ電源22と、排気用弁23と、吸気用弁24とを備える。 FIG. 2 is a schematic diagram for explaining the configuration of the gas laser oscillator 2. The gas laser oscillator 2 includes a circulation system 21, a laser power source 22, an exhaust valve 23, and an intake valve 24.
 循環系21は、レーザガスを循環させる系である。循環系21は、真空系またはガス容器とも称される。循環系21において循環するレーザガスは、例えばCOガス(炭酸ガス)である。 The circulation system 21 is a system that circulates laser gas. The circulation system 21 is also called a vacuum system or a gas container. The laser gas circulating in the circulation system 21 is, for example, CO 2 gas (carbon dioxide gas).
 循環系21は、放電管211と、ガス管212と、第1の熱交換器213と、ブロワ214と、第2の熱交換器215と、圧力センサ216とを含む。 The circulation system 21 includes a discharge tube 211, a gas pipe 212, a first heat exchanger 213, a blower 214, a second heat exchanger 215, and a pressure sensor 216.
 放電管211は、内部に封入されたレーザガスに向けて一対の電極(不図示)から放電を行うことによりレーザガスを励起させる電子管である。レーザガスが励起されることにより、放電管211はレーザ光を出射する。 The discharge tube 211 is an electron tube that excites the laser gas by performing discharge from a pair of electrodes (not shown) toward the laser gas sealed inside. By exciting the laser gas, the discharge tube 211 emits laser light.
 ガス管212は、循環系21においてレーザガスを循環させる通路である。ガス管212は、放電管211の一部と第1の熱交換器213とを接続する管、第1の熱交換器213とブロワ214とを接続する管、ブロワ214と第2の熱交換器215とを接続する管、および第2の熱交換器215と放電管211の他の一部とを接続する管とを含む。 The gas pipe 212 is a passage through which laser gas is circulated in the circulation system 21. The gas pipe 212 is a pipe that connects a part of the discharge tube 211 and the first heat exchanger 213, a pipe that connects the first heat exchanger 213 and the blower 214, and a pipe that connects the blower 214 and the second heat exchanger. 215 , and a tube that connects the second heat exchanger 215 and another part of the discharge tube 211 .
 第1の熱交換器213は、循環系に封入されたレーザガスを冷却する装置である。第1の熱交換器213は、放電管211と第1の熱交換器213とを接続する管から取り込んだレーザガスを冷却する。第1の熱交換器213によって冷却されたレーザガスは、第1の熱交換器213とブロワ214とを接続する管に送られる。 The first heat exchanger 213 is a device that cools the laser gas sealed in the circulation system. The first heat exchanger 213 cools the laser gas taken in from the tube connecting the discharge tube 211 and the first heat exchanger 213. The laser gas cooled by the first heat exchanger 213 is sent to a tube connecting the first heat exchanger 213 and the blower 214.
 ブロワ214は、レーザガスの圧力を増加させて送り出す装置である。ブロワ214は、例えば、ターボブロワである。ブロワ214は、熱交換器とブロワ214とを接続する管から吸引したレーザガスにエネルギーを与えて圧力を上げ、レーザガスの速度を増加させて送り出す。レーザガスは、ブロワ214と第2の熱交換器215とを接続するガス管212に送られる。 The blower 214 is a device that increases the pressure of laser gas and sends it out. Blower 214 is, for example, a turbo blower. The blower 214 gives energy to the laser gas sucked from the pipe connecting the heat exchanger and the blower 214 to increase the pressure, increases the speed of the laser gas, and sends out the laser gas. Laser gas is sent to gas pipe 212 that connects blower 214 and second heat exchanger 215.
 第2の熱交換器215は、レーザガスを冷却する装置である。第2の熱交換器215は、ブロワ214と第2の熱交換器215を接続する管から取り込んだレーザガスを冷却する。第2の熱交換器215によって冷却されたレーザガスは、第2の熱交換器215と放電管211とを接続する管に送り込まれる。 The second heat exchanger 215 is a device that cools the laser gas. The second heat exchanger 215 cools the laser gas taken in from the tube connecting the blower 214 and the second heat exchanger 215. The laser gas cooled by the second heat exchanger 215 is sent into a tube connecting the second heat exchanger 215 and the discharge tube 211.
 圧力センサ216は、循環系21の内部のガス圧を計測するセンサである。圧力センサ216は、例えば、放電管211と第1の熱交換器213とを接続する管に取り付けられる。 The pressure sensor 216 is a sensor that measures the gas pressure inside the circulation system 21. The pressure sensor 216 is attached to a tube connecting the discharge tube 211 and the first heat exchanger 213, for example.
 レーザ電源22は、放電管211に電力を供給する電源である。レーザ電源22は、制御装置1に接続され、制御装置1から受けた指令に基づいて、放電管211に電力を供給する。 The laser power source 22 is a power source that supplies power to the discharge tube 211. The laser power source 22 is connected to the control device 1 and supplies power to the discharge tube 211 based on a command received from the control device 1.
 排気用弁23は、ガス管212と排気ポンプ3との間に配置される開閉弁である。排気用弁23は、排気ポンプ3が循環系21の真空引きを行うときに開けられる。排気用弁23は、排気ポンプ3が真空引きを行わないときに閉じられる。 The exhaust valve 23 is an on-off valve arranged between the gas pipe 212 and the exhaust pump 3. The exhaust valve 23 is opened when the exhaust pump 3 evacuates the circulation system 21 . The exhaust valve 23 is closed when the exhaust pump 3 does not perform evacuation.
 吸気用弁24は、ガス管212とレーザガス供給源4との間に配置される開閉弁である。吸気用弁24は、レーザガス供給源4から循環系21にレーザガスが供給されるときに開けられる。吸気用弁24は、レーザガス供給源4から循環系21にレーザガスが供給されないときに閉じられる。レーザガス供給源4は、例えば、レーザガスを格納したガスボンベである。 The intake valve 24 is an on-off valve disposed between the gas pipe 212 and the laser gas supply source 4. The intake valve 24 is opened when laser gas is supplied from the laser gas supply source 4 to the circulation system 21 . The intake valve 24 is closed when laser gas is not supplied from the laser gas supply source 4 to the circulation system 21 . The laser gas supply source 4 is, for example, a gas cylinder containing laser gas.
 図3は、制御装置1の機能の一例を示すブロック図である。制御装置1は、データ取得部101と、決定部102と、記憶部103と、指令部104と、判定部105とを備える。 FIG. 3 is a block diagram showing an example of the functions of the control device 1. The control device 1 includes a data acquisition section 101, a determination section 102, a storage section 103, a command section 104, and a determination section 105.
 データ取得部101、決定部102、指令部104、および判定部105は、例えば、ハードウェアプロセッサ11が、ROM13に記憶されたシステムプログラム、ならびに、不揮発性メモリ15に記憶されている各種データを用いて演算処理することにより実現される。記憶部103は、例えば、外部機器から入力されたデータがRAM14、および不揮発性メモリ15の少なくともいずれかに記憶されることにより実現される。 For example, the data acquisition unit 101, the determination unit 102, the command unit 104, and the determination unit 105 are configured such that the hardware processor 11 uses a system program stored in the ROM 13 and various data stored in the nonvolatile memory 15. This is realized by performing arithmetic processing using The storage unit 103 is realized, for example, by storing data input from an external device in at least one of the RAM 14 and the nonvolatile memory 15.
 データ取得部101は、ガスレーザ発振器2が有する循環系21の真空引きに掛かる時間を示すデータを取得する。真空引きに掛かる時間とは、排気ポンプ3によって循環系21の真空引きが開始されたときから、真空引きが終了するまでの時間である。真空引きは、循環系21の内部の圧力があらかじめ定められた圧力になったときに終了する。なお、循環系21の内部の圧力があらかじめ定められた圧力になったか否かは、圧力センサ216によって計測された圧力に基づいて判断されればよい。 The data acquisition unit 101 acquires data indicating the time required to vacuum the circulatory system 21 of the gas laser oscillator 2. The time required for evacuation is the time from when evacuation of the circulation system 21 is started by the exhaust pump 3 until the evacuation ends. Evacuation ends when the pressure inside the circulation system 21 reaches a predetermined pressure. Note that whether or not the internal pressure of the circulation system 21 has reached a predetermined pressure may be determined based on the pressure measured by the pressure sensor 216.
 真空引きに掛かる時間は、例えば、タイマ(不図示)によって計測される。データ取得部101は、タイマから取得した時間データに基づいて真空引きに掛かる時間を示すデータを取得する。 The time required for vacuuming is measured by, for example, a timer (not shown). The data acquisition unit 101 acquires data indicating the time required for vacuuming based on time data acquired from the timer.
 また、データ取得部101は、循環系21においてレーザガスを循環させるブロワ214の電力を示すデータを取得する。データ取得部101は、ブロワ214がレーザガスを循環させるときにブロワ214が消費する電力を示すデータを取得する。データ取得部101は、ブロワ214が消費する電力を計測する電力計(不図示)からブロワ214の電力を示すデータを取得すればよい。 Additionally, the data acquisition unit 101 acquires data indicating the power of the blower 214 that circulates the laser gas in the circulation system 21. The data acquisition unit 101 acquires data indicating power consumed by the blower 214 when the blower 214 circulates the laser gas. The data acquisition unit 101 may acquire data indicating the power of the blower 214 from a wattmeter (not shown) that measures the power consumed by the blower 214.
 なお、ブロワ214は、真空引きが開始してから真空引きが終了するまでの間に、指令部104からの指令に基づいて、循環系21内部のガスの循環を開始する。つまり、指令部104は、真空引きが開始されてから真空引きが終了するまでの間にブロワ214の駆動を開始させる。 Note that the blower 214 starts circulating the gas inside the circulation system 21 based on a command from the command unit 104 between the start of evacuation and the end of evacuation. In other words, the command unit 104 starts driving the blower 214 from the start of evacuation until the end of evacuation.
 あるいは、ブロワ214は、循環系21の真空引きが終了した後に、指令部104からの指令に基づいて、循環系21の内部のガスの循環を開始してよい。つまり、指令部104は、真空引きが終了した後にブロワ214の駆動を開始させてもよい。 Alternatively, the blower 214 may start circulating the gas inside the circulation system 21 based on a command from the command unit 104 after the circulation system 21 has been evacuated. That is, the command unit 104 may start driving the blower 214 after evacuation is completed.
 決定部102は、データ取得部101によって取得された、循環系21の真空引きに掛かる時間と、循環系21においてレーザガスを循環させるブロワ214の電力とに基づいて、放電管211の電極からエージング放電が実行されるときの放電電流と循環系21の内部のガス圧とを決定する。 The determining unit 102 determines the aging discharge from the electrodes of the discharge tube 211 based on the time required to vacuum the circulation system 21 and the power of the blower 214 that circulates the laser gas in the circulation system 21, which are acquired by the data acquisition unit 101. Determine the discharge current and the gas pressure inside the circulatory system 21 when this is performed.
 循環系21の内部に封入されたレーザガスの純度が相対的に低い場合、真空引きに掛かる時間は相対的に長くなる。つまり、循環系21の内部に封入されたレーザガスの純度と真空引きに掛かる時間とは相関する。なお、レーザガスの純度が相対的に低い場合に真空引きの時間が長くなるのは、放電管211などの内壁の付着した水分が気化することにより、あるいは、アウトガスの影響などにより、真空引きされるガスの体積が増加するためである。 When the purity of the laser gas sealed inside the circulation system 21 is relatively low, the time required for evacuation becomes relatively long. In other words, the purity of the laser gas sealed inside the circulation system 21 and the time required for evacuation are correlated. Note that when the purity of the laser gas is relatively low, the evacuation time becomes longer due to vaporization of moisture adhering to the inner wall of the discharge tube 211, etc., or due to the influence of outgas. This is because the volume of gas increases.
 また、循環系21の内部に封入されたレーザガスの純度が相対的に低い場合、ブロワ214には相対的に高い負荷が掛かる。そのため、循環系21の内部に封入されたレーザガスの純度が相対的に低い場合、ブロワ214が消費する電力は大きくなる。つまり、循環系21の内部に封入されたレーザガスの純度とブロワ214の消費する電力とは相関する。 Further, when the purity of the laser gas sealed inside the circulation system 21 is relatively low, a relatively high load is applied to the blower 214. Therefore, when the purity of the laser gas sealed inside the circulation system 21 is relatively low, the power consumed by the blower 214 increases. In other words, the purity of the laser gas sealed inside the circulation system 21 and the power consumed by the blower 214 are correlated.
 したがって、決定部102は、循環系21に封入されたレーザガスの純度に応じて、放電電流とガス圧を決定していることになる。なお、決定部102は、真空引きに掛かる時間とブロワ214の電力とに基づいて循環系21に封入されたレーザガスの純度を実際に算出してもよいし、算出しなくてもよい。決定部102が純度を算出する場合は、あらかじめ実験などにより求めたレーザガスの純度の算出式を利用すればよい。 Therefore, the determining unit 102 determines the discharge current and gas pressure according to the purity of the laser gas sealed in the circulation system 21. Note that the determining unit 102 may or may not actually calculate the purity of the laser gas sealed in the circulation system 21 based on the time required for evacuation and the power of the blower 214. When the determination unit 102 calculates the purity, it may use a formula for calculating the purity of the laser gas determined in advance through experiments or the like.
 決定部102は、例えば、循環系21の真空引きに掛かる時間およびブロワ214の電力と、エージング放電が実行されるときの最適な放電電流および循環系21の内部の最適なガス圧との関係を示すデータに基づいて、放電電流とガス圧とを決定する。このような関係を示すデータは、例えば、熟練した技術者の経験に基づいて作成されればよい。あるいは、当該関係を示すデータは、あらかじめ行われた実験などに基づいて作成されてもよい。 The determining unit 102 determines, for example, the relationship between the time required to vacuum the circulatory system 21 and the power of the blower 214, and the optimal discharge current and optimal gas pressure inside the circulatory system 21 when aging discharge is performed. Based on the data shown, the discharge current and gas pressure are determined. Data indicating such a relationship may be created based on the experience of a skilled engineer, for example. Alternatively, data indicating the relationship may be created based on experiments conducted in advance.
 記憶部103は、上述した、循環系21の真空引きに掛かる時間およびブロワ214の電力と、エージング放電が実行されるときの最適な放電電流および循環系21の内部の最適なガス圧と関係を示すデータを記憶する。 The storage unit 103 stores the relationship between the time required to vacuum the circulation system 21 and the power of the blower 214, and the optimum discharge current and the optimum gas pressure inside the circulation system 21 when the aging discharge is executed, as described above. Store the data shown.
 図4は、記憶部103が記憶するデータの一例を示す図である。記憶部103は、真空引きに掛かる時間、ブロワ214の電力、放電電流およびガス圧を1つのデータセットとする複数のデータセットを記憶する。言い換えれば、記憶部103は、複数のデータセットを記憶し、各データセットは、放電電流を示すデータとガス圧を示すデータとを含む。 FIG. 4 is a diagram showing an example of data stored in the storage unit 103. The storage unit 103 stores a plurality of data sets in which one data set includes the time required for evacuation, the electric power of the blower 214, the discharge current, and the gas pressure. In other words, the storage unit 103 stores a plurality of data sets, and each data set includes data indicating discharge current and data indicating gas pressure.
 決定部102は、循環系21の真空引きに掛かる時間と、ブロワ214の電力とに基づいて、複数のデータセットから1つのデータセットを選択して放電電流とガス圧とを決定する。なお、決定部102は、データ取得部101によって取得された真空引きに掛かる時間およびブロワ214の電力にそれぞれ近似する真空引きに掛かる時間およびブロワ214の電力に基づいて、1つのデータセットを選択すればよい。 The determining unit 102 selects one data set from the plurality of data sets and determines the discharge current and gas pressure based on the time required to vacuum the circulatory system 21 and the power of the blower 214. Note that the determining unit 102 selects one data set based on the time required for evacuation and the power of the blower 214 that are respectively approximate to the time required for evacuation and the power of the blower 214 acquired by the data acquisition unit 101. Bye.
 指令部104は、循環系21の内部の圧力を決定部102によって決定されたガス圧に調整して決定部102によって決定された放電電流でエージング放電を実行させるための実行指令を排気用弁23または吸気用弁24に対して出力する。指令部104は、エージング放電を実行する前に、排気用弁23または吸気用弁24を制御し、循環系21の内部の圧力を決定部102によって決定されたガス圧にする。 The command unit 104 issues an execution command to the exhaust valve 23 to adjust the internal pressure of the circulation system 21 to the gas pressure determined by the determination unit 102 and execute aging discharge with the discharge current determined by the determination unit 102. Alternatively, it is output to the intake valve 24. Before executing the aging discharge, the command unit 104 controls the exhaust valve 23 or the intake valve 24 to bring the internal pressure of the circulation system 21 to the gas pressure determined by the determining unit 102.
 指令部104は、循環系21の内部の圧力が決定部102によって決定されたガス圧に到達すると、排気用弁23および吸気用弁24の両方を閉状態にする。その後、指令部104は、レーザ電源22を制御し、決定部102によって決定された放電電流でエージング放電を実行させる。 When the internal pressure of the circulation system 21 reaches the gas pressure determined by the determining unit 102, the command unit 104 closes both the exhaust valve 23 and the intake valve 24. Thereafter, the command unit 104 controls the laser power source 22 to perform aging discharge with the discharge current determined by the determination unit 102.
 データ取得部101は、エージング放電が実行されたときの放電電流、ガス圧、および放電電圧をそれぞれ示すデータを取得する。 The data acquisition unit 101 acquires data indicating the discharge current, gas pressure, and discharge voltage when aging discharge is performed.
 データ取得部101によって取得される放電電流およびガス圧をそれぞれ示すデータは、決定部102によって決定された放電電流およびガス圧を示すデータであってよい。すなわち、データ取得部101によって取得される放電電流およびガス圧をそれぞれ示すデータは、指令部104が循環系21の内部の圧力の調整を指令するときの実行指令の値およびエージング放電の実行を指令する実行指令の電流値であってよい。 The data indicating the discharge current and gas pressure acquired by the data acquisition unit 101 may be the data indicating the discharge current and gas pressure determined by the determination unit 102. That is, the data indicating the discharge current and gas pressure acquired by the data acquisition unit 101 are the values of the execution command when the command unit 104 commands adjustment of the internal pressure of the circulatory system 21 and the execution command for aging discharge. It may be a current value of an execution command to be executed.
 あるいは、データ取得部101によって取得される放電電流およびガス圧をそれぞれ示すデータは、エージング放電中に電流計(不図示)および圧力センサ216によって検出されたデータであってもよい。 Alternatively, the data indicating the discharge current and gas pressure acquired by the data acquisition unit 101 may be data detected by an ammeter (not shown) and the pressure sensor 216 during aging discharge.
 エージング放電が実行されたときの放電電圧は、電圧計(不図示)によって計測されたデータである。なお、放電電圧とは、エージング放電時に放電管211の電極間に掛かる電圧である。 The discharge voltage when the aging discharge is performed is data measured by a voltmeter (not shown). Note that the discharge voltage is the voltage applied between the electrodes of the discharge tube 211 during aging discharge.
 判定部105は、エージング放電時にデータ取得部101によって取得された放電電流、ガス圧、および放電電圧に基づいて、エージング放電に続いてさらに他のエージング放電を実行するか否かを判定する。すなわち、判定部105は、最初に実行されたエージング放電に続いて、2回目のエージング放電を実行するか否かを判定する。 The determining unit 105 determines whether to perform another aging discharge following the aging discharge, based on the discharge current, gas pressure, and discharge voltage acquired by the data acquisition unit 101 during the aging discharge. That is, the determination unit 105 determines whether or not to perform the second aging discharge following the first aging discharge performed.
 決定部102によって決定されたガス圧の下で決定部102によって決定された放電電流でエージング放電が実行されたときに計測された電圧は、エージング放電後の循環系21の内部のレーザガスの純度と相関がある。例えば、循環系21の内部のレーザガスの純度が相対的に低い場合、エージング放電が実行されたときに計測される電圧は相対的に高くなる。一方、循環系21の内部のレーザガスの純度が相対的に高い場合、エージング放電が実行されたときに計測される電圧は相対的に低くなる。 The voltage measured when the aging discharge is performed under the gas pressure determined by the determining unit 102 and the discharge current determined by the determining unit 102 is determined by the purity of the laser gas inside the circulatory system 21 after the aging discharge. There is a correlation. For example, if the purity of the laser gas inside the circulation system 21 is relatively low, the voltage measured when the aging discharge is performed will be relatively high. On the other hand, if the purity of the laser gas inside the circulation system 21 is relatively high, the voltage measured when the aging discharge is performed will be relatively low.
 したがって、エージング放電が実行されたときに計測された電圧が、放電電流およびガス圧との関係で、あらかじめ定められた電圧よりも低い場合、レーザガスの純度は、ガスレーザ発振器2の使用に適した純度であると推定される。すなわち、循環系21に混入した水分などの異物の量が相対的に少ないと推定される。この場合、判定部105は、他のエージング放電を実行しないと判定する。 Therefore, if the voltage measured when the aging discharge is performed is lower than the predetermined voltage in relation to the discharge current and gas pressure, the purity of the laser gas is suitable for use in the gas laser oscillator 2. It is estimated that That is, it is estimated that the amount of foreign substances such as moisture mixed into the circulation system 21 is relatively small. In this case, the determination unit 105 determines not to perform another aging discharge.
 一方、エージング放電が実行されたときに計測された電圧が、放電電流およびガス圧との関係で、あらかじめ定められた電圧以上である場合、レーザガスの純度は、ガスレーザ発振器2の使用に適していない純度であると推定される。すなわち、循環系21に混入した水分などの異物の量が相対的に多いと推定される。この場合、判定部105は、他のエージング放電を実行すると判定する。 On the other hand, if the voltage measured when the aging discharge is performed is equal to or higher than the predetermined voltage in relation to the discharge current and gas pressure, the purity of the laser gas is not suitable for use with the gas laser oscillator 2. Estimated purity. That is, it is estimated that the amount of foreign substances such as moisture mixed into the circulation system 21 is relatively large. In this case, the determination unit 105 determines to perform another aging discharge.
 判定部105によって他のエージング放電を実行すると判定された場合、決定部102は、エージング放電が実行されたときの放電電流、ガス圧、および放電電圧に基づいて、他のエージング放電が実行されるときの放電電流とガス圧とを決定する。 When the determining unit 105 determines that another aging discharge is to be performed, the determining unit 102 determines that another aging discharge is to be performed based on the discharge current, gas pressure, and discharge voltage when the aging discharge was performed. Determine the discharge current and gas pressure at the time.
 決定部102は、例えば、エージング放電が実行されたときの放電電流、ガス圧、および放電電圧と、他のエージング放電が実行されるときの最適な放電電流および最適なガス圧との関係を示すデータに基づいて、他のエージング放電が実行されるときの放電電流とガス圧とを決定すればよい。 For example, the determining unit 102 indicates the relationship between the discharge current, gas pressure, and discharge voltage when an aging discharge is performed and the optimal discharge current and optimal gas pressure when another aging discharge is performed. Based on the data, the discharge current and gas pressure when performing another aging discharge may be determined.
 このような関係を示すデータは、例えば、熟練した技術者の経験に基づいて作成されればよい。あるいは、当該関係を示すデータは、あらかじめ行われた実験などに基づいて作成されてもよい。また、記憶部103が、エージング放電が実行されたときの放電電流、ガス圧、および放電電圧と、他のエージング放電が実行されるときの最適な放電電流および最適なガス圧との関係を示すデータを記憶してもよい。 Data showing such a relationship may be created based on the experience of a skilled engineer, for example. Alternatively, data indicating the relationship may be created based on experiments conducted in advance. Furthermore, the storage unit 103 indicates the relationship between the discharge current, gas pressure, and discharge voltage when the aging discharge is executed, and the optimal discharge current and optimal gas pressure when other aging discharges are executed. Data may also be stored.
 指令部104は、循環系21の内部の圧力を決定部102によって決定されたガス圧に調整して決定部102によって決定された放電電流で他のエージング放電を実行させるための実行指令を出力する。さらに、判定部105は、他のエージング放電が実行されたときの放電電流、ガス圧、および放電電圧に基づいて、他のエージング放電に続いてさらに別のエージング放電を実行するか否かを判定する。言い換えれば、判定部105は、3回目のエージング放電を実行するか否かを判定する。 The command unit 104 outputs an execution command for adjusting the internal pressure of the circulation system 21 to the gas pressure determined by the determining unit 102 and executing another aging discharge with the discharge current determined by the determining unit 102. . Furthermore, the determination unit 105 determines whether or not to perform another aging discharge following the other aging discharge, based on the discharge current, gas pressure, and discharge voltage when the other aging discharge is performed. do. In other words, the determination unit 105 determines whether or not to perform the third aging discharge.
 制御装置1ではこのような処理が実行され、判定部105によって、さらに、エージング放電を実行しないと判定された場合、起動時のエージング放電が終了する。 The control device 1 executes such processing, and if the determining unit 105 further determines that aging discharge is not to be performed, the aging discharge at startup ends.
 次に、制御装置1で実行される処理の流れ、および当該処理に基づくガスレーザ発振器2の動作について説明する。 Next, the flow of the process executed by the control device 1 and the operation of the gas laser oscillator 2 based on the process will be explained.
 図5は、制御装置1で実行される処理の流れの一例を示すフローチャートである。図6A~図6Eは、ガスレーザ発振器2の動作および信号の流れを示す概略図である。 FIG. 5 is a flowchart showing an example of the flow of processing executed by the control device 1. 6A to 6E are schematic diagrams showing the operation of the gas laser oscillator 2 and the flow of signals.
 ガスレーザ発振器2の起動時、まず、循環系21の真空引きが行われる(ステップS1)(図6A参照)。つまり、指令部104が排気用弁23に対して真空引きのための指令を出力する。排気用弁23は指令部104からの指令に基づいて開状態となる。これにより、排気ポンプ3によって循環系21の真空引きが行われる。 When starting the gas laser oscillator 2, first, the circulation system 21 is evacuated (step S1) (see FIG. 6A). That is, the command unit 104 outputs a command for evacuation to the exhaust valve 23. The exhaust valve 23 is opened based on a command from the command unit 104. As a result, the circulation system 21 is evacuated by the exhaust pump 3.
 次に、ブロワ214の駆動が開始される(ステップS2)(図6B参照)。つまり、指令部104は、真空引きが行われている途中でブロワ214に対して駆動指令を出力する。これにより、ブロワ214の駆動が開始する。 Next, driving of the blower 214 is started (step S2) (see FIG. 6B). That is, the command unit 104 outputs a drive command to the blower 214 while vacuuming is being performed. As a result, the blower 214 starts to be driven.
 圧力センサ216によって循環系21の内部の圧力があらかじめ定められたガス圧になったことが検出されると、指令部104が、排気用弁23に対して閉指令を出力する。その結果、排気用弁23が閉状態になる。これにより、真空引きが終了する。 When the pressure sensor 216 detects that the internal pressure of the circulation system 21 has reached a predetermined gas pressure, the command unit 104 outputs a closing command to the exhaust valve 23. As a result, the exhaust valve 23 becomes closed. This completes the evacuation.
 真空引きが終了すると、データの取得が行われる(ステップS3)。データ取得部101は、真空引きに掛かった時間を示すデータと、駆動しているブロワ214の電力を示すデータを取得する。データ取得部101は、ブロワ214の駆動が開始されたときからブロワ214の電力を示すデータを取得してもよい。 Once the evacuation is complete, data is acquired (step S3). The data acquisition unit 101 acquires data indicating the time required for evacuation and data indicating the power of the blower 214 being driven. The data acquisition unit 101 may acquire data indicating the power of the blower 214 from the time when the blower 214 starts being driven.
 次に、放電電流とガス圧が決定される(ステップS4)。決定部102は、真空引きに掛かる時間とブロワ214の電力とに基づいてエージング放電が実行されるときの放電電流と循環系21の内部のガス圧とを決定する。 Next, the discharge current and gas pressure are determined (step S4). The determining unit 102 determines the discharge current and gas pressure inside the circulation system 21 when the aging discharge is executed based on the time required for evacuation and the power of the blower 214.
 次に、ガス圧の調整が実行される(ステップS5)(図6C参照)。指令部104は、例えば、吸気用弁24に対して開指令を出力する。また、循環系21の内部の圧力があらかじめ定められたガス圧に達すると、指令部104は、吸気用弁24に閉指令を出力する。これにより、循環系21の内部の圧力が決定部102によって決定されたガス圧に調整される。 Next, the gas pressure is adjusted (step S5) (see FIG. 6C). The command unit 104 outputs an opening command to the intake valve 24, for example. Furthermore, when the internal pressure of the circulation system 21 reaches a predetermined gas pressure, the command unit 104 outputs a closing command to the intake valve 24. Thereby, the internal pressure of the circulation system 21 is adjusted to the gas pressure determined by the determination unit 102.
 次に、エージング放電が実行される(ステップS6)(図6D参照)。指令部104は、決定部102によって決定された放電電流でエージング放電を実行させる実行指令をレーザ電源22に対して出力する。レーザ電源22は、指令部104から受けた実行指令に基づいて放電管211の電極に実行指令が示す値の電流を流す。これにより、エージング放電が実行される。 Next, aging discharge is performed (step S6) (see FIG. 6D). The command unit 104 outputs an execution command to the laser power supply 22 to cause the aging discharge to be performed with the discharge current determined by the determination unit 102. Based on the execution command received from the command unit 104, the laser power supply 22 causes a current of a value indicated by the execution command to flow through the electrodes of the discharge tube 211. As a result, aging discharge is performed.
 次に、他のエージング放電を実行するか否かが判定される(ステップS7)。ここで、他のエージング放電とは、2回目のエージング放電である。判定部105は、1回目のエージング放電が実行されたときの放電電流、ガス圧、および放電電圧に基づいて、他のエージング放電を実行するか否かを判定する。 Next, it is determined whether to perform another aging discharge (step S7). Here, the other aging discharge is the second aging discharge. The determination unit 105 determines whether to perform another aging discharge based on the discharge current, gas pressure, and discharge voltage when the first aging discharge was performed.
 判定部105が、他のエージング放電を実行しないと判定した場合(ステップS7においてNoの場合)、循環系21に封入されたレーザガスの純度は、ガスレーザ発振器2の使用に適したものである。そのため、起動時におけるエージング放電に関する処理は終了する。 If the determination unit 105 determines not to perform another aging discharge (No in step S7), the purity of the laser gas sealed in the circulation system 21 is suitable for use in the gas laser oscillator 2. Therefore, the processing related to aging discharge at the time of startup ends.
 一方、判定部105が、他のエージング放電を実行すると判定した場合(ステップS7においてYesの場合)、決定部102は、エージング放電が実行されたときの放電電流、ガス圧、および放電電圧に基づいて、他のエージング放電が実行されるときの放電電流およびガス圧を決定する(ステップS4)。そして、再び、ガス圧の調整が行われ(ステップS5)(図6E参照)、他のエージング放電が実行される(ステップS6)。 On the other hand, if the determining unit 105 determines to perform another aging discharge (Yes in step S7), the determining unit 102 determines the aging discharge based on the discharge current, gas pressure, and discharge voltage when the aging discharge was performed. Then, the discharge current and gas pressure when another aging discharge is executed are determined (step S4). Then, the gas pressure is adjusted again (step S5) (see FIG. 6E), and another aging discharge is performed (step S6).
 これ以降、判定部105によってエージング放電を実行しないと判定されるまで、ステップS4からステップS7までの処理が繰り返される。
〈他の実施形態〉
From this point on, the processes from step S4 to step S7 are repeated until the determining unit 105 determines that aging discharge is not to be performed.
<Other embodiments>
 次に、ガスレーザ発振器2が真空容器5を備えている他の実施形態について説明する。 Next, another embodiment in which the gas laser oscillator 2 includes a vacuum container 5 will be described.
 図7は、他の実施形態におけるガスレーザ発振器2の概略図である。ガスレーザ発振器2は、真空容器5と、切換弁25とを備えている。 FIG. 7 is a schematic diagram of a gas laser oscillator 2 in another embodiment. The gas laser oscillator 2 includes a vacuum container 5 and a switching valve 25.
 真空容器5の容量は、循環系21の内部の容量よりも小さい容量である。切換弁25は、真空引きを行う排気ポンプ3の接続先を循環系21と真空容器5との間で切り換える。 The capacity of the vacuum container 5 is smaller than the capacity inside the circulation system 21. The switching valve 25 switches the connection destination of the exhaust pump 3 that performs evacuation between the circulation system 21 and the vacuum container 5.
 切換弁25が循環系21に接続されている場合、排気ポンプ3は循環系21の真空引きを行うことができる。 When the switching valve 25 is connected to the circulation system 21, the exhaust pump 3 can evacuate the circulation system 21.
 一方、切換弁25が真空容器5に接続されている場合、排気ポンプ3は真空容器5の真空引きを行うことができる。 On the other hand, when the switching valve 25 is connected to the vacuum container 5, the exhaust pump 3 can evacuate the vacuum container 5.
 決定部102は、循環系21の真空引きに掛かる時間と、真空容器5の真空引きに掛かる時間とを比較する。例えば、真空容器5の容量が、循環系21の内部の容量の1/10であり、排気ポンプ3に異常がない場合、真空容器5の真空引きに掛かる時間は、循環系21の真空引きに掛かる時間と1/10になるはずである。 The determining unit 102 compares the time required to evacuate the circulation system 21 and the time required to evacuate the vacuum container 5. For example, if the capacity of the vacuum container 5 is 1/10 of the internal capacity of the circulation system 21 and there is no abnormality in the exhaust pump 3, the time required to evacuate the vacuum container 5 is equal to the time required to evacuate the circulation system 21. It should be 1/10 of the time it takes.
 そのため、真空容器5の真空引きに掛かる時間が循環系21の真空引きに掛かる時間の1/10である場合、排気ポンプ3に異常はないと推察することができる。 Therefore, if the time required to evacuate the vacuum container 5 is 1/10 of the time required to evacuate the circulation system 21, it can be inferred that there is no abnormality in the exhaust pump 3.
 一方、真空容器5の容量が、循環系21の内部の容量の1/10であるにもかかわらず、真空容器5の真空引きに掛かる時間が循環系21の真空引きに掛かる時間の1/10よりも短くなる場合がある。つまり、真空引きに掛かる時間が通常よりも長くなる場合がある。この場合、排気ポンプ3の吸引力が低下する異常が発生していると推察される。この場合、決定部102は、例えば、表示装置(不図示)を用いて排気ポンプ3に異常が発生していることをユーザに報知することができる。 On the other hand, although the capacity of the vacuum container 5 is 1/10 of the internal capacity of the circulation system 21, the time taken to vacuum the vacuum container 5 is 1/10 of the time taken to vacuum the circulation system 21. It may be shorter than. In other words, the time required for vacuuming may be longer than usual. In this case, it is presumed that an abnormality has occurred in which the suction force of the exhaust pump 3 is reduced. In this case, the determining unit 102 can notify the user that an abnormality has occurred in the exhaust pump 3 using, for example, a display device (not shown).
 以上説明したように、制御装置1は、ガスレーザ発振器2が有する循環系21の真空引きに掛かる時間と、循環系21においてレーザガスを循環させるブロワ214の電力とに基づいて、ガスレーザ発振器2においてエージング放電が実行されるときの放電電流と循環系21の内部のガス圧とを決定する決定部102と、循環系21の内部の圧力を決定部102によって決定された圧力に調整して決定部102によって決定された放電電流でエージング放電を実行させるための実行指令を出力する指令部104と、を備える。 As explained above, the control device 1 controls the aging discharge in the gas laser oscillator 2 based on the time required to vacuum the circulation system 21 of the gas laser oscillator 2 and the electric power of the blower 214 that circulates the laser gas in the circulation system 21. A determining unit 102 determines the discharge current and the gas pressure inside the circulatory system 21 when the is executed, and the determining unit 102 adjusts the internal pressure of the circulatory system 21 to the pressure determined by the determining unit 102. It includes a command unit 104 that outputs an execution command for performing aging discharge with the determined discharge current.
 したがって、制御装置1は、循環系21の内部のレーザガスの純度に応じた放電電流およびガス圧でエージング放電を行うことができる。その結果、ガスレーザ発振器2を短時間で起動させることができる。 Therefore, the control device 1 can perform aging discharge with a discharge current and gas pressure depending on the purity of the laser gas inside the circulation system 21. As a result, the gas laser oscillator 2 can be activated in a short time.
 また、制御装置1は、エージング放電が実行されたときの放電電流、ガス圧、および放電電圧に基づいて、エージング放電に続いてさらに他のエージング放電を実行させるか否かを判定する判定部105を、さらに備える。したがって、制御装置1は、必要に応じて、エージング放電を実行することができる。そのため、ガスレーザ発振器2の起動時に実行されるエージング放電の回数を減らすことができる。 The control device 1 also includes a determination unit 105 that determines whether to perform another aging discharge subsequent to the aging discharge based on the discharge current, gas pressure, and discharge voltage when the aging discharge is performed. Furthermore, it is equipped with the following. Therefore, the control device 1 can perform aging discharge as necessary. Therefore, the number of aging discharges performed when the gas laser oscillator 2 is started can be reduced.
 また、他のエージング放電が実行される場合、決定部102は、エージング放電が実行されたときの放電電流、ガス圧、および放電電圧に基づいて、他のエージング放電が実行されるときの放電電流と循環系21の内部のガス圧とを決定する。そのため、制御装置1は、他のエージング放電が実行されるときの放電電流とガス圧とを最適な値に設定することができる。 In addition, when another aging discharge is performed, the determining unit 102 determines the discharge current when the other aging discharge is performed based on the discharge current, gas pressure, and discharge voltage when the aging discharge is performed. and the gas pressure inside the circulation system 21. Therefore, the control device 1 can set the discharge current and gas pressure to optimal values when another aging discharge is executed.
 また、複数のデータセットを記憶する記憶部103をさらに備え、各データセットは、放電電流を示すデータとガス圧を示すデータとを含み、決定部102は、複数のデータセットのから1つのデータセットを選択して放電電流とガス圧とを決定する。この場合、エージング放電が実行されたときに、計算式などに基づいて放電電流およびガス圧を毎回算出するよりも、制御装置1における処理負荷を低減することができる。 The device further includes a storage unit 103 that stores a plurality of data sets, each data set including data indicating discharge current and data indicating gas pressure, and determining unit 102 selects one data from among the plurality of data sets. Select the set and determine the discharge current and gas pressure. In this case, when aging discharge is executed, the processing load on the control device 1 can be reduced compared to calculating the discharge current and gas pressure each time based on a calculation formula or the like.
 また、指令部104は、真空引きが開始されてから真空引きが終了するまでの間にブロワ214の駆動を開始させる。この場合、真空引きの途中で循環系21の内部の一部のガスが圧縮され、ガスの温度が変化する。さらに、ブロワ214の駆動により、循環系21の内部の温度が上昇して、循環系21の内部の水分などの異物が気化する。 Further, the command unit 104 starts driving the blower 214 from the start of evacuation until the end of evacuation. In this case, part of the gas inside the circulation system 21 is compressed during evacuation, and the temperature of the gas changes. Further, by driving the blower 214, the temperature inside the circulation system 21 increases, and foreign substances such as moisture inside the circulation system 21 are vaporized.
 したがって、真空引きの途中でブロワ214の駆動が開始した場合は、真空引きの途中でブロワ214が駆動しない場合よりも、真空引きに掛かる時間が長くなる。つまり、真空引きの途中でブロワ214の駆動が開始すると、循環系21の内部に混入している異物の影響が真空引きに掛かる時間に現れる。したがって、制御装置1は、真空引きの途中でブロワ214の駆動を開始させ、真空引きに掛かる時間に基づいてエージング放電が実行されるときの放電電流およびガス圧を決定することにより、これらの値を最適な値に設定することができる。 Therefore, if the blower 214 starts to be driven in the middle of evacuation, the time required for evacuation will be longer than if the blower 214 is not driven in the middle of evacuation. In other words, if the blower 214 starts to be driven in the middle of evacuation, the influence of foreign matter mixed inside the circulation system 21 will appear during the evacuation time. Therefore, the control device 1 starts driving the blower 214 during evacuation, and determines the discharge current and gas pressure when the aging discharge is performed based on the time required for evacuation, thereby adjusting these values. can be set to the optimal value.
 また、ガスレーザ発振器2は、循環系21の内部の容量よりも小さい容量の真空容器5と、真空引きを行う排気ポンプ3の接続先を循環系21と真空容器5との間で切り換える切換弁25とを備え、決定部102は、循環系21の真空引きに掛かる時間と、真空容器5の真空引きに掛かる時間とを比較する。これにより、制御装置1は、排気ポンプ3の異常を容易に検出することができる。 The gas laser oscillator 2 also includes a vacuum container 5 whose capacity is smaller than the internal capacity of the circulation system 21, and a switching valve 25 that switches the connection destination of the exhaust pump 3 that performs evacuation between the circulation system 21 and the vacuum container 5. The determining unit 102 compares the time required to evacuate the circulation system 21 and the time required to evacuate the vacuum container 5. Thereby, the control device 1 can easily detect an abnormality in the exhaust pump 3.
 本開示について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、本開示の要旨を逸脱しない範囲で、または、請求の範囲に記載された内容とその均等物から導き出される本開示の要旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除等が可能である。また、これらの実施形態は、組み合わせて実施することもできる。例えば、上述した実施形態において、各動作の順序や各処理の順序は、一例として示したものであり、これらに限定されるものではない。また、上述した実施形態の説明に数値または数式が用いられている場合も同様である。 Although the present disclosure has been described in detail, the present disclosure is not limited to the individual embodiments described above. These embodiments are subject to various additions, substitutions, and changes without departing from the gist of the present disclosure, or without departing from the gist of the present disclosure derived from the contents described in the claims and their equivalents. , partial deletion, etc. are possible. Moreover, these embodiments can also be implemented in combination. For example, in the embodiments described above, the order of each operation and the order of each process are shown as examples, and are not limited to these. Further, the same applies when numerical values or formulas are used in the explanation of the embodiments described above.
 以下に、本開示の実施形態に係る付記を示す。
付記[1]
 ガスレーザ発振器が有する循環系の真空引きに掛かる時間と、前記循環系においてレーザガスを循環させるブロワの電力とに基づいて、前記ガスレーザ発振器においてエージング放電が実行されるときの放電電流と前記循環系の内部のガス圧とを決定する決定部と、前記循環系の前記内部の圧力を前記決定部によって決定された前記ガス圧に調整して前記決定部によって決定された前記放電電流で前記エージング放電を実行させるための実行指令を出力する指令部と、を備える制御装置。
付記[2]
 前記エージング放電が実行されたときの前記放電電流、前記ガス圧、および放電電圧に基づいて、前記エージング放電に続いてさらに他のエージング放電を実行させるか否かを判定する判定部を、さらに備える付記[1]に記載の制御装置。
付記[3]
 前記他のエージング放電が実行される場合、前記決定部は、前記エージング放電が実行されたときの前記放電電流、前記ガス圧、および前記放電電圧に基づいて、前記他のエージング放電が実行されるときの放電電流と前記循環系の前記内部のガス圧とを決定する付記[2]に記載の制御装置。
付記[4]
 複数のデータセットを記憶する記憶部をさらに備え、各データセットは、前記放電電流を示すデータと前記ガス圧を示すデータとを含み、前記決定部は、前記複数のデータセットから1つのデータセットを選択して前記放電電流と前記ガス圧とを決定する付記[1]~[3]のいずれかに記載の制御装置。
付記[5]
 前記指令部は、前記真空引きが開始されてから前記真空引きが終了するまでの間に前記ブロワの駆動を開始させる付記[1]~[4]のいずれかに記載の制御装置。
付記[6]
 前記ガスレーザ発振器は、前記循環系の前記内部の容量よりも小さい容量の真空容器と、前記真空引きを行う排気ポンプの接続先を前記循環系と前記真空容器との間で切り換える切換弁とを備え、前記決定部は、前記循環系の前記真空引きに掛かる時間と、前記真空容器の前記真空引きに掛かる時間とを比較する付記[1]~[5]のいずれかに記載の制御装置。
付記[7]
 レーザガスをブロワによって循環させる循環系と、前記循環系の真空引きに掛かる時間と、前記ブロワの電力とに基づいて、エージング放電が実行されるときの放電電流と前記循環系の内部のガス圧とを決定する決定部と、前記循環系の前記内部の圧力を前記決定部によって決定された前記ガス圧に調整して前記決定部によって決定された前記放電電流で前記エージング放電を実行させるための実行指令を出力する指令部と、を有する制御装置とを備えるガスレーザ発振器システム。
付記[8]
 ガスレーザ発振器が有する循環系の真空引きに掛かる時間と、前記循環系においてレーザガスを循環させるブロワの電力とに基づいて、前記ガスレーザ発振器においてエージング放電が実行されるときの放電電流と前記循環系の内部のガス圧とを決定することと、前記循環系の前記内部の圧力を決定された前記ガス圧に調整して決定された前記放電電流で前記エージング放電を実行することと、を含む制御方法。
Additional notes related to embodiments of the present disclosure are shown below.
Additional note [1]
Based on the time required to vacuum the circulatory system of the gas laser oscillator and the power of the blower that circulates the laser gas in the circulatory system, the discharge current and the inside of the circulatory system when aging discharge is executed in the gas laser oscillator are determined. a determining unit that determines the gas pressure of the circulatory system; and adjusting the internal pressure of the circulatory system to the gas pressure determined by the determining unit and performing the aging discharge with the discharge current determined by the determining unit. A control device comprising: a command unit that outputs an execution command to perform the operations;
Additional note [2]
The method further includes a determination unit that determines whether to perform another aging discharge subsequent to the aging discharge based on the discharge current, the gas pressure, and the discharge voltage when the aging discharge is performed. The control device according to supplementary note [1].
Additional note [3]
When the other aging discharge is executed, the determining unit executes the other aging discharge based on the discharge current, the gas pressure, and the discharge voltage when the aging discharge is executed. The control device according to supplementary note [2], which determines the discharge current and the gas pressure inside the circulation system.
Additional note [4]
The determination unit further includes a storage unit that stores a plurality of data sets, each data set including data indicating the discharge current and data indicating the gas pressure, and the determining unit selects one data set from the plurality of data sets. The control device according to any one of appendices [1] to [3], which selects the discharge current and the gas pressure to determine the discharge current and the gas pressure.
Additional note [5]
The control device according to any one of appendices [1] to [4], wherein the command unit starts driving the blower between the start of the evacuation and the end of the evacuation.
Additional note [6]
The gas laser oscillator includes a vacuum container having a smaller capacity than the internal capacity of the circulation system, and a switching valve that switches the connection destination of the exhaust pump that performs evacuation between the circulation system and the vacuum container. , the control device according to any one of appendices [1] to [5], wherein the determining unit compares the time required to evacuate the circulation system and the time required to evacuate the vacuum container.
Additional note [7]
A discharge current and a gas pressure inside the circulation system when aging discharge is executed based on a circulation system in which the laser gas is circulated by a blower, the time required to vacuum the circulation system, and the electric power of the blower. a determining unit for determining the internal pressure of the circulatory system to the gas pressure determined by the determining unit and executing the aging discharge at the discharge current determined by the determining unit. A gas laser oscillator system comprising: a command unit that outputs commands; and a control device.
Additional note [8]
Based on the time required to vacuum the circulatory system of the gas laser oscillator and the power of the blower that circulates the laser gas in the circulatory system, the discharge current and the inside of the circulatory system when aging discharge is executed in the gas laser oscillator are determined. and adjusting the internal pressure of the circulation system to the determined gas pressure and performing the aging discharge at the determined discharge current.
  100     ガスレーザ発振器システム
  1       制御装置
  11      ハードウェアプロセッサ
  12      バス
  13      ROM
  14      RAM
  15      不揮発性メモリ
  16      インタフェース
  101     データ取得部
  102     決定部
  103     記憶部
  104     指令部
  105     判定部
  2       ガスレーザ発振器
  21      循環系
  211     放電管
  212     ガス管
  213     第1の熱交換器
  214     ブロワ
  215     第2の熱交換器
  216     圧力センサ
  22      レーザ電源
  23      排気用弁
  24      吸気用弁
  25      切換弁
  3       排気ポンプ
  4       レーザガス供給源
  5       真空容器
100 Gas laser oscillator system 1 Control device 11 Hardware processor 12 Bus 13 ROM
14 RAM
15 Non-volatile memory 16 Interface 101 Data acquisition section 102 Determination section 103 Storage section 104 Command section 105 Judgment section 2 Gas laser oscillator 21 Circulation system 211 Discharge tube 212 Gas pipe 213 First heat exchanger 214 Blower 215 Second heat exchanger 216 Pressure sensor 22 Laser power supply 23 Exhaust valve 24 Intake valve 25 Switching valve 3 Exhaust pump 4 Laser gas supply source 5 Vacuum container

Claims (8)

  1.  ガスレーザ発振器が有する循環系の真空引きに掛かる時間と、前記循環系においてレーザガスを循環させるブロワの電力とに基づいて、前記ガスレーザ発振器においてエージング放電が実行されるときの放電電流と前記循環系の内部のガス圧とを決定する決定部と、
     前記循環系の前記内部の圧力を前記決定部によって決定された前記ガス圧に調整して前記決定部によって決定された前記放電電流で前記エージング放電を実行させるための実行指令を出力する指令部と、
    を備える制御装置。
    Based on the time required to vacuum the circulatory system of the gas laser oscillator and the power of the blower that circulates the laser gas in the circulatory system, the discharge current and the inside of the circulatory system when aging discharge is executed in the gas laser oscillator are determined. a determining unit that determines the gas pressure of the
    a command unit that outputs an execution command to adjust the internal pressure of the circulation system to the gas pressure determined by the determination unit and execute the aging discharge with the discharge current determined by the determination unit; ,
    A control device comprising:
  2.  前記エージング放電が実行されたときの前記放電電流、前記ガス圧、および放電電圧に基づいて、前記エージング放電に続いてさらに他のエージング放電を実行させるか否かを判定する判定部を、さらに備える請求項1に記載の制御装置。 The method further includes a determination unit that determines whether to perform another aging discharge subsequent to the aging discharge based on the discharge current, the gas pressure, and the discharge voltage when the aging discharge is performed. The control device according to claim 1.
  3.  前記他のエージング放電が実行される場合、前記決定部は、前記エージング放電が実行されたときの前記放電電流、前記ガス圧、および前記放電電圧に基づいて、前記他のエージング放電が実行されるときの放電電流と前記循環系の前記内部のガス圧とを決定する請求項2に記載の制御装置。 When the other aging discharge is executed, the determining unit executes the other aging discharge based on the discharge current, the gas pressure, and the discharge voltage when the aging discharge is executed. 3. The control device according to claim 2, wherein the control device determines a discharge current and a gas pressure in the interior of the circulatory system.
  4.  複数のデータセットを記憶する記憶部をさらに備え、各データセットは、前記放電電流を示すデータと前記ガス圧を示すデータとを含み、
     前記決定部は、前記複数のデータセットから1つのデータセットを選択して前記放電電流と前記ガス圧とを決定する請求項1~3のいずれか1項に記載の制御装置。
    further comprising a storage unit that stores a plurality of data sets, each data set including data indicating the discharge current and data indicating the gas pressure,
    The control device according to any one of claims 1 to 3, wherein the determining unit selects one data set from the plurality of data sets to determine the discharge current and the gas pressure.
  5.  前記指令部は、前記真空引きが開始されてから前記真空引きが終了するまでの間に前記ブロワの駆動を開始させる請求項1~4のいずれか1項に記載の制御装置。 The control device according to any one of claims 1 to 4, wherein the command unit starts driving the blower between when the evacuation is started and when the evacuation is finished.
  6.  前記ガスレーザ発振器は、前記循環系の前記内部の容量よりも小さい容量の真空容器と、
     前記真空引きを行う排気ポンプの接続先を前記循環系と前記真空容器との間で切り換える切換弁とを備え、
     前記決定部は、前記循環系の前記真空引きに掛かる時間と、前記真空容器の前記真空引きに掛かる時間とを比較する請求項1~5のいずれか1項に記載の制御装置。
    The gas laser oscillator includes a vacuum container having a smaller capacity than the internal capacity of the circulatory system;
    comprising a switching valve that switches the connection destination of the exhaust pump that performs evacuation between the circulation system and the vacuum container,
    The control device according to any one of claims 1 to 5, wherein the determining unit compares the time required to evacuate the circulation system and the time required to evacuate the vacuum container.
  7.  レーザガスをブロワによって循環させる循環系と、
     前記循環系の真空引きに掛かる時間と、前記ブロワの電力とに基づいて、エージング放電が実行されるときの放電電流と前記循環系の内部のガス圧とを決定する決定部と、前記循環系の前記内部の圧力を前記決定部によって決定された前記ガス圧に調整して前記決定部によって決定された前記放電電流で前記エージング放電を実行させるための実行指令を出力する指令部と、を有する制御装置と、
    を備えるガスレーザ発振器システム。
    A circulation system that circulates laser gas using a blower;
    a determining unit that determines a discharge current and a gas pressure inside the circulatory system when aging discharge is executed based on the time required to vacuum the circulatory system and the electric power of the blower; a command unit that outputs an execution command for adjusting the internal pressure to the gas pressure determined by the determining unit and executing the aging discharge with the discharge current determined by the determining unit. a control device;
    A gas laser oscillator system with
  8.  ガスレーザ発振器が有する循環系の真空引きに掛かる時間と、前記循環系においてレーザガスを循環させるブロワの電力とに基づいて、前記ガスレーザ発振器においてエージング放電が実行されるときの放電電流と前記循環系の内部のガス圧とを決定することと、
     前記循環系の前記内部の圧力を決定された前記ガス圧に調整して決定された前記放電電流で前記エージング放電を実行することと、
    を含む制御方法。
    Based on the time required to vacuum the circulatory system of the gas laser oscillator and the power of the blower that circulates the laser gas in the circulatory system, the discharge current and the inside of the circulatory system when aging discharge is executed in the gas laser oscillator are determined. determining the gas pressure of
    adjusting the internal pressure of the circulation system to the determined gas pressure and performing the aging discharge with the determined discharge current;
    control methods including.
PCT/JP2022/033152 2022-09-02 2022-09-02 Control device, gas laser oscillator system, and control method WO2024047873A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033152 WO2024047873A1 (en) 2022-09-02 2022-09-02 Control device, gas laser oscillator system, and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033152 WO2024047873A1 (en) 2022-09-02 2022-09-02 Control device, gas laser oscillator system, and control method

Publications (1)

Publication Number Publication Date
WO2024047873A1 true WO2024047873A1 (en) 2024-03-07

Family

ID=90099042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033152 WO2024047873A1 (en) 2022-09-02 2022-09-02 Control device, gas laser oscillator system, and control method

Country Status (1)

Country Link
WO (1) WO2024047873A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083806A (en) * 2001-09-12 2003-03-19 Gigaphoton Inc Energy measuring device for laser device and aging method of light diffusion plate used therefor
JP2013110381A (en) * 2011-10-25 2013-06-06 Gigaphoton Inc Excimer laser device and excimer laser system
DE102012000071A1 (en) * 2012-01-04 2013-07-04 Georg Gerlich Method for cleaning vacuum system of high-voltage-excited laser source, involves pumping residual gas from vacuum system when noticeable reduction of contamination occurs in circulation pump of source
WO2013171951A1 (en) * 2012-05-18 2013-11-21 パナソニック株式会社 Lasing device
JP2014518456A (en) * 2011-06-30 2014-07-28 サイマー リミテッド ライアビリティ カンパニー System and method for automatic gas optimization of a two-chamber gas discharge laser system
JP2014170885A (en) * 2013-03-05 2014-09-18 Fanuc Ltd Laser device capable of estimating sealing property of laser gas container
JP2016139767A (en) * 2015-01-29 2016-08-04 ファナック株式会社 Gas laser device for determining composition ratio of laser gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083806A (en) * 2001-09-12 2003-03-19 Gigaphoton Inc Energy measuring device for laser device and aging method of light diffusion plate used therefor
JP2014518456A (en) * 2011-06-30 2014-07-28 サイマー リミテッド ライアビリティ カンパニー System and method for automatic gas optimization of a two-chamber gas discharge laser system
JP2013110381A (en) * 2011-10-25 2013-06-06 Gigaphoton Inc Excimer laser device and excimer laser system
DE102012000071A1 (en) * 2012-01-04 2013-07-04 Georg Gerlich Method for cleaning vacuum system of high-voltage-excited laser source, involves pumping residual gas from vacuum system when noticeable reduction of contamination occurs in circulation pump of source
WO2013171951A1 (en) * 2012-05-18 2013-11-21 パナソニック株式会社 Lasing device
JP2014170885A (en) * 2013-03-05 2014-09-18 Fanuc Ltd Laser device capable of estimating sealing property of laser gas container
JP2016139767A (en) * 2015-01-29 2016-08-04 ファナック株式会社 Gas laser device for determining composition ratio of laser gas

Similar Documents

Publication Publication Date Title
JP5447661B2 (en) Fuel cell system
JP2004179149A (en) Fuel cell system
JP2004172027A (en) Fuel cell system
JP2011228624A (en) Gas laser apparatus
CN101431212A (en) Abnormality detection method for gas laser oscillator and gas laser oscillator for implementing the method
JP4325216B2 (en) Control device for fuel cell plant
JP2009032610A (en) Fuel cell system
JP2014170885A (en) Laser device capable of estimating sealing property of laser gas container
JP2002246051A (en) Controller for fuel cell system
JP2003168467A (en) Control equipment of fuel cell system for vehicle
WO2024047873A1 (en) Control device, gas laser oscillator system, and control method
JP5301039B2 (en) Laser machine control device and laser machine control method
JP2014165189A (en) Laser oscillation device and laser material processing machine
JP6972920B2 (en) Fuel cell system
JP2010062015A (en) Fuel cell system
JP5210490B2 (en) Fuel cell cooling system
JP2003317765A (en) Fuel cell control system
JP2737177B2 (en) Starting method of carbon dioxide laser oscillator
JP2006236843A (en) Dissolution of flooding in fuel cell system
JP2021086824A (en) Apparatus for reducing exhaust hydrogen concentration in fuel cell system and method thereof
CN104810714A (en) Gas laser system capable of maintaining laser gas state during power supply cutoff
JP2004022464A (en) Controlling apparatus of fuel cell system
JP5855689B2 (en) Gas laser device with efficient startup process
JP2005276529A (en) Fuel cell system
JP2006099989A (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957467

Country of ref document: EP

Kind code of ref document: A1