WO2013171951A1 - Lasing device - Google Patents

Lasing device Download PDF

Info

Publication number
WO2013171951A1
WO2013171951A1 PCT/JP2013/001637 JP2013001637W WO2013171951A1 WO 2013171951 A1 WO2013171951 A1 WO 2013171951A1 JP 2013001637 W JP2013001637 W JP 2013001637W WO 2013171951 A1 WO2013171951 A1 WO 2013171951A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
laser
laser oscillation
oscillation device
supply valve
Prior art date
Application number
PCT/JP2013/001637
Other languages
French (fr)
Japanese (ja)
Inventor
山本 敦樹
西村 哲二
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380004221.XA priority Critical patent/CN103988378B/en
Priority to EP13791219.2A priority patent/EP2852012B1/en
Priority to JP2014515467A priority patent/JP5810270B2/en
Publication of WO2013171951A1 publication Critical patent/WO2013171951A1/en
Priority to US14/278,146 priority patent/US8897331B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/134Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation in gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10069Memorized or pre-programmed characteristics, e.g. look-up table [LUT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/104Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation in gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/2232Carbon dioxide (CO2) or monoxide [CO]

Definitions

  • the present invention relates to a laser oscillation device using a laser medium gas.
  • Laser oscillators are widely used for cutting various materials and shapes, welding, machining, etc., because the workpiece can be machined in a non-contact manner and with little thermal influence.
  • a gas laser oscillation device such as a CO 2 gas laser using a mixed gas mainly composed of CO 2 as a laser medium gas is widely used because of its excellent laser beam characteristics and relatively high output. .
  • Such a gas laser oscillation device has an optical resonator and a gas circulation path connected to the optical resonator.
  • the laser medium gas that has become high temperature due to excitation by discharge in the optical resonator is cooled when it is circulated through the gas circulation path.
  • a blower for circulating the laser medium gas is interposed.
  • a gas cylinder in which a mixed gas is pre-filled is generally used as the laser medium gas supply device, and a resin or metal piping structure member is used for piping between the gas cylinder and the gas supply valve of the laser oscillation device.
  • a resin or metal piping structure member is used for piping between the gas cylinder and the gas supply valve of the laser oscillation device.
  • there is a small pinhole in this piping structure member for example, in a CO 2 gas laser oscillation device, only He in the mixed gas leaks selectively depending on the size of this pinhole. As a result, the mixing ratio of the laser medium gas staying in the piping between the gas cylinder and the gas supply valve of the laser oscillation device may change, and stable laser output may not be obtained.
  • FIG. 1 A conventional laser oscillation apparatus is shown in FIG. 1
  • FIG. 7 is a piping system diagram of a laser gas supply system that supplies gas to an air supply pipe 910 of a laser gas circulation system of the gas laser oscillation device.
  • Laser gas is supplied from a laser gas cylinder 914 to an air supply pipe 910 through a primary pressure regulator 915, a pipe 916, a filter 917, a pressure regulator 918, a valve 919, a valve 920, a rapid supply flow meter 921, and a constant flow meter 922. Is done.
  • the pressure in the air supply pipe 910 is measured by the pressure sensor 923. Further, the gas in the air supply pipe 910 is discharged by the vacuum pump 924 through the rapid exhaust valve 925 or the constant exhaust valve 926. As shown in FIG.
  • FIG. 8 is an open / close sequence diagram of each valve in the conventional gas laser oscillation apparatus.
  • the discharge valve 927 is opened while the internal gas of the laser oscillation device before supplying gas from the gas cylinder 914 is exhausted (while both the valves 925 and 926 are open). .
  • the laser medium gas staying in the pipe 916 is discharged to the outside when the laser oscillation device is started to stabilize the laser output (see, for example, Patent Document 1).
  • the opening time of the discharge valve 927 is set to the maximum time for discharging the volume of the pipe 916 connecting the gas cylinder 914 to the laser oscillation device. For this reason, when the stop time of the laser oscillation device is short, more laser medium gas than necessary is discharged to the outside.
  • the present invention provides a laser oscillation device that reduces the number of valves used, reduces costs, and suppresses consumption of the laser medium gas.
  • the laser oscillation device of the present invention is a laser oscillation device that continuously or intermittently supplies a laser medium gas from the outside.
  • the laser oscillation device of the present invention includes an optical resonator, a gas circulation path, a laser medium gas supply device, a gas discharge pump, a gas pressure detector, a gas pressure controller, a blower, and a current detector. A stop time counter, a storage device, and an open time calculator.
  • the gas circulation path is connected to the optical resonator.
  • the laser medium gas supply device supplies a laser medium gas to the gas circulation path or the optical resonator via a gas supply valve.
  • the gas discharge pump discharges the laser medium gas from the gas circulation path or the optical resonator via the gas discharge valve.
  • the gas pressure detector detects the gas pressure of the laser medium gas in the gas circuit or the optical resonator.
  • the gas pressure controller controls the gas supply valve and the gas discharge valve based on the gas pressure detected by the gas pressure detector.
  • the blower is provided in the gas circulation path.
  • the current detector detects a blower driving current of the blower.
  • the stop time counter counts the stop time when the laser oscillation device is stopped.
  • the storage device stores correlation information between the stop time and the blower driving current.
  • the open time calculator calculates the open time of the gas supply valve when the laser oscillation device is started based on the information stored in the memory.
  • the laser medium gas in the pipe between the laser medium gas supply and the gas supply valve is opened by the gas pressure controller.
  • the gas is discharged together with the staying gas through the gas supply valve.
  • FIG. 1 is a configuration diagram showing a laser oscillation apparatus according to an embodiment of the present invention.
  • FIG. 2A is a graph showing the correlation between the laser medium gas density and the blower drive current according to the embodiment of the present invention.
  • FIG. 2B is a graph showing the correlation between the stop time of the laser oscillation apparatus and the laser medium gas density according to the embodiment of the present invention.
  • FIG. 2C is a graph showing a correlation between the stop time of the laser oscillation apparatus and the blower driving current according to the embodiment of the present invention.
  • FIG. 3 is an open / close sequence diagram of each valve of the laser oscillation apparatus according to the embodiment of the present invention.
  • FIG. 4 is a flowchart showing the operation of the laser oscillator according to the embodiment of the present invention, mainly explaining the initial setting procedure.
  • FIG. 5 is a graph for explaining the principle of calculating the gas supply valve opening time according to the embodiment of the present invention.
  • FIG. 6 is a graph for calculating the optimum gas supply valve opening time according to the embodiment of the present invention.
  • FIG. 7 is a piping system diagram of a laser gas supply system of a conventional gas laser oscillation apparatus.
  • FIG. 8 is an open / close sequence diagram of each valve of the conventional laser oscillation device.
  • the optical resonator 1 includes a partial reflection mirror 2 and a total reflection mirror 3 installed so as to face the partial reflection mirror 2.
  • a gas circulation path 6 is connected to the optical resonator 1.
  • the laser medium gas circulates in the laser medium gas path constituted by the optical resonator 1 and the gas circulation path 6 by the blower 4 whose rotation is controlled to a constant rotational speed by the inverter 8.
  • the drive current of the blower 4 is detected by the current detector 9 installed inside the inverter 8.
  • the heat exchanger 5 is interposed in the gas circulation path 6, and the laser medium gas circulating in the laser medium gas path is cooled by the heat exchanger 5.
  • discharge excitation is performed by a high voltage power source (not shown), and the laser medium gas is compressed and pumped in the blower 4, so that the laser medium gas becomes a high temperature.
  • the laser medium gas circulating in the laser medium gas path is cooled by the heat exchanger 5 part, so that the optical resonator 1 part does not become abnormally heated.
  • One heat exchanger 5 is located downstream of the optical medium 1 in the flow of the laser medium gas (hereinafter referred to as the downstream side) and upstream of the blower 4 in the flow of the laser medium gas (hereinafter referred to as the following). Located upstream). Furthermore, the other heat exchanger 5 is located downstream of the blower 4. Thereby, the laser medium gas heated to high temperature is immediately cooled.
  • the laser medium gas is supplied from the gas cylinder 30 through the gas supply valve 10 to the laser medium gas path constituted by the optical resonator 1 and the gas circulation path 6.
  • the gas cylinder 30 is a laser medium gas supplier and is installed outside the laser oscillation device 20.
  • the gas supply valve 10 is connected to the optical resonator 1.
  • the laser medium gas circulating in the laser medium gas path constituted by the optical resonator 1 and the gas circulation path 6 is discharged out of the laser medium gas path through the gas discharge valve 11 by the vacuum pump 12.
  • the gas discharge valve 11 is connected to the gas circulation path 6 on the upstream side of the blower 4.
  • the present invention is not limited to this, and it may be connected to other places in the gas circulation path 6.
  • the gas supply valve 10 and the gas discharge valve 11 are composed of electromagnetic valves, and are controlled to be opened and closed by a gas pressure controller 14 described later.
  • the gas pressure of the laser medium gas in the optical resonator 1 needs to be constantly controlled to a predetermined operation gas pressure suitable for stably obtaining the intensity of the laser beam 7.
  • the gas pressure of the laser medium gas circulating in the laser medium gas path constituted by the optical resonator 1 and the gas circulation path 6 is detected by the gas pressure detector 13.
  • An electric signal proportional to the gas pressure detected by the gas pressure detector 13 is output to the gas pressure controller 14 as a gas pressure signal.
  • the gas pressure detector 13 is connected between the gas circulation path 6 and the gas discharge valve 11.
  • the present invention is not limited to this, and the gas circulation path 6 and the optical resonator 1 may be connected.
  • the gas pressure controller 14 performs opening / closing control of the gas supply valve 10 and the gas discharge valve 11 so that the gas pressure of the laser medium gas in the optical resonator 1 becomes a predetermined operation gas pressure.
  • the work amount of the blower 4 increases in proportion to the density of the laser medium gas. As the work amount of the blower 4 increases, the drive current from the inverter 8 increases. This blower drive current is detected by a current detector 9 built in the inverter 8.
  • the blower drive current Ix increases in proportion to the density ⁇ x of the laser medium gas.
  • this blower drive current Ix is expressed by a mathematical formula, the formula (1) is obtained, and the slope ⁇ is represented by the formula (2).
  • the mixing ratio of the remaining laser medium gas continues to change.
  • the density ⁇ x of the staying laser medium gas increases with the lapse of the stop time of the laser oscillation device.
  • the gas pressure when the laser oscillator is started is A.
  • the vacuum pump 12 is turned on by the activation of the laser oscillation device.
  • the gas discharge valve 11 and the gas supply valve 10 are opened.
  • the laser medium gas is discharged from the gas circulation path 6 and the optical resonator 1 by the vacuum pump 12 via the gas discharge valve 11.
  • the laser medium gas staying in the pipe between the gas cylinder 30 and the gas supply valve 10 of the laser oscillation device is combined with a new laser medium gas from the gas cylinder 30 via the gas supply valve 10.
  • the laser medium gas staying in the pipe is eventually discharged to the outside by the vacuum pump 12 as soon as it is supplied to the laser oscillation device 20.
  • the gas supply valve 10 does not need to be synchronized with the opening timing of the gas discharge valve 11 if the opening timing is constant until the gas pressure reaches B.
  • the gas supply valve 10 When the gas supply valve 10 is closed, the gas pressure is reduced to B.
  • the gas discharge valve 11 When the gas pressure becomes B, the gas discharge valve 11 is closed, the gas supply valve 10 is opened, the laser medium gas is supplied to the gas circulation path 6 and the optical resonator 1, the inverter 8 is turned on, and the blower 4 rotates. start.
  • the gas discharge valve 11 When the gas pressure becomes C, the gas discharge valve 11 is opened and the gas supply valve 10 is closed.
  • the gas supply valve 10 is opened, and when the gas pressure becomes C again, the gas supply valve 10 is closed. Thereafter, the gas supply valve 10 and the gas discharge valve are controlled by the gas pressure controller 14 so that the gas pressure is between C and D according to the detection value of the gas pressure detector 13 until the laser oscillation device is stopped. 11 is controlled to open and close.
  • the blower 4 reaches an arbitrary rotational speed before and after the timing when the gas pressure becomes C, and thereafter is controlled at a constant speed.
  • FIG. 4 is a flow chart showing the operation of the laser oscillator of the present embodiment, mainly explaining the initial setting procedure.
  • 5 and 6 are graphs showing the basis of calculation in the initial setting.
  • initial setting for calculating the open time of the gas supply valve 10 is performed.
  • step S01 of FIG. 3 it is determined whether initial setting is necessary.
  • step S02 is executed.
  • step S02 the laser medium gas staying in the pipe from the gas cylinder 30 to the laser oscillator 20 and in the gas circulation path 6 and the optical resonator 1 is sufficiently exhausted.
  • the gas mixture ratio is set to a normal state, and the blower drive current is detected by the current detector 9 and stored as Id in a storage device mounted on the open time calculator 15. This drive current Id is the same as that shown in the graph of FIG. 2C.
  • step S03 the laser oscillation device is stopped and left for a predetermined time Tc.
  • This stop time Tc is counted by the stop time counter 16 and stored in a storage device mounted on the open time calculator 15.
  • Tc is the same as that described in the graph of FIG. 2C.
  • the predetermined time Tc should just be more than the time which can detect the drive current difference of the below-mentioned fan, and should just be determined arbitrarily.
  • step S04 the laser oscillation device is started after a predetermined time Tc is stopped, and the drive current when the blower 4 is controlled at a constant speed is detected by the current detector 9, and this is mounted on the open time calculator 15 as Ic. Store in memory.
  • This drive current Ic is the same as that shown in the graph of FIG. 2C.
  • step S03 while the laser oscillator is activated and the gas pressure is reduced from A to B, the gas supply valve 10 is not opened but kept closed.
  • step S05 the slope ⁇ representing the correlation between the laser oscillation device stop time and the blower drive current is calculated by the open time calculator 15 according to the equation (4) and stored in the storage device mounted on the open time calculator 15.
  • step S06 the laser oscillation device is stopped and left for an arbitrarily defined time Te.
  • the stop time Te is counted by the stop time counter 16 and stored in a storage device mounted on the open time calculator 15.
  • step S07 the laser oscillation device is started after the time Te is stopped, and the laser oscillation device is operated in the sequence shown in FIG.
  • the opening time tf of the gas supply valve at this time is arbitrarily determined and stored in a storage device mounted on the opening time calculator 15.
  • the drive current when the blower 4 is controlled at a constant speed is detected by the current detector 9 and stored as If in the storage device mounted on the open time calculator 15.
  • FIG. 5 is a graph showing the relationship among parameters such as the above-described stop time Te, gas supply valve 10 opening time tf, and drive current If. In terms of equations, equations (5) to (7) correspond.
  • Te is an arbitrary stop time of the laser oscillation device.
  • the open time tf of the gas supply valve 10 may be arbitrarily determined. However, if the opening time tf of the gas supply valve 10 is too long, all of the laser medium gas staying in the pipe between the gas cylinder 30 and the gas supply valve 10 of the laser oscillation device will be collected before the blower 4 starts rotating. It is discharged from the laser oscillation device 20 to the outside. In this case, since the calculation by the open time calculator 15 is impossible, tf is preferably several seconds.
  • step S08 the blower drive current Ie in the case where the gas supply valve 10 is not opened while the laser oscillation device is stopped from the Te time while the gas pressure is reduced from the gas pressure A to B is calculated in the open time calculator 15. , Calculated from equation (7).
  • the calculated blower driving current Ie is stored in a storage device mounted on the open time calculator 15.
  • step S09 the blower drive current Ie and the gas supply valve 10 when the gas supply valve 10 is not opened while the laser oscillation device is stopped for Te time and the pressure is reduced from the gas pressure A to B are set.
  • a slope ⁇ representing a correlation with the blower drive current If when tf time is open is calculated by the open time calculator 15 using the equation (6).
  • the calculated slope ⁇ is stored in a storage device mounted on the open time calculator 15 (corresponding to the slope of the graph of FIG. 5).
  • step S10 the proportionality constant ⁇ for calculating the optimum opening time t of the gas supply valve 10 is calculated from the stop time T of the laser oscillation device from the equation (11) obtained by the following calculation.
  • the calculated proportionality constant ⁇ is stored in a storage device mounted on the open time calculator 15 (the slope of the graph of FIG. 6 corresponds to ⁇ ).
  • the calculated value ⁇ indicates the degree of influence of the opening time of the gas supply valve 10 on the driving current of the blower 4 with respect to the stop time T of the laser oscillation device shown in the graph of FIG. It is possible to obtain the blower drive current Id when the mixing ratio of the laser medium gas supplied to the laser oscillation device 20 is normal based on the calculated value ⁇ .
  • the opening time of the gas supply valve 10 that can obtain the obtained blower driving current Id is the optimum opening time t of the gas supply valve 10.
  • the open time t of the gas supply valve 10 with respect to an arbitrary stop time T of the laser oscillation device is not constant but is a function of the stop time. Ask.
  • the startup of the laser oscillation device after the initial setting is completed is the normal operation in the flowchart of FIG.
  • step S12 the stop time T counted by the stop time counter 16 is read.
  • step S ⁇ b> 13 the opening time calculator 15 calculates the opening time t of the gas supply valve 10 at the time of start-up by the equation (10).
  • step S14 the gas supply valve 10 is opened for time t while the gas pressure is reduced from A to B.
  • step S15 the operation is performed according to the normal sequence of the laser oscillation device.
  • ⁇ , ⁇ , and ⁇ are calculated in advance and tabulated. This eliminates the need for the initial setting processing flow shown in FIG. 3 and greatly reduces the time required for installation of the laser oscillation device.
  • the laser oscillation apparatus of the present invention has a small pinhole in the pipe between the gas cylinder and the gas supply valve of the laser oscillation apparatus, the laser medium gas leaks, and the mixing ratio of the laser medium gas staying in the pipe changes. However, a stable laser output can be obtained. Furthermore, it is possible to provide a laser oscillation device that reduces the number of valves used, reduces costs, and suppresses consumption of the laser medium gas. This is industrially useful as a laser oscillation device using a laser medium gas.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

In this lasing device, when the lasing device is activated from an idle state, a resident gas inside a gas circulation path and an optical resonator is discharged from a gas discharge valve, which has been opened by a gas pressure controller. During a time interval calculated by an open time calculator from the immediately preceding idle time of the lasing device, a laser medium gas present inside the line between a laser medium gas supply and a gas supply valve is discharged, together with the resident gas, through the gas supply valve which has been opened by the gas pressure controller. The number of valves used is decreased thereby, reducing costs, as well as minimizing consumption of the laser medium gas.

Description

レーザ発振装置Laser oscillator
 本発明は、レーザ媒質ガスを用いたレーザ発振装置に関する。 The present invention relates to a laser oscillation device using a laser medium gas.
 レーザ発振装置は、加工物を非接触でかつ熱影響が少なく加工できるという特徴から、多様な材質や形状の切断、および溶接、加工等に多用されている。 Laser oscillators are widely used for cutting various materials and shapes, welding, machining, etc., because the workpiece can be machined in a non-contact manner and with little thermal influence.
 特に、レーザ媒質ガスとして、COを主体とする混合ガスを使用したCOガスレーザ等のガスレーザ発振装置は、レーザビーム特性が優れ、かつ大出力が比較的容易であることから広く使用されている。 In particular, a gas laser oscillation device such as a CO 2 gas laser using a mixed gas mainly composed of CO 2 as a laser medium gas is widely used because of its excellent laser beam characteristics and relatively high output. .
 このようなガスレーザ発振装置は、光共振器と、この光共振器に接続したガス循環路を有する。光共振器内において放電による励起で高温となったレーザ媒質ガスは、ガス循環路を循環させる時に冷却する構成となっている。 Such a gas laser oscillation device has an optical resonator and a gas circulation path connected to the optical resonator. The laser medium gas that has become high temperature due to excitation by discharge in the optical resonator is cooled when it is circulated through the gas circulation path.
 ガス循環路には、レーザ媒質ガスを循環させるための送風機を介在させている。 In the gas circulation path, a blower for circulating the laser medium gas is interposed.
 レーザ媒質ガス供給器は一般的に混合ガスを予め封入したガスボンベが使用され、ガスボンベとレーザ発振装置のガス供給用バルブとの配管には、樹脂や金属の配管構造部材が使用される。しかし、この配管構造部材に小さなピンホールがあって、例えばCOガスレーザ発振装置ではこのピンホールの大きさによっては、混合ガス中のHeのみが選択的に漏れる。これにより、ガスボンベとレーザ発振装置のガス供給用バルブとの配管に滞留するレーザ媒質ガスの混合比が変化し、安定したレーザ出力が得られないおそれがある。 A gas cylinder in which a mixed gas is pre-filled is generally used as the laser medium gas supply device, and a resin or metal piping structure member is used for piping between the gas cylinder and the gas supply valve of the laser oscillation device. However, there is a small pinhole in this piping structure member. For example, in a CO 2 gas laser oscillation device, only He in the mixed gas leaks selectively depending on the size of this pinhole. As a result, the mixing ratio of the laser medium gas staying in the piping between the gas cylinder and the gas supply valve of the laser oscillation device may change, and stable laser output may not be obtained.
 まず、従来のレーザ発振装置について説明する。従来のレーザ発振装置を図7に示す。 First, a conventional laser oscillation device will be described. A conventional laser oscillation apparatus is shown in FIG.
 図7は、ガスレーザ発振装置のレーザガス循環系の送気管910にガスを供給するレーザガス供給系の配管系統図である。レーザガスは、レーザガスボンベ914から、一次圧力調整器915、配管916、フィルタ917、圧力調整器918、バルブ919、バルブ920、急速供給用流量計921、一定流量計922を経て、送気管910に供給される。送気管910内の圧力は圧力センサ923により測定される。また、送気管910のガスは、急速排気用バルブ925または一定排気用バルブ926を介して真空ポンプ924により排出される。図7に示すように、排出用バルブ927とタイマ928により、ガスボンベ914からガスレーザ発振装置の送気管910までの区間の配管916に滞留するレーザ媒質ガスをガスレーザ発振装置の起動時に外部に排出するようにしていた。 FIG. 7 is a piping system diagram of a laser gas supply system that supplies gas to an air supply pipe 910 of a laser gas circulation system of the gas laser oscillation device. Laser gas is supplied from a laser gas cylinder 914 to an air supply pipe 910 through a primary pressure regulator 915, a pipe 916, a filter 917, a pressure regulator 918, a valve 919, a valve 920, a rapid supply flow meter 921, and a constant flow meter 922. Is done. The pressure in the air supply pipe 910 is measured by the pressure sensor 923. Further, the gas in the air supply pipe 910 is discharged by the vacuum pump 924 through the rapid exhaust valve 925 or the constant exhaust valve 926. As shown in FIG. 7, the laser medium gas staying in the pipe 916 in the section from the gas cylinder 914 to the gas supply pipe 910 of the gas laser oscillator is discharged by the discharge valve 927 and the timer 928 when the gas laser oscillator is started. I was doing.
 図8は従来のガスレーザ発振装置における各バルブの開閉シーケンス図である。図7における従来のレーザ発振装置において、ガスボンベ914からガスを供給する前のレーザ発振装置の内部ガスを排気する間(バルブ925、926が共に開となっている間)に排出用バルブ927を開く。これにより、配管916に滞留するレーザ媒質ガスをレーザ発振装置の起動時に外部に排出し、レーザ出力の安定化を図っている(例えば特許文献1参照)。 FIG. 8 is an open / close sequence diagram of each valve in the conventional gas laser oscillation apparatus. In the conventional laser oscillation device in FIG. 7, the discharge valve 927 is opened while the internal gas of the laser oscillation device before supplying gas from the gas cylinder 914 is exhausted (while both the valves 925 and 926 are open). . As a result, the laser medium gas staying in the pipe 916 is discharged to the outside when the laser oscillation device is started to stabilize the laser output (see, for example, Patent Document 1).
特開平04-080979号公報Japanese Patent Laid-Open No. 04-080979
 しかしながら、従来技術にかかるレーザ発振装置においては、専用の排出用バルブ927が必要になる。さらに、この排出用バルブ927の開時間はガスボンベ914からレーザ発振装置までを接続する配管916の容積分を排出せしめる最大の時間を設定していた。このため、レーザ発振装置の停止時間が短い場合には必要以上のレーザ媒質ガスを外部に排出していた。 However, in the laser oscillation device according to the prior art, a dedicated discharge valve 927 is required. Further, the opening time of the discharge valve 927 is set to the maximum time for discharging the volume of the pipe 916 connecting the gas cylinder 914 to the laser oscillation device. For this reason, when the stop time of the laser oscillation device is short, more laser medium gas than necessary is discharged to the outside.
 そこで、本発明は、使用バルブ数を低減しコストを削減すると共に、レーザ媒質ガスの消費を抑制したレーザ発振装置を提供する。 Therefore, the present invention provides a laser oscillation device that reduces the number of valves used, reduces costs, and suppresses consumption of the laser medium gas.
 本発明のレーザ発振装置は、レーザ媒質ガスを外部より連続的または間欠的に供給するレーザ発振装置である。本発明のレーザ発振装置は、光共振器と、ガス循環路と、レーザ媒質ガス供給器と、ガス排出用ポンプと、ガス圧力検出器と、ガス圧力制御器と、送風機と、電流検出器と、停止時間計数器と、記憶器と、開時間演算器とを有する。ガス循環路は、光共振器に接続されている。レーザ媒質ガス供給器は、ガス循環路または光共振器にガス供給用バルブを介してレーザ媒質ガスを供給する。ガス排出用ポンプは、ガス循環路または光共振器からガス排出用バルブを介してレーザ媒質ガスを排出する。ガス圧力検出器は、ガス循環路または光共振器内のレーザ媒質ガスのガス圧力を検出する。ガス圧力制御器は、ガス圧力検出器で検出したガス圧力により、ガス供給用バルブとガス排出用バルブとを制御する。送風機は、ガス循環路に設けられている。電流検出器は、送風機の送風機駆動電流を検出する。停止時間計数器は、レーザ発振装置が停止している停止時間を計数する。記憶器は、停止時間と送風機駆動電流との相関情報を記憶する。開時間演算器は、記憶器の情報によりレーザ発振装置起動時のガス供給用バルブの開時間を演算する。レーザ発振装置を停止状態から起動する時に、ガス循環路および光共振器の内部の滞留ガスは、ガス圧力制御器によって開とされたガス排出用バルブから排出される。直前のレーザ発振装置の停止時間より開時間演算器が算出した時間の間は、レーザ媒質ガス供給器とガス供給用バルブとの間の配管内のレーザ媒質ガスを、ガス圧力制御器によって開とされたガス供給バルブを介して、滞留ガスと一緒に排出する。 The laser oscillation device of the present invention is a laser oscillation device that continuously or intermittently supplies a laser medium gas from the outside. The laser oscillation device of the present invention includes an optical resonator, a gas circulation path, a laser medium gas supply device, a gas discharge pump, a gas pressure detector, a gas pressure controller, a blower, and a current detector. A stop time counter, a storage device, and an open time calculator. The gas circulation path is connected to the optical resonator. The laser medium gas supply device supplies a laser medium gas to the gas circulation path or the optical resonator via a gas supply valve. The gas discharge pump discharges the laser medium gas from the gas circulation path or the optical resonator via the gas discharge valve. The gas pressure detector detects the gas pressure of the laser medium gas in the gas circuit or the optical resonator. The gas pressure controller controls the gas supply valve and the gas discharge valve based on the gas pressure detected by the gas pressure detector. The blower is provided in the gas circulation path. The current detector detects a blower driving current of the blower. The stop time counter counts the stop time when the laser oscillation device is stopped. The storage device stores correlation information between the stop time and the blower driving current. The open time calculator calculates the open time of the gas supply valve when the laser oscillation device is started based on the information stored in the memory. When the laser oscillation device is started from a stopped state, the staying gas in the gas circulation path and the optical resonator is discharged from a gas discharge valve opened by the gas pressure controller. During the time calculated by the open time calculator from the previous stop time of the laser oscillation device, the laser medium gas in the pipe between the laser medium gas supply and the gas supply valve is opened by the gas pressure controller. The gas is discharged together with the staying gas through the gas supply valve.
 これにより、レーザ発振装置が停止している間にガスボンベとレーザ発振装置のガス供給用バルブとの配管に滞留するレーザ媒質ガスの混合比が変化しても、滞留ガスを必要量のみレーザ発振装置の外部に排出できる。これにより、使用バルブ数を低減しコストを削減し、さらに、レーザ媒質ガスの消費を抑制することができる。 As a result, even when the mixing ratio of the laser medium gas staying in the piping between the gas cylinder and the gas supply valve of the laser oscillation device changes while the laser oscillation device is stopped, only the necessary amount of the retained gas is emitted from the laser oscillation device. Can be discharged outside. Thereby, the number of used valves can be reduced, the cost can be reduced, and the consumption of the laser medium gas can be suppressed.
図1は、本発明の実施の形態のレーザ発振装置を示す構成図である。FIG. 1 is a configuration diagram showing a laser oscillation apparatus according to an embodiment of the present invention. 図2Aは、本発明の実施の形態のレーザ媒質ガス密度と送風機駆動電流との相関を示すグラフである。FIG. 2A is a graph showing the correlation between the laser medium gas density and the blower drive current according to the embodiment of the present invention. 図2Bは、本発明の実施の形態のレーザ発振装置の停止時間とレーザ媒質ガス密度との相関を示すグラフである。FIG. 2B is a graph showing the correlation between the stop time of the laser oscillation apparatus and the laser medium gas density according to the embodiment of the present invention. 図2Cは、本発明の実施の形態のレーザ発振装置の停止時間と送風機駆動電流との相関を示すグラフである。FIG. 2C is a graph showing a correlation between the stop time of the laser oscillation apparatus and the blower driving current according to the embodiment of the present invention. 図3は、本発明の実施の形態のレーザ発振装置の各バルブの開閉シーケンス図である。FIG. 3 is an open / close sequence diagram of each valve of the laser oscillation apparatus according to the embodiment of the present invention. 図4は、主に初期設定手順を説明する本発明の実施の形態のレーザ発振器の動作を示すフローチャートである。FIG. 4 is a flowchart showing the operation of the laser oscillator according to the embodiment of the present invention, mainly explaining the initial setting procedure. 図5は、本発明の実施の形態のガス供給用バルブ開時間を算出する原理を説明するグラフである。FIG. 5 is a graph for explaining the principle of calculating the gas supply valve opening time according to the embodiment of the present invention. 図6は、本発明の実施の形態の最適なガス供給用バルブ開時間を算出するグラフである。FIG. 6 is a graph for calculating the optimum gas supply valve opening time according to the embodiment of the present invention. 図7は、従来技術のガスレーザ発振装置のレーザガス供給系の配管系統図である。FIG. 7 is a piping system diagram of a laser gas supply system of a conventional gas laser oscillation apparatus. 図8は、従来技術のレーザ発振装置の各バルブの開閉シーケンス図である。FIG. 8 is an open / close sequence diagram of each valve of the conventional laser oscillation device.
 (実施の形態1)
 以下、本発明の実施の形態の一例について、図を用いて説明する。
(Embodiment 1)
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
 図1において、光共振器1は、部分反射鏡2と、この部分反射鏡2に対向するように設置された全反射鏡3とにより、構成されている。 In FIG. 1, the optical resonator 1 includes a partial reflection mirror 2 and a total reflection mirror 3 installed so as to face the partial reflection mirror 2.
 光共振器1にはガス循環路6が接続されている。レーザ媒質ガスは、インバータ8により一定回転数に回転制御された送風機4により、光共振器1とガス循環路6により構成されるレーザ媒質ガス経路内を循環する。 A gas circulation path 6 is connected to the optical resonator 1. The laser medium gas circulates in the laser medium gas path constituted by the optical resonator 1 and the gas circulation path 6 by the blower 4 whose rotation is controlled to a constant rotational speed by the inverter 8.
 また、インバータ8の内部に設置された電流検出器9により、送風機4の駆動電流が検出される。 Also, the drive current of the blower 4 is detected by the current detector 9 installed inside the inverter 8.
 ガス循環路6には熱交換器5が介在されており、レーザ媒質ガス経路内を循環するレーザ媒質ガスは、熱交換器5によって冷却される。 The heat exchanger 5 is interposed in the gas circulation path 6, and the laser medium gas circulating in the laser medium gas path is cooled by the heat exchanger 5.
 光共振器1では、高電圧電源(図示せず)により放電励起が行われ、送風機4ではレーザ媒質ガスが圧縮圧送されるため、これらによりレーザ媒質ガスは高温となる。 In the optical resonator 1, discharge excitation is performed by a high voltage power source (not shown), and the laser medium gas is compressed and pumped in the blower 4, so that the laser medium gas becomes a high temperature.
 したがって、レーザ媒質ガス経路内を循環するレーザ媒質ガスを、熱交換器5部分で冷却することにより、光共振器1部分が、異常に高温化しないようにしている。 Therefore, the laser medium gas circulating in the laser medium gas path is cooled by the heat exchanger 5 part, so that the optical resonator 1 part does not become abnormally heated.
 なお、1つの熱交換器5は、光共振器1よりもレーザ媒質ガスの流れの下流側(以下、下流側とする)であり、送風機4よりもレーザ媒質ガスの流れの上流側(以下、上流側とする)に位置している。さらにもう1つの熱交換器5は、送風機4の下流側に位置している。これにより、高温化されたレーザ媒質ガスをすぐに冷却している。 One heat exchanger 5 is located downstream of the optical medium 1 in the flow of the laser medium gas (hereinafter referred to as the downstream side) and upstream of the blower 4 in the flow of the laser medium gas (hereinafter referred to as the following). Located upstream). Furthermore, the other heat exchanger 5 is located downstream of the blower 4. Thereby, the laser medium gas heated to high temperature is immediately cooled.
 光共振器1とガス循環路6により構成されるレーザ媒質ガス経路には、ガスボンベ30からレーザ媒質ガスが、ガス供給用バルブ10を通じて供給される。ガスボンベ30は、レーザ媒質ガス供給器であり、レーザ発振装置20の外部に設置されている。本実施の形態では、ガス供給用バルブ10は、光共振器1に接続されている。 The laser medium gas is supplied from the gas cylinder 30 through the gas supply valve 10 to the laser medium gas path constituted by the optical resonator 1 and the gas circulation path 6. The gas cylinder 30 is a laser medium gas supplier and is installed outside the laser oscillation device 20. In the present embodiment, the gas supply valve 10 is connected to the optical resonator 1.
 また、光共振器1とガス循環路6により構成されるレーザ媒質ガス経路内を循環するレーザ媒質ガスは、真空ポンプ12によりガス排出用バルブ11を通じて、このレーザ媒質ガス経路外に排出される。このガス排出用バルブ11は、送風機4の上流側のガス循環路6に接続されている。しかし、これに限らず、ガス循環路6のその他の場所に接続されていても構わない。 The laser medium gas circulating in the laser medium gas path constituted by the optical resonator 1 and the gas circulation path 6 is discharged out of the laser medium gas path through the gas discharge valve 11 by the vacuum pump 12. The gas discharge valve 11 is connected to the gas circulation path 6 on the upstream side of the blower 4. However, the present invention is not limited to this, and it may be connected to other places in the gas circulation path 6.
 なお、これらのガス供給用バルブ10およびガス排出用バルブ11は電磁弁で構成されており、後述するガス圧力制御器14によって開閉制御が行われるようになっている。 The gas supply valve 10 and the gas discharge valve 11 are composed of electromagnetic valves, and are controlled to be opened and closed by a gas pressure controller 14 described later.
 つまり、光共振器1内のレーザ媒質ガスのガス圧力は、レーザ光7の強度を安定して得るに適した所定運転ガス圧力に一定制御する必要がある。 That is, the gas pressure of the laser medium gas in the optical resonator 1 needs to be constantly controlled to a predetermined operation gas pressure suitable for stably obtaining the intensity of the laser beam 7.
 そこで、本実施の形態では、光共振器1とガス循環路6により構成されるレーザ媒質ガス経路内を循環するレーザ媒質ガスのガス圧を、ガス圧力検出器13により検出する。ガス圧力検出器13によって検出されたガス圧力に比例した電気信号をガス圧信号として、ガス圧力制御器14に出力する。本実施の形態では、ガス圧力検出器13は、ガス循環路6とガス排出用バルブ11との間に接続されている。しかし、これに限らず、ガス循環路6や光共振器1に接続されていても構わない。 Therefore, in the present embodiment, the gas pressure of the laser medium gas circulating in the laser medium gas path constituted by the optical resonator 1 and the gas circulation path 6 is detected by the gas pressure detector 13. An electric signal proportional to the gas pressure detected by the gas pressure detector 13 is output to the gas pressure controller 14 as a gas pressure signal. In the present embodiment, the gas pressure detector 13 is connected between the gas circulation path 6 and the gas discharge valve 11. However, the present invention is not limited to this, and the gas circulation path 6 and the optical resonator 1 may be connected.
 ガス圧力制御器14は、光共振器1内のレーザ媒質ガスのガス圧力が、所定運転ガス圧力となるように、ガス供給用バルブ10およびガス排出用バルブ11の開閉制御を行う。 The gas pressure controller 14 performs opening / closing control of the gas supply valve 10 and the gas discharge valve 11 so that the gas pressure of the laser medium gas in the optical resonator 1 becomes a predetermined operation gas pressure.
 次に、レーザ発振装置の停止時間と送風機駆動電流の相関について、図2A~図2Cを用いて説明する。 Next, the correlation between the stop time of the laser oscillation device and the blower drive current will be described with reference to FIGS. 2A to 2C.
 レーザ媒質ガスの密度に比例して送風機4の仕事量は増加する。送風機4の仕事量増加に伴い、インバータ8からの駆動電流が増加する。この送風機駆動電流はインバータ8に内蔵されている電流検出器9により検出される。 The work amount of the blower 4 increases in proportion to the density of the laser medium gas. As the work amount of the blower 4 increases, the drive current from the inverter 8 increases. This blower drive current is detected by a current detector 9 built in the inverter 8.
 従って、図2Aのグラフに示すように、レーザ媒質ガスの密度ρxに比例して送風機駆動電流Ixは増加する。この送風機駆動電流Ixを数式で示すと式(1)となり、その傾きαは式(2)で示される。 Therefore, as shown in the graph of FIG. 2A, the blower drive current Ix increases in proportion to the density ρx of the laser medium gas. When this blower drive current Ix is expressed by a mathematical formula, the formula (1) is obtained, and the slope α is represented by the formula (2).
 Ix=α・ρx   (1)
 傾きα=(Ia-Ib)/(ρa-ρb)   (2)
 レーザ媒質ガス供給器であるガスボンベ30からガス供給用バルブ10までの配管に、もし小さなピンホール等があったとすると、例えばCOガスレーザ発振装置ではピンホールの大きさによっては、混合ガス中のHeのみが選択的に漏れる。これにより、ガスボンベ30とレーザ発振装置のガス供給用バルブ10との間の配管に滞留するレーザ媒質ガスの混合比が変化する。
Ix = α · ρx (1)
Inclination α = (Ia−Ib) / (ρa−ρb) (2)
If there is a small pinhole or the like in the pipe from the gas cylinder 30 which is a laser medium gas supply device to the gas supply valve 10, for example, in a CO 2 gas laser oscillation device, depending on the size of the pinhole, the He in the mixed gas Only selectively leaks. As a result, the mixing ratio of the laser medium gas staying in the pipe between the gas cylinder 30 and the gas supply valve 10 of the laser oscillation device changes.
 そして、レーザ発振装置が停止している場合には、滞留しているレーザ媒質ガスの混合比は変化をし続ける。この場合、図2Bのグラフに示すように、滞留しているレーザ媒質ガスの密度ρxはレーザ発振装置の停止時間経過と共に増加する。 When the laser oscillation device is stopped, the mixing ratio of the remaining laser medium gas continues to change. In this case, as shown in the graph of FIG. 2B, the density ρx of the staying laser medium gas increases with the lapse of the stop time of the laser oscillation device.
 上記の2つのグラフに示す変数の関係を総合し、レーザ発振装置の停止時間に対する送風機4の駆動電流Ix’の関係に置換すると、図2Cのグラフとなる。図2Cのグラフに示すように、レーザ発振装置の停止時間に比例して、送風機4の駆動電流Ix’も増加することとなる。数式で示すと式(3)、式(4)で示される。 When the relationship of the variables shown in the above two graphs is integrated and replaced with the relationship of the drive current Ix ′ of the blower 4 with respect to the stop time of the laser oscillation device, the graph of FIG. As shown in the graph of FIG. 2C, the drive current Ix ′ of the blower 4 also increases in proportion to the stop time of the laser oscillation device. In terms of mathematical formulas, they are represented by formulas (3) and (4).
 Ix’=β・Tx’+Id   (3)
 傾きβ=(Ic-Id)/Tc   (4)
 続いて、図3に示すバルブの開閉シーケンスによって、ガス供給用バルブ10およびガス排出用バルブ11を動作させた場合の動作について説明する。
Ix ′ = β · Tx ′ + Id (3)
Inclination β = (Ic−Id) / Tc (4)
Next, the operation when the gas supply valve 10 and the gas discharge valve 11 are operated according to the valve opening / closing sequence shown in FIG. 3 will be described.
 レーザ発振装置を起動させた時のガス圧力はAである。レーザ発振装置の起動により、まず真空ポンプ12がオンする。続いてガス排出用バルブ11およびガス供給用バルブ10が開となる。これによりガス循環路6および光共振器1からレーザ媒質ガスが、ガス排出用バルブ11を経由して真空ポンプ12により排出される。同時に、ガスボンベ30とレーザ発振装置のガス供給用バルブ10との間の配管に滞留するレーザ媒質ガスは、ガスボンベ30からの新たなレーザ媒質ガスと一緒になって、ガス供給用バルブ10を経由して、ガス循環路6および光共振器1へ供給される。 The gas pressure when the laser oscillator is started is A. First, the vacuum pump 12 is turned on by the activation of the laser oscillation device. Subsequently, the gas discharge valve 11 and the gas supply valve 10 are opened. As a result, the laser medium gas is discharged from the gas circulation path 6 and the optical resonator 1 by the vacuum pump 12 via the gas discharge valve 11. At the same time, the laser medium gas staying in the pipe between the gas cylinder 30 and the gas supply valve 10 of the laser oscillation device is combined with a new laser medium gas from the gas cylinder 30 via the gas supply valve 10. To the gas circulation path 6 and the optical resonator 1.
 従って、配管に滞留するレーザ媒質ガスは、結果的にレーザ発振装置20に供給されてすぐに真空ポンプ12により外部に排出されることとなる。 Therefore, the laser medium gas staying in the pipe is eventually discharged to the outside by the vacuum pump 12 as soon as it is supplied to the laser oscillation device 20.
 なお、ガス供給用バルブ10はガス圧力がBになるまでの期間で開となるタイミングが一定ならば、ガス排出用バルブ11の開タイミングと同期させる必要はない。 The gas supply valve 10 does not need to be synchronized with the opening timing of the gas discharge valve 11 if the opening timing is constant until the gas pressure reaches B.
 その後、ガス供給用バルブ10が閉になると、ガス圧力はBにまで減圧される。ガス圧力がBになると、ガス排出用バルブ11が閉、ガス供給用バルブ10が開となりレーザ媒質ガスがガス循環路6および光共振器1に供給され、インバータ8がオンし送風機4が回転を始める。 After that, when the gas supply valve 10 is closed, the gas pressure is reduced to B. When the gas pressure becomes B, the gas discharge valve 11 is closed, the gas supply valve 10 is opened, the laser medium gas is supplied to the gas circulation path 6 and the optical resonator 1, the inverter 8 is turned on, and the blower 4 rotates. start.
 ガス圧力がCになると、ガス排出用バルブ11は開となり、ガス供給用バルブ10は閉となる。ガス圧力がDになるとガス供給用バルブ10は開となり、再びガス圧力がCになるとガス供給用バルブ10は閉となる。その後はレーザ発振装置が停止されるまで、ガス圧力検出器13の検出値により、ガス圧力制御器14によって、ガス圧力がCおよびDの間となるようにガス供給用バルブ10とガス排出用バルブ11は、開閉を制御される。 When the gas pressure becomes C, the gas discharge valve 11 is opened and the gas supply valve 10 is closed. When the gas pressure becomes D, the gas supply valve 10 is opened, and when the gas pressure becomes C again, the gas supply valve 10 is closed. Thereafter, the gas supply valve 10 and the gas discharge valve are controlled by the gas pressure controller 14 so that the gas pressure is between C and D according to the detection value of the gas pressure detector 13 until the laser oscillation device is stopped. 11 is controlled to open and close.
 送風機4はガス圧力がCとなるタイミングの前後で、任意の回転速度に到達し、その後は一定速度に制御される。 The blower 4 reaches an arbitrary rotational speed before and after the timing when the gas pressure becomes C, and thereafter is controlled at a constant speed.
 次に、レーザ発振装置起動時のガス供給用バルブ10の開時間の演算について図4~図6を用いて説明する。図4は主に初期設定手順を説明する本実施の形態のレーザ発振器の動作を示すフローチャートである。また、図5、図6は初期設定における演算の根拠を示すグラフである。 Next, the calculation of the opening time of the gas supply valve 10 when the laser oscillator is started will be described with reference to FIGS. FIG. 4 is a flow chart showing the operation of the laser oscillator of the present embodiment, mainly explaining the initial setting procedure. 5 and 6 are graphs showing the basis of calculation in the initial setting.
 レーザ発振装置20が使用環境に設置され、ガスボンベ30からレーザ発振装置20までの配管が敷設された後には、ガス供給用バルブ10の開時間の演算のための初期設定を実施する。 After the laser oscillation device 20 is installed in the use environment and the piping from the gas cylinder 30 to the laser oscillation device 20 is laid, initial setting for calculating the open time of the gas supply valve 10 is performed.
 図3のステップS01で初期設定の要否が判断される。 In step S01 of FIG. 3, it is determined whether initial setting is necessary.
 初期設定が選択されると、ステップS02を実行する。ステップS02では、ガスボンベ30からレーザ発振装置20までの配管内および、ガス循環路6および光共振器1内に滞留したレーザ媒質ガスを十分排気する。レーザ媒質ガスを入れ替えた後にガス混合比が正常な状態にして、送風機駆動電流を電流検出器9で検出し、これをIdとして開時間演算器15に搭載した記憶器に記憶する。この駆動電流Idは図2Cのグラフに記載のものと同一である。 When the initial setting is selected, step S02 is executed. In step S02, the laser medium gas staying in the pipe from the gas cylinder 30 to the laser oscillator 20 and in the gas circulation path 6 and the optical resonator 1 is sufficiently exhausted. After replacing the laser medium gas, the gas mixture ratio is set to a normal state, and the blower drive current is detected by the current detector 9 and stored as Id in a storage device mounted on the open time calculator 15. This drive current Id is the same as that shown in the graph of FIG. 2C.
 ステップS03では、レーザ発振装置を停止し、所定時間Tcの間放置する。この停止時間Tcは停止時間計数器16で計数され、開時間演算器15に搭載した記憶器に記憶する。なお、Tcは図2Cのグラフに記載のものと同一である。なお、所定時間Tcは後述の送風機の駆動電流差が検知できる程度の時間以上であればよく、任意に決めればよい。 In step S03, the laser oscillation device is stopped and left for a predetermined time Tc. This stop time Tc is counted by the stop time counter 16 and stored in a storage device mounted on the open time calculator 15. Tc is the same as that described in the graph of FIG. 2C. In addition, the predetermined time Tc should just be more than the time which can detect the drive current difference of the below-mentioned fan, and should just be determined arbitrarily.
 ステップS04では、レーザ発振装置を所定時間Tc停止後に起動し、送風機4が一定速度に制御されている時の駆動電流を電流検出器9で検出しこれをIcとして開時間演算器15に搭載した記憶器に記憶する。この駆動電流Icは図2Cのグラフに記載のものと同一である。ただし、ステップS03ではレーザ発振器を起動しガス圧力がAからBまで減圧する間は、ガス供給用バルブ10は開はせず、閉を保持させておく。 In step S04, the laser oscillation device is started after a predetermined time Tc is stopped, and the drive current when the blower 4 is controlled at a constant speed is detected by the current detector 9, and this is mounted on the open time calculator 15 as Ic. Store in memory. This drive current Ic is the same as that shown in the graph of FIG. 2C. However, in step S03, while the laser oscillator is activated and the gas pressure is reduced from A to B, the gas supply valve 10 is not opened but kept closed.
 ステップS05では、レーザ発振装置停止時間と送風機駆動電流の相関を表す、傾きβを開時間演算器15において、式(4)により算出し、開時間演算器15に搭載した記憶器に記憶する。 In step S05, the slope β representing the correlation between the laser oscillation device stop time and the blower drive current is calculated by the open time calculator 15 according to the equation (4) and stored in the storage device mounted on the open time calculator 15.
 ステップS06では、レーザ発振装置を停止し、任意に定めた時間Teの間放置する。この停止時間Teは停止時間計数器16で計数され、開時間演算器15に搭載した記憶器に記憶する。 In step S06, the laser oscillation device is stopped and left for an arbitrarily defined time Te. The stop time Te is counted by the stop time counter 16 and stored in a storage device mounted on the open time calculator 15.
 ステップS07では、レーザ発振装置を時間Te停止後に起動し、図3に示すシーケンスでレーザ発振装置を動作させる。この時のガス供給用バルブの開時間tfは任意に定めておき、開時間演算器15に搭載した記憶器に記憶される。 In step S07, the laser oscillation device is started after the time Te is stopped, and the laser oscillation device is operated in the sequence shown in FIG. The opening time tf of the gas supply valve at this time is arbitrarily determined and stored in a storage device mounted on the opening time calculator 15.
 送風機4が一定速度に制御されている時の駆動電流を電流検出器9で検出しこれをIfとして開時間演算器15に搭載した記憶器に記憶する。 The drive current when the blower 4 is controlled at a constant speed is detected by the current detector 9 and stored as If in the storage device mounted on the open time calculator 15.
 上述の停止時間Te、ガス供給用バルブ10の開時間tfおよび駆動電流Ifなどのパラメータの関係を図5のグラフに示す。数式で示すと式(5)~式(7)が対応する。 FIG. 5 is a graph showing the relationship among parameters such as the above-described stop time Te, gas supply valve 10 opening time tf, and drive current If. In terms of equations, equations (5) to (7) correspond.
 Ix”=Ie-γ・tx”   (5)
 傾きγ=(Ie-If)/tf   (6)
 ここで、Ie=β・Te+Id   (7)
 ただし、Teはレーザ発振装置の任意の停止時間
 なお、ガス供給用バルブ10の開時間tfは任意に定めればよい。ただし、ガス供給用バルブ10の開時間tfを長くしすぎると、ガスボンベ30とレーザ発振装置のガス供給用バルブ10との間の配管に滞留するレーザ媒質ガスは、送風機4の回転開始前にすべてレーザ発振装置20から外部へ排出される。この場合、開時間演算器15の演算が不可能となるので、tfは数秒とすることが望ましい。
Ix ″ = Ie−γ · tx ″ (5)
Inclination γ = (Ie−If) / tf (6)
Here, Ie = β · Te + Id (7)
However, Te is an arbitrary stop time of the laser oscillation device. Note that the open time tf of the gas supply valve 10 may be arbitrarily determined. However, if the opening time tf of the gas supply valve 10 is too long, all of the laser medium gas staying in the pipe between the gas cylinder 30 and the gas supply valve 10 of the laser oscillation device will be collected before the blower 4 starts rotating. It is discharged from the laser oscillation device 20 to the outside. In this case, since the calculation by the open time calculator 15 is impossible, tf is preferably several seconds.
 ステップS08では、レーザ発振装置がTe時間停止した状態で、ガス圧力AからBまで減圧する間に、ガス供給用バルブ10を開としなかった場合の送風機駆動電流Ieを、開時間演算器15において、式(7)より算出する。算出した送風機駆動電流Ieを開時間演算器15に搭載した記憶器に記憶する。 In step S08, the blower drive current Ie in the case where the gas supply valve 10 is not opened while the laser oscillation device is stopped from the Te time while the gas pressure is reduced from the gas pressure A to B is calculated in the open time calculator 15. , Calculated from equation (7). The calculated blower driving current Ie is stored in a storage device mounted on the open time calculator 15.
 なお、式(7)は式(3)のTx’をTeに、Ix’をIeに置換したものに相当する。 Note that the formula (7) corresponds to the formula (3) in which Tx 'is replaced with Te and Ix' is replaced with Ie.
 ステップS09では、レーザ発振装置がTe時間停止した状態で、ガス圧力AからBまで減圧する間に、ガス供給用バルブ10が開としなかった場合の送風機駆動電流Ieと、ガス供給用バルブ10をtf時間開とした場合の送風機駆動電流Ifとの相関を表す傾きγを、開時間演算器15において式(6)により算出する。算出した傾きγを、開時間演算器15に搭載した記憶器に記憶する(図5のグラフの傾きに相当する)。 In step S09, the blower drive current Ie and the gas supply valve 10 when the gas supply valve 10 is not opened while the laser oscillation device is stopped for Te time and the pressure is reduced from the gas pressure A to B are set. A slope γ representing a correlation with the blower drive current If when tf time is open is calculated by the open time calculator 15 using the equation (6). The calculated slope γ is stored in a storage device mounted on the open time calculator 15 (corresponding to the slope of the graph of FIG. 5).
 ステップS10では、レーザ発振装置の停止時間Tより、ガス供給用バルブ10の最適開時間tを演算するための、比例定数δを以下に示す演算で求められる式(11)より算出する。算出した比例定数δを、開時間演算器15に搭載した記憶器に記憶する(図6のグラフの傾きがδに相当する)。 In step S10, the proportionality constant δ for calculating the optimum opening time t of the gas supply valve 10 is calculated from the stop time T of the laser oscillation device from the equation (11) obtained by the following calculation. The calculated proportionality constant δ is stored in a storage device mounted on the open time calculator 15 (the slope of the graph of FIG. 6 corresponds to δ).
 (5)式より
 tx”=(Ie-Ix”)/γ   (8)
 ここで、tx”=td、Ix”=Idとし、さらに(8)式に(7)式を代入すると、
 td=(β・Te+Id-Id)/γ=(β/γ)・Te   (9)
 (9)式を一般化すると、
 t=δ・T   (10)
 δ=β/γ   (11)
 これにより初期設定は完了である(ステップS11)。
From the equation (5) tx ″ = (Ie−Ix ″) / γ (8)
Here, if tx ″ = td, Ix ″ = Id, and further substituting equation (7) into equation (8),
td = (β · Te + Id−Id) / γ = (β / γ) · Te (9)
Generalizing equation (9)
t = δ · T (10)
δ = β / γ (11)
Thereby, the initial setting is completed (step S11).
 図4の初期設定フローで得られた、各算出値γ、δの意味を詳しく図5を用いて説明する。 The meaning of the calculated values γ and δ obtained in the initial setting flow of FIG. 4 will be described in detail with reference to FIG.
 算出値γは、図5のグラフに示す、レーザ発振装置の停止時間Tに対し、ガス供給用バルブ10の開時間が送風機4の駆動電流に与える影響の度合いを示している。算出値γによりレーザ発振装置20に供給されるレーザ媒質ガスの混合比が正常である場合の、送風機駆動電流Idを求めることが可能になる。求められた送風機駆動電流Idを得ることができるガス供給用バルブ10の開時間が、最適なガス供給用バルブ10の開時間tとなる。 The calculated value γ indicates the degree of influence of the opening time of the gas supply valve 10 on the driving current of the blower 4 with respect to the stop time T of the laser oscillation device shown in the graph of FIG. It is possible to obtain the blower drive current Id when the mixing ratio of the laser medium gas supplied to the laser oscillation device 20 is normal based on the calculated value γ. The opening time of the gas supply valve 10 that can obtain the obtained blower driving current Id is the optimum opening time t of the gas supply valve 10.
 しかし、図6のグラフに示すように、レーザ発振装置の任意の停止時間Tに対する、ガス供給用バルブ10の開時間tは一定ではなく停止時間の関数となるため、その係数として算出値δとして求める。 However, as shown in the graph of FIG. 6, the open time t of the gas supply valve 10 with respect to an arbitrary stop time T of the laser oscillation device is not constant but is a function of the stop time. Ask.
 これにより、レーザ発振装置の停止時間Tに対する、最適なガス供給用バルブ10の開時間tを算出する一般式が得られる。 Thereby, a general formula for calculating the optimum opening time t of the gas supply valve 10 with respect to the stop time T of the laser oscillation device is obtained.
 初期設定が完了した後の、レーザ発振装置の起動は、図4のフローチャートでの通常運転の動作となる。 The startup of the laser oscillation device after the initial setting is completed is the normal operation in the flowchart of FIG.
 ステップS12において、停止時間計数器16で計数された停止時間Tを読み取る。ステップS13において、式(10)により開時間演算器15で、起動時のガス供給用バルブ10開時間tを算出する。ステップS14において、ガス圧力AからBまで減圧する間に、ガス供給用バルブ10をt時間開とする。 In step S12, the stop time T counted by the stop time counter 16 is read. In step S <b> 13, the opening time calculator 15 calculates the opening time t of the gas supply valve 10 at the time of start-up by the equation (10). In step S14, the gas supply valve 10 is opened for time t while the gas pressure is reduced from A to B.
 その後は、レーザ発振装置の通常のシーケンスに従い運転される(ステップS15)。 Thereafter, the operation is performed according to the normal sequence of the laser oscillation device (step S15).
 なお、ガスボンベ30からガス供給用バルブ10までの距離および、その間の配管部材固有の漏れ量が事前に判明している場合は、β、γ、δを事前に算出してテーブル化しておく。これにより、図3の初期設定の処理フローは不要となり、レーザ発振装置の設置所要時間が大幅に短縮される。 If the distance from the gas cylinder 30 to the gas supply valve 10 and the leakage amount specific to the piping member therebetween are known in advance, β, γ, and δ are calculated in advance and tabulated. This eliminates the need for the initial setting processing flow shown in FIG. 3 and greatly reduces the time required for installation of the laser oscillation device.
 本発明のレーザ発振装置は、ガスボンベとレーザ発振装置のガス供給用バルブとの配管に小さなピンホールがあって、レーザ媒質ガスがリークし、配管に滞留するレーザ媒質ガスの混合比が変化しても、安定したレーザ出力が得られる。さらに、使用バルブ数を低減しコストを削減すると共に、レーザ媒質ガスの消費を抑制したレーザ発振装置を提供することができる。これにより、レーザ媒質ガスを用いたレーザ発振装置として産業上有用である。 The laser oscillation apparatus of the present invention has a small pinhole in the pipe between the gas cylinder and the gas supply valve of the laser oscillation apparatus, the laser medium gas leaks, and the mixing ratio of the laser medium gas staying in the pipe changes. However, a stable laser output can be obtained. Furthermore, it is possible to provide a laser oscillation device that reduces the number of valves used, reduces costs, and suppresses consumption of the laser medium gas. This is industrially useful as a laser oscillation device using a laser medium gas.
 1  光共振器
 2  部分反射鏡
 3  全反射鏡
 4  送風機
 5  熱交換器
 6  ガス循環路
 7  レーザ光
 8  インバータ
 9  電流検出器
 10  ガス供給用バルブ
 11  ガス排出用バルブ
 12  真空ポンプ
 13  ガス圧力検出器
 14  ガス圧力制御器
 15  開時間演算器
 16  停止時間計数器
 20  レーザ発振装置
 30  ガスボンベ
DESCRIPTION OF SYMBOLS 1 Optical resonator 2 Partial reflection mirror 3 Total reflection mirror 4 Blower 5 Heat exchanger 6 Gas circulation path 7 Laser beam 8 Inverter 9 Current detector 10 Gas supply valve 11 Gas discharge valve 12 Vacuum pump 13 Gas pressure detector 14 Gas pressure controller 15 Open time calculator 16 Stop time counter 20 Laser oscillator 30 Gas cylinder

Claims (5)

  1.  レーザ媒質ガスを外部より連続的または間欠的に供給するレーザ発振装置であって、
     光共振器と、
     前記光共振器に接続されたガス循環路と、
     前記ガス循環路または前記光共振器にガス供給用バルブを介してレーザ媒質ガスを供給するレーザ媒質ガス供給器と、
     前記ガス循環路または前記光共振器からガス排出用バルブを介してレーザ媒質ガスを排出するガス排出用ポンプと、
     前記ガス循環路または前記光共振器内のレーザ媒質ガスのガス圧力を検出するガス圧力検出器と、
     前記ガス圧力検出器で検出したガス圧力により、前記ガス供給用バルブと前記ガス排出用バルブとを制御するガス圧力制御器と、
     前記ガス循環路に設けられた送風機と、
     前記送風機の送風機駆動電流を検出する電流検出器と、
     レーザ発振装置が停止している停止時間を計数する停止時間計数器と、
     前記停止時間と前記送風機駆動電流との相関情報を記憶する記憶器と、
     前記記憶器の情報によりレーザ発振装置起動時の前記ガス供給用バルブの開時間を演算する開時間演算器とを備え、
     レーザ発振装置を停止状態から起動する時に、前記ガス循環路および前記光共振器の内部の滞留ガスは、前記ガス圧力制御器によって開とされた前記ガス排出用バルブから排出され、
     直前のレーザ発振装置の停止時間より前記開時間演算器が算出した時間の間は、前記レーザ媒質ガス供給器と前記ガス供給用バルブとの間の配管内のレーザ媒質ガスを、前記ガス圧力制御器によって開とされた前記ガス供給バルブを介して、前記滞留ガスと一緒に排出するレーザ発振装置。
    A laser oscillation device that continuously or intermittently supplies a laser medium gas from the outside,
    An optical resonator;
    A gas circuit connected to the optical resonator;
    A laser medium gas supplier for supplying a laser medium gas to the gas circulation path or the optical resonator via a gas supply valve;
    A gas discharge pump for discharging laser medium gas from the gas circulation path or the optical resonator through a gas discharge valve;
    A gas pressure detector for detecting a gas pressure of a laser medium gas in the gas circulation path or the optical resonator;
    A gas pressure controller for controlling the gas supply valve and the gas discharge valve based on the gas pressure detected by the gas pressure detector;
    A blower provided in the gas circulation path;
    A current detector for detecting a blower drive current of the blower;
    A stop time counter for counting the stop time when the laser oscillation device is stopped;
    A storage device for storing correlation information between the stop time and the blower driving current;
    An open time calculator for calculating the open time of the gas supply valve at the time of starting the laser oscillation device according to the information of the storage device,
    When starting the laser oscillation device from a stopped state, the gas circulation path and the staying gas inside the optical resonator are discharged from the gas discharge valve opened by the gas pressure controller,
    During the time calculated by the open time calculator from the previous stop time of the laser oscillation device, the gas pressure control is performed on the laser medium gas in the pipe between the laser medium gas supply unit and the gas supply valve. A laser oscillation device that discharges together with the staying gas through the gas supply valve opened by a vessel.
  2.  少なくとも、通常運転とは異なるシーケンスの初期設定動作により、第1の装置停止時間と第2の装置停止時間を設定し、
     前記第1の装置停止時間および前記第2の停止時間のそれぞれにおいて、
     前記ガス供給用バルブを開かずにレーザ発振装置を動作させた場合の前記送風機の駆動電流、及び、所定時間だけ前記ガス供給用バルブを開としたのちレーザ発振装置を動作させた場合の前記送風機の駆動電流から前記相関情報を算出する請求項1に記載のレーザ発振装置。
    At least the first device stop time and the second device stop time are set by an initial setting operation of a sequence different from the normal operation,
    In each of the first device stop time and the second stop time,
    Driving current of the blower when the laser oscillation device is operated without opening the gas supply valve, and the blower when the laser oscillation device is operated after opening the gas supply valve for a predetermined time The laser oscillation apparatus according to claim 1, wherein the correlation information is calculated from a driving current of the laser.
  3.  前記ガス供給バルブは、前記光共振器に接続されている請求項1または2に記載のレーザ発振装置。 The laser oscillation device according to claim 1 or 2, wherein the gas supply valve is connected to the optical resonator.
  4.  前記ガス排出バルブは、前記ガス循環路に接続されている請求項1~3のいずれかに記載のレーザ発振装置。 4. The laser oscillation device according to claim 1, wherein the gas discharge valve is connected to the gas circulation path.
  5.  前記ガス圧力検出器は、前記ガス循環路と前記ガス排出用バルブとの間に接続されている請求項1~4のいずれかに記載のレーザ発振装置。 The laser oscillation device according to any one of claims 1 to 4, wherein the gas pressure detector is connected between the gas circulation path and the gas discharge valve.
PCT/JP2013/001637 2012-05-18 2013-03-13 Lasing device WO2013171951A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380004221.XA CN103988378B (en) 2012-05-18 2013-03-13 Lasing device
EP13791219.2A EP2852012B1 (en) 2012-05-18 2013-03-13 Lasing device
JP2014515467A JP5810270B2 (en) 2012-05-18 2013-03-13 Laser oscillator
US14/278,146 US8897331B2 (en) 2012-05-18 2014-05-15 Lasing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012114364 2012-05-18
JP2012-114364 2012-05-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/278,146 Continuation US8897331B2 (en) 2012-05-18 2014-05-15 Lasing device

Publications (1)

Publication Number Publication Date
WO2013171951A1 true WO2013171951A1 (en) 2013-11-21

Family

ID=49583384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001637 WO2013171951A1 (en) 2012-05-18 2013-03-13 Lasing device

Country Status (5)

Country Link
US (1) US8897331B2 (en)
EP (1) EP2852012B1 (en)
JP (1) JP5810270B2 (en)
CN (1) CN103988378B (en)
WO (1) WO2013171951A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281184A (en) * 2014-07-14 2016-01-27 发那科株式会社 Gas laser oscillator capable of controlling gas pressure and gas consumption amount
DE102015119293A1 (en) 2014-11-17 2016-05-19 Fanuc Corporation A gas laser apparatus capable of testing airtightness of a laser gas supply pipe
JP2016139767A (en) * 2015-01-29 2016-08-04 ファナック株式会社 Gas laser device for determining composition ratio of laser gas
WO2024047873A1 (en) * 2022-09-02 2024-03-07 ファナック株式会社 Control device, gas laser oscillator system, and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022204308A1 (en) 2022-05-02 2023-11-02 Trumpf Lasersystems For Semiconductor Manufacturing Gmbh Indirectly monitored laser system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154189A (en) * 1984-12-27 1986-07-12 Matsushita Electric Ind Co Ltd Gas laser apparatus
JPS62214686A (en) * 1986-03-17 1987-09-21 Amada Co Ltd Laser gas injection in gas laser oscillator
JPH0480979A (en) 1990-07-23 1992-03-13 Matsushita Electric Ind Co Ltd Gas laser oscillation device
JP2003110172A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd Gas laser oscillator
WO2005104308A1 (en) * 2004-04-21 2005-11-03 Mitsubishi Denki Kabushiki Kaisha Gas laser oscillator and gas laser material processing machine
JP2006229258A (en) * 2006-05-30 2006-08-31 Komatsu Ltd Method for replenishing gas in excimer laser device
JP2010212553A (en) * 2009-03-12 2010-09-24 Panasonic Corp Laser oscillation device and laser beam machine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214577A (en) * 1984-04-11 1985-10-26 Matsushita Electric Ind Co Ltd Gas laser oscillator
JPH01128581A (en) 1987-11-13 1989-05-22 Toshiba Corp Gas laser apparatus
JP3824092B2 (en) * 1993-12-24 2006-09-20 株式会社小松製作所 Gas supply method for excimer laser device
JP3694359B2 (en) 1996-03-27 2005-09-14 株式会社ダイヘン Gas laser oscillator
JPH10173274A (en) 1996-12-12 1998-06-26 Komatsu Ltd Excimer laser device
JP2001244525A (en) 2000-03-02 2001-09-07 Matsushita Electric Ind Co Ltd Gas laser oscillator
JP3987300B2 (en) 2001-04-24 2007-10-03 ファナック株式会社 Gas laser oscillator
JP4146867B2 (en) * 2006-06-22 2008-09-10 ファナック株式会社 Gas laser oscillator
JP4137972B2 (en) * 2006-12-14 2008-08-20 ファナック株式会社 Gas composition abnormality judgment method and discharge excitation gas laser oscillator
EP2388870B1 (en) * 2009-03-12 2017-05-03 Panasonic Intellectual Property Management Co., Ltd. Laser oscillator and laser material processing machine
JP4782887B1 (en) 2010-04-02 2011-09-28 ファナック株式会社 Gas laser device
JP4855529B2 (en) * 2010-04-05 2012-01-18 ファナック株式会社 Laser device that stably controls minute laser output

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154189A (en) * 1984-12-27 1986-07-12 Matsushita Electric Ind Co Ltd Gas laser apparatus
JPS62214686A (en) * 1986-03-17 1987-09-21 Amada Co Ltd Laser gas injection in gas laser oscillator
JPH0480979A (en) 1990-07-23 1992-03-13 Matsushita Electric Ind Co Ltd Gas laser oscillation device
JP2003110172A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd Gas laser oscillator
WO2005104308A1 (en) * 2004-04-21 2005-11-03 Mitsubishi Denki Kabushiki Kaisha Gas laser oscillator and gas laser material processing machine
JP2006229258A (en) * 2006-05-30 2006-08-31 Komatsu Ltd Method for replenishing gas in excimer laser device
JP2010212553A (en) * 2009-03-12 2010-09-24 Panasonic Corp Laser oscillation device and laser beam machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2852012A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281184A (en) * 2014-07-14 2016-01-27 发那科株式会社 Gas laser oscillator capable of controlling gas pressure and gas consumption amount
JP2016021489A (en) * 2014-07-14 2016-02-04 ファナック株式会社 Gas laser oscillator capable of controlling gas pressure and gas consumption
US9331449B2 (en) 2014-07-14 2016-05-03 Fanuc Corporation Gas laser oscillator capable of controlling gas pressure and gas consumption amount
DE102015119293A1 (en) 2014-11-17 2016-05-19 Fanuc Corporation A gas laser apparatus capable of testing airtightness of a laser gas supply pipe
JP2016139767A (en) * 2015-01-29 2016-08-04 ファナック株式会社 Gas laser device for determining composition ratio of laser gas
US9653876B2 (en) 2015-01-29 2017-05-16 Fanuc Corporation Gas laser apparatus for determining composition ratio of laser gas
WO2024047873A1 (en) * 2022-09-02 2024-03-07 ファナック株式会社 Control device, gas laser oscillator system, and control method

Also Published As

Publication number Publication date
CN103988378A (en) 2014-08-13
EP2852012B1 (en) 2017-02-22
US8897331B2 (en) 2014-11-25
CN103988378B (en) 2017-02-01
JP5810270B2 (en) 2015-11-11
US20140247855A1 (en) 2014-09-04
EP2852012A1 (en) 2015-03-25
EP2852012A4 (en) 2015-11-11
JPWO2013171951A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP5810270B2 (en) Laser oscillator
US20110243177A1 (en) Gas laser device
EP1870971B1 (en) Gas laser oscillator
JP4137972B2 (en) Gas composition abnormality judgment method and discharge excitation gas laser oscillator
RU2595299C2 (en) Heating device and method for operation thereof
US20080253416A1 (en) Laser unit having preparatory function for activating the unit and activation method for the unit
EP2388870B1 (en) Laser oscillator and laser material processing machine
US20080304533A1 (en) Startup method for gas laser unit and gas laser unit having startup function
US20160240991A1 (en) Laser oscillator provided with blower
JP2005251855A (en) Laser device
US9252552B2 (en) Gas laser oscillator capable of estimating sealability of gas container
US11480094B2 (en) Motor cooling system
JP5800925B2 (en) Gas laser system capable of preserving laser gas state when power supply is cut off
US9419406B2 (en) Laser oscillator provided with blower
JPH10229229A (en) Electric discharge pumping gas laser oscillator
JP5855689B2 (en) Gas laser device with efficient startup process
JP2018043316A (en) Oil cooler and method of controlling the same
JP5800929B2 (en) Gas laser system that can be restarted in a short time without damage when the power supply is restored
JP2011187526A (en) Laser oscillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515467

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013791219

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013791219

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE