WO2024047736A1 - Temperature measurement device and abnormality detection method - Google Patents

Temperature measurement device and abnormality detection method Download PDF

Info

Publication number
WO2024047736A1
WO2024047736A1 PCT/JP2022/032549 JP2022032549W WO2024047736A1 WO 2024047736 A1 WO2024047736 A1 WO 2024047736A1 JP 2022032549 W JP2022032549 W JP 2022032549W WO 2024047736 A1 WO2024047736 A1 WO 2024047736A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
temperature
sensor
measuring device
resistor
Prior art date
Application number
PCT/JP2022/032549
Other languages
French (fr)
Japanese (ja)
Inventor
隆一 小池
Original Assignee
理化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理化工業株式会社 filed Critical 理化工業株式会社
Priority to PCT/JP2022/032549 priority Critical patent/WO2024047736A1/en
Publication of WO2024047736A1 publication Critical patent/WO2024047736A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/20Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit

Definitions

  • the present invention relates to a temperature measuring device including a measured value discriminator that calculates a measured value from a sensor voltage generated in a resistance temperature sensor, and an abnormality detection method in the device.
  • Patent Document 1 discloses a technique related to disconnection detection in a differential input circuit.
  • the present invention makes it possible to relatively easily realize noise monitoring (abnormality detection) in a temperature measurement device that obtains a measured value from a sensor voltage generated in a resistance temperature detector, which is a temperature sensor.
  • the purpose of the present invention is to provide a temperature measuring device or an abnormality detection method.
  • a temperature measuring device comprising a measured value discriminator that calculates a measured value from a sensor voltage generated in a resistance temperature detector as a temperature sensor, the temperature measuring device comprising one or more sensors provided between the resistance temperature detector and a reference potential. a bias resistor; a reference voltage measurement unit that measures a potential in at least one of the one or more bias resistors and determines whether the potential is within a predetermined range; A temperature measuring device comprising: a notification output section that outputs an abnormality notification when the temperature is not within a predetermined range.
  • the measured voltage range of the resistance temperature sensor has a predetermined margin with respect to the lower limit of the operating voltage range of the measured value discriminator, and the measured value discriminator
  • An abnormality detection method in a temperature measuring device that calculates a measured value from a sensor voltage generated in a resistance temperature detector, which is a temperature sensor, the method comprising one or more bias resistors provided between the resistance temperature detector and a reference potential.
  • An abnormality detection method that measures a potential in at least one of the resistors and detects an abnormality based on whether the potential is within a predetermined range.
  • noise monitoring can be realized relatively easily in a temperature measuring device that obtains a measured value from a sensor voltage generated in a resistance temperature sensor. .
  • FIG. 1 is a block diagram schematically showing the configuration of a temperature measuring device according to an embodiment of the present invention.
  • the temperature measuring device 1 of this embodiment is a temperature measuring device equipped with a temperature measuring resistor 2 as a temperature sensor, It is equipped with a connection terminal to which the resistance temperature detector 2 is connected, and one or more bias resistors 111 (see FIG. 2) provided between the resistance temperature detector 2 and the ground (reference potential).
  • the temperature determination unit 15 uses a conventional configuration (any configuration or processing for measuring the temperature of a measurement target using a resistance temperature detector) that is capable of calculating a measured value (measured temperature) from a sensor voltage. If so, I will omit the detailed explanation here.
  • the temperature output section 16 is an output section that outputs the measured temperature information calculated by the temperature discrimination section 15, and is equipped with a transmission section (regardless of wired or wireless) to another device (for example, a temperature regulator). The device may output measured temperature information to another device, or may include a display section to display (output) the measured temperature.
  • FIG. 2 is a circuit block diagram mainly showing the input circuit section 11.
  • the input circuit section 11 is one or more bias resistors 111 provided between the resistance temperature detector 2 and the ground (reference potential); a multiplexer 112 that receives input of the sensor signal (voltage) from the resistance temperature detector 2 and the voltage across the resistor 1111 (one of the bias resistors), selects one of them, and outputs the input; It includes an A/D converter 113 that A/D converts the input from the multiplexer 112 and outputs the result.
  • the microcomputer 17 calculates the measured temperature and processes abnormality detection based on the voltage value of the resistance temperature detector 2 and the voltage value of the resistor 1111, which are input from the A/D converter 113.
  • a constant current source is provided for supplying a constant current to the temperature measuring resistor 2 to obtain a sensor voltage.
  • various filters low-pass filters, etc.
  • resistors and resistors are used to adjust the signal level input to each part. Amplifiers and the like are installed where necessary as needed.
  • the reference voltage measurement unit 12 detects an abnormality (monitors the noise level) based on the potential at the resistor 1111.
  • the reference monitoring voltage storage unit 13 stores information based on the potential at the resistor 1111 that occurs when a current from a constant current source (not shown) flows through the resistance temperature detector 2 under normal conditions (when there is no noise).
  • a voltage value within a defined "predetermined range” is set in advance. For example, if the potential at the resistor 1111 under normal conditions is 1.5V, a range of ⁇ 1V, that is, a range of 0.5V to 2.5V is set as the "predetermined range". It is.
  • the reference potential goes up or down due to common mode noise, this will appear as a change in the potential at the resistor 1111, so this can be detected by the reference voltage measurement unit 12, and the change in the reference potential due to noise will cause the change to exceed a predetermined value. Whether or not the potential is exceeded is detected by checking whether the potential at the resistor 1111 is outside the "predetermined range.”
  • the notification output unit 14 is an output unit that outputs an abnormality when an abnormality is detected by the reference voltage measurement unit 12, and a transmission unit (regardless of wired or wireless) to another device (for example, a temperature regulator).
  • the device may be equipped with a display unit to output abnormality detection information to other devices, a display section may be provided to display (output) that an abnormality has been detected, or a speaker may output an alarm sound. It's fine.
  • FIG. 1 shows the configuration separately for each function, as can be understood from the explanation of FIG. 2, this does not necessarily indicate that the hardware is divided into these configurations; for example, Each configuration may be implemented in software using well-known devices such as a PLC, an MCU, and a microcomputer.
  • each component may be configured as hardware, such as one configured using FPGA or the like, or one in which part or all of each component is configured as dedicated hardware using ASIC, etc. It may be.
  • FIG. 3 is a flowchart outlining the processing according to the present invention of the temperature measuring device 1 of this embodiment.
  • the processing is executed on the microcomputer 17, and therefore, the temperature determination section 15, the reference voltage measurement section 12, etc. are implemented on the microcomputer 17 as software.
  • the temperature measuring device 1 of this embodiment has a monitoring mode in which abnormality detection (noise level monitoring) is performed and a normal mode in which this is not performed, and in step 301 it is determined which mode it is in. Note that mode selection is performed by a user's instruction to an input unit (not shown).
  • step 302 the process moves to step 302, where the multiplexer 112 is switched so that the signal from the resistance temperature detector 2 is input to the A/D converter 113.
  • step 303 the process waits for a predetermined time to elapse. This ensures a stable time for input port switching (about 100 msec, if you ask me).
  • the sensor voltage value input via the A/D converter 113 is acquired (step 304).
  • the microcomputer 17 temperature discrimination unit 15
  • the microcomputer 17 performs a process of calculating a measured value (measured temperature) from the sensor voltage value (and calculates the measured temperature information output processing from the temperature output unit 16) is performed.
  • step 305 the multiplexer 112 is switched so that the potential at the resistor 1111 is input to the A/D converter 113, and in step 306, the process waits for a predetermined time to elapse (this is the same concept as step 303). After the stabilization time for switching has elapsed, the potential value at the resistor 1111 input via the A/D converter 113 is acquired (step 307). In step 308, it is determined whether the potential at the resistor 1111 is within the above-mentioned "predetermined range", and if it is outside the predetermined range (that is, if it corresponds to abnormality detection), the process proceeds to step 309. Then, processing for outputting abnormality detection information from the notification output unit 14 is performed. On the other hand, if it is within the "predetermined range” (that is, if there is no abnormality), the process returns to step 301 and the above process is repeated.
  • step 301 If it is determined in step 301 that the mode is normal mode, the process moves to steps 310 to 312.
  • the processing in steps 310 to 312 is similar in concept to the processing in steps 302 to 304, and the explanation thereof will be omitted.
  • the process After completing the processing in steps 310 to 312, the process returns to step 301 and repeats the above processing. As a result, in the normal mode, the process of acquiring the sensor voltage value is performed every control cycle.
  • steps 302 to 304 and the series of processes from steps 305 to 309 may be performed in reverse order (steps 305 to 309 are processed first).
  • noise monitoring can be realized relatively easily in a temperature measuring device that obtains a measured value from the sensor voltage generated in a resistance temperature sensor. Can be done.
  • the bias by the bias resistor 111 is set so that the measured voltage range of the sensor has a predetermined margin with respect to the lower limit of the operating voltage range of the measured value discriminator (temperature discriminator), and the operating voltage range of the measured value discriminator By configuring it to have a predetermined margin with respect to the upper limit of , it is possible to improve robustness against noise. For example, assume that the operating voltage range of the microcomputer 17 (measured value discriminator) is 0V to 5V, and the bias by the bias resistor 111 is 3V. If, for example, the ground level is raised by 1V due to noise in this state, 4V will be occupied by the bias and noise.
  • the configuration is such that there is a margin of 1.5 V with respect to the lower limit of the operating voltage range of the measurement value discriminator, and a margin of 1.5 V with respect to the upper limit).
  • the bias caused by the bias resistor is changed so that the measurement voltage range of the sensor (in the above example, 1.5 to 3.5V, which is 0 to 2V offset by the bias) is the operating voltage range of the measurement value discriminator (in the above example, 0V to 3.5V). It is preferable to set it so that it is in the center of 5V). That is, it is most preferable that the median value of the measurement voltage range of the sensor (2.5V in the above example) is the same as the median value of the operating voltage range of the measurement value discriminator (2.5V in the above example). Preferably, the median value of the measured voltage range of the sensor is within ⁇ 20% of the median value of the operating voltage range of the measured value discriminator.
  • the bias resistor 111 is composed of a plurality of resistors (resistor 1111 and resistor 1112), and the potential of some of them (resistor 1111) is acquired (measured by the reference voltage measurement unit).
  • the present invention is not limited to this.
  • the bias resistor may be composed of one resistor and the potential of the resistor portion may be measured. Note that it is preferable that the resistance measured by the reference voltage measuring section be the resistance closest to the reference potential (ground).
  • the sensor signal (voltage) from the resistance temperature detector 2 and the potential information at the resistor 1111 are input to the multiplexer 112, one of these is selected and A/D converted, and both are sent to the microcomputer 17.
  • input information is taken as an example, the present invention is not limited to this.
  • a temperature discrimination section that calculates the measured temperature based on the sensor signal (voltage) from the resistance temperature detector 2 and a reference voltage measurement section that performs abnormality detection processing based on the potential at the resistor 1111 are each provided in separate circuits. (without using a multiplexer).
  • the circuit configuration including the A/D converter, amplifiers before and after it, digital filters, etc. can be integrated into one system, resulting in a simpler configuration. This is preferable because it is possible.
  • a resistance thermometer as a temperature sensor is used as an example of a sensor, but the present invention is not limited to this, and can be applied to any sensor (a device that calculates a measured value from a sensor voltage). Can be done.
  • Temperature measuring device 11. .. ... Input circuit section 111. .. .. Bias resistance 12. .. .. Reference voltage measuring section 13. .. .. Reference monitoring voltage storage section 14. .. .. Notification output section 15. .. .. Temperature discrimination section (measured value discrimination section) 2. .. ... RTD

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

A temperature measurement device 1 is provided with a measurement value discrimination unit (temperature discrimination unit 15) that calculates a measurement value from a sensor voltage produced by a resistance thermometer 2 that is a temperature sensor. The temperature measurement device 1 enables noise monitoring (abnormality sensing) to be realized relatively easily due to the provision of: one or more bias resistors disposed between the resistance thermometer 2 and a reference potential; a reference voltage measurement unit 12 that measures potential at at least one of the one or more bias resistors; and a notification output unit 14 that outputs an abnormality notification if the potential is not in a prescribed range.

Description

温度測定装置および異常検知方法Temperature measuring device and abnormality detection method
 本発明は、測温抵抗体で生じるセンサ電圧から測定値を算出する測定値判別部を備える温度測定装置および当該装置における異常検知方法に関する。 The present invention relates to a temperature measuring device including a measured value discriminator that calculates a measured value from a sensor voltage generated in a resistance temperature sensor, and an abnormality detection method in the device.
 従来、各種の装置において各種のセンサが用いられており、センサで生じる電圧に基づいて測定対象の測定値を取得することが行われている。
 センサの使用においては、センサ値(電圧値)に対するノイズの監視やその影響を低減することや、断線の監視など、異常に対する対策が必要に応じてとられている。
 特許文献1にはこのようなものの例として、差動入力回路の断線検知に関する技術が開示されている。
2. Description of the Related Art Conventionally, various types of sensors have been used in various types of devices, and measured values of a measurement target have been obtained based on voltages generated by the sensors.
When using a sensor, countermeasures against abnormalities are taken as necessary, such as monitoring noise on the sensor value (voltage value) and reducing its influence, and monitoring disconnection.
As an example of such a technique, Patent Document 1 discloses a technique related to disconnection detection in a differential input circuit.
特開昭51-110953号公報Japanese Unexamined Patent Publication No. 51-110953
 センサ値(電圧値)に対するノイズの監視やその影響を低減するための技術は、対象の用途等に応じて様々なものが用いられており、その対処のレベルとしても様々であるが、コスト面の問題等により、ノイズの監視等の対策が行われていない装置も存在している。このような装置においても、ノイズの監視等の対策が行われた方がよいことは当然であり、従って、低コスト若しくはより簡易な方法でノイズの監視等の対策を可能とする技術が望まれている。 Various technologies are used to monitor noise on sensor values (voltage values) and reduce its effects, depending on the target application, etc., and the level of countermeasures varies. Due to problems such as this, there are some devices in which measures such as noise monitoring are not taken. It goes without saying that it is better to take measures such as noise monitoring in such devices as well, and therefore, technology that enables measures such as noise monitoring with a lower cost or simpler method is desired. ing.
 本発明は、上記の点に鑑み、温度センサである測温抵抗体で生じるセンサ電圧から測定値を取得する温度測定装置において、ノイズの監視(異常検知)を比較的簡易に実現することが可能な温度測定装置若しくは異常検知方法を提供することを目的とする。 In view of the above points, the present invention makes it possible to relatively easily realize noise monitoring (abnormality detection) in a temperature measurement device that obtains a measured value from a sensor voltage generated in a resistance temperature detector, which is a temperature sensor. The purpose of the present invention is to provide a temperature measuring device or an abnormality detection method.
(構成1)
 温度センサである測温抵抗体で生じるセンサ電圧から測定値を算出する測定値判別部を備える温度測定装置であって、前記測温抵抗体と基準電位との間に設けられる一つ又は複数のバイアス抵抗と、前記一つ又は複数のバイアス抵抗のうちの少なくとも1つの抵抗における電位を測定し、前記電位が所定の範囲内であるか否かを判別する基準電圧計測部と、前記電位が前記所定の範囲内にない場合に、異常通知を出力する通知出力部と、を備える、温度測定装置。
(Configuration 1)
A temperature measuring device comprising a measured value discriminator that calculates a measured value from a sensor voltage generated in a resistance temperature detector as a temperature sensor, the temperature measuring device comprising one or more sensors provided between the resistance temperature detector and a reference potential. a bias resistor; a reference voltage measurement unit that measures a potential in at least one of the one or more bias resistors and determines whether the potential is within a predetermined range; A temperature measuring device comprising: a notification output section that outputs an abnormality notification when the temperature is not within a predetermined range.
(構成2)
 前記一つ又は複数のバイアス抵抗によるバイアスによって、前記測温抵抗体の計測電圧範囲が、前記測定値判別部の動作電圧範囲の下限に対し所定のマージンを有し、且つ、前記測定値判別部の動作電圧範囲の上限に対し所定のマージンを有するように構成されている、構成1に記載の温度測定装置。
(Configuration 2)
Due to the bias by the one or more bias resistors, the measured voltage range of the resistance temperature sensor has a predetermined margin with respect to the lower limit of the operating voltage range of the measured value discriminator, and the measured value discriminator The temperature measurement device according to configuration 1, wherein the temperature measurement device is configured to have a predetermined margin with respect to the upper limit of the operating voltage range of the temperature measurement device.
(構成3)
 前記電位を測定する抵抗が、前記一つ又は複数のバイアス抵抗のうちの前記基準電位に最も近い抵抗である、構成1又は2に記載の温度測定装置。
(Configuration 3)
The temperature measuring device according to configuration 1 or 2, wherein the resistor for measuring the potential is a resistor closest to the reference potential among the one or more bias resistors.
(構成4)
 温度センサである測温抵抗体で生じるセンサ電圧から測定値を算出する温度測定装置における異常検知方法であって、前記測温抵抗体と基準電位との間に設けられる一つ又は複数のバイアス抵抗のうちの少なくとも1つの抵抗における電位を測定し、前記電位が所定の範囲内にあるか否かによって異常を検知する、異常検知方法。
(Configuration 4)
An abnormality detection method in a temperature measuring device that calculates a measured value from a sensor voltage generated in a resistance temperature detector, which is a temperature sensor, the method comprising one or more bias resistors provided between the resistance temperature detector and a reference potential. An abnormality detection method that measures a potential in at least one of the resistors and detects an abnormality based on whether the potential is within a predetermined range.
 本発明の温度測定装置若しくは異常検知方法によれば、測温抵抗体で生じるセンサ電圧から測定値を取得する温度測定装置において、ノイズの監視(異常検知)を比較的簡易に実現することができる。 According to the temperature measuring device or abnormality detection method of the present invention, noise monitoring (abnormality detection) can be realized relatively easily in a temperature measuring device that obtains a measured value from a sensor voltage generated in a resistance temperature sensor. .
本発明に係る実施形態の温度測定装置の構成の概略を示すブロック図A block diagram schematically showing the configuration of a temperature measuring device according to an embodiment of the present invention. 実施形態の温度測定装置の入力回路部を主に示す図A diagram mainly showing the input circuit section of the temperature measuring device according to the embodiment. 実施形態の温度測定装置の本発明に係る処理の概略を示すフローチャートFlowchart showing an outline of the processing according to the present invention of the temperature measuring device of the embodiment
 以下、本発明の実施形態について、図面を参照しながら具体的に説明する。なお、以下の実施形態は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するものではない。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. Note that the following embodiment is one form of embodying the present invention, and does not limit the present invention within its scope.
 図1は、本発明に係る実施形態の温度測定装置の構成の概略を示すブロック図である。
 本実施形態の温度測定装置1は、温度センサとして測温抵抗体2を備える温度測定装置であって、
 測温抵抗体2が接続される接続端子や、測温抵抗体2とグランド(基準電位)との間に設けられる一つ又は複数のバイアス抵抗111(図2参照)を備え、センサ電圧値が入力される入力回路部11と、
 測温抵抗体2で生じるセンサ電圧から測定値(測定温度)を算出する測定値判別部としての温度判別部15と、
 測定値(測定温度)を出力する出力部である温度出力部16と、
 バイアス抵抗111のうちの少なくとも1つの抵抗(抵抗1111、図2参照)における電位を測定し、当該電位が所定の範囲内であるか否かを判別する基準電圧計測部12と、
 正常時における抵抗1111の電位に基づいて定められた「所定範囲」の電圧値が記憶されている基準監視電圧記憶部13と、
 前記電位が所定範囲にない場合に、異常通知を出力する通知出力部14と、
 を備えている。
FIG. 1 is a block diagram schematically showing the configuration of a temperature measuring device according to an embodiment of the present invention.
The temperature measuring device 1 of this embodiment is a temperature measuring device equipped with a temperature measuring resistor 2 as a temperature sensor,
It is equipped with a connection terminal to which the resistance temperature detector 2 is connected, and one or more bias resistors 111 (see FIG. 2) provided between the resistance temperature detector 2 and the ground (reference potential). An input circuit unit 11 to which input is input;
a temperature determining unit 15 as a measured value determining unit that calculates a measured value (measured temperature) from the sensor voltage generated in the resistance temperature sensor 2;
A temperature output section 16 that is an output section that outputs a measured value (measured temperature);
a reference voltage measurement unit 12 that measures the potential in at least one of the bias resistors 111 (resistor 1111, see FIG. 2) and determines whether or not the potential is within a predetermined range;
a reference monitoring voltage storage unit 13 in which voltage values in a “predetermined range” determined based on the potential of the resistor 1111 during normal times are stored;
a notification output unit 14 that outputs an abnormality notification when the potential is not within a predetermined range;
It is equipped with
 温度判別部15は、センサ電圧から測定値(測定温度)を算出することが可能な従来の構成(測温抵抗体を用いて測定対象の温度を測定するための任意の構成や処理)を用いればよく、ここでの詳しい説明を省略する。
 温度出力部16は、温度判別部15によって算出された測定温度情報を出力する出力部であり、他の装置(例えば温度調整器)への送信部(有線、無線を問わない)を備えることにより他の装置に測定温度情報を出力するものや、表示部を備えることにより測定温度を表示する(出力する)ものなどであってよい。
The temperature determination unit 15 uses a conventional configuration (any configuration or processing for measuring the temperature of a measurement target using a resistance temperature detector) that is capable of calculating a measured value (measured temperature) from a sensor voltage. If so, I will omit the detailed explanation here.
The temperature output section 16 is an output section that outputs the measured temperature information calculated by the temperature discrimination section 15, and is equipped with a transmission section (regardless of wired or wireless) to another device (for example, a temperature regulator). The device may output measured temperature information to another device, or may include a display section to display (output) the measured temperature.
 図2は、入力回路部11を主に示す回路ブロック図である。
 入力回路部11は、
 測温抵抗体2とグランド(基準電位)との間に設けられる一つ又は複数のバイアス抵抗111と、
 測温抵抗体2からのセンサ信号(電圧)と、抵抗1111(バイアス抵抗の1つ)の両端の電圧の入力を受け、その何れかを選択して出力するマルチプレクサ112と、
 マルチプレクサ112からの入力をA/D変換して出力するA/D変換部113と、を備える。
 マイコン17は、A/D変換部113から入力された、測温抵抗体2の電圧値や抵抗1111の電圧値に基づいて、測定温度の算出や、異常検知の処理を行うものであり、温度判別部15や基準電圧計測部12として機能する。また、基準監視電圧記憶部13としても機能する。
 なお、図では省略しているが、測温抵抗体2に対して定電流を流してセンサ電圧を得るための定電流源が備えられている。
 また、図では概念としての説明とし、細かい構成については省略しているが、信号波形を整形するための各種のフィルター(ローパスフィルタ等)や、各部に入力する信号レベルを調整するための抵抗や増幅器などが必要に応じて必要な個所に設けられるものである。
FIG. 2 is a circuit block diagram mainly showing the input circuit section 11. As shown in FIG.
The input circuit section 11 is
one or more bias resistors 111 provided between the resistance temperature detector 2 and the ground (reference potential);
a multiplexer 112 that receives input of the sensor signal (voltage) from the resistance temperature detector 2 and the voltage across the resistor 1111 (one of the bias resistors), selects one of them, and outputs the input;
It includes an A/D converter 113 that A/D converts the input from the multiplexer 112 and outputs the result.
The microcomputer 17 calculates the measured temperature and processes abnormality detection based on the voltage value of the resistance temperature detector 2 and the voltage value of the resistor 1111, which are input from the A/D converter 113. It functions as the discrimination section 15 and the reference voltage measurement section 12. It also functions as the reference monitoring voltage storage section 13.
Although not shown in the figure, a constant current source is provided for supplying a constant current to the temperature measuring resistor 2 to obtain a sensor voltage.
In addition, although the diagram is a conceptual explanation and the detailed configuration is omitted, various filters (low-pass filters, etc.) are used to shape the signal waveform, and resistors and resistors are used to adjust the signal level input to each part. Amplifiers and the like are installed where necessary as needed.
 基準電圧計測部12は、抵抗1111における電位に基づいて、異常検知(ノイズレベルの監視)を行うものである。
 基準監視電圧記憶部13には、正常時(ノイズが無い時)において、定電流源(不図示)からの電流が測温抵抗体2に流れている際に生じる、抵抗1111における電位に基づいて定められた「所定範囲」の電圧値が、予め設定されている。例えば、正常時における抵抗1111における電位が1.5Vだとした場合に、これに対して±1Vの範囲、即ち、0.5V~2.5Vの範囲が「所定範囲」として設定されているものである。
 例えば、コモンモードノイズにより、基準電位が上下した場合、抵抗1111における電位の変動となって現れるため、基準電圧計測部12においてこれを検知できるものであり、ノイズによる基準電位の変動が所定値を超えているか否かを、抵抗1111における電位が「所定範囲」外であるか否かによって検知するものである。
The reference voltage measurement unit 12 detects an abnormality (monitors the noise level) based on the potential at the resistor 1111.
The reference monitoring voltage storage unit 13 stores information based on the potential at the resistor 1111 that occurs when a current from a constant current source (not shown) flows through the resistance temperature detector 2 under normal conditions (when there is no noise). A voltage value within a defined "predetermined range" is set in advance. For example, if the potential at the resistor 1111 under normal conditions is 1.5V, a range of ±1V, that is, a range of 0.5V to 2.5V is set as the "predetermined range". It is.
For example, if the reference potential goes up or down due to common mode noise, this will appear as a change in the potential at the resistor 1111, so this can be detected by the reference voltage measurement unit 12, and the change in the reference potential due to noise will cause the change to exceed a predetermined value. Whether or not the potential is exceeded is detected by checking whether the potential at the resistor 1111 is outside the "predetermined range."
 通知出力部14は、基準電圧計測部12によって異常が検知された際に、これを出力する出力部であり、他の装置(例えば温度調整器)への送信部(有線、無線を問わない)を備えることにより他の装置に異常検知情報を出力するものや、表示部を備えることにより異常が検知されたことを表示する(出力する)もの、或いはスピーカによって警報音を出力するものなどであってよい。 The notification output unit 14 is an output unit that outputs an abnormality when an abnormality is detected by the reference voltage measurement unit 12, and a transmission unit (regardless of wired or wireless) to another device (for example, a temperature regulator). The device may be equipped with a display unit to output abnormality detection information to other devices, a display section may be provided to display (output) that an abnormality has been detected, or a speaker may output an alarm sound. It's fine.
 なお、図1では機能ごとに構成を分けて記載しているが、図2の説明からも理解されるように、必ずしもハード的にこれらの構成に分かれていることを示すものではなく、例えば、PLC、MCU、マイコン等の周知のデバイスを用いて各構成がソフトウェア的に実装されるものであってもよい。勿論、各構成がハード的に構成されるものであってよく、例えばFPGA等を利用して構成されるものや、ASICなどによって各構成の一部若しくは全部が専用のハードとして構成されるもの等であってもよい。 Although FIG. 1 shows the configuration separately for each function, as can be understood from the explanation of FIG. 2, this does not necessarily indicate that the hardware is divided into these configurations; for example, Each configuration may be implemented in software using well-known devices such as a PLC, an MCU, and a microcomputer. Of course, each component may be configured as hardware, such as one configured using FPGA or the like, or one in which part or all of each component is configured as dedicated hardware using ASIC, etc. It may be.
 図3は、本実施形態の温度測定装置1の本発明に係る処理の概略を示すフローチャートである。当該処理はマイコン17上で実行されるものであり、従って、温度判別部15や基準電圧計測部12等が、マイコン17上でソフトウェア的に実装されるものである。
 本実施形態の温度測定装置1は、異常検知(ノイズレベルの監視)を行う監視モードと、これを行わない通常モードを備えており、ステップ301では何れのモードであるかの判別を行う。なお、モードの選択は、図示しない入力部に対するユーザからの指示によって行われる。
FIG. 3 is a flowchart outlining the processing according to the present invention of the temperature measuring device 1 of this embodiment. The processing is executed on the microcomputer 17, and therefore, the temperature determination section 15, the reference voltage measurement section 12, etc. are implemented on the microcomputer 17 as software.
The temperature measuring device 1 of this embodiment has a monitoring mode in which abnormality detection (noise level monitoring) is performed and a normal mode in which this is not performed, and in step 301 it is determined which mode it is in. Note that mode selection is performed by a user's instruction to an input unit (not shown).
 監視モードであった場合には、ステップ302へと移行し、マルチプレクサ112を切り替えて測温抵抗体2からの信号がA/D変換部113へと入力されるようにする。
 続くステップ303では所定時間の経過を待つ。これは入力ポート切り替えの安定時間(問えば100msec程度)を確保しているものである。
 切り替えの安定時間が経過したら、A/D変換部113を介して入力されるセンサ電圧値を取得する(ステップ304)。なお、本発明の直接的な対象ではないため説明を省略するが、マイコン17(温度判別部15)では、当該センサ電圧値から測定値(測定温度)を算出する処理(及び当該測定温度情報の温度出力部16からの出力処理等)が行われる。
If it is the monitoring mode, the process moves to step 302, where the multiplexer 112 is switched so that the signal from the resistance temperature detector 2 is input to the A/D converter 113.
In the following step 303, the process waits for a predetermined time to elapse. This ensures a stable time for input port switching (about 100 msec, if you ask me).
After the stabilization time for switching has elapsed, the sensor voltage value input via the A/D converter 113 is acquired (step 304). Note that the microcomputer 17 (temperature discrimination unit 15) performs a process of calculating a measured value (measured temperature) from the sensor voltage value (and calculates the measured temperature information output processing from the temperature output unit 16) is performed.
 続くステップ305では、マルチプレクサ112を切り替えて抵抗1111における電位がA/D変換部113へと入力されるようにして、ステップ306で所定時間の経過を待つ(ステップ303と同様の概念である)。
 切り替えの安定時間が経過したら、A/D変換部113を介して入力される抵抗1111における電位値を取得する(ステップ307)。
 ステップ308では、抵抗1111における電位が、上述した「所定範囲」内であるか否かを判別し、所定範囲外であった場合(即ち、異常検知に該当する場合)には、ステップ309へと移行して、通知出力部14から異常検知情報を出力する処理を行う。
 一方、「所定範囲」内であった場合(即ち、異常がない場合)には、ステップ301へと戻って上記処理を繰り返す。
In the following step 305, the multiplexer 112 is switched so that the potential at the resistor 1111 is input to the A/D converter 113, and in step 306, the process waits for a predetermined time to elapse (this is the same concept as step 303).
After the stabilization time for switching has elapsed, the potential value at the resistor 1111 input via the A/D converter 113 is acquired (step 307).
In step 308, it is determined whether the potential at the resistor 1111 is within the above-mentioned "predetermined range", and if it is outside the predetermined range (that is, if it corresponds to abnormality detection), the process proceeds to step 309. Then, processing for outputting abnormality detection information from the notification output unit 14 is performed.
On the other hand, if it is within the "predetermined range" (that is, if there is no abnormality), the process returns to step 301 and the above process is repeated.
 ステップ301における判別において、モードが通常モードであった場合には、ステップ310~312の処理へと移行する。ステップ310~312の処理は、ステップ302~304の処理と同様の概念であり、説明を省略する。
 ステップ310~312の処理が終わったら、ステップ301へと戻って上記処理を繰り返す。これにより、通常モードにおいては、制御周期ごとにセンサ電圧値を取得する処理が行われることになる。
If it is determined in step 301 that the mode is normal mode, the process moves to steps 310 to 312. The processing in steps 310 to 312 is similar in concept to the processing in steps 302 to 304, and the explanation thereof will be omitted.
After completing the processing in steps 310 to 312, the process returns to step 301 and repeats the above processing. As a result, in the normal mode, the process of acquiring the sensor voltage value is performed every control cycle.
 なお、ステップ302~304の一連の処理と、ステップ305~309の一連の処理は、その処理順を逆に(ステップ305~309を先に処理)しても良い。 Note that the series of processes from steps 302 to 304 and the series of processes from steps 305 to 309 may be performed in reverse order (steps 305 to 309 are processed first).
 以上のごとく、本実施形態の温度測定装置1によれば、測温抵抗体で生じるセンサ電圧から測定値を取得する温度測定装置において、ノイズの監視(異常検知)を比較的簡易に実現することができる。 As described above, according to the temperature measuring device 1 of the present embodiment, noise monitoring (abnormality detection) can be realized relatively easily in a temperature measuring device that obtains a measured value from the sensor voltage generated in a resistance temperature sensor. Can be done.
 また、バイアス抵抗111によるバイアスを、センサの計測電圧範囲が、測定値判別部(温度判別部)の動作電圧範囲の下限に対し所定のマージンを有し、且つ、測定値判別部の動作電圧範囲の上限に対し所定のマージンを有するように構成することにより、ノイズに対するロバスト性を向上することができる。
 例えば、マイコン17(測定値判別部)の動作電圧範囲が0V~5Vであり、バイアス抵抗111によるバイアスが3Vであったとする。この状態で例えばノイズによる1Vのグランドの底上げがされてしまうと、バイアスとノイズによって4V分が占められてしまう結果となり、仮に測温抵抗体2の計測電圧が1V以上であると、マイコン17(測定値判別部)の動作電圧範囲の5Vを超えてしまい、正しい測定ができないことになる。逆に、バイアス抵抗111によるバイアスが0.5Vであったとして、ノイズにより-1Vがグランドに印可された場合、測温抵抗体2の計測電圧が0.5V未満であるとこれを検知できないということが生じ得る。
 これに対し、例えば、バイアス抵抗111によるバイアスを1.5Vとすることにより、±1.5Vのノイズに対して、0~2Vのセンサの計測電圧を正しく取得できるようになるものである(この例では、測定値判別部の動作電圧範囲の下限に対し1.5Vのマージンであり、且つ、上限に対し1.5Vのマージンとなるように構成されているものである)。
 バイアス抵抗によるバイアスを、センサの計測電圧範囲(上記の例では、0~2Vがバイアスによってオフセットされた1.5~3.5V)が、測定値判別部の動作電圧範囲(上記例では0V~5V)の中央となるように、設定することが好ましい。即ち、センサの計測電圧範囲の中央値(上記例では2.5V)が、測定値判別部の動作電圧範囲の中央値(上記例では2.5V)に対してと同じになることが最も好ましく、センサの計測電圧範囲の中央値が測定値判別部の動作電圧範囲の中央値に対して±20%の範囲にあることが好ましい。
In addition, the bias by the bias resistor 111 is set so that the measured voltage range of the sensor has a predetermined margin with respect to the lower limit of the operating voltage range of the measured value discriminator (temperature discriminator), and the operating voltage range of the measured value discriminator By configuring it to have a predetermined margin with respect to the upper limit of , it is possible to improve robustness against noise.
For example, assume that the operating voltage range of the microcomputer 17 (measured value discriminator) is 0V to 5V, and the bias by the bias resistor 111 is 3V. If, for example, the ground level is raised by 1V due to noise in this state, 4V will be occupied by the bias and noise. This would exceed the operating voltage range of 5V (measured value discriminator), making it impossible to perform correct measurements. Conversely, if the bias from the bias resistor 111 is 0.5V and -1V is applied to the ground due to noise, this cannot be detected if the measured voltage of the resistance temperature detector 2 is less than 0.5V. things can happen.
On the other hand, for example, by setting the bias of the bias resistor 111 to 1.5V, it is possible to correctly acquire the measured voltage of the sensor of 0 to 2V against noise of ±1.5V (this In the example, the configuration is such that there is a margin of 1.5 V with respect to the lower limit of the operating voltage range of the measurement value discriminator, and a margin of 1.5 V with respect to the upper limit).
The bias caused by the bias resistor is changed so that the measurement voltage range of the sensor (in the above example, 1.5 to 3.5V, which is 0 to 2V offset by the bias) is the operating voltage range of the measurement value discriminator (in the above example, 0V to 3.5V). It is preferable to set it so that it is in the center of 5V). That is, it is most preferable that the median value of the measurement voltage range of the sensor (2.5V in the above example) is the same as the median value of the operating voltage range of the measurement value discriminator (2.5V in the above example). Preferably, the median value of the measured voltage range of the sensor is within ±20% of the median value of the operating voltage range of the measured value discriminator.
 実施形態では、バイアス抵抗111が複数の抵抗(抵抗1111と抵抗1112)によって構成され、そのうちの一部(抵抗1111)の電位を取得する(基準電圧計測部によって計測する)ものを例としたが、本発明をこれに限るものではなく、例えば、バイアス抵抗を一つの抵抗で構成し、当該抵抗部分の電位を測定するもの等であってもよい。
 なお、基準電圧計測部によって計測する抵抗は、基準電位(グランド)に最も近い抵抗とすることが好ましい。
In the embodiment, an example is given in which the bias resistor 111 is composed of a plurality of resistors (resistor 1111 and resistor 1112), and the potential of some of them (resistor 1111) is acquired (measured by the reference voltage measurement unit). However, the present invention is not limited to this. For example, the bias resistor may be composed of one resistor and the potential of the resistor portion may be measured.
Note that it is preferable that the resistance measured by the reference voltage measuring section be the resistance closest to the reference potential (ground).
 実施形態では、測温抵抗体2からのセンサ信号(電圧)と、抵抗1111における電位情報が、マルチプレクサ112に入力され、これらの何れかが選択されてA/D変換され、何れもマイコン17に入力されるものを例としているが、本発明をこれに限るものではない。例えば、測温抵抗体2からのセンサ信号(電圧)に基づいて測定温度の算出をする温度判別部と、抵抗1111における電位に基づく異常検知の処理を行う基準電圧計測部が、それぞれ個別の回路によって構成されるもの(マルチプレクサを使用しないもの)等であってもよい。
 ただし、本実施形態のように、マルチプレクサによって信号をまとめることにより、A/D変換器やその前後の増幅器やデジタルフィルターなどの回路構成を一系統にすることができ、より簡易な構成とすることが可能であるため、好適である。
In the embodiment, the sensor signal (voltage) from the resistance temperature detector 2 and the potential information at the resistor 1111 are input to the multiplexer 112, one of these is selected and A/D converted, and both are sent to the microcomputer 17. Although input information is taken as an example, the present invention is not limited to this. For example, a temperature discrimination section that calculates the measured temperature based on the sensor signal (voltage) from the resistance temperature detector 2 and a reference voltage measurement section that performs abnormality detection processing based on the potential at the resistor 1111 are each provided in separate circuits. (without using a multiplexer).
However, as in this embodiment, by combining signals using a multiplexer, the circuit configuration including the A/D converter, amplifiers before and after it, digital filters, etc. can be integrated into one system, resulting in a simpler configuration. This is preferable because it is possible.
 実施形態では、センサの例として温度センサとしての測温抵抗体を例としているが、本発明をこれに限るものではなく、任意のセンサ(センサ電圧から測定値を算出する装置)に適用することができる。 In the embodiment, a resistance thermometer as a temperature sensor is used as an example of a sensor, but the present invention is not limited to this, and can be applied to any sensor (a device that calculates a measured value from a sensor voltage). Can be done.
 1...温度測定装置
  11...入力回路部
   111...バイアス抵抗
  12...基準電圧計測部
  13...基準監視電圧記憶部
  14...通知出力部
  15...温度判別部(測定値判別部)
 2...測温抵抗体
1. .. .. Temperature measuring device 11. .. .. Input circuit section 111. .. .. Bias resistance 12. .. .. Reference voltage measuring section 13. .. .. Reference monitoring voltage storage section 14. .. .. Notification output section 15. .. .. Temperature discrimination section (measured value discrimination section)
2. .. .. RTD

Claims (4)

  1.  温度センサである測温抵抗体で生じるセンサ電圧から測定値を算出する測定値判別部を備える温度測定装置であって、
     前記測温抵抗体と基準電位との間に設けられる一つ又は複数のバイアス抵抗と、
     前記一つ又は複数のバイアス抵抗のうちの少なくとも1つの抵抗における電位を測定し、前記電位が所定の範囲内であるか否かを判別する基準電圧計測部と、
     前記電位が前記所定の範囲内にない場合に、異常通知を出力する通知出力部と、
     を備える、温度測定装置。
    A temperature measuring device comprising a measured value discriminator that calculates a measured value from a sensor voltage generated in a resistance temperature sensor that is a temperature sensor,
    one or more bias resistors provided between the temperature measuring resistor and a reference potential;
    a reference voltage measurement unit that measures a potential in at least one of the one or more bias resistors and determines whether the potential is within a predetermined range;
    a notification output unit that outputs an abnormality notification when the potential is not within the predetermined range;
    A temperature measuring device comprising:
  2.  前記一つ又は複数のバイアス抵抗によるバイアスによって、前記測温抵抗体の計測電圧範囲が、前記測定値判別部の動作電圧範囲の下限に対し所定のマージンを有し、且つ、前記測定値判別部の動作電圧範囲の上限に対し所定のマージンを有するように構成されている、請求項1に記載の温度測定装置。 Due to the bias by the one or more bias resistors, the measured voltage range of the resistance temperature sensor has a predetermined margin with respect to the lower limit of the operating voltage range of the measured value discriminator, and the measured value discriminator 2. The temperature measuring device according to claim 1, wherein the temperature measuring device is configured to have a predetermined margin with respect to an upper limit of an operating voltage range.
  3.  前記電位を測定する抵抗が、前記一つ又は複数のバイアス抵抗のうちの前記基準電位に最も近い抵抗である、請求項1に記載の測定装置。 The measuring device according to claim 1, wherein the resistor that measures the potential is the one closest to the reference potential among the one or more bias resistors.
  4.  温度センサである測温抵抗体で生じるセンサ電圧から測定値を算出する温度測定装置における異常検知方法であって、
     前記測温抵抗体と基準電位との間に設けられる一つ又は複数のバイアス抵抗のうちの少なくとも1つの抵抗における電位を測定し、
     前記電位が所定の範囲内にあるか否かによって異常を検知する、異常検知方法。
    An abnormality detection method in a temperature measuring device that calculates a measured value from a sensor voltage generated in a resistance temperature detector, which is a temperature sensor,
    Measuring the potential in at least one of the one or more bias resistors provided between the temperature measuring resistor and the reference potential;
    An abnormality detection method that detects an abnormality based on whether the potential is within a predetermined range.
PCT/JP2022/032549 2022-08-30 2022-08-30 Temperature measurement device and abnormality detection method WO2024047736A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032549 WO2024047736A1 (en) 2022-08-30 2022-08-30 Temperature measurement device and abnormality detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032549 WO2024047736A1 (en) 2022-08-30 2022-08-30 Temperature measurement device and abnormality detection method

Publications (1)

Publication Number Publication Date
WO2024047736A1 true WO2024047736A1 (en) 2024-03-07

Family

ID=90098937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032549 WO2024047736A1 (en) 2022-08-30 2022-08-30 Temperature measurement device and abnormality detection method

Country Status (1)

Country Link
WO (1) WO2024047736A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215804A (en) * 1991-07-01 1993-08-27 Moore Ind Internatl Inc Computerized remote resistance measuring system with fault detection
JP2011196904A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Sensor voltage processing circuit
WO2017150013A1 (en) * 2016-02-29 2017-09-08 三洋電機株式会社 Temperature detection circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215804A (en) * 1991-07-01 1993-08-27 Moore Ind Internatl Inc Computerized remote resistance measuring system with fault detection
JP2011196904A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Sensor voltage processing circuit
WO2017150013A1 (en) * 2016-02-29 2017-09-08 三洋電機株式会社 Temperature detection circuit

Similar Documents

Publication Publication Date Title
US11017898B2 (en) Patient monitor sensor type auto configuration
US20090115412A1 (en) Magnetic sensing device and electronic compass using the same
JP5900536B2 (en) Sensor signal detection device
US9134191B2 (en) Resistive device comprising a silicon-nanowire-comprising strain gauge and method for optimizing the electrical consumption of such a device
JP2003254850A (en) Sensor output processing circuit with self-diagnosis function
JP2012149999A (en) Self-diagnosable electronic circuit and magnetic field detection device
WO2024047736A1 (en) Temperature measurement device and abnormality detection method
US6826503B2 (en) Physical quantity detection equipment
JP6329648B2 (en) Failure detection device
US20190195493A1 (en) Flame sense circuit with variable bias
JP6860633B2 (en) Sensors and how to check them
JP6718284B2 (en) Signal processing circuit, coulomb counter circuit, electronic device
JPH0626968A (en) Failure detecting device for sensor
JP4744025B2 (en) Method for determining connection state of gas sensor and constant potential electrolytic gas measuring instrument
JPH10341158A (en) A/d converter
EP3130894B1 (en) Abnormality detection device for sensor and sensor device
JP2005003596A (en) Resistance measuring instrument, integrated circuit for measuring resistance, and method of measuring resistance
JP2002084151A (en) Physical quantity detector
US11268998B1 (en) Dynamic bridge diagnostic
JP2002176327A (en) Method and device for detecting excessive negative offset of sensor
JP2003152543A (en) Analog-to-digital converter
JP2803966B2 (en) Correction method for zero error of torque sensor
JP4345207B2 (en) Mechanical quantity detection sensor
JP2019074437A (en) Current sensor circuit
JPH11194061A (en) Pressure sensor driving circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957339

Country of ref document: EP

Kind code of ref document: A1