WO2024046250A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024046250A1
WO2024046250A1 PCT/CN2023/115173 CN2023115173W WO2024046250A1 WO 2024046250 A1 WO2024046250 A1 WO 2024046250A1 CN 2023115173 W CN2023115173 W CN 2023115173W WO 2024046250 A1 WO2024046250 A1 WO 2024046250A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
dci
value
equal
serving cell
Prior art date
Application number
PCT/CN2023/115173
Other languages
English (en)
French (fr)
Inventor
胡杨
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024046250A1 publication Critical patent/WO2024046250A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, in particular to wireless signal transmission methods and devices in wireless communication systems supporting cellular networks.
  • DCI Downlink Control Information, downlink control information
  • PDSCH Physical Downlink Shared CHannel
  • PUSCH Physical Uplink Shared CHannel, Physical Uplink Shared Channel
  • scheduling scheduling
  • An effective means, how to determine the corresponding PUCCH transmission power is an important aspect that needs to be considered.
  • this application discloses a solution. It should be noted that the above description uses eMBB as an example; this application is also applicable to other scenarios, such as URLLC (Ultra-Reliable Low-Latency Communications), Internet of Vehicles, Internet of Things, NTN (Non- Terrestrial Networks, non-terrestrial networks), MBS (Multicast Broadcast Services, multicast broadcast services), XR (Extended Reality, extended reality), eMTC (enhanced Machine-Type Communication, enhanced machine type communication), full-duplex communication, etc., and achieve similar technical effects.
  • URLLC Ultra-Reliable Low-Latency Communications
  • NTN Non- Terrestrial Networks, non-terrestrial networks
  • MBS Multicast Broadcast Services, multicast broadcast services
  • XR Extended Reality, extended reality
  • eMTC enhanced Machine-Type Communication, enhanced machine type communication
  • full-duplex communication etc.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the first power depends on at least the value of the first domain in the first DCI and Q1 components, where Q1 is a positive integer; the Q1 components correspond to Q1 serving cells one-to-one; given The serving cell is one of the Q1 serving cells; for the given serving cell, the corresponding component is equal to the first condition that is detected occupying the given serving cell in at least one PDCCH monitoring opportunity.
  • the total number of DCIs. One DCI that meets the first condition schedules multiple serving cells.
  • the benefits of the above method include: providing more accurate power control for PUCCH (Physical uplink control channel, physical uplink control channel).
  • PUCCH Physical uplink control channel, physical uplink control channel
  • the benefits of the above method include: avoiding unnecessary power increase.
  • the benefits of the above method include: improving uplink transmission performance.
  • the benefits of the above method include: reducing interference between users and improving system performance.
  • the benefits of the above method include: saving signaling overhead.
  • the advantages of the above method include: good compatibility.
  • the benefits of the above method include: small changes to existing 3GPP standards.
  • the above method is characterized by,
  • the DCI that occupies the given serving cell and satisfies the first condition is detected in the at least one PDCCH monitoring opportunity.
  • the total number refers to the total number of DCIs that meet the first condition for the given serving cell and are detected in the at least one PDCCH monitoring opportunity.
  • the above method is characterized by,
  • the total number of DCIs that satisfy the first condition and occupy the given serving cell that are detected in the at least one PDCCH monitoring opportunity refers to: the DCIs that are detected in the at least one PDCCH monitoring opportunity occupy the given serving cell.
  • the above method is characterized by,
  • the total number of DCIs that satisfy the first condition and occupy the given serving cell that are detected in the at least one PDCCH monitoring opportunity refers to: the DCIs that are detected in the at least one PDCCH monitoring opportunity occupy the given serving cell.
  • the above method is characterized by,
  • the total number of DCIs that satisfy the first condition that are detected occupying the given serving cell in the at least one PDCCH monitoring opportunity refers to: on the given serving cell and on the at least one The total number of detected DCIs that meet the first condition during PDCCH monitoring opportunities.
  • the above method is characterized by,
  • the total number of DCIs that satisfy the first condition and occupy the given serving cell that are detected in the at least one PDCCH monitoring opportunity refers to: the DCIs that are detected in the at least one PDCCH monitoring opportunity and occupy the given serving cell.
  • the total number of DCIs that satisfy the first condition for the given serving cell as a reference serving cell; for a DCI that schedules multiple serving cells, the corresponding reference serving cell is based on at least one of the scheduling order or the serving cell index. A certain one.
  • the above method is characterized by,
  • the first power is equal to the smaller of the upper limit power and the target power
  • the target power is equal to the sum of a plurality of power components
  • at least one power component of the plurality of power components depends on the first DCI The value of the first domain and the Q1 components.
  • the above method is characterized by,
  • At least one power component among the plurality of power components depends on a first reference value
  • the first reference value is a number of HARQ-ACK bits used to obtain the PUCCH transmission power
  • the first reference value depends on the first The value of the first domain and the Q1 components in DCI.
  • the above method is characterized by,
  • One of the plurality of power components is equal to 10log 10 (K 1 ⁇ first value/second value), the second value is the number of resource particles used for PUCCH transmission, and the first value is equal to a plurality of values
  • the sum of The difference between the total number of DCIs is a positive integer multiple of the result modulo a third value, the third value is equal to 2 raised to the V power, and V is equal to the number of bits in a DAI field.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • the first power depends on at least the value of the first domain in the first DCI and Q1 components, where Q1 is a positive integer; the Q1 components correspond to Q1 serving cells one-to-one; given The serving cell is one of the Q1 serving cells; for the given serving cell, the corresponding component is equal to the occupation of the given serving cell detected by the sending end of the first PUCCH in at least one PDCCH monitoring opportunity.
  • the total number of DCIs of the serving cell that satisfy the first condition, and one DCI that satisfies the first condition schedules multiple serving cells.
  • the above method is characterized by,
  • the total number of DCIs that occupy the given serving cell and satisfy the first condition detected by the sending end of the first PUCCH in the at least one PDCCH monitoring opportunity refers to: in the at least one PDCCH The total number of DCIs that meet the first condition for the given serving cell and are detected by the sending end of the first PUCCH during the monitoring opportunity.
  • the above method is characterized by,
  • the total number of DCIs that satisfy the first condition refers to: the DCIs that satisfy the first condition on the given serving cell and are detected by the sending end of the first PUCCH in the at least one PDCCH monitoring opportunity.
  • the total number of conditional DCIs are not limited to: the DCIs that satisfy the first condition on the given serving cell and are detected by the sending end of the first PUCCH in the at least one PDCCH monitoring opportunity.
  • the above method is characterized by,
  • the total number of DCIs that occupy the given serving cell and satisfy the first condition detected by the sending end of the first PUCCH in the at least one PDCCH monitoring opportunity refers to: in the at least one PDCCH The total number of DCIs that are transmitted on the given serving cell and meet the first condition detected by the sending end of the first PUCCH during the monitoring opportunity.
  • the above method is characterized by,
  • the total number of DCIs that satisfy the first condition that occupy the given serving cell and are detected by the sending end of the first PUCCH in the at least one PDCCH monitoring opportunity refers to: in the given serving cell
  • the above method is characterized by,
  • the total number of DCIs that occupy the given serving cell and meet the first condition detected by the transmitting end of the first PUCCH in the at least one PDCCH monitoring opportunity refers to: in the at least one PDCCH The total number of DCIs that meet the first condition with the given serving cell as the reference serving cell detected by the sending end of the first PUCCH during the monitoring opportunity; for a DCI that schedules multiple serving cells, the corresponding The reference serving cell is determined based on at least one of the scheduling order or the serving cell index.
  • the above method is characterized by,
  • the first power is equal to the smaller of the upper limit power and the target power
  • the target power is equal to the sum of a plurality of power components
  • at least one power component of the plurality of power components depends on the first DCI The value of the first domain and the Q1 components.
  • the above method is characterized by,
  • At least one power component among the plurality of power components depends on a first reference value
  • the first reference value is a number of HARQ-ACK bits used to obtain the PUCCH transmission power
  • the first reference value depends on the first The value of the first domain and the Q1 components in DCI.
  • the above method is characterized by,
  • One of the plurality of power components is equal to 10log 10 (K 1 ⁇ first value/second value), the second value is the number of resource particles used for PUCCH transmission, and the first value is equal to a plurality of values
  • the sum, one of the plurality of values is equal to the value of the first field in the first DCI minus the value detected by the sending end of the first PUCCH in the at least one PDCCH monitoring opportunity.
  • the difference between the total number of DCIs that meet the first condition is a positive integer multiple of the result modulo the third value
  • the third value is equal to 2 raised to the power of V
  • V is equal to one bit of the DAI field quantity.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • a first receiver receives first DCI, where the first DCI includes a first domain
  • the first transmitter sends the first PUCCH with the first power
  • the first power depends on at least the value of the first domain in the first DCI and Q1 components, where Q1 is a positive integer; the Q1 components correspond to Q1 serving cells one-to-one; given The serving cell is one of the Q1 serving cells; for the given serving cell, the corresponding component is equal to the first condition that is detected occupying the given serving cell in at least one PDCCH monitoring opportunity.
  • the total number of DCIs. One DCI that meets the first condition schedules multiple serving cells.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • a second transmitter transmitting a first DCI, where the first DCI includes a first domain
  • a second receiver receiving the first PUCCH sent with the first power
  • the first power depends on at least the value of the first domain in the first DCI and Q1 components, where Q1 is a positive integer; the Q1 components correspond to Q1 serving cells one-to-one; given The serving cell is one of the Q1 serving cells; for the given serving cell, the corresponding component is equal to the occupation of the given serving cell detected by the sending end of the first PUCCH in at least one PDCCH monitoring opportunity.
  • the total number of DCIs of the serving cell that satisfy the first condition, and one DCI that satisfies the first condition schedules multiple serving cells.
  • Figure 1 shows a processing flow chart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of the wireless protocol architecture of the user plane and control plane according to one embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a signal transmission flow chart according to an embodiment of the present application
  • Figure 6 shows a schematic diagram of the relationship between the first power, the upper limit power, the target power, the first reference value, the value of the first domain in the first DCI and the Q1 components according to an embodiment of the present application;
  • Figure 7 shows a schematic diagram of the relationship between the first power, the upper limit power, the target power, the first value and the second value according to an embodiment of the present application
  • Figure 8 shows the first power, the upper limit power, the target power, the first reference value, the value of the first domain in the first DCI and the value detected in at least one PDCCH monitoring opportunity according to an embodiment of the present application.
  • Figure 9 shows an illustrative diagram of the first power according to an embodiment of the present application.
  • Figure 10 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Figure 11 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flow chart of the first node according to an embodiment of the present application, as shown in Figure 1.
  • the first node in this application receives the first DCI in step 101; and sends the first PUCCH with the first power in step 102.
  • the first DCI includes a first domain; the first power depends on at least the value of the first domain in the first DCI and Q1 components, where Q1 is a positive integer; Q1 components correspond to Q1 serving cells one-to-one; a given serving cell is one of the Q1 serving cells; for the given serving cell, the corresponding component is equal to being detected in at least one PDCCH monitoring opportunity
  • Q1 is a positive integer
  • Q1 components correspond to Q1 serving cells one-to-one
  • a given serving cell is one of the Q1 serving cells
  • the corresponding component is equal to being detected in at least one PDCCH monitoring opportunity
  • the total number of DCIs that satisfy the first condition occupying the given serving cell, and one DCI that satisfies the first condition schedules multiple serving cells.
  • the first DC is dynamically configured.
  • the first DC includes layer 1 (L1) signaling.
  • the first DC includes control signaling of layer 1 (L1).
  • the first DC includes one or more fields (Field) in a physical layer signaling.
  • the first DCI is signaling used for scheduling PDSCH.
  • the first DCI is a DCI format.
  • the first DCI is a DCI format (format) 1_3.
  • the first DCI is a DCI format 1_4.
  • the first DCI is a DCI format 1_5.
  • the first DCI is a DCI format 1_6.
  • the first DCI is a DCI format 1_7.
  • the first DCI is a DCI format 1_8.
  • the first field includes only one bit.
  • the first field includes a plurality of bits.
  • the first field includes 2 bits.
  • the number of bits included in the first field is equal to 2.
  • the first field includes a number of bits greater than 2.
  • the value of the first field is used to represent the cumulative number of ⁇ serving cell (serving cell), PDCCH monitoring opportunity (PDCCH monitoring occasion) ⁇ .
  • the value of the first field is used to represent the total number of ⁇ serving cell, PDCCH (Physical downlink control channel, physical downlink control channel) monitoring opportunities ⁇ .
  • PDCCH Physical downlink control channel, physical downlink control channel
  • the first domain is the DAI domain.
  • the first field is a counter (counter) DAI (Downlink assignment index, downlink assignment index) field.
  • DAI Downlink assignment index, downlink assignment index
  • the first field is a total DAI field.
  • the first field is a field used to represent the count of DCI.
  • the first power is PUCCH transmission power.
  • the statement that sending the first PUCCH includes: performing a PUCCH transmission (a PUCCH transmission).
  • the statement that sending the first PUCCH includes: sending a signal in the first PUCCH.
  • the statement that sending the first PUCCH includes: sending UCI (Uplink control information, uplink control information) bits in the first PUCCH.
  • UCI Uplink control information, uplink control information
  • the description of sending the first PUCCH includes: sending at least HARQ-ACK (Hybrid automatic repeat request acknowledgment, Hybrid automatic repeat request acknowledgment) bits in the first PUCCH.
  • HARQ-ACK Hybrid automatic repeat request acknowledgment, Hybrid automatic repeat request acknowledgment
  • the first PUCCH carries at least HARQ-ACK information.
  • Q1 is equal to 1.
  • Q1 is greater than 1.
  • Q1 is not greater than 4.
  • Q1 is not greater than 8.
  • Q1 is not greater than 32.
  • Q1 is not greater than 1024.
  • Q1 is configurable.
  • Q1 is equal to the number of serving cells that support scheduling by a DCI that schedules multiple serving cells.
  • the Q1 serving cells are all serving cells configured for the first node.
  • At least one of the Q1 serving cells is configurable.
  • the Q1 serving cells all support serving cells scheduled by a DCI that schedules multiple serving cells.
  • the Q1 serving cells all support serving cells scheduled by a DCI that meets the first condition.
  • the first node is configured to monitor and schedule DCI of multiple serving cells on any one of the Q1 serving cells.
  • the first node is configured to monitor DCI that meets the first condition on any one of the Q1 serving cells.
  • a DCI that meets the first condition schedules multiple serving cells.
  • At least one of the Q1 serving cells is indicated by the first node.
  • the DCI that satisfies the first condition refers to the DCI that schedules multiple serving cells.
  • the DCI that meets the first condition refers to: DCI format (format) 1_3.
  • the DCI that meets the first condition refers to: DCI format 1_4.
  • the DCI that meets the first condition refers to: DCI format 1_5.
  • the DCI that meets the first condition refers to: DCI format 1_6.
  • the DCI that meets the first condition refers to: DCI format 1_7.
  • the DCI that meets the first condition refers to: DCI format 1_8.
  • any DCI that meets the first condition schedules multiple serving cells.
  • any DCI that schedules only one cell is not a DCI that satisfies the first condition.
  • a DCI is a DCI format.
  • the given serving cell is any serving cell among the Q1 serving cells.
  • the total number of DCIs that satisfy the first condition that are detected occupying the given serving cell in the at least one PDCCH monitoring opportunity refers to: in the at least one PDCCH monitoring opportunity The total number of detected DCIs that satisfy the first condition for the given serving cell.
  • the total number of DCIs that satisfy the first condition that are detected occupying the given serving cell in the at least one PDCCH monitoring opportunity refers to: in the at least one PDCCH monitoring opportunity The total number of detected DCIs that meet the first condition on the given serving cell.
  • the total number of DCIs that satisfy the first condition that are detected occupying the given serving cell in the at least one PDCCH monitoring opportunity refers to: in the at least one PDCCH monitoring opportunity The total number of detected DCIs that satisfy the first condition and are transmitted on the given serving cell.
  • the total number of DCIs that satisfy the first condition that are detected occupying the given serving cell in the at least one PDCCH monitoring opportunity refers to: on the given serving cell and The total number of DCIs that meet the first condition and are detected in the at least one PDCCH monitoring opportunity.
  • the total number of DCIs that satisfy the first condition that are detected occupying the given serving cell in the at least one PDCCH monitoring opportunity refers to: in the at least one PDCCH monitoring opportunity The total number of detected DCIs that satisfy the first condition and use the given serving cell as a reference serving cell.
  • using the given serving cell as a reference serving cell includes the following meaning: the given serving cell is a service among the multiple serving cells scheduled by this DCI.
  • the serving cell with the smallest cell index includes the following meaning: the given serving cell is a service among the multiple serving cells scheduled by this DCI.
  • the serving cell with the smallest cell index includes the following meaning: the given serving cell is a service among the multiple serving cells scheduled by this DCI.
  • using the given serving cell as a reference serving cell includes the following meaning: the given serving cell is a service among the multiple serving cells scheduled by this DCI.
  • the serving cell with the largest cell index includes the following meaning: the given serving cell is a service among the multiple serving cells scheduled by this DCI.
  • the serving cell with the largest cell index includes the following meaning: the given serving cell is a service among the multiple serving cells scheduled by this DCI.
  • the corresponding reference serving cell is one of the multiple scheduled serving cells.
  • the corresponding reference serving cell is determined according to at least one of the scheduling order or the serving cell index.
  • using the given serving cell as a reference serving cell includes the following meaning: according to at least one of the scheduling order or the serving cell index, the given serving cell is Determine the reference serving cell corresponding to this DCI.
  • the scheduling sequence includes: the scheduling sequence of PDSCH.
  • the scheduling sequence includes: the sequence of the scheduled PDSCH or the time slots occupied by the scheduled PDSCH.
  • the scheduling sequence includes: the scheduling sequence of the serving cell.
  • using the given serving cell as a reference serving cell includes the following meaning: the given serving cell is the last serving cell scheduled by this DCI.
  • using the given serving cell as a reference serving cell includes the following meaning: the given serving cell is the first serving cell scheduled by this DCI.
  • using the given serving cell as the reference serving cell includes the following meaning: the given serving cell is the serving cell where the last PDSCH scheduled by this DCI is located.
  • using the given serving cell as the reference serving cell includes the following meanings: the given serving cell is the serving cell where the first PDSCH scheduled by this DCI is located. .
  • using the given serving cell as a reference serving cell includes the following meanings: the given serving cell is the serving cell where the latest PDSCH scheduled by this DCI is located. .
  • using the given serving cell as the reference serving cell includes the following meaning: the given serving cell is the serving cell where the earliest PDSCH scheduled by this DCI is located.
  • the corresponding reference serving cell is the only one Service community.
  • the corresponding reference serving cell is a serving cell determined according to at least one of the scheduling order or the serving cell index.
  • the corresponding reference serving cell is the last serving cell scheduled by this DCI.
  • the corresponding reference serving cell is the first serving cell scheduled by this DCI.
  • the corresponding reference serving cell is the serving cell where the last PDSCH scheduled by this DCI is located.
  • the corresponding reference serving cell is the serving cell where the first PDSCH scheduled by this DCI is located.
  • the corresponding reference serving cell is the serving cell where the latest PDSCH scheduled by this DCI is located.
  • the corresponding reference serving cell is the serving cell where the earliest PDSCH scheduled by this DCI is located.
  • the expressions "last" and “first” are based on default or predefined sorting rules.
  • using the given serving cell as a reference serving cell includes the following meaning: according to default or predefined criteria, the given serving cell is determined as The reference serving cell for this DCI.
  • a DCI that schedules multiple serving cells has only one reference serving cell.
  • the corresponding reference serving cell is the serving cell with the number of HARQ-ACK bits used to obtain the PUCCH transmission power.
  • the corresponding reference serving cell is the serving cell used to count ⁇ serving cell, PDCCH monitoring opportunity ⁇ pairs.
  • the corresponding reference serving cell is the serving cell of the ⁇ serving cell, PDCCH monitoring opportunity ⁇ pair represented by the value of the counter DAI field.
  • the expression of occupying the given serving cell includes: on the given serving cell.
  • the occupied serving cell is: the serving cell used to transmit this DCI.
  • the expression of occupying the given serving cell includes: targeting the given serving cell.
  • the following relationship is satisfied between a detected DCI and the serving cell occupied by the detected DCI: the detected DCI is detected in the PDCCH on the occupied serving cell. .
  • the first condition is: scheduling multiple serving cells.
  • the first condition includes: scheduling multiple serving cells.
  • the first condition includes multiple sub-conditions, and one of the multiple sub-conditions is: scheduling multiple serving cells.
  • satisfying the first condition means satisfying each of the plurality of sub-conditions.
  • one of the plurality of sub-conditions is related to PDSCH.
  • one of the multiple sub-conditions is: scheduling multiple PDSCHs that do not overlap with uplink symbols.
  • one of the multiple sub-conditions is: the scheduled PDSCH corresponds to transport block-based HARQ-ACK information.
  • one of the plurality of sub-conditions is: for unicast.
  • one of the sub-conditions is: for multicast.
  • the first DCI is a DCI that satisfies the first condition.
  • the first DCI is the last DCI that satisfies the first condition for at least one serving cell.
  • the first DCI is the latest DCI that satisfies the first condition for any one of the Q1 serving cells. Post-DCI.
  • the first DCI is the last DCI detected in the at least one PDCCH monitoring opportunity that satisfies the first condition.
  • the first DCI is the last DCI that is detected in the at least one PDCCH monitoring opportunity and occupies any one of the Q1 serving cells and satisfies the first condition.
  • a serving cell scheduled by a DCI refers to a cell scheduled by this DCI.
  • the DCI when a DCI schedules at least one PDSCH on a serving cell, the DCI is the DCI that schedules the serving cell.
  • the DCI when a DCI schedules at least one PDSCH on each of multiple serving cells, the DCI is the DCI that schedules the multiple serving cells.
  • this DCI is the DCI that schedules the multiple serving cells.
  • this DCI is the DCI that schedules the multiple serving cells.
  • the scheduling information includes frequency domain resource allocation information.
  • the scheduling information includes time domain resource allocation information.
  • the scheduling information includes MCS (Modulation and coding scheme) information.
  • MCS Modulation and coding scheme
  • the scheduling information includes configuration information of DMRS (Demodulation reference signals, demodulation reference signals).
  • the scheduling information includes HARQ (Hybrid automatic repeat request, hybrid automatic repeat request) process number information.
  • HARQ Hybrid automatic repeat request, hybrid automatic repeat request
  • the scheduling information includes RV (redundancy version, redundancy version) information.
  • the scheduling information includes NDI (New Data Indicator) information.
  • NDI New Data Indicator
  • the scheduling information includes transmit antenna port information.
  • the scheduling information includes TCI (Transmission Configuration Indicator, transmission status indicator) information.
  • TCI Transmission Configuration Indicator, transmission status indicator
  • the expression that the first power depends on at least the values of the first domain and Q1 components in the first DCI includes: the first power depends on at least all the values in the first DCI. Describe the value of the first domain and the sum of the Q1 components.
  • the value of the first domain in the first DCI and the Q1 components together indicate the first power.
  • the value of the first domain and the Q1 components in the first DCI are both used to configure the first power.
  • the expression that the first power depends on at least the value of the first domain in the first DCI and the Q1 components includes:
  • the first power depends on at least the value of the first domain in the first DCI; the first power is equal to the smaller of an upper limit power and a target power, the target power is equal to a plurality of powers
  • the sum of components, one of the plurality of power components is equal to 10log 10 (K 1 ⁇ first value/second value)
  • the second value is the number of resource particles used for PUCCH transmission
  • the first value Equal to the sum of multiple values, one of the multiple values is equal to the result of the difference between the value of the first domain in the first DCI minus the sum of Q1 components modulo the third value
  • a positive integer multiple of the third value is equal to 2 raised to the V power, and V is equal to the number of bits in a DAI field.
  • V is equal to the number of bits in a counter DAI field.
  • the number of bits in a DAI field includes the following meaning: the size of this DAI field.
  • the expression that the first power depends on at least the value of the first domain in the first DCI and the Q1 components includes:
  • the first power is equal to the smaller of the upper limit power and the target power
  • the target power is equal to a plurality of power components. and, at least one power component among the plurality of power components depends on the value of the first domain and Q1 components in the first DCI.
  • the value of the first domain in the first DCI and the Q1 components together indicate at least one power component among the plurality of power components.
  • the value of the first domain in the first DCI and the Q1 components are both used to configure at least one power component among the plurality of power components.
  • the expression that the first power depends on at least the value of the first domain in the first DCI and the Q1 components includes:
  • the first power is equal to the smaller of the upper limit power and the target power
  • the target power is equal to the sum of a plurality of power components
  • at least one power component of the plurality of power components depends on the first reference value
  • the first reference value is the number of HARQ-ACK bits used to obtain the PUCCH transmission power
  • the first reference value depends on the value of the first domain and the Q1 components in the first DCI.
  • the total number of DCIs of the cell that satisfy the first condition includes: the first power depends on at least the value of the first domain in the first DCI and the value of the first domain that is detected in at least one PDCCH monitoring opportunity and satisfies the first condition The total number of DCIs.
  • the total number of DCIs for the condition are equivalent or interchangeable.
  • the first power is equal to the smaller of the upper limit power and the target power
  • the target power is equal to the sum of a plurality of power components
  • one of the plurality of power components is equal to 10log 10 ( K 1 ⁇ First value/second value)
  • the second value is the number of resource particles used for PUCCH transmission
  • the first value is equal to the sum of multiple values
  • one of the multiple values is equal to the
  • the third value is obtained by subtracting the difference between the value of the first domain in the first DCI and the total number of DCIs that meet the first condition detected in the at least one PDCCH monitoring opportunity.
  • a positive integer multiple of the modulo result the third value is equal to 2 raised to the V power
  • V is equal to the number of bits in a DAI field.
  • the first power is equal to the smaller of the upper limit power and the target power.
  • the target power is equal to the sum of multiple power components. At least one of the multiple power components depends on The value of the first field in the first DCI and the total number of DCIs that meet the first condition detected in the at least one PDCCH monitoring opportunity.
  • the first power is equal to the smaller of the upper limit power and the target power.
  • the target power is equal to the sum of multiple power components. At least one of the multiple power components depends on A first reference value, the first reference value is the number of HARQ-ACK bits used to obtain the PUCCH transmission power, the first reference value depends on the value of the first domain in the first DCI and The total number of DCIs that meet the first condition and are detected in the at least one PDCCH monitoring opportunity.
  • the total number of DCIs that meet the first condition detected in the at least one PDCCH monitoring opportunity refers to: occupied Q1 services detected in the at least one PDCCH monitoring opportunity.
  • the total number of DCIs meeting the first condition of any serving cell in the cell refers to: occupied Q1 services detected in the at least one PDCCH monitoring opportunity.
  • the total number of DCIs that meet the first condition detected in the at least one PDCCH monitoring opportunity refers to: the DCIs detected in the at least one PDCCH monitoring opportunity for Q1 services The total number of DCIs meeting the first condition of any serving cell in the cell.
  • the total number of DCIs that meet the first condition detected in the at least one PDCCH monitoring opportunity refers to: Q1 services detected in the at least one PDCCH monitoring opportunity.
  • the total number of DCIs that meet the first condition on any serving cell in the cell refers to: Q1 services detected in the at least one PDCCH monitoring opportunity.
  • the total number of DCIs that meet the first condition detected in the at least one PDCCH monitoring opportunity refers to: Q1 services detected in the at least one PDCCH monitoring opportunity.
  • the total number of DCIs that meet the first condition detected in the at least one PDCCH monitoring opportunity refers to: on any serving cell among the Q1 serving cells and on the at least one serving cell. The total number of detected DCIs that meet the first condition in one PDCCH monitoring opportunity.
  • the at least one PDCCH monitoring opportunity is configurable.
  • the first node sends HARQ-ACK information in the same PUCCH in one time slot.
  • the HARQ-ACK information for the at least one PDCCH monitoring opportunity is sent in the same PUCCH in one time slot.
  • the at least one PDCCH monitoring opportunity is for the same PUCCH time slot.
  • the at least one PDCCH monitoring opportunity is for the time slot occupied by the transmission of the first PUCCH.
  • the number of UCI bits in the first PUCCH is no more than 11.
  • the number of UCI bits in the first PUCCH is greater than 2.
  • At most 11 UCI bits are sent in the first PUCCH.
  • At least 3 UCI bits are sent in the first PUCCH.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in Figure 2.
  • FIG. 2 illustrates a diagram of the network architecture 200 of 5G NR, LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) systems.
  • the 5G NR or LTE network architecture 200 may be called EPS (Evolved Packet System) 200 or some other suitable term.
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-CN 5G-Core Network
  • HSS Home Subscriber Server, home subscriber server
  • Internet service 230 Internet service 230.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmitting and receiving node) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to EPC/5G-CN 210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to EPC/5G-CN 210 through S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/UPF (User Plane Function, user plane function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, Service Gateway) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway) 213.
  • MME/AMF/UPF 211 is the control node that handles signaling between UE 201 and EPC/5G-CN 210. Basically, MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230.
  • Internet service 230 package Including the operator's corresponding Internet protocol services, which can specifically include the Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching streaming services.
  • the UE201 corresponds to the first node in this application.
  • the UE201 corresponds to the second node in this application.
  • the UE201 is a UE.
  • the UE201 is a RedCap UE.
  • the UE 201 is a conventional UE.
  • the UE 201 is a UE with high processing capabilities.
  • the gNB 203 corresponds to the first node in this application.
  • the gNB 203 corresponds to the second node in this application.
  • the UE201 corresponds to the first node in this application
  • the gNB203 corresponds to the second node in this application.
  • the gNB 203 is a macro cellular (MarcoCellular) base station.
  • the gNB 203 is a Micro Cell base station.
  • the gNB 203 is a PicoCell base station.
  • the gNB 203 is a home base station (Femtocell).
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB 203 is a flying platform device.
  • the gNB 203 is a satellite device.
  • the first node and the second node in this application both correspond to the UE 201, for example, V2X communication is performed between the first node and the second node.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane 350 and control plane 300
  • Figure 3 shows with three layers for a first communication node device (UE, gNB or RSU in V2X) and a second Radio protocol architecture of the control plane 300 between the communication node device (gNB, UE or RSU in V2X), or between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sub-layers terminate at the second communication node device.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels. The PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support for a first communication node device between second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first communication node devices. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the connection between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • DRB Data Radio Bearer
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • the application layer at one end (e.g., remote UE, server, etc.).
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first DCI in this application is generated from the PHY301.
  • the first PUCCH in this application is generated in the PHY301.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in the access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 450, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the second communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the second communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the first communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 at the second communications device 450.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 Perform digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then the transmit processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, After undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457, it is provided to different antennas 452 via the transmitter 454. Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the functionality at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • the reception function at the second communication device 450 is described in the transmission.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the second communications device 450 to the first communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450
  • the second node in this application includes the first communication device 410 .
  • the first node is user equipment
  • the second node is user equipment
  • the first node is user equipment
  • the second node is a relay node
  • the first node is a relay node
  • the second node is user equipment
  • the first node is user equipment
  • the second node is base station equipment
  • the first node is a relay node
  • the second node is a base station device
  • the second node is user equipment
  • the first node is base station equipment
  • the second node is a relay node
  • the first node is a base station device
  • the second communication device 450 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgment (ACK) and/or negative acknowledgment (NACK). ) protocol performs error detection to support HARQ operation.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 450 device at least: receives a first DCI, the first DCI includes a first domain; transmits a first PUCCH with a first power; wherein the first power depends on at least one of the first DCI
  • the value of the first domain and Q1 components, the Q1 is a positive integer; the Q1 components correspond to the Q1 serving cells one-to-one; the given serving cell is one of the Q1 serving cells; for the For a given serving cell, the corresponding component is equal to the total number of DCIs that satisfy the first condition that are detected occupying the given serving cell in at least one PDCCH monitoring opportunity.
  • One DCI that satisfies the first condition schedules multiple Service community.
  • the second communication device 450 corresponds to the first node in this application.
  • the second communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving a first A DCI, the first DCI includes a first domain; transmitting the first PUCCH with a first power; wherein the first power depends on at least the value of the first domain in the first DCI and Q1 components,
  • the Q1 is a positive integer; the Q1 components correspond to the Q1 serving cells one-to-one; the given serving cell is one of the Q1 serving cells; for the given serving cell, the corresponding component is equal to at least The total number of DCIs that satisfy the first condition that are detected occupying the given serving cell in one PDCCH monitoring opportunity, and one DCI that satisfies the first condition schedules multiple serving cells.
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the at least one processor use together.
  • the first communication device 410 device at least: transmits a first DCI, the first DCI includes a first domain; receives a first PUCCH transmitted with a first power; wherein the first power depends on at least the first The value of the first domain and Q1 components in DCI, where Q1 is a positive integer; the Q1 components correspond to Q1 serving cells one-to-one; the given serving cell is one of the Q1 serving cells; For the given serving cell, the corresponding component is equal to the total number of DCIs that satisfy the first condition that occupy the given serving cell and are detected by the sending end of the first PUCCH in at least one PDCCH monitoring opportunity, one DCI that meets the first condition schedules multiple serving cells.
  • the first communication device 410 corresponds to the second node in this application.
  • the first communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending a first A DCI, the first DCI includes a first domain; receiving a first PUCCH transmitted with a first power; wherein the first power depends on at least a value of the first domain in the first DCI and Q1 components, the Q1 is a positive integer; the Q1 components correspond to the Q1 serving cells one-to-one; the given serving cell is one of the Q1 serving cells; for the given serving cell, the corresponding component Equal to the total number of DCIs that satisfy the first condition that occupy the given serving cell and are detected by the sending end of the first PUCCH in at least one PDCCH monitoring opportunity.
  • One DCI that satisfies the first condition schedules multiple services. community.
  • the first communication device 410 corresponds to the second node in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first DCI in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One is used to send the first DCI in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to transmit the first PUCCH in this application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used to receive the first PUCCH in this application.
  • Embodiment 5 illustrates a signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the first node U1 and the second node U2 communicate through the air interface.
  • the first node U1 receives the first DCI in step S511 and sends the first PUCCH with the first power in step S512.
  • the second node U2 sends the first DCI in step S521 and receives the first PUCCH in step S522.
  • the first DCI includes a first domain; the first power depends on at least the value of the first domain in the first DCI and Q1 components, where the Q1 is a positive integer; Q1 components correspond to Q1 serving cells one-to-one; a given serving cell is one of the Q1 serving cells; for the given serving cell, the corresponding component is equal to being detected in at least one PDCCH monitoring opportunity
  • the total number of DCIs that satisfy the first condition occupying the given serving cell, and one DCI that satisfies the first condition schedules multiple serving cells; the first power is equal to the higher of the upper limit power and the target power.
  • the target power is equal to the sum of multiple power components, at least one of the multiple power components depends on a first reference value, the first reference value is HARQ-ACK used to obtain the PUCCH transmission power
  • the number of bits the first reference value depends on the value of the first domain in the first DCI and the Q1 components; the first reference value is equal to the sum of multiple intermediate values, so One of the plurality of intermediate values is equal to a positive integer multiple of the result of the difference between the value of the first domain in the first DCI minus the sum of the Q1 components modulo a third value,
  • the third value is equal to V raised to the power of 2, and V is equal to the number of bits of a DAI field.
  • the total number of DCIs that satisfy the first condition that are detected occupying the given serving cell in the at least one PDCCH monitoring opportunity refers to: in the at least one PDCCH monitoring opportunity, The total number of detected DCIs meeting the first condition for the given serving cell in one PDCCH monitoring opportunity.
  • the total number of DCIs that satisfy the first condition that are detected occupying the given serving cell in the at least one PDCCH monitoring opportunity refers to: in the at least one PDCCH monitoring opportunity, Detected during a PDCCH monitoring opportunity The total number of DCIs that meet the first condition on the given serving cell.
  • the total number of DCIs that satisfy the first condition that are detected occupying the given serving cell in the at least one PDCCH monitoring opportunity refers to: in the at least one PDCCH monitoring opportunity, The total number of DCIs that meet the first condition and use the given serving cell as the reference serving cell that are detected in a PDCCH monitoring opportunity; for a DCI that schedules multiple serving cells, the corresponding reference serving cell is based on Determined by at least one of the scheduling order or the serving cell index.
  • the first node U1 is the first node in this application.
  • the second node U2 is the second node in this application.
  • the first node U1 is a UE.
  • the first node U1 is a base station.
  • the second node U2 is a base station.
  • the second node U2 is a UE.
  • the air interface between the second node U2 and the first node U1 is a Uu interface.
  • the air interface between the second node U2 and the first node U1 includes a cellular link.
  • the air interface between the second node U2 and the first node U1 is a PC5 interface.
  • the air interface between the second node U2 and the first node U1 includes a side link.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between the base station equipment and the user equipment.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between satellite equipment and user equipment.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between user equipment and user equipment.
  • the problems to be solved by this application include: how to determine the transmit power of the first PUCCH.
  • the problems to be solved by this application include: how to determine the transmit power of the PUCCH based on the detection of DCI for scheduling multiple serving cells.
  • the problems to be solved by this application include: how to improve the transmission performance of PUCCH.
  • the problems to be solved by this application include: how to reduce interference between users.
  • the problems to be solved by this application include: how to achieve more accurate power control for PUCCH.
  • the problems to be solved by this application include: how to optimize the function of a single DCI in scheduling multiple serving cells.
  • Embodiment 6 illustrates a schematic diagram of the relationship between the first power, the upper limit power, the target power, the first reference value, the value of the first domain in the first DCI and the Q1 components according to an embodiment of the present application, as shown in the appendix As shown in Figure 6.
  • the first power is equal to the smaller of the upper limit power and the target power
  • the target power is equal to the sum of a plurality of power components
  • at least one power component of the plurality of power components is Dependent on a first reference value
  • the first reference value is the number of HARQ-ACK bits used to obtain the PUCCH transmission power
  • the first reference value depends on the value of the first domain in the first DCI and the Q1 components.
  • the target power is related to the first reference value.
  • the target power depends on the first reference value.
  • the first reference value is used to indicate at least one power component among the plurality of power components.
  • the first reference value is used to configure at least one power component among the plurality of power components.
  • the plurality of power components include a first power component, the first power component depends on the first reference value, and the first power component is ⁇ TF in section 7.2.1 of 3GPP TS 38.213 , b, f, c (i) represents the PUCCH transmit power adjustment component.
  • the plurality of power components include a first power component, which depends on the first reference value; the first power component is equal to 10log 10 (K 1 ⁇ (the first reference value+second reference value+third reference value)/second value), the second value is PUCCH The number of at least part of the resource elements (REs) occupied by the transmission, the second reference value is the number of SR information bits, and the third reference value is the number of CSI information bits.
  • the plurality of power components include a first power component, the first power component depends on the first reference value; the first power component is equal to
  • the BPRE is equal to (the first reference value + the second reference value + the third reference value + the fourth reference value)/second value, and the second value is at least part of the resource particles (resources) occupied by the transmission of the PUCCH elements, REs), the second reference value is the number of SR (Scheduling request, scheduling request) information bits, the third reference value is the number of CSI (Channel state information, channel state information) information bits, so The fourth reference value is the number of CRC bits, and K2 is equal to 2.4.
  • the second value is the number of at least part of the resource elements occupied by the transmission of the first PUCCH.
  • the second value is the number of resource particles used for transmission of the first PUCCH.
  • the second value is the number of at least part of the resource elements occupied by the transmission of a PUCCH other than the first PUCCH.
  • the first reference value is equal to the sum of a plurality of intermediate values, and one of the plurality of intermediate values is equal to the value of the first domain in the first DCI minus the
  • the difference between the sum of Q1 components is a positive integer multiple of the result modulo the third value, the third value is equal to 2 raised to the V power, and V is equal to the number of bits in a DAI field.
  • the V is equal to the number of bits in the counter DAI field.
  • the V is equal to the total number of bits in the DAI field.
  • the V is equal to the number of bits of the counter DAI field in the first DCI.
  • the V is equal to the number of total DAI field bits in the first DCI.
  • the value of the first domain in the first DCI and the Q1 components together indicate the first reference value.
  • the first reference value depends on the value of the first domain in the first DCI, the Q1 components and N1.
  • the first reference value is equal to the sum of a plurality of intermediate values, and one of the plurality of intermediate values is equal to the value of the first domain in the first DCI minus the The product of the difference between the sum of the Q1 components modulo the third value and N1, the third value is equal to 2 raised to the V power, and V is equal to the number of bits in a DAI field.
  • N1 is a positive integer.
  • the N1 is configurable.
  • the N1 depends on the maximum number of serving cells scheduled by DCI that meets the first condition.
  • the N1 is not greater than the maximum number of serving cells scheduled by DCI that meets the first condition.
  • the N1 is not greater than the maximum number of PDSCHs scheduled by DCI that meets the first condition.
  • the N1 is not greater than the maximum number of transmission blocks scheduled by DCI that meets the first condition.
  • one of the plurality of intermediate values is a non-negative integer.
  • one of the plurality of intermediate values is equal to 0.
  • one of the plurality of intermediate values is greater than 0.
  • one of the plurality of intermediate values is configurable.
  • one of the plurality of intermediate values is a constant.
  • one of the plurality of intermediate values depends on the number of PDSCHs scheduled by the detected at least one DCI that satisfies the first condition.
  • one of the plurality of intermediate values is equal to the PDSCH scheduled by at least one DCI that satisfies the first condition and is detected occupying the given serving cell in the at least one PDCCH monitoring opportunity. quantity.
  • one of the plurality of intermediate values is equal to the number of PDSCHs scheduled on a serving cell for at least one DCI that is detected in the at least one PDCCH monitoring opportunity and satisfies the first condition.
  • one of the plurality of intermediate values is equal to the number of PDSCHs in one serving cell.
  • one of the plurality of intermediate values depends on the detected number of transmission blocks scheduled by at least one DCI that satisfies the first condition.
  • one of the plurality of intermediate values is equal to the PDSCH scheduled by at least one DCI that satisfies the first condition and is detected occupying the given serving cell in the at least one PDCCH monitoring opportunity.
  • one of the plurality of intermediate values is equal to the transmission of at least one DCI that meets the first condition detected in the at least one PDCCH monitoring opportunity in the PDSCH scheduled on a serving cell.
  • the number of blocks is equal to the transmission of at least one DCI that meets the first condition detected in the at least one PDCCH monitoring opportunity in the PDSCH scheduled on a serving cell.
  • one of the plurality of intermediate values is equal to the number of transport blocks in the PDSCH in one serving cell.
  • taking a numerical value modulo another numerical value means: the one numerical value modulates the other numerical value.
  • Embodiment 7 illustrates a schematic diagram of the relationship between the first power, the upper limit power, the target power, the first value and the second value according to an embodiment of the present application, as shown in FIG. 7 .
  • the first power is equal to the smaller of the upper limit power and the target power
  • the target power is equal to the sum of multiple power components
  • one of the multiple power components is equal to 10 log 10 (K 1 ⁇ First value/second value)
  • the second value is the number of at least part of the resource particles occupied by the transmission of PUCCH
  • the first value is equal to the sum of multiple values, among the multiple values
  • One is equal to a positive integer multiple of the result of taking the difference between the value of the first domain in the first DCI minus the sum of the Q1 components modulo a third value
  • the third value is equal to 2 to the power of V, where V is equal to the number of bits in a DAI field.
  • the first value is equal to the sum of multiple values, and one of the multiple values is equal to the value of the first domain in the first DCI minus the Q1 components.
  • the difference between the sum and the sum is a positive integer multiple of the result modulo the third value, the third value is equal to 2 raised to the V power, and V is equal to the number of bits in a DAI field.
  • one of the plurality of values is the number of SR information bits.
  • one of the plurality of values is the number of CSI information bits.
  • one of the plurality of values is equal to 0.
  • one of the plurality of values is a non-negative integer.
  • one of the plurality of values is configurable.
  • one of the plurality of values is a constant.
  • one of the plurality of values depends on the number of PDSCHs scheduled by the detected DCI that satisfies the first condition.
  • one of the plurality of values depends on the detected number of transmission blocks scheduled by the DCI that satisfies the first condition.
  • the first reference value is one of the plurality of values.
  • the first reference value is equal to the sum of at least two of the plurality of values.
  • Embodiment 8 illustrates the first power, the upper limit power, the target power, the first reference value, the value of the first domain in the first DCI and the value detected in at least one PDCCH monitoring opportunity according to an embodiment of the present application.
  • a schematic diagram of the relationship between the total number of DCIs that meet the first condition is shown in Figure 8.
  • the first power is equal to the smaller of the upper limit power and the target power
  • the target power is equal to the sum of a plurality of power components
  • at least one power component of the plurality of power components is Dependent on a first reference value
  • the first reference value is the number of HARQ-ACK bits used to obtain the PUCCH transmission power
  • the first reference value depends on the value of the first domain in the first DCI and the total number of DCIs that meet the first condition that are detected in the at least one PDCCH monitoring opportunity.
  • the DCI that is detected in the at least one PDCCH monitoring opportunity and occupies any of the Q1 serving cells and satisfies the first condition is: DCI that satisfies the first condition and is detected at the opportunity.
  • the value of the first domain in the first DCI together with the total number of DCIs that meet the first condition detected in the at least one PDCCH monitoring opportunity indicate the the first reference value.
  • the value of the first domain in the first DCI and the at least one PDCCH monitoring opportunity are used to configure the first reference value.
  • the target power is related to the first reference value.
  • the target power depends on the first reference value.
  • the first reference value is used to indicate at least one power component among the plurality of power components.
  • the first reference value is used to configure at least one power component among the plurality of power components.
  • the plurality of power components include a first power component, the first power component depends on the first reference value, and the first power component is ⁇ TF in section 7.2.1 of 3GPP TS 38.213 , b, f, c (i) represents the PUCCH transmit power adjustment component.
  • the plurality of power components include a first power component, which depends on the first reference value; the first power component is equal to 10log 10 (K 1 ⁇ (the first reference Value + second reference value + third reference value)/second value), the second value is the number of at least part of the resource elements (REs) occupied by the transmission of the PUCCH, and the second reference value is The number of SR information bits, the third reference value is the number of CSI information bits, and the K 1 is equal to 6.
  • the second value is the number of at least part of the resource elements occupied by the transmission of the first PUCCH.
  • the second value is the number of resource particles used for transmission of the first PUCCH.
  • the second value is the number of at least part of the resource elements occupied by the transmission of a PUCCH other than the first PUCCH.
  • the first reference value is equal to the sum of a plurality of intermediate values, and one of the plurality of intermediate values is equal to the value of the first domain in the first DCI minus the value in the first DCI.
  • the difference between the total number of DCIs that meet the first condition detected in the at least one PDCCH monitoring opportunity is a positive integer multiple of the result modulo a third value, and the third value is equal to the V power of 2 , the V is equal to the number of bits of a DAI field.
  • the V is equal to the number of bits in the counter DAI field.
  • the V is equal to the total number of bits in the DAI field.
  • the V is equal to the number of bits of the counter DAI field in the first DCI.
  • the V is equal to the number of total DAI field bits in the first DCI.
  • the value of the first domain in the first DCI and the Q1 components together indicate the first reference value.
  • the first reference value depends on the value of the first domain in the first DCI, the Q1 components and N1.
  • the first reference value is equal to the sum of a plurality of intermediate values, and one of the plurality of intermediate values is equal to the value of the first domain in the first DCI minus the value in the first DCI.
  • the product of the difference between the total number of DCIs that meet the first condition detected in the at least one PDCCH monitoring opportunity modulo a third value and N1, and the third value is equal to 2 raised to the V power , the V is equal to the number of bits of a DAI field.
  • N1 is a positive integer.
  • the N1 is configurable.
  • the N1 depends on the maximum number of serving cells scheduled by DCI that meets the first condition.
  • the N1 is not greater than the maximum number of serving cells scheduled by DCI that meets the first condition.
  • the N1 is not greater than the maximum number of PDSCHs scheduled by DCI that meets the first condition.
  • the N1 is not greater than the maximum number of transmission blocks scheduled by DCI that meets the first condition.
  • one of the plurality of intermediate values is a non-negative integer.
  • one of the plurality of intermediate values is configurable.
  • one of the plurality of intermediate values is a constant.
  • one of the plurality of intermediate values depends on the number of PDSCHs scheduled by the detected DCI that satisfies the first condition.
  • one of the plurality of intermediate values depends on the detected number of transmission blocks scheduled by the DCI that satisfies the first condition.
  • the first power is equal to the smaller of the upper limit power and the target power.
  • the target power is equal to the sum of multiple power components. At least one of the multiple power components depends on A first reference value, the first reference value is the number of HARQ-ACK bits used to obtain the PUCCH transmission power.
  • Embodiment 9 illustrates a schematic diagram of the first power according to an embodiment of the present application, as shown in FIG. 9 .
  • the first power is equal to the smaller of the upper limit power and the target power
  • the target power is equal to the sum of multiple power components.
  • the target power is equal to the sum of the multiple power components with respect to the dB (decibel) domain.
  • the target power is equal to the sum of the multiple power components.
  • the unit of one power component among the plurality of power components is dBm or dB.
  • the upper limit power is default.
  • the upper power limit is configurable.
  • the upper limit power is configured by higher layer signaling.
  • the upper limit power is configured by RRC signaling.
  • the upper limit power is configured maximum output power.
  • the upper limit power is for a PUCCH transmission opportunity.
  • the upper limit power is the maximum output power configured for the UE of one carrier in one PUCCH transmission opportunity.
  • the symbol representing the upper limit power includes PCMAX,f,c .
  • the unit of the upper limit power is dBm (decibel milliwatt).
  • the unit of the upper limit power is watt (W).
  • the unit of the upper limit power is milliwatt (mW).
  • the unit of the first power is dBm.
  • the unit of the first power is watt (W).
  • the unit of the first power is milliwatt (mW).
  • the unit of the target power is dBm.
  • the unit of the target power is Watt (W).
  • the unit of the target power is milliwatts (mW).
  • the first power is equal to min ⁇ upper limit power, target power ⁇ .
  • At least one of the plurality of power components is defined in Section 7.2.1 of 3GPP TS38.213.
  • the first power component is one of the plurality of power components.
  • the second power component is one of the plurality of power components.
  • the third power component is one of the plurality of power components.
  • the fourth power component is one of the plurality of power components.
  • the fifth power component is one of the plurality of power components.
  • the sixth power component is one of the plurality of power components.
  • the p0-nominal domain is used to configure the sixth power component.
  • the P0-PUCCH domain is used to configure the sixth power component.
  • the p0-PUCCH-Value field is used to configure the sixth power component.
  • the sixth power component is equal to 0.
  • the unit of the sixth power component is dBm.
  • the unit of the sixth power component is watt (W).
  • the unit of the sixth power component is milliwatt (mW).
  • the representation symbol of the sixth power component includes P O_PUCCH,b,f,c .
  • the representation symbol of the sixth power component includes O_PUCCH.
  • the sixth power component is equal to the sum of two sub-components, and any one of the two sub-components is a default value or configured by RRC signaling.
  • the sixth power component is equal to the sum of two sub-components, one of the two sub-components is a value of p0-PUCCH-Value or equal to 0, and the other of the two sub-components is or is configured in a p0-nominal domain or equal to 0dBm.
  • the sixth power component is configurable.
  • the first PUCCH is used to determine the second power component.
  • the frequency domain resources occupied by the first PUCCH are used to determine the second power component.
  • the second power component is equal to 10 ⁇ log 10 (2 ⁇ M RB ), and the M RB is equal to all or part of the PUCCH resources to which the resources occupied by the first PUCCH belong.
  • the number of resource blocks included in the domain, and ⁇ is an SCS (Subcarrier spacing) configuration.
  • the second power component is equal to 10 ⁇ log 10 (2 ⁇ M RB ), and the M RB is equal to the number of resource blocks included in the frequency domain of the resources occupied by the first PUCCH,
  • the ⁇ is an SCS (Subcarrier spacing) configuration.
  • the second power component is equal to 2 ⁇ M RB
  • the M RB is equal to the number of resource blocks included in the frequency domain of the resources occupied by the first PUCCH
  • the ⁇ is an SCS (Subcarrier spacing, subcarrier spacing) configuration.
  • the ⁇ is configurable.
  • the third power component is a downlink path loss estimate.
  • the unit of the third power component is dB.
  • the third power component is calculated based on the measurement of the reference signal.
  • the symbol representing the third power component includes PL b,f,c .
  • the symbol representing the third power component includes PL.
  • the unit of the third power component is watt (W).
  • the unit of the third power component is milliwatt (mW).
  • the fourth power component is one of the value of deltaF-PUCCH-f2, the value of deltaF-PUCCH-f3, the value of deltaF-PUCCH-f4, or 0.
  • the fourth power component is equal to a default value or configured by RRC signaling.
  • the fourth power component is related to PUCCH format.
  • the fourth power component is related to the PUCCH format used by the first PUCCH.
  • the first PUCCH uses one of PUCCH format (PUCCH format) 2 or PUCCH format 3 or PUCCH format 4; when the first PUCCH uses PUCCH format 2, the fourth power component is deltaF - the value of PUCCH-f2 or 0; when the first PUCCH uses PUCCH format 2, the fourth power component is the value of deltaF-PUCCH-f3 or 0; when the first PUCCH uses PUCCH format 2, The fourth power component is the value of deltaF-PUCCH-f4 or 0.
  • the symbol representing the fourth power component includes ⁇ F_PUCCH .
  • the symbol representing the fourth power component includes F_PUCCH.
  • the fifth power component is a PUCCH power control adjustment state value (PUCCH power control adjustment state).
  • the fifth power component is obtained based on the indication of the TPC domain in the DCI format.
  • the fifth power component is determined based on a TPC (Transmit power control) command.
  • TPC Transmit power control
  • the value of the fifth power component is for the PUCCH transmission opportunity corresponding to the first PUCCH.
  • the TPC command for scheduled PUCCH field in the first DCI is used to determine the fifth power component.
  • the fifth power component is linearly related to the value indicated by the TPC command for scheduled PUCCH field in the first DCI.
  • the symbol representing the fifth power component includes g b,f,c .
  • the symbol of the first power component includes ⁇ .
  • the representation symbol of the first power component includes ⁇ TF,b,f,c .
  • one of PUCCH format (format) 2 or PUCCH format 3 or PUCCH format 4 is used for the first PUCCH.
  • one of PUCCH format 3 or PUCCH format 4 is used for the first PUCCH.
  • the first PUCCH also occupies a code domain resource.
  • the first power is equal to the larger of the upper limit power and the target power
  • the target power is equal to the sum of multiple power components
  • the first power is equal to the larger of the upper limit power and the target power
  • the target power is equal to the sum of multiple power components
  • Embodiment 10 illustrates a structural block diagram of a processing device in a first node device, as shown in FIG. 10 .
  • the first node device processing device 1000 includes a first receiver 1001 and a first transmitter 1002 .
  • the first node device 1000 is a base station.
  • the first node device 1000 is user equipment.
  • the first node device 1000 is a relay node.
  • the first node device 1000 is a vehicle-mounted communication device.
  • the first node device 1000 is a user equipment supporting V2X communication.
  • the first node device 1000 is a relay node supporting V2X communication.
  • the first node device 1000 is a user equipment supporting operations on a high-frequency spectrum.
  • the first node device 1000 is a user equipment supporting operations on a shared spectrum.
  • the first node device 1000 is a user device supporting XR services.
  • the first node device 1000 is a RedCap UE.
  • the first node device 1000 is a UE with high processing capabilities.
  • the first receiver 1001 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. At least one of the sources 467.
  • the first receiver 1001 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. At least the first five of source 467.
  • the first receiver 1001 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. At least the first four of source 467.
  • the first receiver 1001 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. At least the first three of source 467.
  • the first receiver 1001 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. At least the first two in source 467.
  • the first transmitter 1002 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least one of the data sources 467.
  • the first transmitter 1002 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first five of data sources 467.
  • the first transmitter 1002 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first four of data sources 467.
  • the first transmitter 1002 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first three of data sources 467.
  • the first transmitter 1002 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first two of data sources 467.
  • the first receiver 1001 receives a first DCI, and the first DCI includes a first domain; the first transmitter 1002 transmits a first PUCCH with a first power; wherein, the first A power depends on at least the value of the first domain in the first DCI and Q1 components, where the Q1 is a positive integer; the Q1 components correspond to Q1 serving cells one-to-one; a given serving cell is the Q1 One of the serving cells; for the given serving cell, the corresponding component is equal to the total number of DCIs that are detected occupying the given serving cell and satisfy the first condition in at least one PDCCH monitoring opportunity, and one satisfies the first condition.
  • the DCI of the first condition schedules multiple serving cells.
  • the total number of DCIs that satisfy the first condition that are detected occupying the given serving cell in the at least one PDCCH monitoring opportunity refers to: in the at least one PDCCH monitoring opportunity The total number of detected DCIs that satisfy the first condition for the given serving cell.
  • the total number of DCIs that satisfy the first condition that are detected occupying the given serving cell in the at least one PDCCH monitoring opportunity refers to: in the at least one PDCCH monitoring opportunity The total number of detected DCIs that meet the first condition on the given serving cell.
  • the total number of DCIs that satisfy the first condition that are detected occupying the given serving cell in the at least one PDCCH monitoring opportunity refers to: in the at least one PDCCH monitoring opportunity The total number of detected DCIs that satisfy the first condition and are transmitted on the given serving cell.
  • the total number of DCIs that satisfy the first condition that are detected occupying the given serving cell in the at least one PDCCH monitoring opportunity refers to: on the given serving cell and The total number of DCIs that meet the first condition and are detected in the at least one PDCCH monitoring opportunity.
  • the total number of DCIs that satisfy the first condition that are detected occupying the given serving cell in the at least one PDCCH monitoring opportunity refers to: in the at least one PDCCH monitoring opportunity The total number of detected DCIs that meet the first condition with the given serving cell as the reference serving cell; for a DCI that schedules multiple serving cells, the corresponding reference serving cell is based on the scheduling order or serving cell. determined by at least one of the indexes.
  • the first power is equal to the smaller of the upper limit power and the target power.
  • the target power is equal to the sum of multiple power components. At least one of the multiple power components depends on The value of the first domain and the Q1 components in the first DCI.
  • At least one power component among the plurality of power components depends on a first reference value.
  • the first reference value is the number of HARQ-ACK bits used to obtain the PUCCH transmission power.
  • the first reference value Dependent on the value of the first domain in the first DCI and the Q1 components.
  • one of the plurality of power components is equal to 10log 10 (K 1 ⁇ first value/second value), the second value is the number of resource particles used for PUCCH transmission, and the first The value is equal to the sum of multiple values, and one of the multiple values is equal to the value of the first domain in the first DCI minus the value that satisfies the requirements detected in the at least one PDCCH monitoring opportunity.
  • the difference between the total number of DCIs in the first condition is a positive integer multiple of the result modulo a third value, where the third value is equal to 2 raised to the V power, and V is equal to the number of bits in a DAI field.
  • Embodiment 11 illustrates a structural block diagram of a processing device in a second node device, as shown in FIG. 11 .
  • the second node device processing device 1100 includes a second transmitter 1101 and a second receiver 1102.
  • the second node device 1100 is user equipment.
  • the second node device 1100 is a base station.
  • the second node device 1100 is a satellite device.
  • the second node device 1100 is a relay node.
  • the second node device 1100 is a vehicle-mounted communication device.
  • the second node device 1100 is a user equipment supporting V2X communication.
  • the second node device 1100 is a device that supports operations on a high-frequency spectrum.
  • the second node device 1100 is a device that supports operations on a shared spectrum.
  • the second node device 1100 is a device that supports XR services.
  • the second node device 1100 is one of a test device, a test equipment, and a test instrument.
  • the second transmitter 1101 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least one.
  • the second transmitter 1101 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first five.
  • the second transmitter 1101 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first four.
  • the second transmitter 1101 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first three.
  • the second transmitter 1101 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first two.
  • the second receiver 1102 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least one.
  • the second receiver 1102 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first five.
  • the second receiver 1102 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first four.
  • the second receiver 1102 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first three.
  • the second receiver 1102 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first two.
  • the second transmitter 1101 sends a first DCI
  • the first DCI includes a first domain
  • the second receiver 1102 receives a first PUCCH sent with a first power
  • the first power depends on at least the value of the first domain in the first DCI and Q1 components, where Q1 is a positive integer; the Q1 components correspond to Q1 serving cells one-to-one; a given serving cell is one of the Q1 serving cells; for the given serving cell, the corresponding component is equal to the occupation of the given serving cell detected by the sending end of the first PUCCH in at least one PDCCH monitoring opportunity.
  • the total number of DCIs that satisfy the first condition, and one DCI that satisfies the first condition schedules multiple serving cells.
  • the total number of DCIs that satisfy the first condition that occupy the given serving cell and are detected by the sending end of the first PUCCH in the at least one PDCCH monitoring opportunity refers to: The total number of DCIs that meet the first condition for the given serving cell and are detected by the transmitting end of the first PUCCH in the at least one PDCCH monitoring opportunity.
  • the total number of DCIs that satisfy the first condition that occupy the given serving cell and are detected by the sending end of the first PUCCH in the at least one PDCCH monitoring opportunity refers to: The total number of DCIs that meet the first condition on the given serving cell and are detected by the transmitting end of the first PUCCH in the at least one PDCCH monitoring opportunity.
  • the total number of DCIs that satisfy the first condition that occupy the given serving cell and are detected by the sending end of the first PUCCH in the at least one PDCCH monitoring opportunity refers to: The total number of DCIs that are transmitted on the given serving cell and meet the first condition detected by the transmitting end of the first PUCCH in the at least one PDCCH monitoring opportunity.
  • the total number of DCIs that satisfy the first condition that occupy the given serving cell and are detected by the sending end of the first PUCCH in the at least one PDCCH monitoring opportunity refers to: The total number of DCIs that meet the first condition and are detected by the transmitting end of the first PUCCH on the given serving cell and in the at least one PDCCH monitoring opportunity.
  • the total number of DCIs that satisfy the first condition that occupy the given serving cell and are detected by the transmitting end of the first PUCCH in the at least one PDCCH monitoring opportunity refers to: The total number of DCIs that meet the first condition and use the given serving cell as a reference serving cell detected by the transmitting end of the first PUCCH in the at least one PDCCH monitoring opportunity; for one scheduling multiple serving cells DCI, the corresponding reference serving cell is determined according to at least one of the scheduling order or the serving cell index.
  • the first power is equal to the smaller of the upper limit power and the target power.
  • the target power is equal to the sum of multiple power components. At least one of the multiple power components depends on The value of the first domain and the Q1 components in the first DCI.
  • At least one power component among the plurality of power components depends on a first reference value.
  • the first reference value is the number of HARQ-ACK bits used to obtain the PUCCH transmission power.
  • the first reference value Relying on the first DCI in the The value of a domain and the Q1 components.
  • one of the plurality of power components is equal to 10log 10 (K 1 ⁇ first value/second value), the second value is the number of resource particles used for PUCCH transmission, and the first The value is equal to the sum of multiple values, and one of the multiple values is equal to the value of the first field in the first DCI minus the value of the first PUCCH in the at least one PDCCH monitoring opportunity.
  • the difference between the total number of DCIs that meet the first condition detected by the transmitting end is a positive integer multiple of the result modulo the third value, the third value is equal to 2 raised to the V power, and V is equal to The number of bits in a DAI field.
  • the first node devices in this application include but are not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc.
  • Wireless communications equipment The second node devices in this application include but are not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. Wireless communications equipment.
  • the user equipment or UE or terminal in this application includes but is not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle-mounted communication equipment, aircraft, aircraft, drones, remote controls Wireless communication equipment such as aircraft.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP, GNSS, relay satellite, satellite base station, aerial Base stations, test devices, test equipment, test instruments and other equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一接收机,接收第一DCI,所述第一DCI包括第一域;第一发射机,以第一功率发送第一PUCCH;其中,所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调度多个服务小区。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
在5G NR系统中,为了支持eMBB((Enhanced Mobile Broadband,增强移动宽带),大量的DCI(Downlink Control Information,下行控制信息)需要被发送以完成对物理层信道(如,PDSCH(Physical Downlink Shared CHannel,物理下行共享信道),PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)等)的调度(scheduling);使用单个DCI在多个服务小区(serving cells)上调度多个PDSCH是降低DCI开销的一种有效手段,如何确定相应的PUCCH的发送功率是一个需要考虑的重要方面。
发明内容
针对上述问题,本申请公开了一种解决方案。需要说明的是,上述描述采用eMBB为例子;本申请也同样适用于其他场景,比如URLLC(Ultra-Reliable Low-Latency Communications,低时延高可靠通信),车联网,物联网,NTN(Non-Terrestrial Networks,非地面网络),MBS(Multicast Broadcast Services,多播广播业务),XR(Extended Reality,扩展现实),eMTC(enhanced Machine-Type Communication,增强型机器类型通信),全双工通信等,并取得类似的技术效果。此外,不同场景(包括但不限于eMBB,URLLC,车联网,物联网,NTN,MBS,XR,eMTC,全双工通信)采用统一解决方案还有助于降低硬件复杂度和成本,或者提高性能。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一DCI,所述第一DCI包括第一域;
以第一功率发送第一PUCCH;
其中,所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调度多个服务小区。
作为一个实施例,上述方法的好处包括:提供了更精准的针对PUCCH(Physical uplink control channel,物理上行控制信道)的功率控制。
作为一个实施例,上述方法的好处包括:避免了不必要的功率抬升。
作为一个实施例,上述方法的好处包括:提高了上行传输性能。
作为一个实施例,上述方法的好处包括:降低了用户间干扰,提高了系统性能。
作为一个实施例,上述方法的好处包括:节省了信令开销。
作为一个实施例,上述方法的好处包括:兼容性好。
作为一个实施例,上述方法的好处包括:对现有3GPP标准的改动小。
根据本申请的一个方面,上述方法的特征在于,
在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的 所述总数是指:在所述至少一个PDCCH监测时机中被检测出的针对所述给定服务小区的满足所述第一条件的DCI的总数。
根据本申请的一个方面,上述方法的特征在于,
在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的在所述给定服务小区上的满足所述第一条件的DCI的总数。
根据本申请的一个方面,上述方法的特征在于,
在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的在所述给定服务小区上被传送的满足所述第一条件的DCI的总数。
根据本申请的一个方面,上述方法的特征在于,
在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述给定服务小区上且在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的总数。
根据本申请的一个方面,上述方法的特征在于,
在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的以所述给定服务小区作为参考服务小区的满足所述第一条件的DCI的总数;对于一个调度多个服务小区的DCI,所对应的参考服务小区是根据调度顺序或服务小区索引中的至少之一所确定的。
根据本申请的一个方面,上述方法的特征在于,
所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中的至少一个功率分量依赖所述第一DCI中的所述第一域的值和所述Q1个分量。
根据本申请的一个方面,上述方法的特征在于,
所述多个功率分量中的至少一个功率分量依赖第一参考数值,所述第一参考数值是用于获取PUCCH发送功率的HARQ-ACK比特的数量,所述第一参考数值依赖所述第一DCI中的所述第一域的所述值和所述Q1个分量。
根据本申请的一个方面,上述方法的特征在于,
所述多个功率分量中之一等于10log10(K1·第一数值/第二数值),所述第二数值是用于PUCCH发送的资源粒子的数量,所述第一数值等于多个数值之和,所述多个数值中之一等于所述第一DCI中的所述第一域的所述值减去在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的所述总数的差值对第三数值取模的结果的正整数倍,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一DCI,所述第一DCI包括第一域;
接收以第一功率被发送的第一PUCCH;
其中,所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调度多个服务小区。
根据本申请的一个方面,上述方法的特征在于,
在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的针对所述给定服务小区的满足所述第一条件的DCI的总数。
根据本申请的一个方面,上述方法的特征在于,
在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的 满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的在所述给定服务小区上的满足所述第一条件的DCI的总数。
根据本申请的一个方面,上述方法的特征在于,
在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的在所述给定服务小区上被传送的满足所述第一条件的DCI的总数。
根据本申请的一个方面,上述方法的特征在于,
在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述给定服务小区上且在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的满足所述第一条件的DCI的总数。
根据本申请的一个方面,上述方法的特征在于,
在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的以所述给定服务小区作为参考服务小区的满足所述第一条件的DCI的总数;对于一个调度多个服务小区的DCI,所对应的参考服务小区是根据调度顺序或服务小区索引中的至少之一所确定的。
根据本申请的一个方面,上述方法的特征在于,
所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中的至少一个功率分量依赖所述第一DCI中的所述第一域的值和所述Q1个分量。
根据本申请的一个方面,上述方法的特征在于,
所述多个功率分量中的至少一个功率分量依赖第一参考数值,所述第一参考数值是用于获取PUCCH发送功率的HARQ-ACK比特的数量,所述第一参考数值依赖所述第一DCI中的所述第一域的所述值和所述Q1个分量。
根据本申请的一个方面,上述方法的特征在于,
所述多个功率分量中之一等于10log10(K1·第一数值/第二数值),所述第二数值是用于PUCCH发送的资源粒子的数量,所述第一数值等于多个数值之和,所述多个数值中之一等于所述第一DCI中的所述第一域的所述值减去在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的满足所述第一条件的DCI的所述总数的差值对第三数值取模的结果的正整数倍,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一DCI,所述第一DCI包括第一域;
第一发射机,以第一功率发送第一PUCCH;
其中,所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调度多个服务小区。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发射机,发送第一DCI,所述第一DCI包括第一域;
第二接收机,接收以第一功率被发送的第一PUCCH;
其中,所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调度多个服务小区。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会 变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的信号传输流程图;
图6示出了根据本申请的一个实施例的第一功率,上限功率,目标功率,第一参考数值,第一DCI中的第一域的值以及Q1个分量之间关系的示意图;
图7示出了根据本申请的一个实施例的第一功率,上限功率,目标功率,第一数值以及第二数值之间关系的示意图;
图8示出了根据本申请的一个实施例的第一功率,上限功率,目标功率,第一参考数值,第一DCI中的第一域的值以及在至少一个PDCCH监测时机中被检测出的满足第一条件的DCI的总数之间关系的示意图;
图9示出了根据本申请的一个实施例的第一功率的说明示意图;
图10示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图11示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点的处理流程图,如附图1所示。
在实施例1中,本申请中的所述第一节点,在步骤101中接收第一DCI;在步骤102中以第一功率发送第一PUCCH。
在实施例1中,所述第一DCI包括第一域;所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调度多个服务小区。
作为一个实施例,所述第一DC是动态配置的。
作为一个实施例,所述第一DC包括层1(L1)的信令。
作为一个实施例,所述第一DC包括层1(L1)的控制信令。
作为一个实施例,所述第一DC包括一个物理层信令中的一个或多个域(Field)。
作为一个实施例,所述第一DCI是被用于调度PDSCH的信令。
作为一个实施例,所述第一DCI是一个DCI格式。
作为一个实施例,所述第一DCI是一个DCI格式(format)1_3。
作为一个实施例,所述第一DCI是一个DCI格式1_4。
作为一个实施例,所述第一DCI是一个DCI格式1_5。
作为一个实施例,所述第一DCI是一个DCI格式1_6。
作为一个实施例,所述第一DCI是一个DCI格式1_7。
作为一个实施例,所述第一DCI是一个DCI格式1_8。
作为一个实施例,所述第一域包括仅一个比特。
作为一个实施例,所述第一域包括多个比特。
作为一个实施例,所述第一域包括2个比特。
作为一个实施例,所述第一域包括的比特的数量等于2。
作为一个实施例,所述第一域包括的比特的数量大于2。
作为一个实施例,所述第一域的值被用于表示{服务小区(serving cell),PDCCH监测时机(PDCCH monitoring occasion)}的累积数量(accumulative number)。
作为一个实施例,所述第一域的值被用于表示{服务小区,PDCCH(Physical downlink control channel,物理下行控制信道)监测时机}的总数(total number)。
作为一个实施例,所述第一域是DAI域。
作为一个实施例,所述第一域是计数器(counter)DAI(Downlink assignment index,下行分配索引)域。
作为一个实施例,所述第一域是总计(total)DAI域。
作为一个实施例,所述第一域是被用于表示对DCI所进行的计数的域。
作为一个实施例,所述第一功率是PUCCH发送功率。
作为一个实施例,所述表述发送第一PUCCH包括:执行一个PUCCH传输(a PUCCH transmission)。
作为一个实施例,所述表述发送第一PUCCH包括:在第一PUCCH中发送信号。
作为一个实施例,所述表述发送第一PUCCH包括:在第一PUCCH中发送UCI(Uplink control information,上行控制信息)比特。
作为一个实施例,所述表述发送第一PUCCH包括:在第一PUCCH中发送至少HARQ-ACK(Hybrid automatic repeat request acknowledgement,混合自动重传请求确认)比特。
作为一个实施例,所述第一PUCCH携带至少HARQ-ACK信息。
作为一个实施例,所述Q1等于1。
作为一个实施例,所述Q1大于1。
作为一个实施例,所述Q1不大于4。
作为一个实施例,所述Q1不大于8。
作为一个实施例,所述Q1不大于32。
作为一个实施例,所述Q1不大于1024。
作为一个实施例,所述Q1是可配置的。
作为一个实施例,所述Q1等于支持被一个调度多个服务小区的DCI调度的服务小区的数量。
作为一个实施例,所述Q1个服务小区都是配置给所述第一节点的服务小区。
作为一个实施例,Q1个服务小区中的至少之一是可配置的。
作为一个实施例,Q1个服务小区都是支持被一个调度多个服务小区的DCI调度的服务小区。
作为一个实施例,Q1个服务小区都是支持被一个满足第一条件的DCI调度的服务小区。
作为一个实施例,所述第一节点被配置了在Q1个服务小区中的任一服务小区上监测调度多个服务小区的DCI。
作为一个实施例,所述第一节点被配置了在Q1个服务小区中的任一服务小区上监测满足第一条件的DCI。
作为一个实施例,一个满足所述第一条件的DCI调度多个服务小区。
作为一个实施例,Q1个服务小区中的至少之一是所述第一节点所指示的。
作为一个实施例,满足所述第一条件的DCI是指:调度多个服务小区的DCI。
作为一个实施例,满足所述第一条件的DCI是指:DCI格式(format)1_3。
作为一个实施例,满足所述第一条件的DCI是指:DCI格式1_4。
作为一个实施例,满足所述第一条件的DCI是指:DCI格式1_5。
作为一个实施例,满足所述第一条件的DCI是指:DCI格式1_6。
作为一个实施例,满足所述第一条件的DCI是指:DCI格式1_7。
作为一个实施例,满足所述第一条件的DCI是指:DCI格式1_8。
作为一个实施例,任何一个满足所述第一条件的DCI都调度多个服务小区。
作为一个实施例,任何一个调度仅一个小区的DCI都不是满足所述第一条件的DCI。
作为一个实施例,在本申请中,一个DCI是一个DCI格式。
作为一个实施例,所述给定服务小区是所述Q1个服务小区中的任一服务小区。
作为一个实施例,在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的针对所述给定服务小区的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的在所述给定服务小区上的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的在所述给定服务小区上被传送的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述给定服务小区上且在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的以所述给定服务小区作为参考服务小区的满足所述第一条件的DCI的总数。
作为一个实施例,对于一个调度多个服务小区的DCI,以所述给定服务小区作为参考服务小区包括以下含义:所述给定服务小区是这个DCI所调度的所述多个服务小区中服务小区索引最小的服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,以所述给定服务小区作为参考服务小区包括以下含义:所述给定服务小区是这个DCI所调度的所述多个服务小区中服务小区索引最大的服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,所对应的参考服务小区是所调度的所述多个服务小区中之一。
作为一个实施例,对于一个调度多个服务小区的DCI,所对应的参考服务小区是根据调度顺序或服务小区索引中的至少之一所确定的。
作为一个实施例,对于一个调度多个服务小区的DCI,以所述给定服务小区作为参考服务小区包括以下含义:根据调度顺序或服务小区索引中的至少之一,所述给定服务小区被确定为这个DCI所对应的参考服务小区。
作为一个实施例,所述调度顺序包括:PDSCH的调度顺序。
作为一个实施例,所述调度顺序包括:所调度的PDSCH或所调度的PDSCH所占用的时隙的先后顺序。
作为一个实施例,所述调度顺序包括:服务小区的调度顺序。
作为一个实施例,对于一个调度多个服务小区的DCI,以所述给定服务小区作为参考服务小区包括以下含义:所述给定服务小区是这个DCI所调度的最后一个服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,以所述给定服务小区作为参考服务小区包括以下含义:所述给定服务小区是这个DCI所调度的第一个服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,以所述给定服务小区作为参考服务小区包括以下含义:所述给定服务小区是这个DCI所调度的最后一个PDSCH所在的服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,以所述给定服务小区作为参考服务小区包括以下含义:所述给定服务小区是这个DCI所调度的第一个PDSCH所在的服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,以所述给定服务小区作为参考服务小区包括以下含义:所述给定服务小区是这个DCI所调度的最晚一个PDSCH所在的服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,以所述给定服务小区作为参考服务小区包括以下含义:所述给定服务小区是这个DCI所调度的最早一个PDSCH所在的服务小区。
作为一个实施例,对于一个调度仅一个服务小区的DCI,所对应的参考服务小区是所述仅一个 服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,所对应的参考服务小区是根据调度顺序或服务小区索引中的至少之一所确定的一个服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,所对应的参考服务小区是这个DCI所调度的最后一个服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,所对应的参考服务小区是这个DCI所调度的第一个服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,所对应的参考服务小区是这个DCI所调度的最后一个PDSCH所在的服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,所对应的参考服务小区是这个DCI所调度的第一个PDSCH所在的服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,所对应的参考服务小区是这个DCI所调度的最晚一个PDSCH所在的服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,所对应的参考服务小区是这个DCI所调度的最早一个PDSCH所在的服务小区。
作为一个实施例,所述表述“最后一个”和“第一个”是基于缺省的或者预先定义好的排序规则而言的。
作为一个实施例,对于一个调度多个服务小区的DCI,以所述给定服务小区作为参考服务小区包括以下含义:按照缺省的或者预先定义好的准则,所述给定服务小区被确定作为针对这个DCI的参考服务小区。
作为一个实施例,一个调度多个服务小区的DCI仅有一个参考服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,所对应的参考服务小区是被用于获取PUCCH发送功率的HARQ-ACK比特的数量的服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,所对应的参考服务小区是被用于计数{服务小区,PDCCH监测时机}对的服务小区。
作为一个实施例,对于一个调度多个服务小区的DCI,所对应的参考服务小区是被用于计数器DAI域的值所表示的{服务小区,PDCCH监测时机}对的服务小区。
作为一个实施例,所述表述占用所述给定服务小区包括:在所述给定服务小区上。
作为一个实施例,对于一个DCI,所占用的服务小区是:被用于传送这个DCI的服务小区。
作为一个实施例,所述表述占用所述给定服务小区包括:针对所述给定服务小区。
作为一个实施例,一个被检测出的DCI与这个被检测出的DCI所占用的服务小区之间满足以下关系:这个被检测出的DCI在所占用的所述服务小区上的PDCCH中被检测出。
作为一个实施例,所述第一条件是:调度多个服务小区。
作为一个实施例,所述第一条件包括:调度多个服务小区。
作为一个实施例,所述第一条件包括多个子条件,所述多个子条件中之一是:调度多个服务小区。
作为上述实施例的一个子实施例,满足所述第一条件是指满足所述多个子条件中的每个子条件。
作为一个实施例,所述多个子条件中之一与PDSCH有关。
作为一个实施例,所述多个子条件中之一是:调度与上行符号无交叠的多个PDSCH。
作为一个实施例,所述多个子条件中之一是:所调度PDSCH对应基于传输块的HARQ-ACK信息。
作为一个实施例,所述多个子条件中之一是:用于单播。
作为一个实施例,所述多个子条件中之一是:用于多播。
作为一个实施例,所述第一DCI是一个满足所述第一条件的DCI。
作为一个实施例,所述第一DCI是针对至少一个服务小区的满足所述第一条件的最后一个DCI。
作为一个实施例,所述第一DCI是针对所述Q1服务小区中的任一者的满足所述第一条件的最 后的DCI。
作为一个实施例,所述第一DCI是在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的最后的DCI。
作为一个实施例,所述第一DCI是在所述至少一个PDCCH监测时机中被检测出的占用所述Q1服务小区中的任一者的满足所述第一条件的最后的(last)DCI。
作为一个实施例,一个DCI所调度的一个服务小区是指:这个DCI所调度的一个小区。
作为一个实施例,当一个DCI在一个服务小区上调度至少一个PDSCH时,这个DCI是调度这个服务小区的DCI。
作为一个实施例,当一个DCI在多个服务小区中的每个服务小区上调度至少一个PDSCH时,这个DCI是调度所述多个服务小区的DCI。
作为一个实施例,当一个DCI指示针对多个服务小区中的每个服务小区的调度信息时,这个DCI是调度所述多个服务小区的DCI。
作为一个实施例,当一个DCI包括针对多个服务小区中的每个服务小区上的PDSCH的调度信息时,这个DCI是调度所述多个服务小区的DCI。
作为一个实施例,所述调度信息包括频域资源分配的信息。
作为一个实施例,所述调度信息包括时域资源分配的信息。
作为一个实施例,所述调度信息包括MCS(Modulation and coding scheme,调制与编码策略)的信息。
作为一个实施例,所述调度信息包括DMRS(Demodulation reference signals,解调参考信号)的配置信息。
作为一个实施例,所述调度信息包括HARQ(Hybrid automatic repeat request,混合自动重传请求)进程号的信息。
作为一个实施例,所述调度信息包括RV(redundancy version,冗余版本)的信息。
作为一个实施例,所述调度信息包括NDI(New Data Indicator,新数据指示器)的信息。
作为一个实施例,所述调度信息包括发送天线端口的信息。
作为一个实施例,所述调度信息包括TCI(Transmission Configuration Indicator,传输状态指示器)的信息。
作为一个实施例,所述表述所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量包括:所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量之和。
作为一个实施例,所述第一DCI中的所述第一域的所述值和所述Q1个分量一起指示所述第一功率。
作为一个实施例,所述第一DCI中的所述第一域的所述值和所述Q1个分量都被用于配置所述第一功率。
作为一个实施例,所述表述所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量包括:
所述第一功率依赖至少所述第一DCI中的所述第一域的值;所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中之一等于10log10(K1·第一数值/第二数值),所述第二数值是用于PUCCH发送的资源粒子的数量,所述第一数值等于多个数值之和,所述多个数值中之一等于所述第一DCI中的所述第一域的所述值减去Q1个分量之和的差值对第三数值取模的结果的正整数倍,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
作为一个实施,所述V等于一个计数器(counter)DAI域的比特的数量。
作为一个实施,一个DAI域的比特的数量包括以下含义:这个DAI域的尺寸(size)。
作为一个实施例,所述表述所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量包括:
所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之 和,所述多个功率分量中的至少一个功率分量依赖所述第一DCI中的所述第一域的值和Q1个分量。
作为一个实施例,所述第一DCI中的所述第一域的所述值和所述Q1个分量一起指示所述多个功率分量中的至少一个功率分量。
作为一个实施例,所述第一DCI中的所述第一域的所述值和所述Q1个分量都被用于配置所述多个功率分量中的至少一个功率分量。
作为一个实施例,所述表述所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量包括:
所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中的至少一个功率分量依赖第一参考数值,所述第一参考数值是用于获取PUCCH发送功率的HARQ-ACK比特的数量,所述第一参考数值依赖所述第一DCI中的所述第一域的值和Q1个分量。
作为一个实施例,所述表述“所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足第一条件的DCI的总数”包括:所述第一功率依赖至少所述第一DCI中的所述第一域的值以及在至少一个PDCCH监测时机中被检测出的满足第一条件的DCI的总数。
作为一个实施例,所述表述“所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足第一条件的DCI的总数”与表述“所述第一功率依赖至少所述第一DCI中的所述第一域的值以及在至少一个PDCCH监测时机中被检测出的满足第一条件的DCI的总数”是等同的或者可以相互替换的。
作为一个实施例,所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中之一等于10log10(K1·第一数值/第二数值),所述第二数值是用于PUCCH发送的资源粒子的数量,所述第一数值等于多个数值之和,所述多个数值中之一等于所述第一DCI中的所述第一域的所述值减去在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的所述总数的差值对第三数值取模的结果的正整数倍,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
作为一个实施例,所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中的至少一个功率分量依赖所述第一DCI中的所述第一域的所述值和在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的所述总数。
作为一个实施例,所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中的至少一个功率分量依赖第一参考数值,所述第一参考数值是用于获取PUCCH发送功率的HARQ-ACK比特的数量,所述第一参考数值依赖所述第一DCI中的所述第一域的所述值和在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的所述总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的占用Q1个服务小区中的任一服务小区的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的针对Q1个服务小区中的任一服务小区的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的在Q1个服务小区中的任一服务小区上的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的在Q1个服务小区中的任一服务小区上被传送的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的所述总数是指:在Q1个服务小区中的任一服务小区上且在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的总数。
作为一个实施例,所述至少一个PDCCH监测时机是可配置的。
作为一个实施例,针对所述至少一个PDCCH监测时机,所述第一节点在一个时隙中的同一个PUCCH中发送HARQ-ACK信息。
作为一个实施例,针对所述至少一个PDCCH监测时机的HARQ-ACK信息是在一个时隙中的同一个PUCCH中发送的。
作为一个实施例,所述至少一个PDCCH监测时机是针对同一个PUCCH时隙的。
作为一个实施例,所述至少一个PDCCH监测时机是针对所述第一PUCCH的发送所占用的时隙的。
作为一个实施例,所述第一PUCCH中的UCI比特的数量不大于11。
作为一个实施例,所述第一PUCCH中的UCI比特的数量大于2。
作为一个实施例,在所述第一PUCCH中有至多11个UCI比特被发送。
作为一个实施例,在所述第一PUCCH中有至少3个UCI比特被发送。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包 括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201对应本申请中的所述第二节点。
作为一个实施例,所述UE201是UE。
作为一个实施例,所述UE201是RedCap UE。
作为一个实施例,所述UE201是常规UE。
作为一个实施例,所述UE201是高处理能力的UE。
作为一个实施例,所述gNB203对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE201对应本申请中的所述第一节点,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,本申请中的所述第一节点和所述第二节点都对应所述UE201,例如所述第一节点和所述第二节点之间执行V2X通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一DCI生成于所述PHY301。
作为一个实施例,本申请中的所述第一PUCCH生成于所述PHY301。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457 进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是用户设备,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是中继节点,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一DCI,所述第一DCI包括第一域;以第一功率发送第一PUCCH;其中,所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调度多个服务小区。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一DCI,所述第一DCI包括第一域;以第一功率发送第一PUCCH;其中,所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调度多个服务小区。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器 一起使用。所述第一通信设备410装置至少:发送第一DCI,所述第一DCI包括第一域;接收以第一功率被发送的第一PUCCH;其中,所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调度多个服务小区。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一DCI,所述第一DCI包括第一域;接收以第一功率被发送的第一PUCCH;其中,所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调度多个服务小区。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一DCI。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一DCI。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第一PUCCH。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第一PUCCH。
实施例5
实施例5示例了根据本申请的一个实施例的信号传输流程图,如附图5所示。在附图5中,第一节点U1和第二节点U2之间是通过空中接口进行通信的。
第一节点U1,在步骤S511中接收第一DCI;在步骤S512中以第一功率发送第一PUCCH。
第二节点U2,在步骤S521中发送第一DCI;在步骤S522中接收第一PUCCH。
在实施例5中,所述第一DCI包括第一域;所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调度多个服务小区;所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中的至少一个功率分量依赖第一参考数值,所述第一参考数值是用于获取PUCCH发送功率的HARQ-ACK比特的数量,所述第一参考数值依赖所述第一DCI中的所述第一域的所述值和所述Q1个分量;所述第一参考数值等于多个中间值的加和,所述多个中间值中之一等于所述第一DCI中的所述第一域的所述值减去所述Q1个分量之和的差值对第三数值取模的结果的正整数倍,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
作为实施例5的一个子实施例,在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的针对所述给定服务小区的满足所述第一条件的DCI的总数。
作为实施例5的一个子实施例,在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出 的在所述给定服务小区上的满足所述第一条件的DCI的总数。
作为实施例5的一个子实施例,在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的以所述给定服务小区作为参考服务小区的满足所述第一条件的DCI的总数;对于一个调度多个服务小区的DCI,所对应的参考服务小区是根据调度顺序或服务小区索引中的至少之一所确定的。
作为一个实施例,所述第一节点U1是本申请中的所述第一节点。
作为一个实施例,所述第二节点U2是本申请中的所述第二节点。
作为一个实施例,所述第一节点U1是一个UE。
作为一个实施例,所述第一节点U1是一个基站。
作为一个实施例,所述第二节点U2是一个基站。
作为一个实施例,所述第二节点U2是一个UE。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是Uu接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是PC5接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括旁链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括卫星设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,本申请要解决的问题包括:如何确定所述第一PUCCH的发送功率。
作为一个实施例,本申请要解决的问题包括:如何基于针对调度多个服务小区的DCI的检测确定PUCCH的发送功率。
作为一个实施例,本申请要解决的问题包括:如何提高PUCCH的传输性能。
作为一个实施例,本申请要解决的问题包括:如何降低用户间干扰。
作为一个实施例,本申请要解决的问题包括:如何实现针对PUCCH的更为精准的功率控制。
作为一个实施例,本申请要解决的问题包括:如何优化单个DCI调度多个服务小区的功能。
实施例6
实施例6示例了根据本申请的一个实施例的第一功率,上限功率,目标功率,第一参考数值,第一DCI中的第一域的值以及Q1个分量之间关系的示意图,如附图6所示。
在实施例6中,所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中的至少一个功率分量依赖第一参考数值,所述第一参考数值是用于获取PUCCH发送功率的HARQ-ACK比特的数量,所述第一参考数值依赖所述第一DCI中的所述第一域的所述值和所述Q1个分量。
作为一个实施例,所述目标功率与所述第一参考数值有关。
作为一个实施例,所述目标功率依赖所述第一参考数值。
作为一个实施例,所述第一参考数值被用于指示所述多个功率分量中的至少一个功率分量。
作为一个实施例,所述第一参考数值被用于配置所述多个功率分量中的至少一个功率分量。
作为一个实施例,所述多个功率分量包括第一功率分量,所述第一功率分量依赖所述第一参考数值,所述第一功率分量是3GPP TS 38.213中7.2.1章节中的ΔTF,b,f,c(i)所表示的PUCCH发送功率调整分量。
作为一个实施例,所述多个功率分量包括第一功率分量,所述第一功率分量依赖所述第一参考数值;所述第一功率分量等于10log10(K1·(所述第一参考数值+第二参考数值+第三参考数值)/第二数值),所述第二数值是PUCCH 的发送所占用的至少部分资源粒子(resource elements,REs)的数量,所述第二参考数值是SR信息比特的数量,所述第三参考数值是CSI信息比特的数量。
作为一个实施例,所述多个功率分量包括第一功率分量,所述第一功率分量依赖所述第一参考数值;所述第一功率分量等于所述BPRE等于(所述第一参考数值+第二参考数值+第三参考数值+第四参考数值)/第二数值,所述第二数值是PUCCH的发送所占用的至少部分资源粒子(resource elements,REs)的数量,所述第二参考数值是SR(Scheduling request,调度请求)信息比特的数量,所述第三参考数值是CSI(Channel state information,信道状态信息)信息比特的数量,所述第四参考数值是CRC比特的数量,所述K2等于2.4。
作为一个实施例,所述第二数值是所述第一PUCCH的发送所占用的至少部分资源粒子的数量。
作为一个实施例,所述第二数值是用于所述第一PUCCH的发送的资源粒子的数量。
作为一个实施例,所述第二数值是所述第一PUCCH之外的一个PUCCH的发送所占用的至少部分资源粒子的数量。
作为一个实施例,所述第一参考数值等于多个中间值的加和,所述多个中间值中之一等于所述第一DCI中的所述第一域的所述值减去所述Q1个分量之和的差值对第三数值取模的结果的正整数倍,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
作为一个实施例,所述V等于计数器(counter)DAI域的比特的数量。
作为一个实施例,所述V等于总计(total)DAI域的比特的数量。
作为一个实施例,所述V等于所述第一DCI中的计数器DAI域的比特的数量。
作为一个实施例,所述V等于所述第一DCI中的总计DAI域的比特的数量。
作为一个实施例,所述第一DCI中的所述第一域的所述值和所述Q1个分量一起指示所述第一参考数值。
作为一个实施例,所述第一参考数值依赖所述第一DCI中的所述第一域的所述值,所述Q1个分量以及N1。
作为一个实施例,所述第一参考数值等于多个中间值的加和,所述多个中间值中之一等于所述第一DCI中的所述第一域的所述值减去所述Q1个分量之和的差值对第三数值取模的结果与N1的乘积,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
作为一个实施例,所述N1是正整数。
作为一个实施例,所述N1是可配置的。
作为一个实施例,所述N1依赖满足所述第一条件的DCI所调度的服务小区的最大数量。
作为一个实施例,所述N1不大于满足所述第一条件的DCI所调度的服务小区的最大数量。
作为一个实施例,所述N1不大于满足所述第一条件的DCI所调度的PDSCH的最大数量。
作为一个实施例,所述N1不大于满足所述第一条件的DCI所调度的传输块的最大数量。
作为一个实施例,所述多个中间值中之一是非负整数。
作为一个实施例,所述多个中间值中之一等于0。
作为一个实施例,所述多个中间值中之一大于0。
作为一个实施例,所述多个中间值中之一是可配置的。
作为一个实施例,所述多个中间值中之一是常数。
作为一个实施例,所述多个中间值中之一依赖被检测到的满足所述第一条件的至少一个DCI所调度的PDSCH的数量。
作为一个实施例,所述多个中间值中之一等于在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的至少一个DCI所调度的PDSCH的数量。
作为一个实施例,所述多个中间值中之一等于在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的至少一个DCI在一个服务小区上所调度的PDSCH的数量。
作为一个实施例,所述多个中间值中之一等于在一个服务小区中的PDSCH的数量。
作为一个实施例,所述多个中间值中之一依赖被检测到的满足所述第一条件的至少一个DCI所调度的传输块的数量。
作为一个实施例,所述多个中间值中之一等于在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的至少一个DCI所调度的PDSCH中的传输块的数量。
作为一个实施例,所述多个中间值中之一等于在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的至少一个DCI在一个服务小区上所调度的PDSCH中的传输块的数量。
作为一个实施例,所述多个中间值中之一等于在一个服务小区中的PDSCH中的传输块的数量。
作为一个实施例,一个数值对另一个数值取模是指:所述一个数值mod所述另一个数值。
实施例7
实施例7示例了根据本申请的一个实施例的第一功率,上限功率,目标功率,第一数值以及第二数值之间关系的示意图,如附图7所示。
在实施例7中,所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中之一等于10log10(K1·第一数值/第二数值),所述第二数值是PUCCH的发送所占用的至少部分资源粒子的数量,所述第一数值等于多个数值之和,所述多个数值中之一等于所述第一DCI中的所述第一域的所述值减去所述Q1个分量之和的差值对第三数值取模的结果的正整数倍,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
作为一个实施例,所述第一数值等于多个数值之和,所述多个数值中之一等于所述第一DCI中的所述第一域的所述值减去所述Q1个分量之和的差值对第三数值取模的结果的正整数倍,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
作为一个实施例,所述多个数值中之一是SR信息比特的数量。
作为一个实施例,所述多个数值中之一是CSI信息比特的数量。
作为一个实施例,所述多个数值中之一等于0。
作为一个实施例,所述多个数值中之一是非负整数。
作为一个实施例,所述多个数值中之一是可配置的。
作为一个实施例,所述多个数值中之一是常数。
作为一个实施例,所述多个数值中之一依赖被检测到的满足所述第一条件的DCI所调度的PDSCH的数量。
作为一个实施例,所述多个数值中之一依赖被检测到的满足所述第一条件的DCI所调度的传输块的数量。
作为一个实施例,所述第一参考数值是所述多个数值中之一。
作为一个实施例,所述第一参考数值等于所述多个数值中的至少2者的加和。
实施例8
实施例8示例了根据本申请的一个实施例的第一功率,上限功率,目标功率,第一参考数值,第一DCI中的第一域的值以及在至少一个PDCCH监测时机中被检测出的满足第一条件的DCI的总数之间关系的示意图,如附图8所示。
在实施例8中,所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中的至少一个功率分量依赖第一参考数值,所述第一参考数值是用于获取PUCCH发送功率的HARQ-ACK比特的数量,所述第一参考数值依赖所述第一DCI中的所述第一域的所述值和在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被检测出的占用所述Q1个服务小区中的任一服务小区的满足所述第一条件的DCI都是:在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI。
作为一个实施例,所述第一DCI中的所述第一域的所述值和在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的所述总数一起指示所述第一参考数值。
作为一个实施例,所述第一DCI中的所述第一域的所述值和在所述至少一个PDCCH监测时机 中被检测出的满足所述第一条件的DCI的所述总数都被用于配置所述第一参考数值。
作为一个实施例,所述目标功率与所述第一参考数值有关。
作为一个实施例,所述目标功率依赖所述第一参考数值。
作为一个实施例,所述第一参考数值被用于指示所述多个功率分量中的至少一个功率分量。
作为一个实施例,所述第一参考数值被用于配置所述多个功率分量中的至少一个功率分量。
作为一个实施例,所述多个功率分量包括第一功率分量,所述第一功率分量依赖所述第一参考数值,所述第一功率分量是3GPP TS 38.213中7.2.1章节中的ΔTF,b,f,c(i)所表示的PUCCH发送功率调整分量。
作为一个实施例,所述多个功率分量包括第一功率分量,所述第一功率分量依赖所述第一参考数值;所述第一功率分量等于10log10(K1·(所述第一参考数值+第二参考数值+第三参考数值)/第二数值),所述第二数值是PUCCH的发送所占用的至少部分资源粒子(resource elements,REs)的数量,所述第二参考数值是SR信息比特的数量,所述第三参考数值是CSI信息比特的数量,所述K1等于6。
作为一个实施例,所述第二数值是所述第一PUCCH的发送所占用的至少部分资源粒子的数量。
作为一个实施例,所述第二数值是用于所述第一PUCCH的发送的资源粒子的数量。
作为一个实施例,所述第二数值是所述第一PUCCH之外的一个PUCCH的发送所占用的至少部分资源粒子的数量。
作为一个实施例,所述第一参考数值等于多个中间值的加和,所述多个中间值中之一等于所述第一DCI中的所述第一域的所述值减去在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的所述总数的差值对第三数值取模的结果的正整数倍,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
作为一个实施例,所述V等于计数器(counter)DAI域的比特的数量。
作为一个实施例,所述V等于总数(total)DAI域的比特的数量。
作为一个实施例,所述V等于所述第一DCI中的计数器DAI域的比特的数量。
作为一个实施例,所述V等于所述第一DCI中的总计DAI域的比特的数量。
作为一个实施例,所述第一DCI中的所述第一域的所述值和所述Q1个分量一起指示所述第一参考数值。
作为一个实施例,所述第一参考数值依赖所述第一DCI中的所述第一域的所述值,所述Q1个分量以及N1。
作为一个实施例,所述第一参考数值等于多个中间值的加和,所述多个中间值中之一等于所述第一DCI中的所述第一域的所述值减去在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的所述总数的差值对第三数值取模的结果与N1的乘积,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
作为一个实施例,所述N1是正整数。
作为一个实施例,所述N1是可配置的。
作为一个实施例,所述N1依赖满足所述第一条件的DCI所调度的服务小区的最大数量。
作为一个实施例,所述N1不大于满足所述第一条件的DCI所调度的服务小区的最大数量。
作为一个实施例,所述N1不大于满足所述第一条件的DCI所调度的PDSCH的最大数量。
作为一个实施例,所述N1不大于满足所述第一条件的DCI所调度的传输块的最大数量。
作为一个实施例,所述多个中间值中之一是非负整数。
作为一个实施例,所述多个中间值中之一是可配置的。
作为一个实施例,所述多个中间值中之一是常数。
作为一个实施例,所述多个中间值中之一依赖被检测到的满足所述第一条件的DCI所调度的PDSCH的数量。
作为一个实施例,所述多个中间值中之一依赖被检测到的满足所述第一条件的DCI所调度的传输块的数量。
作为一个实施例,所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中的至少一个功率分量依赖第一参考数值,所述第一参考数值是用于获取PUCCH发送功率的HARQ-ACK比特的数量。
实施例9
实施例9示例了根据本申请的一个实施例的第一功率的说明示意图,如附图9所示。
在实施例9中,所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和。
作为一个实施例,所述目标功率等于所述多个功率分量之和是针对dB(分贝)域而言的。
作为一个实施例,从dB的角度看,所述目标功率等于所述多个功率分量之和。
作为一个实施例,所述多个功率分量中的一个功率分量的单位是dBm或dB。
作为一个实施例,所述上限功率是缺省的。
作为一个实施例,所述上限功率是可配置的。
作为一个实施例,所述上限功率是更高层信令所配置的。
作为一个实施例,所述上限功率是RRC信令所配置的。
作为一个实施例,所述上限功率是配置的最大输出功率(configured maximum output power)。
作为一个实施例,所述上限功率是针对一个PUCCH传输机会(transmission occasion)而言的。
作为一个实施例,所述上限功率是在一个PUCCH传输机会中针对一个载波的UE配置的最大输出功率。
作为一个实施例,所述上限功率的表示符号中包括PCMAX,f,c
作为一个实施例,所述上限功率的单位是dBm(分贝毫瓦)。
作为一个实施例,所述上限功率的单位是瓦特(W)。
作为一个实施例,所述上限功率的单位是毫瓦(mW)。
作为一个实施例,所述第一功率的单位是dBm。
作为一个实施例,所述第一功率的单位是瓦特(W)。
作为一个实施例,所述第一功率的单位是毫瓦(mW)。
作为一个实施例,所述目标功率的单位是dBm。
作为一个实施例,所述目标功率的单位是瓦特(W)。
作为一个实施例,所述目标功率的单位是毫瓦(mW)。
作为一个实施例,所述第一功率等于min{上限功率,目标功率}。
作为一个实施例,所述多个功率分量中的至少之一是在3GPP TS38.213的7.2.1章节中定义的。
作为一个实施例,第一功率分量是所述多个功率分量中之一。
作为一个实施例,第二功率分量是所述多个功率分量中之一。
作为一个实施例,第三功率分量是所述多个功率分量中之一。
作为一个实施例,第四功率分量是所述多个功率分量中之一。
作为一个实施例,第五功率分量是所述多个功率分量中之一。
作为一个实施例,第六功率分量是所述多个功率分量中之一。
作为一个实施例,p0-nominal域被用于配置所述第六功率分量。
作为一个实施例,P0-PUCCH域被用于配置所述第六功率分量。
作为一个实施例,p0-PUCCH-Value域被用于配置所述第六功率分量。
作为一个实施例,所述第六功率分量等于0。
作为一个实施例,所述第六功率分量的单位是dBm。
作为一个实施例,所述第六功率分量的单位是瓦特(W)。
作为一个实施例,所述第六功率分量的单位是毫瓦(mW)。
作为一个实施例,所述第六功率分量的表示符号中包括PO_PUCCH,b,f,c
作为一个实施例,所述第六功率分量的表示符号中包括O_PUCCH。
作为一个实施例,所述第六功率分量等于两个子分量的加和,所述两个子分量中的任一者是一个缺省值或是RRC信令所配置的。
作为一个实施例,所述第六功率分量等于两个子分量的加和,所述两个子分量中的一者是一个p0-PUCCH-Value的值或等于0,所述两个子分量中的另一者是在一个p0-nominal域中配置的或等于0dBm。
作为一个实施例,所述第六功率分量是可配置的。
作为一个实施例,所述第一PUCCH被用于确定所述第二功率分量。
作为一个实施例,所述第一PUCCH所占用的频域资源被用于确定所述第二功率分量。
作为一个实施例,所述第二功率分量等于10×log10(2^μ×MRB),所述MRB等于所述第一PUCCH所占用的资源所属的PUCCH资源中的全部或部分在频域所包括的资源块的数量,所述μ是一个SCS(Subcarrier spacing,子载波间隔)配置。
作为一个实施例,所述第二功率分量等于10×log10(2^μ×MRB),所述MRB等于所述第一PUCCH所占用的资源在频域所包括的资源块的数量,所述μ是一个SCS(Subcarrier spacing,子载波间隔)配置。
作为一个实施例,所述第二功率分量等于2^μ×MRB,所述MRB等于所述第一PUCCH所占用的资源在频域所包括的资源块的数量,所述μ是一个SCS(Subcarrier spacing,子载波间隔)配置。
作为一个实施例,所述μ是可配置的。
作为一个实施例,所述第三功率分量是一个下行链路路径损耗估计(downlink pathloss estimate)。
作为一个实施例,所述第三功率分量的单位是dB。
作为一个实施例,所述第三功率分量是是基于针对参考信号的测量计算得到的。
作为一个实施例,所述第三功率分量的表示符号中包括PLb,f,c
作为一个实施例,所述第三功率分量的表示符号中包括PL。
作为一个实施例,所述第三功率分量的单位是瓦特(W)。
作为一个实施例,所述第三功率分量的单位是毫瓦(mW)。
作为一个实施例,所述第四功率分量是deltaF-PUCCH-f2的值,deltaF-PUCCH-f3的值,deltaF-PUCCH-f4的值,或0四者中之一。
作为一个实施例,所述第四功率分量等于一个缺省的值或是RRC信令所配置的。
作为一个实施例,所述第四功率分量与PUCCH格式有关。
作为一个实施例,所述第四功率分量与所述第一PUCCH所使用的PUCCH格式有关。
作为一个实施例,所述第一PUCCH使用PUCCH格式(PUCCH format)2或PUCCH格式3或PUCCH格式4中之一;当所述第一PUCCH使用PUCCH格式2时,所述第四功率分量是deltaF-PUCCH-f2的值或0;当所述第一PUCCH使用PUCCH格式2时,所述第四功率分量是deltaF-PUCCH-f3的值或0;当所述第一PUCCH使用PUCCH格式2时,所述第四功率分量是deltaF-PUCCH-f4的值或0。
作为一个实施例,所述第四功率分量的表示符号中包括ΔF_PUCCH
作为一个实施例,所述第四功率分量的表示符号中包括F_PUCCH。
作为一个实施例,所述第五功率分量是一个PUCCH功率控制调节状态值(PUCCH power control adjustment state)。
作为一个实施例,所述第五功率分量是基于DCI格式中的TPC域的指示所得到的。
作为一个实施例,所述第五功率分量是基于TPC(Transmit power control)命令(command)所确定的。
作为一个实施例,所述第五功率分量的值是针对所述第一PUCCH所对应的PUCCH传输机会的。
作为一个实施例,所述第一DCI中的TPC command for scheduled PUCCH域被用于确定所述第五功率分量。
作为一个实施例,从dB角度来看,所述第五功率分量与所述第一DCI中的TPC command for scheduled PUCCH域所指示的值线性相关。
作为一个实施例,所述第五功率分量的表示符号中包括gb,f,c
作为一个实施例,所述第一功率分量的表示符号中包括Δ。
作为一个实施例,所述第一功率分量的表示符号中包括ΔTF,b,f,c
作为一个实施例,PUCCH格式(format)2或PUCCH格式3或PUCCH格式4中之一被用于所述第一PUCCH。
作为一个实施例,PUCCH格式3或PUCCH格式4中之一被用于所述第一PUCCH。
作为一个实施例,所述第一PUCCH还占用一个码域资源。
作为一个实施例,所述第一功率等于上限功率和目标功率这两者中的较大者,所述目标功率等于多个功率分量之和。
作为一个实施例,所述第一功率等于上限功率和目标功率这两者中的较大者,所述目标功率等于多个功率分量之和。
实施例10
实施例10示例了一个第一节点设备中的处理装置的结构框图,如附图10所示。在附图10中,第一节点设备处理装置1000包括第一接收机1001和第一发射机1002。
作为一个实施例,所述第一节点设备1000是基站。
作为一个实施例,所述第一节点设备1000是用户设备。
作为一个实施例,所述第一节点设备1000是中继节点。
作为一个实施例,所述第一节点设备1000是车载通信设备。
作为一个实施例,所述第一节点设备1000是支持V2X通信的用户设备。
作为一个实施例,所述第一节点设备1000是支持V2X通信的中继节点。
作为一个实施例,所述第一节点设备1000是支持高频频谱上的操作的用户设备。
作为一个实施例,所述第一节点设备1000是支持共享频谱上的操作的用户设备。
作为一个实施例,所述第一节点设备1000是支持XR业务的用户设备。
作为一个实施例,所述第一节点设备1000是RedCap UE。
作为一个实施例,所述第一节点设备1000是高处理能力的UE。
作为一个实施例,所述第一接收机1001包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一接收机1001包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1001包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1001包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一接收机1001包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一发射机1002包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发射机1002包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一发射机1002包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一发射机1002包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一发射机1002包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一接收机1001,接收第一DCI,所述第一DCI包括第一域;所述第一发射机1002,以第一功率发送第一PUCCH;其中,所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1 个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调度多个服务小区。
作为一个实施例,在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的针对所述给定服务小区的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的在所述给定服务小区上的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的在所述给定服务小区上被传送的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述给定服务小区上且在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的以所述给定服务小区作为参考服务小区的满足所述第一条件的DCI的总数;对于一个调度多个服务小区的DCI,所对应的参考服务小区是根据调度顺序或服务小区索引中的至少之一所确定的。
作为一个实施例,所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中的至少一个功率分量依赖所述第一DCI中的所述第一域的值和所述Q1个分量。
作为一个实施例,所述多个功率分量中的至少一个功率分量依赖第一参考数值,所述第一参考数值是用于获取PUCCH发送功率的HARQ-ACK比特的数量,所述第一参考数值依赖所述第一DCI中的所述第一域的所述值和所述Q1个分量。
作为一个实施例,所述多个功率分量中之一等于10log10(K1·第一数值/第二数值),所述第二数值是用于PUCCH发送的资源粒子的数量,所述第一数值等于多个数值之和,所述多个数值中之一等于所述第一DCI中的所述第一域的所述值减去在所述至少一个PDCCH监测时机中被检测出的满足所述第一条件的DCI的所述总数的差值对第三数值取模的结果的正整数倍,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
实施例11
实施例11示例了一个第二节点设备中的处理装置的结构框图,如附图11所示。在附图11中,第二节点设备处理装置1100包括第二发射机1101和第二接收机1102。
作为一个实施例,所述第二节点设备1100是用户设备。
作为一个实施例,所述第二节点设备1100是基站。
作为一个实施例,所述第二节点设备1100是卫星设备。
作为一个实施例,所述第二节点设备1100是中继节点。
作为一个实施例,所述第二节点设备1100是车载通信设备。
作为一个实施例,所述第二节点设备1100是支持V2X通信的用户设备。
作为一个实施例,所述第二节点设备1100是支持高频频谱上的操作的设备。
作为一个实施例,所述第二节点设备1100是支持共享频谱上的操作的设备。
作为一个实施例,所述第二节点设备1100是支持XR业务的设备。
作为一个实施例,所述第二节点设备1100是测试装置,测试设备,测试仪表中之一。
作为一个实施例,所述第二发射机1101包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二发射机1101包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二发射机1101包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二发射机1101包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二发射机1101包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二接收机1102包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二接收机1102包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二接收机1102包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二接收机1102包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二接收机1102包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二发射机1101,发送第一DCI,所述第一DCI包括第一域;所述第二接收机1102,接收以第一功率被发送的第一PUCCH;其中,所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调度多个服务小区。
作为一个实施例,在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的针对所述给定服务小区的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的在所述给定服务小区上的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的在所述给定服务小区上被传送的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述给定服务小区上且在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的满足所述第一条件的DCI的总数。
作为一个实施例,在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的以所述给定服务小区作为参考服务小区的满足所述第一条件的DCI的总数;对于一个调度多个服务小区的DCI,所对应的参考服务小区是根据调度顺序或服务小区索引中的至少之一所确定的。
作为一个实施例,所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中的至少一个功率分量依赖所述第一DCI中的所述第一域的值和所述Q1个分量。
作为一个实施例,所述多个功率分量中的至少一个功率分量依赖第一参考数值,所述第一参考数值是用于获取PUCCH发送功率的HARQ-ACK比特的数量,所述第一参考数值依赖所述第一DCI中的所述第 一域的所述值和所述Q1个分量。
作为一个实施例,所述多个功率分量中之一等于10log10(K1·第一数值/第二数值),所述第二数值是用于PUCCH发送的资源粒子的数量,所述第一数值等于多个数值之和,所述多个数值中之一等于所述第一DCI中的所述第一域的所述值减去在所述至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的满足所述第一条件的DCI的所述总数的差值对第三数值取模的结果的正整数倍,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,测试装置,测试设备,测试仪表等设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (40)

  1. 一种用于无线通信中的第一节点,其特征在于,包括:
    第一接收机,接收第一DCI,所述第一DCI包括第一域;
    第一发射机,以第一功率发送第一PUCCH;
    其中,所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调度多个服务小区。
  2. 根据权利要求1所述的第一节点,其特征在于,在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的在所述给定服务小区上的满足所述第一条件的DCI的总数。
  3. 根据权利要求1所述的第一节点,其特征在于,在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的以所述给定服务小区作为参考服务小区的满足所述第一条件的DCI的总数;对于一个调度多个服务小区的DCI,所对应的参考服务小区是根据调度顺序或服务小区索引中的至少之一所确定的。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中的至少一个功率分量依赖所述第一DCI中的所述第一域的所述值和所述Q1个分量。
  5. 根据权利要求4所述的第一节点,其特征在于,所述多个功率分量中的至少一个功率分量依赖第一参考数值,所述第一参考数值是用于获取PUCCH发送功率的HARQ-ACK比特的数量,所述第一参考数值依赖所述第一DCI中的所述第一域的所述值和所述Q1个分量。
  6. 根据权利要求5所述的第一节点,其特征在于,所述第一参考数值等于多个中间值的加和,所述多个中间值中之一等于所述第一DCI中的所述第一域的所述值减去所述Q1个分量之和的差值对第三数值取模的结果的正整数倍,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
  7. 根据权利要求4或5所述的第一节点,其特征在于,所述第一参考数值等于多个中间值的加和,所述多个中间值中之一等于所述第一DCI中的所述第一域的所述值减去所述Q1个分量之和的差值对第三数值取模的结果与N1的乘积,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量;所述N1是可配置的正整数,所述N1依赖满足所述第一条件的DCI所调度的服务小区的最大数量。
  8. 根据权利要求4至7中任一权利要求所述的第一节点,其特征在于,所述上限功率是配置的最大输出功率,或者,所述上限功率是在一个PUCCH传输机会中针对一个载波的UE配置的最大输出功率。
  9. 根据权利要求4至8中任一权利要求所述的第一节点,其特征在于,所述多个功率分量包括第一功率分量,所述第一功率分量依赖所述第一参考数值;所述第一功率分量等于10log10(K1·(所述第一参考数值+第二参考数值+第三参考数值)/第二数值),所述第二数值是PUCCH的发送所占用的至少部分资源粒子的数量,所述第二参考数值是SR信息比特的数量,所述第三参考数值是CSI信息比特的数量。
  10. 根据权利要求1至9中任一权利要求所述的第一节点,其特征在于,所述第一域是DAI域。
  11. 一种用于无线通信中的第二节点,其特征在于,包括:
    第二发射机,发送第一DCI,所述第一DCI包括第一域;
    第二接收机,接收以第一功率被发送的第一PUCCH;
    其中,所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调 度多个服务小区。
  12. 根据权利要求11所述的第二节点,其特征在于,在所述至少一个PDCCH监测时机中被所述第一PUCCH的所述发送端检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被所述第一PUCCH的所述发送端检测出的在所述给定服务小区上的满足所述第一条件的DCI的总数。
  13. 根据权利要求11所述的第二节点,其特征在于,在所述至少一个PDCCH监测时机中被所述第一PUCCH的所述发送端检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被所述第一PUCCH的所述发送端检测出的以所述给定服务小区作为参考服务小区的满足所述第一条件的DCI的总数;对于一个调度多个服务小区的DCI,所对应的参考服务小区是根据调度顺序或服务小区索引中的至少之一所确定的。
  14. 根据权利要求11至13中任一权利要求所述的第二节点,其特征在于,所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中的至少一个功率分量依赖所述第一DCI中的所述第一域的所述值和所述Q1个分量。
  15. 根据权利要求14所述的第二节点,其特征在于,所述多个功率分量中的至少一个功率分量依赖第一参考数值,所述第一参考数值是用于获取PUCCH发送功率的HARQ-ACK比特的数量,所述第一参考数值依赖所述第一DCI中的所述第一域的所述值和所述Q1个分量。
  16. 根据权利要求15所述的第二节点,其特征在于,所述第一参考数值等于多个中间值的加和,所述多个中间值中之一等于所述第一DCI中的所述第一域的所述值减去所述Q1个分量之和的差值对第三数值取模的结果的正整数倍,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
  17. 根据权利要求14或15所述的第二节点,其特征在于,所述第一参考数值等于多个中间值的加和,所述多个中间值中之一等于所述第一DCI中的所述第一域的所述值减去所述Q1个分量之和的差值对第三数值取模的结果与N1的乘积,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量;所述N1是可配置的正整数,所述N1依赖满足所述第一条件的DCI所调度的服务小区的最大数量。
  18. 根据权利要求14至17中任一权利要求所述的第二节点,其特征在于,所述上限功率是配置的最大输出功率,或者,所述上限功率是在一个PUCCH传输机会中针对一个载波的UE配置的最大输出功率。
  19. 根据权利要求14至18中任一权利要求所述的第二节点,其特征在于,所述多个功率分量包括第一功率分量,所述第一功率分量依赖所述第一参考数值;所述第一功率分量等于10log10(K1·(所述第一参考数值+第二参考数值+第三参考数值)/第二数值),所述第二数值是PUCCH的发送所占用的至少部分资源粒子的数量,所述第二参考数值是SR信息比特的数量,所述第三参考数值是CSI信息比特的数量。
  20. 根据权利要求11至19中任一权利要求所述的第二节点,其特征在于,所述第一域是DAI域。
  21. 一种用于无线通信中的第一节点中的方法,其特征在于,包括:
    接收第一DCI,所述第一DCI包括第一域;
    以第一功率发送第一PUCCH;
    其中,所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调度多个服务小区。
  22. 根据权利要求21所述的第一节点中的方法,其特征在于,在所述至少一个PDCCH监测时机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的在所述给定服务小区上的满足所述第一条件的DCI的总数。
  23. 根据权利要求21所述的第一节点中的方法,其特征在于,在所述至少一个PDCCH监测时 机中被检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被检测出的以所述给定服务小区作为参考服务小区的满足所述第一条件的DCI的总数;对于一个调度多个服务小区的DCI,所对应的参考服务小区是根据调度顺序或服务小区索引中的至少之一所确定的。
  24. 根据权利要求21至23中任一权利要求所述的第一节点中的方法,其特征在于,所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中的至少一个功率分量依赖所述第一DCI中的所述第一域的所述值和所述Q1个分量。
  25. 根据权利要求24所述的第一节点中的方法中的方法,其特征在于,所述多个功率分量中的至少一个功率分量依赖第一参考数值,所述第一参考数值是用于获取PUCCH发送功率的HARQ-ACK比特的数量,所述第一参考数值依赖所述第一DCI中的所述第一域的所述值和所述Q1个分量。
  26. 根据权利要求25所述的第一节点中的方法,其特征在于,所述第一参考数值等于多个中间值的加和,所述多个中间值中之一等于所述第一DCI中的所述第一域的所述值减去所述Q1个分量之和的差值对第三数值取模的结果的正整数倍,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
  27. 根据权利要求24或25所述的第一节点中的方法,其特征在于,所述第一参考数值等于多个中间值的加和,所述多个中间值中之一等于所述第一DCI中的所述第一域的所述值减去所述Q1个分量之和的差值对第三数值取模的结果与N1的乘积,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量;所述N1是可配置的正整数,所述N1依赖满足所述第一条件的DCI所调度的服务小区的最大数量。
  28. 根据权利要求24至27中任一权利要求所述的第一节点中的方法,其特征在于,所述上限功率是配置的最大输出功率,或者,所述上限功率是在一个PUCCH传输机会中针对一个载波的UE配置的最大输出功率。
  29. 根据权利要求24至28中任一权利要求所述的第一节点中的方法,其特征在于,所述多个功率分量包括第一功率分量,所述第一功率分量依赖所述第一参考数值;所述第一功率分量等于10log10(K1·(所述第一参考数值+第二参考数值+第三参考数值)/第二数值),所述第二数值是PUCCH的发送所占用的至少部分资源粒子的数量,所述第二参考数值是SR信息比特的数量,所述第三参考数值是CSI信息比特的数量。
  30. 根据权利要求21至29中任一权利要求所述的第一节点中的方法,其特征在于,所述第一域是DAI域。
  31. 一种用于无线通信中的第二节点中的方法,其特征在于,包括:
    发送第一DCI,所述第一DCI包括第一域;
    接收以第一功率被发送的第一PUCCH;
    其中,所述第一功率依赖至少所述第一DCI中的所述第一域的值以及Q1个分量,所述Q1是正整数;所述Q1个分量与Q1个服务小区一一对应;给定服务小区是所述Q1个服务小区中之一;对于所述给定服务小区,所对应的分量等于在至少一个PDCCH监测时机中被所述第一PUCCH的发送端检测出的占用所述给定服务小区的满足第一条件的DCI的总数,一个满足所述第一条件的DCI调度多个服务小区。
  32. 根据权利要求31所述的第二节点中的方法,其特征在于,在所述至少一个PDCCH监测时机中被所述第一PUCCH的所述发送端检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被所述第一PUCCH的所述发送端检测出的在所述给定服务小区上的满足所述第一条件的DCI的总数。
  33. 根据权利要求31所述的第二节点中的方法,其特征在于,在所述至少一个PDCCH监测时机中被所述第一PUCCH的所述发送端检测出的占用所述给定服务小区的满足所述第一条件的DCI的所述总数是指:在所述至少一个PDCCH监测时机中被所述第一PUCCH的所述发送端检测出的以所述给定服务小区作为参考服务小区的满足所述第一条件的DCI的总数;对于一个调度多个服务小区的DCI,所对应的参考服务小区是根据调度顺序或服务小区索引中的至少之一所确定的。
  34. 根据权利要求31至33中任一权利要求所述的第二节点中的方法,其特征在于,所述第一功率等于上限功率和目标功率这两者中的较小者,所述目标功率等于多个功率分量之和,所述多个功率分量中的至少一个功率分量依赖所述第一DCI中的所述第一域的所述值和所述Q1个分量。
  35. 根据权利要求34所述的第二节点中的方法,其特征在于,所述多个功率分量中的至少一个功率分量依赖第一参考数值,所述第一参考数值是用于获取PUCCH发送功率的HARQ-ACK比特的数量,所述第一参考数值依赖所述第一DCI中的所述第一域的所述值和所述Q1个分量。
  36. 根据权利要求35所述的第二节点中的方法,其特征在于,所述第一参考数值等于多个中间值的加和,所述多个中间值中之一等于所述第一DCI中的所述第一域的所述值减去所述Q1个分量之和的差值对第三数值取模的结果的正整数倍,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量。
  37. 根据权利要求34或35所述的第二节点中的方法,其特征在于,所述第一参考数值等于多个中间值的加和,所述多个中间值中之一等于所述第一DCI中的所述第一域的所述值减去所述Q1个分量之和的差值对第三数值取模的结果与N1的乘积,所述第三数值等于2的V次方,所述V等于一个DAI域的比特的数量;所述N1是可配置的正整数,所述N1依赖满足所述第一条件的DCI所调度的服务小区的最大数量。
  38. 根据权利要求34至37中任一权利要求所述的第二节点中的方法,其特征在于,所述上限功率是配置的最大输出功率,或者,所述上限功率是在一个PUCCH传输机会中针对一个载波的UE配置的最大输出功率。
  39. 根据权利要求34至38中任一权利要求所述的第二节点中的方法,其特征在于,所述多个功率分量包括第一功率分量,所述第一功率分量依赖所述第一参考数值;所述第一功率分量等于10log10(K1·(所述第一参考数值+第二参考数值+第三参考数值)/第二数值),所述第二数值是PUCCH的发送所占用的至少部分资源粒子的数量,所述第二参考数值是SR信息比特的数量,所述第三参考数值是CSI信息比特的数量。
  40. 根据权利要求31至39中任一权利要求所述的第二节点中的方法,其特征在于,所述第一域是DAI域。
PCT/CN2023/115173 2022-09-01 2023-08-28 一种被用于无线通信的节点中的方法和装置 WO2024046250A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211067737.6 2022-09-01
CN202211067737.6A CN117768942A (zh) 2022-09-01 2022-09-01 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2024046250A1 true WO2024046250A1 (zh) 2024-03-07

Family

ID=90100340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115173 WO2024046250A1 (zh) 2022-09-01 2023-08-28 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117768942A (zh)
WO (1) WO2024046250A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474371A (zh) * 2017-09-08 2019-03-15 北京三星通信技术研究有限公司 一种harq-ack信息反馈方法和设备
US20190289513A1 (en) * 2017-11-16 2019-09-19 Comcast Cable Communications, Llc Power Control for Bandwidth Part Switching
US20200083980A1 (en) * 2015-04-06 2020-03-12 Samsung Electronics Co., Ltd. Transmission power control for an uplink control channel
CN112671506A (zh) * 2015-04-06 2021-04-16 三星电子株式会社 用于上行链路控制信道的传输功率控制的用户设备、基站和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200083980A1 (en) * 2015-04-06 2020-03-12 Samsung Electronics Co., Ltd. Transmission power control for an uplink control channel
CN112671506A (zh) * 2015-04-06 2021-04-16 三星电子株式会社 用于上行链路控制信道的传输功率控制的用户设备、基站和方法
CN109474371A (zh) * 2017-09-08 2019-03-15 北京三星通信技术研究有限公司 一种harq-ack信息反馈方法和设备
US20190289513A1 (en) * 2017-11-16 2019-09-19 Comcast Cable Communications, Llc Power Control for Bandwidth Part Switching

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Correction on n_HARQ determination for PUCCH power control", 3GPP DRAFT; R1-2111210, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-meeting; 20211111 - 20211119, 6 November 2021 (2021-11-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052074737 *

Also Published As

Publication number Publication date
CN117768942A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
US20230254824A1 (en) Method and device in nodes used for wireless communication
CN111867032B (zh) 一种被用于无线通信的节点中的方法和装置
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020057362A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2020244382A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020228556A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244383A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024046250A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114827911A (zh) 一种被用于无线通信的节点中的方法和装置
CN112153597A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023202378A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023029240A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023174375A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20240106576A1 (en) Method and device in nodes used for wireless communication
WO2024051558A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237707A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023036063A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023143225A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023045794A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024037475A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023193741A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024131548A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024051561A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072138A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160462A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859282

Country of ref document: EP

Kind code of ref document: A1