WO2024046248A1 - 微型血泵及制造方法 - Google Patents

微型血泵及制造方法 Download PDF

Info

Publication number
WO2024046248A1
WO2024046248A1 PCT/CN2023/115157 CN2023115157W WO2024046248A1 WO 2024046248 A1 WO2024046248 A1 WO 2024046248A1 CN 2023115157 W CN2023115157 W CN 2023115157W WO 2024046248 A1 WO2024046248 A1 WO 2024046248A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
blood pump
bearing
winding
sub
Prior art date
Application number
PCT/CN2023/115157
Other languages
English (en)
French (fr)
Inventor
吕骁
吕世文
Original Assignee
上海炫脉医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海炫脉医疗科技有限公司 filed Critical 上海炫脉医疗科技有限公司
Publication of WO2024046248A1 publication Critical patent/WO2024046248A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/17Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart inside a ventricle, e.g. intraventricular balloon pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/237Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly axial components, e.g. axial flow pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/465Details relating to driving for devices for mechanical circulatory actuation
    • A61M60/489Details relating to driving for devices for mechanical circulatory actuation the force acting on the actuation means being magnetic
    • A61M60/495Electromagnetic force
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/827Sealings between moving parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/839Constructional details other than related to driving of devices for mechanical circulatory actuation

Definitions

  • This application relates to the technical field of medical devices, for example, to a miniature blood pump and a manufacturing method.
  • An artificial left ventricular assist device (Left Ventricular Assist Device, LVAD) is a device that actively pumps blood in the left ventricle into the aorta through a blood pump.
  • the pumping performance is mainly determined by the performance and operation mode of the blood pump and does not depend on the patient. Physical condition, it is an active blood circulation support device.
  • the percutaneously implantable artificial left ventricular assist device (Percutaneous Left Ventricular Assist Device, pLVAD) is a miniaturized artificial left ventricular assist device that can be implanted through percutaneous coronary intervention (Percutaneous Coronary Intervention, PCI) surgery.
  • PCI percutaneous Coronary Intervention
  • the device can provide patients with more stable blood circulation support during high-risk PCI surgeries, improve coronary and distal organ perfusion while reducing the burden on the left ventricle, and is conducive to the stabilization of patients' physical signs during the operation and postoperative recovery.
  • the outer diameter of the blood pump is generally within 6 mm.
  • the micro-blood pump requires a high speed, usually as high as 30,000 revolutions per minute (RPM) and above, so the size of the stator and rotor of the blood pump must be designed as small as possible to drive the impeller to rotate, and the micro blood pump needs to reach the target position through the aortic arch, and the winding and rotor
  • the axial length of the pump should be as short as possible. It is difficult for the micro blood pump in the related art to achieve micro size while ensuring the output power.
  • Patent CN104436338B discloses an implantable self-suspended axial blood pump, which includes: a stator and a rotor.
  • the stator includes: a stator core, a stator coil and a motor bracket;
  • the rotor includes: built-in blades and a cylindrical inner wall containing magnetic material.
  • shaped magnet it also includes a paddle shaft, which is located in the central cavity of the cylindrical magnet, and the built-in paddle is set on the paddle shaft.
  • Patent CN216456526U discloses an interventional vascular blood pump.
  • the shortcoming of this solution is that during the movement of the blood pump, the rotor will be subject to axial impact, and a distal bearing seat and a proximal bearing seat need to be provided, and the bearing seat installation increases The axial length of the blood pump is increased, which is not conducive to the blood pump entering the target position and also increases the The increased number of parts in the blood pump increases the difficulty of assembly.
  • the present application provides a micro blood pump and a manufacturing method to solve the problem of reduced space utilization of the blood pump due to the large thickness or length of the non-working area of the winding, and the reduction of work due to the large length of the non-working area of the winding.
  • a micro blood pump including an impeller and a driving device that drives the impeller to rotate.
  • the driving device includes a housing, an outer magnetic pole, a high-energy-efficiency winding, a support structure, and a rotating shaft.
  • the energy efficiency winding includes at least two sub-windings, each sub-winding includes a multi-turn coil, the sub-windings include a connection area and a working area, the diameter of the connecting area does not exceed the diameter of the working area, each turn of the connecting area
  • the coil is not located on the cylindrical surface where the working area is located; and at least part of the support structure is in conformity with the connecting area.
  • connection area is capable of providing an axial force to the support structure.
  • the combined working area is cylindrical or substantially cylindrical.
  • the energy-efficient winding includes three sub-windings.
  • the support structure includes a first bearing and a second bearing, the first bearing is provided at the proximal end of the rotation shaft, and the second bearing is provided at the distal end of the rotation shaft; and, The connecting area fits the first bearing.
  • the first bearing is provided on the proximal end surface or the distal end surface of the connection area.
  • the first bearing when the first bearing is disposed on the distal surface of the connection area, the first bearing is fixedly connected to the high-energy-efficiency winding, and the high-energy-efficiency winding provides a radial direction to the first bearing. Supportive force.
  • the sub-winding further includes an overlapping area connected to the working area; and the axial length of the connecting area is smaller than the axial length of the overlapping area.
  • the working area includes a first working section and a second working section
  • the connecting area at least includes a filling section, and both ends of the filling section are connected to the first working section and the second working section respectively.
  • the first working section, the second working section and the filling section of each turn are not located on the same plane, and the filling sections of different sub-windings have overlapping areas.
  • the filling segment is three-dimensional.
  • the filling section includes a transition unit and a bending unit. Both ends of the transition unit are respectively connected to the first working section and the bending unit. Both ends of the bending unit are respectively connected to the bending unit.
  • the second working section is connected to the transition unit; and the axial length of the transition unit is the axial length of the connection area.
  • the bending unit is arranged to rotate around the center of the high-energy-efficiency winding; and the bending unit is at least partially arc-shaped, and all the bending units combined form a reserved area in the center of the connection area. .
  • the reserved area is hole-shaped.
  • the bending unit includes a first connecting piece and a second connecting piece.
  • the first connecting piece is connected to the transition unit and the connection point between the two is a first connecting point.
  • the second connecting piece It is connected to the second working section and the connection point between the two is the second connection point; there is a height difference between the first connection point and the second connection point, and the position of the first connection point is the height difference. The very end of the energy efficiency winding.
  • the first connecting piece of the sub-winding has an overlapping area with the second connecting piece of other sub-windings; and, the first working section of the sub-winding and the third connecting piece of other sub-windings
  • the two working sections have overlapping areas.
  • the rotating shaft includes a connecting section, and the connecting section is cooperatively connected with the first bearing; and the diameter of the reserved area is larger than the diameter of the connecting section.
  • the winding method of the overlapping area is a hexagonal winding diagonal winding type.
  • the diameter of the overlapping area is the maximum diameter of the winding.
  • the bending unit is in an arc shape as a whole; or, the first connecting piece is in an arc shape, and the second connecting piece is in a straight line shape.
  • the transition unit is in the shape of a straight line, and the connecting area is rectangular in cross section; or the transition unit is in a diagonal shape, and the connecting area is trapezoidal in cross section; or the transition unit is It is in the shape of an arc, and the connecting area is spherical in cross section.
  • the sub-winding includes two connection areas, and both ends of the working area are connected to the connection areas.
  • the current direction of the working area is parallel to the coil arrangement direction of the working area.
  • the coils of the coreless cup winding are mainly wound by enameled wire.
  • the high-energy-efficiency winding includes a first sub-winding, a second sub-winding, and a third sub-winding, which are three-phase windings, and the three sub-windings overlap each other.
  • the first working section and the second working section of each turn coil span a radius of ⁇ times the arc in the circumferential direction, but is not limited to ⁇ times the radius.
  • the micro blood pump further includes a conduit connected to the proximal end of the driving device; and the impeller is connected to the distal end of the rotation shaft.
  • a method for manufacturing a miniature blood pump including:
  • the distal end of the driving device is connected to the impeller, and the proximal end of the driving device is connected to the catheter to obtain a micro blood pump.
  • the core shaft includes a first fitting shaft and a second fitting shaft, the first fitting shaft is connected to the first bearing, and the second fitting shaft is connected to the connection area of the high-energy-efficiency winding. .
  • the high-energy-efficiency winding includes two connection areas, and the two connection areas are respectively connected to two ends of the working area.
  • FIGS 1a to 1c are schematic diagrams of the overall structure of the micro blood pump and high-energy-efficiency winding provided by this application.
  • Figures 2a to 2e are schematic structural diagrams of the connection area, working area and overlapping area provided by this application.
  • Figure 3 is a schematic structural diagram of another embodiment of the micro blood pump and high-energy-efficiency winding provided by this application.
  • Figures 4a to 4c are schematic diagrams of a manufacturing method of a micro blood pump provided by the present application.
  • Figure 5 is a schematic flow chart of a manufacturing method of a micro blood pump provided by this application.
  • proximal end refers to the end close to the surgical operator
  • distal end refers to the end far away from the surgical operator
  • a micro blood pump including an impeller 1 and a driving device 2 that drives the impeller 1 to rotate.
  • the driving device 2 includes a housing 21, External magnetic pole 22, high energy efficiency winding 23, support structure 24 and rotation axis 25.
  • the high energy efficiency winding 23 includes three sub-windings 3.
  • Each sub-winding 3 includes a multi-turn coil 34.
  • the sub-windings 3 include a connection area 31 and a working Area 32, the diameter of the connecting area 31 does not exceed the diameter of the working area 32, each turn of coil 34 in the connecting area 31 is not located on the cylindrical surface where the working area 32 is located; and, at least part of the support structure 24 is attached to the connecting area 31 .
  • connection area 31 can provide axial force to the support structure 24 .
  • the support structure 24 includes a first bearing 241 and a second bearing 242.
  • the first bearing 241 is disposed at the proximal end of the rotating shaft 25, and the second bearing 242 is disposed at the proximal end of the rotating shaft 25.
  • the distal end of the shaft 25; and, the connection area 31 fits the first bearing 241, as shown in Figure 1a.
  • the first bearing 241 is provided on the proximal end surface of the connection area 31 .
  • the sub-winding 3 also includes an overlapping area 33, and the overlapping area 33 is connected with the working The regions 32 are connected; and the axial length of the connecting region 31 is smaller than the axial length of the overlapping region 33, as shown in Figures 1b and 1c.
  • the working area 32 includes a first working section 321 and a second working section 322.
  • the connecting area 31 at least includes a filling section 311. Both ends of the filling section 311 are respectively connected with the first working section.
  • the section 321 and the second working section 322 are connected; and the first working section 321, the second working section 322 and the filling section 311 of each turn are not located on the same plane, and the filling sections 311 of different sub-windings 3 have overlapping areas.
  • the filling section 311 is three-dimensional.
  • the filling section 311 includes a transition unit 3111 and a bending unit 3112. As shown in Figure 2a, the two ends of the transition unit 3111 are connected to the first working section 321 and the bending unit 3112 respectively. , both ends of the bending unit 3112 are connected to the second working section 322 and the transition unit 3111 respectively; and, the axial length of the transition unit 3111 is the axial length of the connection area 31 .
  • the bending unit 3112 is arranged to rotate around the center of the high-energy-efficiency winding 23; and the bending unit 3112 is at least partially arc-shaped, and all the bending units 3112 are combined in the connection area 31 A reserved area 3113 is formed in the center, as shown in Figure 2b.
  • the reserved area 3113 is in the shape of a hole.
  • the bending unit 3112 includes a first connecting member 3114 and a second connecting member 3115.
  • the first connecting member 3114 is connected to the transition unit 3111 and the connection point between the two is the first connection point 3116.
  • the second connecting piece 3115 is connected to the second working section 322 and the connection point between the two is the second connection point 3117; there is a height difference between the first connection point 3116 and the second connection point 3117, so The first connection point 3116 is located at the extreme end of the high-energy-efficiency winding 23 .
  • the first connecting member 3114 of the sub-winding 3 has an overlapping area with the second connecting member 3115 of other sub-windings 3; and, the first working member of the sub-winding 3
  • the segment 321 has an overlapping area with the second working segments 322 of other sub-windings 3 .
  • the rotating shaft 25 includes a connecting section 251 , and the connecting section 251 is cooperatively connected with the first bearing 241 ; and the diameter of the reserved area 3113 is larger than the diameter of the connecting section 251 .
  • the winding method of the overlapping area 33 is a hexagonal winding diagonal winding type.
  • the bending unit 3112 is in the shape of an arc as a whole; alternatively, the first connecting member 3114 is in the shape of an arc, and the second connecting member 3115 is in the shape of a straight line.
  • the transition unit 3111 is in the shape of a straight line, and the connection area 31 is in the shape of a rectangle in cross section; or, the transition unit 3111 is in the shape of a diagonal line, and the connection area 31 is in the shape of a trapezoid in cross section; Alternatively, the transition unit 3111 is in the shape of an arc, and the connection area 31 is in the shape of a sphere in cross section, as shown in Figures 2c to 2e.
  • the coil 34 of the high-energy-efficiency winding 23 (coreless cup winding) is mainly made of enameled wire.
  • the micro blood pump further includes a conduit 4, which is connected to the proximal end of the driving device 2; and the impeller 1 is connected to the distal end of the rotation shaft 25.
  • the second embodiment is generally the same as the first embodiment, except that the first bearing 241 is positioned differently relative to the high-energy-efficiency winding 23 .
  • a miniature blood pump with a high-energy-efficiency winding 23 including an impeller 1 and a driving device 2 that drives the impeller 1 to rotate.
  • the driving device 2 includes a housing 21 and an outer magnetic pole 22 , high energy efficiency winding 23, support structure 24 and rotation axis 25, the high energy efficiency winding 23 includes three sub-windings 3, each sub-winding 3 includes a multi-turn coil 34, the sub-winding 3 includes a connection area 31 and a working area 32, The diameter of the connecting area 31 does not exceed the diameter of the working area 32, and each coil 34 of the connecting area 31 is not located on the cylindrical surface where the working area 32 is located; and at least part of the support structure 24 is connected to the working area 32.
  • the connecting area 31 is fit.
  • the first bearing 241 is provided on the distal surface of the connection area 31 .
  • the first bearing 241 is arranged in the high-energy-efficiency winding 23.
  • the first bearing 241 is fixedly connected to the high-energy-efficiency winding 23.
  • the high-energy-efficiency winding 23 has a positive impact on the first bearing.
  • 241 provides radial support.
  • Embodiment 2 the relevant structure and concept of Embodiment 2 are similar to Embodiment 1, and therefore will not be described again here.
  • the manufacturing method of the micro blood pump with the high-energy-efficiency winding 23 of this application is shown in Figure 5 and includes the following steps.
  • Step 1 Prepare the shell mold 5 and the mandrel 6 .
  • the shell mold 5 includes an injection port 51 .
  • Step 2 Fix the outer magnetic pole 22 outside the high-energy-efficiency winding 23, fix the high-energy-efficiency winding 23 and the first bearing 241 on the outer surface of the core shaft 6, as shown in Figure 4a, and fix the The shell mold 5 is cooperatively connected with the mandrel 6, as shown in Figure 4b.
  • Step 3 Inject filling resin 7 into the shell mold 5 through the injection port 51. As shown in Figure 4c, the injected filling resin 7 becomes the shell 21 after solidification.
  • Step 4 Disassemble the shell mold 5.
  • the shell 21 has been connected with the outer magnetic pole 22 and the high-energy-efficiency winding.
  • Group 23 fixed connection.
  • Step 5 Install the rotating shaft 25 and the second bearing 242 to obtain the driving device 2 .
  • Step 6 Connect the distal end of the driving device 2 to the impeller 1, and connect the proximal end of the driving device 2 to the catheter 4 to obtain a micro blood pump.
  • the core shaft 6 includes a first fitting shaft 61 and a second fitting shaft 62.
  • the first fitting shaft 61 is connected to the first bearing 241
  • the second fitting shaft 62 is connected to the first fitting shaft 62.
  • the connection area 31 of the energy-efficient winding 23 is connected.
  • a blocking member 8 is also provided at the proximal end of the first bearing 241, as shown in FIG. 4a, to prevent the filling resin 7 from entering the first bearing 241.
  • the stator in the blood pump has a large axial length at both ends, which reduces the proportion of the working area in the entire winding. This not only reduces the space utilization, but is not conducive to motor miniaturization and is also not conducive to motor miniaturization.
  • the output torque of the motor results in a small torque constant and high heat generation.
  • the blood pump of this application includes a high-energy-efficiency winding.
  • the high-energy-efficiency winding is composed of at least two sub-windings.
  • the sub-windings It includes the connection area and the working area.
  • connection area Since the diameter of the connection area does not exceed the diameter of the working area, the connection area is arranged towards the inside of the high-energy-efficiency winding, thereby not increasing the diameter of the winding and avoiding the problem of reducing the space utilization of the micro motor. And since each turn of the coil in the connection area is not located on the cylindrical surface where the working area is located, the connection area will occupy the radial space of the high-energy-efficiency winding, so that the support structure can fit with the connection area and provide axial support force to the support structure.
  • connection area occupies both the axial space and the radial space
  • the axial length of the connection area of the high-efficiency winding will be smaller than the axial length of the oblique winding area of the winding with oblique winding at both ends.
  • the overall length of the high-energy-efficiency winding of the present application is shorter, the efficiency is higher, and the heat generation is also improved.
  • the support structure includes a first bearing provided at the proximal end of the rotating shaft and a second bearing provided at the distal end of the rotating shaft.
  • the first bearing can be directly connected to the shell without the need for a special bearing seat, which will not increase the length of the blood pump.
  • the two ends of the first bearing are respectively affected by the filling resin and The extrusion of high-energy-efficiency windings, this design not only helps the first bearing to be fixed on the housing, but also helps the connection area fit the first bearing, supporting the first bearing when the rotating shaft is shaken by the impact of blood flow.
  • the outer diameter of the connecting area is larger than the outer diameter of the first bearing.
  • the connecting area of the high-energy-efficiency winding is like a "shoulder" to fix the first bearing, which is beneficial to the stable rotation of the impeller of the blood pump.
  • the sub-winding includes a connection area, a working area and an overlapping area. Since the filling section of the connection area is three-dimensional, the first working section, the second working section and the filling section of each turn are three-dimensional. are not located in the same plane, so the connection area will not only occupy the axial length, but also occupy the radial space. Therefore, The axial length of the connection area is smaller than the axial length of the overlapping area, which reduces the overall length of the winding, or increases the axial proportion of the working area in the winding, which is beneficial to improving the efficiency of the coreless motor.
  • the filling section includes a transition unit and a bending unit, and the bending unit is at least partially arc-shaped, so that after all the sub-windings are combined, a hollow area is formed in the center of the connection area, and the bending unit will not be completely filled.
  • the connecting area, and the hollow area is hole-shaped, providing a rotation space for the rotating shaft; and the diameter of the reserved area is larger than the diameter of the connecting section of the rotating shaft, which will not affect the rotation of the rotating shaft.
  • the bending unit includes a first connecting piece and a second connecting piece.
  • the first connecting piece is connected to the transition unit, and the second connecting piece is diametrically connected to the second working section. Since the transition unit is axially connected Located at the end of the working area, the connection point between the first connecting piece and the transition unit is located at the end of the winding compared to the connecting point between the second connecting piece and the second working section, that is, the first connecting point is located further than the second connecting point.
  • connection areas of different sub-windings can overlap with each other after being combined, and the first connecting piece overlaps with the second connecting piece of other sub-windings, improving It improves the space utilization of the winding and also realizes the function of the connection area without increasing the axial length of the connection area as much as possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Mechanical Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • External Artificial Organs (AREA)

Abstract

一种微型血泵及制造方法,其中,微型血泵包括叶轮(1)与驱动叶轮(1)旋转的驱动装置(2),驱动装置(2)包括外壳(21)、外磁极(22)、高能效绕组(23)、支撑结构(24)与转动轴(25),高能效绕组(23)包括至少两个子绕组(3),每个子绕组(3)包括多匝线圈(34),子绕组(3)包括连接区(31)与工作区(32),连接区(31)的直径不超过工作区(32)的直径,连接区(31)的每一匝线圈(34)不位于工作区(32)所在的圆柱面上;并且,至少部分支撑结构(24)与连接区(31)贴合,连接区(31)能为支撑结构(24)提供轴向力。

Description

微型血泵及制造方法
本申请要求在2022年08月28日提交中国专利局、申请号为202211038110.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗器械技术领域,例如涉及一种微型血泵及制造方法。
背景技术
人工左心室辅助装置(Left Ventricular Assist Device,LVAD)是一种将左心室内血液通过血泵主动泵入到主动脉的设备,泵血性能主要由血泵性能及运行模式决定,不依赖于患者身体状态,属于主动型血运循环支持设备。可经皮植入的人工左心室辅助装置(Percutaneous Left Ventricular Assist Device,pLVAD)是一种小型化的,可通过经皮冠状动脉介入治疗(Percutaneous Coronary Intervention,PCI)手术植入的人工左心室辅助装置,可在高危PCI手术中向患者提供更稳定的血运循环支持,在改善冠脉和远端器官灌注的同时减轻左心室负担,有利于术中患者体征稳定和术后康复。
但是,相关技术中的经皮介入微型轴流血泵仍有不足,为便于经皮介入,血泵外径一般在6mm以内,且为满足供血流量,微型血泵所需转速较高,通常高达30000转每分(Revolutions Per Minute,RPM)及以上,故血泵的定子、转子的尺寸要在尽量设计得小的情况下来带动叶轮旋转,且微型血泵需要通过主动脉弓到达目标位置,绕组与转子的轴向长度要尽量短,相关技术中的微型血泵在保证输出功率的同时难以达到微型尺寸。
专利CN104436338B公开了一种植入式自悬浮轴流血泵,包括:定子和转子,其中定子包括:定子铁芯、定子线圈和电机支架;转子包括:内置桨叶和含有磁性材料的内侧壁为圆柱形的磁钢;还包括桨轴,桨轴位于圆柱形磁钢的中心空洞中,内置桨叶设置在桨轴上,在该血泵的横截面中,沿径向由内到外依次为:内置桨叶、磁钢、电机支架、定子线圈和定子铁芯;该方案的不足在于:定子线圈采用了空心杯绕组,但是空心杯绕组在端部互相重叠,引起端部厚度累积,导致扩大血泵的直径,或者增加端部的轴向长度,从而降低了工作段在绕组整体所占的比例,降低了工作效率,同时不利于血泵微型化。
专利CN216456526U公开了一种介入式血管血泵,该方案的不足在于:血泵在运动过程中,转子会受到轴向冲击,需要设置远端轴承座与近端轴承座,轴承座的设置增大了血泵的轴向长度,不利于血泵进入到目标位置,同时还增 多了血泵内零部件的数量,加大了装配难度。
发明内容
本申请提供了一种微型血泵及制造方法,以解决针对例如因绕组的非工作区厚度大或长度大导致的血泵空间利用率下降问题,与因绕组的非工作区长度大而降低工作段所占比例导致的绕组工作效率下降、发热增大的问题。
根据本申请的一个方面,提供了一种微型血泵,包括叶轮与驱动所述叶轮旋转的驱动装置,所述驱动装置包括外壳、外磁极、高能效绕组、支撑结构与转动轴,所述高能效绕组包括至少两个子绕组,每个子绕组包括多匝线圈,所述子绕组包括连接区与工作区,所述连接区的直径不超过所述工作区的直径,所述连接区的每一匝线圈不位于所述工作区所在的圆柱面上;并且,至少部分支撑结构与所述连接区贴合。
根据一实施例,所述连接区能为所述支撑结构提供轴向力。
根据一实施例,所有子绕组拼接形成所述绕组后,组合的工作区呈圆柱状或大体上呈圆柱状。
根据一实施例,所述高能效绕组包括三个子绕组。
根据一实施例,所述支撑结构包括第一轴承和第二轴承,所述第一轴承设置在所述转动轴的近端,所述第二轴承设置在所述转动轴的远端;并且,所述连接区贴合所述第一轴承。
根据一实施例,所述第一轴承设置在所述连接区的近端面或远端面。
根据一实施例,所述第一轴承设置在所述连接区的远端面时,所述第一轴承与所述高能效绕组固定连接,所述高能效绕组对所述第一轴承提供径向支撑力。
根据一实施例,所述子绕组还包括叠绕区,所述叠绕区与所述工作区连接;并且,所述连接区的轴向长度小于所述叠绕区的轴向长度。
根据一实施例,所述工作区包括第一工作段与第二工作段,所述连接区至少包括填补段,所述填补段的两端分别与所述第一工作段和第二工作段连接;并且,每一匝的第一工作段、第二工作段与填补段三者不位于同一平面,不同子绕组的填补段有重叠区域。
根据一实施例,所述填补段为三维立体状。
根据一实施例,所述填补段包括过渡单元与弯曲单元,所述过渡单元的两端分别与所述第一工作段和所述弯曲单元连接,所述弯曲单元的两端分别与所 述第二工作段和所述过渡单元连接;并且,所述过渡单元的轴向长度为所述连接区的轴向长度。
根据一实施例,所述弯曲单元绕着所述高能效绕组的中心旋转设置;并且,所述弯曲单元至少部分呈圆弧状,所有弯曲单元组合在所述连接区的中心形成一个预留区域。
根据一实施例,所述预留区域呈孔状。
根据一实施例,所述弯曲单元包括第一衔接件与第二衔接件,所述第一衔接件与所述过渡单元连接且二者的连接点为第一连接点,所述第二衔接件与所述第二工作段连接且二者的连接点为第二连接点;所述第一连接点与所述第二连接点有高度差,所述第一连接点所在的位置为所述高能效绕组的最端部。
根据一实施例,所有子绕组组合后,所述子绕组的第一衔接件与其他子绕组的第二衔接件有重叠区域;并且,所述子绕组的第一工作段与其他子绕组的第二工作段有重叠区域。
根据一实施例,所述转动轴包括连接段,所述连接段与所述第一轴承配合连接;并且,所述预留区域的直径大于所述连接段的直径。
根据一实施例,所述叠绕区的绕制方式为六边形绕组斜绕式。
根据一实施例,所述叠绕区存在凸起环状部,所述叠绕区的直径为所述绕组的最大直径。
根据一实施例,所述弯曲单元整体上呈圆弧状;或者,所述第一衔接件呈圆弧状,所述第二衔接件呈直线状。
根据一实施例,所述过渡单元呈直线状,所述连接区在剖面上呈矩形;或者,所述过渡单元呈斜线状,所述连接区在剖面上呈梯形;或者,所述过渡单元呈圆弧状,所述连接区在剖面上呈球形。
根据一实施例,所述子绕组包括两个连接区,所述工作区的两端均连接所述连接区。
根据一实施例,所述工作区的电流方向与所述工作区的线圈布置方向平行。
根据一实施例,空心杯绕组的线圈主要由漆包线绕制而成。
根据一实施例,所述高能效绕组包括第一子绕组、第二子绕组、以及第三子绕组,三者为三相绕组,三个子绕组相互重叠。
根据一实施例,每一匝线圈的第一工作段和第二工作段在圆周方向上跨越弧度为π倍的半径,不限于π倍的半径。
根据一实施例,所述微型血泵还包括导管,所述导管与所述驱动装置的近端连接;并且,所述叶轮与所述转动轴的远端连接。
根据本申请的另一个方面,提供了一种微型血泵的制造方法,包括:
准备外壳模具与芯轴,其中,所述外壳模具包括注射口;
将所述外磁极固定在高能效绕组外,将所述高能效绕组与第一轴承固定在所述芯轴的外表面,并将所述外壳模具与所述芯轴配合连接;
通过所述注射口往所述外壳模具注射填充树脂,注射的填充树脂在固化后成为所述外壳;
拆开所述外壳模具,所述外壳已与所述外磁极以及高能效绕组固定连接;
安装所述转动轴与第二轴承,得到所述驱动装置;
将所述驱动装置的远端与所述叶轮连接,并将所述驱动装置的近端与导管连接,得到微型血泵。
根据一实施例,所述芯轴包括第一配合轴与第二配合轴,所述第一配合轴与所述第一轴承连接,所述第二配合轴与所述高能效绕组的连接区连接。
根据一实施例,所述高能效绕组包括两个连接区,并且两个连接区分别连接所述工作区的两端。
附图说明
图1a~1c为本申请提供的微型血泵与高能效绕组的整体结构示意图。
图2a~2e为本申请提供的连接区、工作区和叠绕区的结构示意图。
图3为本申请提供的微型血泵与高能效绕组的另一实施方式的结构示意图。
图4a~4c为本申请提供的一种微型血泵的制造方法的示意图。
图5为本申请提供的一种微型血泵的制造方法的流程示意图。
附图标记说明:
1-叶轮,2-驱动装置,21-外壳,22-外磁极,23-高能效绕组,24-支撑结构,
241-第一轴承,242-第二轴承,25-转动轴,251-连接段,3-子绕组,31-连接区,311-填补段,3111-过渡单元,3112-弯曲单元,3113-预留区域,3114-第一衔接件,3115-第二衔接件,3116-第一连接点,3117-第二连接点,32-工作区,321-第一工作段,322-第二工作段,33-叠绕区,34-线圈,4-导管,5-外壳模具,51-注射口,6-芯轴,61-第一配合轴,62-第二配合轴,7-填充树脂,8-阻挡件。
具体实施方式
在以下对附图和实施方式的描述中,将阐述本申请的一个或多个实施例的细节。从这些描述、附图以及权利要求中,可以理解本申请的其它特征、目的和优点。
所图示和描述的实施例在应用中不限于在以下描述中阐明或在附图中图示的构件的构造和布置的细节。所图示的实施例可以是其它的实施例,并且能够以多种方式来实施或执行。多个示例通过对所公开的实施例进行解释而非限制的方式来提供。在不背离本申请公开的范围或实质的情况下,可以对本申请的多个实施例作出多种修改和变型。例如,作为一个实施例的一部分而图示或描述的特征,可以与另一实施例一起使用,以仍然产生另外的实施例。因此,本申请公开涵盖属于所附权利要求及其等同要素范围内的这样的修改和变型。
同样,本文中所使用的词组和用语是出于描述的目的,而不应当被认为是限制性的。本文中的“包括”、“包含”或“具有”及其变型的使用,旨在开放式地包括其后列出的项及其等同项以及附加的项。
下面将参考本申请的多方面的不同的实施例和示例对本申请进行描述。
在本申请中,所述“近端”是指接近手术操作者的一端,所述“远端”是指远离手术操作者的一端。
在本申请中,术语“高能效绕组”由“子绕组”拼接而成。
实施例一
如图1a~1c所示,图示了根据本申请一实施例的提供了一种微型血泵,包括叶轮1与驱动所述叶轮1旋转的驱动装置2,所述驱动装置2包括外壳21、外磁极22、高能效绕组23、支撑结构24与转动轴25,所述高能效绕组23包括三个子绕组3,每个子绕组3包括多匝线圈34,所述子绕组3包括连接区31与工作区32,所述连接区31的直径不超过所述工作区32的直径,所述连接区31的每一匝线圈34不位于所述工作区32所在的圆柱面上;并且,至少部分支撑结构24与所述连接区31贴合。
本实施例一中,所述连接区31能为所述支撑结构24提供轴向力。
本实施例一中,所述支撑结构24包括第一轴承241和第二轴承242,所述第一轴承241设置在所述转动轴25的近端,所述第二轴承242设置在所述转动轴25的远端;并且,所述连接区31贴合所述第一轴承241,如图1a所示。
本实施例一中,所述第一轴承241设置在所述连接区31的近端面。
本实施例一中,所述子绕组3还包括叠绕区33,所述叠绕区33与所述工作 区32连接;并且,所述连接区31的轴向长度小于所述叠绕区33的轴向长度,如图1b和1c所示。
本实施例一中,所述工作区32包括第一工作段321与第二工作段322,所述连接区31至少包括填补段311,所述填补段311的两端分别与所述第一工作段321和第二工作段322连接;并且,每一匝的第一工作段321、第二工作段322与填补段311三者不位于同一平面,不同子绕组3的填补段311有重叠区域。
本实施例一中,所述填补段311为三维立体状。
本实施例一中,所述填补段311包括过渡单元3111与弯曲单元3112,如图2a所示,所述过渡单元3111的两端分别与所述第一工作段321和所述弯曲单元3112连接,所述弯曲单元3112的两端分别与所述第二工作段322和所述过渡单元3111连接;并且,所述过渡单元3111的轴向长度为所述连接区31的轴向长度。
本实施例一中,所述弯曲单元3112绕着所述高能效绕组23的中心旋转设置;并且,所述弯曲单元3112至少部分呈圆弧状,所有弯曲单元3112组合在所述连接区31的中心形成一个预留区域3113,如图2b所示。
本实施例一中,所述预留区域3113呈孔状。
本实施例一中,所述弯曲单元3112包括第一衔接件3114与第二衔接件3115,所述第一衔接件3114与所述过渡单元3111连接且二者的连接点为第一连接点3116,所述第二衔接件3115与所述第二工作段322连接且二者的连接点为第二连接点3117;所述第一连接点3116与所述第二连接点3117有高度差,所述第一连接点3116所在的位置为所述高能效绕组23的最端部。
本实施例一中,所有子绕组3组合后,所述子绕组3的第一衔接件3114与其他子绕组3的第二衔接件3115有重叠区域;并且,所述子绕组3的第一工作段321与其他子绕组3的第二工作段322有重叠区域。
本实施例一中,所述转动轴25包括连接段251,所述连接段251与所述第一轴承241配合连接;并且,所述预留区域3113的直径大于所述连接段251的直径。
本实施例一中,所述叠绕区33的绕制方式为六边形绕组斜绕式。
本实施例一中,所述弯曲单元3112整体上呈圆弧状;或者,所述第一衔接件3114呈圆弧状,所述第二衔接件3115呈直线状。
本实施例一中,所述过渡单元3111呈直线状,所述连接区31在剖面上呈矩形;或者,所述过渡单元3111呈斜线状,所述连接区31在剖面上呈梯形; 或者,所述过渡单元3111呈圆弧状,所述连接区31在剖面上呈球形,如图2c~2e所示。
本实施例一中,高能效绕组23(空心杯绕组)的线圈34主要由漆包线绕制而成。
本实施例一中,所述微型血泵还包括导管4,所述导管4与所述驱动装置2的近端连接;并且,所述叶轮1与所述转动轴25的远端连接。
实施例二
实施例二与实施例一大体上相同,不同之处在于第一轴承241相对高能效绕组23的位置布置不同。
如图3和1b所示,图示了一种带高能效绕组23的微型血泵,包括叶轮1与驱动所述叶轮1旋转的驱动装置2,所述驱动装置2包括外壳21、外磁极22、高能效绕组23、支撑结构24与转动轴25,所述高能效绕组23包括三个子绕组3,每个子绕组3包括多匝线圈34,所述子绕组3包括连接区31与工作区32,所述连接区31的直径不超过所述工作区32的直径,所述连接区31的每一匝线圈34不位于所述工作区32所在的圆柱面上;并且,至少部分支撑结构24与所述连接区31贴合。
本实施例二中,所述第一轴承241设置在所述连接区31的远端面。
本实施例二中,所述第一轴承241设置在所述高能效绕组23内,所述第一轴承241与所述高能效绕组23固定连接,所述高能效绕组23对所述第一轴承241提供径向支撑力。
就此而言,实施例二的相关构造和构思类似于实施例一,因此在这里不再重复描述。
实施例三
本申请带所述高能效绕组23的微型血泵的制造方法,如图5所示,包括以下步骤。
步骤1:准备外壳模具5与芯轴6,所述外壳模具5包括注射口51。
步骤2:将所述外磁极22固定在高能效绕组23外,将所述高能效绕组23与第一轴承241固定在所述芯轴6的外表面,如图4a所示,并将所述外壳模具5与所述芯轴6配合连接,如图4b所示。
步骤3:通过所述注射口51往所述外壳模具5注射填充树脂7,如图4c所示,注射的填充树脂7在固化后成为所述外壳21。
步骤4:拆开所述外壳模具5,所述外壳21已与所述外磁极22和高能效绕 组23固定连接。
步骤5:安装所述转动轴25与所述第二轴承242,得到所述驱动装置2。
步骤6:将所述驱动装置2的远端与所述叶轮1连接,将所述驱动装置2的近端与导管4连接,得到微型血泵。
本实施例三中,所述芯轴6包括第一配合轴61与第二配合轴62,所述第一配合轴61与所述第一轴承241连接,所述第二配合轴62与所述高能效绕组23的连接区31连接。
本实施例三中,在进行步骤3前,还在所述第一轴承241的近端设置阻挡件8,如图4a所示,防止所述填充树脂7进入所述第一轴承241。
本申请的技术方案的包括如下效果:
1、相关技术中血泵中的定子由于其两个端部的轴向长度大,减少了工作区在绕组整体所占的比例,不仅降低了空间利用率,不利于电机微型化,还不利于电机的输出力矩,导致转矩常数小,发热大,而本申请的技术方案则避免了以上问题,本申请的血泵包括高能效绕组,高能效绕组由至少两个子绕组组合而成,子绕组包括连接区和工作区,由于连接区的直径大小不超过工作区的直径,连接区朝高能效绕组内部布置,从而不会增大绕组的直径,避免了降低微型电机的空间利用率的问题,且由于连接区的每一匝线圈不位于工作区所在的圆柱面上,连接区会占用高能效绕组的径向空间,从而使得支撑结构能与连接区贴合,给支撑结构提供轴向支撑力,另一方面,由于连接区同时占用了轴向空间与径向空间,高能效绕组的连接区的轴向长度会小于两端为斜绕式的绕组的斜绕区轴向长度,在工作区的长度与密度相同的情况下,本申请的高能效绕组的整体长度更短,效率更高,同时也改善了发热情况。
2、根据本申请的一个构思,支撑结构包括设置在转动轴近端的第一轴承和设置在转动轴远端的第二轴承,由于血泵在制造过程中,外壳通过往模具注射填充树脂而成,第一轴承可直接与外壳连接,不需要特别设置轴承座,不会因此增大血泵长度,另一方面,在填充树脂固化的过程中,第一轴承的两端分别受到填充树脂与高能效绕组的挤压,这样的设计不仅有利于第一轴承固定在外壳上,还有利于连接区与第一轴承贴合,在转动轴受到血流冲击而晃动时起到支撑第一轴承的作用;连接区的外径大于第一轴承的外径,高能效绕组的连接区类似“轴肩”来固定第一轴承,有利于血泵的叶轮的稳定旋转。
3、根据本申请的一个构思,子绕组包括连接区、工作区与叠绕区,由于连接区的填补段为三维立体状,每一匝的第一工作段、第二工作段与填补段三者不位于同一平面,故连接区除了会占用轴向长度外,还会占用径向空间,由此 连接区的轴向长度小于叠绕区的轴向长度,减小了绕组的整体长度,或者说增大了工作区在绕组中的轴向占比,有利于提高空心杯电机的效率。
4、根据本申请的一个构思,填补段包括过渡单元与弯曲单元,且弯曲单元至少部分成圆弧状,使得所有子绕组组合后在连接区中心形成一个镂空区域,弯曲单元不会完全填满连接区,且镂空区域呈孔状,给转动轴提供了转动空间;并且,预留区域的直径大于转动轴的连接段的直径,不会影响转动轴旋转。
5、根据本申请的一个构思,弯曲单元包括第一衔接件和第二衔接件,第一衔接件与过渡单元连接,第二衔接件与第二工作段直径连接,由于过渡单元在轴向上位于工作区的端部,第一衔接件与过渡单元的连接点相较第二衔接件与第二工作段的连接点更位于绕组的端部,即第一连接点比第二连接点更位于绕组的端部,故由于第一连接点与第二连接点的高度差,不同子绕组在组合后它们的连接区能够相互重叠,第一衔接件与其他子绕组的第二衔接件重叠,提高了绕组的空间利用率,同时也在尽量不增大连接区的轴向长度的情况下实现了连接区的功能。
出于说明的目的而提出了对本申请的对多个实施例的前文描述。所述前文描述并非意图是穷举的,也并非将本申请限于所公开的精确配置、构造和/或步骤,根据上文的教导,可作出许多修改和变型。本申请的范围和所有的等同者旨在由所附权利要求限定。

Claims (13)

  1. 一种微型血泵,包括叶轮与驱动所述叶轮旋转的驱动装置,其中,所述驱动装置包括外壳、外磁极、高能效绕组、支撑结构与转动轴,所述高能效绕组包括至少两个子绕组,每个子绕组包括多匝线圈,所述每个子绕组包括连接区与工作区,所述连接区的直径不超过所述工作区的直径,所述连接区的每一匝线圈不位于所述工作区所在的圆柱面上;并且,至少部分支撑结构与所述连接区贴合。
  2. 根据权利要求1所述的微型血泵,其中,所述支撑结构包括第一轴承和第二轴承,所述第一轴承设置在所述转动轴的近端,所述第二轴承设置在所述转动轴的远端;并且,所述连接区贴合所述第一轴承。
  3. 根据权利要求2所述的微型血泵,其中,所述第一轴承设置在所述连接区的近端面或远端面。
  4. 根据权利要求3所述的微型血泵,其中,在所述第一轴承设置在所述连接区的远端面的情况下,所述第一轴承与所述高能效绕组固定连接,所述高能效绕组对所述第一轴承提供径向支撑力。
  5. 根据权利要求1所述的微型血泵,其中,所述每个子绕组还包括叠绕区,所述叠绕区与所述工作区连接;并且,所述连接区的轴向长度小于所述叠绕区的轴向长度。
  6. 根据权利要求2所述的微型血泵,其中,所述工作区包括第一工作段与第二工作段,所述连接区包括填补段,所述填补段的两端分别与所述第一工作段和所述第二工作段连接;并且,每一匝线圈的第一工作段、第二工作段与填补段三者不位于同一平面,不同子绕组的填补段有重叠区域。
  7. 根据权利要求6所述的微型血泵,其中,所述填补段包括过渡单元与弯曲单元,所述过渡单元的两端分别与所述第一工作段和所述弯曲单元连接,所述弯曲单元的两端分别与所述第二工作段和所述过渡单元连接;并且,所述过渡单元的轴向长度为所述连接区的轴向长度。
  8. 根据权利要求7所述的微型血泵,其中,所述弯曲单元绕着所述高能效绕组的中心旋转设置;并且,所述弯曲单元至少部分呈圆弧状,所有弯曲单元组合在所述连接区的中心形成一个预留区域。
  9. 根据权利要求7所述的微型血泵,其中,所述弯曲单元包括第一衔接件与第二衔接件,所述第一衔接件与所述过渡单元连接且二者的连接点为第一连接点,所述第二衔接件与所述第二工作段连接且二者的连接点为第二连接点;所述第一连接点与所述第二连接点有高度差,所述第一连接点所在的位置为所述高能效绕组的最端部。
  10. 根据权利要求9所述的微型血泵,其中,所有子绕组组合后,所述子绕组的第一衔接件与其他子绕组的第二衔接件有重叠区域;并且,所述子绕组的第一工作段与其他子绕组的第二工作段有重叠区域。
  11. 根据权利要求8所述的微型血泵,其中,所述转动轴包括连接段,所述连接段与所述第一轴承配合连接;并且,所述预留区域的直径大于所述连接段的直径。
  12. 一种应用于权利要求1至11中任一项所述的微型血泵的制造方法,包括:
    准备外壳模具与芯轴,其中,所述外壳模具包括注射口;
    将所述外磁极固定在所述高能效绕组外,将所述高能效绕组与第一轴承固定在所述芯轴的外表面,并将所述外壳模具与所述芯轴配合连接;
    通过所述注射口往所述外壳模具注射填充树脂,注射的填充树脂在固化后成为所述外壳;
    拆开所述外壳模具,所述外壳已与所述外磁极以及所述高能效绕组固定连接;
    安装所述转动轴与第二轴承,得到所述驱动装置;
    将所述驱动装置的远端与所述叶轮连接,并将所述驱动装置的近端与导管连接,得到微型血泵。
  13. 根据权利要求12所述的制造方法,其中,所述芯轴包括第一配合轴与第二配合轴,所述第一配合轴与所述第一轴承连接,所述第二配合轴与所述高能效绕组的连接区连接。
PCT/CN2023/115157 2022-08-28 2023-08-28 微型血泵及制造方法 WO2024046248A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211038110.8A CN115445078A (zh) 2022-08-28 2022-08-28 一种微型血泵及制造方法
CN202211038110.8 2022-08-28

Publications (1)

Publication Number Publication Date
WO2024046248A1 true WO2024046248A1 (zh) 2024-03-07

Family

ID=84301502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115157 WO2024046248A1 (zh) 2022-08-28 2023-08-28 微型血泵及制造方法

Country Status (2)

Country Link
CN (1) CN115445078A (zh)
WO (1) WO2024046248A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115445078A (zh) * 2022-08-28 2022-12-09 上海炫脉医疗科技有限公司 一种微型血泵及制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236702A (en) * 1975-09-18 1977-03-22 Matsushita Electric Ind Co Ltd Armature of cup type coreless motor
US4320319A (en) * 1978-05-31 1982-03-16 Yuji Takahashi Ironless rotor winding for electric motor, method and machine for making the same
US5911685A (en) * 1996-04-03 1999-06-15 Guidant Corporation Method and apparatus for cardiac blood flow assistance
WO2005064768A1 (ja) * 2003-12-26 2005-07-14 Mabuchi Motor Co., Ltd. スロットレスモータ及びその製造方法
CN107078579A (zh) * 2014-11-17 2017-08-18 冯哈伯微电机有限公司 气隙式绕组
CN107104570A (zh) * 2017-07-03 2017-08-29 中国医学科学院阜外医院 一种用于植入式轴流血泵的无槽电机
CN113891738A (zh) * 2019-05-29 2022-01-04 阿比奥梅德公司 提高马达效率的线圈绕组模式
CN114206429A (zh) * 2019-06-28 2022-03-18 阿比奥梅德公司 具有多层无芯线圈的血管内血液泵
CN115445078A (zh) * 2022-08-28 2022-12-09 上海炫脉医疗科技有限公司 一种微型血泵及制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236702A (en) * 1975-09-18 1977-03-22 Matsushita Electric Ind Co Ltd Armature of cup type coreless motor
US4320319A (en) * 1978-05-31 1982-03-16 Yuji Takahashi Ironless rotor winding for electric motor, method and machine for making the same
US5911685A (en) * 1996-04-03 1999-06-15 Guidant Corporation Method and apparatus for cardiac blood flow assistance
WO2005064768A1 (ja) * 2003-12-26 2005-07-14 Mabuchi Motor Co., Ltd. スロットレスモータ及びその製造方法
CN107078579A (zh) * 2014-11-17 2017-08-18 冯哈伯微电机有限公司 气隙式绕组
CN107104570A (zh) * 2017-07-03 2017-08-29 中国医学科学院阜外医院 一种用于植入式轴流血泵的无槽电机
CN113891738A (zh) * 2019-05-29 2022-01-04 阿比奥梅德公司 提高马达效率的线圈绕组模式
CN114206429A (zh) * 2019-06-28 2022-03-18 阿比奥梅德公司 具有多层无芯线圈的血管内血液泵
CN115445078A (zh) * 2022-08-28 2022-12-09 上海炫脉医疗科技有限公司 一种微型血泵及制造方法

Also Published As

Publication number Publication date
CN115445078A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
US10251986B2 (en) Intravascular ventricular assist device
JP4279494B2 (ja) 血管内血液ポンプ
WO2024046248A1 (zh) 微型血泵及制造方法
US10159773B2 (en) Blood pump
US7972122B2 (en) Multiple rotor, wide blade, axial flow pump
US20170296725A1 (en) Blood pump
EP2692369B1 (en) Axial flow blood pump device
JP7330386B2 (ja) 血液ポンプ
CN106512118B (zh) 一种全植入式磁液双悬浮轴流血泵
WO2017196271A1 (en) Internal axial flow blood pump with passive magnets and hydrodynamic radial bearing
AU2013273663B2 (en) Intravascular ventricular assist device
CN112206409B (zh) 一种磁悬浮混流心脏泵
CN115441627A (zh) 一种用于心脏辅助装置的驱动电机及心脏辅助装置
JP2023533594A (ja) 負荷改善血液ポンプシステムおよびその血液ポンプ
CN218940913U (zh) 一种用于人工心脏泵的无槽永磁电机及人工心脏泵
WO2023108606A1 (zh) 一种无轴血泵
CN117159910A (zh) 一种可收缩血液泵
CN118282153A (zh) 一种用于人工心脏泵的无槽永磁电机及人工心脏泵
CN115068810A (zh) 一种用于左心辅助的心尖离心血泵
CN116966411A (zh) 一种盘式折叠血液泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859280

Country of ref document: EP

Kind code of ref document: A1